Audio Fingerprinting

mainly based on

A review of audio fingerprinting (Cano et al. 2005)

presented by

Denis Lebel

Presentation Outline

- Introduction
- Desired Properties
- Usage Modes
- Applications
- Fingerprinting Framework
 - Front-end
 - Fingerprint Models
 - Similarity Measures and Searching Methods
 - Hypothesis Testing
- Conclusion
- References

Introduction

- Idea
 - An attempt to mimic human music recognition abilities
- Audio Fingerprint
 - Unique identifier of an audio signal
 - Content-based signature that summarizes an audio recording
 - Uses relevant (perceptual) acoustics characteristics of signal
- Fingerprinting System
 - Database of known fingerprints
 - Query system

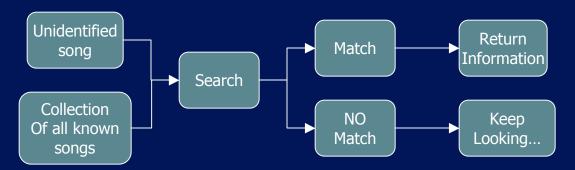


Figure 1: General idea of a fingerprinting system

Desired Properties

- Accuracy
 - Function of correct, missed, and wrong identifications
- Reliability
 - Correct identification method
- Robustness
 - Ability to accurately identify an item (no matter how compressed or distorted it is)
- Granularity
 - Ability to identify a signal from a short excerpt
- Security
 - Vulnerability to cracking

Desired Properties

- Versatility
 - Ability to identify a signal regardless of audio format
- Scalability
 - Performance with very large databases
- Complexity
 - Computational costs of fingerprint extraction, size of fingerprint, search complexity, comparison complexity, etc.
- Fragility
 - Integrity verification (detection of changes in content)

Desired Properties

- Properties are interrelated and dependent of system purpose
- Generally speaking, fingerprint should be:
 - A perceptual digest of the recording
 - Invariant to distortions
 - Compact
 - Easily computable

Usage Modes

- Identification
 - Content identification of an audio signal

- Integrity Verification
 - Detection of data alteration

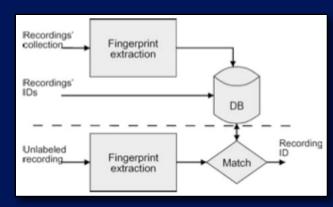


Figure 2: Content-based audio identification framework. (Cano et al. 2005)

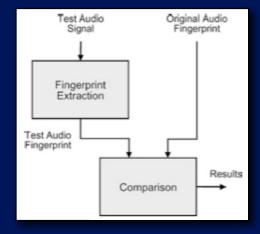


Figure 3: Integrity verification framework. (Cano et al. 2005)

Usage Modes

- Watermarking support
 - Audio fingerprints can be used to derive secrets keys from the audio content
- Content-based Audio Retrieval and Processing
 - Extraction of audio features (i.e., low-level and high-level descriptors)
 - Fingerprints can be used to retrieve similar content (i.e., query-by-example scheme)

Applications

- Audio Content Monitoring and Tracking
 - At the distributor end
 - At the transmission channel
 - At the consumer end
- Added-Value Services
 - Content information describing audio excerpt (e.g., tempo)
 - Meta-data describing musical work (e.g., composer, year, ...)
 - Other information (e.g., album cover)
- Integrity Verification Systems
 - Audio fingerprints can be used to ensure user's audio files have the best quality available

Presentation Outline

- Introduction
- Desired Properties
- Usage Modes
- Applications
- Fingerprinting Framework
 - Front-end
 - Fingerprint Models
 - Similarity Measures and Searching Methods
 - Hypothesis Testing
- Conclusion
- References

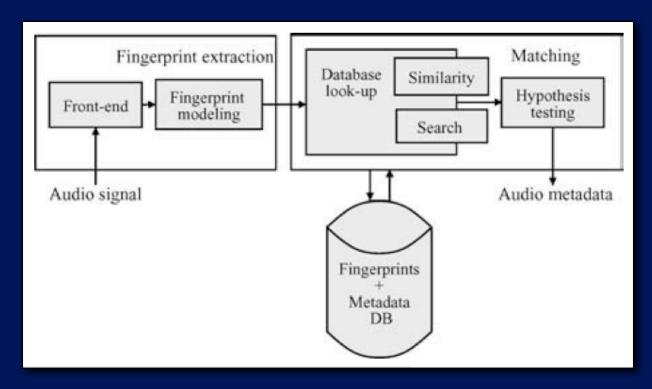


Figure 4: Content-based audio identification framework. (Cano et al. 2005)

■ Fingerprint Extraction: Front-End

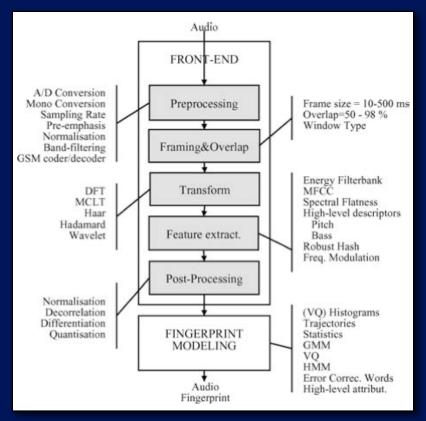


Figure 5: Fingerprint Extraction Framework. (Cano et al. 2005)

- Fingerprint Extraction: Fingerprint Modeling
 - Idea: Reduce redundancies
 - Reduce size of fingerprint
 - Similarity measure and search method depends on the model chosen
 - Several techniques can be used (for a summary: Cano et al. 2005)

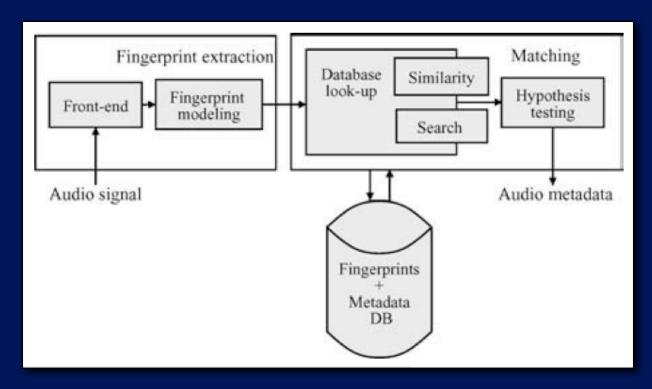


Figure 4: Content-based audio identification framework. (Cano et al. 2005)

14

- Fingerprint Extraction:Similarity Measures
 - Related to type of model chosen
 - Correlation metric is common
 - Example: Euclidean distance

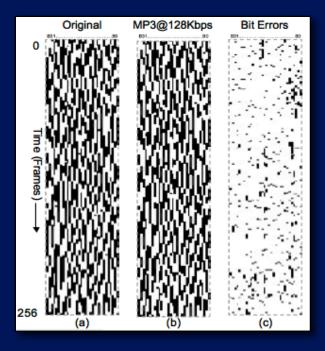


Figure 6: a) Fingerprint block of original clip b) fingerprint block of a compressed version. c) Difference (error) (Haitsma et al. 2002)

- Fingerprint Extraction: Searching Methods
 - Using brute-force search is inappropriate for large database
 - Idea: Optimizing the search
- Some possible optimizations
 - Pre-computing distances offline
 - Filtering unlikely candidates with a cheap similarity measure
 - Candidate pruning
 - Others...

- Fingerprint Extraction: Hypothesis Testing
 - Idea: Whether the query is present in the repository
 - A threshold must be used and it depends on:
 - Fingerprint model
 - Similarity of fingerprints in the database
 - Database size
 - Discriminative information of the query
 - The larger the database, the higher the probability of wrong match
 - False Acceptance Rate (FAR)
 - False Rejected Rate (FRR)

Conclusion

- Most existing systems fall more or less into this generic framework
- Large databases still represent a challenge (scalability, complexity, accuracy...)
- P2P systems might be the future (e.g., Music2Share)

References

- Cano, P., E. Batlle, T. Kalker, and J. Haitsma. 2005. A review of audio fingerprinting. The Journal of VLSI Signal Processing 41: 271–84.
- Haitsma, J., and T. Kalker. 2002. A highly robust audio fingerprinting system. *Proceedings of the International Symposium on Music Information* Retrieval. 107–15.
- Kalker, T., D. Epema, P. Hartel, R. Langendijk, and M. Van Steen. 2004. Music2Share: Copyright-compliant music sharing in P2P systems. *Proceedings of the IEEE* 92 (6): 961–70.

Links

- http://www.shazam.com/
- http://www.relatable.com/
- http://www.audiblemagic.com/
- http://www.gracenote.com/