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Abstract

This thesis explores the dynamical relationship between the violin body and tailpiece,
with a focus on the effect of tailpiece resonances on the violin’s acoustic performance.
These resonances are controlled by attaching a series of small masses to several points
on the tailpiece, which changes its mass distribution and moment of inertia. To observe
the changes in the dynamic behaviour, input admittance measurements were taken at
the bridge and several points along the length of the tailpiece. The resulting frequency
response functions, when analyzed using a mode-fitting algorithm, demonstrate that
a body–tailpiece coupling can occur when the most prominent vibration modes of the
body and tailpiece are aligned. This coupling decreases the frequency, quality factor,
and magnitude of that body resonance. Informal playing tests reveal that a small mass
(around 5 g) is sufficient to audibly temper the brightness of the instrument as well as
its wolf note. A similar effect is achieved when a full set of fine tuners is deployed.
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Résumé

Cette thèse explore la relation dynamique entre le corps et le cordier d’un violon, en
mettant l’accent sur l’effet des résonances du cordier sur la performance acoustique du
violon. Ces résonances sont contrôlées par la fixation d’une série de petites masses sur
plusieurs points sur le cordier, changeant ainsi sa distribution de masse et son moment
d’inertie. Afin d’observer les changements de comportement dynamique, des mesures
d’admittance d’entrée ont été prises sur le pont et sur plusieurs points sur la longueur
du cordier. Les fonctions de réponse en fréquence obtenues, lorsqu’elles sont analysées
en utilisant un algorithme pour le calcul des modes propres de vibration, démontrent
qu’un couplage corps–cordier peut se produire lorsque les modes de vibration les plus
éminents du corps et du cordier sont alignés. Ce couplage diminue la fréquence, le
facteur de qualité, et l’amplitude de la résonance du corps. Les tests informels en situ-
ation de jeu révèlent qu’une petite masse (environ 5 g) est suffisante pour tempérer de
façon audible la brillance de l’instrument ainsi que sa note de loup. Un effet similaire
est atteint lorsqu’un ensemble complet de tendeurs est monté.
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Chapter 1

Introduction

1.1 Motivation

From a scientist’s perspective, the acoustics of musical instruments is quite unlike most
other topics in science. The acoustics part is innocent enough, but the musical part, as it
were, is far trickier to decipher. What might have been a routine problem in classical
physics and materials engineering is suddenly convoluted with aspects of human per-
ception and psychoacoustics. Yet it remains a fascinating topic for many, in large part
because music is so prevalent in everyday life. As the noted violin researcher Jim Wood-
house (2014) explains, “. . . the distinctive flavour of the subject comes from the fact that
the key questions are posed by subjective judgments: what is ‘good sound’?”

In this regard, the violin is an ideal object to study. Anyone who has attempted to
play a violin can attest to the difficulty of drawing out a “good sound” using the bow.
But in the hands of a virtuoso, the instrument comes alive, culminating five centuries
of refinement at the hands of luthiers. Its high-set floating bridge, arched top and back
plates, soundpost, f-holes, and metal-wound strings are just some of the innovations
(among many others) that make a violin sound like a violin.

This design has an interesting consequence: the violin’s strings cannot be directly
attached to the body of the instrument. To maintain the vertical force holding the bridge
in place, the strings are lifted off the top plate by the dovetail-shaped tailpiece, which
is in turn looped around the end button via the tailgut. Suspended by strings at both
ends, the tailpiece acts as a separate resonating mass with its own set of vibratory modes
distinct from the instrument body.
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The tailpiece inevitably has an influence on the sound of the instrument, but such
effects are poorly understood. Even though the majority of scientific investigations of
the violin have taken place over the last 50 years, most of those efforts have been directed
toward investigating the more prominent components of the instrument: the body, the
strings, and the bridge (e.g., Bissinger, 2008). By comparison, the tailpiece has received
almost no attention.

At the same time, luthiers are well aware that the tailpiece has some influence on a
violin’s sound. But as the existing corpus of violin acoustics literature does not address
these effects in a systematic way, tailpiece adjustments are typically guided solely by the
luthier’s experience and intuition, and the optimum solution may be overlooked. The
present study will address this dearth of information and provide a scientific perspective
on the issues.

1.2 Outline

This work will be presented in the following fashion: First, Chapter 2 will introduce
the realm of violin acoustics. Past research on the topic will be presented to form the
basis for this work. Chapter 3 will describe the experimental procedure and the data
acquisition and analysis tools used. Their advantages and disadvantages will be com-
pared with other techniques commonly used in similar studies. Chapter 4 will present
the data collected and propose physical interpretations of the observations. Changes in
tone effected by the tailpiece modifications will also be recounted. Finally, Chapter 5
will summarize the conclusions that can be drawn from the results of this study. Impli-
cations for luthiers and potential goals for future research will be assessed.
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Chapter 2

Background

2.1 The Violin Family

The musical instruments of the violin family are the most popular and recognizable
bowed string instruments today. From the immense string choirs of the great sym-
phonies to the intimate settings of small chamber works, the violin, viola, cello (com-
mon abbreviation of violoncello), and double bass (also contrabass or string bass) occupy
a central role within Western musical traditions. In spite of this, these instruments have
remarkably plebeian roots, having been gradually refined by unknown artisans in the
remote towns of northern Italy during the early Renaissance. Even though the basic
design of the violin and its larger cousins had largely been finalized by the early 16th

century, their construction continued to evolve, spurred on by shifting artistic tastes and
new innovations and advances in technology (Curtin and Rossing, 2010). By the late
20th century, electric violins have also gained prominence in the popular music scene,
even as traditional acoustic violins continue to pervade the popular mindset.

Being bowed string instruments, their primary mechanism for sound production is
with a bow, even though players can – and often will – create other musical sounds
through other means such as plucking the strings (pizzicato), slapping the strings and
body, or various other forms of extended techniques. Because of this common trait,
many basic facets of the violin also apply to the entire violin family (Curtin and Ross-
ing, 2010). Nonetheless, there are a number of differences in design tailored to the viola,
cello, and double bass, usually for ergonomic reasons – in order to be playable, they
must be made proportionately smaller compared to the wavelength of the notes within
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Figure 2.1: The modern violin family compared with the wavelength of the fundamen-
tal for their lowest notes. The black bars correspond to one-quarter of the respective
wavelengths. “Alto” is an alternative name for the viola. From Askenfelt (2010).

their playing range (see Figure 2.1). In other words, they are not merely scaled-up ver-
sions of the violin; each member has its own acoustical signature imparted by its unique
structural design (Bynum and Rossing, 2010; Askenfelt, 2010).

2.2 Violin Acoustics

The modern violin is a true marvel of engineering. Each of its components has been
meticulously refined by generations of luthiers for a single purpose: the production of
music. At first glance, this seems like a regular physics problem, yet this deceptively
simple statement has baffled researchers for centuries; how, exactly, does one produce
music? Only within the past 50 years have researchers truly begun to understand the
finer nuances of violin acoustics: Cremer’s (1981) monograph Physik der Geige (trans-
lated into English as The Physics of the Violin) is a landmark work in this genre, while ex-
tensive surveys of the topic have also been penned by McIntyre and Woodhouse (1978),
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Hutchins (1983), and Gough (2000). Most recently, Woodhouse (2014) has contextual-
ized the instrument as only one part of a larger physiological–psychoacoustical system
centred on the player – after all, it is the violinist who decides the quality of a violin.

Due to its complexity, the violin is typically broken down into its constituent parts
for individual study. An exploded view of the violin is shown in Figure 2.2.

2.2.1 The Strings

Vibrating strings have been used for music throughout all of recorded human history,
and, very likely, long before that. Plucked strings, such as harps and lyres, were already
known to the ancient Mesopotamians and Greeks, who were masters of elaborate mu-
sical systems. In particular, Pythagoras of Samos’ work in the 6th century BC relating
musical intervals with numerical ratios was monumental in the history of Western mu-
sic; divisions of the monochord continued to define musical intervals as late as 1722, in
Jean-Philippe Rameau’s Traité de l’harmonie (Nolan, 2002).

By comparison, the bowed string is a much more recent invention. The late develop-
ment of scraping fibres to against strings for musical purposes likely stems from the fact
that it is far easier to make a horrendous noise in this manner than a pleasing sound. Un-
like a plucked string, whose vibrations are very well approximated by a linear sum of its
natural frequencies, a bowed string is a continuously-driven, self-sustaining nonlinear
system characterized by a parameter space largely hostile to “musical” sounds. Whereas
a misplayed note on a guitar is still recognizably “musical”, a beginning violinist (and
those unfortunate enough to be close by) does not have this luxury (Woodhouse, 2014).

At first glance, a bowed string appears to vibrate sinusoidally, much like a standing
wave on a freely vibrating string. Over 150 years ago, Helmholtz (1863) demonstrated
that a bowed string more closely resembles a triangular shape – two straight portions
joined at a sharp bend. This bend races back and forth down the length of the string,
reversing its orientation at each end and triggering a transition between the “stick” and
“slip” phases of the cycle each time it passes the bow: The string sticks to the bow while
the bend travels to the player’s finger and back, and slips rapidly across the bow-hair
during the shorter trip to the bridge and back (Woodhouse, 2014). Because this happens
too quickly for the human eye (hundreds of cycles per second), all that is seen is the
curved path outlining the motion of the string. This stick–slip cycle, or “Helmholtz
motion”, is illustrated in Figure 2.3.
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Figure 2.2: An exploded view of the violin. From Johannsson (2015).
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Figure 2.3: A time-lapse representation of Helmholtz motion. (Left) The bend in the
string (the “Helmholtz corner”) traces out a curved path as it travels along the string;
(right) the associated velocities of the string. From Rossing et al. (2002).

As a mechanical waveguide, the string has a characteristic wave impedance, a prop-
erty that determines its resistance to wave motion along its length or to changes in the
wave pattern (Guettler, 2010). Formally, impedance Z(ω) is defined in the frequency
domain as the ratio between force F (ω) to velocity V (ω),

Z(ω) =
F (ω)

V (ω)
, (2.1)

and is measured in g/s, or mass (displaced) per unit time. On a bowed string, the
governing force is the string’s tension, T , while the propagating speed is the product
of frequency and twice the playing length (one wavelength), v = 2f�. Alternatively,
the wave equation also prescribes a propagating speed of v =

√
T/μ on an ideal string,

where μ is the density of the string. Combining these observations, the characteristic
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wave impedance may be expressed as

Z =
T

2f�
=

√
Tμ . (2.2)

In general, the impedance of the string dictates, in the parlance of violinists, its respon-
siveness. When designing strings, manufacturers must carefully balance their physical
parameters against musical considerations, a task made more difficult by the lack of
known materials with the required tensile strength. Typical values of string density,
transverse impedance, tension, and wave propagation speed are provided in Guettler
(2010).

2.2.2 The Violin Body

Despite being the defining attribute of the violin family of instruments, the strings, on
their own, do not produce or radiate very much sound due to the small amount of air
displaced. Instead, their vibrational energy must be transferred to a radiation-efficient
wooden (or synthetic) body that can move a much larger volume of air (Gough, 2007;
Guettler, 2010). Thus, the body may be characterized as a mechanical amplifier.

However, its frequency response is far from flat. Instead, the body’s resonances act
as an important filter, adding a distinctive colour that makes a violin sound like a violin
(Woodhouse, 2014). Variations in their frequencies, bandwidths, qualities (Q factors),
and peak magnitudes govern each instrument’s individual character.

For this reason, great emphasis has been placed into uncovering an optimal combina-
tion of the resonances. Historically, this has been achieved through centuries of trial and
error at the hands of luthiers, but in recent times, technology has greatly aided the task
of understanding the violin’s structure and design. In particular, the Strad3D project
(Zygmuntowicz et al., 2009) used CT scans and laser vibrometry to document the ge-
ometries and main body resonances of three prized Italian violins: the Titian Stradivari
(1715), the Willemotte Stradivari (1734), and the Plowden Guarneri (1735).

Individual components of the instrument have also been isolated and studied to de-
termine their roles in driving the resonances. For example, the bass bar and sound post,
besides increasing the overall stiffness of the body, were found to provide an asymmetry
vital to exciting several strongly radiating body resonances (Gough, 2013). Meanwhile,
the f-holes introduce a monopolar Helmholtz resonance by allowing air to flow in and



2.2 Violin Acoustics 9

out of the instrument (Curtin and Rossing, 2010; Woodhouse, 2014). The f-holes’ distinct
shape and central placement are thought to have evolved over the centuries to boost the
acoustic power efficiency of this mode (Nia et al., 2015).

Nonetheless, caution must be exercised in a strictly reductionist approach. Schleske
(1996), for instance, performed experimental modal testing on a violin through each
stage of its construction, and found that the boundary conditions changed so drastically
that there is no correlation between tuning of the individual plates (Hutchins’ (1981)
“tap tones”) and the resulting frequency spectrum of the violin (up to 1 000 Hz) once it
has been assembled.

2.2.3 The Bridge

Unlike the low-set solid bridges found on most string instruments (whether plucked,
bowed, or struck), the bridges of the violin family are intricately carved, rest on two
feet, lift the strings extremely high off the top plate, and are held in place solely by
the tension of the strings (Gough, 2007). This highly unusual design is necessary for
translating the mainly lateral vibrations of the string into mainly vertical vibrations of
the top plate (Curtin and Rossing, 2010).

The side effects of this innovation are profound. A complicated coupling between
the lowest bridge resonance and the “island” – the area on the top plate between the f-
holes (Cremer, 1981) – results in a broad peak around 2–3 kHz in the violin’s frequency
response profile. Named the “bridge hill” by Jansson (1997), this feature is an important
ingredient of violin sound, much like a formant in a human vocal tract (Woodhouse,
2014). Further studies on the bridge hill were conducted by Jansson and Niewczyk
(1997, 1999), Beldie (2003), and Woodhouse (2005).

2.2.4 The “Wolf Note”

A phenomenon familiar to and yet dreaded by all violinists is the “wolf note”, so named
because of its characteristic warbling howl-like sound. It occurs at a point where the
bridge impedance falls too close to the string impedance, usually due to a strong body
resonance; the impedances are said to be matched. When that happens, too much energy
is transferred from the string, causing a buildup of vibrational energy at the bridge that
interferes catastrophically with Helmholtz motion (Curtin and Rossing, 2010; Guettler,
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2010) – the string slips too early in the stick–slip cycle and Helmholtz motion gives way
to double slipping motion. Because such motion produces far less energy at the funda-
mental frequency, the original body vibration is allowed to dissipate. Helmholtz motion
is re-established and the cycle repeats, resulting in the distinctive warble (Woodhouse,
2014).

The wolf note most commonly plagues violas and cellos, whose under-sized propor-
tions exacerbate the string–bridge impedance match. On the violin, this effect is most
pronounced on the lower strings, which are heavier and thus have a higher impedance.
One solution commonly employed by cellists is to attach a metallic mass, called a wolf
eliminator, to the string afterlength to dissipate energy from the wolf note resonance. But
because wolf eliminators tend to be too bulky for use on a violin or viola, the player’s
only recourse is to increase the bow force to prevent the double slip from initiating.
Unfortunately, doing so also reduces the tonal palette available to the player.

2.2.5 The Tailpiece

The tailpiece is the fixture used to hold the strings. Like all aspects of the violin, its
design has evolved over the centuries, but as a highly visible element, it is particularly
susceptible to the whims of artistic tastes. Houssay (2014) examined the history of this
ornate wooden piece, starting with the cello iconography of the 17th–18th centuries, and
through the violin-making treatises of the 19th–20th centuries.

Although luthiers have long been aware of the acoustic influences of the tailpiece,
there has been a general lack of interest on this topic. Indeed, Riechers (1895, p.22) re-
marked that “this part of the instrument exercises a great influence on the tone, although
the fact is doubted by a great many performers” – a sentiment that continues to this day.
Even as players bicker endlessly over the setup of the strings, bridge, sound post, bass
bar, and even the neck and fingerboard, they will routinely settle for an industrially
made tailpiece (White, 2012). This was not always so; tool marks on pre-19th-century
tailpieces suggest that luthiers had crafted and tuned them to match the instrument to
which it was attached. Lamentably, this art has become a casualty of the mass mecha-
nization during the Industrial Revolution (Houssay, 2014).

As a result, no empirical research has been performed on the tailpiece until very
recently. Hutchins (1993) first reported enhancements in tone after tuning the tailpiece
to the frequency of other violin modes, but it was Stough (1996) who first described
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Figure 2.4: Tailpiece modes as depicted by Stough (1996), demonstrating the three
“swing” modes (top) and the two rotation modes (bottom).

the vibrational behaviour of the tailpiece itself. He found five of its vibrating modes
below 1 500 Hz, where the tailpiece behaved as a rigid body. These modes fell into two
classes: three “swing” modes and two rotation modes, as illustrated in Figure 2.4. He
also noted that their frequencies depended on the tailpiece mass and tailgut length, and
that the two rotation modes could be tuned to modify the main resonance of the violin
body. Similarly, Fouilhé et al. (2011) conducted modal analysis on a cello tailpiece and
identified nine fundamental modes, seven of which lay well within the natural playing
range of the instrument. Experiments in altering the tailpiece mass, as well as its centre
of mass, showed significantly different frequency response profiles.

This idea was pursued by White (2012), who recognized the tailpiece’s tempering
effect on string–bridge vibrations. Collaborating with Pirquet (2011), they developed an
adjustable tailpiece with the aim of damping out undesirable resonances. By modifying
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the mass distribution of the tailpiece and the length of the tailgut (the looping cord used
to attach the tailpiece to the end button), they found that a major tailpiece resonance can
be made to couple with the body’s wolf resonance, thereby “taming the wolf”.

Beyond this, very little is known about the resonant effects of the tailpiece. White
suggested that the flexural (torsional) modes may be exploited to alter the timbre of the
instrument, as they tend to vary the vertical force applied by the four strings (Fouilhé
et al., 2011). However, the method by which this could be done remains unknown.

2.3 Measurements

From a scientific point of view, the primary purpose of a violin is to radiate as much
energy as musically tolerable. In this regard, it performs exceptionally well, a feat made
even more impressive considering scientific methods were not available throughout
most of its illustrious history.

Making observations in a pre-electronic age was extraordinarily troublesome. For
instance, the physicist Félix Savart (1791–1841) required constant assistance from the
luthier Jean-Baptiste Vuillaume (1798–1875) in assessing various experimental geome-
tries for the violin (Savart, 1819), while Hermann von Helmholtz (1821–1894) had to be
content with a vibrating microscope for his bowed string experiments (Helmholtz, 1863).
Technology has made great strides in the interim, and the ubiquity of the personal com-
puter has made accurate measurements and complex modal analyses possible even in a
luthier’s workshop. Because of this, luthiers are now increasingly embracing scientific
methods in advancing their craft (Woodhouse, 2014).

2.3.1 Modal Analysis

Modal analysis is a common technique used in structural engineering to study the dy-
namic response of a structure during excitation, typically by extracting and analyzing
modal parameters such as natural frequency, damping factor, modal mass, and mode
shape. The structure can either be tested experimentally or modeled on a computer
using finite element modeling (FEM) or boundary element modeling (BEM) methods
(Curtin and Rossing, 2010). Over the years, every technique developed for structural
vibration has been enthusiastically applied to the violin, often as soon as the technology
became available (Woodhouse, 2014).
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The earliest and simplest electroacoustic measurements involved driving the instru-
ment body with a sinusoidal input, creating operating deflection shapes (ODSs) (Wood-
house, 2014). If the modes are sufficiently far apart, ODSs can reasonably approximate
the mode shape, which can be discerned using Chladni patterns. Otherwise, the shape
will be the superposition of the overlapped modes and more advanced techniques will
be required to separate them. Landmark studies from this era include Backhaus (1930)
and Eggers (1959).

The introduction of holographic interferometry in the late 1960s allowed researchers
to observe, for the first time, the dynamic behaviour of the violin of the violin body in
real time. Ågren and Stetson (1969), Reinicke and Cremer (1970), Jansson et al. (1970),
and Jansson (1973) were the earliest adopters of this revolutionary technique.

Since then, holographic methods have largely given way to experimental modal test-
ing, led by advances in computational power and signal processing techniques – espe-
cially of the fast Fourier transform (FFT) algorithm. Detailed multidimensional infor-
mation is first extracted by a set of roving input and output sensors surveying the entire
structure. Using Fourier analysis, true mode shapes (rather than ODSs) can be conjured
from the resulting transfer functions, as well as their characteristic mass, frequency, and
damping parameters. Specialized software can combine these results with finite element
methods to build accurate three-dimensional models simulating the dynamic behaviour
of the violin (e.g., see Stoppani et al., 2009).

2.3.2 Admittance Measurements

While modal analysis is the most exhaustive method of studying structural dynamics,
it requires significant care and time in measuring FRFs at many precisely defined loca-
tions on an object, and so it is also the most exhausting method. In practice, the violin
is only excited at the string (excluding extended techniques). The resulting vibrations
are regulated by the bridge, whose function is twofold: it is both the primary conduit
transmitting energy between the string and the body, and the gate reflecting energy back
into the string to sustain Helmholtz motion. This observation leads to the notion that
the most useful single measure of the acoustical performance of an instrument may be
the driving-point impedance at the single point of contact between the string and the
bridge (Woodhouse and Langley, 2012).
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The driving-point impedance is an important characterization of a structure’s dy-
namic behaviour, as it governs the flow of energy entering and feeding back from the
system. Unlike wave impedances, which are properties of individual traveling waves
and difficult to isolate in reality, driving-point impedances simply measure the response
of a structure to an excitation force and are easily obtained using standard equipment.
Ideally, the input and output should correspond to the same spatial point, but since this
is physically impossible to measure, careful design is required to obtain accurate results.
Finally, Fourier analysis is used to generate frequency response functions (FRFs) of the
structure.

The first experiments of this type were independently conducted by the research
groups of Cremer and Jansson in the 1970s (Zhang and Woodhouse, 2014). In imitation
of a bowing force, the bridge is driven in the bowing direction using an impedance
head and strong magnets. Jansson and Niewczyk (1999) later replaced the impedance
head with a magnet–accelerometer system attached to the bridge, increasing the range of
measurement up to 10 kHz. Since this setup measures the response velocity (converted
from the accelerometer) resulting from a driving force, calculations are usually done
in terms of the admittance at the bridge rather than the impedance. Admittance Y (ω)

is simply the inverse of impedance (Equation 2.1), relating the driving force F (ω) to
response velocity V (ω) via the expression

Y (ω) ≡ 1

Z(ω)
=

V (ω)

F (ω)
. (2.3)

Jansson et al. (1986) experimented with using an instrumented impact hammer rather
than a constant magnetic driving force. This lessened the mass-loading effect on the
bridge. The process was further refined when Gren et al. (2006) replaced the accelerom-
eter with a laser Doppler vibrometer measurement system. Because impulse hammer
measurements are highly portable and easily replicated (they are not dependent on ex-
ternal factors such as room acoustics), they are the most preferred vibration measure-
ment for the study of musical instruments today (Zhang and Woodhouse, 2014).

Hammer measurements are usually conducted only in one direction: To imitate the
excitation from a violinist’s bow, the hammer strikes against one corner of the bridge in
the (idealized) bowing direction of the nearest string, while the accelerometer or vibrom-
eter measures from the opposite corner. In reality, transverse vibrations of the string
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occur in two orthogonal polarizations coupled together at the bridge (Woodhouse, 2014),
and a player’s bowing direction will vary throughout the course of a performance, im-
posing forces in both directions. Consequently, Lambourg and Chaigne (1993), Boutil-
lon et al. (1988), and Woodhouse and Courtney (2003) acquired multidimensional mea-
surements to depict more completely the vibrational behaviour of the violin. A two-
dimensional measurement, for instance, would generate the admittance matrix

Y =

[
Y11 Y12

Y21 Y22

]
, (2.4)

where the two subscripts respectively denote the directions of input and output. By
convention, the two directions are in the plane of the bridge – the principal plane of
vibration caused by the string’s transverse vibrations. Measurements are then taken
with the hammer and accelerometer (or vibrometer) oriented along each direction. By
the principle of reciprocity, admittance matrices are always symmetric (i.e., Y12 = Y21).

Despite this, a number of luthiers have raised concerns regarding the practice of sub-
stituting real bowing gestures with a hammer impact. Zhang and Woodhouse (2014) in-
vestigated the reliability and accuracy of the hammer method by carrying out extensive
experiments on a cello, comparing three different driving conditions and three different
boundary conditions. Their results showed conclusively that “there is nothing funda-
mentally different about the hammer method, compared to other kinds of excitation.”

2.3.3 Microphone Measurements

A study of a musical instrument’s acoustic performance cannot be deemed complete
without considering the instrument as it is heard by an audience. Supplementing modal
analysis and input admittance, microphone measurements can be used to examine the
radiation field of a violin. Such experiments can provide answers to the aspects most
pertinent to a performance, such as a violin’s carrying power, or projection. As before,
researchers can excite the violin using a myriad of techniques depending on the experi-
ment: it could be bowed, struck with an impact hammer, driven with magnetic coils, etc.

The greatest challenge of this kind of experiment, however, comes from the place-
ment of the microphones. Because the violin’s radiation pattern is highly dependent on
frequency (Meyer, 1972), a single microphone cannot fully capture the entire sound field
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of the instrument without being physically moved to different spatial locations. Thus,
to obtain the most out of each measurement, researchers usually use multiple micro-
phones. As Curtin and Rossing (2010) recounted, Langhoff (1994) placed five in front of
the violin and three behind; Schleske (2002) spaced 36 evenly around the instrument in
the plane of the bridge; while Bissinger (2008) arranged 266 in a spherical grid.

2.4 Perception: What makes a “good” violin?

Ultimately, the goal of these measurements is to find relationships between the measur-
able vibrational properties of instruments and their perceived qualities. This has proved
to be a formidable task on both fronts – all attempts to find a scientific criterion describ-
ing a “good” violin thus far have been inconclusive.

Even though massive improvements in measurement technologies and analysis tech-
niques have greatly enhanced our understanding of the acoustic behaviour of the violin,
Bissinger (2008) found only one “robust” quality differentiator distinguishing the “ex-
cellent” violins from the “bad” violins: the Helmholtz resonance was observed to be
significantly higher in the excellent violins. All other measures tested revealed no obvi-
ous quality-related trends.

Meanwhile, numerous psychoacoustic challenges remain. For example, two violin-
ists will not listen to or judge an instrument in the exact same way, nor would they
necessarily use the same verbal descriptions for the same phenomenon. Indeed, inves-
tigations by Willgoss and Walker (2007), Fritz et al. (2007, 2010), Saitis et al. (2012), and
Wollman (2013) have all found little agreement between listeners – regardless of the
demographics of the group – when rating subjective parameters (e.g., liveliness, bright-
ness, responsiveness, etc.). Wollman’s study, in particular, stands out since two of the
instruments in the experimental pool were actually the same instrument. By outfitting
it with an adjustable tailpiece made by White, its centre of mass was shifted between
two positions to give the impression of having two different instruments. But despite
having similar admittance profiles between the two configurations, listeners assigned
ratings that were, on average, as diverse as those between two physically distinct in-
struments. This suggests that violinists are extremely sensitive to slight differences in
the admittance curve, but precisely how these differences might affect their perceptual
judgments of the instrument is not currently known.
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Chapter 3

Experiment Procedure

The main purpose of this study is to explore the effect of tailpiece resonances on the vi-
olin’s acoustic performance. Stough (1996) and White (2012) showed that a small mass
placed strategically on the tailpiece can be used to dampen the violin’s main body reso-
nance, but beyond this, little is known about the dynamical relationship between the vi-
olin body and the tailpiece. This study will build upon their work in a systematic way, as
well as attempt to address the physical mechanism behind the body–tailpiece coupling.

3.1 Equipment

The violin used in this experiment was made in 2005 by H. Armenious, a luthier oper-
ating in Toronto, Canada. It was chosen because of its expert craftsmanship, ensuring
that its properties can be readily compared with other violins. The violin was equipped
with a set of Thomastik–Infeld Peter Infeld strings held under standard tension (Table
3.1), aurally tuned in just intonation with the A4 set to 440 Hz. A Hill model fine tuner
fastens the E-string onto a Hill model tailpiece, which is 113 mm long and constructed
of rosewood. After tuning, the afterlength measures 52 mm from the bridge to the “fret”
on the tailpiece, while the tailgut extends 39 mm from the tailpiece (78 mm around the
whole loop). All non-essential accessories, including the chin rest, were removed so that
the body could vibrate as freely as possible.

The input force was generated by a Piezotronics miniature instrumented impact
hammer (model 086E80), whose 2.5 mm-diameter conical tip can precisely strike the
thin edges of the bridge. Two tips were supplied by the manufacturer, a stainless steel
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String Core Winding End Tension (kg)
E Chrome steel Platinum plated Ball 8.3
A Synthetic Aluminum Ball 5.5
D Synthetic Silver Ball 4.8
G Synthetic Silver Ball 4.7

Table 3.1: Properties of the strings equipped on the violin, provided by the manufac-
turer.

tip (hard) and a vinyl impact cap (soft). Despite the stainless steel tip’s tendency to leave
indentations on the wooden bridge, it was preferred over the vinyl cap because the cap
reduced the frequency response of the impact to as low as 1 kHz, severely disrupting a
significant portion of the signal.

A Polytec portable laser vibrometer (PDV100) recorded the vibration velocities.
Choosing a laser Doppler vibrometer over an accelerometer is advantageous for two
reasons: First, there is no added mass that can modify the vibration response of the in-
strument; Zhang and Woodhouse (2014) demonstrated that even a lightweight (0.3 g)
accelerometer can have profound effects upon a violin’s bridge admittance measure-
ments – including the complete elimination of the bridge hill. Second, the laser can be
pointed at any location and in any direction without moving the instrument. However,
the main drawback is that the instrument must be held absolutely stationary.

The signal from the hammer was amplified tenfold by a Piezotronics line-powered
signal conditioner (model 482C16). Finally, a National Instruments analog data acquisi-
tion board (NI USB–4431) collected the amplified force and vibration signals and trans-
ferred them to a PC for processing in MATLAB.

3.2 Experiment Setup

Measurements were taken in two rooms at McGill University, first at the Spatial Audio
Laboratory (located within the Centre for Interdisciplinary Research in Music Media
and Technology), and then at the Computational Acoustic Modeling Laboratory. The
change in environment – implemented purely for logistical reasons – was not antici-
pated to cause drastic changes to the experiment; room acoustics play a negligible role
in input admittance measurements (Zhang and Woodhouse, 2014). See §3.5 for further
discussion of this topic.
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In order to approximate “free–free” boundary conditions, the violin was vertically
suspended from a rigid fixture on the ceiling (in both rooms) using a string looped
around the scroll. Soft foam was placed lightly under the end button, partly to support
the instrument, and partly to subdue the induced low-frequency “swinging” caused by
the hammer’s impact. Sufficient manœuvrability around the point of contact was main-
tained to ensure that only this low-frequency contamination (which lies below the range
of interest for these measurements) is damped. Other than these boundary conditions,
no other point on the instrument body was in contact with an external object. A piece
of cardboard and two small pieces of foam were strategically placed along the playing
length of the strings to prevent their resonances from interfering with those of the body,
but these dampeners were not in contact with the violin body. Figure 3.1 shows the
setup in the Spatial Audio Laboratory, which was replicated as closely as possible when
the experiment moved to the Computational Acoustic Modeling Laboratory.

The impact hammer was secured onto a vertically adjustable altitude–azimuth mount.
Like a pendulum, it swings freely along the altitude axis to ensure that impacts would
consistently land at the same position with roughly the same force. Nonetheless, fill-
ing in the two-dimensional admittance matrix (Equation 2.4) required the instrument to
be struck and measured along both directions. And with only one laser available, the
(symmetric) cross-terms must be measured separately from the on-axis terms. Thus, the
hammer and laser had to be moved manually to obtain the three measurements (two
on-axis terms and one cross-axis term). The hammer and laser each had its own stand
so that their movements would not affect the free-swinging violin.

3.3 Data Acquisition

As in previous studies of this kind (e.g., Bissinger, 2008), the impact hammer was po-
sitioned to strike on the bass (G-string) side of the instrument. Ideally, the point of
measurement should coincide with the strike. But since this is physically impossible,
the laser beam is aimed at the closest possible point instead. The need to take two-
dimensional measurements further restricted the selection of impact points to areas ly-
ing along edges where perpendicular surfaces met – the laser cannot be pointed at a
location within the interior of the wood. Consequently, the upper bass-side corner was
designated as the impact point on the bridge (Figure 3.2a), while four points were se-
lected along the same side on the tailpiece (Figure 3.2b and Table 3.2).
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Figure 3.1: The experiment setup in the Spatial Audio Laboratory. From left to right are:
the laser vibrometer, the hammer and pendulum secured on an altazimuth mount, and
the violin suspended from the ceiling and gently supported by foam.
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Figure 3.2: Selected points for measurement (red circles) and placement of masses on
the tailpiece (blue circles).



22 Experiment Procedure

Impact/measurement point Distance from tail end (mm)
IP 1 110
IP 2 65
IP 3 35
IP 4 10

Table 3.2: Selected points on the tailpiece for measurement, all located along the bass
(G-string) side edge. Distances are measured along the central (lengthwise) axis. The
tailpiece is 113 mm long.

The first set of experiments involved attaching small metal masses to the tailpiece.
Including the putty used to fasten them, their total masses were 2.5, 5.5, and 16.0 g
(±0.25 g). In turn, they were placed 40 mm and 10 mm from the tail end, along the
central axis (Figure 3.2b). The second set of experiments compared the use of one versus
four fine tuners. Hill model fine tuners, preferred for their small size, were used; each
weighed 5.0±0.25 g.

Prior to each set, reference measurements were taken with no masses attached to the
instrument (except the E-string fine tuner) in order to evaluate the change incurred by
the subsequently added mass. For each configuration, input admittance measurements
were taken at the five selected points (one on the bridge and four on the tailpiece).

Each impact was recorded for 2 s at a sampling rate of 44 100 Hz. To ensure consis-
tent recordings, an auto-triggering mechanism listened for an impact event (> 0.09 N)
and began recording from four samples before the impulse peak. To increase the signal-
to-noise ratio, five impact events were recorded and averaged to form a single measure-
ment. Three measurements – two on-axis and one cross-axis – were collected for each
selected point.

3.4 Data Analysis

All data collection and analysis was conducted using the MATLAB program DAQPlot
developed by G. Scavone and J. Woodhouse (personal communication, 2015). For each
impact event, a frequency response function (FRF) was immediately calculated and av-
eraged among previously recorded events (if any). Phase delays attributed to the mea-
surement equipment were also digitally corrected at this point.
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During the averaging, a coherence function was also calculated as a measure of the
linearity of the measurement – a coherence of unity throughout the frequency spectrum
is considered ideal. Thus, the coherence could be used to evaluate an impact event’s
quality, as faulty strikes occasionally occur, resulting in drastically different FRFs. With-
out having to inspect the FRFs from the other impact events (which may be difficult),
the coherence function provided the information at a glance. Such faulty impact events
were unceremoniously discarded.

3.4.1 Mode Fitting

A two-dimensional mode fitting algorithm developed by Maestre et al. (2013) was used
to identify the resonant modes in the spectra. It employed spectral peak processing to
estimate and optimize mode natural frequencies and bandwidths from input admittance
measurement data.

In this scheme, the violin was first assumed to be a linear system, meaning that
the whole system could be broken down into the sum of individual resonant elements
(modes). As in Bank and Karjalainen (2010), a set of structurally passive (i.e., positive-
real) D-dimensional admittance matrices was expressed in the digital domain as

Ŷ(z) =
M∑

m=1

Hm(z)Rm, (3.1)

where the gain Rm is a D×D positive-semidefinite matrix, and each mode

Hm(z) =
1− z−2

(1− pmz−1) (1− p∗mz−1)
(3.2)

is a second-order resonator determined by the complex conjugate poles pm and p∗m.
From this, Maestre et al. (2013) presented an error minimization problem ε(Y, Ŷ) be-

tween the admittance matrix Y and the admittance model Ŷ, subject to the constraint
that Rm must be positive-semidefinite. The error was minimized iteratively, with the kth

iteration defined as

ε
(
Y, Ŷ

∣∣∣
k

)
=

N∑
n=1

∣∣∣∣∣∣log
|Yn|∣∣∣Ŷn

∣∣∣
k

∣∣∣∣∣∣ (3.3)
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for N-sample long vectors Y (ω) and Ŷ (ω) taken in 0 ≤ ω < π. When expressed in a
logarithmic scale, Equation 3.3 reduces to a difference of magnitudes.

Finally, the MATLAB software package CVX (Grant and Boyd, 2008, 2014) conducted
convex minimization to find a set of parameters H and R such that ε(Y, Ŷ) was min-
imized within a selected frequency range. In this study, optimization was performed
between 100 and 6 000 Hz, where measurement coherence was closest to unity.

3.5 Repeatability of Measurements

Although utmost care was taken to ensure the experiment conditions remain identical
across all measurements, variations between measurements will inevitably arise due to
the nature of this experiment. For example, incremental disruptions from the hammer
strikes not only have a propensity to move the instrument, but they also leave inden-
tations – albeit small – on the wooden impact surfaces, making each impact slightly
different from the last. But while such minor variations were, by and large, eliminated
by the averaging process, other factors cannot be so controlled.

Zhang and Woodhouse (2014) tested the repeatability of such experiments by making
identical measurements ten months apart. While the two admittance measurements
exhibited general agreement, there were noticeable deviations – up to 5 dB and 5 Hz –
in individual modal amplitudes and frequencies ascribable as the margin of error of the
experimental procedure. Thus, even though room acoustics are not a significant factor
in this sort of experiment, there can be other factors at play.

In particular, the experiment here involved constant changes in setup. To wit, the
hammer and laser’s frequent relocations (to obtain data from different directions) induce
mechanical vibrations in the floor that could, in theory, affect the violin’s supporting
mount. But more importantly, the two sessions of the experiment occurred in different
rooms and different seasons (late winter vs. early summer). Environmental influences,
such as air temperature and humidity, could significantly alter the wooden instrument’s
structure. Although the two laboratories are both climate controlled, the extent to which
the violin was affected is difficult to ascertain. With this in mind, comparisons should
only be drawn between measurements taken during the same session.
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Chapter 4

Results

The results of attaching various masses to the violin tailpiece are presented in this chap-
ter. Measurements of a violin’s input admittance can offer significant insight into the
violin’s vibrational properties (Woodhouse and Langley, 2012). Because the bridge is ex-
cited by two orthogonal polarizations for a string’s transverse vibrations, a two-dimen-
sional driving-point admittance matrix is gathered to gain a more complete picture of
this behaviour (Equation 2.4). Measurements were taken with the impact hammer and
laser Doppler vibrometer oriented parallel and perpendicular to each other, but since
the 2× 2 admittance matrix Y(ω) is assumed to be symmetric (i.e., Y12 = Y21), the system
can be completely described with only three measurements rather than four. In this text,
direction 1 points parallel to the top plate (from the G-string toward the E-string) while
direction 2 is perpendicular to the top plate (from the top plate outward), as shown in
Figure 4.1.

 

G 
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2 

1 

Figure 4.1: The measurement directions.
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4.1 Reference Measurements (unmodified violin)

Reference measurements were taken with the violin unmodified (i.e., with no mass at-
tached) prior to every data collecting session. As discussed in Section 3.5, variations
inevitably arise regardless of the steps taken to ensure consistency. This was further
exacerbated by the fact that the data was collected over multiple sessions, where the
setup was torn down and rebuilt each time. Establishing a ground truth for each set is
therefore crucial to making comparisons across data sets: Even though absolute changes
across data sets cannot be directly compared, relative changes – i.e., deviations from the
respective reference measurements – can be.

4.1.1 Frequency Response: Bridge

Two-dimensional frequency response functions (FRFs) taken at the violin’s bridge are
shown in Figures 4.2 and 4.3. Typical features of a violin’s response profile can be readily
seen: prominent peaks that dominate the FRFs up to roughly 1 kHz (the “signature
modes”) and a single broad, yet densely populated peak between 2 and 3 kHz (the
“bridge hill”).

Individual FRF measurements provide no information about mode shapes. Thus,
resonances found in FRFs cannot be uniquely identified with specific signature modes
without performing modal analysis. That said, the signature modes routinely fall in
particular frequency ranges because all violins have similar geometries (Stoppani et al.,
2009; Gough, 2013). Henceforth, observed peaks in the FRF results will be associated
with specific signature mode names based on their expected frequency ranges.

Mode Full name Frequency (Hz) Q
A0 Fundamental air resonance 283 33.5

CBR Centre bout romboid 416 50.3
A1 Second air resonance 470 54.0

B1− First “breathing” mode 494 50.5
B1+ Second “breathing” mode 588 38.4

Table 4.1: Resonances observed in the bridge FRF (Figure 4.2) postulated to be those
described by Stoppani et al. (2009). Values listed are the average between the two mea-
surement sessions.
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Mode Full name Frequency (Hz) Q
Sb Swing mode, bass side 100–140 50–80
St Swing mode, treble side 120–160 60–90
Su Swing mode, under 180–230 35–70
Rh Rotation, horizontal axis 300–800 34–110
Rv Rotation, vertical axis 300–800 38–110

Table 4.2: Tailpiece resonances identified by Stough (1996). The frequencies and Qs are
given by ranges since their precise values depend on the tailpiece’s setup.

Several resonances are also spotted in the spectrum around 135, 210, and 650 Hz.
As it turns out, these are tailpiece resonances, a direct consequence of leaving the after-
length undamped. These modes will be discussed in the next section (§4.1.2).

Besides the signature modes, bridge hill, and tailpiece resonances, there are no other
significant features to be discerned. Below 100 Hz, the violin does not have any sig-
nificant resonances, and the spectrum is instead dominated by the resonances of the
support rig. Above 10 kHz, the signal becomes concealed by noise due to insufficient
impact (input) energy.

4.1.2 Frequency Response: Tailpiece

Hammer measurements taken on the tailpiece reveal the vibrational behaviour of the
system from the tailpiece’s point of view. Unlike the bridge, measurements were taken at
multiple points on the tailpiece (Figure 3.2b); the collected FRFs are presented in Figures
4.4 and 4.5.

The observed tailpiece resonances can be matched with those in Stough (1996). As
can be seen by comparing Tables 4.2 and 4.3, there is very good agreement between the
values found by Stough and by this experiment. But as with the signature modes of the
violin body, modal analysis is required to verify their identities, and the matching of the
observed modes to those identified by Stough is purely conjectural.

All of the modes identified in Table 4.3 are rigid-body modes; this is attested by not-
ing that their values are uniform along the length of the tailpiece. Also, all of these rigid-
body modes quite conveniently lie in the region of interest between 100 and 1 000 Hz. If
Fouilhé et al.’s (2011) work on the cello tailpiece carries over to the violin tailpiece, then
these are the only rigid-body modes of the tailpiece – all higher-frequency resonances
are torsional.
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Figure 4.2: FRFs for two selected directions (top and bottom) taken from the bridge
of an unmodified violin. The direction tuples refer to the directions of excitation and
measurement respectively. The solid and dashed lines refer to the two measurement
sessions. Labeled are the body resonances postulated to be those described by Stoppani
et al. (2009); in parentheses are tailpiece resonances most likely to be those in Stough
(1996). FRFs over a greater frequency range are shown in Figure 4.3.
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Figure 4.3: Bridge FRFs of an unmodified violin. The direction tuples refer to the di-
rections of excitation and measurement respectively. The solid and dashed lines refer to
the two measurement sessions. Labeled are the body resonances postulated to be those
described by Stoppani et al. (2009); in parentheses are tailpiece resonances most likely
to be those in Stough (1996).
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Figure 4.4: Tailpiece FRFs for two selected directions (top and bottom) taken at four
points along the tailpiece. The colours blue, red, gold, and purple refer to the four
impact/measurement points (IP 1–4 respectively), while the solid and dashed lines refer
to the two measurement sessions. Labeled are the tailpiece resonances most likely to be
those identified by Stough (1996); in parentheses are body resonances postulated to be
those described by Stoppani et al. (2009). FRFs over a greater frequency range are shown
in Figure 4.5.
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Figure 4.5: Tailpiece FRFs taken at four points along the tailpiece. The colours blue, red,
gold, and purple refer to the four impact/measurement points (IP 1–4 respectively),
while the solid and dashed lines refer to the two measurement sessions. Labeled are the
tailpiece resonances most likely to be those identified by Stough (1996); in parentheses
are body resonances postulated to be those described by Stoppani et al. (2009).
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Mode Frequency (Hz) Q
Sb 133 133 133 133 73.6 69.6 73.3 94.8
St 142 142 143 142 59.1 64.7 59.5 52.0

*Su 205 205 205 205
218 218 218 217

50.0 58.6 56.9 81.2
72.5 48.5 49.5 79.7

Rh 667 668 666 666 38.7 38.7 38.9 38.1
Rv 761 763 759 758 26.0 30.9 26.6 32.6

Table 4.3: Tailpiece resonances identified from Figure 4.4. In each category, the four
columns represent the four impact/measurement points (IP 1–4 respectively). Values
listed are the average between the two measurement sessions. *Su is a split peak.

In the portrait gathered in Figures 4.4 and 4.5, the swing modes and rotation modes
are seen to influence the tailpiece non-uniformly: Near the head of the tailpiece (closest
to the bridge), the swing modes dominate; whereas near the tail end, the rotation modes
prevail. However, Stough has observed that the three swing modes have little effect on
the violin’s tonal output. This is perhaps unsurprising, as they all lie well below the
signature modes of the violin. The rotation modes, by contrast, lie just above them.

But surveying the tailpiece plots reveals a peculiar feature: the presence of the body
modes within the tailpiece signal, especially near the tail end (compare the blue (IP 1)
and purple (IP 4) curves of Figure 4.4). In itself, this is not particularly surprising since
the tailpiece is fixed to the top plate via the tailgut. Tautly stretched, the tailgut couples
the two components together quite effectively, allowing them to vibrate in tandem. Near
the saddle (where the tailgut bends around the top plate), the CBR mode is torsional
roughly about the central (lengthwise) axis, yet moving chiefly in direction 1, while the
two breathing modes pulsate in direction 2 (Stoppani et al., 2009; Gough, 2013).

Thus, the path forward is clear: attempt to couple the rotation modes with the vio-
lin’s breathing modes. The simplest method to lower the frequency of a resonance is to
add mass to the region of greatest amplitude (an antinode). In this case, that would be
toward the tail end of the tailpiece.

4.2 Mass-loaded Tailpiece

There are two independent variables in this experiment: the mass and its position. In
succession, three small masses (2.5, 5.5, and 16.0 g) are placed at two positions on the
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Direction 1 Direction 2
Mode Frequency (Hz) Q magnitude (dB) magnitude (dB)

A0 284 283 283 43.0 27.0 40.4 −40.7 − 46.7 − 40.4 −39.4 − 43.8 − 43.3
CBR 421 420 420 56.9 57.5 57.5 −25.0 − 28.1 − 24.1 −24.1 − 28.4 − 29.0
A1 471 471 471 55.4 45.7 38.6 −45.4 − 48.3 − 37.3 −45.3 − 47.7 − 48.1

B1− 500 498 495 50.0 45.7 40.1 −15.3 − 19.5 − 19.0 −20.1 − 29.6 − 33.5
B1+ 596 590 588 43.2 31.4 25.2 −12.7 − 15.6 − 15.9 −15.8 − 21.0 − 25.0

Table 4.4: Effect of a 2.5 g mass on the signature modes. In each category, the three
columns represent the measured values (from left to right) with the mass off, and with
it attached at positions 1 and 2.

tailpiece (40 mm and 10 mm from the tail end; Figure 3.2b) to study the effects on the
bridge and tailpiece FRFs.

4.2.1 2.5-gram mass

The lightest mass attached was 2.5±0.25 g. The resulting bridge FRFs are shown in
Figure 4.6, while the values of the signature modes are given in Table 4.4. Notably, the
properties of the two breathing (B1− and B1+) modes display a clear correlation with
the position of the mass – placing the mass closer to the tail end is accompanied by a
reduction in both frequency and amplitude, as well as a broadening, of the peaks. This
suggests that the tailpiece plays a non-negligible role in shaping the bridge FRF and,
consequently, the vibrational characteristics of the violin. To explore the mechanism
behind this coupling, the tailpiece FRF, as measured at four locations, is presented in
Figure 4.7.

All of the tailpiece modes identified in Table 4.3 were noticeably affected. But with a
lack of prominent body resonances near the three swing modes, the following analysis
will focus exclusively on the two rotation modes.

Like the signature modes, the rotation modes responded to the added mass with a
reduction in frequency and magnitude, only much more dramatically – the Rv mode (as
measured at IP 1) shifted from 806 to 721 Hz and dropped from −22.0 to −37.5 dB, while
the Rh mode shifted from 692 to 635 Hz and fell from −10.0 to −17.5 dB. Given that the
tailpiece is much less massive than the violin body, this was not unexpected.

What is most fascinating though, is that lowering the Rh mode’s frequency causes
some of its energy to be transferred to the B1-induced modes on the tailpiece (compare
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Figure 4.6: FRFs from the bridge of an unmodified violin (solid) compared with those
with a 2.5 g mass attached to the tailpiece at 40 mm (dashed) and 10 mm (dotted) from
the tail end.
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Figure 4.7: FRFs from various points along the tailpiece for the 2.5 g mass. The four
impact/measurement points are indicated by the colours blue (IP 1), red (IP 2)*, gold (IP
3), and purple (IP 4), while the mass’ positions are indicated by a solid line (off), dashed
line (position 1), and dotted line (position 2). *Data incomplete.
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Figure 4.8: FRFs from the bridge (blue) overlaid onto those from IP 2 of the tailpiece
(gold) demonstrate the coupling between the B1+ and Rh modes after a 2.5 g mass was
attached at position 1 (dashed line) and position 2 (dotted line), compared to having the
mass off (solid line). The arrow indicates the downward shift of the Rh mode.

the solid and dashed gold lines of Figure 4.8), allowing it to absorb vibrational energy
from the body much more effectively. As shown in Figure 4.8, the body’s B1+ mode
is much influenced by this modal interaction, and is reminiscent of the notch filtering
effect observed by Stough (1996). In that study, a small 3.95 g mass attached to the
tailgut end of the tailpiece (presumably near position 2) was used to lower the Rh mode’s
frequency, and the B1+ mode (referred to as the W resonance) fell by about 10 dB after
their frequencies were matched. It remains to be seen whether lowering the rotation
modes further will incite more dramatic effects; to be determined is whether the Rh and
B1+ modes can become locked, or whether the as yet inconspicuous Rv mode may come
to play a role.

In his custom tailpieces, White (2012) also uses a small mass of 2.5 g. The work re-
ported here, conducted on a violin outfitted with only a “normal” tailpiece, corroborates
the results reported by Pirquet (2011) and White (2012): Placing a small mass near the
tail end of the tailpiece is sufficient to noticeably alter the main body modes of the vi-
olin, resulting in the lowering in frequency and amplitude of the B1+ mode. However,
Pirquet and White also observed a splitting of the B1+ peak, which was not replicated
to the same degree in this work. The nascent peak (in the body), induced by the Rh
mode, is the result of the aforementioned body–tailpiece coupling, and can also be seen
in Figure 4.8 (at around 630 Hz).
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Direction 1 Direction 2
Mode Frequency (Hz) Q magnitude (dB) magnitude (dB)

A0 281 281 280 24.0 20.4 24.3 −42.9 − 43.4 − 39.7 −42.7 − 46.2 − 48.7
CBR 411 412 411 43.7 43.4 39.2 −30.2 − 32.8 − 32.9 −30.6 − 34.4 − 39.2
A1 468 467 468 52.6 53.1 52.6 −33.1 − 36.3 − 32.0 −38.4 − 43.3 − 46.3

B1− 488 488 485 50.9 46.4 48.0 −16.0 − 18.6 − 20.0 −25.4 − 33.1 − 40.4
B1+ 579 568 566 33.5 21.3 14.6 −12.2 − 18.7 − 21.7 −17.5 − 26.0 − 31.3

Table 4.5: Effect of a 5.5 g mass on the signature modes. In each category, the three
columns represent the measured values (from left to right) with the mass off, and with
it attached at positions 1 and 2.

Even so, the degree to which the violin’s perceived tone changes remains unknown.
Notwithstanding the study by Wollman (2013) and the oral testimony by White, little
tone quality changes could be discerned with any certainty whilst playing the instru-
ment in a near-identical configuration. Nonetheless, the dampening of the B1+ mode
signals that the wolf note has been altered – the same playing tests confirmed that the
“howl” now sounded at a lower pitch. A resourceful player may find this advantageous.

4.2.2 5.5-gram mass

The second mass attached was 5.5±0.25 g. The resulting bridge FRFs are shown in Fig-
ure 4.9, while the properties of the signatures modes are shown in Table 4.5. As before,
the B1+ mode’s frequency, quality, and magnitude were reduced while the other signa-
ture modes’ were left mostly intact. But despite the heavier attachment, the direction 2
magnitude was the only value to drop more significantly than before. Nonetheless, the
peak splitting is much more evident.

The complete tailpiece data set is given in Figure 4.10. Once again, the Rh and Rv
modes underwent a reduction in frequency, quality, and magnitude. And as before,
energy was shifted to the B1+ co-resonance (with the body) as the Rh mode encroaches
upon it (Figure 4.11). However, the effect is noticeably more subdued this time – the
rotation mode experienced a greater reduction in quality and magnitude, thus limiting
its influence on the body-influenced mode. As a result, both the Rh and the B1+ modes
appear broader – as expected of a system with increased damping. By contrast, the
evolution of the Rv mode was more or less identical to that in the preceding experiment
(2.5 g mass), leaving it still well above the signature modes.
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Figure 4.9: FRFs from the bridge of an unmodified violin (solid) compared with those
with a 5.5 g mass attached to the tailpiece at 40 mm (dashed) and 10 mm (dotted) from
the tail end.
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Figure 4.10: FRFs from various points along the tailpiece for the 5.5 g mass. The four
impact/measurement points are indicated by the colours blue (IP 1), red (IP 2), gold (IP
3), and purple (IP 4), while the mass’ positions are indicated by a solid line (off), dashed
line (position 1), and dotted line (position 2).
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Figure 4.11: FRFs from the bridge (blue) overlaid onto those from IP 2 of the tailpiece
(gold) demonstrate the coupling between the B1+ and Rh modes after a 5.5 g mass was
attached at position 1 (dashed line) and position 2 (dotted line), compared to having the
mass off (solid line). The arrow indicates the downward shift of the Rh mode.

Importantly, the twin peaks around Rh falls neatly in line with the split B1+ peak,
affirming what was previously hinted at: The rotation mode can be made to couple with
the body resonances. Curiously, the Rh-induced peak in the bridge FRF (the higher-
frequency twin of the B1+) is most prominent in direction 1 – i.e., perpendicular to the
Rh mode itself.

Perceptually, the violin’s tone became noticeably more mellow as the mass was
shifted to the tail end. However, this was accompanied by an appreciable decrease in
sound (volume) produced by the instrument – a not unimportant trade-off.

4.2.3 16.0-gram mass

The final mass attached was 16.0±0.25 g. Against all expectations, the two breathing
modes moved up in frequency even as their magnitudes dropped (Figure 4.12 and Table
4.6). Corroborating with the tailpiece data (Figure 4.13) offers little insight. The Rh
mode at 428 Hz has fallen to irrelevance; not coinciding with any body mode, it plays
no observable on role the bridge FRF. On the other hand, attaching the mass at position
1 places the Rv mode just above the B1+ mode, while attaching the mass at position 2
moves it to the vicinity of the B1− mode (Figure 4.14). Nonetheless, its magnitude and
quality has eroded so drastically that its influence appears limited.

Playing the instrument in this state revealed a significant deterioration in sound pro-
duced. Once again, the impact is greatest with the mass placed toward the tail end. But
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Figure 4.12: FRFs from the bridge of an unmodified violin (solid) compared with those
with a 16.0 g mass attached to the tailpiece at 40 mm (dashed) and 10 mm (dotted) from
the tail end.
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Figure 4.13: FRFs from various points along the tailpiece for the 16.0 g mass. The four
impact/measurement points are indicated by the colours blue (IP 1), red (IP 2), gold (IP
3), and purple (IP 4), while the mass’ positions are indicated by a solid line (off), dashed
line (position 1), and dotted line (position 2).
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Direction 1 Direction 2
Mode Frequency (Hz) Q magnitude (dB) magnitude (dB)

A0 281 281 282 24.0 44.5 19.6 −42.9 − 41.2 − 41.7 −42.7 − 41.6 − 43.9
CBR 411 408 408 43.7 37.8 31.9 −30.2 − 29.4 − 30.4 −30.6 − 32.0 − 33.0
A1 468 467 467 52.6 53.0 52.5 −33.1 − 32.9 − 33.4 −38.4 − 39.0 − 40.0

B1− 488 499 493 50.9 32.8 41.1 −16.0 − 18.3 − 19.7 −25.4 − 23.8 − 22.4
B1+ 579 590 595 33.5 25.9 27.5 −12.2 − 15.1 − 14.6 −17.5 − 21.3 − 21.5

Table 4.6: Effect of a 16.0 g mass on the signature modes. In each category, the three
columns represent the measured values (from left to right) with the mass off, and with
it attached at positions 1 and 2.
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Figure 4.14: FRFs from the bridge (blue) overlaid onto those from IP 2 of the tailpiece
(gold) demonstrate a possible coupling between the B1± and Rv modes after a 16.0 g
mass was attached at position 1 (dashed line) and position 2 (dotted line), compared to
having the mass off (solid line). The arrow indicates the downward shift of the Rv mode.

rather differently than before, the tone does not mellow out quite as much, even as the
volume decreases – as if the violin has simply been muffled. Tonally speaking, there is
little to be desired in this configuration.

4.3 Fine Tuners

Finally, we turn to an issue of immediate consequence to violinists: fine tuners. A com-
mon point of contention amongst violinists and luthiers alike is whether to use a full set
of fine tuners or just one for the E-string (Darnton, 1990). While fine tuners greatly ease
the tuning process, especially when using metal core strings, they are comparatively
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Direction 1 Direction 2
Mode Frequency (Hz) Q factor magnitude (dB) magnitude (dB)

A0 281 282 24.0 33.5 −42.9 −39.7 −42.7 −40.8
CBR 411 411 43.7 53.4 −30.2 −28.5 −30.6 −29.5
A1 468 468 52.6 52.2 −33.1 −33.2 −38.4 −39.1

B1− 488 486 50.9 51.2 −16.0 −21.3 −25.4 −30.0

B1+ 579
561
601

33.5
34.4
28.5

−12.2
−17.0
−18.5

−17.5
−21.2
−24.8

Table 4.7: Effect of fine tuners on the signature modes. In each category, the two columns
represent the measured values (from left to right) with one fine tuner attached (to the
E-string) and with all four fine tuners attached.

massive – a single fine tuner weighs 5.0±0.25 g. As shown previously, this amount
of mass is enough to significantly alter the vibrational behaviour of the instrument. It
should therefore be interesting to compare the FRFs between the two scenarios, the de-
fault setup with just one fine tuner versus the configuration with a full set. Even though
the total extra mass attached is similar to the preceding trial (16.0 g), the difference is
that the mass is now distributed (somewhat) evenly across the head of the tailpiece.

The resulting bridge FRFs are shown in Figure 4.15, and the tailpiece FRFs in Figure
4.16. Once again, the three lowest signature modes were largely unaffected despite the
extra mass, while the B1− fell slightly in all aspects (Table 4.7). Predictably, the B1+ has
split into two distinct peaks. But what is remarkable about this is the near symmetry
of the two peaks, arranged about 20 Hz above and below the original peak. This may
be a mere coincidence, however, as Figure 4.17 reveals that, unlike the preceding trial,
the Rh mode has remained in the active region around 600 Hz. Indeed, it appears that
the fine tuners had the most effect on the swing modes rather than the rotation modes.
This is most likely due to the location of the fine tuners in relation to the node lines for
these modes – this time, the extra mass is placed close to the two rotation axes while
distributed away from the swing axes.

The impact on the tone, insofar as it applies to the violin at hand, is perhaps not as
severe as that described by Darnton (1990). But while the violin did not sound “choked”,
the effect is still noticeable. Nonetheless, the increased mellowness – as well as the tamed
wolf note – may be desirable on certain instruments, but the (slight) decrease in power
may prove to be its Achilles heel.
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Figure 4.15: FRFs from the bridge of a violin outfitted with one fine tuner (solid) versus
four (dashed).
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Figure 4.16: FRFs from various points along the tailpiece outfitted with fine tuners. The
four impact/measurement points are indicated by the colours blue (IP 1), red (IP 2), gold
(IP 3), and purple (IP 4), while the number of fine tuners deployed is indicated by a solid
line (one) and a dashed line (four – a full set).
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Figure 4.17: FRFs from the bridge (blue) overlaid onto those from IP 2 of the tailpiece
(gold) demonstrate the coupling between the B1+ and Rh modes of a violin outfitted
with one fine tuner (solid) versus four (dashed). The arrow indicates the downward
shift of the Rh mode.

4.4 Summary

Comparisons of bridge FRFs revealed that modifying the mass distribution of the tail-
piece significantly altered the most prominent body vibration mode, postulated to be the
B1+ mode described by Stoppani et al. (2009) and Gough (2013). Although no overall
trend accounting for every scenario tested herein could be discerned, a clear correla-
tion exists when only considering the two smaller block masses (2.5 and 5.5±0.25 g).
Namely, the frequency, quality factor, and magnitude of the B1+ mode were all reduced
by a greater amount when using the 5.5 g mass rather than the 2.5 g mass, or when plac-
ing either of those masses at position 2 (10 mm from tail end) rather than at position 1
(40 mm from tail end). This trend did not extend to the 16 g mass, as shown in Table 4.8.

This phenomenon could be traced to the tailpiece, which exhibits two highly direc-
tional resonances lying above 600 Hz – most likely the Rh and Rv modes identified by
Stough (1996). Invariably, the added mass causes a decrease in these two modes’ fre-
quencies, quality factors, and magnitudes. In the case of the 2.5 and 5.5 g masses, the Rh
mode is able to match with the B1+ mode, resulting in a physical coupling between the
tailpiece and the body that regulates their dynamical behaviour in tandem. The extra
mass contributed by a full set of fine tuners can also produce a similar effect. For the
16 g mass, no such mode matching exists, though the Rv mode lies tantalizingly close to
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Direction 1 Direction 2
Mass Frequency Q factor magnitude magnitude
2.5 g −1.01% −1.34% −32.8% −41.7% −2.9 dB −3.2 dB −5.2 dB −9.2 dB
5.0 g −1.90% −2.25% −36.4% −56.4% −6.5 dB −9.5 dB −8.5 dB −13.8 dB

16.0 g +1.90% +2.76% −22.7% −17.9% −2.9 dB −2.4 dB −3.8 dB −4.0 dB
*FT −3.11% +2.69% −6.8 dB −3.7 dB

Table 4.8: Relative changes to the B1+ mode effected by attaching various masses to the
tailpiece. An entry with two values refers to the two positions in which the mass was
attached (40 mm and 10 mm from the tail end respectively). *FT: Fine tuners (total mass:
15.0±0.75 g).

the B1+ mode. Unfortunately, the Rv mode is too eroded to draw any conclusions; the
B1+ mode’s uncharacteristic rise in frequency remains unknown.

The possibility of a body–tailpiece coupling is profound. The B1+ mode is the main
culprit behind the wolf note, and because it is a strongly radiating mode, it has a very
noticeable effect on the tone and playability of the instrument (Stoppani et al., 2009;
Gough, 2013). This study has shown that luthiers and violinists can exploit this coupling
to make adjustments to tone and, as it were, “tame the wolf” by strategically changing
the mass distribution of the tailpiece.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

All things considered, the tailpiece appears to be a non-negligible part of the violin. In-
deed, its mass distribution is a significant parameter regulating the dynamic behaviour
– and hence, the tone – of the violin.

This study aims to provide a systematic account of this process and search for mu-
sically desirable configurations. To alter its moment of inertia, a series of small masses
(2.5, 5.5, and 16.0±0.25 g) were placed at two positions on the tailpiece (40 and 10 mm
from the tail end) in succession. For each setup, two-dimensional admittance measure-
ments at the bridge and four points along the tailpiece were acquired using a miniature
impact hammer and laser Doppler vibrometer. Comparison of their FRFs revealed that
the most prominent body vibration mode could be coupled with a tailpiece resonance
using the two lighter masses, resulting in a lowering of its frequency, quality factor, and
magnitude correlating to the weight and position of the mass. For the violinist, informal
playing tests showed that this translates to a reduction of the dreaded wolf note, but
also a decrease in the perceived brightness and power (loudness) of the instrument.

The experimental procedure was also repeated with the extra mass contributed by a
full set of fine tuners instead of a single block mass. After extra fine tuners (5.0±0.25 g
each) were attached to the G-, D-, and A-string sockets, admittance measurements pro-
duced FRFs similar to the results of the 2.5 and 5.5 g masses – in spite of the fact that the
total mass of the extra fine tuners (15 g) is on the order of the heaviest mass used in the
previous trials (16 g).
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The current work indicates that the tailpiece can be used by luthiers and violinists as
an additional parameter for tone adjustment. By strategically changing its mass distri-
bution (e.g., by attaching small masses), the tailpiece can couple with and shift the most
prominent body mode, granting it the ability to change the tone colour of the instrument
and to mitigate the wolf note.

5.2 Future Work

Nonetheless, it would be beneficial to determine how these results apply to different
violins, which may have different setups, and to the other instruments of the violin fam-
ily. During these tests, more information could be gathered about the whole tailpiece
system, from bridge to tailgut. Past research has indicated that the tailgut length plays a
significant role in the tailpiece’s rotational modes (e.g., Stough, 1996; Fouilhé and Hous-
say, 2013). Unfortunately, this study was unable to address this important parameter
due to physical constraints: The modern tailpiece anchors the tailgut to its reverse side,
rendering it inaccessible without detaching all the strings and hence, altering the phys-
ical state of the violin. This prevents us from manipulating the mass distribution (more
precisely, the rotation axes) without altering the total mass of the tailpiece, or from iso-
lating the effects of either parameter on the vibrating modes. That said, violinists are
usually unable to access the tailgut for the same reason, making mass-loading the only
practical approach to exploiting the body–tailpiece coupling.

Even so, modal analysis may shed further light on the dynamic behaviour of this
coupling. Presently, all characterizations of the vibrational modes are tentatively based
on admittance measurements. Even though they can be good indicators of the acoustic
performance of the instrument, multidimensional modal analysis – perhaps aided by
numerical modeling – would provide a more definitive understanding of the body–
tailpiece interactions and resolve the lingering questions from this study.
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