Gaussian Mixture Model Classifiers Applications to MIR

Bertrand SCHERRER

February 7, 2007

Bertrand SCHERRER GMM Classifiers in MIR

ヘロト 人間 ト ヘヨト ヘヨト

3

Outline

Key Concepts

- GMM : an "Unsupervised Classifier"
- Why "Gaussian Mixture" ?
- Practical example of GMMs applied to MIR
 - Context
 - GMM Training
 - Classification test

Other Applications

- Musical Instrument Identification in Polyphonic Music
- Extraction of melodic lines from audio recordings

Conclusion

Key Concepts

Practical example of GMMs applied to MIR Other Applications Conclusion GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

< 🗇 🕨

Outline

Key Concepts

- GMM : an "Unsupervised Classifier"
- Why "Gaussian Mixture" ?
- 2 Practical example of GMMs applied to MIR
 - Context
 - GMM Training
 - Classification test
- Other Applications
 - Musical Instrument Identification in Polyphonic Music
 - Extraction of melodic lines from audio recordings

Conclusion

GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

イロト イポト イヨト イヨト

GMM : an "Unsupervised Classifier"

Unsupervised Classifier

The training samples of the classifier are not labelled to show their category membership [Duda 73].

Advantages

- Less time consuming when applied to a large set of data.
- Ability to track (slow) time-evolving patterns.

GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

イロト イポト イヨト イヨト

GMM : an "Unsupervised Classifier"

Unsupervised Classifier

The training samples of the classifier are not labelled to show their category membership [Duda 73].

Advantages

- Less time consuming when applied to a large set of data.
- Ability to track (slow) time-evolving patterns.

GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

Why "Gaussian Mixture" ?

In GMM classifier, for a given class, the probability density function of the observation vector is modelled as :

$$p(\mathbf{x}|C_i) = \sum_{k=1}^{K} P(k|C_i) \cdot G_k(\mu_k, \Sigma_k)$$
(1)

ヘロト 人間 とくほとく ほとう

where :

- **x** is a d-component feature vector.
- μ_k 's are the d-component mean vectors of Gaussian G_k .
- Σ_k 's are the d-by-d covariance matrices of Gaussian G_k .
- P(k|C_i) is the a priori probability of Gaussian G_k for instrument class C_i.

GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

Why "Gaussian Mixture" ?

In GMM classifier, for a given class, the probability density function of the observation vector is modelled as :

$$p(\mathbf{x}|C_i) = \sum_{k=1}^{K} P(k|C_i) \cdot G_k(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(1)

ヘロト 人間 とくほとくほとう

where :

- **x** is a d-component feature vector.
- μ_k 's are the d-component mean vectors of Gaussian G_k .
- Σ_k 's are the d-by-d covariance matrices of Gaussian G_k .
- P(k|C_i) is the *a priori* probability of Gaussian G_k for instrument class C_i.

GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

Why "Gaussian Mixture" ?

In GMM classifier, for a given class, the probability density function of the observation vector is modelled as :

$$p(\mathbf{x}|C_i) = \sum_{k=1}^{K} P(k|C_i) \cdot G_k(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(1)

・ロト ・回ト ・ヨト ・ヨト

where :

- **x** is a d-component feature vector.
- μ_k 's are the d-component mean vectors of Gaussian G_k .
- Σ_k 's are the d-by-d covariance matrices of Gaussian G_k .
- P(k|C_i) is the *a priori* probability of Gaussian G_k for instrument class C_i.

Key Concepts

Practical example of GMMs applied to MIR Other Applications Conclusion

GMM : an "Unsupervised Classifier" Why "Gaussian Mixture" ?

ヘロト 人間 とくほとくほとう

æ –

Context GMM Training Classification test

Outline

Key Concepts

- GMM : an "Unsupervised Classifier"
- Why "Gaussian Mixture" ?

Practical example of GMMs applied to MIR

- Context
- GMM Training
- Classification test

3 Other Applications

- Musical Instrument Identification in Polyphonic Music
- Extraction of melodic lines from audio recordings

Conclusion

< 🗇 > < 🖻 >

Context GMM Training Classification test

• GMMs are used in many different fields.

 Look at one clear example of GMM classification applied to MIR: [Marques 99]

・ロト ・ 理 ト ・ ヨ ト ・

3

Context GMM Training Classification test

- GMMs are used in many different fields.
- Look at one clear example of GMM classification applied to MIR: [Marques 99]

ヘロト ヘアト ヘビト ヘビト

3

Context GMM Training Classification test

Context

Objectives

Instrument identification in monophonic music:

- 8 different "classes": bagpipe, clarinet, flute, harpsichord, organ, piano, trombone and violin .
- on very short recordings (0.2s).

What is to be classified ?

A set **X** of *m* **unlabelled** observations (cepstral, mel-cepstral and LPC coefficients) :

•
$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_m].$$

ヘロト 人間 ト ヘヨト ヘヨト

Context GMM Training Classification test

Context

Objectives

Instrument identification in monophonic music:

- 8 different "classes": bagpipe, clarinet, flute, harpsichord, organ, piano, trombone and violin .
- on very short recordings (0.2s).

What is to be classified ?

A set **X** of *m* **unlabelled** observations (cepstral, mel-cepstral and LPC coefficients) :

•
$$\mathbf{X} = [\mathbf{x_1}, \mathbf{x_2} \dots \mathbf{x_m}].$$

イロト イポト イヨト イヨト

æ

Context GMM Training Classification test

Context

Assuming that the observations are i.i.d., the **likelihood** that the entire set of observations **X** has been produced by a violin (C_0 for example) is :

$$p(\mathbf{X}|C_0) = \prod_{t=1}^{m} p(\mathbf{x}_t|C_0)$$
(2)

ヘロト 人間 ト ヘヨト ヘヨト

æ

and each $p(\mathbf{x}_t|C_0)$ is modelled as a mixture of *K* multivariate gaussians.

Context GMM Training Classification test

Objectives of the GMM training

At this stage, one tries to estimate, for all the classes of instruments, the parameters of the GMM:

•
$$\theta_{ik} = [P(k|C_i), \mu_{k,i}, \Sigma_{k,i}]$$
 for $k = 1...K$.

くロト (過) (目) (日)

ъ

Context GMM Training Classification test

How to estimate the GMM parameters : MLE ?

Ideal way would be to use the Maximum Likelihood Estimation (a.k.a. MLE).

- MLE theoretically consists in finding $\theta = [\theta_{i1}, \theta_{i2} \dots \theta_{iK}]$, maximizing $p(\mathbf{X}|C_i)$.
- In the case where all the parameters are unknown, MLE becomes **very** complex ... and unreliable
- \Rightarrow need for an **alternate method**.

ヘロン 人間 とくほ とくほ とう

Context GMM Training Classification test

How to estimate the GMM parameters : MLE ?

- Ideal way would be to use the Maximum Likelihood Estimation (a.k.a. MLE).
- MLE theoretically consists in finding $\theta = [\theta_{i1}, \theta_{i2} \dots \theta_{iK}]$, maximizing $p(\mathbf{X}|C_i)$.
- In the case where all the parameters are unknown, MLE becomes **very** complex ... and unreliable
- \Rightarrow need for an **alternate method**.

イロト 不得 とくほと くほとう

Context GMM Training Classification test

How to estimate the GMM parameters : MLE ?

- Ideal way would be to use the Maximum Likelihood Estimation (a.k.a. MLE).
- MLE theoretically consists in finding $\theta = [\theta_{i1}, \theta_{i2} \dots \theta_{iK}]$, maximizing $p(\mathbf{X}|C_i)$.
- In the case where all the parameters are unknown, MLE becomes very complex ... and unreliable

 \Rightarrow need for an **alternate method**.

イロト 不得 とくほと くほとう

Context GMM Training Classification test

How to estimate the GMM parameters : MLE ?

- Ideal way would be to use the Maximum Likelihood Estimation (a.k.a. MLE).
- MLE theoretically consists in finding $\theta = [\theta_{i1}, \theta_{i2} \dots \theta_{iK}]$, maximizing $p(\mathbf{X}|C_i)$.
- In the case where all the parameters are unknown, MLE becomes very complex ... and unreliable
- \Rightarrow need for an **alternate method**.

イロト 不得 とくほ とくほ とう

1

Context GMM Training Classification test

How to estimate the GMM parameters : EM

Expectation Maximisation algorithm [Dempster 77] is an iterative solution very often used for MLE.

Initial Steps

- Compute closed-form expressions of the parameters of the GMM corresponding to a local extremum of the likelihood p(X|θ(t)).
- 3 Make a first guess on the values of $\theta(t)$.

\Rightarrow Let's iterate !

イロト イポト イヨト イヨト

Context GMM Training Classification test

How to estimate the GMM parameters : EM

• Expectation Maximisation algorithm [Dempster 77] is an iterative solution very often used for MLE.

Initial Steps

- Compute closed-form expressions of the parameters of the GMM corresponding to a local extremum of the likelihood p(X|θ(t)).
- 2 Make a first guess on the values of $\theta(t)$.

\Rightarrow Let's iterate !

ヘロト ヘ戸ト ヘヨト ヘヨト

Context GMM Training Classification test

How to estimate the GMM parameters : EM

• Expectation Maximisation algorithm [Dempster 77] is an iterative solution very often used for MLE.

Initial Steps

- Compute closed-form expressions of the parameters of the GMM corresponding to a local extremum of the likelihood p(X|θ(t)).
- 2 Make a first guess on the values of $\theta(t)$.

\Rightarrow Let's iterate !

ヘロト ヘ戸ト ヘヨト ヘヨト

Context GMM Training Classification test

Classification Test

- A feature vector \mathbf{x}_t is said to belong to an instrument class *i* if it maximizes $p(C_i | \mathbf{x}_t) = p(\mathbf{x}_t | C_i) \cdot p(C_i)$.
- If classes can occur with the same probability, since we know θ for all classes, x_t belongs to the class for which p(x_t|C_i) is maximum.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Context GMM Training Classification test

In [Marques 99]:

- **Features :** mel cepstral feature vectors (16-element vectors).
- Order of the GMM: 2.
- \Rightarrow overall error rate of 37%.

ヘロト ヘアト ヘビト ヘビト

3

Musical Instrument Identification in Polyphonic Music Extraction of melodic lines from audio recordings

▲ @ ▶ ▲ ⊇ ▶

Outline

Key Concepts

- GMM : an "Unsupervised Classifier"
- Why "Gaussian Mixture" ?

Practical example of GMMs applied to MIR

- Context
- GMM Training
- Classification test

Other Applications

- Musical Instrument Identification in Polyphonic Music
- Extraction of melodic lines from audio recordings

Conclusion

Musical Instrument Identification in Polyphonic Music

イロト イポト イヨト イヨト

Conclusion

Musical Instrument Identification in Polyphonic Music

- In [Eggink 03], try to recognize 2 instruments playing at the same time.
- Approach based on estimation of multiple fundamental frequencies to sort features fed into the GMM.

Musical Instrument Identification in Polyphonic Music Extraction of melodic lines from audio recordings

・ロト ・ 理 ト ・ ヨ ト ・

ъ

・ロト ・回ト ・ヨト ・ヨト

- Features : cepstral coefficients clearly belonging to different tones.
- Order of the GMM: 120.
- Training Material:
 - monophonic recordings of tones or melodies produced by 5 instruments (flute, oboe, clarinet, violin, cello).
 - 1min recordings from different sources.
 - silence was removed.
- **Training Method:** EM algo initialized by k-nearest neighbour.
- \Rightarrow Monophonic OK, short duet OK

イロト イポト イヨト イヨト

- Features : cepstral coefficients clearly belonging to different tones.
- Order of the GMM: 120.
- Training Material:
 - monophonic recordings of tones or melodies produced by 5 instruments (flute, oboe, clarinet, violin, cello).
 - 1min recordings from different sources.
 - silence was removed.
- **Training Method:** EM algo initialized by k-nearest neighbour.
- \Rightarrow Monophonic OK, short duet OK

Extraction of melodic lines from audio recordings

イロト イポト イヨト イヨト

Conclusion

Extracting Melodic Lines from Audio Recordings

In [Marolt 04]:

- Use SMS \Rightarrow identify partials.
- Include masking effect.
- Predominant pitch estimation \Rightarrow melodic fragments.
- Use of GMM \Rightarrow group melodic fragments together to form melodic lines

Musical Instrument Identification in Polyphonic Music Extraction of melodic lines from audio recordings

イロト イポト イヨト イヨト

- Features : 5 including loudness, pitch stability ...
- Order of the GMM:
- Training Material:
 - entire song (Respect by Ottis Redding, as sung by Aretha Franklin) that had been annotated by hand.
- Training Method: EM with equivalence constraints.

 \Rightarrow Identification of the main melody works.

Musical Instrument Identification in Polyphonic Music Extraction of melodic lines from audio recordings

ヘロト ヘワト ヘビト ヘビト

- Features : 5 including loudness, pitch stability ...
- Order of the GMM:
- Training Material:
 - entire song (Respect by Ottis Redding, as sung by Aretha Franklin) that had been annotated by hand.
- Training Method: EM with equivalence constraints.
- \Rightarrow Identification of the main melody works.

Outline

Key Concepts

- GMM : an "Unsupervised Classifier"
- Why "Gaussian Mixture" ?

Practical example of GMMs applied to MIR

- Context
- GMM Training
- Classification test

Other Applications

- Musical Instrument Identification in Polyphonic Music
- Extraction of melodic lines from audio recordings

4 Conclusion

▲ □ ▶ ▲ 三 ▶

ъ

- GMM widely used in MIR, with many variations : EM algo or not, initialization of the training ...
- Classifiers = complex and fascinating subject.

ヘロト ヘアト ヘビト ヘビト

3

Questions ?

Bertrand SCHERRER GMM Classifiers in MIR