
jSymbolic: A Feature Extractor for MIDI Files

Cory McKay and Ichiro Fujinaga

Music Technology Area, Schulich School of Music, McGill University
cory.mckay@mail.mcgill.ca and ich@music.mcgill.ca

Abstract
A library of 160 high-level features is presented along with
jSymbolic, a software package that extracts these features
from MIDI files. jSymbolic is intended both as a platform
for developing new features as well as a tool for providing
features to data mining software that can be used to
automatically classify music or evaluate musical similarity.

1 Introduction
Automatic music classification and similarity analysis

are areas of research that have been receiving increasing
attention in both the academic and commercial spheres.
Computerized machine learning and data mining tools are
used to measure the similarity of different pieces of music
and/or classify them based on a variety of category types,
such as genre, geographical/temporal/cultural origin, mood,
and listening scenario. Related techniques can be used to
perform tasks such as automatic playlist generation, music
recommendation and performer or composer identification.

In order to conduct such tasks it is first necessary to
extract characteristic pieces of information, known as
“features,” from music. Features typically fall into one of
three categories:

• Low-level features: Spectral or time-domain information
extracted directly from audio signals. Most features of
this type do not provide information that seems intuitively
musical, but they can have significant discriminating
power when processed by computers. Examples include
spectral flux, zero-crossing rate and RMS.

• High-level features: Information that consists of musical
abstractions that are meaningful to musically trained
individuals. Examples include instruments present,
melodic contour, chord frequencies and rhythmic density.

• Cultural features: Sociocultural information outside the
scope of musical content itself. These usually consist of
statistics that can be automatically mined from the web.
Examples include playlist co-occurrence, inter-
performance correlation and purchase correlations.

The majority of research projects to date on music
classification and similarity analysis have focused on just
one of these feature types at a time. Of the three, low-level
features have received by far the most attention. This

emphasis is probably due to the relative difficulty of reliably
extracting the other two types of features.

Cultural features can be difficult to quantify, and it can
be difficult to experimentally test their validity. It is also
necessary to have a certain amount of metadata about a
recording, such as song title or performer name, in order to
be able to collect cultural features.

Many high-level features cannot currently be reliably
extracted from audio recordings. Although high-level
features can be relatively easily extracted from music
recorded in symbolic formats (e.g., MIDI), which store
musical events and parameters rather than actual audio
samples, MIR researchers have tended to concentrate more
on audio formats because they are of more interest to the
general public.

This neglect of high-level features is unfortunate, as it is
reasonable to expect that advances in automatic
transcription will eventually enable one to convert audio
recordings into symbolic formats, from which high-level
features can then be extracted. An existing body of research
on high-level features could then be immediately taken
advantage of.

Furthermore, the musical nature of research involving
high-level features can have important musicological and
music theoretical value that low-level features cannot
provide. For example, research has shown that features
relating to instrumentation are of particular importance
when distinguishing between genres (McKay and Fujinaga
2005), a result that would be difficult to achieve if one were
using only low-level features.

There is a great deal of music already encoded in
symbolic formats such as MIDI or Humdrum’s kern. A
high-level feature extractor that could process such
recordings would make it possible to use these resources in
a wide range of automated musicological studies. In
addition, optical music recognition techniques already make
it possible to convert written scores for which audio
recordings are not available to symbolic formats from which
high-level features can be extracted.

jSymbolic, the focus of this paper, is a software package
designed to extract high-level features from MIDI files. It is
hoped that jSymbolic will be used to realize the research
potential of high-level features and to capitalize on the
numerous existing symbolic recordings.

Of course, one would ideally like to make use of all
three types of features. The amount of work required to do
so can be daunting, however, particularly considering the
tendency of researchers to each develop their own
specialized systems. Although a few successful software
packages have gradually come to be used by a variety of
researchers, most famously the MARSYAS audio feature
extractor (Tzanetakis and Cook 2000), they are typically
designed to deal only with audio recordings, and cannot
process symbolic recordings or mine cultural features.

A particular barrier to inter-system research has been the
lack of a widely accepted file format for storing feature
values. Although the Weka ARFF format (Witten and Frank
2005) is becoming a de facto standard, it is a general
purpose format, and as such has a number of important
limitations with respect to music (McKay et al. 2005).

Research is being pursued at McGill University to
overcome limitations on cooperative research by developing
software frameworks that will allow diverse researchers to
develop and share new features and data mining algorithms.
The first step was the development of ACE, a meta-
classifier that automatically experiments with a variety of
algorithms in order to find a good approach for each
particular problem (McKay et al. 2005). This included the
development of the ACE XML file formats for storing
feature values and recording metadata, which meet the
particular needs of music and allow more flexibility and
expressivity than existing formats such as ARFF.

The second step is the development of specialized
feature extractors for each of the three types of features. The
jAudio package (McEnnis et al. 2005) extracts features from
audio files, and jCultural is currently being developed to
mine cultural features from the web. jSymbolic extracts
high-level features from music stored in symbolic formats.

2 Designing High-Level Features
One must strike a careful balance when choosing which

features to extract from recordings. From one perspective,
maximizing the number of features helps to ensure that
enough information is extracted to sufficiently segment
different categories. A general-purpose system must be able
to deal with arbitrary types of music, which means that a
variety of features with wide applicability is needed.
However, too many features can overwhelm classifiers. This
problem is known as the “curse of dimensionality,” which
suggests that the number of labeled training and testing
samples needed increases exponentially with the number of
features. Although automated feature selection and
weighting techniques can help, one must still be careful to
avoid extracting too many features.

One compromise is to develop a large catalogue of
features, with an emphasis on general features, and to give
users the option of selecting which ones they want to
extract. Users can then choose the ones that are best suited
to each particular application, based on their own expertise.

High-level features have the important advantage that
one can exploit existing musical research when designing
them, particularly from the fields of music theory,
ethnomusicology and popular musicology. The
Cantometrics project (Lomax 1968), which compared
several thousand songs from hundreds of different cultural
groups, is an excellent example. Research on melodic
contours, as discussed by scholars such as Charles Adams
(1976), provides another particularly important resource.

Both Aarden and Huron (2001) and Towsey et al. (2001)
have already used computers to extract high-level features
for musicological studies. Additional high-level features
have been developed in the course of research on symbolic
genre classification (Gabura 1965; Dannenberg, Thom and
Watson 1997; Chai and Vercoe 2001; Shan and Kuo 2003;
Basili, Serafini, and Stellato 2004; Ponce de Leon and Inesta
2004). Further symbolic features have been proposed in a
number of additional miscellaneous studies (Eerola and
Toiviainen 2004; Sapp, Liu, and Selfridge-Field 2004;
Kirlin and Utgoff 2005).

As a general principle when choosing features, it is
generally best to concentrate on features that can be
represented by relatively simple statistics, since extracted
features will be processed by classification and clustering
algorithms.

It can also be useful to construct intermediate
representations from which further features can then be
extracted. Histograms (represented as vectors) can be
particularly fruitful in this respect, as useful information can
be calculated from them which could be difficult to acquire
directly. For example, researchers such as Brown (1993)
and Tzanetakis and Cook (2002) have profitably used “beat
histograms” generated using autocorrelation of note onsets
to extract a variety of useful rhythmic features. Tzanetakis
and Cook have also demonstrated the utility of “pitch
histograms” based on both pitches and pitch classes.

In the course of developing jSymbolic, it was found that
it is useful to consider two subclasses of high-level features,
namely one-dimensional features and multi-dimensional
features. The former each consist of a single number that
represents an aspect of a recording in isolation. The latter
each consist of a set of related values that have limited
significance when considered individually, but together can
reveal meaningful patterns. For example, the average
duration of melodic arcs would be a one-dimensional
feature and the bin frequencies of a histogram consisting of
the relative frequency of different melodic intervals would
be a multi-dimensional feature. This division into single and
multi-dimensional features is useful because it makes it
possible to use classifier ensembles that capitalize on the
particular relatedness of the components of multi-
dimensional features, such as an ensemble constructed by
training a separate classifier (e.g., a neural net) on each
multi-dimensional feature (McKay 2004).

Figure 1. The jSymbolic interface

3 Features Implemented
A total of 160 features are implemented in jSymbolic,

including both many original features and some features
previously proposed in the sources described above. A
number of intermediate representations are utilized,
including beat and pitch histograms, histograms based on
the instruments present, a “melodic interval histogram” that
measures the frequency of various melodic intervals in each
voice, a “vertical interval histogram” that measures the
frequency of different vertical intervals and a “chord type
histogram” that measures how often various chord types
appear.

The 160 features implemented in jSymbolic were
originally conceptualized during the design of the
Bodhidharma genre classifier (McKay 2004). Bodhidharma
placed first in all four categories of the MIREX 2005
Symbolic Genre Classification Contest (Downie 2005;
Downie et al. 2005), even though Bodhidharma only
includes implementations of 111 of the 160 proposed
features.

The remaining 49 features are now implemented in
jSymbolic, and the software is designed to make it easy to
add more features in the future. Although too numerous to
describe individually in this paper, jSymbolic’s 160 features
are each described elsewhere (McKay 2004). The features
can be divided into the following seven categories:

• Instrumentation: What types of instruments are present
and which are given particular importance relative to
others? The importance of both pitched and non-pitched

instruments and their interaction with each other is
considered.

• Texture: How many independent voices are there and how
do they interact (e.g., polyphonic, homophonic, etc.)?
What is the relative importance of different voices?

• Rhythm: The time intervals between the attacks of
different notes and the durations of each note are
considered. What kinds of meters and rhythmic patterns
are present? Is rubato used? How does rhythm vary from
voice to voice?

• Dynamics: How loud are notes and what kinds of
variations in dynamics occur?

• Pitch Statistics: What are the occurrence rates of different
notes, in terms of both pitches and pitch classes? How
tonal is the piece? What is its range? How much variety in
pitch is there?

• Melody: What kinds of melodic intervals are present?
How much melodic variation is there? What kinds of
melodic contours are used? What types of phrases are
used and how often are they repeated?

• Chords: What vertical intervals are encountered? What
types of chords do they represent? How much harmonic
movement is there, and how fast is it?

4 The jSymbolic Software
The jSymbolic software allows users to extract all or any

subset of its 160 features from any Format 0 or 1 MIDI file.
jSymbolic’s Java implementation is open-source and
platform-independent. jSymbolic can save features in Weka
ARFF format as well as the more expressive ACE XML.

Special efforts have been made to make it easy for
researchers to develop new features of their own and add

them to jSymbolic, a process that requires only a basic
knowledge of Java and MIDI. Detailed knowledge of
jSymbolic’s implementation is unnecessary.

New features can also easily take advantage of
previously implemented features, as jSymbolic
automatically calculates feature dependencies when
scheduling extraction. No user or developer intervention is
needed. Each feature is implemented as a separate module,
and new features can process MIDI data directly or make
use of existing features.

jSymbolic is designed for users with varying levels of
computer expertise. It therefore has a simple and easy-to-
learn graphical interface (see Figure 1) and is well
documented.

The jSymbolic software and documentation may be
downloaded from http://sourceforge.net/projects/jmir.

5 Conclusions and Future Research
The jSymbolic software includes a library of 160 high-

level features, likely the largest and most diverse high-level
feature library for music currently available. This library
includes many original features, and the use of a variety of
intermediate representations has shown itself to be useful, as
has the use of both one-dimensional and multi-dimensional
features.

It is hoped that jSymbolic will be adopted not only as a
tool for extracting features from music stored in symbolic
music formats, but also as a platform for iteratively
designing new features. Future research by the authors will
therefore concentrate primarily on developing new features.
There are also plans to expand jSymbolic’s functionality so
that it can process additional symbolic formats (e.g., kern,
GUIDO, MusicXML, etc.) and extract features using
overlapping and arbitrarily sized windows.

6 Acknowledgments
The generous financial support of the Social Sciences

and Humanities Research Council of Canada, the Canada
Foundation for Innovation and the Fonds Québécois de la
recherche sur la société et la culture has helped to make this
research possible.

References
Aarden, B., and D. Huron. 2001. Mapping European folksong:

Geographical localization of musical features. Computing in
Musicology 12: 169–83.

Adams, C. 1976. Melodic contour typology. Ethnomusicology
20 (2): 179–215.

Basili, R., A. Serafini, and A. Stellato. 2004. Classification of
musical genre: A machine learning approach. Proceedings of
the International Conference on Music Information Retrieval.
505–8.

Brown, J. C. 1993. Determination of meter of musical scores by
autocorrelation. Journal of the Acoustical Society of America
94 (4): 1953–7.

Chai, W. and B. Vercoe. 2001. Folk music classification using
hidden Markov models. Proceedings of the International
Conference on Artificial Intelligence.

Cope, D. 1991. Computers and musical style. Madison, WI: A-R
Editions.

Dannenberg, R. B., B. Thom, and D. Watson. 1997. A machine
learning approach to musical style recognition. Proceedings of
the International Computer Music Conference. 344–7.

Downie, J. S. 2005. MIREX 2005 contest results. Available on-line
at http://www.music-ir.org/evaluation/mirex-results. Retrieved
23 February 2006.

Downie, J. S., K. West, A. Ehmann, and E. Vincent. 2005. The
2005 music information retrieval evaluation eXchange
(MIREX 2005): Preliminary overview. Proceedings of the
International Conference on Music Information Retrieval.
320–3.

Eerola, T., and P. Toiviainen. 2004. MIR in Matlab: The MIDI
Toolbox. Proceedings of the International Conference on
Music Information Retrieval. 22–7.

Gabura, A. J. 1965. Computer analysis of musical style.
Proceedings of the ACM National Conference. 303–14.

Kirlin, P. B., and P. E. Utgoff. 2005. VoiSe: Learning to segregate
voices in explicit and implicit polyphony. Proceedings of the
International Conference on Music Information Retrieval.
552–7.

Lomax, A. 1968. Folk song style and culture. Washington, DC:
American Association for the Advancement of Science.

McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle. 2005. jAudio:
A feature extraction library. Proceedings of the International
Conference on Music Information Retrieval. 600–3.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005.
ACE: A framework for optimizing music classification.
Proceedings of the International Conference on Music
Information Retrieval. 42–9.

McKay, C., and I. Fujinaga. 2005. Automatic music classification
and the importance of instrument identification. Proceedings of
the Conference on Interdisciplinary Musicology. CD-ROM.

McKay, C. 2004. Automatic genre classification of MIDI
recordings. M.A. Thesis. McGill University, Canada.

Ponce de Leon, P. J., and J. M. Inesta. 2004. Statistical description
models for melody analysis and characterization.. Proceedings
of the International Computer Music Conference. 149–56.

Sapp, C. S., Y. W. Liu, and E. Selfridge-Field. 2004. Search-
effectiveness measures for symbolic music queries in very
large databases. Proceedings of the International Conference
on Music Information Retrieval. 266–73.

Shan, M. K., and F. F. Kuo. 2003. Music style mining and
classification by melody. IEICE Transactions on Information
and Systems E86-D (3): 655–9.

Tagg, P. 1982. Analysing popular music: Theory, method and
practice. Popular Music 2: 37–67.

Towsey, M., A. Brown, S. Wright, and J. Diederich. 2001.
Towards melodic extension using genetic algorithms.
Educational Technology & Society 4 (2): 54–65.

Tzanetakis, G., and P. Cook. 2002. Musical genre classification of
audio signals. IEEE Transactions on Speech and Audio
Processing 10 (5): 293–302.

Tzanetakis, G., and P. Cook. 2000. MARSYAS: A framework for
audio analysis. Organized Sound 4 (3): 293–302.

Witten, I. H., and E. Frank. 2005. Data mining: Practical machine
learning tools and techniques. New York, NY: Morgan
Kaufman.

