
ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 103 (2017) 317 – 330

DOI 10.3813/AAA.919060

On Minimum Bow Force for Bowed Strings

Hossein Mansour1), Jim Woodhouse2), Gary P. Scavone1)

1) Computational Acoustic Modeling Laboratory, Schulich School of Music, McGill University,
555 Sherbrooke Street West, Montréal, Québec H3A 1E3, Canada

2) Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK.
jw12@cam.ac.uk

Summary
A famous theoretical prediction of the minimum bow force to maintain Helmholtz motion of a bowed string is
re-examined to take account of effects associated with resonances of the instrument body. Starting from a more
robust assumption of an ideal stick-slip velocity waveform at the bowing point rather than a perfect sawtooth-
shaped excitation force at the bridge, the analysis predicts that the minimum bow force, and the force waveform
exciting the instrument bridge, can depend in a complicated way on the position of the bow on the string. Also,
the frequency of “maximum wolfiness” of an instrument like a cello is predicted to shift away from that of the
strong body resonance causing a wolf note. Simulations are used to evaluate the new formulation. For the simple
case in which the string vibrates only in a single polarisation, the results are accurately confirmed. However,
simulation also reveals that string vibration in the second polarisation can change the detailed response. Further
simulations are used to investigate the influence on minimum bow force of some physical details of the model,
especially torsional string motion and the presence of sympathetic strings.
PACS no. 43.40.Cw, 43.75.De

1. Introduction

1.1. Background

When a player plucks a guitar string, almost regardless of
the strength and the position of the pluck, it will lead to a
“musical” guitar sound with a pitch very close to the first
mode frequency of the string. By contrast, not all gestures
applied to a bowed string lead to the desired “singing”
sound: a bowed string is a nonlinear oscillator, capable of a
richer repertoire of vibration regimes than a plucked string.
This motivates the investigation of factors influencing the
ease of playing, or “playability”, which can be somewhat
independent of questions relating directly to sound quality.

Two famous examples of playability factors are the min-
imum and maximum bow forces. The Helmholtz motion,
the usual desired motion of a bowed string, involves a sin-
gle sharp corner travelling back and forth along the string,
triggering slip and stick transitions when passing under-
neath the bow [1]. If the player does not apply enough
normal bow force, the friction may be too weak to hold
the string until the corner arrives, so that an untimely slip
occurs during the nominal sticking phase. This results in
more than one slip per cycle and a consequent “surface”
sound. On the other hand, if the bow force is too high, the
bowhair’s grip on the string is too strong, and the string
force associated with the arrival of the Helmholtz corner
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may be insufficient to trigger the slip. This usually results
in non-periodic motion of the string described as “rau-
cous” or “crunchy”. The thresholds of bow force leading
to these two types of undesirable string motion define the
minimum and maximum bow force, respectively.

Early work by Raman [2], later built upon by Schel-
leng [3], led to simple approximate formulae for the mini-
mum and maximum bow forces. Of these two force limits,
the former makes a better candidate to account for differ-
ences between the playability of different instruments, or
for the note-by-note variations on a given instrument [4].
The minimum bow force depends critically on the small
but non-zero motion at the bridge of the instrument: a
string that is terminated at rigid boundaries has a minimum
bow force very close to zero. However, the maximum bow
force is predicted to be almost independent of the proper-
ties of the body; it depends only on the properties of the
string and the frictional properties of the rosin.

In the remainder of this section Schelleng’s work on the
minimum bow force is reviewed, together with an exten-
sion of his argument by Woodhouse [4]. In the following
section, the analysis is extended to a more general form
involving less restrictive assumptions. The revised model
predicts some significant differences of behaviour com-
pared to the earlier work, and these predictions are verified
using time-domain simulations. Finally, some particular
physical details are discussed to show how they may affect
the minimum bow force: torsional motion of the string,
the presence of sympathetic strings, and out-of-plane vi-
brations of the string.
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1.2. Schelleng’s bow force limits

For an ideal Helmholtz motion, the force that the string ap-
plies to the bridge is a sawtooth waveform with the ramp
slope of T0vb/βL, interrupted by sudden jumps of mag-
nitude T0vb/βLf0, where L is the length of the string, T0

is its static tension, f0 is the stick-slip frequency of the
bowed string, vb is the bow speed, and β is the bow-bridge
distance expressed as a fraction of the string length. As
Schelleng argued [3], if the bridge reacts in a resistive
manner with resistance R, its velocity would be propor-
tional to the applied force. Integrating the sawtooth shape
leads to a waveform of displacement that is parabolic
within each cycle. Treating the short segment of the string
between the bow and the bridge quasi-statically, such a
displacement at the bridge would result in a perturbation
force at the bowing point given by

Fpert =
T 2

0 vbt
2

2Rβ2L2
+K0, − 1

2f0
< t <

1
2f0

. (1)

Time t = 0 is chosen to be half-way through the stick-
ing period of the cycle. The integration constant K0 can
be found by enforcing the condition that the perturbation
force at the bowing point is zero during the slipping phase,
assuming the simple Amontons-Coulomb law of friction.
The result is

K0 = −vbZ
2
0T

2Rβ2
, (2)

where Z0T = T0ms is the characteristic impedance of
the string, ms being the mass per unit length. Equation (1)
then predicts a peak value of the perturbation force −K0 at
t = 0. But the perturbation force cannot exceed FN (µs −
µd) for the Helmholtz motion to be self-consistent, where
FN is the normal force of the bow on the string, and µs

and µd are the static and dynamic coefficients of friction.
Rearranging, the minimum bow force is thus

Fmin =
vbZ

2
0T

2Rβ2(µs − µd)
. (3)

Note that this criterion does not make any claims about
the formation of the Helmholtz motion in the first place.
In general, the formation of the Helmholtz motion is much
harder than maintaining it, as is demonstrated numerically
in [5].

The primary focus of this study is on the minimum bow
force, but for future reference it is convenient to mention
Schelleng’s maximum bow force [3] as well,

Fmax =
2vbZ0T

β(µs − µd)
. (4)

By combining Equations (3) and (4) Schelleng drew his
now-famous diagram that shows the playable range on
a log-log plot of the FN − β plane. A schematic of the
Schelleng diagram is shown in Figure 1: the maximum
bow force line has a slope of −1, while the minimum bow
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Figure 1. The “Schelleng diagram”. The playable range for
Helmholtz motion falls between the maximum bow force from
Equation (4) and the minimum bow force from Equation (3).

force line has a slope of −2, so that the playable range be-
comes narrower as the bow gets closer to the bridge. The
two limits will cross at some point, creating a wedge-like
shape. This simple model predicts that the string will not
be playable if the bow is placed closer to the bridge than
the limit set by the apex of this wedge. Schelleng’s dia-
gram applies to any bowed note: there is always a mini-
mum and a maximum bow force. For certain notes the two
limits may get uncomfortably close together, in which case
a player may describe the result as a “wolf note”.

Schelleng himself proposed two possible enhancements
of Equations (3) and (4). The first concerns µd. The
majority of work on the bowed string has assumed the
“Stribeck” or “friction curve” model of friction, in which
the friction coefficient is regarded as being a function
of the instantaneous sliding speed. The maximum sliding
speed in ideal Helmholtz motion is vb(1 − β)/β, and if µd

is evaluated at this velocity it becomes a function of β and
vb, depending upon the shape of the particular assumed
friction curve. The bow force limits then become slightly
curved lines on the log-log scale [6]. Schumacher pro-
posed a similar modification to the maximum bow force
limit [7]. The correction to both minimum and maximum
bow forces tends to become less important when the player
uses a larger bow speed. The friction-curve model is now
known to be physically inaccurate [8, 9], so the details of
this correction are subject to debate, but certainly the sim-
ple Raman-Schelleng formula requires some correction to
account for the physics of friction.

The second modification that Schelleng proposed for
the bow force limits is to take into account the torsional
motion of the string. The friction force from the bow is
applied to the surface of the string, and causes twisting
of the string as well as transverse displacement. Combin-
ing the two effects, the effective characteristic impedance
of the string from the bow’s perspective would be Ztot =
Z0TZ0R/ (Z0T +Z0R) where Z0R is the characteristic
torsional impedance of the string. To take this effect into
account in the simplest way, ignoring the dynamics of the
string’s torsional motion, Z2

0T in the numerator of the min-
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imum bow force should be replaced withZ0TZtot, andZ0T

in the numerator of the maximum bow force should be
replaced with Ztot. The expected effect is a reduction in
the minimum and maximum bow forces by the same fac-
tor. This issue will be investigated in some detail in Sec-
tion 4.1.

1.3. Incorporating measured body behaviour

There were three restrictive assumptions involved in
Schelleng’s argument: (a) the excitation force at the bridge
can be approximated by the sawtooth waveform resulting
from a perfect Helmholtz motion; (b) the short segment of
the string between the bow and the bridge can be approx-
imated as a straight line and thus treated quasi-statically;
(c) the bridge acts as a simple resistance. It can be argued
that the least robust of the three is (c). To approximate
the dynamics of the instrument body by a single resistance
ignores the influence of the resonant modes of the body:
there is no straightforward way to calculate an equivalent
resistance for different instruments, or for different notes
played on the same instrument.

In response to this concern, Woodhouse introduced a
way to consider more realistic behaviour of the instru-
ment body [4]. The general argument is the same as Schel-
leng’s, except that the sawtooth excitation force is ap-
plied to the measured bridge admittance Y (ω) (the transfer
function between the force and the velocity). The resulting
physical velocity waveform of the bridge notch is read-
ily calculated, based on the Fourier series decomposition
of the sawtooth force waveform. The perturbation force
at the bow can then be calculated by integration, again
based on treating the short segment of the string quasi-
statically, and finding the integration constant by impos-
ing Fpert (±1/2f0) = 0. The minimum bow force is then
found as before, by insisting that the maximum perturba-
tion force is less than FN (µs − µd). It takes the form

Fmin =
2vbZ2

0T

π2β2(µs − µd)
.

max
t

Re

∞

n=1

(−1)n+1

n2
Y (nω0)e inω0t

+Re

∞

n=1

Y (nω0)
n2

, (5)

where ω0 = 2πf0.

2. Revised minimum bow force formula

Recent simulations of bowed string motion [10] have
shown that the excitation force acting on the bridge may
depart significantly from the assumed perfect sawtooth
waveform when the stick-slip frequency of the string falls
close to a strong body resonance. This phenomenon could
invalidate the first assumption made in deriving the mini-
mum bow force relation, both by Schelleng and by Wood-
house. This may be important, because some of the most
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Figure 2. The bridge force measured experimentally on the C2

string of a cello. The upper trace is for f0 = 190.6 Hz, far away
from the wolf region. The middle trace is for f0 = 174.9 Hz,
slightly above the wolf region, and the lower trace is for f0 =
169.2 Hz slightly below the wolf region.

blatant playability issues arise precisely under these cir-
cumstances: playing a note close to a strong body reso-
nance can lead to a “wolf note”, especially prevalent in the
cello [11, 4].

To check whether the effect seen in simulation occurs
on a real instrument, the C2 string of a cello with a promi-
nent wolf note was bowed close to the frequency of the
strongest body mode. The bridge force was monitored us-
ing a piezoelectric pickup system built into the top of the
bridge under the string notch, similar to ones used in sev-
eral previous studies [12, 13, 14]. Examples of the mea-
sured force signal are shown in Figure 2. The hardest notes
to play were found to fall in the range 171–173 Hz. The
bow-bridge distance was not accurately controlled, but the
bow was placed at around β = 0.1 (as can be confirmed
by the spacing of the “Schelleng ripples” [15, 3] in the
force signal). The upper trace in Figure 2 shows the famil-
iar sawtooth obtained well away from the wolf region, at
a fundamental of 190.6 Hz. The middle and lower traces
show the bridge forces when the fundamental falls slightly
above (174.9 Hz) and slightly below (169.2 Hz) the wolf
region. It can be seen clearly that the sawtooth is signif-
icantly distorted in both cases. Examining the frequency
content of the bridge force (not reproduced here), the fun-
damental was found to be systematically weaker compared
to an ideal sawtooth wave when the played note fell below
the wolf region, but stronger when it fell above that range.

The effect presumably arises from interaction between
the string and the body mode, and it would be useful to
extend the minimum bow force calculation to capture this
coupling effect. In order to stay within the spirit of Schel-
leng’s calculation, a different aspect of “perfect Helmholtz
motion” will be assumed: in place of a perfect sawtooth
bridge excitation waveform, a perfect stick-slip velocity
waveform will be assumed at the bowed point. The result-
ing bridge force can then be calculated quite straightfor-
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wardly. Only the short length of string between bow and
bridge need be included in the calculation: since the mo-
tion of the string at the bow is specified, the length of string
on the finger side is effectively isolated from any influence
on the bridge force (provided string rolling on the bow
due to torsion is not allowed: this issue will be discussed
in Section 4.1).

The simplest model, therefore, is to drive the body, with
admittance Y (ω), through a length βL of ideal string with
properties as before. If a harmonic velocity V e iωt is ap-
plied to the end seen from the bow, it is readily shown that
the resulting force Geiωt acting on the body is given by the
transfer function

G

V
=

iZ0T

iZ0TY cos kβL − sin kβL
, (6)

where k = ω/c is the wavenumber, and the wave speed
c = T0/ms. A more complicated version of k could be
used to take into account damping and bending stiffness
of the string (see [16] section 4.4), but the simple version
used here is in keeping with the level of approximation
employed in other parts of the discussion, and by Schel-
leng. It is reassuring to note that this expression reverts to
1/Y as expected if β → 0. If the body were to be rigid
(Y = 0), the transfer function would become

G

V rigid

=
Z0T

i sin kβL
≈ Z0T

iωβL/c
=

T0

iωβL
, (7)

where the approximate expressions apply if β is very
small. The final expression is precisely the “straight
string” result used originally by Schelleng, whereby the
bridge force is a scaled version of the integral of the ve-
locity waveform. It is convenient to introduce the non-
dimensional ratio of the transfer functions in Equations (6)
and (7), which captures the correction to the bridge force
arising from a non-rigid body,

ζ =
sin kβL

sin kβL − iZ0TY cos kβL
. (8)

For future reference, it is useful to note the driving-point
admittance at the “free” end of the string, based on the
same level of approximation: this is given by

YTb = − 1
Z0T

YZ0T cos(kβL) + i sin(kβL)
cos(kβL) + iYZ0T sin(kβL)

. (9)

Including the finger side of the string, assuming an ideal
string with a rigid termination, the combined driving-point
admittance YT (ω) is then given by

1
YT

=
1
YTb

+ iZ0T cot k(1 − β)L . (10)

The rest of the argument for the minimum bow force now
follows through exactly as before. A formula for the min-
imum bow force could be constructed directly using the
Fourier series representation of the Helmholtz velocity
waveform and the transfer function from Equation (6),
but it is simpler to say that the original formula Equation

(5) still applies, except that everywhere that Y appears it
should now be replaced by ζY . The modified minimum
bow force thus takes the form

Fmin =
2vbZ2

0T

π2β2(µs − µd)

· max
t

Re

∞

n=1

(−1)n+1

n2
ζ(nω0)Y (nω0)einω0t

+Re

∞

n=1

ζ(nω0)Y (nω0)
n2

. (11)

Note that, similar to the bridge admittance, parameter ζ
is a complex value, so the relative phase of the excitation
force and the response is automatically taken into account.

To explore the consequences of this model it is useful to
express the bridge admittance in terms of the body modal
properties, in the standard way. Suppose the kth mode has
frequency ωk, Q factor Qk, and mass-normalised modal
amplitude at the string notch in the plane of bowing uk:
then

Y (ω) =
k

iωu2
k

ω2
k + iωωk/Qk − ω2

. (12)

Equivalently, this can be expressed in terms of the effec-
tive modal mass Mk = 1/u2

k. Now focus first upon the
effect of a single body mode, such as is responsible for the
classic cello wolf note. A single term from the summation
describes this mode, and its effect can be seen in simplest
form by factorising the quadratic expression in the denom-
inator and then expanding in partial fractions,

iω

Mk(ω2
k + iωωk/Qk − ω2)

(13)

≈ i
2Mk

1
ω +$∗

k

− 1
ω −$k

(14)

where $k ≈ ωk(1 + i/2Qk), ∗ denotes the complex con-
jugate and the modal damping is assumed to be small.
The first partial fraction term describes a pole at negative
frequency, which can be neglected in this approximation.
This leaves

Y ≈ − i
2Mk(ω −$k)

, (15)

so that the modified response according to the model de-
veloped above can be rearranged into the form

ζY ≈ − i

2Mk(ω −$k − Z0T
2Mk

cot kβL)

≈ − i

2Mk(ω −$k − Z0T
2Mk

cot πβ)
. (16)

The final expression applies when frequency is controlled
by a player, adjusting the length of the string to give a fun-
damental frequencyω so that kL = π. The expression (16)
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Figure 3. Effect on bridge force of a single body resonance at
172 Hz with a Q factor of 40 and effective mass of 120 g: (a) the
dimensionless ratio |ζ(ω)| defined in Equation (16); (b) original
bridge admittance |Y (ω)| (dashed line) and the modified version
|ζ(ω)Y (ω)| for several values of β.

describes a single pole with the same residue as in Equa-
tion (15), but the (complex) frequency has shifted from
$k to $k + (Z0T/2Mk) cot πβ. For a player searching out
a wolf note, the frequency of “maximum wolfiness” is pre-
dicted to shift upwards, by an amount that increases as the
bowing point moves nearer to the bridge.

These approximate results are illustrated in Figure 3.
The chosen case has the single body resonance at 172 Hz
with a Q factor of 40, and in order to show the effect in a
rather extreme form, a low effective mass of 120 g is as-
sumed. Figure 3a shows the magnitude of the function ζ
for a range of values of β. It is immediately clear that the
model agrees with the experimental observation that the
bridge force near the fundamental frequency tends to be
reduced below the body resonance, and increased above
it (but note that the actual switch of behaviour occurs
slightly above the body resonance frequency). Figure 3b
shows the corresponding plot of the modified body admit-
tance |ζY | compared to its original version |Y |. A single
peak is seen, as predicted, moving to higher frequency as
β is reduced. The height of the peak stays fixed, exactly as
predicted by Equation (16).

Figure 4 shows the simulated bridge force for the same
model, in a form that is directly comparable to Figure 2.
The parameters used correspond to a bowed C2 cello string
[17], stopped at positions corresponding to fundamental
frequencies 169.2 Hz, 174.9 Hz, and 190.6 Hz. The bow
was positioned at β = 1/9.21. The general similarity be-
tween the two sets of plots is very clear.

Next, the minimum bow force as a function of the
played note is calculated from Equations (5) and (11) and
the predictions are compared against one another in Fig-
ure 5. The same single-resonance body is assumed, and
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Figure 4. Simulated bridge forces for the case of a single body
resonance at 172 Hz with a Q factor of 40 and effective mass of
120 g, directly comparable to ones shown in Figure 2. The upper
trace is for f0 = 190.6 Hz, far away from the wolf region. The
middle trace is for f0 = 174.9 Hz, slightly above the wolf region,
and the lower trace is for f0 = 169.2 Hz slightly below the wolf
region.
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Figure 5. Calculated minimum bow force for a single-resonance
body with the resonance frequency of 172 Hz. The red-dashed
line shows the calculated minimum bow force predicted by Equa-
tion (5) and the black-solid line shows the same quantity pre-
dicted by Equation (11). The vertical lines indicate the standard
frequencies of equal-tempered semitones, for reference.

β is fixed at 1/9.21. It can be seen that the frequency of
the hardest note to play (the peak in the minimum bow
force plot) is shifted upwards for the prediction made by
Equation (11). For the particular chosen value of β, this
frequency is shifted from 172 Hz to 174.6 Hz. The smaller
peak at around 86 Hz represents a note that has its 2nd har-
monic close to the body resonance frequency.

3. Validation with time-domain simulation
results

3.1. The perturbation force at the bow

A time-domain simulation model described in detail else-
where [17, 18] can be used to test the modified predic-
tions of minimum bow force. The model can include any
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desired combination of: the frequency-dependent damp-
ing behaviour, bending rigidity and torsional motion of the
string; the coupling to body resonances and to the sympa-
thetic strings via the bridge; both polarisations of trans-
verse string motion; transverse and longitudinal vibrations
of the bow hair ribbon, and its coupling to the bow stick.
The model can also be run with different models for dy-
namic friction at the bow-string interface, but the simple
friction-curve model is used for all simulations in this pa-
per because the analytical results for minimum bow force
assume that model.

As has been discussed in Section 1.2 the perturbation
force at the bowing point, assuming a perfect Helmholtz
motion and a resistive end support, is a parabola with its
maximum value in the middle of the sticking phase. This
pattern repeats every cycle, and in between each pair of
parabolas is a section of slipping represented by zero per-
turbation force if Coulomb friction is assumed. The actual
waveform of friction force, however, is much more com-
plex. It can be influenced by the various model features
listed above, and it is useful to show some examples be-
fore using simulations to address directly the question of
minimum bow force: see Figure 6.

The first notable structure in the perturbation force is
the pattern of Schelleng ripples, which are a consequence
of rounding of the Helmholtz corner. When the corner ar-
rives at the bow from the finger side, it begins to interact
with the bow before slipping is triggered; similarly, on the
bridge side the tail of the corner continues to interact with
the bow after recapture has been triggered. Those inter-
actions occur in the sticking phase, during which the bow
acts as a barrier and reflects the waves that arrive at it. That
reflection requires an increase in the perturbation force at
the bow, giving rise to the so-called “rabbit ears” appear-
ing in the friction force just before and after the slipping
phase [3]. These reflected waves at the bow get trapped be-
tween the bow and their corresponding termination point,
and together with their counterparts from the cycles before
and after, form a structure of ripples with period βP where
P is the period of the full-length string [15, 3].

A consequence of the friction-curve model is that the
ripples on the finger side tend to be larger than the ones on
the bridge side, because they are produced by the large
jump of the friction force before triggering of the slip,
while the ones on the bridge side are created from the
smaller jump before recapture. The effect is demonstrated
in Figure 6a, which shows the simulated friction force at
the bowing point for a damped but perfectly flexible C2

string terminated at rigid supports. The velocity of the
string at the bowing point is also plotted, to indicate the
timing of transitions between sticking and slipping. The
only source of dissipation in this system is the damping
of the string, which is very low; so the general trend of
the friction force is flat, apart from the prominent Schel-
leng ripples. The arrows labelled ‘1’ and ‘2’ point to the
“rabbit ears”. β was chosen at around 1/13, so there are 13
Schelleng ripples in each string period. The “rabbit ears”
do not have implications for minimum bow force as they
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Figure 6. (Colour online) Samples of simulated friction force at
the bowing point non-dimensionalised by the normal bow force
(solid-black lines), overlaid on the synchronised string velocity
at the same point (blue dashed-dotted lines). (a) is for a rigidly
terminated, damped, but perfectly flexible string, and (b) to (d)
are the same as (a), except in (b) the torsional motion of the
string is included, in (c) the string’s bending rigidity is included
and in (d) the bridge is a single resonator with mode frequency
of 172 Hz (the features are added individually). The simulations
are made on the C2 string played at 164.23Hz with a normal bow
force of 0.746 N and β = 0.0764. The red-dashed line shows the
constant value of 1.2, which is the maximum value considered
for the static friction coefficient.

happen at the boundaries of the slipping phase. The most
important ripples for triggering an early slip are probably
the ones that have only been reflected once at each bound-
ary, so that they are the least attenuated. These two ripples
are shown by arrows ‘3’ and ‘4’ for the bridge and finger
sides, respectively.

The next influence on the friction force at the bowing
point is torsional motion of the string. One important effect
of torsional motion is to modify the effective characteris-
tic impedance of the string as seen by the bow. A second
effect is to allow the string to roll on the bow during stick-
ing, which allows the Schelleng ripples (or any other dis-
turbances) arriving at the bowing point during sticking to
‘leak’ past the bow. This results in relatively smaller fluc-
tuations of friction force at the bow. This effect is demon-
strated in Figure 6b, which is the same as Figure 6a except
that the torsional motion of the string has been added to
the model. The ripples are much weaker, and there is also
a gentle hill-like structure in the force waveform, presum-
ably caused by the added damping of the torsional motion.

Another effect on the friction force that might conceiv-
ably be significant is the “torsional spike”. The mechanism
that generates “rabbit ears” also results in outgoing tor-
sional waves. In particular, the torsional pulse initiated by
the large jump in friction force at the end of sticking is sent
toward the finger side. As torsional waves travel roughly
five times faster than transverse waves, the pulse arrives
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back to the bow early in the sticking phase and causes a
disturbance that could possibly trigger a slip. The spike is
quite insignificant in the example waveform in Figure 6b
(marked by an arrow), but under some circumstances it
can be bigger.

Bending stiffness of the string also leads to a distur-
bance in the friction force. It causes higher-frequency
waves to travel along the string faster than low-frequency
waves, so that the high-frequency content of the Helmholtz
corner arrives at the bowing point before the main peak
arrives, forming what can be called “precursor waves”.
Those precursor waves hit the bow in the nominal sticking
phase, so they have to be reflected and in the process re-
quire an increased friction force at the bowing point. After
a few periods, the reflected precursor waves from different
cycles merge so that the individual origin of each feature
cannot easily be discerned. Figure 6c shows an example:
all the parameters of the model are the same as for Fig-
ure 6a, except that the bending stiffness of the string has
been added.

The final contribution to the perturbation force at the
bow is the one already discussed: the motion of the bridge.
Figure 6d shows an example of how a non-rigid bridge
affects the friction force at the bow, all other parame-
ters being the same as for Figure 6a. For simplicity, a
single-resonance body has been considered with a reso-
nance frequency slightly above the played frequency of the
string. The effect is a sinusoidal contribution to the friction
force. For a more realistic multi-resonance case the body-
induced perturbation would be a superposition of such sine
waves, which is usually dominated by the strongest body
resonance falling close to the string’s fundamental, or one
of its harmonics.

3.2. The playable range and sawtoothness

The results of the time-domain simulation model can now
be compared with the predictions of the minimum bow
force from Equation (11), which tries to capture the ef-
fect of a non-rigid bridge. Note that among the mech-
anisms just illustrated, all except the trapdoor effect of
the torsional waves are detrimental to the stability of the
Helmholtz motion, so both original and revised predictions
of minimum bow force can be expected to underestimate
the minimum bow force to some extent. The predictions
should give a better match to the actual minimum bow
force close to strong body resonances where the movement
of the bridge is the major contributor to the perturbation
force at the bow. Away from that, other effects — not ac-
counted for in the theoretical relations — gain significance
and widen the gap.

In keeping with Schelleng’s original argument, for each
combination of β and FN the simulated finger-stopped
C2 string was initialised with Helmholtz motion and then
monitored to see whether or not it could sustain that vi-
bration regime (see [18] for details). For the purposes of
this study, any motion of the string that involves only one
stick and slip per string period, including “S-motion” [19],
was classified as Helmholtz motion. For clarity a single
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Figure 7. (Colour online) The Schelleng map of the playable
range for a simulated damped but perfectly flexible C2 cello
string terminated at a single-resonance body at 172 Hz and with
an effective mass of 120 g. The torsional vibrations of the string
were excluded from the simulations. The number on top of each
subplot shows the relative frequency of the played note with re-
spect to the body resonance. The color of the simulated sample
points represents their sawtoothness, defined in the text and ac-
cording to the scale shown on the color bar. The overlaid blue
dashed-dotted line shows the maximum bow force limit calcu-
lated from Equation (4), the red-dashed line shows the minimum
bow force calculated from Equation (5), and the black-solid line
is the same quantity calculated from Equation (11).

body resonance was considered, using the same rather ex-
treme case as in the results presented earlier: frequency
172 Hz, effective mass 120 g and Q factor 40. Only a single
polarisation of the string was considered. The frequency-
dependent intrinsic damping of the string was based on
Valette’s relation [20], with parameter values taken from
[17]. The stiffness of the string and its torsional motion
were excluded from the model at this stage. The string
was bowed with a relatively small constant bow speed of
5 cm/s.

Figure 7 shows the Schelleng diagrams calculated from
the simulated data, overlaid on the theoretical maximum
bow force from Equation (4) (dashed-dotted line), mini-
mum bow force from Equation (5) (dashed line), and its

323

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



ACTA ACUSTICA UNITED WITH ACUSTICA Mansour et al.: On minimum bow force
Vol. 103 (2017)

revised version from Equation (11) (solid line). The vari-
ation of the dynamic friction coefficient as a function of
the sliding velocity has been included in the calculation
of those theoretical limits. The simulations are made for
24 values of string fundamental frequency, starting from
162.35 Hz and increasing by 20-cent steps. Each subplot
specifies the frequency relative to the frequency of the
body mode at 172 Hz. The data points in each subplot are
spaced logarithmically on the β axis from 0.016 to 0.19 in
20 steps, and on the bow force axis from some lower limit
to 11 N in 30 steps. The lower limit of bow force for each
string frequency and β value was manually adjusted, itera-
tively when necessary, so that it is always close but smaller
than the minimum bow force at that particular combina-
tion.

The shading scheme used in Figure 7, also calculated
from the simulated data, is based on a metric to capture
the extent of deviation of the calculated bridge force from
being a perfect sawtooth wave. This metric (named “saw-
toothness”) is the relative strength of the fundamental fre-
quency component to the second harmonic normalised by
a factor 2, the value of the relative strength for a perfect
sawtooth wave. Thus a perfect sawtooth has a sawtooth-
ness of 1, while any smaller value connotes a weaker-
than-expected fundamental and any larger value connotes
a stronger-than-expected fundamental. Although the crite-
rion is relatively crude, it reveals a clear and systematic
pattern.

It is immediately striking how well the revised version
of the minimum bow force relation fits the lower boundary
of Helmholtz motion. Both theoretical estimates slightly
underestimate the minimum bow force, as anticipated, but
the revised equation makes a much better prediction of the
trend. Of particular interest are the range of relative fre-
quencies −9.65Hz to +4.02Hz in Figure 7 where there
are many occurrences of Helmholtz motion below the level
set by Equation (5). The revised minimum bow force limit
is curved in a manner that generally avoids this situa-
tion, missing only 4 instances of Helmholtz occurrences
across all simulated cases. For relative frequencies +1.99
to +8.13Hz a local maximum occurs in the minimum bow
force curve. It is encouraging to see that the β-value of
this maximum depends on the fundamental frequency of
the simulated string as predicted by Equation (11), with
its physical origin described by Equation (16).

In extreme cases this local maximum crosses the max-
imum bow force line, with the striking consequence of
splitting the playable range. These splits are plainly visible
in the simulated data, following the predicted pattern in all
cases (see the results for relative frequency +6.06Hz, for
instance). This phenomenon is entirely absent from Equa-
tion (5), a difference which may well prove to be signif-
icant to a player. The maximum bow force limit set by
Equation (4) makes a very good prediction of the upper
boundary of Helmholtz motion, lending credence to Schel-
leng’s original argument. The few exceptions for which
“Helmholtz motion” was achieved above that boundary
were checked manually, and were confirmed to correspond

to S-motion [19]. S-motion is expected to occur for β val-
ues near, but not equal to, simple integer fractions, and
it is predicted by Schelleng’s argument to have a higher
maximum bow force than Helmholtz motion so that it can
appear in otherwise raucous territory.

The behaviour of the sawtoothness metric follows the
pattern described earlier: the general rule is that at fre-
quencies lower than the body resonance the share of the
fundamental is weaker than expected, while it becomes
stronger than expected at frequencies above the body res-
onance. There is some β-dependency as well, as is clear
from the plots: the sawtoothness metric is systematically
lower for small β values, and higher for larger values.
There seems to be no particular bow force dependency:
the equi-sawtoothness lines are approximately vertical in
each subplot. A quantitative comparison of these simu-
lated sawtoothness results with theoretical predictions of
Equation (8) also revealed a very close agreement between
the two; those results are not reproduced here.

Note that the simulations for Figure 7 were performed
for the heaviest string of the cello and with a smaller-than-
normal effective body mass to show the trends in extreme
form. A wide range of similar simulations have been per-
formed with more realistic parameter values [16], not re-
produced here, and in all cases the prediction of the min-
imum bow force from Equation (5) was found to pass
above some Helmholtz samples while the revised predic-
tion curves correctly mirrored the simulated behaviour.
There is always a tendency for the Helmholtz region to
extend toward lower β values for frequencies below the
wolf region, while the Helmholtz region is reduced in the
small-β range for frequencies above the wolf region.

With a multi-resonance body, the pattern is more com-
plicated and occurs over a wider range of frequencies as
there is more than one mode contributing to the response
of the body in the frequency range of interest. The playable
range is not usually split into two parts for any simulated
note when a more realistic model of the body is consid-
ered. All the effects become weaker, as expected, when a
lighter D3 string is simulated in place of a C2 string.

4. Influences on minimum bow force

4.1. Torsional string motion

The simulation model can now be used to explore the ef-
fect on minimum bow force of the various additional phys-
ical effects listed earlier. As a first step, the simulations of
Figure 7 were repeated with torsional motion of the string
included in the model. Figure 8 shows a comparison be-
tween the simulated data and the analytical predictions of
the maximum and minimum bow forces calculated from
Equations (4) and (11). The dashed line shows the ana-
lytical prediction of the minimum bow force when Z2

0T
in Equation (11) is replaced by Z0TZtot, and the dotted
line is the prediction of the maximum bow force when
Z0T in the numerator of Equation (4) is replaced with
Ztot, as suggested by earlier researchers [6, 7]. Interest-
ingly, the predictions made without consideration of the
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Figure 8. (Colour online) Same as Figure 7 except the torsional
motion of the string is included in the simulations. The blue
dashed-dotted line shows the maximum bow force limit calcu-
lated from Equation (4), the black-solid line shows the minimum
bow force calculated from Equation (11). The red-dashed line
and the black-dotted lines are the minimum and maximum bow
forces predictions which also take into account the torsional mo-
tion of the string as explained in the text.

torsional motion give significantly closer matches to the
simulated data than the ones with such consideration. This
conclusion is consistent with recent experimental findings
by Mores [21] about the maximum bow force.

To understand this somewhat surprising observation, it
can be argued that the influence of torsional motion on
playability should manifest itself through the admittance at
the bowing point as felt by the bow. In the spirit of the ear-
lier calculations in this paper, it is easy to write down a first
approximation to the combined admittance including the
effect of torsional vibration. The admittance at the bowing
point associated with torsional motion alone is given by

YR =
1

iZ0R cot kRβL + cot kR(1 − β)L
, (17)

where kR is the wavenumber of torsional waves. The cor-
responding admittance for transverse motion alone was
given in Equation (10), and the combined admittance
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Figure 9. (Colour online) The magnitude of the bowing point
admittance plotted against the normalised frequency. The results
excluding torsional motion, from Equation (10), are shown by
the thick black line and the results including torsion as described
in the text are shown by the thin red line.

is simply the sum of these two. The magnitudes of the
bowing-point admittances with and without allowing for
torsional motion are compared in Figure 9, and it can be
seen that they are indeed very close in the lower frequency
range.

The key to this observation is that the first torsional
mode of the string occurs at almost five times the stick-
slip frequency of the string when it is bowed. As a re-
sult, for frequencies below the 5th harmonic of the bowed
string the numerical value of YR remains very small, so
the bowing-point admittance is little affected by it. To
his credit, Schumacher left the door open to this pos-
sibility, noting that replacing Z0T by Ztot ignores “the
normal-mode structure of the rotational modes, thus in ef-
fect treating the string as if it were unbounded for rota-
tional waves.” [7].

4.2. Sympathetic strings

A violin or cello has four strings, of which only one is usu-
ally bowed at a given time. The other three non-played, but
freely-vibrating, strings are coupled to the bowed string as
well as to other freely-vibrating strings through the com-
mon bridge that supports them. For brevity these three
strings can be called “sympathetic strings”, although they
may or may not be tuned sympathetically to the bowed
string. As far as the bowed string is concerned, any ef-
fect from the sympathetic strings should come into play
by modifying the bridge admittance as felt by the bowed
string. The effective bridge impedance, Zeff , is simply the
sum of the bridge impedance in the absence of the sym-
pathetic strings, plus the impedance of the sympathetic
strings at the bridge,

Zeff =
1
Y

+ i
strings

Z0sym cot ksymLsym , (18)

where the subscript “sym” represents the corresponding
parameter for each sympathetic string. Replacing Y by
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1/Zeff in all earlier equations concerning the minimum
bow force gives the equivalent results with sympathetic
strings taken into account.

Figure 10a shows the real part of the effective bridge ad-
mittance when a single G2 sympathetic string is included.
The effect in the plotted range is to add two sharp local res-
onance structures at around 98 Hz and 196 Hz. The admit-
tances with and without the sympathetic string look very
similar away from those frequencies. There can be some
interaction between the sympathetic strings and the body
resonance if they fall very close in frequency: that inter-
action usually results in some repulsion of the two peaks.
Figure 10b shows the minimum bow force plot, equiva-
lent to Figure 5 but calculated using the modified admit-
tance. Not surprisingly, the minimum bow force is most af-
fected around 98 Hz, its almost-integer multiples, and the
subharmonics of all of those multiples. Two examples of
those subharmonics visible in the range plotted here are
a 65.4 Hz peak that has its 3rd harmonic coincident with
the 2nd mode of the sympathetic string, and a small spike
at 146.83 Hz, which is half the 3rd mode frequency of the
sympathetic string.

The modified admittance always shows a dip at the ex-
act frequency of the sympathetic string modes, accompa-
nied by a closely spaced peak. This is familiar behaviour
for any structure fitted with what is variously called a
“tuned mass damper” or “tuned dynamic absorber” (see
for example [22]): a very similar effect occurs when a
wolf suppressor is installed on a string’s after-length, tun-
ing its frequency to match the wolf note. For the particu-
lar case of a single-resonance body, the peak always hap-
pens before the dip at frequencies below the body reso-
nance, and after the dip at frequencies above the body
resonance. This trend is necessary so that the combined
set of resonances, including the sympathetic strings, obeys
Foster’s theorem: in a driving-point response, resonances
and anti-resonances always alternate [23]. Translating this
into the minimum bow force plot creates an interesting
shape at 98 Hz. There is a dip exactly at 98 Hz which has
a peak below, reflecting what happens in the admittance at
around 98 Hz; as well as another small peak slightly above
98 Hz that is the consequence of the peak at slightly above
196 Hz in the admittance curve (look at the magnified box
in Figure 10b). Care should be taken not to misattribute
this double peak structure to the coupling of the bowed and
the sympathetic strings, and the consequent peak splitting
[24, 25]. Evidently, this double peak situation does not ap-
ply to the minimum bow force plot at around 196 Hz as the
peak frequencies of the fundamental and all of its harmon-
ics are slightly above the pure multiples of 196 Hz in the
admittance.

Leaving aside those details, Figure 10 suggests that
sympathetic strings can have a significant effect on the
playability of the notes that are harmonically related to
them, so that it may be worth including their effect in the
prediction of the minimum bow force. The qualitative ef-
fect of each sympathetic string and the magnitude of the
effect depends on the properties of the bridge admittance
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Figure 10. (Colour online) The bridge admittance (a) and the
minimum bow force calculated from it (b) for a single-resonance
body mode located at 172 Hz. The calculation of the minimum
bow force is made from Equation (11). The black-solid curve is
for the case where an open G2 string tuned at 98 Hz is supported
on the same bridge, and the red-dashed line shows the case with-
out the sympathetic string. The grey vertical lines in the top plot
show the frequency of the sympathetic string and its 2nd har-
monic, and bottom plot they show the musical scale spaced by a
semitone. The box in the bottom plot is a zoomed version around
98 Hz. The same line types apply to both plots.

in that frequency range, and may vary from one instrument
to another. As an example, an accurate relation for the min-
imum bow force should make a distinction between a cello
that has its body resonance near G3 and one that has it near
F3

#. Even if those modes were equally strong, the mode
near G3 is more likely to be suppressed by the presence of
harmonically-related open strings.

4.3. Out-of-plane string vibration

A string can vibrate transversely in two perpendicular po-
larisations. Adding a body mode with the same frequency
as an unperturbed pair of string modes, the string polari-
sation aligned with the body mode will be effectively cou-
pled, while the other string polarisation will be unchanged.
If the unperturbed frequencies of the string and body do
not exactly coincide, the coupled modes will tend to retain
string-like and body-like properties, but some interaction
still occurs. The degeneracy of the string modes will be
broken, and each mode will have a particular polarisation
direction. If the excitation from bowing is not perfectly
aligned with one of these special polarisations, some vi-
bration of the string will be induced in the plane perpen-
dicular to the bow.

Such out-of-plane string vibration might influence min-
imum bow force through two quite different mechanisms.
On the one hand, it will change the bowing-point admit-
tance, and it has already been argued that this is a route
for influence. On the other hand, the perpendicular string
vibration will induce fluctuations in the normal force be-
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tween bow and string. This will influence the friction force
via Coulomb’s law, or whatever other friction model is
relevant. The conditions leading to an additional slip will
change, and hence the minimum bow force will change.
Both effects will be briefly explored.

Looking first at the admittance at the bowing point, the
presence of the two coupled string-body modes in addi-
tion to an uncoupled string mode will result in three peaks
where before there were only two. The peak that corre-
sponds to the uncoupled vibration of the string will be
rather sharp and occur at the unperturbed string frequency,
while the two others will be perturbed in frequency and
more heavily damped. Gough [26] has argued that the ex-
istence of the uncoupled string mode might aid the forma-
tion and stability of the Helmholtz motion as it is harmon-
ically related to other string modes.

Consider first the single-polarisation vibration of a
finger-stopped C2 string with a constant Q factor of 500,
and an unperturbed first mode frequency of 172 Hz, cou-
pled to a body mode with the same unperturbed frequency,
a modal mass of 120 g, a Q factor of 40, and perfectly
aligned with the bowing (i.e. admittance evaluation) direc-
tion. The red-dashed line in Figure 11a shows the admit-
tance evaluated at β = 1/13.3 according to Equation (10).
As expected, there are two split and heavily-damped cou-
pled modes, representing the in-phase and out-of-phase
motions of the string and the bridge.

Now consider the dual-polarisation case: to give a
“worst case”, suppose the body mode is inclined by
θM= 45◦ with respect to the admittance evaluation direc-
tion. To make the two cases compatible the mass of the
body mode is reduced to M = 120 cos2 θM = 60 g, so
that the bridge admittance in the bowing direction would
remain the same in the absence of string coupling. To find
the coupled admittance, the applied force must be resolved
into the coupled and uncoupled polarisation directions of
the string, and the resulting velocities projected back into
the evaluation direction. The admittance calculated in this
way is shown by the black-solid line in Figure 11a. Exactly
as argued by Gough [26], a sharp third peak appears at the
unperturbed frequency of the string. Furthermore, the cou-
pled modes are repelled more widely than before because
the effective body mass is smaller, resulting in a stronger
coupling of the string and the body mode.

A point that was neglected in Gough’s argument is that
in order for such a sharp peak to appear in the admittance,
the string needs to be free to vibrate in the out-of-plane di-
rection, as was the case in Gough’s experiments performed
using electromagnetic excitation of the string in the bow-
ing direction. However, this is not the case when a bow
is in contact with the string: bow-hair coupling will sig-
nificantly limit motion in the perpendicular-to-bow direc-
tion, and add damping. A more relevant bowing-direction
admittance would take into account a frictionless bow re-
maining in contact with the string at the bowing point. This
is not, of course, a practical thing to measure, but it can be
calculated quite readily (see [16] for the derivation).
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Figure 11. (Colour online) The real part of the input admittance
at the bowing point, evaluated at 1/13.3th of the string length
away from the bridge. Red-dashed line shows the case for the
single-polarisation vibration of the string, black-solid line shows
the case for dual-polarisation, and the blue dashed-dotted line is
the same as the dual-polarisation case except that a frictionless
bow is kept in contact with the string. Both unperturbed string
and body resonances are located at the normalised frequency of
1. (a) is for a C2 cello string coupled to a body mode with an
effective mass of 60 g and a spatial angle of θM= 45◦, and (b) is
for a D3 cello string coupled to a body mode with an effective
mass of 264.9 g and a spatial angle of θM= 20◦. Note the differ-
ent scaling of the two plots. The same line types apply to both
plots.

The blue dash-dotted line in Figure 11a shows the re-
sult. The parameters used for the transverse vibrations
of the bow-hair are extracted from [18]: a characteristic
impedance of 0.79 kg/s and first mode frequency of 75 Hz
for the 0.59 m full length of the bow. The Q factor is es-
timated at 20 for all bow-hair modes. The distance be-
tween the contact point and the frog normalised by the
full length of the bow hair ribbon is chosen to be 0.31. It
can be seen that the sharp uncoupled resonance has been
moderately affected by the coupling to the bow-hair: its
normalised frequency has been reduced from 1 to around
0.99, probably due to the added mass from the bow-hair,
and it is more heavily damped as well. To put this ex-
treme case in perspective a comparable plot is shown in
Figure 11b in which a finger-stopped D3 string with an un-
perturbed first mode frequency of 172 Hz is coupled to a
body mode with the same unperturbed frequency, but this
time with a modal mass of 300 g: a more realistic value
than the earlier case with mass 120 g. The body mode
is inclined by θM= 20◦ and the total mass is reduced to
M = 300 cos2 θM = 264.9 g when both polarisations
are considered. It can be seen that the unperturbed string
resonance visible in the black solid line is heavily sup-
pressed by the coupling to the bow-hair ribbon (see the
blue dashed-dotted line) and is merged with the in-phase
split mode near normalised frequency 0.98.

The detailed shape of the coupled admittance at the
bowing point depends on many parameters, such as the
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mode frequencies of the bow hair, the distance of the con-
tact point from the frog, and the static alteration of the
bow-hair tension. Therefore, the particular set of parame-
ters chosen here is not claimed to represent the exact effect
that the coupling to the bow hair has on the admittance
of the string. However, examination of many similar com-
puted cases suggests that the coupled response generally
remains more similar to the single-polarisation case than
to the dual-polarisation case when typical body properties
are considered. Any large deviation of the coupled case
from the single-polarisation case would require a signifi-
cant out-of-plane motion of the string, resulting in energy
loss into the heavily damped ribbon of bow-hair.

Under extreme circumstances, like those shown in Fig-
ure 11a, the effect discussed here can have a significant
influence on the behaviour of a bowed string. Figure 12
investigates the influence of such changes in input admit-
tance on the playable range in the Schelleng diagram, as
predicted by time-domain simulations. The plot is directly
comparable to Figure 7 except that the single body mode
has again been rotated to a spatial angle θM= 45◦ with re-
spect to the bowing direction, and the already very low
modal mass of 120 g has been reduced to 60 g as before,
in order to preserve the effective mass in the bowing di-
rection. The fluctuations of the bow force are not consid-
ered in the calculation of friction. The simulated results
are very significantly changed as a result of including the
second polarisation, and the pattern no longer matches the
prediction from the earlier analysis. The playable range
still shows significant variation with β, but the details have
been changed by the altered string-body coupling, asso-
ciated with the reduced effective modal mass. There does
not seem to be any simple way to derive a prediction for
the minimum bow force in the dual-polarisation case, in
the spirit of Schelleng’s formula and the earlier analysis,
so for the moment at least, simulation is the only way to
get information about this effect.

As noted earlier, under more typical circumstances the
second polarisation of the string appears to have only a
small effect on the admittance at the bowing point via the
mechanism discussed above. There is, however, a second
mechanism for influence via fluctuations in the bow force.
It was shown in an earlier paper [18] that adding the sec-
ond polarisation resulted in fluctuations of bow force up to
10% of the nominal value, which in turn led to a signif-
icantly lower minimum bow force for the particular case
studied. Qualitatively, the effect of the second polarisation
on the minimum bow force would be expected to depend
on the timing of the bow force oscillations relative to the
moment within the cycle when the perturbation force at
the bowing point reaches its maximum value: this is the
critical moment for determining the minimum bow force.

Time-domain simulations of four cases are compared
to investigate how this effect varies with the properties of
the body modes and over different frequencies. The cho-
sen base case relates to the single-polarisation vibration
of a damped but perfectly flexible D3 cello string, termi-
nated at a body with a single resonance at 172 Hz with
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Figure 12. Same as Figure 7 except the body mode has a spatial
angle of θM= 45◦ with respect to the bowing direction. The ef-
fective body mass is reduced from 120 g to 60 g so that the effec-
tive mass in the bowing direction remains the same. The second
polarisation of the string is coupled to the bow hair ribbon in its
transverse direction, but the fluctuations of the bow force are not
considered in the calculation of friction.

an effective mass of 300 g (consistent with the cases plot-
ted in Figure 11b). This relatively lightly-coupled case is
chosen to limit variations in bowing-point admittance and
to focus instead on the effects that bow force fluctuations
have on the friction force. For simplicity, the torsional mo-
tion of the string is excluded. The results will be com-
pared with other cases that bring in the second polarisation
of string motion. The body mode is inclined with respect
to the bowing direction by θM = +20◦ in one case, and
by θM = −20◦ in the other, both with the same adjust-
ment to maintain the effective mass in the bowing direc-
tion at 300 g. To monitor the effects caused by variations in
bowing-point admittance, a fourth case is considered that
is the same as the case with θM = +20◦ except the fluctua-
tions of the bow force are not considered in the calculation
of friction.

Given that for all dual-polarisation cases the coupling
happens via a single mode whose frequency is also close
to the played note, the second polarisation of the string
mainly responds to the fundamental frequency of the
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Figure 13. The relative number of
double-slip/decaying samples out
of a total of 600 simulated sam-
ples for each string frequency. The
numbers are for the three cases of
double-polarisation with respect to
the single-polarisation base case.
The double-polarisation cases in-
clude θM = +20◦, θM = −20◦, and
θM = +20◦ but without considering
the fluctuations of bow force. The
horizontal axis shows the frequency
of the simulated note relative to the
body mode frequency. See the text
for details of the simulations.

string. Simulation results, not reproduced here, show that
the bow force reaches its maximum at a time close to
the stick-to-slip transition for playing frequencies below
the body mode, whereas it reaches its maximum value
at around the middle of the sticking phase for frequen-
cies above it. The same pattern is expected for the per-
turbation force at the bowing point: the body acts like a
spring (in-phase vibration) at frequencies below its mode
frequency and like a mass (out-of-phase vibration) at fre-
quencies above it. Based on the argument given above, a
body mode with θM > 0 should reduce the minimum bow
force at all frequencies (because it produces a larger value
for the effective bow force when the perturbation force
reaches its maximum). The corresponding computations
for the θM = −20◦ case resulted in an exact reversal of the
relative timing, so the prediction would be an increase in
minimum bow force at all frequencies.

Figure 13 provides simulation results that show how
well those predictions work. The relative number of
double-slip/decaying occurrences for each played note of
the three dual-polarisation cases is compared to that for
the base case: a larger number of such samples indicates
a relatively larger minimum bow force. As expected, the
θM = +20◦ case has a significantly smaller number of
double-slip/decaying samples than the base case; the op-
posite holds for the θM = −20◦ case. The minimum bow
force for the case with θM = +20◦ but a constant bow
force remains very close to that of the single polarisation
case except at the relative frequency +1.99Hz: this con-
firms the suggestion that the influence of bow force fluc-
tuations is generally stronger than the effect of admittance
changes. The reader is warned not to over-interpret these
results: the range of simulations was obviously the same
for any given played note for the four different cases, but
it was different for different played notes. So, for exam-
ple, green bars for different notes should not be directly
compared to one another.

It should be noted that the effect of θM will be negated
by reversing the bowing direction (i.e. from up-bow to

down-bow). For a real instrument at lower frequencies,
the center of rotation for the bridge is usually close to
the bridge foot on the treble side [27]. As a result, for
ergonomically possible bow inclinations the body modes
generally have slightly positive angles for the lowest string
(e.g. C2 for the cello) and negative angles for all other
strings.

5. Discussion and Conclusions

The minimum bow force needed to sustain the Helmholtz
regime on a bowed string has been extensively studied as a
useful measure of “playability” variations between instru-
ments or between notes on a given instrument. Schelleng’s
original formula gave a useful first approximation, but one
that was hard to apply quantitatively to any specific in-
strument. Woodhouse [4] extended the argument to make
use of the measured bridge admittance on a given instru-
ment, resulting in quantitative note-by-note predictions. In
this paper, that approach has been further refined to take
account of observed changes in the waveform of force ap-
plied by the string at the bridge when playing a note close
to a strong body resonance.

Starting from an assumption of a perfect stick-slip ve-
locity waveform at the bow, rather than a perfect sawtooth
force excitation at the bridge as before, these waveform
variations can be understood and predicted. The predic-
tions, together with the corresponding revised relation for
the minimum bow force, have been very successfully val-
idated by extensive time-domain simulations. A striking
feature of the new predictions is that the minimum bow
force can depend on the bowing position β in a far more
complicated way than in the earlier models: in extreme
cases, it is even predicted that there might be a “playabil-
ity gap”: a range of β where Helmholtz motion cannot be
sustained, although it becomes possible by bowing either
nearer to the bridge or further from the bridge.

A combination of analysis and simulation has also been
used to investigate the influence on the minimum bow
force of several aspects of bowed-string physics that were
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ignored in the simpler calculations. It had been previously
suggested by various authors that torsional motion of the
string might have an effect on minimum bow force, by
modifying the characteristic admittance of the string felt
by the bow. However, it has been shown that this modifi-
cation is not appropriate: detailed simulations agree more
closely with estimates of minimum bow force that ig-
nore torsion than they do with supposedly “improved” es-
timates incorporating the modified admittance. This can
be attributed to the fact that the first torsional mode of a
finite-length string has a much higher frequency than that
of the first transverse mode, so the detailed admittance at
the bowing point at low frequencies is very little perturbed
by torsional effects.

The effect of sympathetic strings and their interactions
with the body modes has been examined. Modes of sympa-
thetic strings can sometimes have a significant influence,
usually confined to frequencies where there is some close
harmonic relation between modes of the played and sym-
pathetic strings. It is easy to modify the bridge admittance
to take account of the effect of sympathetic strings (includ-
ing the after-lengths of strings on the non-played side of
the bridge). That modified admittance can be incorporated
directly in the calculation of the minimum bow force.

Finally, the influence of the second polarisation of trans-
verse string motion has been examined. Such influence can
come by two routes: by modifying the admittance of the
string at the bowed point, or by causing fluctuations in
the force in the normal direction (on top of the player’s
imposed bow force). Both mechanisms can have effects
that might, under some circumstances, be noticed by a
player, but under normal circumstances the effects seem
to be quite minor.
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