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ABSTRACT

In the context of efficient synthesis of wind instrument sound, we
introduce a technique for joint modeling of input impedance and
sound pressure radiation as digital filters in parallel form, with
the filter coefficients derived from experimental data. In a series
of laboratory measurements taken on an alto saxophone, the in-
put impedance and sound pressure radiation responses were ob-
tained for each fingering. In a first analysis step, we iteratively
minimize the error between the frequency response of an input
impedance measurement and that of a digital impedance model
constructed from a parallel filter structure akin to the discretiza-
tion of a modal expansion. With the modal coefficients in hand,
we propose a digital model for sound pressure radiation which
relies on the same parallel structure, thus suitable for coefficient
estimation via frequency-domain least-squares. For modeling the
transition between fingering positions, we propose a simple model
based on linear interpolation of input impedance and sound pres-
sure radiation models. For efficient sound synthesis, the common
impedance-radiation model is used to construct a joint reflectance-
radiation digital filter realized as a digital waveguide termination
that is interfaced to a reed model based on nonlinear scattering.

1. INTRODUCTION

For robust and efficient sound synthesis, many digital waveguide
models [1] of wind instruments approximate their air columns as
being cylindrical. In a typical digital waveguide model, the air
column of an ideal instrument constructed from a cylindrical pipe
and a bell can be represented by a pair of delay lines simulating
pressure wave propagation inside the pipe, and a termination that
includes two digital filters: one that lumps frequency-dependent
propagation losses and dispersion, and another one emulating the
frequency-dependent bell reflectance. In these efficient schemes,
the reed-valve end termination of the pipe is often modeled via a
nonlinear scattering element that is interfaced to the air column
model through decomposed pressure traveling waves P+ and P�,
respectively going into and reflected back from the pipe input in-
terface. Approximations with conical elements are possible [2] but
often result in inharmonic resonance structures that are difficult to
tune for sound synthesis [3].

To account for realistic, non-ideal instrument air column shapes,
one could treat the entire air column as a resonant load, observe
its linear behavior from frequency-domain experimental data, and
propose a modal expansion formulation that characterizes the air
column as a series association of second-order ordinary differential
equations nonlinearly coupled to a partial differential equation mod-
eling the behavior of the valve [4]. Using a state-space formulation,

the valve-resonator coupling used in such framework relies on im-
plicit integration schemes that may cause numerical dispersion and
require high computational cost. For sound synthesis purposes, our
digital waveguide approach is based on coupling the valve (a nonlin-
ear scattering element) to the resonator via pressure traveling waves.
Frequency-domain measurements are used to design an air column
load input impedance filter model Z(z) (i.e., an input impedance
filter) for simulation so that the pressure wave P� reflected off the
air column entrance can be obtained from the incident wave P+ via

P�(z) = R(z)P+(z), (1)

where R(z) is a digital reflectance model derived from Z(z). The
input impedance frequency response

Z(!) =
P (!)
U(!)

, (2)

where P (!) and U(!) respectively correspond to the frequency
response of the sound pressure and flow, both at the entrance of
the air column. In a previous work [5], a frequency-domain mea-
surement of an air column input impedance is used to construct a
discrete-time reflection function r[n] that is suitable for a traveling-
wave numerical scheme based on convolution. In that paper, the
authors propose a workaround method to evade time-aliasing and
other numerical problems that naturally arise from estimating r[n]
via inverse Fourier transform of a frequency-domain measurement
signal.

This work avoids the aforementioned problems by proposing
a methodology for translating an input impedance measurement
directly into a recursive digital filter Z(z) of moderately low order,
with the added advantage that efficiency is improved with respect to
discrete convolution. Moreover, we are interested in using external
sound pressure measurements to design a sound pressure radiation
filter E(z) able to model how the flow at the entrance of the air col-
umn is related to the sound pressure radiated to an external position
in the vicinity of the instrument. This paper is an extension of a re-
cent preliminary work [6] were we used the saxophone impedance
measurement of a sole fingering position to propose a methodology
for designing an impedance parallel filter, and its realization as a
reflectance. Here, after taking a full set of measurements including
input impedance and sound pressure radiation for all fingering po-
sitions, we propose a radiation model in parallel form and revise
the reflectance filter formulation to include radiation, leading to
a joint reflectance-radiation digital filter formulation with similar
properties to those of a recently introduced admittance-radiation
model for string instruments [7]. Moreover, we propose a simple
model for fingering transitions that is based on linear interpolation
of impedance and radiation digital filters. For completeness, this
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paper revisits the methodology for designing the impedance filter
already introduced in [6].

In a hemi-anechoic space, alto saxophone input impedances
were measured using a six-microphone probe calibrated with three
non-resonant loads via a least-mean square signal processing tech-
nique as described in [8]. Simultaneously, an external measurement
microphone was placed near the bell of the instrument to record
the radiated sound pressure signal. A sound pressure radiation
frequency response E(!) was defined in the frequency-domain as

E(!) =
T (!)
U(!)

, (3)

where frequency-domain functions T (!) and U(!) respectively
correspond to the radiated sound pressure signal at a point in the
external radiation domain (i.e., the signal recorded with the mi-
crophone) and the signal of the flow at the entrance of the air
column. With this in mind, we aim at constructing a radiation
modeling filter E(z) such that the (external) radiated sound pres-
sure T (z) can be obtained from the simulated scalar flow U(z) as
T (z) = E(z)U(z).

In Figure 1 we display the magnitude response of some of the
measurements, in particular for fingerings E-5 (natural E5), Bb4
(B4-flat), and C#6 (C6-sharp). In the top plots appear the impedance
transfer functions, normalized to the characteristic wave impedance
of the air column input. As the resonance amplitudes decrease with
frequency, the normalized impedance tends to a value of 0 dB, i.e.,
total transmission. In the bottom plots appear the corresponding
radiation transfer functions, where it is possible to observe a shared
modal structure with the impedance. This observation motivates the
pursuit of a joint formulation for impedance and radiation modeling,
and that constitutes the main focus of this work.

The outline is as follows. In Sections 2 and 3 we re-introduce
our input impedance model and its optimization-based design tech-
nique as it was first described in [6], with slight nomenclature
changes that will help in following the rest of the paper. Then, we
follow in Section 4 by introducing the sound pressure radiation
model. Section 5 provides details on how to jointly realize the input
impedance and external radiation models as a common parallel
filter in the form of a digital waveguide reflectance. In 6 we present
a simple model for emulating the transition between two fingering
positions. In Section 7 we briefly describe how to couple the filter
to a valve model for efficiently obtaining sound. We conclude in
Section 8 by pointing to future experiments and extensions.

2. INPUT IMPEDANCE MODELING

From observation of the resonance structure exhibited by the input
impedance and sound radiation measurements, we propose a digital
filter formulation akin to the discretization of a modal expansion.
Thus, instead of relying on a digital waveguide representation of
the air column, we use a different modal structure for each of the
F fingering positions analyzed. For each f -th fingering case, we
construct an input impedance parallel model Z|f (z) by creating a
basis of M |f parallel sections each corresponding to a mode, and
use the basis over which to project impedance measurements. In
the f -th input impedance model, each m-th modal basis parallel
section H|f,m(z) is defined as

H|f,m(z) =
1� z�1

(1� p|f,mz�1)(1� p̄|f,mz�1)
, (4)

which corresponds to a one-zero, two-pole resonator with the zero
locked at DC. The resonator is defined by a pair of complex con-
jugate poles p|f,m and p̄|f,m, which we relate to the correspond-
ing modal frequency ⌫|f,m and bandwidth �|f,m (both expressed
in Hz) by 2⇡⌫|f,mTs = \p|f,m and �|f,m = � log(|p|f,m|)/⇡,
with Ts being the sampling period. The impedance model Z|f,m(z)
is then formulated in parallel as

Z|f (z) =
M|fX

m=1

(b0|f,m + b1|f,mz�1)H|f,m(z), (5)

where b0|f,m and b1|f,m are real-valued coefficients that allow con-
trol of both the amplitude and the phase of the the m-th resonator.
The main reason behind the choice for our parallel resonator struc-
ture is that, while enabling the control of the relative phase between
resonators, it imposes a gain of zero at DC irrespective of the co-
efficients b0|f,m and b1|f,m. Next we introduce an optimization
technique to find the pole positions and numerator coefficients of
model (5) given an impedance measurement. For simplicity, in
Section 3 we omit the use of the sub-index f for indicating the
fingering case, as the methodology presented therein applies to all
F fingering cases.

3. INPUT IMPEDANCE FILTER DESIGN

Departing from a target input impedance measurement Ẑ, the prob-
lem of designing the coefficients of the impedance filter model of
M digital resonators which approximates the measurement can
be stated as the minimization of an error measurement "(Z, Ẑ)
between the measurement and the model, with parameters being a
vector

p = {p|1, · · · , p|m, · · · , p|M} (6)

of complex poles each corresponding to the m-th resonator of the
model, and vectors

b0 = {b0|1, · · · , b0|m, · · · , b0|M} (7)

b1 = {b1|1, · · · , b1|m, · · · , b1|M} (8)

of respective numerator coefficients. We solve this problem via
sequential quadratic programming [9]. At each iteration only pole
positions are exposed as the variables to optimize: once they are
decided, zeros (i.e., numerator coefficients) are constrained to min-
imize an auxiliary quadratic cost function, resulting in a simple
closed-form solution. The positions of the poles are optimized iter-
atively: at each step, an error function is successively evaluated by
projecting the target frequency response over a basis of frequency
responses defined by the pole positions under test. We add a set of
linear constraints to guarantee feasibility and to ease convergence.
This routine is extended from the filter design technique of [10] as
used in [7] to model string instrument input admittances.

3.1. Impedance measurement pre-processing

As it can be observed in the grey curves of Figure 2, the high-
frequency region of an impedance measurement typically presents
artifacts caused by noise and limitations of the measurement method.
It is important to remove those artifacts so that the target normalized
impedance effectively tends to 1 as frequency increases. This is
needed to help the fitting process in providing an impedance model
design for which the normalized impedance also tends to 1 in the
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Figure 1: Magnitude response of impedance (top) and radiation (bottom) measurements for different fingering positions in an alto saxophone.

high frequency region; otherwise, a derived air column reflectance
filter would deliver reflected pressure waves with significant energy
around Nyquist, and therefore cause undesired behaviors in the
reed-valve nonlinear scattering model. To this end, we perform
cross-fading between the normalized impedance measurement and
a constant value of one, as illustrated in Figure 2.

3.2. Optimization problem setup

We initialize the model parameters via finding a set of initial pole
positions by attending to the magnitude response of the impedance
measurement. First, resonance peak selection in the low-frequency
region is carried out through an automatic procedure that iteratively
rates and sorts spectral peaks by attending to a salience descriptor.
For estimating modal frequencies, three magnitude samples (re-
spectively corresponding to the maximum and its adjacent samples)
are used to perform parabolic interpolation around selected peaks.
For estimating bandwidths, the half-power rule [1] is applied using
a linear approximation. For the high-frequency region we spread an
additional set of poles, uniformly distributed on a logarithmic fre-
quency axis. This leads to a total M modes, each parameterized by
a complex pole pair in terms of its angle parameter w|m = |\p|m|
and its radius parameter s|m = � log(1 � |p|m|). This leads to
two parameter sets: a set w = {w|1 · · ·w|m · · ·w|M} of angle
parameter values, and a set s = {s|1 · · · s|m · · · s|M} of radius pa-
rameter values. With the new parametrization, we state the problem
as

minimize
w,s

"(Z, Ẑ)

subject to C,
(9)

where C is a set of linear constraints, and numerator coefficients
have been left out as they are not exposed as variables in the op-
timization. A key step before constraint definition is to sort the
pole parameter sets so that linear constraints can be defined in a
straightforward manner to ensure that the arrangement of poles
in the unit disk is preserved during optimization, therefore reduc-
ing the number of crossings over local minima. Elements in sets
w and s are jointly sorted as pairs (each pair corresponding to a
complex-conjugate pole) by ascending angle parameter w|m.

From ordered sets w and s, linear constraints C are defined as
follows. First, feasibility is ensured by 0  s|m and 0  w|m  ⇡.
Second, to aid convergence we constrain the pole sequence order
in set w to be respected. This is expressed by w|m�1 < w|m <
w|m+1. Moreover, assuming that initialization provides an already
trusted first solution, we can bound the search to a region around
the initial pole positions. This can be expressed via the additional
inequalities w|�m < w|m < w|+m and s|�m < s|m < s|+m, where
’�’ and ’+’ superscripts are used to respectively indicate lower and
upper bounds.

3.3. Error estimation

At each i-th step of the optimization, the error "(Z, Ẑ) is estimated
as follows. Given K samples of the target impedance frequency
response Ẑ(!) and the set p of M complex poles defining the
modes at the i-th step, numerator coefficient vectors b0 and b1 can
be obtained via least-squares by

minimize
b

kHb� ẑk2, (10)

DAFX-3

DAFx-159



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

102 103 104
-30

-20

-10

0

10

20

|Z
/Z

c|
(d
B
)

5000 5500 6000 6500 7000 7500 8000 8500 9000
Frequency (Hz)

-6

-4

-2

0

2

4

6

|Z
/Z

c|
(d
B
)

Figure 2: Magnitude response of an alto saxophone impedance
measurement (Bb3 fingering), normalized by the characteristic
impedance of the input of the air column. Thin and thick curves
are respectively used for raw and pre-processed data. Top: full
band, with cross-fading region delimited by vertical lines. Bottom:
cross-fading region.

where b = [bT
0 b

T
1 ]T is a real-valued vector; ẑ contains K

frequency-domain samples of the impedance measurement Z(!) at
frequencies 0  !k < ⇡, i.e., ẑk = Ẑ(!k); and H is a K ⇥ 2M
matrix of basis vectors constructed as

H = [h0|1 · · · h0|m · · · h0|M h1|1 · · · h1|m · · · h1|M ] (11)

with column vectors h0|m and h1|m containing the sampled fre-
quency responses of H|m(z) and z�1H|m(z) respectively. With
numerator coefficients, we evaluate the frequency response of the
model and compute the error measure as the l2-norm of the differ-
ence vector, i.e., "(Z, Ẑ) = kHb� ẑk2.

3.4. Final solution

Once poles have been optimized, numerator coefficients of model
(5) are found by solving again problem (10). In Figure 3 we display
the magnitude and phase responses (top and middle plots) of three
example impedance models, respectively obtained from normalized
impedance measurements after pre-processing. Although in prin-
ciple the model (5) is not guaranteed to be positive-real, fitting to
measurements of positive-real functions generally provides positive-
real designs, as it can be observed from the phase responses. This
is important for the stability of the sound synthesis model, as the
impedance is going to be realized as a reflectance filter.

4. SOUND PRESSURE RADIATION FILTER

Given the shared modal structure observed in the input impedance
and radiation measurements of each fingering, we opt for a radiation
model that shares the parallel resonator structure of the impedance
model Z|f (z). We define the sound pressure radiation filter E|f (z)

of the f -th fingering position as

E|f (z) =
M|fX

m=1

(d0|f,m + d1|f,mz�1)H|f,m(z), (12)

where the M |f modal basis parallel sections H|f,m(z) are shared
with the impedance model (see (4) and (5)), and d0|f,m and d1|f,m
are real-valued coefficients.

Once the pole positions that define all H|f,m(z) resonators
have been found through optimization of the input impedance model
Z|f (z) (see Section 3), numerator coefficients of E|f (z) are esti-
mated by least-squares. First, in a pre-processing step, all radiation
transfer functions are converted to minimum-phase using the real
cepstrum [1]. Then, in an analogous manner as for the numerator
coefficients of the input impedance model, d0|f,m and d1|f,m are
arranged into vectors d0|f and d1|f as in (7), (8) and found by
solving

minimize
d|f

kH|fd|f � ê|fk2, (13)

where d|f = [d0|Tf d1|Tf ]T is a real-valued column vector; ê|f
contains K frequency-domain samples of the radiation measure-
ment E|f (!) at frequencies 0  !k < ⇡, i.e., êk|f = Ê|f (!k);
and H|f is the K ⇥ 2M matrix of basis vectors in (11) that was
used for solving the impedance projection problem (13) correspond-
ing to the f -th fingering case. In Figure 3 we display the magnitude
responses (bottom plots) of three example radiation models, along
with their corresponding impedance models, overlayed on the mea-
surements. A similar quality of approximation was also observed
in all other fingering positions.

5. JOINT REALIZATION AS A WAVEGUIDE
TERMINATION

From the input impedance model (5), we construct a reflectance
that keeps the state of the air column as a resonating element,
and allows us to obtain reflected waves from its interface. The
formulation that we propose involves the computation of the flow
as an intermediate step, therefore allowing us to obtain the external
radiated sound pressure as T (z) = E(z)U(z) via model (12).
Since both the impedance model and the sound pressure radiation
model are constructed so that they share the exact same set of
parallel resonators, obtaining the radiated sound comes at a very
low additional cost. Thus, via a single set of M |f resonators
corresponding to the f -th fingering position, we are able to model
pressure wave reflectance, radiated sound pressure, and (implicitly)
energy loss from input transmittance to non-radiating modes and
dissipation.

5.1. Reflectance realization

Following the digital waveguide formulation for loaded parallel
junctions [1], we can compute the scalar flow U(z) at the input of
the air column solely from the input pressure wave P+(z) as

U(z) =
2YcP

+(z)
1 + YcZ|f (z)

(14)

where Yc is the characteristic admittance of the input of the air
column, and Z|f (z) is the input impedance model corresponding
to the f -th fingering position. From the flow U(z), it should be
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Figure 3: Example impedance and radiaton models. All three fingerings were modeled with M = 32 parallel sections each. From top to
bottom: impedance magnitude response, impedance phase response, and radiation magnitude response. In each plot, dashed lines and thick
lines are used to depict the measurement and the model respectively.

straightforward to compute the scalar pressure P (z) at the input of
the air column via

P (z) = Z|f (z)U(z). (15)

Finally, from the air column pressure P (z) it is possible to obtain
the (reflected) outgoing pressure wave P�(z) by means of

P�(z) = P (z)� P+(z). (16)

Because the formulation of the model (5) presents a parallel
structure that we want to maintain, inverting Z|f (z) as it appears in
equation (14) is impractical. To overcome this problem in the real-
ization of the reflectance, we reformulate the impedance in a similar
manner as we did for the input admittance of string instruments [7]
(inspired by [11]). First, we rewrite each resonator H|f,m(z) of
equation (5) as

H|f,m(z) = 1 + z�1Hp|f,m(z), (17)

with

Hp|f,m(z) =
c0|f,m + c1|f,mz�1

1 + a1|f,mz�1 + a2|f,mz�2
, (18)

c0|f,m = �1 � a1|f,m, and c1|f,m = �a2|f,m. Note that de-
nominator coefficients are related to pole radius and angle by
a1|f,m = �2|p|f,m| cos(\p|f,m) and a2|f,m = |p|f,m|2. We
now can rewrite the impedance model as

Z|f (z) = B0|f +z�1B1|f +z�1H0|f (z)+z�2H1|f (z), (19)

with

B0|f =

M|fX

m=1

b0|f,m, B1|f =

M|fX

m=1

b1|f,m, (20)

H0|f (z) =
M|fX

m=1

b0|f,mHp|f,m(z), (21)

H1|f (z) =
M|fX

m=1

b1|f,mHp|f,m(z). (22)

With this new formulation, we rewrite (14) and (15) as

U(z) =
2YcP

+(z)� z�1YcV |f (z)U(z)
1 + YcB0|f

(23)

and
P (z) = B0|fU(z) + z�1V |f (z)U(z), (24)

where

V |f (z) = B1|f +H0|f (z) + z�1H1|f (z). (25)

It is important to notice that now the parallel structure appears in the
numerator terms H0|f (z) and H1|f (z) as part of V |f (z), making
possible its implementation. Moreover, H0|f (z) and H1|f (z) can
be jointly implemented as a sole bank of parallel resonators. Finally,
it is worth mentioning that the term z�1V |f (z)U(z) appears in
both equations (23) and (24) but does not need to be implemented
twice–once it has been computed to obtain U(z) via equation (23),
it can be reused to compute P (z) via equation (24).
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5.2. External radiation realization

For the realization of the external radiation model, we take advan-
tage of the fact that the flow U(z) is available as an intermediate
step in the computation of the reflected pressure vave P�(z). Us-
ing the decomposition described in (21) for each of the common
resonators H|f,m(z), we rewrite the f -th radiation model E|f (z)
in (12) as

E|f (z) = D0|f + z�1D1|f + z�1L0|f (z)+ z�2L1|f (z), (26)

with

D0|f =

M|fX

m=1

e0|f,m, D1|f =

M|fX

m=1

e1|f,m, (27)

L0|f (z) =
M|fX

m=1

e0|f,mHp|f,m(z), (28)

L1|f (z) =
M|fX

m=1

e1|f,mHp|f,m(z). (29)

With this, the radiated sound pressure signal T (z) is computed as

T (z) =
�
D0|f + z�1D1|f + z�1L0|f (z) + z�2L1|f (z)

�
U(z).

(30)
Please note that all four terms H0|f (z), H1|f (z), L0|f (z), L1|f (z)
share inputs and parallel structure: each resonator Hp|f,m(z) is
present in all four expressions (21), (22), (28), (29) and driven by
the flow signal U(z). Therfore, only one bank of M |f resonators
needs to be implemented for the joint realization of the f -th finger-
ing reflectance and external radiation models.

6. MODEL MIXING FOR FINGERING TRANSITIONS

So far, we have treated the impedance and radiation models of
each f -th fingering as two parallel structures sharing a bank of
resonators. Then we have derived a joint reflectance-radiation filter
that simultaneously implements both models and can be interfaced
to a reed model as a loaded waveguide termination. Such f -th ter-
mination filter replicates the behavior of the air column as observed
during the f -th measurement. This means that for each fingering
position we have a different termination filter, and in the context of
sound synthesis this creates a fundamental problem: how to swap
filters when a fingering transition happens? To avoid such an abrupt,
non-physical operation we propose to reformulate our air column
model as follows.

We define a sole impedance model Z(z) that accounts for all
F fingerings simultaneously, via a linear combination of all F
single-fingering impedance models. This is expressed as

Z(z) =
FX

f=1

w|fZ|f (z), (31)

where w|f are mixing weights. Assuming that all F models
Z|f (z) are positive-real, we guarantee that the multi-fingering input
impedance model Z(z) will be positive-real if all mixing weights
are non-negative. With this, Z(z) will lead to a passive termination
irrespective of the weights applied in the linear combination. Thus,
since fingering transitions are expected to happen at a sufficiently
slow speed so that during each simulation step the whole system
can be assumed to be quasi-static, a simple time-varying linear

mixing of any two impedance models can be used for a smooth,
stable transition between fingerings.

For the external radiation model we apply the same idea, lead-
ing to a sole radiation model

E(z) =
FX

f=1

w|fE|f (z), (32)

where w|f match those used for impedance mixing. Now it is
straightforward to rewrite the expressions for the joint reflectance-
radiation realization. First, the impedance model is written as

Z(z) = B0 + z�1B1 + z�1H0(z) + z�2H1(z), (33)

where each of the terms is simply a linear combination of each of
single-fingering terms in (20) through (22), leading to

B0 =
FX

f=1

w|fB0|f , B1 =
FX

f=1

w|fB1|f , (34)

H0(z) =
FX

f=1

w|fH0|f (z), (35)

H1(z) =
FX

f=1

w|fH1|f (z). (36)

With this, we also rewrite (23) and (24) as

U(z) =
2YcP

+(z)� z�1YcV (z)U(z)
1 + YcB0

(37)

and
P (z) = B0U(z) + z�1V (z)U(z), (38)

where
V (z) = B1 +H0(z) + z�1H1(z). (39)

An analogous transformation is applied to the radiation part of the
model, leading to

E(z) = D0 + z�1D1 + z�1L0(z) + z�2L1(z), (40)

where

D0 =
FX

f=1

w|fD0|f , D1 =
FX

f=1

w|fD1|f , (41)

L0(z) =
FX

f=1

w|fL0|f (z), (42)

L1(z) =
FX

f=1

w|fL1|f (z), (43)

and the radiated sound pressure is again computed via

T (z) =
�
D0 + z�1D1 + z�1L0(z) + z�2L1(z)

�
U(z). (44)

In Figure 4 we display the input impedance magnitude, input
impedance phase, and external radiation magnitude response of
the model during a transition from E-5 to Bb4. It is worth noting
that, although the complete model will in principle be constructed
from all F resonators banks, its run-time operation logic can be
implemented as follows: when no transition is happening, one bank
of resonators is active; during a transition, two resonator banks are
active.
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Figure 4: Impedance and radiation model responses during a fingering transition, from E-5 to Bb4 positions. A linear mixing of 5 steps is
performed from the corresponding impedance and radiation models, with M = 32 parallel sections each. Thick lines are used to depict the
original E-5 (top) and Bb4 (bottom) models, and thin lines are used for the intermediate models. For clarity, impedance magnitude responses,
impedance phase responses, and radiation magnitude responses were respectively offset by -30 dB, ⇡ radians, and -20 dB per step.

7. DIGITAL WAVEGUIDE SOUND SYNTHESIS

We construct an efficient sound synthesis scheme by interfacing
our joint reflectance-radiation model and a modified version of the
digital waveguide reed scattering model used in [12] as follows.
At each iteration, two main computations are interleaved: the reed
scattering update and the air column reflectance update. During the
reed scattering update, the differential pressure driving both the reed
motion and the reed channel flow relation (see [12]) is first com-
puted as the difference between the mouth pressure and the value of
the scalar air column pressure obtained in the previous reflectance
update (see Section 5.1). Then, the pressure wave obtained from
the reed scattering is used to feed the next reflectance update. For
an average of 32 resonators per fingering, a sampling frequency of
48 kHz, and fingering transitions sparsely happening for about 10%
of the simulated time, this model runs at a speed above 30 times
faster than real-time in one core of a laptop computer.

In Figure 5 we display the control signals (mouth pressure,
fingering weights) and radiated sound of a synthesis example in-
volving two fingering transitions: Bb4 to E-5 and E-5 to A-4,
respectively happening at around 1.4 and 2.0 seconds. The first
of these transitions involves nominal regimes in both fingerings,
while for the second case the high mouth pressure drives the system
into its higher octave regime after the transition. With respect to
the transition happening at around 0.6 seconds, it does not involve
any fingering change but is caused by the system falling from its
higher-octave regime to its nominal regime. In Figure 6 we display
the reed channel flow (see [12]), the air column input pressure, and
the radiated sound during the Bb4 to E-5 transition of the example

in Figure 5. The synthetic radiated sound corresponding to this
example can be heard online1.

8. OUTLOOK

Albeit still exploratory and in need of a thorough calibration via
automated playability analysis, our results open a promising route
for efficient, yet realistic sound synthesis of wind instrument sound
with potential applications both in rendering music and in analyzing
the timbre and playability of real air column prototypes. Besides
the application of this method to modeling other wind instrument
air columns, a clear next stage of development involves the use of
more sophisticated reed representations, and also the exploration
of lip-driven excitation models. Perhaps through subjective tests, it
is still necessary to investigate the effects of using more (or less)
resonators per fingering, and also different fingering weight profiles.
Perhaps through measurements, we could elucidate how well the
cross-fading of models during fingering transitions simulates the
actual case. Another of the extensions that we are considering
involves coupling this model to a vocal tract model also realized as
a reflectance that is interfaced to the valve model.
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