#### An Overview of Ogg Vorbis

#### Presented by: Shi Yong MUMT 611

## Overview

- Ogg
  - A multimedia container format, contains audio and video data streams in a single file, similar to mov and avi.
  - Functions: framing, sync, error correction, positioning
  - Stream oriented, suitable for internet streaming.
  - Used with various Codecs:
    - Vorbis: Audio codec
    - Tremor: Fixed-point decoder
    - Theora: Video codec
    - FLAC: Free Lossless Audio Codec
    - Speex: Speech codec
    - OggWrit: Text phrase codec (subtitles)
    - Ogg Metadata: Arbitrary metadata format

## Overview

- Vorbis
  - General purpose lossy audio compression algorithm/format, similar to MP3, WMA, etc..
  - Designed to be contained in a transport mechanism that provides framing, sync and error correction functions, such as Ogg (for file transport) or RTP (for webcast)
  - When used with Ogg, it is called Ogg Vorbis.
  - A great number of player now support Ogg Vorbis
  - Encode CD/DAT quality at below 48kbps
  - Wide range of sample rates: from 8kHz to 192kHz
  - Strong channel representations: monaural, polyphonic, stereo, quadraphonic, 5.1, up to 255 discrete channels

## Overview

- Both Ogg and Vorbis are developed by the Xiph.Org Foundation, a non-profit corporation (<u>http://www.xiph.org/</u>)
- LGPL licensing:
  - open standard
  - open source
  - patent free
  - completely free for commercial or noncommercial use
- Software can be downloaded from http://www.vorbis.com/setup/

#### Encode

- Overview
  - Accepting input audio, dividing it into frames, compressing frames into raw packets
  - As a generic perceptual audio encoder, psycho acoustic model is used to remove redundant audio information
  - Function blocks is similar to most other lossy audio encoders, such as Time/Frequency Analysis, Psychoacoustic Analysis, Quantization and Encoding, Bit Allocation, Entropy Coding, etc.
- Codebook
  - Codebooks are defined and transmitted as a part of the audio stream
  - They must be sent before the audio packets, which typically cause a delay of 1s at 128kbps data rate

#### Encode

- Time-Frequency transform
  - MDCT (Modified Discrete Cosine Transform) combined with overlapping and windowing is used for this purpose.
  - Linear orthogonal lapped transform, based on the idea of time domain aliasing cancellation (TDAC)

$$X(m) = \sum_{k=0}^{n-1} f(k)x(k)\cos(\frac{\pi}{2n}(2k+1+\frac{n}{2})(2m+1)), \text{ for } m = 0..\frac{n}{2} - 1$$
$$y(p) = f(p)\frac{4}{n}\sum_{m=0}^{\frac{n}{2}-1} X(m)\cos(\frac{\pi}{2n}(2p+1+\frac{n}{2})(2m+1)), \text{ for } p = 0..n - 1$$

## Encode

#### • Windows

- Vorbis uses two windows: short and long.
- The length of windows must be power of 2 (between 64 and 8192)
- Short window can achieve better time resolution (fit for plosive sounds), while long window can achieve better spectral resolution
- typical long, short and transition windows (cited from Erik's Master thesis)



#### Decode

- Vorbis format is defined by its decode specification
- Vorbis I specification can be found online: http://www.xiph.org/vorbis/doc/Vorbis\_I\_spec.pdf
- The design for embedded system can be "deviated" a little bit.
- A number of "component abstractions" perform specific functions in the decode pipeline
  - Blocksizes, modes, mappings, floors, codebooks, residues

#### Decode

- Decode
  - Accepting packets in sequence, decoding them, reconstructing spectrum data, synthesizing and reassembling audio frames
  - Flow chart:
    - Audio packet
    - $\Rightarrow$  Header decode
    - $\Rightarrow$  Floor reconstruction
    - $\Rightarrow$  Residue unpacking
    - $\Rightarrow$  Channel coupling
    - $\Rightarrow$  IMDCT
    - $\Rightarrow$  Windowing
    - PCM samples

# Configuration

- Global configuration
- Mode
  - specify the encode method to a frame
- Mapping
  - Channel coupling description
  - A list of submaps
- Floor
  - Low resolution representation of the spectrum of a frame
  - Floor 0: packed LSP (Line Spectral Pair)
  - Floor 1: piecewise linear interpolated representation
  - Make use of entropy coding to save space
- Residue
  - Fine structure of the spectrum of a frame
  - Can be one of three packing/coding algorithms (number 0 to 2)
  - Also make use of entropy coding

## Setup

- Decode Setup
  - Setup by using three header packets
    - Identification Header
    - Comment Header
      - Various field names
    - Setup Header
      - Configuration information
      - VQ and Huffman codebooks
  - Then followed by all audio packets (decoding and synthesis)

## **Decoding and Synthesis**

- Decode procedure in detail (the same for all audio packets)
  - 1. Packet type flag
  - 2. Mode number
  - 3. Window shape
  - 4. Floor vectors
  - 5. Residue vectors
  - 6. Inverse channel coupling
  - 7. Generate floor curve
  - 8. Combine with residue (fine structure)
  - 9. Inverse transform of spectrum vector
  - 10. Overlap/add
  - 11. Store right hand-data of current frame for future lapping
  - 12. Get the result (the PCM audio data)

#### Floor Decode

- Floor type 0:
  - Spectral envelope curve is encoded as the frequency response of the LSP (Line Spectral Pair ) filter
  - Head decode
    - Configuration information
      - Six integer fields
  - Packet decode
    - Curve amplitude and LSP coefficients
    - Generate floor curve

#### Floor Decode

- Floor type 1
  - Spectral envelope curve is encoded as a piecewise straight-line.
  - Head decode
  - Packet decode
    - Amplitude value
    - Spectral curve synthesis

#### **Curve Synthesis Example**

- X = [0, 128, 64, 32, 96, 16, 48, 80, 112]
- Y = [110, 20, -5, -45, 0, -25, -10, 30, -10]



This example is cited from Vorbis I Specification by Xiph.org Foundation.