Voice Separation: A 15-minute Introduction

presented by

Denis Lebel

Presentation Outline

Introduction

- Voice Separation Techniques
- Voice Separation Systems
- Conclusion
- References

Introduction

Purpose

- Transcription of low-level musical data into score notation
- Theme finding and music analysis

Idea

Separation of notes into voices with possible chords (in a polyphonic context)

2 different contexts

- Explicit Polyphony
 - Multiple notes sounding at one instant
 - Assuming no single voice can produce 2 notes simultaneously
- Implicit Polyphony
 - At most one note sounding at any instant

Split Point Separation

- Idea:
 - Split pitch range into disjoint intervals
- Problem:
 - Works only on non-overlapping voices

• Notes:

- One of the simplest methods
- Used in most commercial systems

Rule-Based Approach

- Idea:
 - Take advantage of the voice-leading rules used by composer
 - Rules examples:
 - Polyphonic motion
 - Succeeding notes intervals

• Problems:

- Many such rules, specific to composer
- Errors occur with major overlapping of voices
- Note:
 - Better approach than split point

Local Optimization Approach

- Idea:
 - Using a heuristic algorithm
 - Iterative process that finds the best solution from a given set at each step
- Problem:
 - Not meant to find the correct voice separation but rather to provide reasonable solutions in different contexts
- Note:
 - Complex approach but seems to give better results

Others

- Contig Mapping Approach
- Same-Voice Predicate (learned decision tree) along with voicenumbering algorithm

• ...

Systems

- VoiSe University of Massachusetts Amherst (Kirlin 2005)
- VoSA University of Southern California (Chew 2004)
- Melisma Music Analyzer Carnegie Mellon University (Sleator and Temperley 2001)

Systems

VoSA Interface Screenshot – from VoSA website

MUMT-611: Music Information Acquisition, Preservation, and Retrieval

Conclusion

Despite the different existing techniques, there is still no perfect solution to voice separation.

References

- Kirlin, P., and P. Utgoff. 2005. VoiSe: Learning to segregate voices in explicit and implicit polyphony. *Proceedings of the International Conference on Music Information Retrieval.* 552–7.
- Chew, E., and X. Wu. 2004. Seperating voices in polyphonic music: A contig mapping approach. *Proceedings of the International Symposium on Computer Music Modeling and Retrieval.* 1–20.
- Kilian, J., and H. Hoos. 2002. Voice separation: A local optimisation approach. *Proceedings of the International Conference on Music Information Retrieval*. 39–46.