

jSymbolic: Demonstration and Tutorial

Cory McKay Marianopolis College and CIRMMT

Topics

- Introduction to "features"
- Introduction to jSymbolic
- jSymbolic demo and tutorial

Centre for Interdisciplinary Research in Music Media and Technology

Single Interface for Music Score Searching and Analysis

What are "features"?

Pieces of information that can characterize something (e.g. a piece of music) in a simple way

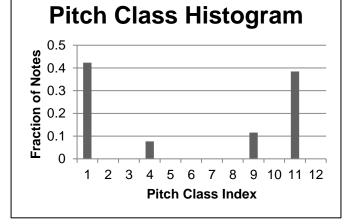
Usually numerical values

- A feature can be a single value, or it can be a set of related values (e.g. a histogram)
- Can be extracted from pieces as a whole, or from segments of pieces

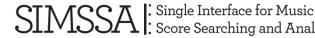
Example: Two basic features

- Range (1-D): Difference in semitones between the highest and lowest pitches.
- Pitch Class Histogram (12-D): Each of its 12 values represents the fraction of notes of a particular pitch class. The first value corresponds to the most common pitch class, and each following value to a pitch class a semitone higher than the previous.

- Range = G C = 7 semitones
- Pitch Class Histogram: see graph ->
 - Note counts: C: 3, D: 10, E: 11, G: 2
 - Most common note: E (11/26 notes)
 - Corresponding to 0.423 of the notes
 - □ E is thus pitch class 1, G is pitch class 4, C is pitch class 9, D is pitch class 11



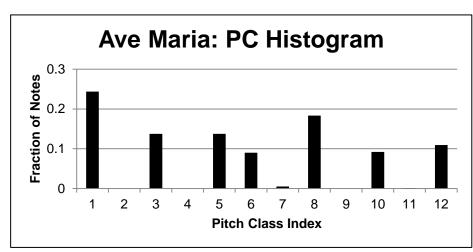
Centre for Interdisciplinary Research in Music Media and Technology



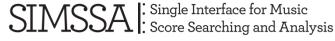
: Score Searching and Analysis

Josquin's Ave Maria... Virgo serena

- Range: 34
- Repeated notes: 0.181
- Vertical perfect 4^{ths}: 0.070
- Rhythmic variability: 0.032
- Parallel motion: 0.039



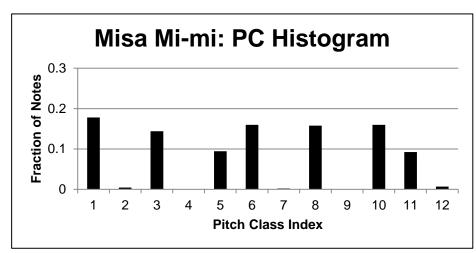
Centre for Interdisciplinary Research in Music Media and Technology



MARIANOPOLIS

Ockeghem's Missa Mi-mi (Kyrie)

- Range: 26
- Repeated notes: 0.084
- Vertical perfect 4^{ths}: 0.109
- Rhythmic variability: 0.042
- Parallel motion: 0.076

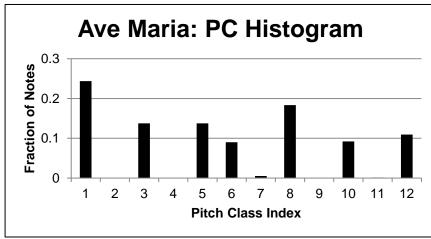


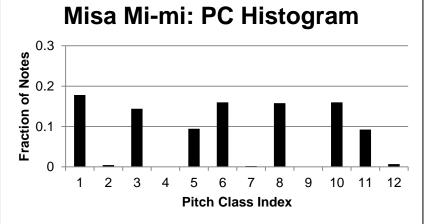
Centre for Interdisciplinary Research in Music Media and Technology

ISSA Score Searching and Analysis

Feature value comparison

Feature	Ave Maria	Misa Mi-mi
Range	34	26
Repeated notes	0.181	0.084
Vertical perfect 4 ^{ths}	0.070	0.109
Rhythmic variability	0.032	0.042
Parallel motion	0.039	0.076





Centre for Interdisciplinary Research in Music Media and Technology

Single Interface for Music Score Searching and Analysis

Feature visualization: Histograms (1/4)

- Histograms are one good way to visualize how the values of a feature are distributed across a corpus as a whole
 - □ As opposed to focusing on individual pieces
- The x-axis corresponds to a series of bins, with each corresponding to a range of values for a given feature
 - e.g. the first bin could correspond to Parallel Motion feature values between 0 and 0.1, the next bin to Parallel Motion values between 0.1 and 0.2, etc.
- The y-axis indicates the fraction of all pieces that have a feature value within the range of each given bin
 - e.g. if 30% of pieces in the corpus have Parallel Motion values between 0.1 and 0.2, then this bin (0.1 to 0.2) will have a y-coordinate of 30% (or, equivalently, 0.3)

9 / 23

Feature visualization: Histograms (2/4)

In other words:

Each bar on a histogram represents the fraction of pieces in a corpus with a feature value falling in that bar's range of feature values

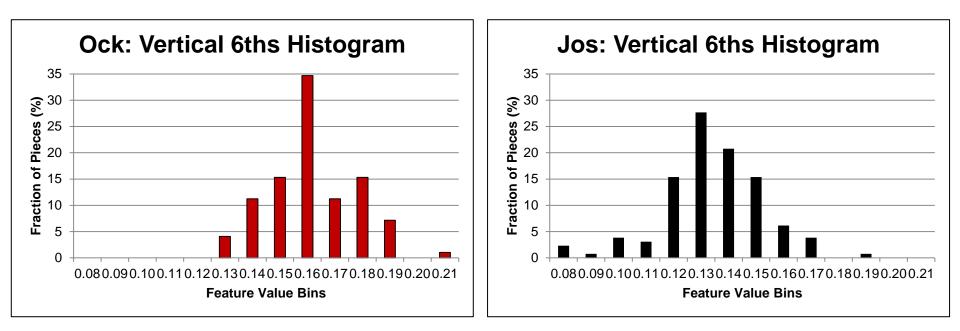
Clarification: I am speaking here about a way to visualize a 1-dimensional feature as it is distributed across a corpus of interest

This is distinct from the multi-dimensional histogram features discussed earlier

e.g. Pitch Class Histograms

□ Although both are equally histograms, of course

Centre for Interdisciplinary Research in Music Media and Technology



 These histograms show that Ockeghem tends to have more vertical 6^{ths} (between all pairs of voices) than Josquin

- □ Ockeghem peaks in the 0.16 to 0.17 bin
- $\hfill\square$ Josquin peaks in the 0.13 to 0.14 bin
- Of course, there are also clearly many exceptions
 - This feature is helpful, but is limited if only considered alone

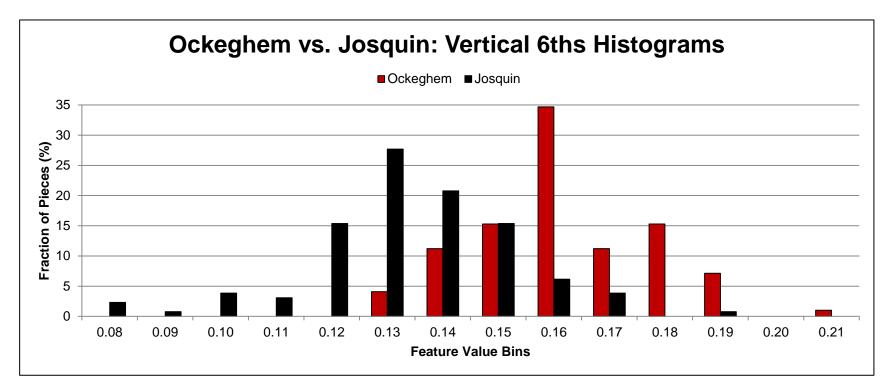
CIR MMT

Centre for Interdisciplinary Research in Music Media and Technology

A: Single Interface for Music Score Searching and Analysis

Feature visualization: Histograms (4/4)

The histograms for both composers can also be superimposed onto a single chart:



Centre for Interdisciplinary Research in Music Media and Technology

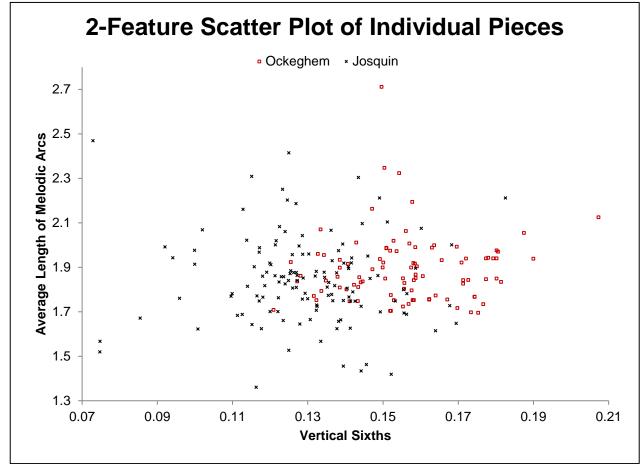
Single Interface for Music Score Searching and Analysis

Feature visualization: Scatter plots (1/6)

- Scatter plots are another good way to visualize feature data
 - □ The x-axis represents one feature
 - □ The y-axis represents some other feature
 - Each point represents the values of these two features for a single piece
- Scatter plots let you see pieces individually, rather than aggregating them into bins like histograms
 - Scatter plots also let you see more clearly how the two features divide the different composers
- To make them easier to read, scatter plots typically have just 2 dimensions
 - Computer classifiers, in contrast, work with n-dimensional scatterplots (one dimension per feature)

Feature visualization: Scatter plots (2/6)

 Josquin pieces tend to be left and low on this graph

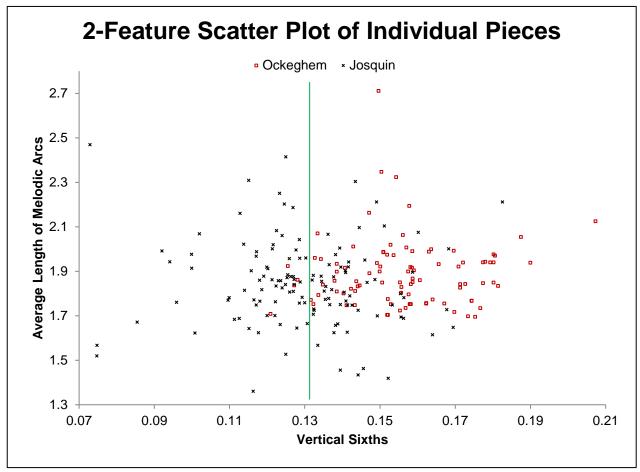


Centre for Interdisciplinary Research in Music Media and Technology SSA: Single Interface for Music Score Searching and Analysis

Feature visualization: Scatter plots (3/6)

- Simply drawing a single 1-D dividing line ("discriminant") results in a not entirely terrible classifier based only on Vertical Sixths!
 - But many pieces would still be misclassified

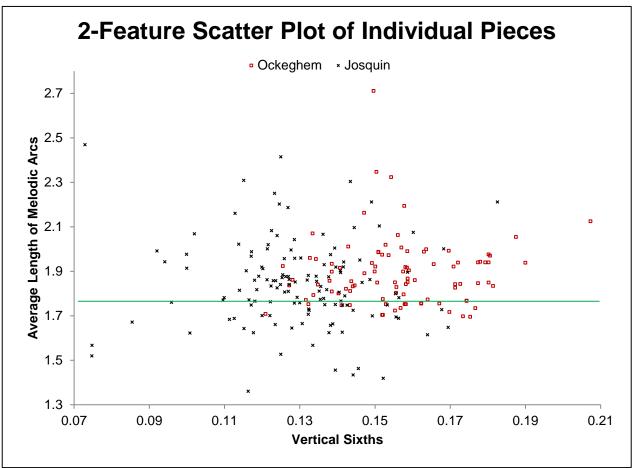
 Get 62% classification accuracy using an SVM and just this one feature



Centre for Interdisciplinary Research in Music Media and Technology SSA : Single Interface for Music Score Searching and Analysis

Feature visualization: Scatter plots (4/6)

- Could alternatively draw a 1-D discriminant dividing the pieces based only on the Average Length of Melodic Arcs
 - Get 57% classification accuracy using an SVM and just this one feature
 - Not as good as the Vertical Sixths discriminant (62%)



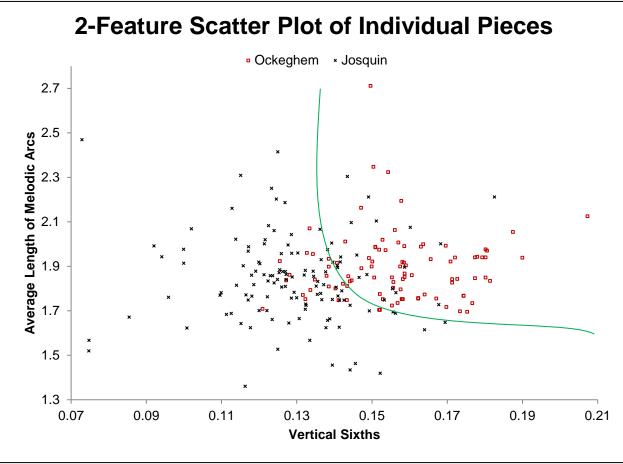
Centre for Interdisciplinary Research in Music Media and Technology SSA : Single Interface for Music Score Searching and Analysis

Feature visualization: Scatter plots (5/6)

- Drawing a curve (another kind of discriminant) divides the composers still better that either of the previous discriminants
 - Get 80%

 accuracy using
 an SVM and just
 these 2
 features!

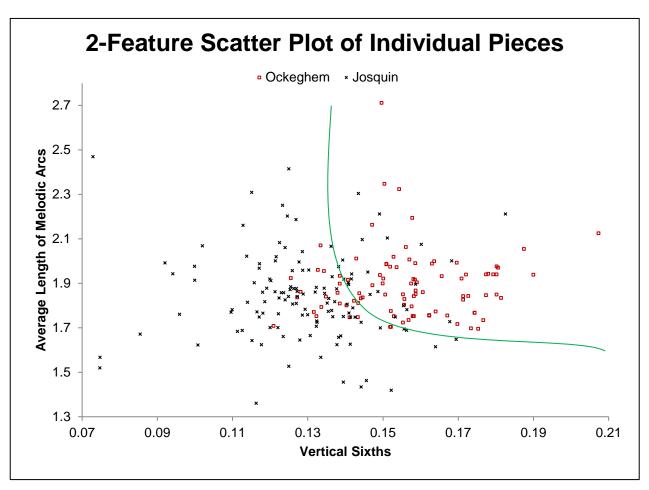
 More than 2 features are clearly needed to improve performance



Centre for Interdisciplinary Research in Music Media and Technology SA: Single Interface for Music Score Searching and Analysis

Feature visualization: Scatter plots (6/6)

- In fact, many (but not all) types of machine learning in effect simply learn where to place these kinds of discriminants as they train
- But typically with many more then just two features, of course



Centre for Interdisciplinary Research in Music Media and Technology SSA Single Interface for Music Score Searching and Analysis

jSymbolic : Introduction

- jSymbolic is a software platform I have implemented for extracting features from symbolic music
 - □ Part of our much larger jMIR package
- Compatible with Macs, PCs and Linux computers
- Free and open-source

Centre for Interdisciplinary Research in Music Media and Technology

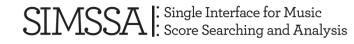
Single Interface for Music Score Searching and Analysis

What does jSymbolic do?

- Extracts 246 unique features
- Some of these are multi-dimensional histograms, including:
 - Pitch and pitch class histograms
 - Melodic interval histograms
 - Vertical interval histograms
 - Chord types histograms
 - Rhythmic value histograms
 - Beat histograms
 - Instrument histograms
- In all, extracts a total of 1497 separate values

jSymbolic: Extensibility

- jSymbolic is specifically designed such that music scholars can design their own features and work with programmers to then very easily add these features to the jSymbolic infrastructure
 - □ Fully open source
 - Modular plug-in feature design
 - Automatically handles feature dependencies and scheduling
 - □ Very well-documented code



jSymbolic demo

- Web site
- Manual
- Tutorial
- GUI
 - API and command line interface
- Configuration files
- Manually examining features
- Analyzing features with Weka
- Looking at the code
 - Adding new features



Thanks for your attention!

jSymbolic: http://jmir.sourceforge.net E-mail: cory.mckay@mail.mcgill.ca

Schulich School of Music École de musique Schulich

Social Sciences and Humanities **Research Council of Canada**

Conseil de recherches en sciences humaines du Canada

DISTRIBUTED DIGITAL MUSIC ARCHIVES A LIBRARIES LAB

SIMSSA : Single Interface for Music Score Searching and Analysis

