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Summary
An enhanced model of a bowed string is developed, incorporating several new features: realistic damping, detailed
coupling of body modes to both polarisations of string motion, coupling to transverse and longitudinal bow-hair
motion, and coupling to vibration of the bow stick. The influence of these factors is then explored via simulations
of the Schelleng diagram, to reveal trends of behaviour. The biggest influence on behaviour is found to come
from the choice of model to describe the friction force at the bow, but the other factors all produce effects that
may be of musical significance under certain circumstances.
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1. Introduction and historical background

In an earlier paper [1], a review was presented of the phys-
ical ingredients necessary to give an accurate travelling-
wave model of the motion of a stretched string in the lin-
ear range, for example as required to synthesise the motion
of a plucked string. That model is now further developed
to incorporate additional ingredients relevant to the same
string when excited by bowing, for example in a violin.
A full model of a bowed string requires further aspects of
linear-systems behaviour to be incorporated (such as the
dynamics of bow vibration), and also requires an adequate
model of the process of dynamic friction at the bow-string
contact, a strongly non-linear phenomenon (see for exam-
ple [2]). The full landscape of extra features is too com-
plicated to cover within the length constraints of a sin-
gle paper, and the discussion here is focussed primarily
on the additional linear-system features. Issues concern-
ing the friction model are mainly deferred to future work
(currently in progress), but two alternative models for fric-
tion from the existing literature will be included among the
cases presented here. Some sample results of simulations
will be shown, to begin the process of assessing the rela-
tive importance of the many ingredients of the model.

Helmholtz [3] was the first to show that the usual vi-
bration of a bowed string is formed by a V-shaped corner
(or multiple corners) travelling back and forth between
the bridge and the finger. At each instant, the sounding
length of the string is divided by the corner(s) into two or
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more sections of straight lines. The corners travel along
the string at speed c0 = T0/ms, where T0 is the tension
and ms is the mass per unit length of the string. This leads
to an expectation that the period of such bowed-string mo-
tion will usually be the same as that of the same string
when plucked.

Helmholtz described the simplest case of bowed string
motion, with only one travelling corner. Every time the
corner passes the bow it triggers a transition between stick
and slip: during the time that the corner is on the finger-
side of the contact point, the bow and the element of the
string beneath it are sticking while during the shorter jour-
ney of the corner to the bridge and back, the string is slip-
ping across the bow hairs. This vibration regime, called
Helmholtz motion, creates the normal “speaking” sound
of the violin, and it is the goal of the vast majority of bow
strokes.

The first systematic analysis of bowed string dynamics
was made by Raman [4]. He assumed a perfectly flexi-
ble string terminated at both ends by real reflection coef-
ficients with magnitude less than unity (physically speak-
ing, dashpots). He also assumed a velocity-dependent fric-
tion force due to the bow-string interaction applied at a
single point dividing the string in a rational fraction. Work-
ing in the pre-computer age he needed many simplifying
assumptions, but he was remarkably successful in predict-
ing and classifying the possible regimes of vibration for a
bowed string. Raman was also the first to point out the ex-
istence of a minimum bow force [5] as well as the geomet-
rical incompatibility of the ideal Helmholtz motion with
uniform velocity across a finite-width bow during episodes
of sticking [4], both of which were confirmed later and are
still topics of active research [6].
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Using Raman’s simplified dynamical model, Friedlan-
der [7] and Keller [8] published two independent but simi-
lar studies. Their results indicated that if dissipation is not
taken into account, all periodic motions are unstable, in-
cluding the Helmholtz motion. As explained later, [9, 10,
11] any small perturbation to the Helmholtz motion pro-
duces unstable subharmonic modulation of the Helmholtz
motion. In reality, because of the energy losses in the sys-
tem this instability is usually suppressed, but under certain
circumstances these subharmonics can be heard, or seen in
measurements of bowed-string motion [9].

The next major development in modelling bowed string
dynamics was introduced by Cremer and Lazarus in 1968.
Acknowledging the fact that sharp corners are unlikely to
occur on any real string due to dissipation and dispersion,
they proposed a modification of the Helmholtz motion by
“rounding” the travelling corner [12]. Cremer then devel-
oped a model of periodic Helmholtz-like motion, which
revealed that when the normal force exerted by the bow on
the string is high the corner becomes quite sharp, but as
bow force is reduced, the corner becomes progressively
more rounded [13, 14, 15]. Ideal Helmholtz motion is
completely independent of the player’s actions, except that
its amplitude is determined by the bow speed and posi-
tion. Thus, this mechanism gave a first indication of how
the player can exercise some control over the timbre of a
steady bowed note.

In 1979, McIntyre and Woodhouse presented a compu-
tational model of the bowed string [16] which built on Cre-
mer’s insight and was a precursor to the wider family of
“digital waveguide models” later developed by Smith [17].
This model extended Cremer’s corner-rounding concept to
include transient motion of the string, by representing the
motion of a string as the superposition of left- and right-
going travelling components. The string motion could then
be simulated step-by-step in time, using the past history
plus a model of the frictional interaction between bow and
string.
1. The incoming velocity waves arriving at the excitation

point from the finger and bridge sides are calculated by
convolving the history of the respective outgoing waves
with appropriate impulse responses, known as “reflec-
tion functions” (see [1] for details). These incoming
waves add together to form the unperturbed velocity at
the excitation point (called vh, because it depends only
on the past history of the string motion).

2. The instantaneous response to the friction force acting
at the excitation point is added to vh to calculate the
actual velocity at that point, v:

v = vh +
F

2Z0
(1)

where F is the friction force exerted by the bow on the
string and Z0 = T0ms is the string’s characteristic
impedance.

3. The early work used the same frictional model as Fried-
lander and Keller [7, 8], in which friction force is as-
sumed to depend only on the normal force and the in-
stantaneous relative velocity between bow and string.

The friction force F and the velocity v are thus found
by simultaneously solving Equation (1) with the fric-
tion curve F (v) [18].

4. The incoming waves then generate new outgoing
waves, each wave being modified by the amount F/2Z0

while passing the bow.

This model was successful in describing, at least qualita-
tively, a number of aspects of the behaviour of a bowed
string [19]. However, the model used many approxima-
tions: in particular, later results have cast considerable
doubt on the “friction curve” model of dynamic friction.
This statement is not only true in the context of violin
bowing: in many other areas featuring vibration driven by
friction, such as earthquake dynamics, researchers have re-
ported that a better frictional constitutive model is needed,
and a family of “rate and state” models have been devel-
oped based on a variety of empirical measurements (see
for example [2]). In the specific context of friction me-
diated by violin rosin, Smith and Woodhouse [20], [21]
argued that the temperature of the rosin plays a central
role in the friction force exerted by the bow on the string:
rosin is a glassy material with a glass transition tempera-
ture only a little above room temperature, and partial melt-
ing of rosin is possible under normal playing conditions.

Preliminary efforts have been made to develop a
temperature-based friction model and apply it to simulate
the bowed string [22]. The thermal friction model proved
to be more “benign” in that the desired Helmholtz motion
was established faster and more reliably than with the old
friction-curve model, at least with the particular set of pa-
rameters used in the study. Galluzzo compared predictions
from both the friction-curve model and the thermal model
with results obtained experimentally using a bowing ma-
chine [23]. He concluded that neither model gave correct
predictions of all aspects of string motion, but that both
captured some elements of the observed behaviour.

For the purpose of the present study the old friction-
curve model will be taken as the base case, and the influ-
ence of a range of model variations will be explored, in-
cluding a case using the thermal friction model. This may
seem a rather backward-looking choice, but there is an
important reason relating to comparisons with theoretical
work: although the present paper is concerned only with
simulations, parallel work [24] has examined a new formu-
lation of minimum bow force prediction. To date, all such
predictions from Raman and Schelleng onwards have only
been possible in the context of the friction-curve model.
To allow direct comparisons with the work reported here,
it is useful to show a range of results based around the
friction-curve model. In any case, the main intention here
is to reveal trends of behaviour: quantitative comparisons
with measurements are kept for future work (currently in
progress). As has been demonstrated previously by Guet-
tler [25], one would expect the range of models studied
here to reveal the main trends. However, it is clear that
further research on friction models will be necessary in
the future.
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2. Extending the model

2.1. Scope and limitations

Expert violinists are concerned with rather subtle details
of the transient response of their bowed strings. They may
ask, for example, why one brand of string is “easier to
play” than another fitted to the same violin, or how they
should set about performing a particular bowing gesture in
order to achieve the best and most reliable sound. If the
motion of a bowed string is to be understood in sufficient
detail to satisfy the demands of such experts, an accurate
simulation model is needed. There are a number of physi-
cal details that have not been included in previous models,
which might prove to be important.

The earlier paper [1] on plucked strings introduced
several new factors, including: calibrated allowance for
frequency-dependent string damping; influence of both
polarisations of string motion; and calibrated coupling to
body modes (for a particular cello). These factors are all
incorporated in the bowed-string simulations in this study.
Some extra features necessary for a bowed-string model
will now be introduced, and implemented in the simulation
model. In Sec. 3 sample simulation results will be shown,
to explore the influence of the newly-added factors.

The major limitations of the current study are as fol-
lows: it is assumed that the bow remains in contact with
the string (i.e. it never bounces); that it is only in contact
with one string at a time (excluding double or triple stops);
that the bow is in contact with the string at a single point
(ignoring the finite width of the bow), and that the contact
point of the string on the bow is not dynamically updated
(so that the string sees a non-changing bow impedance in
both the transverse and longitudinal directions of the bow).
Finally, as has already been mentioned, there is consider-
able uncertainty about the correct model for friction: the
friction-curve model will be used here for most cases. The
omission of finite-width bowing may cause some surprise,
but this is deliberate. The main qualitative consequences
of finite-width bowing have been explored in earlier work
(see for example [9, 26, 27, 28]), and the next challenge in
that area would be to seek quantitative accuracy compared
to experiments. However, in the view of the authors there
is little point in attempting that yet, until a better friction
model has been established, and the best route for probing
and improving friction models is through the simpler case
with a single-point “bow”.

Having established a model, with these restrictions, a
further limitation is that attention is mainly directed here
at quasi-steady motion of the bowed string and the impli-
cations for the Schelleng diagram: the model incorporates
transient response, but attention is not directed explicitly
at transient bowing gestures. It is freely accepted that all
these restrictions limit the applicability of the models and
results presented here, and they all deserve more attention:
the decision on what to include in this particular paper is
driven entirely by length constraints, and the desire to do
a thorough job on at least some aspects of the problem.
Interestingly, in the parallel world of simulation for the

purposes of musical synthesis, efforts are already being
made to relax many of these restrictions: for example, re-
cent work by Desvages and Bilbao [29] discusses a model
that allows bouncing-bow gestures.

2.2. Torsional motion

The friction force from the bow is applied tangentially on
the surface of the string, so it excites torsional vibration
of the string. Torsional waves are not effectively coupled
to the body of the instrument, and so they are not likely
to be responsible for a significant portion of the radiated
sound (except for the rare case of “whistling” in the violin
E5 string [30]). Torsional waves are, however, coupled to
the transverse waves at the bowing point and can affect the
sound and the playability of the instrument by that route.
Torsional waves on a normal over-wound string are much
more heavily damped than the transverse waves, and so
their coupling to the transverse waves introduces signifi-
cant extra damping: they have been suggested as a strong
candidate to suppress the Friedlander instability discussed
above [9, 10, 11].

Torsional waves at small amplitude satisfy the one-
dimensional wave equation with a torsional wave speed
of cR= KR/IR and a characteristic torsional impedance
of Z0R = KRcR/r

2, where KR is the torsional stiffness,
r is the string radius, and IR is the polar moment of iner-
tia per unit length of the string [31]. Most musical strings
are over-wound, with a rather complicated distribution of
stiffness and mass (see [32] or [33] for example). The sim-
ple model suggests that torsional waves should be non-
dispersive, and with a propagation speed that is not di-
rectly influenced by the string’s tension. However, Loach
and Woodhouse found empirically that the natural fre-
quencies of torsional waves reduce to some extent when
the tension is increased, probably because the windings of
the string open up slightly and reduce the torsional stiff-
ness [32]. Woodhouse and Loach also measured the Q
factor for the first few torsional modes of selected cello
strings. The Q factors remained almost constant over dif-
ferent modes and were averaged to 45, 20, and 34 for
nylon-, gut-, and steel-cored strings respectively.

Once torsion is taken into account, the effective charac-
teristic impedance of the string seen by the bow should be
modified from Z0 to Ztot defined as

1
Ztot

=
1
Z0

+
1

Z0R
. (2)

Most of the transverse-to-torsional conversion happens
in the sticking phase, when rolling of the string on the
bow can occur: it creates a mechanism for the otherwise-
trapped waves on either side of the bow to pass to the other
side. In this regard, the inclusion of the torsional motion is
expected to affect details such as the “Schelleng ripples”
[14, 34]. Using the same argument, torsional motion may
be more influential during transients and when a high bow
force is employed [35]. Torsional motion is not normally
excited in the case of a plucked or struck string unless the
string has a discontinuity (such as a dent or a bend), or it
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is allowed to roll on the termination points, which breaks
its rotational symmetry.

To implement torsional waves into the model they can
be treated in the same way as transverse vibrations, with
two travelling waves that are filtered in each round trip to
the finger or the bridge in a manner that reproduces the de-
sired damping behaviour. There is no coupling to the body
modes, and the values of torsional waves are modified by
the amount F/2Z0R when passing to the other side of the
bow. For friction calculation purposes, Z0 is replaced by
Ztot defined in Equation (2), and vh becomes the sum of
four incoming wave terms, instead of two. Aside from the
friction calculation part, Z0 remains in effect in the mod-
elling of the transverse vibrations. For the open cello D3

string studied here the torsional fundamental frequency is
taken to be 758 Hz, the characteristic torsional impedance
is 1.8 kg/s and a constant Q of 34 is assigned to all tor-
sional modes.

2.3. The flexible bow

Early bowed-string models ignored any flexibility of the
bow, as if the string were bowed with a rigid rod. The stick
and hair ribbon of a real bow are, of course, far from rigid.
Some recent studies [28, 36] have made preliminary efforts
to take into account the flexibility of the bow-hair, but the
treatment was relatively crude. When a string is bowed, the
time-varying friction force drives the string in the bowing
direction, but it also excites the bow-hair ribbon in its lon-
gitudinal direction (see Figure 1 for the definition). Such
vibrations of the bow-hairs change the effective bow speed
at the bowing point. The bow-hair ribbon also has flexibil-
ity in its transverse direction. Vibrations of the string and
the bow-hair in the direction of the player’s bow force can
act to modulate the effective bow force, and thus influence
the detailed motion of the string. There is relatively little
published literature about the mechanics of bows. Pitteroff
estimated some properties of bow-hair [31], while Ablitzer
et al. [37, 38] have modelled the static deformations of a
bow in terms of its geometry, but they give little informa-
tion of direct relevance to this dynamical study. The most
useful source here is the work of Gough [39].

A typical cello bow-hair ribbon consists of around 290
strands, of which around 50 are in immediate contact with
the string. The diameter of each hair strand is in the range
0.16–0.25 mm [31] and the typical length of the bow-hair
bundle is around 59 cm. As reported in [31], the Young’s
modulus and density of the hair material are roughly 7 GPa
and 1100 kg/m3 respectively. Assuming 50 active hair
strands, the characteristic impedance of the bow-hair rib-
bon in the longitudinal direction Zb0L becomes approxi-
mately 10 kg/s for a cello bow [31]. Wave speed in the lon-
gitudinal direction of the bow is approximately 2300 m/s
[40], which results in the first bow-hair longitudinal reso-
nance around 1950 Hz. A typical bow-hair ribbon is pre-
tensioned to 70 N, which results in a first transverse natu-
ral frequency of 75 Hz, and a characteristic impedance of
0.79 kg/s. Gough estimated the Q factor of bow-hair vi-
brations in transverse and longitudinal directions at 20 and

Perpendicular-to-bow

vibrations of the string (Y)

Transverse vibrations

of the bow hair (Y)

Figure 1. The geometry of the bow and string illustrating differ-
ent polarisation directions of the string and the bow-hair ribbon
(after [39]).

10, respectively [39]. In reality damping of the bow-hair
ribbon in both directions is dominated by the dry friction
between individual strands, and so is likely to vary with
amplitude.

The characteristic impedance of cello strings in their
transverse direction ranges from 0.4 kg/s to 1.1 kg/s, which
is a relatively close match to the characteristic impedance
of the bow-hair ribbon in its transverse direction, but
is an order of magnitude smaller than the characteristic
impedance of the bow-hair ribbon in its longitudinal direc-
tion. This gives a guideline for the strength of the coupling
between the two systems. The strength of coupling at each
particular frequency also depends on where that frequency
falls with respect to the resonances of both systems, and
on where the contact point falls with respect to the nodes
and antinodes of the closest bow-hair mode shapes.

The bow-stick (i.e. the wooden part of the bow) also
has some degree of flexibility, and is commonly regarded
by players as having a profound effect on the sound and
playability of a bowed string. Little evidence was found to
support this claim in an experiment comparing the sounds
produced by bows ranging from excellent to very poor
qualities [41]. On theoretical grounds, too, it is hard to
draw a direct link between the bow-stick properties and
the string vibrations, given the weak coupling between the
stick and the bow hair, and then from the bow hair to the
string. This point was reinforced in a study by Gough [39],
involving a thorough analysis on the modal properties of a
bow-stick and its coupling to the bow hairs.

Perpendicular-to-bow vibrations of the string are cou-
pled to the transverse vibrations of the bow-hair, so both
effects should be incorporated into the model together.
It will be assumed that all individual hairs are active in
the transverse vibrations of the ribbon. For simplicity, the
value of βbow (distance from the contact point to the frog
divided by the full length of the hair ribbon) will be con-
sidered constant within the short period of simulation. To
model a more realistic time-varying βbow is straightforward
in principle, but it would require the loop filters to be recal-
culated at every time-step, or at least every few time-steps.
For typical bowing speeds the variation in βbow is very
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Table I. Summary of cello bow properties used in simulations.

Hair strands T0b mb f0bL Zb0L

290 70 N 0.0089 kg/m 1950 Hz 10 kg/s

QbL f0bT Zb0 QbT

10 75 Hz 0.79 kg/s 20

small within a cycle of string vibration, but for detailed
simulation of transient bowing gestures it might prove nec-
essary to take this effect into account.

Transverse vibrations of the bow-hair and the bowed
string are coupled at the contact point: they share a com-
mon velocity and apply equal and opposite forces to one
another (assuming they remain in contact). To find the un-
known common velocity and the mutual force, the sepa-
rate unperturbed velocities of the string and the bow are
first calculated: these are called vhY and vbh respectively.
It is then easy to show that the matched velocity (vM ) is
given by

vM =
vhY Z0 + vbh Zb0

Z0 +Zb0
, (3)

where Zb0 is the characteristic impedance of the bow-hair
ribbon in its transverse direction. The resulting fluctuating
force in the contact region (FNF ) is

FNF = 2Z0 vM − vhY . (4)

This force is used to modify the relevant incoming waves
before they are passed to the other side of the bowing
point. Note that FNF is applied toward the centre-line of
the string and does not excite its torsional motion, which is
why Z0 rather than Ztot appears on the right-hand side of
Equation (4). This force is also added to the nominal value
of the bow force, supplied by the player (FN ), to give the
effective bow force,

FNE = FN + FNF . (5)

Since the bow force is being dynamically updated for each
time-step, the friction force is re-scaled accordingly.

Longitudinal vibrations of the bow-hair can also be
modelled with the travelling-wave approach, using the
framework already established for the transverse vibra-
tions of the string. In the presence of bow-hair longitudinal
vibrations, the nominal bow velocity will be modulated by
the velocity of the contact point on the bow hair relative to
the bow-stick. This relative velocity can be found from

vbF = vbL1 + vbL2 +
F

2Zb0L
, (6)

and the effective bow speed can be calculated from

vbE = vb − vbF , (7)

where, as before, F is the instantaneous friction force be-
tween the bow and the string, vb is the nominal bow speed
provided by the player, and vbL1 and vbL2 are the incoming

longitudinal velocity waves, from the tip and the frog re-
spectively, arriving at the contact point. Since the friction
force is a function of bow speed, it needs to be recalculated
with vbE instead of vb at each time-step.

In a similar fashion as discussed for the modelling of
the body [1], the stick modes can be taken into account
using a set of independent resonators. Fourteen modes are
considered in this case, whose frequencies (ranging from
50 Hz to 4221 Hz), modal masses, and mode angles were
all extracted from [39]. The flexibility of the bow-stick was
lumped at the tip side and the frog was assumed to be rigid
as it is more heavily constrained by the grip of the player’s
hand. Stick modes are coupled to both transverse and lon-
gitudinal vibrations of the hair ribbon. The excitation of
the stick modes can be calculated from

Fb,k = 2Zb0L vbL1 cos θbk + 2Zb0 vbT1 sin θbk, (8)

where θbk is the spatial angle of the kth stick mode with
respect to the bowing direction (longitudinal direction of
the bow), and vbL1 and vbT1 are the incoming longitudinal
and transverse velocity waves coming from the tip respec-
tively.

2.4. Friction models

As discussed earlier, for most of the simulations to be re-
ported here the friction force between the bow and the
string will be assumed to follow the friction-curve model:
a function of the instantaneous relative sliding speed, and
proportional to normal force. Empirical friction curves for
violin rosin have been measured by Lazarus [42] and later
by Smith and Woodhouse [21]. In both studies, two rosin-
coated surfaces were forced to rub against one another
with a constant speed, and the friction coefficient was mea-
sured as a function of the imposed sliding velocity. The
two studies found similar values. The fitted function sug-
gested by Smith and Woodhouse is

µ = 0.4e(v−vb)/0.01 + 0.45e(v−vb)/0.1 + 0.35, (9)

where µ is the velocity-dependent friction coefficient. This
function will be used throughout the present work, except
when the thermal friction model is used.

The thermal model is described in detail in Smith and
Woodhouse [21]. It assumes that the friction force is gov-
erned by a plastic yield process, with a yield strength that
is a function of contact temperature. The form of the tem-
perature dependence is fixed by requiring that under con-
ditions of steady sliding, the friction force corresponds ex-
actly to the friction-curve model of Equation 9. All param-
eter values used here are identical to those used by Wood-
house [22].

3. Simulation studies

3.1. Methodology

The simulations to be shown within this study relate to
the Schelleng diagram, which encapsulates the ability of
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a bowed string to sustain the Helmholtz motion when the
bow force and the bow speed are kept constant. To address
this question, “perfect” Helmholtz motion is initialised at
the beginning of each simulation. The travelling waves
corresponding to the transverse vibrations of the string
in the bowing direction were initialised by the expected
sawtooth waves of appropriate magnitude and phase. The
model uses recursive (IIR) filters, both for the string and
for the body [1], which also need to be initialised prop-
erly. This has been achieved by imposing ideal Helmholtz
motion on all filters for a few cycles before the actual sim-
ulation starts.

The detailed vibration of the bowed string will be dif-
ferent from the ideal Helmholtz motion due to effects such
as damping, dispersion, and Schelleng ripples. This incon-
sistency results in extra disturbances within the first few
periods of simulation, which may disrupt an otherwise-
stable Helmholtz motion. Another source for such unin-
tended disturbances is that the body motion and the other
travelling waves in the model, aside from the two asso-
ciated with the vibrations of the string in the bowing di-
rection, start from zero in the current initialisation of the
model.

It is accepted that the transient response to these par-
ticular disturbances may have some influence on the pre-
cise outcome of a given run, and that different initial con-
ditions might change things a little. However, two things
can be said in defence of what has been done. First, the ini-
tial conditions are entirely consistent over all cases, so that
trends should be shown in a fair way. Second, under con-
ditions when the string response is sufficiently “twitchy”
for such small effects to make a difference, that sensi-
tivity is probably pointing to an interesting physical phe-
nomenon in its own right. For example, Galluzzo [43] has
shown Guettler diagrams measured using a bowing ma-
chine, which seem to show a significant degree of “twitch-
iness” in a real cello string, perhaps beyond the ability of
a human player to control.

The steady-state vibration of an open D3 cello string
(146.8 Hz) is studied using a 100 × 100 grid of simulated
data points in the β-FN plane, the Schelleng diagram. Each
simulation is run for 1 s and outputs the force signal ap-
plied by the bowed string to the bridge, and also a time
history of the slip/stick state at the bowed point. In addi-
tion, three metrics are calculated for each simulation run,
using only the last 0.5 s to allow transient effects to settle
first:

1. the increase in the slip-to-stick ratio as a percentage of
its theoretical value;

2. the spectral centroid relative to the fundamental fre-
quency;

3. the amount of pitch flattening as a percentage of the
fundamental frequency.

The second and third metrics are directly relevant to the
experience of the listener; the first metric does not have a
direct musical consequence, but sheds light on the under-
lying mechanics of the string motion.

The simulated data is processed by a waveform identifi-
cation algorithm that is a slightly enhanced version of the
one introduced by Woodhouse [22] and further expanded
by Galluzzo [23]. It classifies the resulting waveform into
a number of categories of possible motion. The options
have been extensively discussed in previous literature: in
addition to the original “Helmholtz motion” there is “dou-
ble/multiple slip”, typically occurring at low bow force;
“decaying motion” at even lower force; “Raucous” and
“Anomalous low frequency” (ALF) motions that typically
occur at very high bow force; and “S-motion” which some-
times occurs when the bow position is close to a simple in-
teger subdivision of the string length. All these character-
istic bowed-string vibration regimes have been described
in detail in previous works (see for example [23]). One
more regime has been discussed in earlier literature, “dou-
ble flyback motion”, but for the particular purpose here, to
classify regimes initialised with Helmholtz motion, it was
not necessary to take this into account because it never
arose in this context. It is, however, an important regime
when transient bowing gestures are considered [44].

The data points are spaced logarithmically on the β
axis from 0.016 to 0.19, and on the bow force axis from
1.28 × 10−4/β2 N to 5 N. In this way a triangle of double-
slip and decaying occurrences is excluded from the anal-
ysed range, giving increased resolution around the more
important Helmholtz region. Note that an actual player
cannot control, and thus utilise, a constant bow force be-
low about 0.1 N [45], so that simulated cases with bow
forces below this limit are primarily of research interest.

3.2. The base case

The base case was chosen to be an open D3 cello string
which is only allowed to vibrate in a single transverse po-
larisation. Realistic damping, stiffness and torsional mo-
tion are included in the simulations. The string is termi-
nated at a realistic multi-resonance bridge whose prop-
erties were discussed earlier [1]. This base case can be
thought of as representing a real cello string, bowed by a
rosin-coated rod (as in Galluzzo’s experiments [23]). The
friction-curve model is assumed. It is fully accepted that
this base case, and the variations on it to be shown shortly,
can only give a snapshot of some possible effects of the
various model ingredients. For example, in many cases it
may make a big difference whether there is or is not a coin-
cidence of frequencies between components: a transverse
string frequency might or might not fall close to a torsional
frequency, a bow-stick frequency or a bow-hair frequency.
To explore each of these possibilities in detail would re-
quire a prohibitive number of plots.

Figure 2 shows the Schelleng diagram calculated for the
base case. Only instances of Helmholtz motion, S-motion
and ALF are shown in the plot. Instances of decaying and
double-slip regimes occur in the empty area below the
Helmholtz regime, and instances of raucous regime occur
in the empty area above it. Those instances are omitted
from the plot for clarity. As expected, the S-motion oc-
currences appear as columns for relatively large β values,
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Figure 2. Schelleng diagram calculated for the base case.
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Figure 3. Different metrics of waveforms for the base case, in
the β-FN plane. (a) The increase in the slip-to-stick ratio as a
percentage of its theoretical value (unit ×100 s/s), (b) the spec-
tral centroid relative to the fundamental frequency (unit Hz/Hz),
and (c) the pitch flattening as a percentage of the fundamental
frequency (unit ×100 Hz/Hz). The theoretical slopes for the
minimum and maximum bow force are shown in (a) by thick
diagonal lines to guide the eye.

extending into the raucous territory. For all β values there
are at least 10 simulated instances of double-slip/decaying
below the first instance of Helmholtz motion. This margin
was checked to make sure that the predicted minimum bow
force is not affected by the selected range for simulations.

Figure 3 shows the three metrics defined in the previ-
ous subsection, for this base case. The values are only
shown for the data points identified as corresponding to
Helmholtz motion. The contour lines of relative slip time
are almost parallel to the minimum bow force limit (with a
slope of −2 on the log-log scale, according to Schelleng’s
formula [34]), with a slight tendency towards extension of
the slipping phase for smaller β values making the slope
steeper than −2. The range of variation is relatively broad,
up to three times the theoretical value in the lower-left side
of the Helmholtz region.

The spectral centroid relative to the fundamental fre-
quency is plotted in Figure 3b: the centroid has been calcu-
lated here with a cutoff frequency of 10 kHz. The contours
are almost horizontal, and the values range from about
6 towards the bottom of the plot to about 30 at its top.
The overall appearance is more speckly than the two other
plots, which might be an artefact of the post-processing
routine. The strong dependence of the spectral centroid on
the bow force is in accordance with experimental findings
reported in [46].

The last plotted metric is the percentage of pitch flatten-
ing. Significant variations in this metric are concentrated
near the maximum bow force limit, in accordance with the
experimental results reported in [46]. Interestingly, they
also observed the maximum amount of flattening at some
intermediate value of β. Note that the static increase of
mean tension is also taken into account to calculate the
values shown in Figure 3c (see [24] for details). Without
this, the instances in the top-left corner of the Helmholtz
region would have an even larger amount of flattening.

An interesting structure seen in Figures 3a and 3c is
a rather regular modulation along the β axis, spaced by
around 0.015 (note that the axis is plotted on a logarithmic
scale). A similar structure was reported in experimental
results of [46] (see their Figure 8). Curiously, the mod-
ulation was found to disappear if the torsional motion of
the string or its stiffness (or both) was excluded from the
model. This suggests that the modulation is caused by an
interaction between the string’s torsional motion and its
bending stiffness.

3.3. Effects of model variations

Simulation can be used to investigate the influence of each
physical detail of the model. Nine particular variations of
the model are shown here: the first four represent additions
to the base case, the next four represent restrictions to it,
and the final case uses the thermal friction model in place
of the friction-curve model.
• “Finger-stopped” is the same as the base case, except

the intrinsic damping of the string is increased to reflect
the added damping by the finger of the player (see [1]
for the damping of a finger-stopped string).

• “Hair long. vib.” is the same as the base case, but vi-
bration of the bow-hair in its longitudinal direction is
included while the bow-stick is considered rigid. The
string’s contact point on the bow is assumed fixed, at a
relative position βbow = 0.31.
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• “Flexible bow-stick” is the same as the previous case,
but now a flexible bow-stick is included.

• “Dual-polarisations” is the same as the base case, but
perpendicular-to-bow vibration of the string, coupled
to vibration of the bow-hair in its transverse direction,
is included. The bow-stick is considered rigid for this
case, with βbow = 0.31 again.

• “No torsion” is the same as the base case, but torsional
motion of the string is excluded.

• “No stiffness” is the same as the base case, but the
bending stiffness of the string is excluded.

• “No torsion/stiffness” combines the previous two
cases.

• “Rigid terminations” is the same as the base case, but
both termination points of the string at the bridge and
the nut are considered rigid.

• “Thermal” is the same as the base case, but the ther-
mal friction model is used in place of the friction-curve
model.

Figure 4 summarises the influence of these variations on
the three metrics discussed above, and also on the min-
imum and maximum bow forces. Note that most of the
plots have a broken vertical scale, to accommodate a large
range of values. The minimum bow force is quantified by
the difference in the combined number of decaying and
double/multiple slip occurrences, while the maximum bow
force shows the difference in the combined number of rau-
cous and ALF occurrences. Only the instances for β ≤
0.08 are used for this purpose: for larger β values, the dis-
tinction between the Helmholtz and decaying regimes, and
between the Helmholtz and S-motion regimes, becomes
highly sensitive to the parameters of the waveform identi-
fication routine, and thus ambiguous. Positive numbers in
Figures 4a and 4b correspond to larger maximum and min-
imum bow forces, respectively. The two plots are arranged
to make it immediately apparent how the Helmholtz re-
gion is shifted or expanded/contracted. The minimum bow
force could not be evaluated for the “Rigid terminations”
case (marked by N/A) as its actual value is very small,
well below the limit of the grid of simulated data points.

Each bar in Figures 4c–e represents the average change
in the value of that metric for the corresponding case, as
a percentage its value for the base case. Only β-FN com-
binations that led to Helmholtz motion, both in the target
case and the base case, are included: this prevents vari-
ations in the size and position of the Helmholtz region
from biasing the calculated trend. Averaging over the full
Helmholtz region obviously loses sight of any variation
within that region, but the detailed plots of the pairwise
differences were carefully reviewed to make sure that the
reported trend is not misleading. The only two observed
anomalies of this kind are reported below (see Figure 5).
As a side note, the trend and amplitude of change in all
calculated metrics for the “No torsion/stiffness” case can
be approximated by adding the changes when the torsion
and stiffness are individually excluded from the model: no
evidence was seen for significant interaction between the
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Figure 4. The variation of (a) maximum bow force; (b) minimum
bow force; (c) increase in the slip-to-stick ratio as a percentage
of its theoretical value; (d) spectral centroid relative to the funda-
mental frequency; and (e) pitch flattening as a percentage of the
fundamental frequency, relative to their values for the base case.
Different cases shown on the horizontal axis are defined in the
text. Note the broken vertical scales in cases (a)-(d).

two, other than the modulation structure mentioned in the
previous subsection.

The biggest change in every case, usually by a large
margin, is associated with the change of friction model. In
general terms, this is in accordance with expectations from
earlier studies. However, quantitative comparisons of the
kind shown here have not previously been made. The de-
velopment of improved friction models for bowed-string
simulation is an area of active research that lies outside
the scope of the present article, but the results shown here
suggest that any new models that may be proposed should
be explored in a similar quantitative manner to assess their
performance against a range of metrics.

Turning to the details revealed by Figure 4, consider
first how the playable range varies. Increasing the damp-
ing of the string makes a minimal effect on the maximum
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bow force, but it significantly increases the minimum bow
force. It seems that adding to the intrinsic damping of the
string acts in a similar way to increasing the resistive loss
to the bridge. Adding the longitudinal vibrations of the
bow-hair reduces both the minimum and maximum bow
forces by a small amount. It is consistent with the ex-
pected reduction in the effective characteristic impedance
of the string. The compliance of the bow-hair in the bow-
ing direction is arranged in parallel to the impedance of
the string, in a similar way to the torsional motion. Adding
flexibility to the bow-stick strengthens the effect of the
compliant bow hair by only a small amount. Adding the
second polarisation of the string motion significantly re-
duces the minimum bow force, accompanied by a small
increase in the maximum bow force. Removing the tor-
sional motion of the string moves the Helmholtz region
upward, and removing the bending stiffness expands it
on both sides. The maximum bow force is affected more
strongly than the minimum bow force by the torsional
motion. This result may be interpreted in the light of re-
cent findings presented elsewhere [24]: the effect of the
string’s torsional motion on the impedance at the bow-
ing point, which is closely related to both minimum and
maximum bow forces, only becomes noticeable at rela-
tively high frequencies. The perturbation force that defines
the minimum bow force mainly comes from the flexible
bridge and is usually dominated by low frequency modes
of the body. On the contrary, the maximum bow force is
defined by the V-shaped corner that is, in fact, relatively
sharp in the vicinity of the maximum bow force, and thus
has more high-frequency content. Together, these effects
make it more likely that the torsional motion influences the
maximum bow force more than the minimum bow force.
Finally, both minimum and maximum bow forces are in-
creased considerably by switching to the thermal friction
model.

Looking at Figure 4c, two trends can be observed: any
factor that broadens the spread of the Helmholtz corner re-
sults in a further extension of the slipping phase, and any
factor that decreases the effective impedance at the bow-
ing point (particularly at higher frequencies) allows the
sticking phase to persist for a longer period of time, per-
haps because it acts as a cushion against any disturbances
arriving at the bow ahead of the main Helmholtz corner.
Factors that influence the spread of the Helmholtz corner
(the “corner rounding”, as it was called in earlier literature
[12]) are as follows: the thermal friction model and damp-
ing by the finger both lead to more rounding and a longer
slipping phase; while removing the string’s bending stiff-
ness and turning the bridge to a rigid termination results in
a sharper corner and shorter slipping phase. For the effec-
tive impedance, adding the longitudinal vibration of the
bow-hair, with or without a flexible bow-stick, shortens
the slipping phase, and removing the torsional vibrations
of the string further extends the slipping phase.

Pitch flattening is associated with an interaction be-
tween the extent of corner rounding and a hysteresis
loop in the variation of friction force with relative slid-

ing speed. Within the context of the friction-curve model,
this was first explored by McIntyre and Woodhouse [16]
who showed that the area of this loop depends on the mag-
nitude of the jumps in friction force associated with re-
solving an ambiguity first highlighted by Friedlander [7].
The thermal friction model does not predict jumps of the
same kind: change is always more gradual, leading to the
increased corner-rounding noted above.

Figure 4e shows that the inclusion of longitudinal bow-
hair vibration results in more flattening while removing the
torsional motion of the string results in less flattening. This
is consistent with the earlier discussion: both the compli-
ance of the bow-hair in the bowing direction and the tor-
sional motion of the string reduce the effective impedance
at the bowing point, which creates larger frictional jumps
and thus more flattening. Exclusion of the flexible body
from the model has also reduced the amount of flattening,
perhaps because flexibility of the body adds to the corner
rounding. Somewhat unexpectedly, adding to the intrinsic
damping of the string results in less flattening.

In absolute terms, the amount of pitch flattening close
to the maximum bow force boundary of the thermal case
(which is much higher than that of the base case) reaches
as high as 4% of the string’s nominal frequency, which
compares to around 1.8% for all other cases. The mag-
nitude of this effect is not fully reflected in the bar chart
of Figure 4e. The chart only accounts for β-FN combina-
tions that led to Helmholtz motion both in the target case
and the base case. The cases with large flattening in the
thermal case typically fall above the maximum bow force
of the base case and thus are eliminated from the averag-
ing. There is very little published data on pitch flattening,
but for what it is worth, Schumacher [33] examined a case
similar to Figure 3c and reported a maximum flattening of
the order of 1.8%, very close to the prediction of the base
case here.

Because the thermal friction model gave such a sig-
nificant increase in corner-rounding, it is no surprise that
it also lowered the spectral centroid by a large amount.
Among the other model variations shown here, stiffness
and torsion are the major influences on pitch flattening, as
seen in Figure 4e. Among those same variations, the stiff-
ness of the string is also the only thing to have a strong
effect on the spectral centroid. In interpreting these results
one may note that there are two competing mechanisms
affecting the pitch of a bowed note. On the one hand, hys-
teresis in the frictional behaviour results in flattening, as
mentioned above. On the other hand, effects such as stiff-
ness and coupling to body modes, which perturb the linear
resonant frequencies of the string, require the non-linear
self-excited system to seek a “compromise” pitch among
these non-harmonic overtones, as first emphasised in the
context of wind instruments by Benade [47]. The system-
atic “stretching” of the frequencies by stiffness thus leads
to an expectation of pitch sharpening, and indeed stiff-
ness is seen to decrease flattening because it contributes
this compensatory sharpening effect. With regard to the
spectral centroid, when the string frequencies are less har-
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monic, high-frequency string resonances are expected to
be excited less strongly which leads to a lower centroid,
which is consistent with what is observed (i.e. removing
the bending stiffness has increased the spectral centroid).

A detailed comparison of spectral centroid and flatten-
ing between the base case and the case with no bend-
ing stiffness reveals the interesting patterns shown in Fig-
ures 5. For the reason mentioned above, the majority of
data points in Figure 5b show positive values and thus
give a positive value for the average in the “No stiffness”
case in Figure 4e. However, close to the maximum bow
force where pitch flattening is strongest, many of the data
points have negative values. The dark instances can be at-
tributed to the modulation structure shown in Figure 3c,
which disappears in the “No stiffness” case, but even the
data points between those dark instances mostly have neg-
ative values. This suggests that pitch flattening caused by
the spatial spread of the corner on a stiff string outweighs
the pitch sharpening caused by the string’s inharmonicity.
It also suggests that pitch flattening becomes a more sen-
sitive function of the normal bow force when the bending
stiffness of the string increases. Musically, this might make
the undesirable effect of flattening more conspicuous to the
player.

A similar observation can be made in Figure 5a: in ac-
cordance with our earlier explanation of weaker excitation
of higher modes of a stiff string, most of the β-FN com-
binations in 5a show positive values. However, closer to
the upper bow force limit, the majority of the instances
show negative values. The explanation, at least in the con-
text of the friction-curve model, is that strong hysteresis
always entails large jumps in friction force at stick/slip
transitions. This force jump results directly in significant
high-frequency content in the bridge force, and thus con-
tributes to a higher centroid.

Returning to the nine model variations, Figure 6 shows
the effect on the occurrence of the S-motion and ALF
regimes. The base case is also included in this plot. The
vertical axis shows the total number of occurrences for the
corresponding regime, and the dashed line shows the re-
sult for the base case. It should be noted that the results
for the thermal friction model may be a little misleading
here: because the maximum bow force was so much higher
for that model, there are fewer available cases within the
range of the simulations to give rise to S-motion or ALF,
and that may be the main reason for the low numbers seen
in the figure. Otherwise, the most striking observation in
Figure 6a is that the exclusion of torsional motion signif-
icantly reduces the number of S-motion occurrences. The
effect is even stronger if both torsional motion and bend-
ing stiffness are excluded. Conversely, turning the bridge
to a rigid termination significantly increases the number of
S-motion occurrences.

Looking at the number of ALF notes in Figure 6b, the
most significant deviation from the base case is for the “No
torsion/stiffness” case with almost double the number of
ALF notes. The longitudinal compliance of the bow-hair,
especially if coupled with the flexible bow-stick, acts as
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Figure 6. Comparing the total number of S-motion (a) and ALF
note (b) occurrences for different cases defined in the text.

a cushion against untimely disturbances, thus making the
ALF notes more stable. This is consistent with what Mari
Kimura, the violinist best-known for using ALF notes,
suggests:“The first secret is maintaining loose bow hair
[. . . ]. You don’t want a lot of tension [. . . ]. You need
enough elasticity on the bow hair that you can really grab
the string” [48].

3.4. Fluctuations of the bow force and the bow
speed

It was suggested earlier that the main effect of the lon-
gitudinal and the transverse flexibility of the bow-hair is
to add a fluctuating component to the nominal bow speed
and bow force respectively. This section offers a closer
look at the amplitude of those fluctuations, their frequency
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content, and their distribution across the β-FN plane. Fig-
ures 7a and 7b show the amplitude of fluctuations as a
percentage of the nominal values for the bow force and
bow speed. The figure is calculated based on the data from
the “Dual-polarisations” and “Hair long. vib.” cases from
above. Amplitude of fluctuation is defined here as half the
peak-to-peak value within the last period of the simulated
data.

To interpret these results it is useful to look at the chain
of events leading to perpendicular-to-bow vibration of the
string, with associated bow force fluctuations. The force
that a bowed string applies to the bridge is approximately a
sawtooth wave, which excites the body modes. The vibra-
tion of the string in the Y direction is primarily driven by
the motion of the bridge notch in that direction. Suppose
the mth harmonic falls close to the frequency of a strong
body mode, with a spatial angle with respect to the bow-
ing direction θM . Note that the strength of the harmonic
components in the bridge force is roughly inversely pro-
portional to the harmonic number, which gives the higher
harmonics a relative disadvantage.

The frequency of the mth harmonic in the bridge force
will be close to the frequency of the mth string mode in
the perpendicular-to-bow direction, so the string vibration
in the second polarisation is likely to occur predominantly
in that mode. Keeping the vibration pattern of the mth
string mode in mind, and given that m is likely to be small
enough that β < 1/2m, the farther the bow is placed from
the bridge, the larger the amplitude of the perpendicular-
to-bow velocity of the string at the bowing point, and
hence the amplitude of the bow force fluctuation, is likely
to become. On the other hand, the initial excitation force
at the bridge is inversely proportional to β, and so keep-
ing all other parameters the same, playing farther from the
bridge would tend to result in a smaller bow force fluctu-
ation. These two effects tend to cancel each other out, but
the second effect wins out so that increasing β while keep-
ing the bow force the same reduces slightly the percentage
of bow force fluctuation. The exact physical properties of
the hair ribbon and the contact position on the bow also
affect the magnitude of bow force fluctuations, but in gen-
eral these effects are of minor importance in comparison.

Figure 7a also shows that the relative amplitude of bow
force fluctuations increases with reducing bow force. This
is not unexpected: the absolute amplitude of the bridge
force is independent of the bow force to the first order
of approximation, and so is the amplitude of bow force
fluctuation. Percentage-wise, this results in an increase in
the bow force fluctuation with decreasing nominal bow
force. The maximum fluctuation amplitude obtained for
the simulated string is around 10% of its nominal value
(see colourbar of Figure 7a).

Figure 8a shows the effective bow force in the time do-
main for a sample from Figure 7a with β = 0.016 and
FN = 3.5 N. It can be seen that the bow force fluctua-
tion mostly corresponds to the 3rd harmonic of the bowed
string (around 440 Hz). The coupling apparently happens
through a relatively strong body mode at 433 Hz, with a
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spatial angle of θM = 19.27◦, a Q factor of 53, and an
effective mass of 180 g.

The analysis of the fluctuating bow speed is more
straightforward. The bow hair is excited in its longitudinal
direction by the fluctuating friction force acting between
the string and the bow. The response of the bow-hair is a
superposition of its forced and transient responses to the
perturbation force at the bow. Figure 8b shows the effec-
tive bow speed in the time domain for a sample from Fig-
ure 7b. The fluctuation just after the stick-to-slip transition
is indeed dominated by the transient response of the bow-
hair to the sudden drop in the friction force, with a dom-
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inant frequency around 1950 Hz. Based on the chosen β
for this particular simulation, the Schelleng ripples would
be expected to appear at a frequency of 9176 Hz. The fluc-
tuations just before the stick-to-slip transition mostly arise
from the precursor waves preceding the main Helmholtz
corner arriving from the finger side, a consequence of the
string’s bending stiffness.

Looking at Figure 7b, the amplitude of fluctuations gen-
erally increases with increasing bow force. It is striking
how large the fluctuations are compared to the nominal
bow speed. Their amplitude is at least three times the nom-
inal bow speed for any bow force larger than 4 N, and the
effective bow speed experiences negative values within ev-
ery cycle for virtually all instances with β < 0.03. It is
somewhat surprising how small an impact this seems to
have made on the Schelleng diagram of the “Hair long.
vib.” case, compared to the base case. The fluctuations
of the effective bow speed scale with the characteristic
impedance of the string, so one would expect even larger
fluctuations when a heavier string is bowed.

3.5. Effect of the nominal bow speed

So far the nominal bow speed has been held at a constant
value 5 cm/s, towards the low end of bow speeds used in
normal playing. Based on Schelleng’s argument [34], both
the minimum and the maximum bow forces would be ex-
pected to scale proportional to the bow speed. A small de-
viation from proportionality may be expected because of
the variations in the dynamic friction behaviour, but this
effect would be expected to be very small, only becom-
ing noticeable at large β values. However, in conflict with
that prediction, Schoonderwaldt et al. [49] found in exper-
iments on D4 and E5 violin strings that while the maxi-
mum bow force scaled with bow speed, the minimum bow
force did not. If anything, their results suggested that the
minimum bow force remained almost unchanged for bow
speeds 5, 10, 15, and 20 cm/s.

Simulations have been performed to investigate whether
this surprising independence of the minimum bow force
from the bow speed is captured by the bowed-string model
presented here. The simulated data, not reproduced here,
gave bow force limits that scaled closely with the bow
speed: there was no trace of the unexpected trend ob-
served in experiments. This observation therefore remains
an open question for future research: possibly the exper-
imental results were influenced in some way by aspects
of the frictional behaviour of the rosin not included in the
model here? It should be noted that the experiments were
performed with a real bow sitting on its full width over the
strings, but it seems a little unlikely that the flexibility of
the bow or its finite width could produce such a striking
effect.

4. Conclusion

A computational model of a bowed string has been pre-
sented, incorporating a range of physical effects not pre-
viously explored in detail. The model can take accu-

rate account of the measured stiffness and frequency-
dependent damping of the string, its torsional motion, its
motion in two transverse polarisations, and its coupling
to a realistically-modelled instrument body. Coupling to
the three-dimensional dynamics of the bow-hair and bow-
stick can be included. For the purposes of illustrative com-
putations, parameter values were either drawn from earlier
literature, or were measured on a particular set of cello
strings and a cello body, as described in a previous pa-
per [1].

A major restriction to the current version of the model is
that it assumes the bow-string contact to occur at a single
point (rather than through a finite width of the bow-hair
ribbon). More fundamentally, there is at present consider-
able uncertainty about the correct physical model to cap-
ture the dynamic friction force, even in this simplest case
with a point contact. The studies reported here use two
well-studied models of friction drawn from earlier litera-
ture. One is the “friction-curve model”, in which friction
force is assumed to be a nonlinear function of the instan-
taneous value of the relative sliding speed. The other is
a thermal model in which the yield strength of the rosin
interface is assumed to be a function of the contact tem-
perature: a heat-flow calculation is run in parallel with the
dynamic simulation to calculate the time-varying contact
temperature. Both models make use of the same set of
measured values of the friction force from violin rosin as
a function of steady sliding speed, so that they are directly
comparable to each other in a certain sense.

Systematic simulations have been conducted to explore
the influence of various model details. The results shown
here have concentrated on steady bowing, and the string’s
behaviour in the Schelleng diagram. The regions where
different regimes of string vibration occurred in that dia-
gram have been mapped, and the variations of waveform
within those regions explored by computing various met-
rics relating to the physics and the sound associated with
the string motion. It should be emphasised that the use of
the model is by no means restricted to this case of steady
bowing, initialised with ideal Helmholtz motion: it can be
used to explore a wide range of transient behaviour [24].

The results show that by far the biggest variations in de-
tailed behaviour are associated with the choice of friction
model. This is consistent with the impression from ear-
lier literature, but shown here in more quantitative detail.
Since the “true” friction model is still unknown, this points
towards a need for further research. Leaving this ques-
tion aside, the results indicate trends of variation with the
other new model features. The sound of a bowed string is
strongly dependent on the “roundedness” of the Helmholtz
corner, and this is influenced by many of the factors ex-
plored here. Increased string damping, from construction
and material or from the presence of the player’s finger, in-
creases roundedness. There is also a significant influence
from the string’s bending stiffness, and from coupling to
torsional motion. In a similar way, influences on the mini-
mum and maximum bow forces and on the degree of pitch
flattening have been mapped out.
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One of the more complicated interactions to pin down
concerns the influence of the second polarisation of the
string vibration. Vibration in the plane of bowing excites
modes of the instrument body, but these will in general in-
volve motion at the string notch in the bridge which does
not lie in that plane. In consequence, string vibration in
the perpendicular plane is excited. This then interacts with
transverse vibration of the bow-hair, and via that with vi-
bration of the bow-stick. The combined effect is compli-
cated, beyond the reach of simple analytical investigations
and requiring systematic simulation to explore it. Some
preliminary results have been shown here, but more re-
mains to be done on this question.
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