
jAudio: Towards a standardized extensible
 audio music feature extraction system

Cory McKay
Faculty of Music, McGill University

555 Sherbrooke Street West

Montreal, Quebec, Canada H3A 1E3

cory.mckay@mail.mcgill.ca

ABSTRACT

Audio feature extraction play an essential
role in automatic music classification. This paper
explains the needed for a standardized audio
feature extraction system, describes the most
important attributes that such a system should
possess and presents a prototype that has been
developed to meet this need.

1.0 INTRODUCTION

Features, or characteristic pieces of informa-
tion that can be used to describe objects or ab-
stractions, play an essential role in any classifica-
tion task Features are the percepts to classifica-
tion system, and even a perfect classifier will not
be able to make correct classifications if it does
not have access to features that properly segment
the objects to be classified.

Features can be particularly problematic
with respect to audio signals. When asked how
to distinguish between two different types of
sound, a typical person might have a difficulty
expressing a precise list of features, even if he or
she can easily make the classification. Even in
cases where one is able to vocalize audio fea-
tures, the features are likely to be abstractions
that are difficult to quantify and extract digitally
from an audio signal. For example, a musician as
kedto describe the differences between two gen-
res of music is likely to use terms that require the
ability to extract information based on pitches,
rhythms and timbres.

Unfortunately, high-level information such
as this is currently difficult to impossible to re-
liably extract from music signals in general. This
difficulty means that one must at least start with
low-level signal processing-based features. De-
termining which features are best-suited for a
particular task can be difficult, as humans do not

tend to perceive or think about sound in terms
that are meaningful in a low-level signal process-
ing sense.

Fortunately, there are successful approaches
to dealing with these problems. Although low-
level features are not usually intuitive to humans
in a perceptual sense, an individual well-trained
in signal processing and in auditory perception
can use his or her expertise to gain insights into
how certain low-level features can be useful.

Furthermore, one can take an iterative ap-
proach to feature extraction, where low-level
features derived directly from audio signals are
used to derive mid-level representations, which
can in turn be used to derive high-level features
that are perceptually meaningful to humans. For
example, basic spectral features can currently be
used to track note onsets and pitch in the special
case of monophonic music, which can in turn be
used to generate MIDI transcriptions, which can
then be used to generate high-level features re-
lated to rhythmic patterns and melodies.

An additional important point is that, even
though it may be the case that a particular low-
level feature is not used by humans to perform a
certain classification, this does not necessarily
mean that this feature cannot effectively be used
by a computer to perform the same classification.
Feature selection techniques can be used to ex-
perimentally and statistically determine which
features are useful and which are not in a given
context.

Such an explorative approach is particularly
important with respect to music classification.
Although a great deal of research has been done
on features that could be useful for speech rec-
ognition, music has received much less attention.
Experimental research on which features work
well with respect to different kinds of music in
different contexts could be of theoretical interest
in and of itself, in addition to improvements in

classification success rates that it might bring
about.

In any case, it is clear that the acquisition of
a large number of low-level features can be very
useful, for the purpose of direct classification as
well as for constructing more abstract higher-
level features. Software that can easily do this is
therefore essential for audio classification.

It is currently common in the field of music
information retrieval (MIR) for individual re-
search groups to each design their own feature
extraction systems. Aside from the obvious inef-
ficiency involved in this duplication of effort,
this can also lead to inconsistencies and inaccu-
racies in extracted features. MIR researchers in
general require expertise in both machine learn-
ing and music, with the result that it is not sur-
prising that many of them have only a passing
knowledge of signal processing. Time con-
straints related to the fact that a given feature
extraction system is only part of a larger system
that is being developed also makes it likely that
the system will be less rigorously designed and
tested than a specialized system might be. For all
of these reasons, a good standardized audio fea-
ture extraction system could be of great benefit
to the MIR community.

2.0 EXISTING SYSTEMS

A number of feature extractionsystems have
been made publicly available over the last sev-
eral years in order to address this need. Three of
these in particular deserve special mention here,
as they represent perhaps the most serious efforts
towards creating reliable and widely applicable
systems.

2.1 Marsyas

Marsyas has been an important pioneer in
the MIR field, and is probably currently the most
widely used feature extraction system. It is well
maintained by its creator, George Tzanetakis,
who is in the process of finalizing a new release.
The software has been discussed in a number of
publications, perhaps most famously with respect
to genre classification (Tzanetakis, Essl, and
Cook. 2001; Tzanetakis, G., and P. Cook. 2002).

The software is efficiently implemented in
C++, but the code can be somewhat difficult for
novice users to understand and extend, and the
documentation on the details of the system can
be limited. There have also been some problems

with installation and ease of use in the past, al-
though these may be corrected in the newest re-
lease.

2.2 CLAM

CLAM is a powerful and flexible audio
analysis, synthesis and transformation system
implemented in C++ that is currently in the final
stages of development. Although the ground-
work has clearly been laid for a powerful and
easy-to-use interface, the current beta version
still has some problems. In addition, installation
can be particularly problematic. Furthermore,
CLAM is not specifically designed for feature
extraction, and its general power and flexibility
complicate the system for those concerned solely
with feature extraction.

So, although CLAM promises to be an ex-
cellent system, it is only tangentially suitable for
a specialized feature extraction role, particularly
in its current stage of development. More infor-
mation on CLAM can be found in the soon to be
published paper by Pau Arumi and Xavier Ama-
triain (2005).

2.3 M2K

M2K is a patch-based system implemented
in Java that is currently in alpha development.
This system promises to be a very powerful pro-
totyping tool in the domain of MIR, for which it
has been specifically designed. Downie, Futrelle
and Tcheng have published the initial work on
the system (2004).

M2K makes use of the D2K distributed
processing framework. This means that M2K can
process tasks simultaneously using several com-
puters and can also take advantage of D2K’s
classification libraries and powerful GUI.

 Unfortunately, D2K’s licence not only
sometimes makes it complicated for researchers
outside the U.S.A. to obtain it, but forbids its use
in commercial applications. This means that any
system that uses D2K cannot itself be used for
any non-research-based tasks. In addition, D2K
itself still has a number of bugs and it can also be
difficult to install. Furthermore, not all of D2K is
open-source.

So, although M2K promises to be an excel-
lent tool for MIR prototyping, its licensing situa-
tion and current early stage of development
makes it inappropriate for developing a generally
usable standardized feature extraction system.

3.0 DESIGN PRIORITIES

It can be seen from Section 2 that there are a
number of powerful and useful tools that can be
used for audio feature extraction. Unfortunately,
none of them are without weaknesses with re-
spect to the particular role of a standardized and
general-purpose feature extractor.

This leaves a gap which needs to be filled.
The system described in this paper is intended as
a preliminary step towards filling this gap. Be-
fore describing the details of the system, how-
ever, it is important to explicitly state the quali-
ties that are most essential in order for a general
audio feature extraction system to be successful.

3.1 Extensibility

It must be easy to add new features to the
system. A system must allow one to experiment
with new features, not just extract existing ones.

In particular, it should be simple for new
features to make use of existing features, as
many features build upon one another. For ex-
ample, extracting the RMS of windows allows
one to perform an auto-correlation which can
produce a beat histogram, which in turn can be
used to derive information such as tempo or me-
ter.

It is therefore essential that one be able to
easily add new features that potentially take ad-
vantage of existing features. It should be possible
to do this with only minimal knowledge of the
design of the system as a whole. This implies a
modular and well documented design. Further-
more, the software should be open source so that
individual developers can expand on it and oth-
ers can take advantage of their work.

3.2 Ease of use

It is essential that the software be easy to
learn and use. Potential users could have a wide
variety of backgrounds in both signal processing
and compute science, and this variety must be
taken into account. The details of signal process-
ing should be hidden from users whenever pos-
sible, in order to accommodate those with little
experience. Feature interdependencies in particu-
lar should be made invisible to users. At the
same time, it must be possible for users skilled in
signal processing to be able to access signal
processing details so that they can take advan-
tage of their expertise.

A dual implementation of GUI and com-
mand-line interfaces represents a good solution,
as novice users can perform powerful tasks in a
simple fashion using the GUI, and skilled users
can perform specialized batch tasks using the
command line. In either case, the interface(s)
must be extensively and clearly documented.

3.3 Portability and ease of installation

If a system is to be widely usable, it must be
possible to install it under any common operat-
ing system. It should also not require any pro-
prietary commercial software, such as MatLab,
or any software with a limited licence, such as
D2K. The latter concern is particularly important
for users who might wish to integrate the feature
extraction system into larger systems.

Given these requirements, it is also very im-
portant that the software be effortless to install.
This means that it might be wise to implement
such a system in a portable language such as
Java. Languages such as C++ should be avoided
unless specialized and complete installation sub-
systems are made available for each potential
operating system, as compilation and linking
difficulties can discourage many users.

3.4 Interaction with classifiers

It is, of course, necessary that the feature ex-
traction system be able to communicate extracted
features to a classification system. The feature
extraction system should be independent of any
particular classification approach or software on,
as too tight an integration compromises the gen-
erality and portability of the system. On the other
hand, the system must be able to output features
in formats that common classifiers are able to
read.

There is, unfortunately, no standardized file
format for storing features. The development of
such a format would be of great use, as a single
output file could then be used with arbitrary clas-
sifiers. Of course, this would require that the
standardized format be recognized by existing
classification systems, which could take some
time to come about. So, although the develop-
ment of a standardized format should be pursued,
existing formats should not be neglected.

3.5 Variety of features

As mentioned above, a large library of fea-
tures can be processed by feature selection algo-

rithms in order to choose the best features for a
particular task. This makes the implementation
of a wide variety of features valuable, as it
makes more candidates available for feature se-
lection. It also makes more basis features avail-
able which can be used to derive other features in
the future.

Of course, it is important that the features be
well tested in order to assure their accuracy and
consistency with other feature extraction sys-
tems. Consistency can sometimes be difficult to
achieve, unfortunately, as there are sometimes
multiple interpretations of the same feature. For
example, many spectral features contain versions
based on magnitude spectra derived from Fourier
analysis as well as versions based on power
spectra.

3.6 User control of pre-processing and
feature parameters

Users will wish to use features for many dif-
ferent tasks under many different conditions. The
user must therefore be given control over the
parameters of individual features, where appro-
priate, as well as over any pre-processing that is
to occur. Possible parameters include downsam-
pling, if any, window size and amount of win-
dow overlap.

Some users will wish to classify small seg-
ments of audio signals individually, and others
will only wish to classify recordings or other
large portions of a signal as a whole. A good
system should therefore be able to extract and
save features for individual windows as well as
for sets of windows. Averages and standard de-
viations of window features could be particularly
useful in the latter case.

4.0 IMPLEMENTED SYSTEM

The system implemented here, named
jAudio, was designed with the concerns ex-
pressed in Section 3 in mind. Although jAudio
cannot yet be said to perfectly meet all of these
requirements, it does address many of them. The
version of jAudio discussed here is a prototype
that is intended to eventually be developed into a
complete system that meets all of Section 3’s
requirements. This is not to say that jAudio is not
fully functional, however, as the prototype does
work fully and reliably.

4.1 Basic implementation

The system is implemented in Java, partly in
order to take advantage of Java’s portability and
partly because Java’s design facilitates an exten-
sible implementation. Although there were some
initial concerns about speed, it turns out that Java
in its current implementation is faster than is
commonly believed, and processing time was not
more of an issue than it is with audio processing
systems in general.

The disadvantage of using Java is that there
is only limited support for audio in the core Java
libraries. This is perhaps the reason that there
was no previously implemented Java-based au-
dio feature extraction system of any scale. It was
therefore necessary to do a good deal of low-
level work simply to read and process audio at
all. Now that that work has been done, however,
the jAudio system makes the level of audio in-
volving signal streams, buffering, etc. invisible
to future developers who wish to implement new
features.

The software is entirely open source and
freely distributable. Full Javadoc documentation
is available on all classes. Installing the software
consists only of copying two Jar files into one’s
Java extensions directory and then copying the
jAudio Jar file into whatever home directory one
desires. The software can then be run simply by
double clicking on the jAudio Jar.

The software makes use of two pieces of
third-party software, both of which are freely
distributable. A Tritonus plug-in is used to per-
form sampling rate conversions and the Xerces
XML file parser is used to process XML files.

4.2 Adding new features

One of the most important strengths of
jAudio is the ease with which the design makes
it possible to implement new features. If one
wishes to do so, one need only write a single
new class that extends an abstract class named
FeatureExtractor. All that this new class must
contain is a constructor and an implementation of
a FeatureExtractor method called extractFeature.

This design makes it very easy to make use
of other features in one’s new feature, without
requireing any knowledge of how they them-
selves are implemented. The constructor of the
new class can contain an array of strings and an
array of integers. Each string can represent the
name of any other feature and each integer repre-

Figure 1: Basic jAudio interface.

sents the delay for the given string (e.g. 0 for the
feature value from the current window, -1 for the
feature value for one window previous to the
current window, etc.). The extractFeature
method will automatically be fed the requested
feature values as doubles during execution, as
well as an array of doubles representing the cur-
rent window of samples and the sampling rate.
No knowledge of how this is done is needed to
implement a new feature.

This ability to implement feature interde-
pendencies without any knowledge of how
jAudio itself works or how any of the other fea-
tures work is very valuable from the perspective
of extensibility. jAudio automatically and invisi-
bly schedules the order of feature extraction in
order to ensure that all features that can be ex-
tracted are extracted and that no feature needs to
be extracted more than once for a given window.
This has powerful implications relating to effi-
ciency as well as extensibility.

4.3 File formats

jAudio uses two novel file formats that are
proposed as candidates for representing extracted
features in a standardized format. Both of these
files are based on XML, which makes them hu-
man readable and easy to debug.

One file contains feature definitions that ex-
plain the details of each feature and the other
contains the actual feature values. The advantage
of this separation is that the meta-data contained
in the feature definitions can be accessed by
classification systems, which therefore do not
need any other connection with the feature ex-
traction system. This also makes it possible to
reuse the same definitions with multiple data sets
that have the same features extracted from them.

These file formats have two important ad-
vantages over traditional ways in which feature
values are stored. Firstly, a logical relationship is
maintained between the components of multi-
dimensional features, unlike most feature extrac-
tion systems, which tend to save each component
of a multi-dimensional feature as a separate and
unrelated value.

 Secondly, the relationship between an over-
all audio recording or stream and its windows is
maintained. Most existing systems tend to store
each window as separate and independent in-
stance.

This format also makes it possible to store
certain features for overall recordings as well as
separate features for each window.

These file formats are both used by the ACE
classification system (McKay et al. 2005). Soft-

ware is also available to convert these XML files
to the ARFF format used by the often-used and
powerful Weka data mining framework (Witten
& Frank 2000).

4.4 Interface

A simple and intuitive GUI is implemented
(see Figure 1). The user must only select the files
that s/he wishes to extract features from, check
the desired features and presses the Extract Fea-
tures button in order to extract and save features.

As mentioned above, jAudio automatically
manages feature dependencies. This means that
the user needs no knowledge of these dependen-
cies in order to use the system. For example, if a
user is interested in saving the zero-crossing
variability but not the zero-crossing rate itself,
s/he need only check the zero-crossing variabil-
ity feature. The system will then automatically
determine that the zero-crossing rate is needed to
find the zero-crossing variability, extract it and
use it in zero-crossing variability calculations,
but not save it unless the zero-crossing rate box
is checked.

This enables users with little knowledge of
signal processing to still extract and save what-
ever feature values they want, as there is no need
to manually match the inputs of any features to
the outputs of the features that they need.

4.5 Pre-processing

Several basic pre-processing steps can be
performed before feature extraction is com-
menced:

• Sampling Rate Conversion: All recordings
can be downsampled (or upsampled, as the
case may be) to a user-set sampling rate.
This is done for two reasons. Firstly, the
sampling rate affects the values of some fea-
tures, so recordings with different sampling
rates would have this reflected in their fea-
ture values. Secondly, much of the useful in-
formation in a recording is often at rela-
tively low frequencies. Downsampling re-
duces the time needed to extract features
and potentially (depending on window size)
the amount of data that needs to be stored.
Downsampling throws away relatively little
useful information with respect to classifica-
tion, and can improve classification accu-
racy by highlighting the particularly perti-
nent part of the spectrum.

• Normalisation: The option is available to
normalise recordings based on dynamics.
This could be very useful in some cases,
such as when audio has been recorded at a
variety of gains independent of class, and
one does not wish this to affect feature val-
ues. Normalising can be undesirable in other
cases, however, as differences in overall
loudness may certainly be relevant to certain
types of classification.

• Channel Merging: Stereo recordings are
collapsed into mono in order to have a sin-
gle set of features for each recording.

• Windowing: All recordings are divided into
windows of a user-definable size. The user
has the option of having overlapping win-
dows, with a specifiable overlap.

The user may also choose whether to save
the feature values of individual windows, the
averages and standard deviations of these values
over each recording or both.

4.6 Additional functionality

Extra functionality is provided in addition to
basic feature extraction. This includes converting
between different audio file formats, transcribing
MIDI recordings to audio, recording audio from
a microphone, playing audio, performing basic
additive synthesis, viewing details about encod-
ing schemes for different audio files and viewing
plots of waveforms and Fourier analysis results.
This functionality greatly facilitates the testing of
new features.

5.0 FEATURES IMPLEMENTED

A good deal of research has been done on
extracting features for the purpose of speech
processing. Although the features that are the
best for this task are not necessarily also the best
for music classification, they do provide a good
starting point. Scheirer and Slaney (1997) and
Cary, Parris and Lloyd-Thomas (1999) have
published useful sets of features with respect to
speech/music discrimination. George Tzanetakis
and his collaborators have used many of these
features and expanded upon them with the par-
ticular needs of music in mind (Tzanetaks, Essl
& Cook 2001; Tzanetakis & Cook 2002).

Researchers in musical instrument identifi-
cation have made some important contributions.
This includes the work of Kashino and Murase

(1997), Martin and Yim (1998), Eronen (2001)
and Essed, Richard and David (2004).

Park (2000) has also done some very inter-
esting work on feature extraction with respect to
music, as have Fujinaga (1998), Kotek (1998),
Jensen (1999), Herrera, Peeters and Dubnov
(2003) and West and Cox (2004). Pope, Holm
and Kouznetsov (2004) have published some
good guidelines for when it is appropriate to use
certain types of features.

The jAudio system currently has a total of
26 features implemented. These 26 features may
be extracted for individual windows, and the
averages and standard deviations of each of these
features may be calculated for each recording as
a whole.

There is not enough space here to describe
each of the 26 features in detail. These features
are well documented in the general literature,
and precise and well-documented implementa-
tion details are available in the source code for
each feature (see the AudioFeatures directory).

• Average Spectral Flux: The mean spectral
flux over the last 100 windows.

• Beat Histogram: A histogram showing the
relative strength of different rhythmic peri-
odicities (tempi) in a signal. Found by cal-
culating the auto-correlation of the RMS.

• Beat Histogram Bin Labels: The bin la-
bels, in beats per minute, of each beat histo-
gram bin. Not useful as a feature in itself,
but useful for calculating other features
from the beat histogram.

• Beat Sum: The sum of all bins in the beat
histogram. This is a good measure of the
importance of regular beats in a signal.

• Compactness: A measure of the noisiness
of a recording. Found by comparing the
components of a window’s magnitude spec-
trum with the magnitude spectrum of its
neighbouring windows.

• FFT Bin Frequency Labels: The bin label,
in Hz, of each power spectrum or magnitude
spectrum bin. Not useful as a feature in it-
self, but useful for calculating other features
from the magnitude spectrum and power
spectrum.

• Fraction Of Low Energy Frames: The
fraction of the last 100 windows that has an
RMS less than the mean RMS of the last
100 windows. This can indicate how much

of a signal section is quiet relative to the rest
of the signal section.

• Magnitude Spectrum: A measure of the
strength of different frequency components.
Derived directly from the FFT.

• Power Spectrum: A measure of the power
of different frequency components. Derived
directly from the FFT.

• Root Mean Square (RMS): A measure of
the power of a signal over a window.

• Root Mean Square Derivative: The win-
dow to window change in RMS. An indica-
tion of change in signal power.

• Root Mean Square Variability: The stan-
dard deviation of the RMS of the last 100
windows.

• Spectral Centroid: The centre of mass of
the power spectrum.

• Spectral Centroid Variability: The stan-
dard deviation of the spectral centroid over
the last 100 windows.

• Spectral Flux: A measure of the amount of
spectral change in a signal. Found by calcu-
lating the change in the magnitude spectrum
from frame to frame.

• Spectral Rolloff Point: The fraction of bins
in the power spectrum at which 85% of the
power is at lower frequencies. This is a
measure the right-skewedness of the power
spectrum.

• Spectral Variability: The standard devia-
tion of the magnitude spectrum. A measure
of how varied the magnitude spectrum of a
signal is.

• Strength Of Strongest Beat: How strong
the strongest beat in the beat histogram is
compared to other potential beats.

• Strongest Beat: The strongest beat in a
signal, in beats per minute, found by finding
the highest bin in the beat histogram.

• Strongest Frequency Variability: The
standard deviation of the frequency of the
power spectrum bin with the highest power
over the last 100 windows.

• Strongest Frequency Via FFT Maximum:
An estimate of the strongest frequency com-
ponent of a signal, in Hz, found via finding
the FFT bin with the highest power.

• Strongest Frequency Via Spectral Cen-
troid: An estimate of the strongest fre-

quency component of a signal, in Hz, found
via the spectral centroid.

• Strongest Frequency Via Zero Crossings:
An estimate of the strongest frequency
component of a signal, in Hz, found via the
number of zero-crossings.

• Zero Crossings: The number of times the
waveform changed sign in a window. An
indication of frequency as well as noisiness.

• Zero Crossings Derivative: The absolute
value of the window to window change in
zero crossings. An indication of change of
frequency as well as noisiness.

• Zero Crossing Variability: The standard
deviation of the zero-crossings of the last
100 windows.

Several of the features described above ex-

tract standard deviations and averages over a
short number of preceding windows. Although
these features are redundant with respect to fea-
tures calculated for recordings as a whole, they
are useful for window-based classification, as
they provide data on local history to classifiers
classifying individual windows.

6.0 CONCLUSIONS

This paper has emphasized the need for a
standardized audio feature extraction system for
audio classification. An overview was presented
of important qualities that such a system should
possess, and the jAudio prototype system was
presented.

7.0 FUTURE RESEARCH

There are a number of improvements that
remain to be made to the jAudio system. First
and foremost, more features need to be imple-
mented, perhaps most urgently MFCC and LPC-
based features. A command line based interface
also remains to be made available. An on-line
help system would prove helpful. The addition of
basic filters for use in pre-processing as well as
the ability to parse MP3 and SDIF files should
be added. It could also be useful to improve the
system so that it can extract features from live
audio streams as well as saved files. Porting a
version of jAudio to M2K could also be profit-
able, given M2K’s potential and the speed ad-
vantages of distributed computing.

8.0 ACKNOWLEDGEMENTS

This system was designed and implemented
under the supervision of Prof. Philippe Depalle.
The idea of automatic scheduling of feature de-
pendencies was proposed by Daniel McEnnis,
who has also implemented a feature extraction
system which will soon be merged with jAudio.
The graphing and additive synthesis implementa-
tions were inspired by the excellent Java Sound
on-line tutorials of Richard Baldwin.

9.0 BIBLIOGRAPHY

Arumi, P., and X. Amatriain. 2005. CLAM, an
object oriented framework for audio and mu-
sic. Accepted for publication at the Interna-
tional Linux Audio Conference.

Carey, M. J., E. S. Parris, and H. Lloyd-Thomas.
1999. A comparison of features for speech,
music discrimination. Proceedings of the In-
ternational Conference on Acoustics, Speech,
and Signal Processing. 149–152.

Downie, J. S., J. Futrelle, D. Tcheng. 2004. The
international music information retrieval sys-
tems evaluation laboratory: Governance, ac-
cess and security. Proceedings of the Interna-
tional Conference on Music Information Re-
trieval. 9–14.

Eronen, A. 2001. Comparison of features for
musical instrument recognition. Proceedings
of the IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics. 753–6.

Essed, S., G. Richard, and B. David. 2004. Mu-
sical instrument recognition based on class
pairwise feature selection. Proceedings of the
International Conference on Music Informa-
tion Retrieval. 560–8.

Fujinaga, I. 1998. Machine recognition of timbre
using steady-state tone of acoustic musical in-
struments. Proceedings of the International
Computer Music Conference. 207-210.

Herrera, P., G. Peeters, S. Dubnov. 2003. Auto-
matic classification of musical instrument
sounds. Journal of New Music Research 32(1):
3–21.

Jensen, K.. 1999. Timbre models of musical
sounds. Ph.D. dissertation. Kobenhavns Uni-
versitet.

Kashino, K., and Murase, H. 1997. Sound source
identification for ensemble music based on the
music stream extraction. Proceedings of the

International Joint Conference on Artificial
Intelligence. 1126–31.

Kotek. B. 1998. Soft computing-based recogni-
tion of musical sounds. In Rough Sets in
Knowledge Discovery, eds. L. Polkowski and
A. Skowron. Heidelberg: Physica-Verlag.

Martin, K., and Y. Kim. 1998. Musical instru-
ment identification: A pattern recognition ap-
proach. Proceedings of the Acoustical Society
of America.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and
I. Fujinaga. 2005. ACE: A framework for op-
timizing music classification. Submitted to the
International Conference on Music Informa-
tion Retrieval.

Park, T. H. 2000. Salient feature extraction of
musical instrument signals. Master’s thesis.
Dartmouth College, USA.

Pope, S. T., F. Holm, and A. Kouznetsov. 2004.
Feature extraction and database design for mu-
sic software. Proceedings of the International
Computer Music Conference. 596–603.

Scheirer, E., and M. Slaney. 1997. Construction
and evaluation of a robust multi-feature
speech/music discriminator. Proceedings of
the International Conference on Acoustics,
Speech, and Signal Processing.

Tzanetakis, G., G. Essl, and P. Cook. 2001.
Automatic musical genre classification of au-
dio signals. Proceedings of the International
Symposium on Music Information Retrieval.
205–10.

Tzanetakis, G., and P. Cook. 2002. Musical
genre classification of audio signals. IEEE
Transactions on Speech and Audio Processing
10 (5): 293–302.

West, C., and S. Cox. 2004. Features and classi-
fiers for the automatic classification of musical
audio signals. Proceedings of the International
Conference on Music Information Retrieval.
531-7.

Witten, I., and E. Frank. 2000. Data mining:
Practical machine learning tools and tech-
niques with Java implementations. San Fran-
cisco: Morgan Kaufmann Publishers.

