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Abstract 
 
The lattice Boltzmann method (LBM) is a valuable numerical tool in 
musical acoustics, particularly when modeling wind instruments for which 
the interaction between the flow and the acoustic field is important. This 
paper describes an approach for addressing two limitations of LBM, 
namely computational cost and the inability to directly impose acoustical 
boundary conditions at open boundaries. The technique consists in 
simplifying the system by representing the parts where complex fluid-
acoustic interaction takes place with LBM, whereas regions that are well 
approximated by linear wave propagation are represented with a digital 
waveguide (DWG). The example provided consists of a clarinet-like 
system whose mouthpiece is represented by a LBM model coupled to a 
DWG, which represents the instrument's bore. The junction 
implementation between the LBM model and the waveguide, as well as the 
conversion of physical variables into wave variables, is detailed. 
 

 
INTRODUCTION 

 
The behavior of wind instruments is strongly dependent on the interaction 

between the flow and the acoustic field. These interactions explain several non-linear 
phenomena such as self-sustained oscillations in jet instruments, edge tones and 
nonlinear dissipation due to vortex shedding at the instrument discontinuities.  

The lattice Boltzmann method (LBM) is a useful tool to represent these systems 
due to its ability to resolve in a single time step the different scales associated with the 
flow and the acoustic field, thus facilitating the representation of the nonlinear 
phenomena previously mentioned.   

A significant number of LBM studies in music acoustics have been conducted 
beginning with the pioneering work of Skordos (1995), who represented the interaction 
between the fluid flow and the acoustic field in organ pipes. Buick et al. (1998, 2000) 
simulated the propagation of linear sound waves and later, simulated the formation of 
shock waves using different boundary condition schemes. Kuehnelt (2003) investigated 
the mechanisms of sound production in the flute using a three-dimensional LBM model. 
Atig (2004) represented the vortex shedding at duct terminations and Neal (2002) 
simulated flow aspects in lip-mouthpiece systems of brass instruments. Da Silva and 
Scavone (2007) proposed an axisymmetric LBM model to predict the acoustic radiation 
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of ducts. More recently, da Silva et al. (2007) derived a single-reed mouthpiece model 
involving a moving boundary based on a distributed model of the reed. 

One important drawback of LBM in acoustics is the inability to specify an 
arbitrary boundary condition at a discontinuity. This problem is encountered when 
representing the radiation impedances at bore apertures, such as toneholes and open 
ends. An accurate but rather expensive solution for this problem involves including in 
the LBM model the radiation domain around the open end (da Silva and Scavone, 2007). 

This paper presents a technique to simplify the representation of radiation 
impedances at open boundaries by connecting the LBM grid to a low-order digital filter 
through a digital waveguide (DWG).  As an example, we use a clarinet-like system 
whose mouthpiece is represented by LBM and connected to a waveguide representing 
the bore. The radiation impedance in the end of the waveguide is approximated by a low 
order digital filter, as proposed by Scavone (1999). 
 

OVERVIEW OF THE NUMERICAL TECHNIQUES 
 
Lattice Boltzmann Method (LBM) 
 
 The lattice Boltzmann (LB) is classified as a nonequilibrium method whereby the 
fluid domain is investigated at a particle level. It was derived from the cellular automata 
method by implementing a simplification of the Boltzmann equation to describe simple 
collision rules to conserve mass and momentum. A full description of the lattice 
Boltzman theory can be found in Wolf-Gladrow (2000) and Succi (2001).   
 In this paper we use the D2Q9 model, after Qian et al. (1992). This model is 
represented by a two-dimensional squared lattice with 9 sites. Each site connects to a 
neighbor lattice by a unity vector 

! 

c
i
, where i = 1, 2, ..., 8, indicates the site number, with 

the exception of the rest site i = 0, represented by the null velocity vector 
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c
0
. The 

discrete Bolzmann equation uses the simplified collision function known as LBGK 
defined with a single relaxation time τ, and given by 
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fluid velocity u(x, n) and local fluid density ρ(x, n). The general expressions of the 
equilibrium functions 
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with 

! 

w
1,...,4

= 1/9 and 

! 

w
5,...,8

= 1/36. 
 The local macroscopic variables ρ and u are obtained in terms of moments of the 
local distribution function 

! 

fi  by 
 

for i = 1,2,…,8  

for i = 0  
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 Other macroscopic variables such as pressure p, viscosity, 

! 

"  and speed of sound 

! 

c
s
 are obtained when recovering the Navier-Stokes and continuity equations from Eq. 

(1) via a Chapman-Enskog expansion and, in the case of the D2Q9 model, are given by  
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Digital Waveguide Technique and Digital Filters 

 
Digital waveguide techniques have been well documented for applications in 

musical acoustics (Smith, 1992).  Their essential feature is the use of digital delay lines 
to simulate lossless traveling-wave propagation.  In a one-dimensional context, as 
applied here, they are especially efficient because only one or two digital delay-lines are 
necessary to model an air column, as illustrated in Fig. 1 below.  The digital filter RL(z) 
implements the boundary condition at the end of the air column and a good continuous-
to-discrete time fit typically requires only a first- or second-order system.  Losses can be 
incorporated and implemented at discrete locations in the model.  For example, it is 
common to combine propagation losses for travel along one length of the air column 
with RL(z). 

For the boundary condition represented by the open end of a cylindrical pipe, the 
results of Levine and Schwinger (1948) have been evaluated and represented in terms of 
a frequency-dependent reflectance that is used to design a discrete-time digital filter, as 
described in Scavone, 1999.  

 

 
 

Figure 1: A one-dimensional digital waveguide model of a cylindrical air column. 
 

CONNECTING LBM AND DWG 
 
The Absorbing Boundary Condition 
 
 Although we have opted to use the D2Q9 lattice Boltzmann model, the 
technique presented here can be extended to other LMB schemes without loss of 
generality. The connection between a two-dimensional LBM model and the one-
dimensional DWG involves assuming that the outgoing and incoming components of 
the wave at the junction are planar and that the flow is one-dimensional. This 
assumption can be reinforced by placing the connection point far enough from 

(3) 

(4) 
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geometrical discontinuities so as to allow the eventual vortical behavior of the flow to 
decay as it approaches the junction. 
 The core of this implementation is based on the use of a fairly well known 
technique in computational fluid dynamics called absorbing boundary condition (ABC). 
This technique has been adapted to LBM by Kam et al. (2006) and consists of a buffer 
placed between the lattice domain and the open boundary to create an asymptotic 
transition towards a prescribed target flow (see Fig. 2). Consequently, the outgoing 
waves are completely absorbed as they move into the buffer, whilst incoming waves can 
be prescribed in terms of target distribution functions 

! 

fi
T .   

The ABC buffer is implemented in the lattice domain by adding an extra term to 
Eq. (1), resulting in 
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where 
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(# /D)2  is the absorption coefficient, 
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 is a constant, normally 0.3, 
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"  is 
the distance measured from the beginning of the buffer zone and D is the width of the 
buffer. 
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Implementing the Junction between the Waveguide and LBM Models 
 
 The implementation of the junction demands two simultaneous operations at 
every time step, namely the determination of the outgoing wave component in the 
lattice domain immediately before the ABC buffer and the prescription of the incoming 
wave component in terms of target values at ABC. 
 

 
Figure 2: Scheme of the junction between a LBM grid and the DWG. 

 
 Assuming plane waves at the junction, the outgoing wave component is obtained 
from the LBM domain by the solution of the plane wave equation, expressed in terms of 
pressure by 
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where 
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0
 is the density of the undisturbed fluid. The density 
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"  and the horizontal 
component of the particle velocity 

! 

u
x
 are obtained at any vertical point of the lattice, 

promptly before the ABC buffer (see Fig. 2). The outgoing pressure component 

! 

p
"  

propagates along the waveguide, gets reflected according to the boundary condition 
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represented in the digital filter 
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R
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(z)  and arrives at the ABC buffer as the incoming 

pressure component 
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 An important detail should be taken into account when determining the number 
of elements m in the segment represented by the waveguide. In the lattice domain, the 
sound wave propagates a distance equal to 

! 

"
x
/c

s
 per time step, whereas in a simple 

DWG the wave propagates 

! 

"
x
 for the same time interval, where 

! 

"
x
 is the space 

discretization in the lattice domain. Thus, the right number of elements m in a DWG 
segment of length L is given by 

! 

m = L /"
x
c
s
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RESULTS 

 
Impulse Response in a Closed-Closed Pipe 
 

In this section we compare the impulse responses of two models of a closed-
closed pipe with length L = 11 cm and radius r = 3 cm. The first model consists of a 
two-dimensional LBM segment with length 

! 

L
LBM

=  6 cm connected to a digital 
waveguide of 

! 

L
DWG

=  5 cm using the technique previously presented (Fig. 3-a). The 
relaxation time 

! 

"  in the LBM model was chosen to produce a kinematic viscosity close 
to that of air at 30 C˚.  

Figure 3: Different representations of a closed-closed pipe model. 

 The second model is represented by a simple waveguide connected to a digital 
filter H(z) as proposed by Scavone (1999) (Fig. 3-b). The role of the filter is to create 
the same viscous dissipation intrinsic to the LBM segment of the first model, so that 
their impulse responses can be compared. Both models are initiated with a Gaussian 
impulse whose amplitude is measured at the very end of the waveguides.  

 
Figure 4: Impulse responses of two closed-closed pipe models. 
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 Figure 4 depicts the impulse responses associated with each system and indicates 
that they are in phase, meaning that the models have the same effective length. 
Nevertheless, a significant disagreement can be observed mainly due to the effect of 
wave dispersion intrinsic to the LBM segment of the first model (Fig. 3-a). This effect is 
not taken into account by the filter H(z) used in the simple waveguide model. Moreover, 
the hybrid model tends to a stationary pressure p > 0 due to the mass conservation in the 
system. Conversely, the frequency dependent dissipation implemented by the digital 
filter used in the simple DWG model does not take into account the conservation of 
mass.  
 
The Clarinet-like System 
 
 Da Silva et al. (2007) developed a single-reed mouthpiece system based on LBM 
and a finite difference scheme to model the fully-coupled fluid structure interaction 
between the reed and the flow (Fig. 1). Originally, the system was not coupled to a 
waveguide and the ABC buffer was set to behave as a non-reflecting boundary.  They 
observed that the original system could achieve self-sustained oscillation when certain 
pressure differences 

! 

"p  were applied between the inlet and the outlet of the model. The 
oscillation was attributed to the modulation of aerodynamic forces during adhesion and 
detachment of the flow on the reed. 
 In this paper, the same model is coupled to a digital waveguide, as shown in 
Figure 2.  As a first approximation, a digital filter proposed by Scavone (1999) is used 
at the end of the waveguide segment to recreate the frequency dependent reflectance of 
an open unflanged pipe, based on the analytical results derived by Levine and 
Schwinger (1948). However, this filter representation neglects the eventual influence of 
the mean flow or vortex shedding at the open end, as reported by Atig (2004). 
 Figure 5 compares the displacement of the reed measured at the tip for both 
coupled and decoupled models. The flow is initiated in both models by prescribing a 
constant inlet pressure 

! 

pm = 5  kPa.  
 

 
Figure 5: Time histories of the coupled and decoupled LBM mouthpiece-reed model. 

In the decoupled case, the reed oscillates very close to its fundamental frequency 
at free-vibration. Conversely, in the case of the coupled system, the reed oscillates in a 
much lower frequency, which is very close to the fundamental frequency of the pipe 
represented by the waveguide component of the system. 
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SUMMARY 

 
 This paper proposed a technique for coupling lattice Boltzmann models to digital 
waveguides in order to facilitate the representation of wind instruments.  This was done 
by presenting the main aspects of the LBM and DWG theory, the details of the coupling 
technique, as well as the results for two test cases involving the models of a closed-
closed pipe and a single-reed mouthpiece. 
 The results suggest that the presented technique is able to allow the 
implementation of any acoustic boundary condition on the lattice domain, as far as the 
boundary condition can be represented in terms of a digital filter. 
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