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Summary
The classical Transfer-Matrix Method (TMM) is often used to calculate the input impedance of woodwind in-
struments. However, the TMM ignores the possible influence of the radiated sound from toneholes on other open
holes. In this paper a method is proposed to account for external tonehole interactions. We describe the Transfer-
Matrix Method with external Interaction (TMMI) and then compare results using this approach with the Finite
Element Method (FEM) and TMM, as well as with experimental data. It is found that the external tonehole in-
teractions increase the amount of radiated energy, reduce slightly the lower resonance frequencies, and modify
significantly the response near and above the tonehole lattice cutoff frequency. In an appendix, a simple pertur-
bation of the TMM to account for external interactions is investigated, though it is found to be inadequate at low
frequencies and for holes spaced far apart.

PACS no. 43.20.Rz, 43.75.Ef

1. Introduction

A method to accurately and efficiently estimate the input
impedance and resonance frequencies of woodwind in-
struments is of primary importance. The Transfer-Matrix
Method (TMM) is typically used for this purpose (see e.g.
[1, 2, 3]), because of its simplicity and efficiency, and it
is the basis of software used by some instrument makers,
such as RESONANS or BIAS. This method ignores inter-
nal interactions due to the coupling between the evanes-
cent modes of nearby discontinuities as well as external
interactions, which exists because the radiation impedance
of each open tonehole is influenced by the radiation of
sound from other toneholes. The problem of the response
of woodwind instruments with external tonehole interac-
tions was stated in a complete form by [4] and a method
of solution was proposed by [5] using the mutual radiation
impedance proposed by [6]. This method is based on the
TMM for internal propagation with modified open tone-
hole radiation impedances to account for interactions (re-
ferred to as TMMI). Preliminary experimental results were
obtained by [7] for the case of holes spaced far apart in a
pipe. No other validation of the method has been proposed
since reference [5].

In this paper, we investigate the effect of external
tonehole interactions in woodwind instruments with the
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TMMI. The first goal is to determine the validity of the
method by comparing the results of TMMI calculations
with Finite Element Method (FEM) simulations and with
measurements. We also compare these results with TMM
calculations to show that some of the discrepancies are ex-
plained by the external interactions.

The second goal is to apply the proposed TMMI method
to the case of woodwind instruments in order to determine
the importance of the effect on their acoustical properties
and to judge whether or not it is necessary to account for
those interactions when calculating the input impedance of
woodwind instruments for design purposes.

The theory of the TMM and TMMI, as well as the de-
tails of the FEM, are reviewed in the next section, and the
presentation of the TMMI is completed in Appendix A1
for a general model of open holes. This is followed by the
presentation of the results for a tube with a regular array of
holes (section 3), then results for a saxophone and a clar-
inet (section 4) and finally the conclusions (section 5). In
Appendix A2 the possibility to use a perturbation approach
for the TMM is investigated.

2. Background
2.1. The TMM
The transfer matrix method (TMM) provides an effi-
cient means for calculating the input impedance of a hy-
pothetical air column [1, 2, 3]. With the TMM, a ge-
ometrical structure is approximated by a sequence of
one-dimensional segments, such as cylinders, cones, and
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closed or open toneholes, and each segment is represented
by a transfer matrix (TM) that relates its input to output
frequency-domain quantities of pressure (P ) and volume
velocity (U ). The multiplication of these matrices yields a
single matrix which must then be multiplied by an appro-
priate radiation impedance, Zrad, at its output as�

Pin

Uin


=

�
n�

i=1

Ti

��
ZradUout

Uout


. (1)

The input impedance is then calculated as Zin = Pin/Uin,
without need to know Uout.

The theoretical expression of the transfer matrix of a
cylinder is

Tcyl =
�

cosh (ΓL) Z0 sinh (ΓL)
Z−1

0 sinh (ΓL) cosh (ΓL)


, (2)

where Z0 = ρc/πa2, Γ = jω/c + (1 + j)α is the com-
plex propagation constant, ρ is the air density, c the speed
of sound, and ω the angular frequency. Losses are repre-
sented by α, which depends on the radius a of the cylin-
drical pipe and varies with the square root of the lossless
wavenumber k = ω/c,

α = (CST/a)
�

k, (3)

where CST is a constant that depends of the properties of
air,

CST =
�

!v/2(1 + (γ − 1)/
�

Pr). (4)

!v = µ/ρc is the characteristic length of viscous effects, µ
is the dynamic viscosity, Pr the Prandtl number and γ the
ratio of specific heats. The formulas above for Z0 and Γ
are sufficiently accurate for the present study.

The transfer matrix of a conical waveguide is (see [8])

Tcone =

 (a2/a1) cos (kcL) − sin (kcL)/kx1

Z−1
c

�
j
�
1 + (k2x1x2)−1

�
sin (kcL)

+(x−1
1 − x−1

2 ) cos (kcL)/jk
� · · · (5)

· · ·
jZc sin (kcL)

(a1/a2) cos (kcL) + sin (kcL)/kx2

�
,

where a1 and a2 are the radii at the input and output planes,
respectively, and x1 and x2 are the distances between the
apex of the cone and the input and output planes, Zc =
ρc/(πa1a2) and kc = −jΓ is the complex wavenumber. In
this case, losses are evaluated at the equivalent radius [8],

aeq = L
a1

x1

1

ln
�
1 + L/x1

� . (6)

The transfer matrix of a tonehole is defined as

Thole =
�

1 Za/2
0 1

��
1 0

Z−1
s 1

��
1 Za/2
0 1

�
(7)

where Za is the series impedance and Zs the shunt impe-
dance. These impedances have different values in the open
and closed state. The calculation of these impedances has
been the subject of many articles ([9, 10, 11, 12]) and the
reader is referred to those papers for the appropriate for-
mulas.

2.2. The TMMI

2.2.1. Structure of the computation

The radiation impedance of each tonehole on a woodwind
instrument is influenced by the sound radiated from other
holes. A method of solution to account for such interac-
tions was proposed by [5]. It can be used for any bore
shape by making use of the classical TMM with modifi-
cations for the matrices located between open toneholes.
It gives identical results to the TMM if interactions are ne-
glected (by specifying null mutual radiation impedances).
That is, the geometry is discretized identically, with both
closed tonehole and open tonehole series impedance terms
Za represented as in the TMM.

We assume an instrument with N openings (embou-
chure hole, toneholes, open end), where the indices of the
openings range from n = 1 to N . The pressure P rad

n at
opening n is related to the acoustic flow U rad

n radiating out
of hole n by the following matrix relationship:

Prad = ZUrad, (8)

where we define the vector Prad of the pressures P rad
n and

the vector Urad of the flow rates U rad
n . Z is the radiation

impedance matrix, which includes the effect of external
interactions. The precise values of the different elements
are difficult to determine. The self radiation impedances
are the diagonal elements. The validity of this expression
comes directly from the integral form of the Helmholtz
equation if the Green function is chosen to satisfy the Neu-
mann boundary conditions on the tube (see e.g. equation
(7.1.17) in [13], see also [4]). As a consequence, the equa-
tions used by Keefe [14] are erroneous (see equations A1a
to A2b). The content of this matrix is explained in sec-
tion 2.2.3.

A complete description of the planar mode propagation
inside the tonehole chimney is possible, as explained in
Appendix A1. If the height is smaller than the wavelength,
this can be simplified as

Pn = P rad
n + BnUn, U rad

n = Un, (9)

where Pn is the pressure at the hole inside the air column
and Bn is the impedance of the total acoustic mass of the
hole (see Appendix A1). This approximation is possible
for the frequency range of the present study. Using the di-
agonal matrix B, we write

P = Prad + BU = (Z + B)U. (10)

An alternative equation relating the pressures and flows
due to propagation inside the instrument can be derived
for each hole n. As illustrated in Figure 1, the sum of the
flow Un radiating out of the tonehole, the flow U

right
n enter-

ing the tonehole section on the right, and the flow U left
n

entering the tonehole section on the left is equal to the
flow source U s

n (which is discussed hereafter). This flow
conservation equation can be written as

U s
n = Un + U left

n + U
right
n , (11)
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Figure 1. Diagram of the flow contributions in equation (11).

where we note that the flow on the left is defined in the
reverse direction.

This equation can be written in a matrix form as

Us = U + Uleft + Uright, (12)

where Us is the flow source vector. The sum of the left
and right internal flows for each section is related to the
pressures as

Uleft + Uright = YP, (13)

where Y is the admittance matrix, which is described in
section 2.2.4.

By combining equations (10), (12) and (13) , we obtain
the solution

U =
�
I + Y(Z + B)

�−1Us, (14)

where I is the identity matrix.

2.2.2. Source vector of flow rates Us

For such a calculation, the flow-source vector Us needs to
be known. Generally speaking, the reader can imagine a
small loudspeaker located inside the pipe at the abscissa
of each hole, providing a flow rate U s

n . Clearly, the res-
onator of a musical instrument is passive and such sources
do not exist. All transfer functions between two acoustic
quantities at every point in the space of the passive sys-
tem are fully determined and the unique problem is the
choice of a reference. A solution is to use as a reference the
flow rate on the left at the first open tonehole of the instru-
ment (from the part of the instrument that does not have
any open holes), −U left

1 . This quantity can be regarded as a
source, if a source is defined as a fixed (or forced) quantity
(in the sense of the Thevenin theorem). In the absence of
an active source, equation (12) for this hole becomes

−U left
1 = U1 + U

right
1 .

Thus, we can replace equation (12) for the first open hole
by

U s
1 = U1 + U

right
1

�
= −U left

1

�
. (15)

Otherwise U s
n = 0 for n �= 1. In this way, we can compute

all quantities with respect to U s
1 , i.e. the ratio of all quan-

tities to U s
1 . The input impedance can be easily deduced

from the knowledge of U s
1 and P1, the ratio U s

1/P1 being
the input admittance Y up of the part of the system with
open toneholes. Therefore the input impedance is classi-
cally computed by projecting the impedance 1/Y up at the
input of the instrument, or by using a transfer matrix rela-
tionship. Then all quantities can be calculated with respect
to the input flow rate U

right
0 if necessary, where the index

0 refers to quantities at the input plane of the system. For
reed instruments, this quantity is related to the input pres-
sure by a time-domain nonlinear characteristic.1

2.2.3. Radiation impedance matrix Z
The self-radiation impedances Znn are approximately
known (see e.g. [15]). On the other hand, at low frequen-
cies, the mutual radiation impedance Znm (when n �= m)
is, assuming that holes radiate as monopoles (see [6, equa-
tion (17)]),

Znm = jkρc
e−jkdnm

2πdnm
, (16)

where dnm is the distance between toneholes n and m.
More closely spaced toneholes have a larger mutual ra-
diation impedance. As the mutual impedance is complex,
both reactive and dissipative effects are expected. The fac-
tor 2 in the denominator corresponds to the radiation of a
monopole into a half space. At very low frequencies a fac-
tor 4 would be more logical because the radiation is into
a complete space, but empirically we noted that at higher
frequencies, when the effect of interaction is especially im-
portant, a factor 2 is more suitable. It is difficult to deter-
mine the best approximation for the radiation impedance
(see e.g. [15, 11]).

Therefore, the impedance matrix Z is a full matrix. The
mutual impedance may be neglected by using a diagonal
matrix D with self impedance only, in which case the re-
sults are identical to those of the TMM.

2.2.4. Admittance matrix Y
The propagation of planar sound waves between two tone-
holes 1 and 2 can be described by classical transfer matri-
ces, �

Pn

U
right
n


=
�
An Bn

Cn Dn

 �
Pn+1

−U left
n+1


, (17)

where the transfer matrix is the multiplication of the trans-
fer matrices of each segment located between the two open
toneholes, including any closed toneholes. As explained
above, the series impedances Za of the open toneholes can

1 For flute-like instruments, it should be possible to choose the flow rate
U1 exiting from the mouthpiece, which is the first open hole, as a source.
However a complete nonlinear model needs to consider a pressure-
difference source (i.e. a force source) near the edge, and it is necessary
to add an equation in order to compute the flow rates radiating from the
holes with respect to this source.
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Figure 2. The mesh of a pipe with 10 open toneholes.

be accounted for by including them in the transfer matrix,
one-half on each side.

This matrix can be written in the form of an admittance
matrix,�

U
right
n

U left
n+1


=
�

Yn Yµ,n

Yµ,n Y �
n

 �
Pn

Pn+1


, (18)

The parameters of this matrix are related to those of the
transfer matrix: Yn = Dn/Bn, Y �

n = An/Bn and Yµ,n =
−1/Bn, which assumes that AnDn − BnCn = 1, the condi-
tion for reciprocity. The right and left flows at one tonehole
section n become

U
right
n = YnPn + Yµ,nPn+1 (19)

and

U left
n = Yµ,n−1Pn−1 + Y �

n−1Pn. (20)

Thus, equation (11) can be expanded to

U s
n = Un + Yµ,n−1Pn−1 +

�
Y �

n−1 + Yn

�
Pn + Yµ,nPn+1. (21)

The coefficients of this equation define the admittance ma-
trix Y, which is tridiagonal. The first and last equations
have to be modified because there is either no previous
opening or no next opening. The last opening is located at
the far end of the instrument, so that U

right
N = 0 and equa-

tion (21) becomes simply

U s
N = UN + Yµ,N−1PN−1 + Y �

N−1PN , (22)

where UN is the flow rate radiated at the end of the tube.
For the first opening, we use equation (15), where we

can set U s
1 , the first entry of the flow source vector, to

any value. Then, using equation (14), solving the prob-
lem gives the flow vector U. The pressure vector P can be
deduced with equation (8).

2.3. Finite element calculations

The evaluation of the input impedance of woodwind in-
struments using the FEM involves constructing a 3D
model of the air column surrounded by a radiation sphere
and the solution of the Helmholtz equation for a number
of selected frequencies. The body of the instrument itself
is considered to be rigid. The mesh occupies the volume
inside and outside the instrument. Curved third-order La-
grange elements are used.

The input impedance (or reflectance) is evaluated from
the FEM solution by evaluating the relationship of pres-
sure and volume flow (or traveling-wave components of
pressure) at the input plane of the system (see also [12]).
The surrounding spherical radiation domain uses a second-
order non-reflecting spherical boundary condition on its
surface, as described by [16]. Further discussion on this
topic can be found in [17] and [18].

Thermoviscous boundary layer losses may be approxi-
mated with a special boundary condition such as presented
by [19] and, more recently, [20] or [21]. The boundary
condition can be written as a specific acoustic admittance,

Ywall = −vn

p
=

1
ρc

�
jk!v

�
sin2 θ + (γ − 1)/

�
Pr



, (23)

where vn is the normal velocity on the boundary and θ is
the angle of incidence of the plane wave. The angle of inci-
dence may be calculated from cos θ = n̂ · v̂/||v̂||, where the
normal vector n̂ is of unit length. This is solved iteratively.
The lossless problem is solved first, then the admittance on
the boundary is calculated from the normal velocity of the
solution and the problem is solved again. This is repeated
until convergence is found.

The properties of air at 25 ◦C are used for all the sim-
ulation cases. See [2] for the equations used to calculate
those values.

The reflectance R(f ) = p−/p+ (ratio of the reflected
to incident pressure) is obtained from the simulation re-
sults. A cylindrical segment is added before the input plane
of the object under study. The pressures pa and pb at two
points on the centerline of this cylindrical segment, at dis-
tances a and b from the input plane, are extracted and the
reflectance is calculated as

R =
e−Γb − Hbae−Γa

HbaeΓa − eΓb
, (24)

where Hba = pb/pa is the transfer function between the
two pressures and Γ is as previously defined. A singu-
larity in this equation exists when the distance is half of
the wavelength. The reduced impedance can then be cal-
culated with Z = (1 + R)/(1 − R).

This method to calculate the reflectance was inspired
by the two-microphones transfer function method of impe-
dance measurement. It is worth mentioning that the impe-
dance could also be calculated as Zin = pin/ρcvin, where
the pressure and velocity are extracted directly at the input
plane. When validating this approach using a cylindrical
pipe, it was found that the results did not match theory as
well as with the two-point method [22].
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Figure 3. Modulus (top) and argument (bottom) of the transfer
function between the internal pressure at hole 3 and 1: exper-
imental results (solid), theoretical calculation without external
interactions (TMM, dash-dotted) and with interactions (TMMI,
dashed).

3. Results for a pipe with a regular array
of holes

External tonehole interactions were studied experimen-
tally by [7] during an internship in Le Mans, France. The
experiment involved measuring the internal pressure at the
position of the holes on a tube with an array of widely
spaced toneholes. The distances between the toneholes
was much larger than what is found on woodwind instru-
ments but the conclusion remains applicable to some ex-
tent. A cylindrical pipe of 4 meters length with an internal
diameter of 15.3 mm was drilled with 47 holes of 8.7 mm
diameter regularly separated by 8 cm. The far end of the
pipe was rigidly capped. The wall thickness was 3 mm, and
the temperature 20ºC. The excitation (white noise signal)
was provided by a loudspeaker at the input of the tube. The
internal pressure was measured at the positions of hole 1, 3
and 11 using 1/4-in B&K microphones mounted flush with
the pipe wall opposite the toneholes. The transfer func-
tions with respect to the pressure at the first tonehole were
calculated using an HP analyser and a computer. The re-
sults are shown in Figures 3 and 4 in comparison to theo-
retical calculations with and without interactions.

Figure 4. Modulus (top) and argument (bottom) of the transfer
function between the internal pressure at hole 11 and 1: exper-
imental results (solid), theoretical calculation without external
interaction (TMM, dash-dotted) and with interaction (TMMI,
dashed).

For frequencies lower than the cutoff frequency of a
tonehole lattice, the sound is exponentially attenuated in-
side the waveguide when interactions are ignored, whereas
the external pressure is inversely proportional to distance.
Therefore, the acoustic pressure coming from outside of
the toneholes located farther down an instrument becomes
stronger than the pressure coming from inside the instru-
ment. In Figure 3, it appears that the effect of the exter-
nal interactions is negligible for the 3rd tonehole because
the pressure coming from inside remains important, but in
Figure 4 the internal pressure has sufficiently decayed at
the 11th hole such that the external sound field dominates.
The phase curve is very instructive: when interactions are
ignored the phase shift is very small, indicating evanescent
waves, while when interactions are taken into account, the
phase variation is linear, indicating (spherical) traveling
waves.

Therefore the effect of interaction is extremely strong
for this case (widely spaced holes and low frequencies).
This is the reason why a perturbation method starting from
the TMM cannot be used: this idea is investigated in Ap-
pendix A2. Unfortunately, the convergence is limited to
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Figure 5. Magnitude of the reflectance (top) and equivalent
length (bottom) of a pipe with 10 toneholes: experimental re-
sults (solid), FEM simulation results (squares), calculations with
external interactions (TMMI, dashed) and calculations without
interactions (TMM, dash-dotted).

pass bands (above the first cutoff), and this method, used
by [9, p.115], cannot be used for stop bands.

For frequencies higher than the cutoff frequency of the
tonehole lattice, the internal pressure is no longer expo-
nentially attenuated and the effect of interactions is limited
to a smoothing of the response.

In order to better understand the impact of the existence
of external interactions on the playing characteristics of
woodwind instruments, the influence of the external inter-
actions on the input impedance (or reflectance) of a pipe
with an array of closely spaced toneholes was studied.
The pipe was 303 mm in length, with a 12.7 mm diame-
ter and 3.2 mm wall thickness. It was drilled with 10 holes
of 9.5 mm diameter equally spaced by 15 mm, starting at
a position of 153 mm from the input end. The reflectance
of that pipe was obtained with the proposed calculation
method and compared to simulation results with the FEM,
to experimental measurements (see description in the next
section) and to calculations with the classical TMM. The
magnitude of the reflectance and the equivalent length are
plotted in Figure 5.

An important observation is that the FEM results closely
match the experimental measurement. This significantly

increases our confidence in both the FEM and the exper-
iment. For the equivalent length, the measurement error
appears to be larger, particularly for the lower frequencies
(below 1000 Hz). There also seems to be a slight system-
atic error of a few millimeters. The proposed TMMI cal-
culation to account for external interactions clearly gives
better results than the TMM. The deep minima in the mag-
nitude of the reflectance and the large increase in equiva-
lent length in the higher frequencies completely disappear
when interactions are included. The overall shape of the
curves resemble the measured and simulated ones, even
though some discrepancies remain. In the lower frequen-
cies, the magnitude of the reflectance is reduced by the ex-
ternal interactions, which indicates a higher radiation effi-
ciency. In the higher frequencies, the minima in the magni-
tude of the reflectance is not as low as in the measurement
and is not located exactly at the same frequency. Small dis-
crepancies also exist in the equivalent length, though they
appear to be on the order of the measurement errors. In the
lower frequencies, the external interactions increase the
equivalent length slightly compared to predictions of the
TMM. The toneholes on the pipe are located very close to
each other, so that the evanescent modes excited near each
discontinuity interact with those of adjacent toneholes, that
is, the propagation of sound between toneholes is not pla-
nar, as assumed in the proposed method. This phenomena
is one likely cause of the remaining discrepancies. Another
is that the model of the mutual interaction assumes that
each tonehole is a monopole. In spite of those simplifica-
tions, the proposed method gives improved results. Most
of the discrepancies between the classical TMM and the
measurements are explained by the presence of external
tonehole interactions.

Generally speaking, Figure 5 exhibits a major feature of
pass bands: external interaction yields a significant reduc-
tion of oscillations with frequency, i.e. a reduction of the
standing wave amplitude. This feature was stated by [5]. In
Appendix A2, a theoretical justification is given, allowing
the following interpretation:

• without interaction, there is reflection at the end, with
standing waves inside the lattice;

• without interaction, standing waves imply the existence
of extrema of flow rate, the different holes radiating at
different levels;

• the holes radiating strongly have an important influence
on the holes radiating weakly, thus there is a kind of
equalization of radiation by the different holes, thus a
diminution of the apparent standing wave ratio (SWR);

• finally at the input of the lattice there is a diminution of
the reflection coefficient.

A consequence is the reduced height of the impedance
peaks above the cutoff frequency and a reduction in the
radiation directivity lobes in the backward direction [5].
An analysis of the clarinet cutoff frequencies taking into
account the external interaction can be found in [23].
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Figure 6. Imaginary part of the reflectance (top) and magnitude
of the impedance (bottom) of an alto saxophone with a low B3

fingering: experimental results (solid), calculations with exter-
nal interactions (dashed) and calculations with the TMM (dash-
dotted). Because there are few open holes, the interaction effects
are very small and the two curves TMM and TMMI are barely
distinguishable.

4. Results for a saxophone and a clarinet

A precise computational FEM model of a complete mu-
sic instrument is difficult to create and requires significant
computation time to solve. Thus, the TMMI model can
provide a faster and easier numerical technique which pro-
duces satisfactory results for real instruments with com-
plicated geometry, despite the fact that the theoretical de-
scription of the toneholes with key pads is overly simpli-
fied. In general, we can at least expect that qualitative ef-
fects are well represented. Results of the TMM, TMMI,
and measurements for an alto saxophone and a clarinet are
presented in this section. The saxophone and clarinet were
measured with their mouthpieces removed.

4.1. Input impedance measurements

The input impedance measurements were made with a
multi-microphone system, as described in [24]. A JBL
2426 horn driver is attached to one end of the probe
and six PCB Piezotronics condenser microphones (model

Figure 7. Imaginary part of the reflectance (top) and magnitude
of the impedance (bottom) of an alto saxophone with a B�4 cross
fingering: experimental results (solid), calculations with exter-
nal interactions (dashed) and calculations with the TMM (dash-
dotted).

377B10) with preamplifiers (model 426B03) are mounted
flush with the inner probe wall at 30 mm, 60 mm, 100 mm,
150 mm, 210 mm, and 330 mm from the input plane of the
pipe. The microphones are connected to a PCB Piezotron-
ics signal conditioner (model 483C30) and then to a com-
puter through an RME Fireface 800 audio interface. The
signals are sampled at 48 kHz. The system is excited
with a repeated logarithmically-swept sine tone of length
32768 samples and the resulting responses to this signal
are averaged in the time-domain, with the first response
being discarded. The spectral analysis is performed with
an FFT size of 32768, giving a frequency resolution of
1.46 Hz. The pressure spectra at each microphone are used
to solve for the forward and backward traveling waves
in the system [25], effectively measuring the reflectance
of an attached object. The probe is calibrated with three
non-resonant loads, as described in [26], though a time-
windowing technique [27] is used for the quasi-infinite
length pipe.

A cylindrical pipe of 60 cm was measured with this sys-
tem and compared to measurements using a CTTM impe-
dance probe [28], as well as the TMM. All results were
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Figure 8. Imaginary part of the reflectance (top) and magnitude
of the impedance (bottom) of an alto saxophone with a C.5

fingering: experimental results (solid), calculations with exter-
nal interactions (dashed) and calculations with the TMM (dash-
dotted).

within 2 dB and 1% frequency accuracy at impedance
magnitude extrema between 50–2000 Hz (the frequency
range of interest in the following sections).

4.2. Saxophone

The input impedance of an alto saxophone was measured
and compared with calculations using the TMMI and clas-
sical TMM methods. The instrument is a Selmer Super Ac-
tion Series II, serial #438024. The imaginary part of the re-
flectance and the magnitude of the impedance for the first
register written B3, Bb4, and C#5 fingerings (respectively
146, 277 and 330 Hz) are shown in Figures 6, 7 and 8.
These three fingerings correspond to having a single open
tonehole near the bell, a cross-fingering with several holes
closed between open holes, and most holes open, respec-
tively. Discrepancies between the experimental data and
the calculations in Figure 6 for frequencies above about
600 Hz are likely due to inaccuracies of the bell geometry
and model.

As expected, the TMM and TMMI results are nearly
identical when few holes are open (Figure 6). As more
holes are opened, variations are more apparent and the
TMMI tends more toward the experimental results. The

Figure 9. Imaginary part of the reflectance (top) and magnitude
of the impedance (bottom) of a clarinet with a low F3 finger-
ing: experimental results (solid), calculations with external inter-
actions (dashed) and calculations with the TMM (dash-dotted).
Because there are few open holes, the interaction effects are very
small and the two curves TMM and TMMI are barely distin-
guishable.

magnitude of the impedance peaks are generally reduced
by the external interactions. Though difficult to discern in
the figures, the resonance frequencies are slighly lower in
the TMMI results compared to the TMM.

4.3. Clarinet

The input impedance of a B� clarinet was measured and
compared with calculations using the TMMI and classical
TMM methods. The instrument is a Selmer USA Signet
100, serial #211240. The imaginary part of the reflectance
and the magnitude of the impedance for the first register
written F3, E�4, and G4 fingerings (respectively 156, 277
and 349 Hz) are shown in Figures 9, 10 and 11. As with the
saxophone, these three fingerings correspond to having a
single open tonehole near the bell, a cross-fingering with
several holes closed between open holes, and most holes
open, respectively.

Similarly to the case of the saxophone, the resonance
frequencies of the clarinet are predicted to be lower when
external interactions are accounted for. For fingerings
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Figure 10. Imaginary part of the reflectance (top) and magnitude
of the impedance (bottom) of a clarinet with an E�4 cross finger-
ing: experimental results (solid), calculations with external inter-
actions (dashed) and calculations with the TMM (dash-dotted).

where many toneholes are open, the lowering is on the
order of 5–10 cents, which is slightly larger than for the
saxophone. As expected, the lowest notes of the instru-
ment, where only a few toneholes are open, are not much
affected.

For higher frequencies, the behavior of the instrument
changes more significantly. As an example, Figure 11 dis-
plays the imaginary part of the reflectance and the mag-
nitude of the impedance for the fingering G4 (349 Hz)
(no fingers down). For the first two resonances, the ex-
ternal interaction only slightly shifts the frequencies to a
lower value and the maxima of the impedance corresponds
with the zeros of the imaginary part of the reflectance. Be-
tween 1600–2000 Hz, however, the impedance magnitude
extrema are clearly attenuated by the external interactions
and the resonance frequencies more visibly shifted lower.

5. Conclusion

The TMMI method provides a more accurate means for
the calculation of the acoustics properties of woodwind
instruments than the classical TMM, because it accounts
for external interactions. As explained in Appendix A2, it

Figure 11. Imaginary part of the reflectance (top) and magnitude
of the impedance (bottom) of a clarinet with a G4 fingering: ex-
perimental results (solid), calculations with external interactions
(dashed) and calculations with the TMM (dash-dotted).

is not possible to use a simple perturbation of the TMM,
but the implementation of the TMMI is rather easy, and
the computation time is short. The discrepancies between
the TMMI and FEM are rather small and can probably
be explained by several factors: first, the values of the
radiation-matrix elements are roughly approximated; sec-
ond, when several adjacent toneholes are closed, further
improvement of the higher frequency modeling of a wood-
wind instrument would require internal coupling of higher-
order modes to be accounted for, at least for the determina-
tion of the resonance frequencies (notice that these effects
do not yield radiation effects, thus dissipative effects, in
comparison to the external interactions).

Future work needs to be done for a systematic compar-
ison between theory and experiment for the case of wood-
wind instruments. This is a long and delicate task because
it requires very precise geometrical measurements, includ-
ing bends and positions of the keys over the tone holes, as
well as a precise theory.

Finally, we can summarize some effects of the interac-
tions between holes as:
• The effect of tonehole interactions is generally more

important when the toneholes are closer together.
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• The order of magnitude of the interaction effect seems
to be of the same order for saxophones and clarinets.

• At low frequencies, the effect of interaction is of the
order of magnitude of 10 cents when several holes are
open, i.e. more than the threshold interval that the ear
can perceive (about 4 cents). This is not negligible for
instrument-making purposes.

• At higher frequencies, the high-pass filtering behavior
of the tonehole lattice allows more flow past the first
tonehole and increases the effect of interactions, partic-
ularly near and above the cutoff frequency.

• Near and above cutoff, the standing wave ratio is re-
duced by the effect of interactions. Therefore the effect
is important mainly at higher frequencies, and needs to
be taken into account for sound simulation or synthesis
purposes.

Appendix

General modeling of an open tonehole

A general model for an open tonehole can be found in
[10, 11]. It includes (negative) inertances in series, which
can be concatenated with the transfer matrix of the main
tube (equation (2)), and a shunt impedance, which can be
written as:

Zs = jZ0h

�
kti + tan

�
k(t + tm + tr)

��
, (A1)

where Z0h is the characteristic impedance of the tonehole.
This includes the effect of the internal added mass, propor-
tional to ti, the effect of propagation of the planar mode
over the length of the hole chimney t, with length correc-
tions corresponding to a matching volume tm and to the
radiation tr, where

tr = arctan
�
ZR/(jZ0h)

�
/k. (A2)

ZR is the radiation impedance. In order to generalized this
model to account for external interactions, it is necessary
to distinguish the acoustics quantities at the input of a hole
(without index) and at its output (index rad), and to write
a transfer matrix�

p
u

�
=
�

ct − ktist jZ0h(st + ktict)
Z−1

0h jst ct

��
p
u

�rad

, (A3)

where ct = cos[k(t + tm)], st = sin k(t + tm). This ma-
trix can be written for each hole, and allows the following
matrix relationship to be defined,�

P
U

�
=
�

A B
C D

��
P
U

�rad

. (A4)

The equation Us= U+YP, obtained from equations (13)
and (12), can be written as

Us=
�
C + YA

�
Prad

+
�
D + YB

�
Urad. (A5)

If the total length of the tonehole is assumed to be
shorter than the wavelength, A = D � I, C =0, and Bnn =
jZ0hk(t+ tm+ ti). Thus, using equation (8), equation (A5)
leads to

Us=
�
I + Y(Z + B)

�
U. (A6)

Is it possible to compute the external interaction by
the Transfer Matrix Method?

We consider the equation to be solved

U =
�
1 + YZ

R

�−1Us. (A7)

It is interesting to study if it is possible to solve this equa-
tion by perturbation, starting from the TMM method. A
quite natural way to do this is to consider that the effect
of the external interaction is weak, and to keep a calcu-
lation based upon transfer matrices. A first calculation is
done without interaction, then the pressures are modified
by calculating them with interactions taken into account.
The perturbation calculation can be stopped here, but it is
possible to iterate it: a new self-impedance is calculated as
the ratio of the modified pressure to the unmodified flow
rate, then the new flow rates can be calculated again from
the transfer matrix method with the modified values of the
self-impedances. In practice, the iteration scheme is found
to converge for almost all frequencies except low ones.
This result is intuitive because in the stop band, the exter-
nal sound pressure decreases proportionally to the inverse
of the distance, while the internal pressure decreases ex-
ponentially, therefore the external interaction is more sig-
nificant.

It is possible to derive a criterion of convergence for the
iteration procedure and, when it converges, it is possible to
prove that the result is correct. This is done hereafter. At
each step n of the calculation, the transfer matrix method
leads to the following relationship between the source Us,
having a single non-zero element, Us(1), and the pressure
and flow rate vectors, P(n) and U(n),

Us= U(n)+YP(n). (A8)

The calculation is done by defining a diagonal matrix for
the termination impedance of each hole (both the direct
method and the transfer matrix method can be used),

P(n)= D(n)U(n). (A9)

From the knowledge of the flow rate U(n), the next value
of the pressure P(n+1) is deduced,

P(n+1)= ZRU(n). (A10)

The iteration equation is therefore found to be, with
M = YZR,

U(n+1)= Us−MU(n). (A11)

The recurrence relationship leads to the solution

U(n) =

�
n−1�
i=0

(−1)iMi

�
Us + (−1)nMnU(0). (A12)

If the norm of the matrix M is less than unity, the re-
currence converges to the solution (A7), the series corre-
sponding to a Neumann series expansion.

984



Lefebvre et al.: Tonehole interactions in woodwind instruments ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 99 (2013)

Now the starting point can be discussed. The first idea is
to deduce the solution without interaction from the transfer
matrix product

U(0)=
�
1 + YD

�−1Us, (A13)

where D is the diagonal matrix of the self-impedances of
ZR. Another possibility is to start with U(0)= Us: this im-
plies that the first pressure vector is built with the pressures
created by a flow rate located at the first open hole. It can
be concluded that the transfer matrix method can be used
when the norm of the matrix YZR is less than unity. Be-
cause it can be verified that this is not true in the stop band,
the perturbation method unfortunately cannot be used in
general. This confirms the intuition: looking at Figure 5, it
appears that the effect of external interaction can be very
large in stop bands for holes very far apart from each other
and the perturbation method cannot converge.

Nevertheless, in pass bands we observe that conver-
gence occurs rapidly when starting from equation (A13),
and even the first order, corresponding to a single pertur-
bation step, is satisfactory. This observation thus justifies
the reasoning given in section 3.
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