

USING ACE XML 2.0 TO STORE AND SHARE FEATURE,

INSTANCE AND CLASS DATA FOR MUSICAL CLASSIFICATION

Cory McKay John Ashley Burgoyne Jessica Thompson Ichiro Fujinaga

CIRMMT

McGill University
cory.mckay@

mail.mcgill.ca

CIRMMT

McGill University
ashley@

music.mcgill.ca

Music Technology

McGill University
jessica.thompson@

mail.mcgill.ca

CIRMMT

McGill University
ich@

music.mcgill.ca

ABSTRACT

This paper introduces ACE XML 2.0, a set of file formats

that are designed to meet the special representational

needs of research in automatic music classification. Such

standardized formats are needed to facilitate the sharing

and long-term storage of valuable research data. ACE

XML 2.0 is designed to represent a broad range of musi-

cal information clearly using a flexible, extensible, self-

contained and formally structured framework. An empha-

sis is placed on representing extracted feature values, fea-

ture descriptions, instance annotations, class ontologies

and related metadata.

1. INTRODUCTION

Many music information retrieval (MIR) research projects

involve three core tasks: collecting and annotating

ground-truth data; extracting feature values from in-

stances; and training classification models using machine

learning. These tasks require well-designed data represen-

tations, as insufficiently expressive representations can

prevent learning algorithms from accessing valuable in-

formation.

Representational formats also have an important im-

pact on the ability of MIR researchers to share valuable

data with one another, particularly since ground-truth

datasets can be expensive to acquire. Legal restrictions on

distributing such datasets make the ability to share ex-

tracted feature values and ground-truth annotations par-

ticularly valuable. The absence of expressive, flexible,

well-defined and well-supported standardized representa-

tional formats tends to result in individual research labo-

ratories generating their own in-house data, with conse-

quent wasteful repeated effort and lower quality data.

Standardized file formats are also needed to facilitate

compatibility of MIR toolkits such as CLAM, jMIR, Mar-

syas, MIRtoolbox and Sonic Visualiser. Powerful pack-

ages such as these each have their own advantages, and a

common representational format is needed if research

performed using different toolkits is to be combined.

Standardized file formats are also needed to facilitate

the evaluation and comparison of techniques from differ-

ent research groups, something that has become apparent

in the yearly Music Information Retrieval Evaluation Ex-

change (MIREX) competition [1]. The lack of an ac-

cepted standardized representational format necessitates

the development of custom formats for each sub-task,

which results in compromises with respect to expressivity

and longevity. For example, the MIREX audio genre clas-

sification competition is carried out each year using

ground-truth where each piece is labeled with only one

genre label, despite general recognition that this is an un-

realistic limitation that compromises results. The avail-

ability of standardized formats such as ACE XML that

can be easily used to associate multiple classes with each

instance could help to address such problems.

ACE XML 2.0 is proposed as a standard for represent-

ing information associated with the application of ma-

chine learning to music, including feature values, instance

labels, class ontologies and associated metadata. ACE

XML 2.0 has been developed as part of the Networked

Environment for Musical Analysis (NEMA) [2] project, a

multinational and multidisciplinary effort to create a gen-

eral music information processing infrastructure.

2. ALTERNATIVE REPRESENTATIONS

There are a number of existing approaches that can be

used to represent information related to automatic music

classification. One is to simply store such information as

raw binary data, such as Matlab [3] MAT files. Although

this can be an easy and efficient way of storing data, it has

problems with respect to portability, readability and lon-

gevity. Customized software is needed to parse or write

each binary file type, and such software is often proprie-

tary and can only be expected to have a limited life span.

Text files are an alternative to binary files. Although

they are usually less space efficient, they address the

weaknesses of binary files with respect to longevity, port-

ability and readability. They can also be structured in a

variety of standardized ways, ranging from simple delim-

ited formats like CSV to markup languages like XML [4].

Weka ARFF [5] is a text-based format designed for

general machine learning. Although ARFF files are cur-

rently the closest thing to a standard in the MIR commu-

nity, they do have some significant limitations, such as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

© 2009 International Society for Music Information Retrieval

inabilities to associate windows with instances, to group

the values of a feature array, to store important metadata

and to associate multiple classes with a single instance.

Another approach is to store feature values in audio

files themselves, such as SDIF [6]. This technique can

have a limited expressivity with respect to pertinent meta-

data, however, and is not appropriate for dealing with

mixtures of cultural, symbolic and audio data.

Music Ontology [7] is one of the few representational

frameworks designed specifically with MIR in mind, and

it has many admirable strengths. It can represent musical

ontologies of essentially any kind using RDF [8].

Music Ontology has a much broader scope than ACE

XML, but is arguably less suited specifically to machine

learning and automatic music classification, despite its

advantages over ACE XML in other MIR domains. The

advantages of ACE XML relative to semantic web solu-

tions in general include greater conciseness; a reduced

need for markup not directly relevant to the core problem

domain; a lower barrier to entry for non-ontologists, par-

ticularly with respect to simplicity and convenience; a

cleaner and more explicit structuring that is advantageous

from a machine learning perspective; human readability,

which is useful for application debugging and develop-

ment; a self-contained nature that avoids the network de-

pendence of RDF that can cause problems with respect to

data integrity, robustness and accessibility, particularly

considering the typically large size of feature data; and

the simplicity of relying on only a single technology that

is well-known in the MIR community (i.e., XML).

3. AN OVERVIEW OF ACE XML

3.1 General Overview

The primary design priorities behind ACE XML 2.0 are

the maximization of expressivity, flexibility and extensi-

bility while at the same time maintaining as much simplic-

ity, accessibility and structure as possible.

There are four core ACE XML file types: Feature

Value, Feature Description, Instance Label and Class

Ontology. These file types hold, respectively, feature val-

ues extracted from instances; abstract information about

features and their extraction parameters; class labels asso-

ciated with particular instances and their subsections, as

well as general metadata about instances; and ontological

relationships between abstract classes. These XML file

types may each be used independently, or they may be

packaged with one another if desired (see Section 3.5).

The ACE XML file types are explained individually in

Section 4, although space constraints prohibit more de-

tailed descriptions. The XML DTDs shown in Figures 1

to 4 do specify their functionality in greater detail, how-

ever. Sample code excerpts for each of the four core ACE

XML file types are also provided in Figures 5 to 8. It is

important to note that these excerpts only demonstrate a

reduced subset of ACE XML’s expressivity, however, as

many of the ACE XML elements and attributes are op-

tional so that they can be included only when appropriate.

This makes it possible to use simple and concise files by

default, while maintaining the potential for much greater

expressivity when needed.

ACE XML consists of multiple file types rather than

just one because of the advantages, with respect to data

portability and reusability, of explicitly separating funda-

mentally different types of information. One might, for

example, extract features once from a large number of re-

cordings and then reuse the resulting Feature Value file

for multiple purposes, such as classification by performer,

composer, genre and mood.

ACE XML is implemented in XML partly because it is

a standardized format for which parsers are widely avail-

able. XML is also very flexible while maintaining the

ability to structure data formally and clearly. XML is also

relatively easily readable by both humans and machines.

ACE XML 2.0 is a significantly updated and expanded

version of the earlier ACE XML 1.1, which was origi-

nally designed specifically for use with ACE [9]. It be-

came apparent that certain important types of information

could not be expressed with ACE XML 1.1, so ACE

XML 2.0 was developed in order to address these needs

and to make ACE XML useful to the MIR community

outside the specific scope of ACE.

3.2 jMIR Support

jMIR [10] is a powerful suite of software applications

developed for use as MIR research tools. Each of the

jMIR applications reads and writes ACE XML, some-

thing that provides ACE XML early adopters with a pow-

erful set of tools that are ready for immediate use:

• jAudio: An audio feature extractor.

• jSymbolic: A MIDI feature extractor.

• jWebMiner: A feature extractor that extracts cultural

and demographic information from the web.

• ACE: A meta-learning system for machine learning.

• jMusicMetaManager: Software for managing and

cataloguing large musical datasets.

• Codaich, Bodhidharma MIDI, SAC: research datasets.

3.3 Incorporating ACE XML into Other Software

A key factor in the effectiveness of any effort to encour-

age researchers to adopt new file formats is the ease with

which they can incorporate the formats into their own

software. Open-source code libraries are therefore cur-

rently in the process of being implemented to support

ACE XML 2.0. These libraries are implemented in Java

in order to increase portability, and do not rely on any ad-

ditional technologies that might require special installa-

tion. They will provide functionality for parsing, writing

and merging ACE XML files; for submitting search que-

ries in JDOQL or SQL; and for performing various utility

functions such as translating ACE XML data to and from

Weka data. They will also include standard data struc-

tures that external code can access via a simple and well-

documented API or a GUI ACE XML editor.

3.4 Linking ACE XML 2.0 to External Resources

It can be advantageous to associate instances, features or

classes with various types of external information. Al-

though ACE XML 2.0 can represent a broad range of

metadata internally, the strong structuring that makes

ACE XML advantageous for machine learning ultimately

imposes limitations relative to the much more freely

structured RDF, for example.

ACE XML addresses this issue by permitting the use

of RDF-like triples via the optional uri XML element and

<!ELEMENT ace_xml_feature_value_file_2_0 (comments?,
 related_resources?, instance+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*, instance_label_file*,

 class_ontology_file*, project_file*, uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT instance (instance_id, uri*, extractor*, coord_units?,

 s*, precise_coord*, f*)>

<!ELEMENT instance_id (#PCDATA)>

<!ELEMENT extractor (#PCDATA)>

<!ATTLIST extractor fname CDATA #REQUIRED>

<!ELEMENT coord_units (#PCDATA)>

<!ELEMENT s (uri*, f+)>

<!ATTLIST s b CDATA #REQUIRED e CDATA #REQUIRED>

<!ELEMENT precise_coord (uri*, f+)>

<!ATTLIST precise_coord coord CDATA #REQUIRED>

<!ELEMENT f (fid, uri*, (v+ | vd+ | vs+ | vj))>

<!ATTLIST f type (int | double | float | complex | string)

 #IMPLIED>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT v (#PCDATA)>

<!ELEMENT vd (#PCDATA)>

<!ATTLIST vd d0 CDATA #REQUIRED d1 CDATA #IMPLIED

 d2 CDATA #IMPLIED d3 CDATA #IMPLIED

 d4 CDATA #IMPLIED d5 CDATA #IMPLIED

 d6 CDATA #IMPLIED d7 CDATA #IMPLIED

 d8 CDATA #IMPLIED d9 CDATA #IMPLIED>

<!ELEMENT vs (d+, v)>

<!ELEMENT d (#PCDATA)>

<!ELEMENT vj (#PCDATA)>

Figure 1: XML DTD for the ACE XML 2.0 Feature Value file

format.

<!ELEMENT ace_xml_feature_description_file_2_0 (comments?,

 related_resources?, global_parameter*, feature+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*, instance_label_file*,

 class_ontology_file*, project_file*, uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT feature (fid, description?, related_feature*, uri*,

 scope, dimensionality?, data_type?, parameter*)>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT related_feature (fid, relation_id?, uri*,

 explanation?)>

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT scope (#PCDATA)>

<!ATTLIST scope overall (true|false) #REQUIRED

 sub_section (true|false) #REQUIRED

 precise_coord (true|false) #REQUIRED>

<!ELEMENT dimensionality (uri*, size*)>

<!ATTLIST dimensionality orthogonal_dimensions CDATA #REQUIRED>

<!ELEMENT size (#PCDATA)>

<!ELEMENT data_type (#PCDATA)>

<!ATTLIST data_type type (int | double | float | complex |

 string) #REQUIRED>

<!ELEMENT global_parameter (parameter_id, uri*, description?,

 value?)>

<!ELEMENT parameter (parameter_id, uri*, description?, value?)>

<!ELEMENT parameter_id (#PCDATA)>

<!ELEMENT value (#PCDATA)>

Figure 2: XML DTD for the ACE XML 2.0 Feature De-

scription file format.

<!ELEMENT ace_xml_instance_label_file_2_0 (comments?,

 related_resources?, instance+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*, instance_label_file*,

 class_ontology_file*, project_file*, uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT instance (instance_id, misc_info*, related_instance*,

 uri*, coord_units?, section*,

 precise_coord*, class*)>

<!ATTLIST instance role (training | testing | predicted)

 #IMPLIED>

<!ELEMENT instance_id (#PCDATA)>

<!ELEMENT related_instance (instance_id, relation_id?, uri*,

 explanation?)>

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT misc_info (info_id, uri*, info)>

<!ELEMENT info_id (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT coord_units (#PCDATA)>

<!ELEMENT section (uri*, class+)>

<!ATTLIST section begin CDATA #REQUIRED

 end CDATA #REQUIRED>

<!ELEMENT precise_coord (uri*, class+)>

<!ATTLIST precise_coord coord CDATA #REQUIRED>

<!ELEMENT class (class_id, uri*)>

<!ATTLIST class weight CDATA "1">

<!ATTLIST class source_comment CDATA #IMPLIED>

<!ELEMENT class_id (#PCDATA)>

Figure 3: XML DTD for the ACE XML 2.0 Instance Label

file format.

<!ELEMENT ace_xml_class_ontology_file_2_0 (comments?,

 related_resources?, class+)>

<!ATTLIST ace_xml_class_ontology_file_2_0 weights_relative

 (true|false) #REQUIRED>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*, instance_label_file*,

 class_ontology_file*, project_file*, uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT class (class_id, misc_info*, uri*, related_class*,

 sub_class*)>

<!ELEMENT class_id (#PCDATA)>

<!ELEMENT misc_info (info_id, uri*, info)>

<!ELEMENT info_id (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT related_class (class_id, relation_id?, uri*,

 explanation?)>

<!ATTLIST related_class weight CDATA "1">

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT sub_class (class_id, relation_id?, uri*,

 explanation?)>

<!ATTLIST sub_class weight CDATA "1">

Figure 4: XML DTD for the ACE XML 2.0 Class On-

tology file format.

its associated predicate attribute. This enables links to be

specified to external resources of essentially any kind

without compromising ACE XML’s structured and self-

contained design philosophy. In particular, it makes it

easy to link ACE XML files to large RDF ontologies.

3.5 ACE XML 2.0 Project and ZIP Files

Although it is beneficial to be able to specify the informa-

tion encapsulated in each of the four ACE XML formats

in separate files, in practice users will want to use multi-

ple ACE XML files together. The ACE XML 2.0 Project

file format facilitates this by providing functionality for

linking ACE XML (and other) resources together.

 It is also possible to package multiple associated ACE

XML files together into a single ACE XML 2.0 ZIP file

for simplified storage and distribution. This is also advan-

tageous because of the reduced file sizes resulting from

data compression. Of course, the original ACE XML files

may be extracted from this ACE XML ZIP file whenever

desired. The supporting ACE XML software includes

functionality for automatically generating, accessing and

otherwise processing ACE XML Project and ZIP files.

4. THE CORE ACE XML 2.0 FILE FORMATS

This section provides descriptions of each of the four core

ACE XML file formats: Feature Value, Feature Descrip-

tion, Instance Label and Class Ontology.

4.1 Feature Value Files

Feature Value files are used to express feature values that

have been extracted from instances that are to be classi-

fied or used as training data. There is no assumed associa-

tion with any specific kind of data, and so features may be

extracted from audio recordings, symbolic recordings,

textual or numeric cultural data, images of album art, etc.

Features may be extracted from instances as a whole

(e.g., an entire score), from subsections of instances (e.g.,

audio analysis windows) or from a mixture of the two.

Subsections may or may not overlap, may or may not be

of equal size and may or may not cover an instance com-

prehensively. Each instance or subsection may also con-

tain an arbitrary and potentially differing number of fea-

tures, which makes it possible to omit features when ap-

propriate or if they are unavailable.

Each instance in a Feature Vector file has an in-

stance_id tag that may be used to associate it with class

labels and metadata stored in an Instance Label file. Simi-

larly, each feature has an fid tag that may be used to asso-

ciate it with feature metadata stored in a Feature Descrip-

tion file. Other information that can be represented in a

Feature Value file includes the data type (integer, double,

string, etc.) of the feature, the feature extractor used to

extract the feature values and links to external resources.

ACE XML 2.0 allows feature values to be expressed

using any one of four methodologies, including one that is

based on JavaScript Object Notation (JSON) [11]. Each

such representation has its own advantages with respect to

the maximum dimensionality of feature arrays, the ability

to represent sparse feature arrays, human readability and

space efficiency. An example of the most flexible (but not

most space efficient) of these options is shown in Figure

5. This option allows feature arrays of any dimensionality

and size to be represented, including sparse arrays and

arrays that vary in size.

4.2 Feature Description Files

Feature Description files are used to express abstract in-

formation about features. These files do not specify actual

feature values, as this information is instead specified in

Feature Value files.

The information that may be represented in Feature

Description files includes: details of pre-processing re-

quired before feature extraction (e.g., downsampling);

feature extraction parameters; notations as to whether fea-

tures are associated with instances as a whole or only with

instance subsections; the dimensionality and size of each

feature (i.e., a single-value feature, a feature vector or a

feature array); the data type of each feature; qualitative

feature descriptions; relationships between different fea-

tures; and links to external resources.

There are other possible applications for Feature De-

scription files beyond simply using them to represent in-

formation associated with Feature Value files. Examples

include catalogues of features that can be extracted by

particular feature extraction applications and lists of fea-

tures and associated parameters that have been found to

be useful for particular music classification applications.

4.3 Instance Label Files

Instance Label files are used to specify class labels and

miscellaneous metadata about instances. These files are

typically used to express ground-truth annotations or pre-

dicted labels, but there are certainly other uses as well.

Class labels may be assigned to instances as a whole,

to subsections of instances, or to both. Subsections may

be overlapping and may be of varying sizes. Weighted

multi-class membership is also permitted. Additional in-

formation that may be associated with instances and their

subsections includes the source of the class labels (e.g., a

listener survey); whether the class label(s) for an instance

are predicted labels or ground-truth; relationships of any

kind between instances (e.g., one is a cover song of an-

other); miscellaneous field-labeled qualitative metadata

(e.g., the performer or composer of a piece); and links to

external resources. Instance Label files may be linked

with Feature Value files using matching instance_id tags

and with Class Ontology files using matching class tags.

<instance>

 <instance_id>An Artificial Instance</instance_id>

 <f>

 <fid>A Single Value Feature</fid>

 <v>1</v>

 </f>

 <f>

 <fid>Feature Array of Value</fid>

 <vs><d>0</d><d>0</d><v>1</v></vs>

 <vs><d>0</d><d>1</d><v>2</v></vs>

 <vs><d>0</d><d>2</d><v>3</v></vs>

 <vs><d>1</d><d>0</d><v>11</v></vs>

 <vs><d>1</d><d>1</d><v>22</v></vs>

 <vs><d>1</d><d>2</d><v>33</v></vs>

 </f>

</instance>

Figure 5: An excerpt from a sample ACE XML 2.0 Fea-

ture Value file indicating two artificial features extracted

from a single instance. The first feature has a value of 1,

and the second is the 2 by 3 feature array:

[[1,2,3],[11,22,33]]. In practice, a Feature Value file

could contain multiple such instances as well as features

extracted from subsections of instances.

<feature>

 <fid>Beat Histogram</fid>

 <description>Tempo histogram calculated using

 Autocorrelation.</description>

 <related_feature>

 <fid>Tempo Peak</fid>

 <relation_id>derivative feature</relation_id>

 </related_feature>

 <scope overall="true" sub_section="false"

 precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>161</size>

 </dimensionality>

 <data_type type="double"></data_type>

 <parameter>

 <parameter_id>normalized</parameter_id>

 <value>true</value>

 </parameter>

</feature>

Figure 6: An excerpt from a sample ACE XML 2.0 Fea-

ture Description file indicating information about a sin-

gle feature called Beat Histogram. It is noted that Beat

Histogram is related to another feature called Tempo

Peak that can be calculated from the Beat Histogram

feature, that Beat Histogram is configured to be ex-

tracted only for files as a whole, that it consists of a sin-

gle vector of size 161, that feature values are stored as

doubles and that the values are normalized. In practice, a

Feature Description file would contain multiple such fea-

ture clauses, each for a different feature.

<instance role="predicted">

 <instance_id>C:\Symbolic\piece_42.midi</instance_id>

 <coord_units>ms</coord_units>

 <section begin="0" end="85673">

 <class>

 <class_id>Sonata Exposition</class_id>

 </class>

 </section>

 <section begin="85674" end="278894">

 <class>

 <class_id>Sonata Development</class_id>

 </class>

 </section>

 <section begin="278895" end="525419">

 <class>

 <class_id>Sonata Recapitulation</class_id>

 </class>

 </section>

 <class weight="3">

 <class_id>Haydn</class_id>

 </class>

 <class weight="1">

 <class_id>Mozart</class_id>

 </class>

</instance>

Figure 7: An excerpt from a sample ACE XML 2.0 In-

stance Label file specifying class labels for a MIDI file.

As indicated by the role attribute, the labels are pre-

dicted classifier outputs. The subsections are classified

by form and the overall instance is classified by com-

poser. The classification system has expressed that this

piece is three times as likely to be by Haydn than by Mo-

zart. In practice, an Instance Label file would contain

multiple such instance clauses.

<class>

 <class_id>Robert Johnson</class_id>

</class>

<class>

 <class_id>Muddy Waters</class_id>

 <related_class weight="10">

 <class_id>Robert Johnson</class_id>

 <relation_id>Influenced By</relation_id>

 </related_class>

 <related_class weight="1">

 <class_id>Eric Clapton</class_id>

 <relation_id>Influenced By</relation_id>

 </related_class>

</class>

<class>

 <class_id>Eric Clapton</class_id>

 <related_class weight="30">

 <class_id>Robert Johnson</class_id>

 <relation_id>Influenced By</relation_id>

 </related_class>

 <related_class weight="10">

 <class_id>Muddy Waters</class_id>

 <relation_id>Influenced By</relation_id>

 </related_class>

</class>

Figure 8: An excerpt from an artificial ACE XML 2.0

Class Ontology file indicating class labels consisting of

names of Blues musicians. A type of relationship be-

tween classes is also specified, namely musicians influ-

enced by other musicians. In this example, there is no

relationship from Robert Johnson to the other musicians

because he was not influenced by them. Both of the other

musicians are influenced by Johnson, however. Clapton

is more influenced by Johnson than by Muddy Waters,

and Muddy Waters is strongly influenced by Johnson but

only slightly influenced by Clapton, as indicated by the

weight values.

4.4 Class Ontology Files

Class Ontology files are used to specify candidate class

labels for a particular classification domain as well as

weighted ontological relationships between classes. These

files do not, however, specify the labels of any actual in-

stances, as this is the domain of Instance Label files.

The ability to specify ontological class structuring has

several important benefits. From a musicological perspec-

tive, it provides a simple, machine-readable way of speci-

fying a variety of musical relationships. From a machine

learning perspective, it has the dual advantages of ena-

bling the use of powerful hierarchical classification meth-

odologies that exploit this structuring, as well as learning

schemes that utilize weighted penalization to punish “bet-

ter” misclassifications less severely during training.

The information that may be expressed in Class Ontol-

ogy files includes weighted taxonomical links to other

classes; weighted general ontological links to other

classes; structured or unstructured descriptions of such

links; miscellaneous qualitative structured metadata (e.g.,

the birthplace of a composer if music is being classified

by composer); and links to external resources.

5. CONCLUSIONS

This paper has emphasized the need for more effective

representational formats for use in MIR and automatic

music classification research. ACE XML 2.0 was pre-

sented as a solution to these needs. It is hoped that ACE

XML will help to facilitate communication and data shar-

ing between research groups involved in the computa-

tional study of music and correspondingly increase the

efficiency and quality of research.

Much more detailed information, including sample

ACE XML 2.0 files and an in-depth ACE XML 2.0 man-

ual, are available at jmir.sourceforge.net.

6. FUTURE RESEARCH

Future work will focus on continuing to produce devel-

oper tools to help facilitate the integration of ACE XML

functionality into other software. Once work is completed

on implementing the ACE XML 2.0 support software (the

ACE XML 1.1 software is already complete) in Java it

will then be ported to other languages, such as Python,

C++ and Matlab. There are also plans to write ACE XML

2.0 plug-ins for the popular MIR software toolkits and to

implement tools for translating ACE XML to other repre-

sentational formats. The upgrading of all jMIR compo-

nents from ACE XML compatibility 1.1 to ACE 2.0 com-

patibility is a particular priority.

Another priority is the continuing extension and over-

all improvement of the ACE XML standard. This will in-

clude the expression of more strictly constrained rules

specified using XSD or Relax NG schemas.

The publication of a common repository for data

stored in ACE XML files is another key goal. This will

enable such data to be posted and shared amongst re-

searchers. This will also be a forum where best practices

and extensions to the ACE XML standard can be dis-

cussed and agreed upon by the MIR community. Indeed,

ideas from the MIR community for future improvements

to ACE XML in general are very welcome, and upgrades

to the file formats will continue, with the provision that

backwards compatibility is maintained.

7. ACKNOWLEDGEMENTS

The authors would like to thank the Andrew W. Mellon

Foundation and the Centre for Interdisciplinary Research

in Music Media and Technology (CIRMMT) for their

generous financial support, as well as the members of the

Networked Environment for Musical Analysis (NEMA)

group for their valuable critiques and suggestions.

8. REFERENCES

[1] MIREX 2009. Retrieved 11 May 2009, from

http://www.music-ir.org/mirex/2009.

[2] NEMA. Retrieved 11 May 2009, from

http://nema.lis.uiuc.edu.

[3] Mathworks. Retrieved 11May 2009, from http://

www.mathworks.com.

[4] Ray, E. T. 2003. Learning XML. Sebastopol, CA:

O’Reilly Media.

[5] Witten, I. H., and E. Frank. 2005. Data mining:

Practical machine learning tools and techniques.

New York: Morgan Kaufman.

[6] Burred J. J., C. E. Cella, G. Peeters, A. Röbel, and

D. Schwarz. 2008. Using the SDIF Sound

Description Interchange Format for audio features.

Proceedings of the International Conference on

Music Information Retrieval. 427–32.

[7] Raimond, Y., S. Adbdallah, M. Sandler, and F.

Giasson. 2007. The Music Ontology. Proceedings of

the International Conference on Music Information

Retrieval. 417–22.

[8] Powers, S. 2003. Practical RDF. Sebastopol, CA:

O’Reilly Media.

[9] McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I.

Fujinaga. 2005. ACE: A framework for optimizing

music classification. Proceedings of the

International Conference on Music Information

Retrieval. 42–9.

[10] McKay, C., and I. Fujinaga. 2009. jMIR: Tools for

automatic music classification. Accepted for

publication in the Proceedings of the International

Computer Music Conference.

[11] JSON. Retrieved 11 May 2009, from http://json.org.

