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hmms: is there more?

HMMs are great, but there are other tools.

HMMs are a generative model, i.e., they 
could be used to ‘generate’ new data.

There are other generative models.

Sometimes discriminative, i.e., data-defined, 
models are more appropriate.
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bayesians vs. 
frequentists

Frequentists estimate fixed parameters by 
maximum likelihood of generating data.

Bayesians infer the maximum a posteriori 
value of hidden nodes conditioned on the 
observed data.

Frequentists require more data; Bayesians 
require more assumptions.



GENERATIVE 
MODELS



hmm variants

HMM variants represented as DBNs

HMM MixGauss HMM
IO!HMM

AR!HMM

⇒ The same code can do inference and learning in all of these
models.
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Figure 6: A generative model for generative models. This figure is from S. Roweis and Z. Ghahramani.

Figure 7: A Markov Random Field for low level vision. Xi is the hidden state of the world at grid position
i, Yi is the corresponding observed state. This figure is from [FP00].
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factorial hmm

parallel HMMs 
sharing observations

combinatorial state 
explosion

approximate 
inference is necessary

usually perform badly
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coupled hmm

all present states 
connect with each 
other and all future 
states

everything depends 
on everything

enticing, but very 
difficult to compute

Coupled HMMs
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kalman filter

HMM with continuous states

transition matrix becomes a linear 
transformation

state becomes a Gaussian (or mixture of 
Gaussians for more complex variants)

commonly used in robotics for tracking 
postion or angle in space



DISCRIMINATIVE 
MODELS



label-bias problem

Generative models 
can only include short 
time dependencies – 
which is a problem 
for music!

But because of their 
novelty and difficulty 
of implementation, 
discriminative models 
are not much used in 
music (yet).

! Example (after Bottou ‘91):

! Bias toward states with fewer outgoing
transitions.

! Per-state normalization does not allow the
required score(1, 2|ro) << score(1, 2|ri).

Label Bias Problem
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maximum entropy 
markov models

discriminative cousin 
of the HMM

turns the observation 
dependency around

excellent choice for 
segmentation

training is difficult
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conditional random 
fields

MEMM on a Markov random field instead 
of a Markov chain

can accept large and disparate sets of 
observed features

wildly successful for classification tasks

difficult to implement and train

forefront of research in sequence models



CONCLUSION

Because music is sequential, HMMs often 
meet our needs as music technologists.

Sometimes we need other approaches:

simpler or richer generative models

groups of HMMs

discriminative models for classification


