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Joint Modeling of Bridge Admittance and Body
Radiativity for Efficient Synthesis of String
Instrument Sound by Digital Waveguides

Esteban Maestre, Gary P. Scavone, and Julius O. Smith

Abstract—In the context of efficient sound synthesis by digital
waveguides, we present a novel methodology for joint modeling
of string instrument body radiativity and driving-point bridge
admittance functions, as obtained from experimental data. From
our modeling framework, aimed at simulation of guitar and
bowed string sound, here we focus on the body of the instrument
and leave aside the strings. First, a modal decomposition of the
measured bridge admittance is obtained by means of a novel
frequency-domain algorithm for optimization of recursive digital
filters in parallel form. Then, from extracted modal parameters,
the radiativity, and admittance functions are modeled by project-
ing measurements over a common modal basis, enforcing passivity
of the two-dimensional admittance model by means of semidefinite
programming. We propose a formulation that enables the joint
realization of bridge reflectance and sound radiativity as a lumped
delay line termination in which a single bank of resonant filters is
shared among all string reflection and body radiation outputs. Our
approach provides efficient means to model two-dimensional (2-D)
bridge reflectance, 2-D string–string coupling, sound radiation
with an arbitrary number of outputs, and (implicitly) vibrational
energy loss from the bridge transmittance to nonradiating modes
and dissipation.

Index Terms—Cello, digital waveguide, fiddle, guitar, modal,
optimization, passive, parallel, reflectance, violin, viola.

I. INTRODUCTION

PHYSICAL modeling synthesis refers to a family of tech-
niques for constructing computational models of acoustic

musical instruments based on efficient mathematical approxi-
mations of the sound-generating physics. Within the different
approaches to construct such models, digital waveguides [1]
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have been widely used to construct efficient models of string
instruments over the last thirty years. In digital waveguide syn-
thesis, string vibration is usually modeled by simulating velocity
(or force) wave propagation via delay lines, with low-order dig-
ital filters used to account for lumped propagation losses and
wave dispersion. It is often the case, however, that the acoustic
signature of an instrument is mostly determined by the instru-
ment’s body and radiativity properties [2].

String instruments, such as in the guitar and violin families,
radiate sound indirectly: energy from thin vibrating strings is
transferred to a more efficient radiating body of larger surface
area. To a large extent, sound radiation is produced due to the
transverse velocity of the instrument body surfaces (e.g., the
front or back plates), and such surface motion is transferred to
the body through the force that the string exerts on the instru-
ment’s bridge. The way in which the input force at the bridge is
related to the transverse velocity of the body surfaces depends on
very intricate mechanical interactions among the bridge, sound
post, front and back plates, air inside the body cavity, etc. [2]–[4].
It is therefore important that, in addition to explicitly represent-
ing the string itself, a physically meaningful digital waveguide
model incorporates an appropriate representation of the two fol-
lowing processes: first, the relation between the applied force at
the bridge and the induced velocity at the bridge, i.e., the bridge
input admittance, which leads both to lossy wave reflection from
the bridge and to string-string wave coupling; second, the re-
lation between the applied force at the bridge and the sound
projected by the body, i.e., the instrument’s radiativity.

Due to linearity and time-invariance, it is possible to lump
string losses and bridge-admittance losses together in a sin-
gle high-order filter terminating the delay line for each string
vibration plane [5]. However, because the strings are not iden-
tical, separate filters must be designed for each string in this
formulation. For 2D string motion, two filters must be de-
signed for each string termination, giving a total of 12 filter-
designs for a six-string guitar. This approach requires many
high-order filters (each separately designed) to model bridge
losses that are not inherent in the strings. String losses them-
selves, on the other hand, can be modeled effectively with very
low-order filters [6]–[8], while the body modes “seen” by the
strings at the bridge can enjoy a single implementation shared
among all the strings. Moreover, an individual-string approach
does not preserve beating patterns and natural string-string cou-
plings, and therefore needs additional string-coupling filters or
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artificial beating models [9], etc., that further reduce the effi-
ciency of the synthesis algorithm. Additionally, a separate fil-
tering component is needed for modeling body radiativity [10],
such as by recursive digital filtering with a single [11] or multi-
ple [12] outputs, convolution with measured impulse responses
[13], or frequency-domain techniques [14].

Leaving aside the string models, for which several effective
modeling methods are available (see, e.g., [5] and the references
therein), we present here an experimental framework for using
admittance and radiativity measurements to design a single fil-
ter structure that efficiently simulates bridge two-dimensional
transverse wave reflectance, two-dimensional string-string cou-
pling, sound radiation with an arbitrary number of outputs, and
(implicitly) vibrational energy loss from the bridge transmit-
tance to non-radiating modes and dissipation.

A. Prior Work

Possibly the first comprehensive work on efficient digital
modeling of violin bridge admittances for sound synthesis was
developed in [6], which proposed and evaluated several tech-
niques for automatic design of common-denominator IIR filter
parameters from admittance measurements, making real-time
violin synthesis an affordable task. However, while efficiency
and accuracy can be well accomplished (also when applied
to other string instruments [11]), positive-realness (passivity)
[15] cannot be easily guaranteed with common-denominator
IIR schemes, leaving open the possibility of instability when
building string terminations. In that regard, the modal frame-
work [16] offers a twofold advantage: (i) the admittance can
be represented by a physically meaningful formulation, and (ii)
positive-realness can be guaranteed. The modal framework has
been used extensively to study the mechanical properties of vio-
lins and other string instruments [2], [17], but only recently it has
been applied to synthesizing positive-real bridge driving-point
admittances by fitting digital filter coefficients to experimental
measurements [18]–[22], which we summarize below.

In a recent inspiring paper, Bank and Karjalainen [18] con-
struct a positive-real (passive) driving-point admittance model
of a guitar bridge by combining all-pole modeling and the modal
formulation: they first tune parameters of an all-pole IIR filter
based on measurement data, and use the roots of the resulting
denominator as a basis for a modal synthesis model in which
positive-realness is imposed by an artificial constraint at the ex-
pense of some reduced accuracy. This method is compared to
ours in Section V-A.

Two other relevant works ([17], [23]) use guitar and cello
bridge admittance measurements to construct two-dimensional
matrices of bridge reflection functions based on the modal
framework. Although ignoring radiativity and not focusing on
efficient sound synthesis, their wave-based modeling approach
informs the development of bridge losses and two-dimensional
string-string coupling.

B. This Paper

Extending our previously published works [19]–[22], here
we solve a similarly constrained problem, but using the modal

formulation in a modeling process that also incorporates radia-
tivity. The new procedure can be summarized as follows:

1) We obtain the system poles from admittance measure-
ments by optimization of a recursive filter in parallel form
whose structure matches the discretized version of a modal
decomposition,

2) we synthesize a passive, driving-point two-dimensional
admittance matrix model by finding a projection of the
system poles via semidefinite programming,

3) we synthesize a radiativity transfer function vector ex-
pressed as a projection of the same system poles, and

4) we propose an efficient formulation in which string-string
coupling bridge reflectance and body radiativity are im-
plemented by means of a shared digital filter.

In more detail, our new method extends our prior work as fol-
lows: First, modal decomposition and admittance and radiativity
modeling are now described as separate processes; this makes
sense from a physics standpoint and, although they were already
differentiated in [21], the first process was vaguely described
and no details were given. Second, both mode parametrization
and mode optimization algorithms are different from [19]–[21]
but inspired by [22], which should be considered as the basic
framework used here (optimization of recursive digital filters in
parallel form under novel numerator constraints). Third, in this
paper we provide a detailed description of how modal param-
eters are initialized prior to optimization. Fourth, we provide
details on how to perform modal parameter initialization and
modal decomposition over a warped frequency axis. Finally,
the digital resonator structure in the radiativity model has now
changed with respect to the complex gain radiation model de-
scribed in [21]: to avoid a DC offset in the radiation output when
the bridge force DC offset is non-zero (e.g., when bowing), the
radiativity model is now forced to have a zero at DC. This, in
turn, makes the whole reflectance and radiativity realizations
come out differently relative to [21].

The rest of the paper is organized as follows. Section II pro-
vides an overview of our methodology. Section III gives details
about the admittance and radiativity measurement procedures
employed for this work. Next, in Section IV we describe our
optimization approach for modal decomposition from admit-
tance measurements. Sections V and VI respectively present
models for admittance and radiativity transfer functions. Fi-
nally, in Section VII we propose an efficient joint formulation
of bridge reflectance and body radiativity via a single, lumped,
string termination.

II. OVERVIEW OF OUR APPROACH

We are interested in constructing efficient, physically inspired
models of musical instruments of the guitar and violin families.
We aim to design recursive digital filters that accurately repre-
sent the string termination as observed from vibration measure-
ments of the string-bridge interaction in real instruments, and
the sound radiation efficiency as measured using a microphone.
In our sound synthesis framework we model transverse string
motion by means of digital waveguides [15], emulating two
orthogonal planes of transverse string velocity, and the strings
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Fig. 1. Two-dimensional driving-point admittance of a violin bridge.

are coupled to the bridge through a 2× 2 admittance matrix
model. The focus of this work is on modeling of string instru-
ment bodies, rather than the strings themselves. The admittance
model, formulated via the modal framework after a modal de-
composition obtained from measurements, is used to simulate
the mechanical behavior of the body of the instrument. Addi-
tionally, we simulate how the instrument body radiates sound
via constructing a radiativity model that is formulated as a pro-
jection of the same vibration modes that are used to formulate
the admittance matrix model.

The admittance Y (ω) = V (ω)/F (ω) is a physical frequency
response Y (ω) that maps an applied forceF (ω) to the resulting
velocity V (ω) = Y (ω)F (ω) at each frequency ω in a linear,
time-invariant, mechanical structure, where ω denotes frequency
in rad/s. A velocity vector V(ω) and force vector F(ω) at a
particular point on the structure are related via the driving-
point admittance matrixY(ω) by V(ω) = Y(ω)F(ω). In order
to emulate transverse wave reflection and transmission at the
bridge, we need to construct a digital representation of the two-
dimensional matrix

Y(ω) =

[
Yhh(ω) Yhv (ω)
Yvh(ω) Yvv (ω)

]
, (1)

corresponding to the bridge driving-point admittance relating
the bridge force vector F(ω) = [Fh(ω)Fv (ω) ]T and bridge ve-
locity vector V(ω) = [Vh(ω)Vv (ω) ]T as represented in Fig. 1,
where subscripts indicate string (horizontal and vertical) polar-
izations, and Yhv = Yhv (symmetric admittance). By taking a
measurement Y(ω) from a real instrument, one can pose this as
a system identification problem where a parametric model Ŷ(ω)
is tuned so that an error measure ε(Y(ω), Ŷ(ω)) is minimized.
Analogously, a radiativity frequency response

E(ω) = [ Eh(ω) Ev (ω) ] (2)

can be defined to relate the bridge force vector F(ω) and the
sound pressure scalar P (ω) at a point in the vicinity of the
instrument, leading to P (ω) = E(ω)F(ω). Again, from a ra-
diativity frequency response measurement E(ω) one can tune a
parametric radiativity model Ê(ω) by minimization of an error
measure ε(E(ω), Ê(ω)).

Relying on the modal framework, we use an admittance model
that serves the purpose of modal decomposition. This modal de-
composition is expressed as a basis of vectors that are obtained
by evaluating the responses of recursive second-order digital
filters, one per mode. Both the admittance and the radiativity

models used for sound synthesis are defined as projections over
the same basis of vibration modes, each modeled via one of such
filters. The focus of this paper is (i) to provide a comprehen-
sive methodology for constructing digital models of parametric
functions Ŷ(ω) and Ê(ω), i.e., digital filters Ŷ(z) and Ê(z),
defined experimentally by fitting their parameters to measured
admittance frequency response matrix Y(ω) and measured ra-
diativity frequency response vector E(ω) respectively; and (ii)
to propose a formulation for the realization of said digital filters
in the context of realistic, efficient synthesis of string sound by
digital waveguides.

A. Admittance Modeling via the Modal Framework

The basic principle of the modal framework is the assumption
that a vibrating structure can be modeled by a set of resonant
elements satisfying the equation of motion of a damped mass-
spring oscillator, each representing a natural mode of vibra-
tion of the system. Assuming linearity, the individual responses
from the resonant elements (modes) to a given excitation can be
summed to obtain the response of the system [24]. In theory, a
mechanical structure presents an unbounded number of modes
of vibration, and experimental modal analysis techniques allow
to find a finite subset of (prominent) modes that best describe
the vibrational properties as observed from real measurements
in the audio band. In general, admittance analysis via the modal
framework begins from surface velocity measurements taken
after excitation of the structure with a given force impulse or
sweep function.

As introduced in [18], a useful set of structurally passive two-
dimensional driving-point admittance matrices can be expressed
in the digital domain as

Ŷ(z) =
M∑

m=1

Hm (z)Rm , (3)

where Rm is a 2× 2 positive semidefinite (nonnegative definite)
matrix, and each scalar modal response

Hm (z) =
1− z−2

(1− pm z−1)(1− p∗m z−1)
(4)

is a second-order resonator determined by a pair of complex
conjugate poles pm and p∗m . The numerator 1− z−2 is the
bilinear-transform image of s-plane zeros at DC and infinity,
respectively, arising under the “proportional damping” assump-
tion [25], [34]. It can be checked that Hm (z) is positive real for
all |pm | < 1 (stable poles). Since the admittance model Ŷ(z)
is positive real (passive) whenever the gain matrices Rm are
positive semidefinite, the passive bridge-modeling problem can
be posed as finding poles pm and positive-semidefinite gain
matrices Rm such that some error measure is minimized.

In the work by Bank and Karjalainen [18], poles from an all-
pole IIR time-domain fit are used as the modal basis to estimate
Rm . Once the poles have been estimated from measurement
data, they find matrices Rm as follows: First, they independently
solve three one-dimensional linear projection problems, each
corresponding to an entry in the upper triangle of matrix Y. This
leads to three length-M modal gain vectors. Then, since simply
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rearranging such gain vectors as a set of M independent 2× 2
symmetric gain matrices (matrices Rm of (3)) does not enforce
passivity (all of the Rm need to be positive semidefinite), they
ensure passivity by computing the spectral decomposition of
each Rm , and recompose each matrix after setting to zero any
negative eigenvalues.

In our work, as outlined in the next subsection and detailed
through Sections IV and V, we take a different approach for
pole finding and admittance modeling. The first difference is
that we find poles by optimizing the coefficients of a digital
filter structure that more exactly matches the admittance model,
as opposed to first relying on all-pole modeling and then reusing
obtained poles to model admittance. The second difference is
that, instead of ensuring passivity by discarding negative eigen-
values of individual matrices Rm , we propose a formulation
that allows to use convex optimization to find all matrices Rm

at once while enforcing passivity. In Section V-A we provide a
numerical example in which we compare the results obtained
with the method of [18] to those obtained with our method.

B. Method Summary

To support the reader in following the rest of the paper, we
provide here a brief summary of our method. As introduced
before, the models for driving-point bridge admittance and body
radiativity presented in this work are defined as projections over
a common basis of vibrational modes whose frequencies and
bandwidths are extracted from experimental data.

Both the modal decomposition and the admittance and radia-
tivity modeling are performed from velocity and sound pressure
response measurements taken from real instruments while ex-
citing the bass-side bridge corner with an impact hammer in two
orthogonal directions, namely the horizontal and vertical direc-
tions of transverse motion of the strings. Regarding admittance,
three measurements are obtained for each instrument, leading
to the three frequency responses that form the upper diagonal of
the matrix of (1). In terms of radiativity, two measurements are
obtained for each instrument, leading to the pair of frequency
responses appearing in (2).

The first and most important step is to perform modal decom-
position from the admittance measurements. Our assumption
here is that all M relevant modes of vibration that will form
the common basis are observable from the diagonal entries of
the admittance measurement matrix. Following this assumption,
modal decomposition is performed via iterative, constrained op-
timization of the position of poles of a digital filter in parallel
form, whose response is matched against the diagonal entries of
the measured admittance at each iteration.

Once the M modes have been estimated, we proceed with
modeling admittance and radiativity. For the admittance, we first
construct a basis of M frequency responses, each corresponding
to the digital resonator of (4) as defined by the m-th vibration
mode. Then we use semidefinite programming to project the
frequency-domain admittance measurement matrix onto the ba-
sis of frequency responses and find gain matrices Rm of (3)
while imposing that all Rm be positive semidefinite. For the
radiativity we construct a different basis, still obtained from the

same set of M modes, and solve a projection problem to model
each of the frequency responses of (2).

Finally, we propose an efficient, joint realization of bridge
reflectance and body radiativity models that relies on a sole,
shared digital filter in which parallel sections are shared among
all reflectance and radiativity outputs.

III. MEASUREMENTS

In a hemi-anechoic chamber, we carried out admittance and
radiativity measurements on three decent quality bowed string
instruments (violin, viola, cello) from the Schulich School of
Music at McGill University, and also on a steel string acoustic
guitar by Godin. The instruments were held vertically, with the
neck pointing up. Cushioned clamps were used to rigidly hold
all instruments from the neck, with the low end of the body
resting on a foam cushion impeding their free motion during the
measurements. In order to damp the low-frequency vibrational
modes of the holding structure, sandbags were conveniently
placed at different locations on the metal stands. Rubber bands
were used to damp the strings.

The impact hammer, which has been long used in the context
of acoustic analysis or modeling for sound synthesis [6], [10],
[26], [27], provides a simple and effective method to excite the
bridge of stringed instruments with great repeatability. For our
measurements, a calibrated impact hammer was used to excite
the corner of the bass side of the bridge in two orthogonal di-
rections corresponding to the horizontal and vertical directions
of the transverse motion of the strings. Simultaneously to the
hammer force, the bridge edge surface velocity was measured
by means of a laser Doppler vibrometer aimed at a point located
as close as possible to the hammer, and the radiated sound was
measured by means of two omnidirectional microphones facing
the top plate, placed 1 meter away from the instrument. In our
modeling framework the strings meet at a single point repre-
senting a common driving-point admittance of the bridge, so for
practical matters, we could also have chosen to measure on the
treble side. We chose to measure on the bass-bar side because
of the higher efficiency of the bridge in driving the top plate, as
observed from previous experimental studies of violin acoustics
[28]. For consistency, we chose the bass side of the guitar bridge
as well. The locations and orientations of the impact hammer, the
vibrometer laser beam, and the microphones are schematically
illustrated in Fig. 2 for the case of the bowed strings, but it also
applies to the guitar. We used a PCB Piezotronics 086E80 minia-
ture impact hammer, a Polytec LDV-100 vibrometer, and two
Brüel and Kjaer 4150 measurement microphones. All signals
were digitized by means of a National Instruments USB-4431
signal acquisition board. Time-domain signals of force, veloc-
ity, and sound pressure were collected, delay-compensated, and
stored before using frequency-domain deconvolution for obtain-
ing admittance and radiativity frequency responses. For each of
the frequency responses, several measurements were collected
and averaged in order to use coherence as a means for selecting
the most consistent set. For each instrument, we obtained five
frequency responses, all of them sampled at 44.1 kHz: three
responses respectively corresponding to the three entries Yhh ,
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Fig. 2. Schematic illustration of a violin bridge admittance and radiativity
measurement using a calibrated impact hammer, and a Laser Doppler Vibrom-
eter (LDV), and two microphones.

Yvv , and Yhv of the bridge driving-point symmetric admittance
matrix, and two radiativity measurements Eh and Ev per mi-
crophone, respectively corresponding to radiated sound due to
horizontal and vertical bridge force.

Dashed-line curves in Fig. 5 show the magnitude frequency
responses of admittance measurements Yhh , Yvv , and Yhv , and
radiativity measurements Eh and Ev (one microphone) per-
formed on all four instruments, for 80 ≤ f ≤ 6000 Hz, where
signature and radiating modes exist. This frequency region also
corresponds to the region where measurement coherence was
consistently high. The first observable radiating mode can be
observed around 300 Hz, 260 Hz, 100 Hz, and 200 Hz for the vi-
olin, viola, cello, and guitar respectively. Admittance responses
show in general little noise, except for some regions of the gui-
tar and cello: for the guitar, Yhh approximately in the region
600 ≤ f ≤ 1000, where admittance magnitude is very low, and
also in the far low frequency region due to interaction with the
vibration modes of the measurement setup (this also happened
for the cello in the region below 80 Hz, not displayed); for the
cello, the admittance was difficult to measure consistently in the
high frequency region (around 4–6 kHz). With respect to radia-
tivity, regions below the first radiation mode always feature a 1/f
noise floor above any relevant radiativity information, mainly
due to the fact the room was not anechoic.

IV. MODAL DECOMPOSITION

For each instrument, we obtain a modal decomposition by
automatic analysis of the bridge driving-point admittance ma-
trix measurements. The process consists of two steps. First, an
initial estimation of modes, comprising a set of frequencies and
corresponding bandwidths, is performed by processing of spec-
tral peaks in each diagonal term of the measurement matrix,
respectively corresponding to the one-dimensional admittances
Yhh(ω) and Yvv (ω). Then, mode parameters are optimized via
a frequency-domain filter design algorithm that uses sequen-
tial quadratic programming to minimize the error between mea-
sured frequency responses and synthesized frequency responses.

Finally, modal parameters coming from fitting both Yhh(ω) and
Yvv (ω) are merged into one set of parameters before a final
optimization is performed.

A. Initialization Procedure

Obtaining an initial estimation of modal parameters is car-
ried out from the admittance measurement frequency response.
The process comprises two main stages: peak selection (lead-
ing to modal frequency estimation) and graphical estimation
of bandwidths. In the first stage, a finite set of ML spectral
peaks is selected as to represent the resonances corresponding
to the ML modes to be used for modeling the low-frequency
region (f−L , f+

L ), and MH broader resonances are included to
model the high frequency region (f−H , f+

H ). The low and high
frequency regions are defined arbitrarily. The selection of the
ML low-frequency resonance peaks is carried out via an iter-
ative procedure by which admittance maxima in (f−L , f+

L ) are
rated and sorted by a peak salience descriptor computed from
a smoothed version of the magnitude response, while the reso-
nances for the high-frequency region are distributed uniformly
over (f−H , f+

H ). In the second stage, graphical estimation of the
ML modal bandwidths of the low-frequency region is carried
out by using the resonance half-power rule for each individual
peak.

1) Peak Salience Estimation for Low-Frequency Modes: A
peak salience descriptor tn is computed for every local maxi-
mum �n found in a smoothed version of the magnitude spectrum
of the measured admittance, within (f−L , f+

L ). Smoothing is per-
formed via low-pass filtering of the magnitude response when
expressed in a logarithmic amplitude scale. Salience estima-
tion is carried out from the log-magnitude admittance spectrum
Υ(f) = log10 |Y (f)| as follows. First, for every maximum �n

at frequency fn , two adjacent minima ϑ−n and ϑ+
n are respec-

tively found as the absolute minima in the regions (fn−1 , fn )
and (fn , fn+1) respectively. Then, from each n-th pair of ad-
jacent minima {ϑ−n , ϑ+

n } at respective frequencies f−n and f+
n ,

the minimum ϑ�
n presenting higher log-magnitude is selected,

and its log-magnitude value Υ�
n is used in the computation of

the n-th peak salience descriptor tn as

tn =
∫ f +

n

f −n
Ψn (f)Υ(f)df, (5)

with Ψn (f) defined as

Ψn (f) =

{
0 if Υ(f) < Υ�

n ,

1 if Υ(f) ≥ Υ�
n .

(6)

2) Resonance Frequency Estimation for Low-Frequency
Modes: The selection of ML low-frequency peaks from the
magnitude spectrum as corresponding to the resonances of the
ML individual modes to be modeled in the region (f−L , f+

L ) is
carried out in three steps, involving the use of computed peak
saliences.

First, N maxima �n are found in the region (f−L , f+
L ) of

Υ(f), with N > ML . For each n-th peak, its salience tn is
computed as described above. From computed saliences, the
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ML peaks presenting higher salience are stored into an array c
of mode candidates, discarding the remaining N −ML peaks.
In a second step, the mode candidate array c is repopulated by
adding a subset of the peaks discarded in the previous selection:
for every pair {�mL

, �mL +1} of peaks in c, the discarded peaks
that lay in (fmL

, fmL +1) are stored into an array d, from which
the peak with highest salience is added to the mode candidate
array c. Finally, assuming that through repopulation Q peaks
(with Q < ML ) have been added to the mode candidate array c,
ML + Q salience descriptors are again computed from peaks in
c. After that, the ML peaks with highest salience in c are kept,
leading to a first estimate of the ML mode natural frequencies.
The repopulation step can be carried out iteratively until array
c remains unchanged, leading to the set of initial estimates for
modal frequencies f = {f1 . . . fmL

. . . fML
}.

3) Estimation of Bandwidths of Low-Frequency Modes: From
the initial mode frequencies f , the computation of an initial es-
timate of the respective bandwidths β = {β1 . . . βmL

. . . βML
}

is carried out graphically as follows. For each maximum �mL

located at frequency fmL
, a pair {ϑ −mL

, ϑ +
mL
} of adjacent min-

ima is found at frequencies {f −mL
, f +

mL
} by searching for the

absolute minimum values of Υ(f) in regions (fmL −1 , fmL
)

and (fmL
, fmL +1) respectively. The segments J −mL

(f) and
J +

mL
(f), corresponding to Υ(f) in regions (f −mL

, fmL
) and

(fmL
, f +

mL
) respectively, are linearly approximated to obtain

Ĵ−mL
(f) = a−mL

f + b−mL
and Ĵ+

mL
(f) = a+

mL
f + b+

mL
. From

these two approximations, the steepest slope a�
m is chosen as

a�
mL

= max(|a−mL
|, |a+

mL
|) and, by using the half-power rule re-

lating the bandwidth and characteristic frequency of a resonator
[15], the bandwidth is approximated as βmL

= 3/10a�
mL

.

B. Optimization Algorithm

The algorithm used to refine the initial estimation of modal
frequencies and bandwidths is based on constrained optimiza-
tion of the poles of a recursive digital filter in parallel form. In
the following, and throughout this subsection, Ĥ(z) can refer to
either of the two diagonal entries of the admittance matrix. The
digital filter model is

Ĥ(z) =
M∑

m=1

Hm (z)rm , (7)

where each Hm (z) is defined in (4) by a pair of complex-
conjugate stable poles, and scalar gains rm are real. Initial modal
frequencies and bandwidths are first expressed in the digital
domain by the position of M complex-conjugate pole pairs
inside the unit circle: initial mode frequencies fm are converted
to z-plane pole angles via 2πfm /fs = ∠pm , with fs being the
sampling frequency; initial mode bandwidths are converted to
z-plane pole radiae via βm = − log |pm |/π. Then we employ a
gradient descent routine in which, at each i-th step, an objective
error function is successively evaluated by projecting a target
frequency response over a basis of frequency responses defined
by the pole positions at the i-th step. The optimization routine is
devised as an adaptation of the filter design technique proposed

in [22], where a set of linear constraints are imposed to enforce
feasibility and to aid convergence.

To apply the algorithm for optimizing pole positions by at-
tending to any of the positive-real transfer functions forming
the diagonal elements of the admittance matrix, we pose the
problem as

minimize
w,s

ε(H, Ĥ)

subject to C,
(8)

where ε(H, Ĥ) is an error measure between the measured fre-
quency response H and a synthetic frequency response Ĥ ob-
tained from pole positions as defined by parameter sets w, s; and
C is a set of linear constraints employed to ensure feasibility
and to aid convergence. To solve this problem we use sequential
quadratic programming [29].

1) Mode Parametrization: We parametrize the initial set of
M modes by representing each respective m-th complex pole
pair in terms of its angle parameter wm = |∠pm | and its radius
parameter sm = − log(1− |pm |). This leads to two parameter
sets: a set w = {w1 · · ·wM } of angle parameter values, and
a set s = {s1 · · · sM } of radius parameter values. Then, a key
step is to sort the pole parameter sets so that linear constraints
can be defined in a straightforward manner to ensure that the
arrangement of poles inside the unit circle is preserved during
optimization, therefore reducing the number of crossings over
local minima. Elements in sets w and s are jointly sorted as
pairs (each pair corresponding to a complex-conjugate pole) by
ascending angle parameter wm .

2) Constraint Definition: Constraints C are defined as fol-
lows. First, feasibility is ensured by 0 ≤ sm ∀m ∈ [1,M ] and
0 ≤ wm ≤ π ∀m ∈ [1,M ]. Second, to aid convergence we con-
strain the pole sequence order in set w to be respected, so that
all poles appear in ascending angle parameter. This is expressed
by wm−1 < wm < wm+1 ∀m ∈ [2,M − 1]. Moreover, assum-
ing that initialization provides an already trusted first solution,
we can bound the search to a region around the initial pole
positions. This can be expressed via the additional inequali-
ties w−m < wm < w+

m ∀m ∈ [1,M ] and s−m < sm < s+
m ∀m ∈

[1,M ], where ‘−’ and ‘+’ superscripts are used to respectively
indicate lower and upper bounds, defined during initialization.

3) Error Computation: For the optimization routine to suc-
cessfully approximate the error gradient, we must supply a pro-
cedure to evaluate the error function ε(H, Ĥ |i) at step i as a
function of the model parameters w|i and s|i at step i. This is
carried out in two steps. First, from the pole positions at iteration
i, we solve the convex sub-problem

minimize
r

‖Ĥ|ir− h‖2

subject to r ≥ 0,
(9)

where r = [r1 · · · rm · · · rM ]T is a vector containing posi-
tive gains rm from (7) to impose positive realness, h =
[h1 · · ·hk · · ·hK ]T is a vector containing K samples of the
measured frequency response H evaluated at K uniformly dis-
tributed frequencies 0 ≤ ωk < π, and Ĥ|i is a matrix of basis
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Fig. 3. Example models for the horizontal admittance Yhh of the violin, for
different values of M in 80 ≤ f ≤ 6000 Hz. The top plot corresponds to the
measurement, while each of the remaining four plots (scaled for clarity) display
the model (solid curve) superimposed to the measurement (dashed line), together
with a depiction of the mode frequencies (‘+’ symbols). Model orders were,
from top to bottom, M = 36, 24, 14, 9.

vectors constructed as Ĥ|i = [ĥ1 |i · · · ĥm |i · · · ĥM |i ], with each
hm |i = [hm,1 |i · · ·hm,k |i · · ·hm,K |i ]T containing K samples
of the frequency response of Hm (z)|i evaluated at K uniformly
distributed frequencies 0 ≤ ωk < π, i.e., hm,k |i = Hm (ejωk )|i .

Once the subproblem has been solved, the frequency response
of the model Ĥ(ejω )|i at iteration i is obtained as Ĥ|jr, with
samples arranged in a vector ĥ|i = [ĥ1 |i · · · ĥk |i · · · ĥK |i ]T that
is used to compute the logarithmic error measure

ε(H, Ĥ|i) =
K∑

k=1

∣∣∣log10

∣∣ĥk |i
∣∣− log10

∣∣hk

∣∣∣∣∣ . (10)

We employ a logarithmic error measure to equally account for
low-magnitude and high-magnitude regions of the frequency
response, so that the parameters of low-amplitude modes are
faithfully estimated.

In Fig. 3 we show example models obtained by the optimiza-
tion algorithm to approximate the one-dimensional admittance
Yhh of the violin, for different orders, in 80 ≤ f ≤ 6000. Op-
timizations were performed on a warped frequency axis, for a
warping parameter λ = 0.85, as described in Section IV-D.

C. Modal Decomposition Procedure

The procedure for modal decomposition is described here.
The process, making use of the proposed initial estimation and
optimization algorithms (Sections IV-A and IV-B respectively),
involves three steps.

1) One-Dimensional Decomposition: First, two individual
modal decompositions are performed from the diagonal entries
Yhh and Yvv of the admittance measurement matrix. Each of
these two decompositions comprises two estimation steps: first,
an initial estimation of modal parameters; second, an optimized
estimation of modal parameters. This leads to a set of M0 modal
parameter pairs {ωh,m , βh,m} for the horizontal direction and a
set of M0 modal parameter pairs {ωv,m , βv,m} for the vertical
direction, with each pair defining the m-th modal frequency and
corresponding bandwidth.

2) Mode Merging: Since many of the modes of the system get
excited both in the horizontal and vertical directions, the same
mode may likely be estimated from both measurements. Joining
the two sets of M0 modes independently obtained through the
individual decompositions as described above leads to a set of
2M0 mode candidates from which mode pairs in close proximity
to one another can be assumed as corresponding to the same
mode of the system and therefore merged. We merge the 2M0
mode estimations into a set of M modes (with M ≤ 2M0) by
means of clustering mode frequencies: from each of M found
clusters, we keep only the mode that is closest to the cluster
centroid.

3) Final Estimation: To obtain the final set of modes that will
form the basis, we use a modified version of the optimization
algorithm described in Section IV-B. Starting from the set of M
modes obtained after merging, we minimize the error measure
ε2(Y, Ŷ) = ε(Yhh , Ŷhh) + ε(Yvv , Ŷvv ), where each term in the
sum is computed as defined in (10) and accounts for the error
between one of the diagonal entries of the admittance matrix and
its approximation as a projection over the modal basis defined
by mode parameters at step i.

D. Warped Frequency Decomposition

Both initial estimation and optimization of modal parameters
can be performed over a warped frequency axis as follows. Our
choice for frequency-warping is the bilinear conformal map,
which is defined by the all-pass substitution

z ← ζ + λ

1 + λζ
(11)

and takes the unit circle in the z-plane to the unit circle in
the ζ-plane in such a way that, for 0 < λ < 1, low frequen-
cies are stretched and high-frequencies are compressed, as in a
transformation from frequency in Hertz to a warped, perceptu-
ally motivated frequency scale [30], [31]. Warping of measured
admittance responses is performed by attending to the phase
response of the all-pass transfer function of (11), which leads to
a relation between linear frequency ω and warped frequency 

that can be realized by spline interpolation.

During initialization (see Section (IV-A)), modal frequen-
cies and bandwidths are estimated over the axis 
 of warped
frequencies. We de-warp initial estimations of frequencies and
bandwidths as follows. From each m-th pair of warped mode pa-
rameters (i.e., frequency and bandwidth) we first obtain the cor-
responding complex-conjugate warped pole (pair), represented
by ρm . From the warped pole, we obtain its linear counterpart
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pm via (11) by

pm =
ρm + λ

1 + λρm
, (12)

which then leads to linear-frequency mode parameters.
With respect to the optimization procedure (see

Section (IV-B)), the parallel nature of the model makes
it straightforward to work on a warped frequency axis. Mapping
of Hm (z) in (4) to the ζ-plane yields

Hm (ζ) = γm
1− ζ−2

(1− ρm ζ−1)(1− ρ∗m ζ−1)
, (13)

where

γm =
1− λ2

1− 2λ|pm | cos ∠pm + λ2 |pm |2 . (14)

With this formulation, optimization and modal decomposition
are carried out on the 
-axis as described in Sections IV-B
and IV-C. From optimized, warped-frequency modal parameters
we obtain their linear-frequency counterparts again via (12) as
described above.

V. ADMITTANCE MODELING

The admittance is modeled by the two-dimensional projec-
tion of (3). To guarantee passivity, the problem of finding the
projection coefficients is posed as the constrained minimization

minimize
Rm

ε(Y, Ŷ)

subject to Rm 	 0
(15)

where the 2× 2 matrices Rm are real and ε(Y, Ŷ) is an er-
ror measure between the measurement and the model. From a
two-dimensional admittance measurement (symmetric) matrix
Y, let yhh , yhv , and yvv be column vectors each containing
K samples of its respective frequency response, i.e., yhh,k =
Yhh(ωk ), yhv ,k = Yhv (ωk ), yvv ,k = Yvv (ωk ), with 0 ≤ ωk ≤
π. This leads to a 2K × 2 matrix of the form

Y =

[
yhh yhv

yhv yvv

]
. (16)

Now we proceed with rewriting the right-side of (3) in matrix
form as constructed from a projection over the individual modal
responses Hm (ejωk ) with 0 ≤ ωk ≤ π. First, we define a K ×
M matrix H as H = [h1 · · ·hm · · ·hM ], where each hm is a
column vector with K samples Hm (ejωk ) in 0 ≤ ωk ≤ π. With
matrix H, we construct a 2K × 2M block-diagonal matrix B
defined as

B =
[

H 0
0 H

]
, (17)

which can be interpreted as a two-dimensional modal response
basis. The next step is to set up a 2M × 2M block-symmetric
matrix R as

R =
[

Rhh Rhv

Rhv Rvv

]
, (18)

where Rhh , Rhv , and Rvv are M ×M diagonal, real matrices.
In the m-th entry of the diagonal of matrix Rhh appears the
coefficient from entry (1, 1) of the individual projection matrix
Rm in (3). Analogously, matrix Rhv will contain coefficients
from the M entries (1, 2), and Rvv from entries (2, 2). Now, with
modal basis B and projection matrix R, it is possible to express
the model frequency response matrix as Ŷ = BRS, where

S =
[
1 0
0 1

]
(19)

acts as a 2M × 2 summation matrix, with each 1 representing
a length-M vector of ones. It is important to note that R 	
0⇔ Rm 	 0 ∀m ∈ [1,M ], implying that the model Ŷ will be
passive if matrix R is positive semidefinite. Now we are ready
to express problem (15) as a matrix norm minimization problem
that includes a positive semidefinite constraint on matrix R. If
expressing the model approximation error as ε(Y, Ŷ) = ‖Y −
BRS‖, the problem can be written as

minimize
R

‖Y − BRS‖

subject to R 	 0,
(20)

which is convex and can be solved via semidefinite program-
ming by means of CVX, a package for specifying and solving
convex programs [32].

Frequency responses of example admittance models,
obtained on a warped frequency axis for λ = 0.8 while
constraining mode frequencies to be below 10 kHz, are shown
in Fig. 5. We can observe how the models tend to perform
slightly better at approximating the diagonal terms Yhh and Yvv .
For the particular case of the guitar, it is clear how the model
does a better job at approximating the vertical term, mostly
due to the fact that horizontal admittance of the guitar presents
significantly lower energy, especially in 600 ≤ f ≤ 1000.

A. Comparison to Bank and Karjalainen’s Method

To compare our admittance modeling method to that proposed
by Bank and Karjalainen [18], we used a 2D violin bridge admit-
tance measurement to obtain two models, one for each method.
In both cases the order was set to M = 32, and pole (mode)
finding was performed on the warped domain, with λ = 0.75.
Results are shown in Fig. 4. Two main reasons are behind the
improvement showed by our method. The first reason is pole
estimation. We believe that using an all-pole model (as in [18])
to estimate the poles of a pole-zero system (the admittance) is,
in principle, less effective than using a pole-zero model (the
one proposed here). Moreover, being able to initialize or con-
strain pole positions to be within an interest region helps in
controlling the desired resolution. The second reason is passive
enforcement. In our method passivity is guaranteed at the time
of estimating the gains via formulating a convex problem which,
from a mathematical perspective, provides a better suited and
more elegant framework for joint estimation of all gain matrices
at once. Conversely, the method of [18] is to first solve three
problems independently and then prune the solution by discard-
ing non-passive gain components, leading to a loss of accuracy
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Fig. 4. Comparison results for a violin admittance matrix. Frequency responses of admittance models with order M = 32 and warping coefficient λ = 0.75,
displayed for 80 ≤ f ≤ 6000 Hz. Admittance response curves correspond, from top to bottom, to Yhh , Yv v , and Yv h . Dashed lines are used for measurements,
while solid lines are used for models. For clarity, Yv v and Yv h responses were scaled by −30 dB and −60 dB respectively.

Fig. 5. Frequency responses of admittance models (top plot) and radiation models (bottom plot) for M = 36, displayed for 80 ≤ f ≤ 6000 Hz. Admittance
response curves correspond, from top to bottom, to Yhh , Yv v , and Yv h . Radiativity response curves correspond, from top to bottom, to Eh and Ev . Dashed lines
are used for measurements, while solid lines are used for models. For clarity, responses were scaled as follows: for the violin, viola, and cello, Yv v and Yv h were
scaled by−30 dB and−60 dB respectively; for the guitar, Yv v and Yv v were scaled by−50 dB and−70 dB respectively; Ev were scaled by−40 dB in all cases.
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caused by a preventive downscaling of mode amplitudes: in
particular for this example, we found 18 (out of 64) negative
eigenvalues when enforcing passivity.

VI. RADIATIVITY MODELING

Measured radiativity frequency responses are Eh(ω) and
Ev (ω), for horizontal and vertical bridge excitation respec-
tively. Our assumption is that the total sound pressure at the
microphone will be the sum of the radiated contributions from
the two directions (horizontal and vertical) of the bridge force
excitation. Our aim is to construct a digital filter Ê(z) such that
the sound pressure signal P (z) can be obtained during synthesis
as

P (z) = Ê(z)F(z). (21)

We model the two scalar transfer functions of Ê(z) as projec-
tions over the modal basis. We first define each m-th radiativity
modal (basis) function Um (z) as

Um (z) =
1− z−1

(1− pm z−1)(1− p∗m z−1)
, (22)

which corresponds to a two-pole resonator with one added zero
at DC. We chose to use this basis so that the resonator structure
matches that of the admittance model. Now, we express either
of the radiativity scalar transfer functions Eh(z) or Ev (z) in
Ê(z) as

Ê(z) =
M∑

m=1

(e0,m + e1,m z−1)Um (z), (23)

where e0,m and e1,m are real-valued coefficients that allow con-
trol of both the amplitude and the phase of the resonator.

Given K samples of the target radiativity frequency response
E(ω) and the set of M complex-conjugate pole pairs p =
{p1 · · · pm · · · pM } defining the modal basis, let vectors e0 =
[ e0,1 · · · e0,m · · · e0,M ]T and e1 = [ e1,1 · · · e1,m · · · e1,M ]T

contain numerator coefficients in (23). Projection coefficients
can be obtained via least-squares by

minimize
e

‖Be− d‖2 , (24)

where e = [ eT
0 eT

1 ]T is a real-valued vector; d contains K
uniformly distributed samples of the target frequency re-
sponse at frequencies 0 ≤ ωk < π, i.e., dk = E(ωk ); and
B is a K × 2M matrix of basis functions constructed
as B = [u0,1 · · · u0,m · · · u0,M u1,1 · · · u1,m · · · u1,M ] with
column vectors defined as follows: each vector u0,m =
[u0,m ,1 · · ·u0,m ,k · · ·u0,m ,K ]T contains K uniformly dis-
tributed samples of Um (ejω ) at frequencies 0 ≤ ωk <
π, i.e., u0,m ,k = Um (ejωk ); and similarly vector u1,m =
[u1,m ,1 · · ·u1,m ,k · · ·u1,m ,K ]T contains K frequency-domain
samples u1,m ,k = e−jωk Um (ejωk ).

Frequency responses of example radiativity models, obtained
on a warped frequency axis for λ = 0.8, are displayed in Fig. 5.
In general, radiativity profiles are well approximated above the
first radiating mode. As expected, models show better accuracy
in the vertical direction for the guitar, and in the horizontal di-
rection for the bowed string instruments. In particular for the

cello, the approximation of radiativity profiles is worse in the
high frequencies. Increasing error at high frequencies is typical
in acoustic modeling. In our case, not using a fully anechoic
chamber and not hanging the instruments could be a source for
such error. In fact, from our measurements we cannot deter-
mine whether the radiativity resonances in the high-frequency
region correspond to actual modes of the instrument, or are
instead caused by the non ideal environment. Thus, the error
can be expected because only admittance measurements are
used to perform the modal decomposition, and there are many
unresolved high-frequency modes in these measurements that
determine important details of the high-frequency radiativity.
Fortunately, due to decreasing frequency-resolution at higher
frequencies in human hearing, statistical models can suffice at
high frequencies, so that only crude reflected (at the bridge) and
transmitted (bridge-to-air) power measurements may be needed
for a psychoacoustically adequate model.

VII. EFFICIENT REALIZATION

Following the digital waveguide formulation for loaded junc-
tions [15], let v+

s (n) and v−s (n) respectively be the vectors
of incoming and outgoing transversal velocity waves (in our
case, each vector is two-dimensional) from the s-th string con-
nected to the bridge. Analogously, let f+

s (n) and f−s (n) be the
vectors of incoming and outgoing transversal force waves of
the s-th string acting on the bridge. The transversal veloc-
ity vs(n) and force fs(n) of the n-th string at the bridge are
vs(n) = v+

s (n) + v−s (n) and fs(n) = f+
s (n) + f−s (n).

Being a series connection for transverse waves, the bridge
and the endpoints of the S strings present the same velocity
at all times, while the total sum of string forces must equal
that of the bridge. This yields v(n) = v1(n) = . . . = vS (n)
and f(n) =

∑S
s=1 fs(n), with v(n) and f(n) being the bridge

velocity and force vectors respectively. In the z-domain, it can
be proved that

F(z) =
2
∑S

s=1 ZsV+
n (z)

1 + ZT Y(z)
, (25)

where Zs is a diagonal matrix representing the wave impedance
of the s-th string, ZT =

∑S
s=1 Zs , and Y(z) is the z-domain

expression for the model of the driving-point admittance. From
the bridge force vector F(z), it should be straightforward to
compute the bridge velocity vector V(z) via

V(z) = Y(z)F(z). (26)

Back in the time domain, from the bridge velocity vector v(n)
it is possible to obtain the outgoing velocity wave vectors by
means of v−s (n) = v(n)− v+

s (n).
Because the formulation of the bridge driving-point admit-

tance Y(z) presents a parallel structure that we want to maintain
in our implementation, inverting Y(z) as it appears in (25) is
impractical (the parallel structure would be lost). This problem
could be overcome by reformulating each scalar modal response
Hm (z) in a similar fashion as proposed in [33] and later applied
in [18], where wave-digital parallel adaptors were used to in-
terconnect multiple string (waveguide) terminations. Here we
propose a compact formulation that provides three advantages:
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(i) it enables the direct attachment of any number of waveguide
terminations without the need of wave-digital parallel adap-
tors; (ii) it allows obtaining both the bridge velocity and the
bridge force as intermediate signals during computation of the
reflected waves; and (iii) it facilitates the efficient computation
of any number of radiation outputs without the need for extra
second-order sections.

First, we rewrite the admittance model in (3) as

Y(z) = (1 + z−1)
M∑

m=1

Um (z)Rm , (27)

where each scalar Um (z) is

Um (z) =
1− z−1

1 + a1,m z−1 + a2,m z−2 , (28)

with a1,m = −2|pm | cos(∠pm ) and a2,m = |pm |2 . Now, we
rewrite each scalar Um (z) as Um (z) = 1 + z−1Uq

m (z), with

Uq
m (z) =

c0,m + c1,m z−1

1 + a1,m z−1 + a2,m z−2 , (29)

where c0,m = −1− a1,m and c1,m = −a2,m . With this formu-
lation, Y(z) can be written as

Y(z) = (1 + z−1)(X + z−1Xq (z)), (30)

where

X =
M∑

m=1

Rm , Xq (z) =
M∑

m=1

Uq
m (z)Rm . (31)

Now we use (25), (26), and (30) to derive the two z-domain
expressions needed for our reflectance model:

F(z) =
2
∑N

n=1 ZnV+
n (z)− z−1R(z)

1 + ZT X
(32)

V(z) = (1 + z−1)XF(z) + z−1(1 + z−1)Xq (z)F(z), (33)

where R(z) = (X + (1 + z−1)Xq (z))ZT F(z).
For the radiativity realization, we take advantage of the fact

that the bridge force vector F(z) is available as an intermediate
step. We first rewrite each transfer function E(z) from E(z) in
(21) as

E(z) =
M∑

m=1

e0,m Um (z) +
M∑

m=1

e1,m z−1Um (z) (34)

where e0,m and e1,m are real. Following, we express E(z) as

E(z) = E0 + z−1E1 + z−1Eq
0 (z) + z−2Eq

1 (z), (35)

where

E0 =
M∑

m=1

e0,m , E1 =
M∑

m=1

e1,m , (36)

Eq
0 (z) =

M∑
m=1

Uq
m (z)e0,m , Eq

1 (z) =
M∑

m=1

Uq
m (z)e1,m . (37)

Now, it is possible to obtain the sound pressure signal P (z) as

P (z) =
(
E0 + z−1E1 + z−1Eq

0(z) + z−2Eq
1(z)

)
F(z), (38)

where E0 = [E0,h E0,v ], E1 = [E1,h E1,v ], Eq
0(z) =

[Eq
0,h(z)Eq

0,v (z) ], and Eq
1(z) = [Eq

1,h(z)Eq
1,v (z) ] all present

horizontal and vertical components. It is important to note that
the respective direction terms in Xq (z), Eq

0(z), and Eq
1(z)

share inputs and parallel structure: all four m-th scalar terms
Uq

m (z) present in each of the direction components (horizontal
or vertical) of (32), (33), and (37) can be implemented as
one common second-order section fed with the corresponding
bridge force direction component, irrespective of the number
of radiativity outputs.

VIII. CONCLUSION

The proposed method is able to produce admittance and radi-
ation models that efficiently simulate the behavior of the instru-
ments with great accuracy within the region of interest between
80 Hz and 6 KHz, where signature radiating modes appear.
Because of inherent limitations of the employed instrumen-
tation, measured responses outside the interest range showed
low coherence. In particular for the cello and the guitar, the
interaction between modes of the measurement apparatus and
lower-frequency modes of the instrument made measuring and
modeling a more difficult task. For the admittance models, it is
important to include the lower frequency region (i.e., between
0 and 80 Hz) in the fitting process. This allows the modes of
the measurement apparatus (prominent peaks below 80 Hz) to
also be modeled, leading to a more consistent overall estimation
that accounts for the interaction of such modes with the actual
modes of the instrument. Once the estimation is finished, those
modes and their respective gain matrices can be discarded. In
general, both accuracy and convergence times are improved if
carrying out the estimation on a warped frequency axis.

Example sounds, including one-pole filters to simulate string
losses, are available online.1 Plucked string (radiated) sounds
for guitar, violin, viola, and cello open strings were obtained by
using reflectance and radiation models as described in the paper,
with M = 36, and two radiation outputs for stereo rendering.
In all four cases, ideal plucks are recreated by string velocity
initialization.

A potential improvement to the fitting method can be obtained
by embedding the semidefinite programming step as part of an
outer loop in which mode parameters are estimated, although it
would imply a higher computational cost. A perceptual evalua-
tion might be needed to confirm improvements. Another issue
to be resolved is that, in some cases, modal decompositions
obtained from admittance measurements do not lead to modal
bases able to accurately represent the radiation profiles in the
high end (see the cello radiativity models in Fig. 5). A solu-
tion to this problem could be worked out by also accounting
for the radiation patterns within the modal fitting step, but, as
we discussed at the end of Section VI, in our case it is nearly
impossible to determine whether those resonances correspond
to actual body modes. In fact, high overlap in the high fre-
quencies should make modal fitting increasingly difficult in the
high end; luckily, the decreasing frequency-resolution at higher

1http://ccrma.stanford.edu/˜esteban/suppl/taslp2016
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frequencies in human hearing might indeed compensate for that
effect. Further analyses could encourage the construction of sta-
tistical admittance and radiation models, where modal frequen-
cies, bandwidths, and amplitudes follow empirically inferred
distributions. Multi-microphone radiation measurements would
lead to obtaining per-mode directional patterns, expressed as a
function of the numerator coefficients in the radiativity model.
This, in turn, could be used to construct a spherical modal ba-
sis with which one could efficiently treat virtual instruments
as three-dimensional volumetric sources in virtual acoustic
environments.
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de Catalunya. He was a Junior Researcher at Philips Research Laboratories,
Aachen, Germany, during 2003 and 2004. From 2004 to 2013, he was a Re-
searcher (Music Technology Group) and a Lecturer (Department of Information
and Communication Technologies) at Universitat Pompeu Fabra. He carried out
postdoctoral research at the Center for Computer Research in Music and Acous-
tics, Stanford University, between 2008 and 2014. Between 2012 and 2013, he
was a Visiting Researcher in the Department of Applied Math, Universidad
Federico Santa Marı́a, Santiago, Chile. Through a Marie Curie IOF Fellowship,
he is currently with the Computational Acoustics Modeling Lab/Center for In-
terdisciplinary Research in Music Media and Technology, McGill University.

Gary P. Scavone received the B.Sc. and B.A. degrees in electrical engineering
and music from Syracuse University, NY, USA, respectively, and the M.Sc. and
Ph.D. degrees in electrical engineering and music from Stanford University,
Stanford, CA, USA. He is an Associate Professor of Music Technology at McGill
University, Montreal, QC, Canada, where he directs the Computational Acoustic
Modeling Laboratory. His research interests include acoustic modeling, analysis
and synthesis of musical systems, and sound synthesis software development.

Julius O. Smith received the B.S.E.E. degree in control, circuits, and com-
munication from Rice University, Houston, TX, USA, in 1975 and the M.S.
and Ph.D. degrees in electrical engineering from Stanford University, Stanford,
CA, USA, in 1978 and 1983, respectively. His Ph.D. research was devoted to
improved methods for digital filter design and system identification applied to
music and audio systems. From 1975 to 1977, he was with the Signal Process-
ing Department, ESL, Sunnyvale, CA, on systems for digital communications.
From 1982 to 1986, he was with the Adaptive Systems Department, Systems
Control Technology, Palo Alto, CA, where he worked in the areas of adaptive
filtering and spectral estimation. From 1986 to 1991, he was at NeXT Com-
puter, Inc., responsible for sound, music, and signal processing software for the
NeXT computer workstation. After NeXT, he became an Associate Professor in
the Center for Computer Research in Music and Acoustics, Stanford, teaching
courses and pursuing research related to signal processing techniques applied
to music and audio systems. Continuing this work, he is currently a Professor of
music and (by courtesy) electrical engineering at Stanford University. For more
information, see http://ccrma.stanford.edu/∼jos/.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


