
State-space modeling of sound source directivity: An experimental study of the violin
and the clarinet
Esteban Maestre, Gary P. Scavone, and Julius O. Smith

Citation: The Journal of the Acoustical Society of America 149, 2768 (2021); doi: 10.1121/10.0004241
View online: https://doi.org/10.1121/10.0004241
View Table of Contents: https://asa.scitation.org/toc/jas/149/4
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Modelling and measurement of laser-generated focused ultrasound: Can interventional transducers achieve
therapeutic effects?
The Journal of the Acoustical Society of America 149, 2732 (2021); https://doi.org/10.1121/10.0004302

Substrate vibrations and their potential effects upon fishes and invertebrates
The Journal of the Acoustical Society of America 149, 2782 (2021); https://doi.org/10.1121/10.0004773

Speech intelligibility in a realistic virtual sound environment
The Journal of the Acoustical Society of America 149, 2791 (2021); https://doi.org/10.1121/10.0004779

Nonplanar metasurface for perfect absorption of sound waves
The Journal of the Acoustical Society of America 149, 2323 (2021); https://doi.org/10.1121/10.0003435

Impact of non-individualised head related transfer functions on speech-in-noise performances within a
synthesised virtual environment
The Journal of the Acoustical Society of America 149, 2573 (2021); https://doi.org/10.1121/10.0004220

Mouse middle-ear forward and reverse acoustics
The Journal of the Acoustical Society of America 149, 2711 (2021); https://doi.org/10.1121/10.0004218

https://images.scitation.org/redirect.spark?MID=176720&plid=1454631&setID=407059&channelID=0&CID=525118&banID=520376795&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=4e720670b1b7f18b32058a481954b151b76de2ae&location=
https://asa.scitation.org/author/Maestre%2C+Esteban
https://asa.scitation.org/author/Scavone%2C+Gary+P
https://asa.scitation.org/author/Smith%2C+Julius+O
/loi/jas
https://doi.org/10.1121/10.0004241
https://asa.scitation.org/toc/jas/149/4
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/10.0004302
https://asa.scitation.org/doi/10.1121/10.0004302
https://doi.org/10.1121/10.0004302
https://asa.scitation.org/doi/10.1121/10.0004773
https://doi.org/10.1121/10.0004773
https://asa.scitation.org/doi/10.1121/10.0004779
https://doi.org/10.1121/10.0004779
https://asa.scitation.org/doi/10.1121/10.0003435
https://doi.org/10.1121/10.0003435
https://asa.scitation.org/doi/10.1121/10.0004220
https://asa.scitation.org/doi/10.1121/10.0004220
https://doi.org/10.1121/10.0004220
https://asa.scitation.org/doi/10.1121/10.0004218
https://doi.org/10.1121/10.0004218


State-space modeling of sound source directivity: An
experimental study of the violin and the clarineta)

Esteban Maestre,1,b) Gary P. Scavone,1 and Julius O. Smith2

1Computational Acoustic Modeling Laboratory, Schulich School of Music, McGill University, Montr�eal, Qu�ebec H2V4K2, Canada
2Center for Computer Research in Music and Acoustics, Music Department, Stanford University, Stanford, California 94350, USA

ABSTRACT:
A method is presented for simulating the free-field, frequency-dependent directivity of linear sound sources for use

in real-time within geometric acoustic environments. The method, which is applied to modeling the directivity of a

violin body and a clarinet air column from experimental acoustic data in this study, is based on using minimum-

phase measurements to design a state-space filter, allowing the interactive simulation of a time-varying number of

radiated sound wavefronts, each toward a time-varying direction. With applicability in sound synthesis and/or aurali-

zation within virtual environments, where sound sources change position and orientation dynamically, techniques

are proposed for modeling and simulating directivity profiles on perceptual frequency axes with alternatives for

representing directivity on a per-vibration-mode basis while incorporating relative phase terms or by reduced-order

efficient representations comprising separate components for the signature resonant structure and the associated

directivity on an adjustable frequency resolution. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Modeling and simulation of the frequency-dependent

directivity of sound sources is a long-standing problem in

acoustics with clear applications in computer animation,

immersive media, and music synthesis. Given the role that

music has played in the development of a number of basic

principles for acoustics (Chaigne and Kergomard, 2016;

Fletcher and Rossing, 1998), it is no surprise that musical

instruments have often been the case study in recent

research focusing on measurement and simulation of the

sound radiation properties of sound sources.

After the pioneering work of Meyer (1972), several

studies have proposed measurement techniques for charac-

terizing the directivity of musical instruments in a perfor-

mance situation, either for research on the properties of the

instrument itself or with the purpose of room acoustic simu-

lations or auralizations. Otondo and Rindel (2004) report a

first comprehensive attempt to obtain a representation of the

frequency-dependent directivity of a musical instrument

during playing, using 13 microphones in an anechoic cham-

ber at 45-deg intervals in the horizontal and vertical planes.

The goal with this setup was not to acquire a detailed

description of the whole radiation sphere of the instrument

but to obtain a sample of the variations of the radiation (in

seven octave bands) in both planes to be used afterward in

room simulations. The method consisted of simultaneous

recordings of short isolated tones played on a clarinet, a

trumpet, and a French horn with a similar musical intensity

of mezzo forte over the whole performing pitch range, and

asking the performers to hold the instrument without mov-

ing. A number of later works have improved on the angular

resolution and included other instruments. Behler et al.
(2012) and Pollow et al. (2009) used a 32-microphone array

shaped as a truncated icosahedron to measure sustained

tones of 41 symphonic orchestral instruments, which were

held as still as possible by the musicians. These results were

compiled into a database (Weinzierl et al., 2017), which was

subsequently analyzed by Shabtai et al. (2017) employing

spectral-domain harmonic partial tracking to estimate the

radiation efficiency in third-octave frequency bands. A simi-

lar study, albeit not based on the harmonic peak amplitude

analysis but just on band energy averaging, was presented

by P€atynen and Lokki (2010) for a similar set of instruments

using an array of 22 microphones in pentagonic arrange-

ment, including different dynamics and pitch heights per

instrument. In a more recent study (Bodon, 2016), a capture

system comprising an arc-shaped microphone array was

used to gather high-resolution directivity measurements of

musical instruments in a performance situation wherein the

performer and the instrument were rotated to gather data for

the full sphere surrounding the pair. Canclini et al. (2020)

used multiple plenacoustic cameras and motion tracking of

a violin to obtain radiation efficiency measurements.

After Weinreich (1982), others have attempted to mea-

sure instrument directivities by employing artificial excita-

tion techniques. A first complete work, including

measurements and real-time physical modeling synthesis,
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was presented in Cook and Trueman (1998), where six

string instruments, including three guitars, a mandolin, and

two fiddles, were excited by an impact hammer to obtain

radiation responses by means of a dodecahedral microphone

array. More recently, in a work by Perez-Carrillo et al.
(2011), a musician performed bowed glissandi on a violin

equipped with an electric pickup while simultaneously

recording the pickup signal and the radiated sound via a

microphone array surrounding the instrument; by means of a

purposely devised deconvolution technique, data were then

used for obtaining directional frequency responses, which

could be used to auralize the pickup signal and obtain stereo

sound from the violin while equipped with motion sensors.

Similarly, Shabtai et al. (2015) artificially excited a violin

by injecting an electric current to one of the strings under a

magnetic field while recording the radiated sound. With

regard to automatic excitation of wind instruments, Grothe

and Kob (2013) employed an artificial player for blowing a

bassoon to derive two-dimensional directivity patterns via

continuous measurements in a turntable setup. Later, they

extended their technique to high-resolution three-dimen-

sional directivity measurements but instead used an impul-

sive sound source to excite the bassoon up to 1.5 kHz

(Grothe and Kob, 2019). These works have provided data

comprising per-band directivity diagrams or discrete direc-

tional responses but have not attempted to propose effective

methods for simulating the directivity of moving sources in

virtual environments based on volumetric or geometric

acoustic representations.

Regarding source directivity simulation within volumet-

ric acoustic frameworks, Hacihabibo�glu et al. (2007) incor-

porated frequency-independent directivity into digital

waveguide three-dimensional meshes. With respect to finite-

difference time-domain (FDTD) schemes, frequency-

independent directivity diagrams were first used in Escolano

and L�opez (2007) for simulating sources in room acoustic

simulations. More recently, Bilbao et al. (2019) included

frequency-dependent directivity in the FDTD formulation of

sources, leading to a compact representation involving a set

of distinct finite impulse response digital filters with each

applied to one of several source terms, each conveyed by a

spherical harmonic (SH) basis function. These volumetric

schemes, however, still remain prohibitive for practical

application in interactive virtual environments due to their

high computational cost. In that regard, a more attractive

option is offered by geometric acoustic frameworks where

the directional sound emission of moving sources can be

more affordably incorporated while allowing free-field and

reflected wavefronts to reach the listener. In an early exam-

ple, Huopaniemi et al. (1994) used simplified source direc-

tivity models with fractional delay lines and recursive

digital filters, each dedicated to a wavefront propagation

path. A similar approach was recently presented in

Chaitanya et al. (2020) as part of a hybrid system combining

geometric acoustic simulation and convolution with pre-

computed impulse responses where the authors devote one

generic octave-band equalizer to each propagation path. A

frequency-domain technique involving precomputation via

the boundary element method or equivalent source method

(ESM) is proposed by Mehra et al. (2014), which used per-

band directivity data to represent sources in terms of

frequency-domain SH decompositions of low order; at run-

time, these decompositions were combined with lookup tables

holding precomputed pressure fields produced by elementary

SH sources at regularly spaced positions within a given scene.

This allowed the reconstruction (at rates between 10 or 15 Hz)

of responses incorporating source directivity up to 1 kHz to be

used within a convolution scheme.

As for sound synthesis frameworks incorporating

source directivity, James et al. (2006) proposed a method

for rendering sound from a modal representation obtained

by finite element modeling (FEM) of computer-generated

objects virtually excited by impulsive force signals. The

method circumvents the need for solving the Helmholtz

equation at run-time thanks to using ESM for precomputing

an approximation in terms of a finite number of low-order

multipole equivalent sources distributed across the geometry

of each simulated object. This allows simulating the direc-

tional sound radiation via a superposition of a fixed number

of damped exponentials (modes) for each of the equivalent

multipole sources. In a subsequent work, Wang and James

(2019) also obtain a modal approximation from FEM, but

instead of using ESM, FDTD is used to evaluate the propa-

gation and obtain a real-valued lookup table per mode; later,

at run-time, tables provide a single amplitude per direction

per mode, yielding an efficient approximation where

direction-dependent phase terms are ignored.

This paper presents a method for simulating the free-

field, frequency-dependent directivity of linear sound sour-

ces by designing a multi-output recursive digital filter from

minimum-phase measurement data. The method can be used

to construct efficient, yet, accurate sound synthesis and aur-

alization models departing from the experimental data

obtained from real-world testing or intensive numerical sim-

ulations. It is based on a state-space filter formulation allow-

ing the simultaneous rendering of a time-varying number of

radiated sound wavefronts for interactive geometric acoustic

frameworks where sound sources dynamically change posi-

tion and orientation. First, the off-line analysis of directivity

data of a sound source involves estimating the eigenvalues

and output matrix of a fixed-size, time-invariant state-space

filter whose output signals correspond to sound pressure

wavefronts radiated in a set of discrete static outward direc-

tions from the source. Then, regression and/or interpolation

are used to enable the run-time generation of output matri-

ces interactively, yielding the ability to obtain the sound

pressure signals corresponding to a time-varying number of

wavefronts radiated by a moving source, each toward a

time-varying direction. The method, although of general

applicability in simulating the sound source directivity

within geometric acoustic frameworks, is demonstrated here

to model a violin body and a clarinet air column from real-

world data acquired via high-resolution radiation

measurements.
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Flexible techniques are proposed to simulate sources on

a per-vibration-mode basis or by efficient representations

comprising separate components for modeling the signature

resonant structure and the associated directivity on an

adjustable frequency resolution. In contrast to potential

alternatives based on partitioned convolution with long

impulse responses of a resonant nature, the method allows

the time-varying operation of recursive filter structures

designed over warped frequency axes, yielding low compu-

tational costs while maintaining accuracy in the lower

frequency regions. As opposed to other recent modal frame-

works for interactive sound synthesis of directional sound,

the proposed method incorporates relative phase terms when

combining modal contributions, thus, adding a degree of

freedom for simulating directional magnitude responses

from minimum-phase approximations.

The paper is structured as follows. First, Sec. II introdu-

ces the modeling framework, and Sec. III describes the mea-

surement techniques employed to characterize the violin and

the clarinet. Next, Sec. IV gives details on the methods pro-

posed for obtaining efficient synthesis models, and Sec. V

describes and discusses some obtained results. Finally,

concluding remarks and pointers to future opportunities are

provided in Sec. VI.

II. MODELING FRAMEWORK

Our modeling framework is largely based on the

method first introduced in Maestre et al. (2019) for simula-

tion of acoustic sources and receivers. For completeness, the

framework is first reintroduced as a general-purpose model-

ing tool for linear sound sources, and then it is adapted to

the directivity study presented here.

A. State-space formulation

The state-space approach, well understood and broadly

used in several disciplines of physics, mathematics, and

engineering (Sparks, 1967), is a powerful method that uses

the theory of vector spaces and difference equations to rep-

resent dynamical systems through a flexible abstraction

involving a recursive algebraic relationship between a vec-

tor x of P input excitations, a vector s of M linearly indepen-

dent state variables, and a vector y of Q output observations.

In discrete-time, the state-space filter representation of a lin-

ear, time-invariant dynamical system can be written as

sðnþ 1Þ ¼ AsðnÞ þ BxðnÞ;

yðnÞ ¼ CsðnÞ þ DxðnÞ; (1)

where system matrix A enables state variable recursion,

matrix B is formed by P row vectors with each mapping the

pth input variable onto the M state variables, matrix C is

formed by Q column vectors with each mapping the M state

variables onto the qth output variable, and matrix D defines

the feed-forward relationship between the inputs and

outputs. Often, the matrix D in state-space models of

mechanical systems is defined to be zero as such systems

can be represented by strictly proper transfer functions.

Virtually, an infinite number of valid representations will

satisfy the input-output behavior observed for a particular

dynamical system: given the inputs and outputs of the sys-

tem, each possible choice of what the state variables repre-

sent will define a different state-space and imply a different

algebraic relationship (i.e., a different set of system matri-

ces) between the chosen state variables and vectors of inputs

and outputs of the system. Among all valid representations,

the modal form piques an interest: from a mathematics per-

spective, it involves a diagonal matrix A and, thus, implies

M decoupled state variables; from a physics perspective, the

M state variables are proportional to the amplitudes of the M
modes of the system. System identification techniques

(Ljung, 1999; S€oderstr€om and Stoica, 1989) enable design-

ing a state-space filter from input-output measurements

alone. For example, in structural mechanics, one may decide

to choose a vector of surface driving forces as the input

excitation vector and a vector of surface velocities as the

output observation vector and design a filter to mimic the

observed input-output behavior; if the designed filter is

expressed in modal form, then the state variable vector will

be proportional to the modal amplitudes of the system.

B. Linear sound sources as time-varying state-space
filters

In general, a complete identification of the motion of

the continuous surface of a vibrating object is sufficient to

describe acoustic sound radiation with sound propagating

outward as pressure waves (Williams, 1999). For the pur-

poses of directivity modeling, this work proposes to treat

linear sound sources as dynamical systems substantially pre-

senting minimum-phase behavior. Under this approxima-

tion, it is possible to employ the state-space abstraction to

simulate the frequency-dependent directivity of a sound

source by analyzing a set of input-output minimum-phase

transfer functions obtained from measuring a finite number

of radiated sound pressure signals in a finite number of dis-

crete positions on the boundary of a domain enclosing the

source. This allows simulating the directivity by deciding on

a number M of state variables and estimating the system

matrices from input-output measurements alone, irrespec-

tive of whether those measurements are obtained from test-

ing a real sound source via acoustic measurements or virtual

testing within a numerical simulation of any solid, fluid, or

solid-fluid mechanics needed to reproduce the sound radia-

tion properties of a mechanical structure.

As an example, let us assume a mechanical structure

acting as a linear sound source for which (i) a continuous

input domain is defined as the structure surface on which

any number P of driving force signals, each at position up of

the surface, can be applied to excite the structure, and (ii) a

continuous output domain is defined as an exterior enclosing

sphere on which any number Q of radiated sound pressure

signals, each corresponding to an angle vq, can be measured.

Assuming no input-output feed-forward relationship, a

modal-form, time-invariant state-space modeling abstraction
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for the minimum-phase behavior of the sound source could

require defining a dense set of P0 discrete positions for the

input domain and a dense set of Q0 angles for the output

domain, obtaining a P0 � Q0 matrix of minimum-phase

input-output impulse responses or transfer functions, decid-

ing the number M of state variables, and accordingly estimat-

ing a diagonal transition matrix A, an input matrix B of P0

rows with each corresponding to the p0 th discrete excitation

position, and an output matrix C of Q0 columns with each

corresponding to the q0 th discrete radiation angle, and

imposing D ¼ 0.

However, as interactive geometric acoustic frameworks

would typically entail the simulation of a direct-field wave-

front and a time-varying number of early reflection wave-

fronts propagating from the mechanical structure to each

listener, the number of radiated wavefronts and their angles

would change over time as required to simulate how wave-

fronts radiated from a moving source get reflected from

walls or obstacles before reaching a moving listener. The

same goes for the input as both the number of driving forces

and their positions on the surface may change over time:

imagine how a rigid body simulation of the interaction

between this structure and a solid environment (e.g., the

structure falling and repeatedly bouncing off the ground)

would lead to a time-varying number of contact (excitation)

forces at time-varying positions of the structure surface.

Instead of carrying out the simulation via a time-invariant

state-space filter of the total P0 inputs and Q0 outputs, which

would incur a high computational cost due to large input

and output matrices and probably require purposely devised

mechanisms to avoid discontinuity in inputs and outputs as

excitation positions and radiation directions change over

time, the state-space filter can be reformulated as a time-

varying filter in which the system matrix A is time-invariant

but the sizes and coefficients of matrices B and C change

over time as described below.

To accommodate for a time-varying number of inputs

and/or outputs, let the row vectors of B be referred to as

input mapping vectors, and let the column vectors of C be

referred to as output mapping vectors. With this, the behav-

ior of a sound source can be represented interms of a muta-

ble, time-varying sate-space filter comprising input and/or

output matrices of mutable size, respectively, presenting a

time-varying number of input and/or output mapping vec-

tors, each with time-varying coefficients. Here, the mutabil-

ity and time-varying property of inputs and outputs does not

convey that the modeled sound source object is changing

over time; instead, it conveys that the position and/or orien-

tation from where the sound source is excited and/or radiates

sound is changing over time. In other words, the modeled

dynamical system continues to be linear and time invariant,

but mutable, time-varying input and output matrices are

used to more elegantly simulate time-varying excitation and

observation. In this context, without loss of generality,

assuming no feed-forward input-output relationship and

employing a more convenient vector notation, the discrete-

time update relation of a sound source model is written as

sðnþ 1Þ ¼ AsðnÞ þ
XP

p¼1

bpðnÞxpðnÞ;

yqðnÞ ¼ cqðnÞTsðnÞ; (2)

where n is the time index, sðnÞ is the vector of M state varia-

bles, matrix A is diagonal and holds the vector k ¼ ½k1;…;
km;…; kM� of M system eigenvalues along its diagonal,

xpðnÞ is the pth input (a scalar) of those existing at time n,

bpðnÞ is its corresponding length-M vector of input mapping

coefficients, yqðnÞ is a qth system output (a scalar) obtained

as a linear combination of the state variables, and cqðnÞ is

the corresponding length-M vector of output mapping coeffi-

cients. Note that the total number P of inputs is time vary-

ing, but the “(n)” is dropped to simplify notation. The same

goes for the total number Q of outputs, with q ¼ 1;…;Q
above. The pth product bpðnÞxpðnÞ is referred to as the pth

input mapping, and the qth product cqðnÞTsðnÞ is referred to

as the qth output mapping. A similar filter could be formu-

lated to include input-output feed-forward behavior in

terms of analogously defined input-output mapping coeffi-

cients, but for reasons of simplicity, this is not considered

in the remainder of this work. As it will be seen later, the

physical units of the inputs of this filter are not restricted

by definition (if coefficients are estimated from measure-

ment data, input units will be proportional to the input

excitation measurement units); the output, however, will

likely be in units proportional to pressure (as commonly

measured and simulated in geometric acoustic environ-

ments). It should be noted that, similar to classic state-

space models with fixed-size, time-invariant matrices, this

filter can also be realized via first- and/or second-order

parallel sections (Bank, 2018), although it would present a

time-varying number of inputs or outputs, with each

involving time-varying.

Given a set of M eigenvalues, the time-varying behavior

of the input and output mapping vectors is governed by

respective mapping functions Sþ and S� taking time-varying

coordinates associated with those inputs or outputs (e.g., the

position at which the source object is excited or the outward

direction of a radiated wavefront by the source) as argu-

ments. This can be expressed as bpðnÞ ¼ SþðupðnÞÞ where

up is a vector of coordinates in the input excitation domain

for the pth input, and cqðnÞ ¼ S�ðvqðnÞÞ where vq is a vector

of coordinates in the output observation domain for the qth

output. Mapping functions may be devised from arbitrary

designs or, as outlined later in this work, from measurement

data via regression models or simply interpolation.

C. Our experimental study of source directivity

This work presents an experimental case study of simu-

lating the directivity of a violin and clarinet as sound sour-

ces modeled by time-varying state-space filters similar to

that of Eq. (2) but focused on the output-only behavior by

imposing a fixed, time-invariant one-dimensional input exci-

tation in each case: for the violin, the horizontal force on the

bridge; for the clarinet, the fluid flow at the bore entrance
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(after the reed channel). Note that the respective nonlinear

excitation mechanisms are circumvented, treating the violin

body and air column as linear systems. In both cases, the

output corresponds to the free-field radiated pressure with

the output domain coordinate space defining a sphere sur-

rounding the instrument and determined by two angles, h
and u. Accordingly, in both cases, this leads to a state-space

filter model of the form

sðnþ 1Þ ¼ AsðnÞ þ 1xðnÞ;
yqðnÞ ¼ cqðnÞTsðnÞ; (3)

where x(n) is the input excitation signal (in units propor-

tional to N for the violin and m3 s�1 for the clarinet), 1 is a

vector of ones (a design decision) and yqðnÞ is the qth output

signal corresponding to the sound pressure wavefront radi-

ated toward a qth time-varying direction (in units propor-

tional to Pa) with a vector cqðnÞ of time-varying coefficients

provided by a mapping function S� taking two spherical

angles as arguments, i.e., cqðnÞ ¼ S�ðhqðnÞ;uqðnÞÞ with hq

and uq, respectively, referring to the azimuth and elevation

of the qth radiated wavefront.

The choice of example sound sources used in the exper-

imental study of directivity presented here, rather than

restricting the applicability of the method, helps to demon-

strate its flexibility: the observed sound radiation behavior

of two physical sound sources of fairly different natures (a

violin and a clarinet) can be simulated under the same

framework by simply choosing the appropriate input excita-

tion in each case, deciding a modeling order and estimating

eigenvalues on a warped frequency scale, employing

minimum-phase measurement data for estimating the output

matrix of a time-invariant state-space filter, and using such a

matrix for devising a regression-interpolation scheme to

interactively provide direction-dependent output mapping

vectors during real-time operation of a time-varying filter.

As an application case for the source simulations studied in

this paper, a real-time physical modeling synthesis for vir-

tual reality is a clear example as both the bridge force in

string instruments and the bore input flow in wind instru-

ments can be obtained interactively from respective simula-

tions (Maestre et al., 2014; Maestre et al., 2017a, 2018).

Concerning the violin, a further application example was

advanced by Maestre and Scavone (2019), who used a direc-

tivity model is used to augment the electrical pickup signal

of a silent violin. Similar applications could instead involve

processing of a contact microphone attached to the body of

acoustic instruments (Rau et al., 2018). In any case, given

the principles of the well-known state-space system identifi-

cation theory, this modeling technique could be similarly

applied to simulate the linear part of any other sound source

type (mechanical, electro-mechanical, or otherwise) as long

as its input-output behavior is characterized by an appropri-

ate set of impulse response or frequency response measure-

ments obtained from real testing or from virtual testing

within proper physics-based numerical simulations.

III. MEASUREMENTS

Violin and clarinet radiation measurements were per-

formed in a hemi-anechoic chamber with carpeted floor,

resulting in extremely low reflectivity. The use of a fully

anechoic chamber could potentially improve the quality of

our results, but this limitation has no bearing on the applica-

bility of the method. The sound radiation of a performance-

level violin was measured by exciting the bridge with an

impact hammer and measuring the sound pressure with a

64-microphone quasi-semi-circular array formed by 8 linear

sub-arrays each comprising 8 pre-calibrated Sennheiser KE-

4 capsules (Wedemark, Germany) as displayed in Fig. 1

(left), leading to approximately 7 cm of distance between

capsules. The sampling rate was 48 kHz. A specially

designed rig was used to hold the violin vertically on top of

a pole attached to a rotating base with the strings damped by

rubber bands as depicted in Fig. 1. The base was rotated by

5-deg increments for a total of 72 azimuth h spherical

angles. For each ith rotation, at least 5 measurement repeti-

tions, each providing 1 input force measurement and 60

usable sound pressure measurements (4 capsules from the

top linear sub-array were discarded due to redundancy),

were taken wherein the impact hammer was manually acti-

vated by way of a pendulum to which a thin thread was

attached and pulled from a distance of 3 m [see Fig. 1 (right)

for details]. With this, a set of 60 transfer functions

Hv
hi;uj
ðxÞ ¼ 1

K

XK

k¼1

Pk;hi;uj
ðxÞ

Fk;hi
ðxÞ (4)

were obtained for every ith rotation, where Pk;hi;uj
ðxÞ is the

frequency-domain version of the sound pressure measured

by the microphone located at the jth inclination angle uj in

the kth repetition, and Fk;hi
ðxÞ is the frequency-domain ver-

sion of the excitation force measured by the impact hammer

in the kth repetition. From each ith set of at least 5 repeti-

tions, each comprising non-averaged 60 transfer functions,

60 pairwise magnitude-square coherence functions were

FIG. 1. (Color online) (Left) Semi-circular 60-microphone array used for

violin radiation measurements. The violin is held on the pole attached to the

rotating base. (Right) Detail of the rig used for holding the violin, along

with the arm to which the impact hammer pendulum is attached.
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computed for each possible pair of repetitions; these func-

tions were then integrated over frequency and summed

across the 60 inclinations to get an aggregated pairwise

coherence ranking, indicating the overall similarity between

each pair of repetitions; then, the set of K ¼ 3 with the high-

est ranking were selected for averaging via Eq. (4). After

distance-related gain compensation (the reader is reminded

that the semi-circular array was formed by 8 linear subar-

rays) and conversion to minimum phase, this led to 4320

radiation transfer functions, corresponding to distinct posi-

tions on a centered spherical sector surrounding the instru-

ment with a radius of 0.75 m from a chosen center,

coinciding with the middle point between the bridge feet.

The spherical sector being modeled covered over 90% of

the sphere surface with �p < h < p and 0 < u < 60p=64.

The angle h¼ 0 corresponded to the direction perpendicular

to the top plate, whereas the angle u ¼ 0 corresponded to

the direction pointed by the neck. Each measurement posi-

tion corresponds to a pair ðhi;ujÞ of angles in the vertical

polar convention, conforming to the output coordinates on a

two-dimensional rectangular grid of 60� 72¼ 4320 points.

Such a grid corresponds to the uniform sampling of a two-

dimensional Euclidean space whose dimensions are h
and u.

A similar setup was used to measure a performance-

level soprano clarinet as depicted in Fig. 2 (left). The clari-

net was excited with a driver attached to a six microphone

probe calibrated with three nonresonant loads, measuring

the bore input flow via a least-mean square signal processing

technique as described in Lefevbre and Scavone (2011). The

driver base was attached to the rotating base, and repetitions

were analogously performed to obtain transfer functions,

Hc
hi;uj
ðxÞ ¼ 1

K

XK

k¼1

Pk;hi;uj
ðxÞ

Uk;hi
ðxÞ ; (5)

where Pk;hi;uj
ðxÞ is the frequency-domain version of the

sound pressure measured by the microphone located at the

jth inclination angle uj in the kth repetition, and Uk;hi
ðxÞ is

the frequency-domain version of the measured clarinet bore

input flow in the kth repetition. The same steps were used to

obtain 4320 transfer functions on a sphere with a chosen cen-

ter coinciding with bell ring. The angle h ¼ 0 corresponded

to the direction of the toneholes, whereas the angle u ¼ 0

corresponded to the direction pointed to by the bell. To mea-

sure different fingerings, rubber plugs were cut to size and

fitted to open toneholes as illustrated in Fig. 2 (right). The

complete set of violin and clarinet measurements is available

for download at http://www.music.mcgill.ca/caml/doku.php?

id=projects:direc (Maestre et al., 2018a).

IV. METHOD

The method for filter design and time-varying operation

comprises three main steps: the estimation of eigenvalues is

discussed in Sec. IV A, the estimation of the output matrix

of a fixed-size, time-invariant state-space filter is reviewed

in Sec. IV B, and spatial smoothing and resampling for

time-varying, multi-wavefront synthesis operation is pre-

sented in Sec. IV C. As an efficient alternative, a method for

the time-varying operation is described in Sec. IV D wherein

a reduced-order state-space filter is designed to simulate the

directivity of the instrument while conveying a prescribed

vibration mode structure.

A. Eigenvalue estimation

The first step consists in defining or estimating the set

of eigenvalues k of Eq. (3). Recursive filters that simulate

systems whose impulse responses are real-valued may pre-

sent real eigenvalues and/or complex eigenvalues, with

complex eigenvalues coming in complex-conjugate pairs.

Although eigenvalues could be arbitrarily defined to tailor

or constrain a desired behavior for the frequency response of

the filter (e.g., by spreading eigenvalues over the complex

disk to prescribe representative frequency bands), the eigen-

values corresponding to physical modes can be estimated

from a set of target responses, which are representative of

the behavior of the instrument. To do so, system identifica-

tion techniques (Ljung, 1999; S€oderstr€om and Stoica, 1989)

can be used to estimate a set of M eigenvalues. A simple

procedure suitable for estimation over perceptual frequency

resolutions is described next.

Given the decreasing frequency resolution in human

hearing, convenient compromises between order M and per-

ceptual quality can be reached through estimating eigenval-

ues on a perceptually motivated frequency scale. To do so, it

is possible to use the discrete-time bilinear conformal map,

which is defined by the all-pass substitution

z ðfþ qÞð1þ qfÞ�1
(6)

and takes the unit circle in the z-plane to the unit circle in

the f-plane in such a way that, for 0 < q < 1, low

FIG. 2. (Color online) (Left) Semi-circular 60-microphone array used for

clarinet radiation measurements. The clarinet exciter is held on the pole

attached to the rotating base. (Right) Detail of the rubber plugs used for

simulating the different fingerings.
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frequencies are stretched and high-frequencies are com-

pressed as in a transformation from frequency in Hertz to a

warped, perceptually motivated frequency scale (H€arm€a
et al., 2000; Smith and Abel, 1999). Warping of measured

responses is performed by either applying the substitution of

Eq. (6) to the impulse response measurements or attending

to the phase response of the all-pass transfer function of

Eq. (6), which leads to a relation between linear and warped

frequency that can be realized by spline interpolation. Once

the T ¼ 4320 measured responses have been mapped, autor-

egressive modeling (Bank and Karjalainen, 2010) can be

used to estimate M eigenvalues as the roots of a polynomial

p ¼ ½1 a�, with a ¼ ½a1;…; am;…; aM� obtained by solving

the weighted minimization

minimize
a

XT

t¼1

wt

XL

l¼M

h0tðlÞ þ
XM

m¼1

amh0tðl� mÞ
 !2

; (7)

where h0t are the warped-frequency impulse response mea-

surements, wt are the scalar weights applied to the

responses, and L � M is the number of samples used per

response. Given the uneven distribution of measurement

positions on the sphere, each wt is defined to be inversely

proportional to the area of the respective tth polygon

obtained after Voronoi tessellation (Vorono€ı, 1908). Once M
warped-frequency eigenvalues are estimated, their linear-

frequency counterparts are obtained back from Eq. (6).

Particularly in the lower frequencies and thanks to

frequency warping, eigenvalues appearing in complex-

conjugate pairs will often provide a reliable estimation for

perceptually relevant resonant modes of the modeled source.

If only vibration modes are to be considered in the model,

real-valued eigenvalues can be discarded. Alternatively,

additional immittance measurements may instead be used to

estimate complex eigenvalue pairs via nonlinear optimiza-

tion techniques as described by Maestre et al. (2013,

2017b).

B. Estimation of output mapping coefficients

The second step consists of using measurement data

and the M eigenvalues to estimate the output matrix C of a

fixed-size, time-invariant state-space filter akin to that in Eq.

(1), whose transfer function is HðzÞ ¼ CðzI� AÞ�1
Bþ D.

In multiple-input, multiple-output state-space systems, one

would normally need to jointly estimate input and output

matrices. In the case study of this paper, however, D ¼ 0

and B ¼ 1 [see Eq. (3)], and the transfer function reduces to

HðzÞ ¼ CðzI� AÞ�1
1. This means that it is possible to esti-

mate the coefficients of C by solving T minimization prob-

lems (each corresponding to a measurement angle), each in

terms of the responses of M basis transfer functions HmðzÞ
¼ z�1ð1� kmz�1Þ�1

. Assuming R real eigenvalues kr and J
pairs of complex-conjugate eigenvalues ðkj; k

�
j Þ with M

¼ Rþ 2J and imposing complex-conjugate symmetry to

ensure realness, the problem

minimize
ct

XL�1

l¼0

htðlÞ �
XR

r¼1

crhrðlÞ � 2<
XJ

j¼1

cjhjðlÞÞ

0
@

1
A

2

(8)

is solved for each tth angle, where ct is the tth row of matrix

C and comprises R real-valued coefficients cr and J
complex-conjugate pairs of coefficients ðcj; c

�
j Þ, ht is the

response measurement, hr are the responses of the R basis

transfer functions corresponding to real eigenvalues kr, hj

are the responses of the J basis transfer functions corre-

sponding to complex eigenvalues kj, and L � M is the num-

ber of samples used per response. Note that the coefficients

of matrix C can be equivalently estimated over a perceptu-

ally motivated warped frequency axis, employing a method

similar to what is described by Maestre et al. (2016) for

frequency-domain responses.

C. Spatial processing for run-time operation

At run-time, the vector of mapping coefficients cqðnÞ of

Eq. (3) needs to be obtained interactively for each qth simu-

lated wavefront as a function of the corresponding angle, i.e.,

cqðnÞ ¼ S�ðhqðnÞ;uqðnÞÞ. To allow this, in an off-line spa-

tial pre-processing step, the estimated matrix C is used to

devise the function S–. Notwithstanding the possibility of

devising S� as a parametric regression in terms of elemen-

tary basis functions (e.g., SHs), interpolation of known coef-

ficient vectors stored in lookup tables remain a cost-effective

solution. Still, it is advantageous to use a regression model

for noise reduction, spatial smoothing, or resampling to gen-

erate the tables used for run-time interpolation. As an exam-

ple, it is possible to obtain a SH model of the estimated

mapping coefficients appearing in C and then evaluate the

model to populate a lookup table of a desired size wherein

the distribution of coefficients is more continuous and less

prone to artifacts during run-time interpolation. Let cm be the

mth column vector of the estimated matrix C, associated

with the mth state variable and comprising T coefficients,

with each tth coefficient corresponding to the direction

defined by the angle ðht;utÞ in the original set of T ¼ 4320

measurements. The lth-order SH basis functions (Zotter,

2009) are

Yg
lðht;utÞ ¼ kg

leimut Pg
l cos ðhtÞ; l 2N; �l � g � l;

where Pg
l are the associated Legendre polynomials and kg

l
are the normalization factors

kg
l ¼ ð2lþ 1Þðl� gÞ!ð Þ 4pðlþ gÞ!ð Þ�1

� �1=2

:

By constructing a matrix Yl of size ðlþ 1Þ2 � T containing

the basis functions up to order l and evaluated for all T mea-

surement angles, the weighted minimization

minimize
gm

kW1=2ðcm � YlgmÞk
2
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can be performed where W is a diagonal matrix of weights

wt procured, again, from Voronoi tesselation to obtain the

performed where W is a diagonal matrix of weights wt pro-

cured again from Voronoi tesselation, and obtain the regres-

sion coefficients gm, associated with the mth state variable.

At run-time, given gm and an angle ðhq;uqÞ, it would be

straightforward to obtain Yg
lðhq;uqÞ and then compute cq

m by

linear projection. However, as mentioned above, it is more

convenient to instead use the regression model for precom-

puting lookup tables to be used for interpolation at run-time.

D. Reduced-order modeling

From inspecting Eq. (3), it can be deduced that the com-

putational complexity of the filter will be proportional to

ðM þMQÞ, where M is the order of the filter, Q is the num-

ber of simulated wavefronts, and the cost of output mapping

is proportional to (MQ) and becomes dominant as Q
increases. The order M can be arbitrarily set to achieve a

desired compromise between the modeling fidelity and the

computational cost associated with each simulated wave-

front. However, and especially in the context of sound syn-

thesis applications, the lowering of M may lead to the loss

of the signature modal structure of the sound source. This is

particularly relevant in the case study of this work in which

vibration modes determine not only the directivity but also

the signature sound. To cope with this problem while still

achieving a reduction of the overall computational cost in

multi-wavefront simulation, a strategy for reduced-order

modeling is proposed as follows.

Let k be a set of M ¼ 2J eigenvalues in a model com-

prising J complex-conjugate pairs and no real eigenvalues,

able to faithfully represent the signature modal structure of a

vibrating sound source. Let xj be the natural frequencies,

corresponding to each jth eigenvalue pair (i.e., each jth
mode), and let N̂ðxÞ be a reference radiation transfer func-

tion for the sound source, chosen arbitrarily from the mea-

surement set or obtained by minimum-phase conversion of a

(weighted) average of all T measurements. From N̂ðxÞ, the

output mapping vector c of a single-output, time-invariant

filter

sðnþ 1Þ ¼ AsðnÞ þ 1xðnÞ;
uðnÞ ¼ cTsðnÞ (9)

is designed via least squares, similarly as described in Sec.

IV B. By attending to the modeled reference response NðxÞ,
it is then obtained for each tth measurement HtðxÞ, a set of

J magnitude ratios jHtðxjÞj=jNðxjÞj. From these JT ratios, T
minimum-phase target responses ĥn;t are then reconstructed

via interpolation over the frequency axis and conversion to

the time domain. The responses ĥn;t, each corresponding to

a measurement angle ðht;utÞ, are then used to design a

time-varying state-space filter

snðnþ 1Þ ¼ AnsnðnÞ þ 1uðnÞ;
yqðnÞ ¼ c

q
nðnÞ

T
snðnÞ (10)

of reduced order Mn < M by again following the steps

described in Secs. IV A–IV C. In this configuration for

which the computational complexity of output mapping

becomes proportional to ðMnQÞ, the time-invariant, single

output filter of Eq. (9) conveys the signature modal structure

of the sound source, whereas the reduced-order, mutable

state-space filter of Eq. (10) models directivity at a coarser

level and allows the simultaneous simulation of multiple

outgoing wavefronts toward time-varying directions at a

reduced cost per wavefront. This becomes particularly use-

ful in interactive virtual environments where the simulation

of multiple sound radiation paths may be needed (e.g., mul-

tiple direct-field and reflection signals), making it possible

to reduce the computational requirements devoted to direc-

tivity modeling while preserving the signature vibration

mode structure of the sound source.

V. RESULTS

This section first provides examples of directivity mod-

els obtained in a per-vibration-mode basis as described in

Secs. IV A–IV C. Then, examples illustrating the reduced-

order modeling approach described in Sec. IV D are

presented.

A. Per-mode directivity

1. Violin

For the violin, data are first used to estimate eigenvalue

sets over a perceptual frequency axis (bilinear conformal

map, q ¼ 0:85) as described in Sec. IV A, leading to model-

ing orders J ¼ M=2 ¼ 8; 19; 38 and comprising no real-

valued eigenvalues. To illustrate the ability of the eigen-

value sets to convey the signature vibration mode structure

of the violin, Fig. 3 displays the frequency response

(200–6000 Hz) and impulse response (the first 20 ms) mod-

els obtained for the direction h ¼ 0:95p;u ¼ 1:84p, corre-

spondingly superimposed on the measured frequency and

impulse response, respectively, over logarithmic frequency

and time axes for a better illustration of the modeling accu-

racy. As it can be observed, using a warped frequency axis

allows us to retain detail in the lower frequency region while

yielding a smoother approximation over higher frequencies.

Higher order models provide increasingly better approxima-

tions over a wider frequency band and a closer match in the

time domain.

With regard to SH decomposition and lookup table

resynthesis described in Sec. IV C, a model with J ¼ 38

eigenvalue pairs is used to depict, in Fig. 4, the distribution

of the output mapping coefficient corresponding to the

positive-imaginary eigenvalue of a pair representing a vibra-

tion mode presenting a low-complexity radiation pattern,

with natural frequency near 1740 Hz over the two-

dimensional Euclidean space determined by the original

72� 60 measurement angles (left plots) and a resynthesized

table (right plots) with 64� 64 angles after SH decomposi-

tion of order l ¼ 16. The distribution observed in Fig. 4 for
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the modeled vibration mode suggests the sound radiation by

the region of the f-holes of the violin (Bissinger et al.,
2007). Regarding the vertical lines appearing in the left plots

in Fig. 4, it is assumed that they represent measurement

noise in the form of slight amplitude variations across differ-

ent angular positions of the rotating base, leading to ficti-

tious directivity artifacts of spatial frequencies higher than

those of the vibration modes of interest; such noise can be

eliminated by SH order truncation as illustrated by the

example.

Finally, the model with J ¼ 38 modes is also employed

to demonstrate the time-varying operation. For 512 consecu-

tive steps, the output coordinates (angles h and u) of an out-

going wavefront as captured by an ideal microphone lying

on the sphere surrounding the violin are slewed, simulating

a continuous motion from the initial orientation at (h ¼ 0;
u ¼ 0:1p) to a final orientation at (h ¼ 2prad;u ¼ 0:8p).

Figure 5 compares the measured responses (nearest neigh-

bor) and the modeled responses as obtained from the bilin-

ear interpolation of output mapping coefficients in the

resynthesized table. For reference, Fig. 5 also includes the

response corresponding to an amplitude-only model

obtained by constraining coefficients cj in Eq. (8) to be real

and performing bilinear interpolation of real-valued tables,

similarly to the simplification employed in the method pre-

sented by Wang and James (2019) where direction-

dependent phase is discarded and modes are combined with

real-valued weights. As it can be observed, the additional

degree of freedom offered by allowing relative phase terms

in mode contributions yields a much better approximation

across the frequency spectrum.

2. Clarinet

As with the violin, sets of complex-conjugate pairs of

eigenvalues (bilinear conformal map, q ¼ 0:85) are first

estimated, leading to modeling orders J ¼ M=2 ¼ 8; 17; 31

for the fingering G3 (196 Hz), and orders J ¼ 8; 16; 33 for

FIG. 3. Comparison of measured and modeled responses for the violin for

the direction h ¼ 0:95p;u ¼ 1:84p and different modeling orders. (Top)

Frequency responses of orders J ¼ 8,19,38, top to bottom, respectively, off-

set for clarity. (Bottom) Impulse responses of orders J ¼ 8,19,38, top to bot-

tom, respectively, offset for clarity.

FIG. 4. (Left) Output mapping coefficient distributions over the sphere, cor-

responding to the positive-imaginary eigenvalue of a pair representing a

vibration mode with natural frequency near 1740 Hz. (Top-left) Magnitude,

estimation from measurements; (top-right) magnitude, SH model, l ¼ 16;

(bottom-left) phase, estimation from measurements; and (bottom-right)

phase, SH model, l ¼ 16.

FIG. 5. Time-varying operation of a violin directivity model, simulating a

linear trajectory on the space of orientation angles over 512 time steps from

(h ¼ 0;u ¼ 0:1p) to (h ¼ 2p;u ¼ 0:8p). (Top) Original frequency

response obtained by nearest neighbor. (Middle) State-space filter model

with J ¼ 38 modes via bilinear interpolation over a table resynthesized by

SH decomposition. (Bottom) Amplitude-only model with J ¼ 38 modes,

similar to Wang and James (2019), via bilinear interpolation over a real-

valued table resynthesized by SH decomposition.
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the fingering C4 (262 Hz). Figure 6 displays the frequency

response (150–8000 Hz) and impulse response (the first

20 ms) models obtained for the direction h ¼ 0:95p;
u ¼ 1:84p, superimposed on the measurements. Again,

using a warped frequency axis allows us to retain detail in

the lower frequency region while yielding a smoother

approximation over higher frequencies. In particular, for the

fingering G3, the model of order J ¼ 8 seems insufficient to

properly approximate the band around the first vibration

mode; this problem, however, could perhaps be addressed

by increasing the warping parameter q at the cost of achiev-

ing a worse approximation at higher frequencies. Again,

warped frequency designs allow us to retain detail in the

lower frequency region in spite of moderately low orders.

Higher orders yield better approximations over a wider fre-

quency band and a closer match in the time domain.

The same process was used for SH decomposition and

lookup table resynthesis as was used with the violin. The

fingerings G3 and C4 and respective models with J ¼ 31

and J ¼ 33 eigenvalue pairs are used to depict, in Fig. 7, the

distribution of the output mapping coefficient corresponding

to the positive-imaginary eigenvalue of a pair representing

the fifth vibration mode in each case with natural frequen-

cies near 1340 Hz and 1810 Hz, respectively. The

FIG. 6. Comparison of measured and modeled responses of the clarinet for the direction h ¼ 0:38p;u ¼ 0:55p. (A) G3 fingering, (top) frequency responses

of orders J ¼ 8,17,31, top to bottom, respectively, offset for clarity; (bottom) corresponding impulse responses, top to bottom, respectively, offset for clarity.

(B) C4 fingering, (top) frequency responses of orders J ¼ 8,16,33,, top to bottom, respectively, offset for clarity; (bottom) corresponding impulse responses,

top to bottom, respectively, offset for clarity.

FIG. 7. Output mapping coefficient distributions over the sphere, corresponding to the positive-imaginary eigenvalue of a pair representing the fifth vibration

mode of the clarinet. (A) G3 fingering, J ¼ 31 modes, the fifth mode is at natural frequency near 1370 Hz. (B) C4 fingering, J ¼ 33 modes, the fifth mode is

at natural frequency near 1830 Hz. [(A),(B)] (Top-left) Magnitude, estimation from measurements; (top-right) magnitude, SH model, l ¼ 20; (bottom-left)

phase, estimation from measurements; (bottom-right) phase, SH model, l ¼ 20.
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distributions are over the same two-dimensional Euclidean

spaces as for the violin after SH decomposition of order l ¼
20. It is straightforward to notice a higher complexity in the

pattern displayed by the C4 fingering, which involves three

open toneholes as compared with the G3 fingering (no open

toneholes). As it happened with the violin, measurement

noise appears in the form of vertical lines, which can be

removed by spatial smoothing or SH order truncation.

Finally, models with orders J ¼ 31 and J ¼ 33 are used

again to demonstrate the time-varying operation for the G3

and C4 fingerings, respectively. As with the violin, the con-

tinuous linear motion of an ideal microphone on the sphere

is simulated, this time following two different trajectories:

first, from the initial position at (h ¼ �p;u ¼ 0:4p) to a final

position at (h ¼ p;u ¼ 0:4p) along the azimuth axis and,

then, from the initial position at (h ¼ 0;u ¼ 0:1p) to a final

position at (h ¼ 0;u ¼ 0:8p) along the inclination axis. For

each fingering and trajectory, Fig. 8 compares the measured

responses (nearest neighbor) and modeled responses as

obtained from the bilinear interpolation of output mapping

coefficients in the resynthesized table. Again, for reference,

Fig. 8 also includes the radiation responses obtained by an

amplitude-only model (bilinear interpolation), similar to the

approximation used in the synthesis model of Wang and

James (2019). In the cases of Figs. 8(A) and 8(C), which cor-

respond to the G3 fingering, a slight overestimation of the

amplitude of the first mode can be observed; in the case of

Fig. 8(C), the overestimation is accompanied by a slight

modulation along the azimuth axis. With respect to the slight

overestimation, it is attributed to the remarkably low ampli-

tude of the first mode as compared to the modes above,

which in the measurements [see Fig. 6(A)] can be easily

observed as a less clearly defined resonance, significantly

contaminated by noise—the reader is reminded here that the

chamber in which the measurements were taken, although of

low reflectivity, was not completely anechoic. With respect

to the modulation observed for the amplitude of the first

mode in Fig. 8(C), a potentially straightforward solution

could be to selectively lower the SH truncation order when

dealing with lower frequency eigenvalues.

B. Reduced-order directivity

1. Violin

Following the method described in Sec. IV D,

J ¼ M=2 ¼ 39 eigenvalue pairs are used to obtain three

reduced-order models for the violin, each comprising both

real- and complex-valued eigenvalues with Mn ¼ 24; 16; 8.

To obtain the reference time-invariant model, a weighted

average of all T measurements is first performed with

weights obtained by Voronoi tessellation. The reduced-

order model is then built by SH modeling (l ¼ 16) and

resynthesis as previously described.

To illustrate the behavior of the reduced-order models,

the time-varying operation is demonstrated as with the full-

order model of Sec. V A 1, simulating the linear trajectory

of an ideal microphone lying on the measurement sphere on

the Euclidean space of orientation angles over 512 time

steps from the initial position at (h ¼ 0;u ¼ 0:1p) to a final

position at (h ¼ 2p;u ¼ 0:8p). Figure 9 compares the origi-

nal frequency response measurement (nearest neighbor) and

reduced-order models (bilinear interpolation). For the case

Mn ¼ 24, it is possible to observe how the computational

cost per outgoing wavefront can be reduced by an approxi-

mate factor of 3.17 while still preserving much of the detail,

whereas the case Mn ¼ 8 (reduction by a factor of 9.5)

yields a less accurate model of directivity. In both cases,

however, the signature modal structure is maintained thanks

to the time-invariant reference model. Selecting the appro-

priate orders for the reference and reduced-order model will

depend on the availability of real-time computing power

FIG. 8. Time-varying operation of clarinet directivity models. [(A),(C)] G3 fingering model with J ¼ 31 vibration modes and [(B),(D)] C4 fingering model

with J ¼ 33 vibration modes. For all cases, a linear trajectory on the space of the orientation angles is simulated over 512 time steps: [(A),(B)] from

(h ¼ �p;u ¼ 0:4p) to (h ¼ p;u ¼ 0:4p) and [(C),(D)] from (h ¼ 0;u ¼ 0:1p) to (h ¼ 0;u ¼ 0:8p). [(A),(B),(C),(D)] (Top) Original frequency response,

obtained by nearest neighbor; (middle) state-space filter model via bilinear interpolation over a table resynthesized by SH decomposition; (bottom)

amplitude-only model, similar to Wang and James (2019), via bilinear interpolation over a table resynthesized by SH decomposition.

2778 J. Acoust. Soc. Am. 149 (4), April 2021 Maestre et al.

https://doi.org/10.1121/10.0004241

https://doi.org/10.1121/10.0004241


while accounting for the advantages brought forward by fre-

quency warping.

2. Clarinet

For the clarinet, two sets of J ¼ M=2 ¼ 31 and J ¼ 33

eigenvalue pairs are used, respectively, corresponding to the

G3 and C4 fingerings, to obtain three reduced-order models,

each comprising both real- and complex-valued eigenvalues,

again, with Mn ¼ 24; 16; 8. The reference time-invariant

model is obtained again as a weighted average of all T origi-

nal measurements. Then, the reduced-order model is built

again by SH modeling (l ¼ 20) and resynthesis.

The time-varying operation of the reduced-order mod-

els is demonstrated similarly as with the violin over 512

time steps from the initial orientation at (h ¼ 0;u ¼ 0:1p)

to a final orientation at (h ¼ 2p;u ¼ 0:8p) for each finger-

ing model. Figure 10, again, compares the original fre-

quency response measurement (nearest neighbor) and

reduced-order models (bilinear interpolation). Congruent

findings are observed. For the case Mn ¼ 24, which allows a

computational cost reduction by an approximate factor of

2.58 and 2.75, fairly satisfactory approximations are

obtained. The case Mn ¼ 8 (reduction by a factor of 7.75

and 8.25) yields a less accurate directivity representation.

Again, the signature modal structure is maintained thanks to

the time-invariant model. Choosing the most appropriate

order for both the reference model and reduced-order model

will be a matter of compromise between cost and fidelity in

light of an informed selection of the amount of frequency

warping.

VI. CONCLUSION AND FUTURE WORK

A method for efficiently simulating the sound source

directivity in interactive geometric acoustic frameworks has

been presented. With applications both in sound synthesis

and spatial audio, the method provides a flexible scheme to

simulate sources on a per-vibration-mode basis or by effi-

cient representations comprising separate components for

modeling the signature resonant structure and the associated

directivity on an adjustable frequency resolution. In contrast

to potential alternatives that are based on partitioned convo-

lution with long impulse responses of a resonant nature, the

method allows the efficient simulation of a time-varying

number of radiated wavefronts by operating on a time-

varying state-space filter designed over warped frequency

axes, yielding low computational costs while maintaining

accuracy in the lower frequency regions. As opposed to

other recent modal frameworks for interactive sound synthe-

sis of directional sound, the proposed method incorporates

relative phase terms when combining modal contributions,

thus, adding a degree of freedom for simulating the direc-

tional magnitude responses from the minimum-phase

approximations. Rather than performing a detailed study of

the violin and clarinet directivities, these instruments were

chosen as challenging real-world examples of a diverse

nature to showcase the capabilities of a method that can be

applied to construct simulation models either from real

experimental data or numerically generated data.

Depending on the application case and computational

constraints, an optimal trade-off between cost and percep-

tual quality could be attained via subjective tests, and those

are left for future studies. It should be straightforward to

apply this methodology to near-field modeling by including

distance as a third dimension during measurements and con-

struction of output mapping functions. For nonlinear behav-

iors that can be described by tracing domains over which

eigenvalues display smooth inflection and branching pat-

terns (such as in mode bifurcation phenomena), time-

varying eigenvalues and time-varying output mapping func-

tions could be incorporated. For modeling fingering transi-

tions in the clarinet, a simple interpolation-facilitated

scheme for cross-fading between linear models may suffice

as presented by Maestre et al. (2018) for direction-invariant

single-output simulation.

Beyond obvious applications for the interactive use of

real-time physical modeling synthesis schemes (Bilbao

et al., 2020; Karjalainen, 2008; Maestre et al., 2017a, 2018;

FIG. 9. Time-varying operation of a violin directivity model of reduced

order via a reference model with J ¼ 38 vibration modes (M ¼ 76), simulat-

ing a linear trajectory on the space of orientation angles over 512 time steps

from (h ¼ 0;u ¼ 0:1p) to (h ¼ 2p;u ¼ 0:8p). (Top) Original frequency

response, obtained by nearest neighbor; (second) reduced-order model of

order Mn ¼ 24 via bilinear interpolation over a table resynthesized by SH

decomposition; (third) reduced-order model of order Mn ¼ 16 via bilinear

interpolation over a table resynthesized by SH decomposition; and (bottom)

reduced-order model of order Mn ¼ 8 via bilinear interpolation over a table

resynthesized by SH decomposition.

J. Acoust. Soc. Am. 149 (4), April 2021 Maestre et al. 2779

https://doi.org/10.1121/10.0004241

https://doi.org/10.1121/10.0004241


Rabenstein et al., 2007; Smith, 1992) to render spatialized

music, there is real potential for use in general-purpose vir-

tual reality environments and computer animation. Often

discarded in interactive operation of geometric acoustic

frameworks because of the increased computational cost,

the simulation of sound source directivity could find in this

method an opportunity for flexible integration. In view of

the need for simulating not only direct-field wavefronts but

also reflected wavefronts, the possibility of simultaneously

running directivity models of different orders could enable

the intelligent allocation of computational resources by

interactively switching among models, depending on the rel-

evance presented by the individual wavefronts. Moreover,

propagating state variables instead of wavefronts (Maestre

et al., 2019) may prove computationally advantageous in

some situations.
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