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ABSTRACT 

Audio feature extraction play an essential 
role in automatic music classification. This paper 
explains the needed for a standardized audio 
feature extraction system, describes the most 
important attributes that such a system should 
possess and presents a prototype that has been 
developed to meet this need. 

1.0 INTRODUCTION 

Features, or characteristic pieces of informa-
tion that can be used to describe objects or ab-
stractions, play an essential role in any classifica-
tion task Features are the percepts to classifica-
tion system, and even a perfect classifier will not 
be able to make correct classifications if it does 
not have access to features that properly segment 
the objects to be classified. 

Features can be particularly problematic 
with respect to audio signals. When asked how 
to distinguish between two different types of 
sound, a typical person might have a difficulty 
expressing a precise list of features, even if he or 
she can easily make the classification. Even in 
cases where one is able to vocalize audio fea-
tures, the features are likely to be abstractions 
that are difficult to quantify and extract digitally 
from an audio signal. For example, a musician as 
kedto describe the differences between two gen-
res of music is likely to use terms that require the 
ability to extract information based on pitches, 
rhythms and timbres. 

Unfortunately, high-level information such 
as this is currently difficult to impossible to re-
liably extract from music signals in general. This 
difficulty means that one must at least start with 
low-level signal processing-based features. De-
termining which features are best-suited for a 
particular task can be difficult, as humans do not 

tend to perceive or think about sound in terms 
that are meaningful in a low-level signal process-
ing sense. 

Fortunately, there are successful approaches 
to dealing with these problems. Although low-
level features are not usually intuitive to humans 
in a perceptual sense, an individual well-trained 
in signal processing and in auditory perception 
can use his or her expertise to gain insights into 
how certain low-level features can be useful. 

Furthermore, one can take an iterative ap-
proach to feature extraction, where low-level 
features derived directly from audio signals are 
used to derive mid-level representations, which 
can in turn be used to derive high-level features 
that are perceptually meaningful to humans. For 
example, basic spectral features can currently be 
used to track note onsets and pitch in the special 
case of monophonic music, which can in turn be 
used to generate MIDI transcriptions, which can 
then be used to generate high-level features re-
lated to rhythmic patterns and melodies. 

An additional important point is that, even 
though it may be the case that a particular low-
level feature is not used by humans to perform a 
certain classification, this does not necessarily 
mean that this feature cannot effectively be used 
by a computer to perform the same classification. 
Feature selection techniques can be used to ex-
perimentally and statistically determine which 
features are useful and which are not in a given 
context. 

Such an explorative approach is particularly 
important with respect to music classification. 
Although a great deal of research has been done 
on features that could be useful for speech rec-
ognition, music has received much less attention. 
Experimental research on which features work 
well with respect to different kinds of music in 
different contexts could be of theoretical interest 
in and of itself, in addition to improvements in 



classification success rates that it might bring 
about. 

In any case, it is clear that the acquisition of 
a large number of low-level features can be very 
useful, for the purpose of direct classification as 
well as for constructing more abstract higher-
level features. Software that can easily do this is 
therefore essential for audio classification. 

It is currently common in the field of music 
information retrieval (MIR) for individual re-
search groups to each design their own feature 
extraction systems. Aside from the obvious inef-
ficiency involved in this duplication of effort, 
this can also lead to inconsistencies and inaccu-
racies in extracted features. MIR researchers in 
general require expertise in both machine learn-
ing and music, with the result that it is not sur-
prising that many of them have only a passing 
knowledge of signal processing. Time con-
straints related to the fact that a given feature 
extraction system is only part of a larger system 
that is being developed also makes it likely that 
the system will be less rigorously designed and 
tested than a specialized system might be. For all 
of these reasons, a good standardized audio fea-
ture extraction system could be of great benefit 
to the MIR community. 

2.0 EXISTING SYSTEMS 

A number of feature extractionsystems have 
been made publicly available over the last sev-
eral years in order to address this need. Three of 
these in particular deserve special mention here, 
as they represent perhaps the most serious efforts 
towards creating reliable and widely applicable 
systems. 

2.1 Marsyas 

Marsyas has been an important pioneer in 
the MIR field, and is probably currently the most 
widely used feature extraction system. It is well 
maintained by its creator, George Tzanetakis, 
who is in the process of finalizing a new release. 
The software has been discussed in a number of 
publications, perhaps most famously with respect 
to genre classification (Tzanetakis, Essl, and 
Cook. 2001; Tzanetakis, G., and P. Cook. 2002). 

The software is efficiently implemented in 
C++, but the code can be somewhat difficult for 
novice users to understand and extend, and the 
documentation on the details of the system can 
be limited. There have also been some problems 

with installation and ease of use in the past, al-
though these may be corrected in the newest re-
lease. 

2.2  CLAM 

CLAM is a powerful and flexible audio 
analysis, synthesis and transformation system 
implemented in C++ that is currently in the final 
stages of development. Although the ground-
work has clearly been laid for a powerful and 
easy-to-use interface, the current beta version 
still has some problems. In addition, installation 
can be particularly problematic. Furthermore, 
CLAM is not specifically designed for feature 
extraction, and its general power and flexibility 
complicate the system for those concerned solely 
with feature extraction. 

So, although CLAM promises to be an ex-
cellent system, it is only tangentially suitable for 
a specialized feature extraction role, particularly 
in its current stage of development. More infor-
mation on CLAM can be found in the soon to be 
published paper by Pau Arumi and Xavier Ama-
triain (2005). 

2.3 M2K 

M2K is a patch-based system implemented 
in Java that is currently in alpha development. 
This system promises to be a very powerful pro-
totyping tool in the domain of MIR, for which it 
has been specifically designed. Downie, Futrelle 
and Tcheng have published the initial work on 
the system (2004). 

M2K makes use of the D2K distributed 
processing framework. This means that M2K can 
process tasks simultaneously using several com-
puters and can also take advantage of D2K’s 
classification libraries and powerful GUI. 

 Unfortunately, D2K’s licence not only 
sometimes makes it complicated for researchers 
outside the U.S.A. to obtain it, but forbids its use 
in commercial applications. This means that any 
system that uses D2K cannot itself be used for 
any non-research-based tasks. In addition, D2K 
itself still has a number of bugs and it can also be 
difficult to install. Furthermore, not all of D2K is 
open-source. 

So, although M2K promises to be an excel-
lent tool for MIR prototyping, its licensing situa-
tion and current early stage of development 
makes it inappropriate for developing a generally 
usable standardized feature extraction system.  



3.0 DESIGN PRIORITIES 

It can be seen from Section 2 that there are a 
number of powerful and useful tools that can be 
used for audio feature extraction. Unfortunately, 
none of them are without weaknesses with re-
spect to the particular role of a standardized and 
general-purpose feature extractor. 

This leaves a gap which needs to be filled. 
The system described in this paper is intended as 
a preliminary step towards filling this gap. Be-
fore describing the details of the system, how-
ever, it is important to explicitly state the quali-
ties that are most essential in order for a general 
audio feature extraction system to be successful. 

3.1 Extensibility 

It must be easy to add new features to the 
system. A system must allow one to experiment 
with new features, not just extract existing ones. 

In particular, it should be simple for new 
features to make use of existing features, as 
many features build upon one another. For ex-
ample, extracting the RMS of windows allows 
one to perform an auto-correlation which can 
produce a beat histogram, which in turn can be 
used to derive information such as tempo or me-
ter.  

It is therefore essential that one be able to 
easily add new features that potentially take ad-
vantage of existing features. It should be possible 
to do this with only minimal knowledge of the 
design of the system as a whole. This implies a 
modular and well documented design. Further-
more, the software should be open source so that 
individual developers can expand on it and oth-
ers can take advantage of their work. 

3.2 Ease of use 

It is essential that the software be easy to 
learn and use. Potential users could have a wide 
variety of backgrounds in both signal processing 
and compute science, and this variety must be 
taken into account. The details of signal process-
ing should be hidden from users whenever pos-
sible, in order to accommodate those with little 
experience. Feature interdependencies in particu-
lar should be made invisible to users. At the 
same time, it must be possible for users skilled in 
signal processing to be able to access signal 
processing details so that they can take advan-
tage of their expertise. 

A dual implementation of GUI and com-
mand-line interfaces represents a good solution, 
as novice users can perform powerful tasks in a 
simple fashion using the GUI, and skilled users 
can perform specialized batch tasks using the 
command line. In either case, the interface(s) 
must be extensively and clearly documented. 

3.3 Portability and ease of installation 

If a system is to be widely usable, it must be 
possible to install it under any common operat-
ing system. It should also not require any pro-
prietary commercial software, such as MatLab, 
or any software with a limited licence, such as 
D2K. The latter concern is particularly important 
for users who might wish to integrate the feature 
extraction system into larger systems. 

Given these requirements, it is also very im-
portant that the software be effortless to install. 
This means that it might be wise to implement 
such a system in a portable language such as 
Java. Languages such as C++ should be avoided 
unless specialized and complete installation sub-
systems are made available for each potential 
operating system, as compilation and linking 
difficulties can discourage many users. 

3.4 Interaction with classifiers 

It is, of course, necessary that the feature ex-
traction system be able to communicate extracted 
features to a classification system. The feature 
extraction system should be independent of any 
particular classification approach or software on, 
as too tight an integration compromises the gen-
erality and portability of the system. On the other 
hand, the system must be able to output features 
in formats that common classifiers are able to 
read. 

There is, unfortunately, no standardized file 
format for storing features. The development of 
such a format would be of great use, as a single 
output file could then be used with arbitrary clas-
sifiers. Of course, this would require that the 
standardized format be recognized by existing 
classification systems, which could take some 
time to come about. So, although the develop-
ment of a standardized format should be pursued, 
existing formats should not be neglected. 

3.5 Variety of features 

As mentioned above, a large library of fea-
tures can be processed by feature selection algo-



rithms in order to choose the best features for a 
particular task. This makes the implementation 
of a wide variety of features valuable, as it 
makes more candidates available for feature se-
lection. It also makes more basis features avail-
able which can be used to derive other features in 
the future. 

Of course, it is important that the features be 
well tested in order to assure their accuracy and 
consistency with other feature extraction sys-
tems. Consistency can sometimes be difficult to 
achieve, unfortunately, as there are sometimes 
multiple interpretations of the same feature. For 
example, many spectral features contain versions 
based on magnitude spectra derived from Fourier 
analysis as well as versions based on power 
spectra.  

3.6 User control of pre-processing and 
feature parameters 

Users will wish to use features for many dif-
ferent tasks under many different conditions. The 
user must therefore be given control over the 
parameters of individual features, where appro-
priate, as well as over any pre-processing that is 
to occur. Possible parameters include downsam-
pling, if any, window size and amount of win-
dow overlap. 

Some users will wish to classify small seg-
ments of audio signals individually, and others 
will only wish to classify recordings or other 
large portions of a signal as a whole. A good 
system should therefore be able to extract and 
save features for individual windows as well as 
for sets of windows. Averages and standard de-
viations of window features could be particularly 
useful in the latter case. 

4.0 IMPLEMENTED SYSTEM 

The system implemented here, named 
jAudio, was designed with the concerns ex-
pressed in Section 3 in mind. Although jAudio 
cannot yet be said to perfectly meet all of these 
requirements, it does address many of them. The 
version of jAudio discussed here is a prototype 
that is intended to eventually be developed into a 
complete system that meets all of Section 3’s 
requirements. This is not to say that jAudio is not 
fully functional, however, as the prototype does 
work fully and reliably. 

 

4.1 Basic implementation 

The system is implemented in Java, partly in 
order to take advantage of Java’s portability and 
partly because Java’s design facilitates an exten-
sible implementation. Although there were some 
initial concerns about speed, it turns out that Java 
in its current implementation is faster than is 
commonly believed, and processing time was not 
more of an issue than it is with audio processing 
systems in general. 

The disadvantage of using Java is that there 
is only limited support for audio in the core Java 
libraries. This is perhaps the reason that there 
was no previously implemented Java-based au-
dio feature extraction system of any scale. It was 
therefore necessary to do a good deal of low-
level work simply to read and process audio at 
all. Now that that work has been done, however, 
the jAudio system makes the level of audio in-
volving signal streams, buffering, etc. invisible 
to future developers who wish to implement new 
features. 

The software is entirely open source and 
freely distributable. Full Javadoc documentation 
is available on all classes. Installing the software 
consists only of copying two Jar files into one’s 
Java extensions directory and then copying the 
jAudio Jar file into whatever home directory one 
desires. The software can then be run simply by 
double clicking on the jAudio Jar. 

The software makes use of two pieces of 
third-party software, both of which are freely 
distributable. A Tritonus plug-in is used to per-
form sampling rate conversions and the Xerces 
XML file parser is used to process XML files. 

4.2 Adding new features 

One of the most important strengths of 
jAudio is the ease with which the design makes 
it possible to implement new features. If one 
wishes to do so, one need only write a single 
new class that extends an abstract class named 
FeatureExtractor. All that this new class must 
contain is a constructor and an implementation of 
a FeatureExtractor method called extractFeature. 

This design makes it very easy to make use 
of other features in one’s new feature, without 
requireing any knowledge of how they them-
selves are implemented. The constructor of the 
new class can contain an array of strings and an 
array of integers. Each string can represent the 
name of any other feature and each integer repre- 



Figure 1: Basic jAudio interface. 

sents the delay for the given string (e.g. 0 for the 
feature value from the current window, -1 for the 
feature value for one window previous to the 
current window, etc.). The extractFeature 
method will automatically be fed the requested 
feature values as doubles during execution, as 
well as an array of doubles representing the cur-
rent window of samples and the sampling rate. 
No knowledge of how this is done is needed to 
implement a new feature.  

This ability to implement feature interde-
pendencies without any knowledge of how 
jAudio itself  works or how any of the other fea-
tures work is very valuable from the perspective 
of extensibility. jAudio automatically and invisi-
bly schedules the order of feature extraction in 
order to ensure that all features that can be ex-
tracted are extracted and that no feature needs to 
be extracted more than once for a given window. 
This has powerful implications relating to effi-
ciency as well as extensibility. 

4.3 File formats 

jAudio uses two novel file formats that are 
proposed as candidates for representing extracted 
features in a standardized format. Both of these 
files are based on XML, which makes them hu-
man readable and easy to debug. 

One file contains feature definitions that ex-
plain the details of each feature and the other 
contains the actual feature values. The advantage 
of this separation is that the meta-data contained 
in the feature definitions can be accessed by 
classification systems, which therefore do not 
need any other connection with the feature ex-
traction system. This also makes it possible to 
reuse the same definitions with multiple data sets 
that have the same features extracted from them. 

These file formats have two important ad-
vantages over traditional ways in which feature 
values are stored. Firstly, a logical relationship is 
maintained between the components of multi-
dimensional features, unlike most feature extrac-
tion systems, which tend to save each component 
of a multi-dimensional feature as a separate and 
unrelated value. 

 Secondly, the relationship between an over-
all audio recording or stream and its windows is 
maintained. Most existing systems tend to store 
each window as separate and independent in-
stance. 

This format also makes it possible to store 
certain features for overall recordings as well as 
separate features for each window. 

These file formats are both used by the ACE 
classification system (McKay et al. 2005). Soft-



ware is also available to convert these XML files 
to the ARFF format used by the often-used and 
powerful Weka data mining framework (Witten 
& Frank 2000). 

4.4 Interface  

A simple and intuitive GUI is implemented 
(see Figure 1). The user must only select the files 
that s/he wishes to extract features from, check 
the desired features and presses the Extract Fea-
tures button in order to extract and save features. 

As mentioned above, jAudio automatically 
manages feature dependencies. This means that 
the user needs no knowledge of these dependen-
cies in order to use the system. For example, if a 
user is interested in saving the zero-crossing 
variability but not the zero-crossing rate itself, 
s/he need only check the zero-crossing variabil-
ity feature. The system will then automatically 
determine that the zero-crossing rate is needed to 
find the zero-crossing variability, extract it and 
use it in zero-crossing variability calculations, 
but not save it unless the zero-crossing rate box 
is checked. 

This enables users with little knowledge of 
signal processing to still extract and save what-
ever feature values they want, as there is no need 
to manually match the inputs of any features to 
the outputs of the features that they need. 

4.5 Pre-processing 

Several basic pre-processing steps can be 
performed before feature extraction is com-
menced:  

• Sampling Rate Conversion: All recordings 
can be downsampled (or upsampled, as the 
case may be) to a user-set sampling rate. 
This is done for two reasons. Firstly, the 
sampling rate affects the values of some fea-
tures, so recordings with different sampling 
rates would have this reflected in their fea-
ture values. Secondly, much of the useful in-
formation in a recording is often at rela-
tively low frequencies. Downsampling re-
duces the time needed to extract features 
and potentially (depending on window size) 
the amount of data that needs to be stored. 
Downsampling throws away relatively little 
useful information with respect to classifica-
tion, and can improve classification accu-
racy by highlighting the particularly perti-
nent part of the spectrum. 

• Normalisation: The option is available to 
normalise recordings based on dynamics. 
This could be very useful in some cases, 
such as when audio has been recorded at a 
variety of gains independent of class, and 
one does not wish this to affect feature val-
ues. Normalising can be undesirable in other 
cases, however, as differences in overall 
loudness may certainly be relevant to certain 
types of classification. 

• Channel Merging: Stereo recordings are 
collapsed into mono in order to have a sin-
gle set of features for each recording.  

• Windowing: All recordings are divided into 
windows of a user-definable size. The user 
has the option of having overlapping win-
dows, with a specifiable overlap.  
 

The user may also choose whether to save 
the feature values of individual windows, the 
averages and standard deviations of these values 
over each recording or both. 

4.6 Additional functionality 

Extra functionality is provided in addition to 
basic feature extraction. This includes converting 
between different audio file formats, transcribing 
MIDI recordings to audio, recording audio from 
a microphone, playing audio, performing basic 
additive synthesis, viewing details about encod-
ing schemes for different audio files and viewing 
plots of waveforms and Fourier analysis results. 
This functionality greatly facilitates the testing of 
new features. 

5.0 FEATURES IMPLEMENTED 

A good deal of research has been done on 
extracting features for the purpose of speech 
processing. Although the features that are the 
best for this task are not necessarily also the best 
for music classification, they do provide a good 
starting point. Scheirer and Slaney (1997) and 
Cary, Parris and Lloyd-Thomas (1999) have 
published useful sets of features with respect to 
speech/music discrimination. George Tzanetakis 
and his collaborators have used many of these 
features and expanded upon them with the par-
ticular needs of music in mind (Tzanetaks, Essl 
& Cook 2001; Tzanetakis & Cook 2002). 

Researchers in musical instrument identifi-
cation have made some important contributions. 
This includes the work of Kashino and Murase 



(1997), Martin and Yim (1998), Eronen (2001) 
and Essed, Richard and David (2004). 

Park (2000) has also done some very inter-
esting work on feature extraction with respect to 
music, as have Fujinaga (1998), Kotek (1998), 
Jensen (1999), Herrera, Peeters and Dubnov 
(2003) and West and Cox (2004). Pope, Holm 
and Kouznetsov (2004) have published some 
good guidelines for when it is appropriate to use 
certain types of features. 

The jAudio system currently has a total of 
26 features implemented. These 26 features may 
be extracted for individual windows, and the 
averages and standard deviations of each of these 
features may be calculated for each recording as 
a whole.  

There is not enough space here to describe 
each of the 26 features in detail. These features 
are well documented in the general literature, 
and precise and well-documented implementa-
tion details are available in the source code for 
each feature (see the AudioFeatures directory). 

• Average Spectral Flux: The mean spectral 
flux over the last 100 windows. 

• Beat Histogram: A histogram showing the 
relative strength of different rhythmic peri-
odicities (tempi) in a signal. Found by cal-
culating the auto-correlation of the RMS. 

• Beat Histogram Bin Labels: The bin la-
bels, in beats per minute, of each beat histo-
gram bin. Not useful as a feature in itself, 
but useful for calculating other features 
from the beat histogram. 

• Beat Sum: The sum of all bins in the beat 
histogram. This is a good measure of the 
importance of regular beats in a signal. 

• Compactness: A measure of the noisiness 
of a recording. Found by comparing the 
components of a window’s magnitude spec-
trum with the magnitude spectrum of its 
neighbouring windows. 

• FFT Bin Frequency Labels: The bin label, 
in Hz, of each power spectrum or magnitude 
spectrum bin. Not useful as a feature in it-
self, but useful for calculating other features 
from the magnitude spectrum and power 
spectrum. 

• Fraction Of Low Energy Frames: The 
fraction of the last 100 windows that has an 
RMS less than the mean RMS of the last 
100 windows. This can indicate how much 

of a signal section is quiet relative to the rest 
of the signal section. 

• Magnitude Spectrum: A measure of the 
strength of different frequency components. 
Derived directly from the FFT. 

• Power Spectrum: A measure of the power 
of different frequency components. Derived 
directly from the FFT. 

• Root Mean Square (RMS): A measure of 
the power of a signal over a window. 

• Root Mean Square Derivative: The win-
dow to window change in RMS. An indica-
tion of change in signal power. 

• Root Mean Square Variability: The stan-
dard deviation of the RMS of the last 100 
windows. 

• Spectral Centroid: The centre of mass of 
the power spectrum. 

• Spectral Centroid Variability: The stan-
dard deviation of the spectral centroid over 
the last 100 windows. 

• Spectral Flux: A measure of the amount of 
spectral change in a signal. Found by calcu-
lating the change in the magnitude spectrum 
from frame to frame. 

• Spectral Rolloff Point: The fraction of bins 
in the power spectrum at which 85% of the 
power is at lower frequencies. This is a 
measure the right-skewedness of the power 
spectrum. 

• Spectral Variability: The standard devia-
tion of the magnitude spectrum. A measure 
of how varied the magnitude spectrum of a 
signal is. 

• Strength Of Strongest Beat: How strong 
the strongest beat in the beat histogram is 
compared to other potential beats. 

• Strongest Beat: The strongest beat in a 
signal, in beats per minute, found by finding 
the highest bin in the beat histogram. 

• Strongest Frequency Variability: The 
standard deviation of the frequency of the 
power spectrum bin with the highest power 
over the last 100 windows. 

• Strongest Frequency Via FFT Maximum: 
An estimate of the strongest frequency com-
ponent of a signal, in Hz, found via finding 
the FFT bin with the highest power. 

• Strongest Frequency Via Spectral Cen-
troid: An estimate of the strongest fre-



quency component of a signal, in Hz, found 
via the spectral centroid. 

• Strongest Frequency Via Zero Crossings: 
An estimate of the strongest frequency 
component of a signal, in Hz, found via the 
number of zero-crossings. 

• Zero Crossings: The number of times the 
waveform changed sign in a window. An 
indication of frequency as well as noisiness. 

• Zero Crossings Derivative: The absolute 
value of the window to window change in 
zero crossings. An indication of change of 
frequency as well as noisiness. 

• Zero Crossing Variability: The standard 
deviation of the zero-crossings of the last 
100 windows. 

 
Several of the features described above ex-

tract standard deviations and averages over a 
short number of preceding windows. Although 
these features are redundant with respect to fea-
tures calculated for recordings as a whole, they 
are useful for window-based classification, as 
they provide data on local history to classifiers 
classifying individual windows. 

6.0 CONCLUSIONS  

This paper has emphasized the need for a 
standardized audio feature extraction system for 
audio classification. An overview was presented 
of important qualities that such a system should 
possess, and the jAudio prototype system was 
presented. 

7.0 FUTURE RESEARCH 

There are a number of improvements that 
remain to be made to the jAudio system. First 
and foremost, more features need to be imple-
mented, perhaps most urgently MFCC and LPC-
based features. A command line based interface 
also remains to be made available. An on-line 
help system would prove helpful. The addition of 
basic filters for use in pre-processing as well as 
the ability to parse MP3 and SDIF files should 
be added. It could also be useful to improve the 
system so that it can extract features from live 
audio streams as well as saved files. Porting a 
version of jAudio to M2K could also be profit-
able, given M2K’s potential and the speed ad-
vantages of distributed computing. 
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