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Abstract 
A library of 160 high-level features is presented along with 
jSymbolic, a software package that extracts these features 
from MIDI files. jSymbolic is intended both as a platform 
for developing new features as well as a tool for providing 
features to data mining software that can be used to 
automatically classify music or evaluate musical similarity. 

1 Introduction 
Automatic music classification and similarity analysis 

are areas of research that have been receiving increasing 
attention in both the academic and commercial spheres. 
Computerized machine learning and data mining tools are 
used to measure the similarity of different pieces of music 
and/or classify them based on a variety of category types, 
such as genre, geographical/temporal/cultural origin, mood, 
and listening scenario. Related techniques can be used to 
perform tasks such as automatic playlist generation, music 
recommendation and performer or composer identification. 

In order to conduct such tasks it is first necessary to 
extract characteristic pieces of information, known as 
“features,” from music. Features typically fall into one of 
three categories: 

 

• Low-level features: Spectral or time-domain information 
extracted directly from audio signals. Most features of 
this type do not provide information that seems intuitively 
musical, but they can have significant discriminating 
power when processed by computers. Examples include 
spectral flux, zero-crossing rate and RMS. 

• High-level features: Information that consists of musical 
abstractions that are meaningful to musically trained 
individuals. Examples include instruments present, 
melodic contour, chord frequencies and rhythmic density. 

• Cultural features: Sociocultural information outside the 
scope of musical content itself. These usually consist of 
statistics that can be automatically mined from the web. 
Examples include playlist co-occurrence, inter-
performance correlation and purchase correlations. 

 

The majority of research projects to date on music 
classification and similarity analysis have focused on just 
one of these feature types at a time. Of the three, low-level 
features have received by far the most attention. This 

emphasis is probably due to the relative difficulty of reliably 
extracting the other two types of features. 

Cultural features can be difficult to quantify, and it can 
be difficult to experimentally test their validity. It is also 
necessary to have a certain amount of metadata about a 
recording, such as song title or performer name, in order to 
be able to collect cultural features. 

Many high-level features cannot currently be reliably 
extracted from audio recordings. Although high-level 
features can be relatively easily extracted from music 
recorded in symbolic formats (e.g., MIDI), which store 
musical events and parameters rather than actual audio 
samples, MIR researchers have tended to concentrate more 
on audio formats because they are of more interest to the 
general public. 

This neglect of high-level features is unfortunate, as it is 
reasonable to expect that advances in automatic 
transcription will eventually enable one to convert audio 
recordings into symbolic formats, from which high-level 
features can then be extracted. An existing body of research 
on high-level features could then be immediately taken 
advantage of. 

Furthermore, the musical nature of research involving 
high-level features can have important musicological and 
music theoretical value that low-level features cannot 
provide. For example, research has shown that features 
relating to instrumentation are of particular importance 
when distinguishing between genres (McKay and Fujinaga 
2005), a result that would be difficult to achieve if one were 
using only low-level features. 

There is a great deal of music already encoded in 
symbolic formats such as MIDI or Humdrum’s kern. A 
high-level feature extractor that could process such 
recordings would make it possible to use these resources in 
a wide range of automated musicological studies. In 
addition, optical music recognition techniques already make 
it possible to convert written scores for which audio 
recordings are not available to symbolic formats from which 
high-level features can be extracted. 

jSymbolic, the focus of this paper, is a software package 
designed to extract high-level features from MIDI files. It is 
hoped that jSymbolic will be used to realize the research 
potential of high-level features and to capitalize on the 
numerous existing symbolic recordings. 



Of course, one would ideally like to make use of all 
three types of features. The amount of work required to do 
so can be daunting, however, particularly considering the 
tendency of researchers to each develop their own 
specialized systems. Although a few successful software 
packages have gradually come to be used by a variety of 
researchers, most famously the MARSYAS audio feature 
extractor (Tzanetakis and Cook 2000), they are typically 
designed to deal only with audio recordings, and cannot 
process symbolic recordings or mine cultural features. 

A particular barrier to inter-system research has been the 
lack of a widely accepted file format for storing feature 
values. Although the Weka ARFF format (Witten and Frank 
2005) is becoming a de facto standard, it is a general 
purpose format, and as such has a number of important 
limitations with respect to music (McKay et al. 2005). 

Research is being pursued at McGill University to 
overcome limitations on cooperative research by developing 
software frameworks that will allow diverse researchers to 
develop and share new features and data mining algorithms. 
The first step was the development of ACE, a meta-
classifier that automatically experiments with a variety of 
algorithms in order to find a good approach for each 
particular problem (McKay et al. 2005). This included the 
development of the ACE XML file formats for storing 
feature values and recording metadata, which meet the 
particular needs of music and allow more flexibility and 
expressivity than existing formats such as ARFF. 

The second step is the development of specialized 
feature extractors for each of the three types of features. The 
jAudio package (McEnnis et al. 2005) extracts features from 
audio files, and jCultural is currently being developed to 
mine cultural features from the web. jSymbolic extracts 
high-level features from music stored in symbolic formats. 

2 Designing High-Level Features 
One must strike a careful balance when choosing which 

features to extract from recordings. From one perspective, 
maximizing the number of features helps to ensure that 
enough information is extracted to sufficiently segment 
different categories. A general-purpose system must be able 
to deal with arbitrary types of music, which means that a 
variety of features with wide applicability is needed.  
However, too many features can overwhelm classifiers. This 
problem is known as the “curse of dimensionality,” which 
suggests that the number of labeled training and testing 
samples needed increases exponentially with the number of 
features. Although automated feature selection and 
weighting techniques can help, one must still be careful to 
avoid extracting too many features. 

One compromise is to develop a large catalogue of 
features, with an emphasis on general features, and to give 
users the option of selecting which ones they want to 
extract. Users can then choose the ones that are best suited 
to each particular application, based on their own expertise.  

High-level features have the important advantage that 
one can exploit existing musical research when designing 
them, particularly from the fields of music theory, 
ethnomusicology and popular musicology. The 
Cantometrics project (Lomax 1968), which compared 
several thousand songs from hundreds of different cultural 
groups, is an excellent example. Research on melodic 
contours, as discussed by scholars such as Charles Adams 
(1976), provides another particularly important resource. 

Both Aarden and Huron (2001) and Towsey et al. (2001) 
have already used computers to extract high-level features 
for musicological studies. Additional high-level features 
have been developed in the course of research on symbolic 
genre classification (Gabura 1965; Dannenberg, Thom and 
Watson 1997; Chai and Vercoe 2001; Shan and Kuo 2003; 
Basili, Serafini, and Stellato 2004; Ponce de Leon and Inesta 
2004). Further symbolic features have been proposed in a 
number of additional miscellaneous studies (Eerola and 
Toiviainen 2004; Sapp, Liu, and Selfridge-Field 2004; 
Kirlin and Utgoff 2005). 

As a general principle when choosing features, it is 
generally best to concentrate on features that can be 
represented by relatively simple statistics, since extracted 
features will be processed by classification and clustering 
algorithms. 

It can also be useful to construct intermediate 
representations from which further features can then be 
extracted. Histograms (represented as vectors) can be 
particularly fruitful in this respect, as useful information can 
be calculated from them which could be difficult to acquire 
directly. For example, researchers such as Brown (1993) 
and Tzanetakis and Cook (2002) have profitably used “beat 
histograms” generated using autocorrelation of note onsets 
to extract a variety of useful rhythmic features. Tzanetakis 
and Cook have also demonstrated the utility of “pitch 
histograms” based on both pitches and pitch classes. 

In the course of developing jSymbolic, it was found that 
it is useful to consider two subclasses of high-level features, 
namely one-dimensional features and multi-dimensional 
features. The former each consist of a single number that 
represents an aspect of a recording in isolation. The latter 
each consist of a set of related values that have limited 
significance when considered individually, but together can 
reveal meaningful patterns. For example, the average 
duration of melodic arcs would be a one-dimensional 
feature and the bin frequencies of a histogram consisting of 
the relative frequency of different melodic intervals would 
be a multi-dimensional feature. This division into single and 
multi-dimensional features is useful because it makes it 
possible to use classifier ensembles that capitalize on the 
particular relatedness of the components of multi-
dimensional features, such as an ensemble constructed by 
training a separate classifier (e.g., a neural net) on each 
multi-dimensional feature (McKay 2004). 



 
 

Figure 1. The jSymbolic interface 
 

3 Features Implemented 
A total of 160 features are implemented in jSymbolic, 

including both many original features and some features 
previously proposed in the sources described above. A 
number of intermediate representations are utilized, 
including beat and pitch histograms, histograms based on 
the instruments present, a “melodic interval histogram” that 
measures the frequency of various melodic intervals in each 
voice, a “vertical interval histogram” that measures the 
frequency of different vertical intervals and a “chord type 
histogram” that measures how often various chord types 
appear.  

The 160 features implemented in jSymbolic were 
originally conceptualized during the design of the 
Bodhidharma genre classifier (McKay 2004). Bodhidharma 
placed first in all four categories of the MIREX 2005 
Symbolic Genre Classification Contest (Downie 2005; 
Downie et al. 2005), even though Bodhidharma only 
includes implementations of 111 of the 160 proposed 
features.  

The remaining 49 features are now implemented in 
jSymbolic, and the software is designed to make it easy to 
add more features in the future. Although too numerous to 
describe individually in this paper, jSymbolic’s 160 features 
are each described elsewhere (McKay 2004). The features 
can be divided into the following seven categories: 
 

• Instrumentation: What types of instruments are present 
and which are given particular importance relative to 
others? The importance of both pitched and non-pitched 

instruments and their interaction with each other is 
considered. 

• Texture: How many independent voices are there and how 
do they interact (e.g., polyphonic, homophonic, etc.)? 
What is the relative importance of different voices? 

• Rhythm: The time intervals between the attacks of 
different notes and the durations of each note are 
considered. What kinds of meters and rhythmic patterns 
are present? Is rubato used? How does rhythm vary from 
voice to voice? 

• Dynamics: How loud are notes and what kinds of 
variations in dynamics occur? 

• Pitch Statistics: What are the occurrence rates of different 
notes, in terms of both pitches and pitch classes? How 
tonal is the piece? What is its range? How much variety in 
pitch is there? 

• Melody: What kinds of melodic intervals are present? 
How much melodic variation is there? What kinds of 
melodic contours are used? What types of phrases are 
used and how often are they repeated? 

• Chords: What vertical intervals are encountered? What 
types of chords do they represent? How much harmonic 
movement is there, and how fast is it? 

4 The jSymbolic Software 
The jSymbolic software allows users to extract all or any 

subset of its 160 features from any Format 0 or 1 MIDI file. 
jSymbolic’s Java implementation is open-source and 
platform-independent. jSymbolic can save features in Weka 
ARFF format as well as the more expressive ACE XML. 

Special efforts have been made to make it easy for 
researchers to develop new features of their own and add 



them to jSymbolic, a process that requires only a basic 
knowledge of Java and MIDI. Detailed knowledge of 
jSymbolic’s implementation is unnecessary. 

New features can also easily take advantage of 
previously implemented features, as jSymbolic 
automatically calculates feature dependencies when 
scheduling extraction. No user or developer intervention is 
needed. Each feature is implemented as a separate module, 
and new features can process MIDI data directly or make 
use of existing features. 

jSymbolic is designed for users with varying levels of 
computer expertise. It therefore has a simple and easy-to-
learn graphical interface (see Figure 1) and is well 
documented. 

The jSymbolic software and documentation may be 
downloaded from http://sourceforge.net/projects/jmir.  

5 Conclusions and Future Research 
The jSymbolic software includes a library of 160 high-

level features, likely the largest and most diverse high-level 
feature library for music currently available. This library 
includes many original features, and the use of a variety of 
intermediate representations has shown itself to be useful, as 
has the use of both one-dimensional and multi-dimensional 
features. 

It is hoped that jSymbolic will be adopted not only as a 
tool for extracting features from music stored in symbolic 
music formats, but also as a platform for iteratively 
designing new features. Future research by the authors will 
therefore concentrate primarily on developing new features. 
There are also plans to expand jSymbolic’s functionality so 
that it can process additional symbolic formats (e.g., kern, 
GUIDO, MusicXML, etc.) and extract features using 
overlapping and arbitrarily sized windows. 
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