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Abstract

This thesis develops computational methods for the design and evaluation of idiophone bars,

with a focus on marimbas and vibraphones. The methods developed use computer models to

enable evaluation of new bar designs and materials, reducing or delaying the need for physical

prototypes. The work’s main contributions comprise both design methods and evaluation

methods.

Traditional tuning of marimba bars involves carving a “cutaway” or “undercut” on the

bottom of the bar to adjust the frequencies of up to three flexural modes of vibration.

Other mode types, such as torsional modes, are typically left untuned, with their frequencies

left to chance. Makers have complained of timbral problems over a specific range of the

marimba keyboard, where these untuned modes may have frequencies close to those of a

tuned flexural mode. Anecdotal reports indicate this problem creates a concerning amount

of wasted tonewood. Simulation and experimental measurements in this thesis research

confirm the proximity of tuned and untuned modal frequencies over this range of notes.

To address problematic untuned modes, this thesis research develops a design methodol-

ogy to tune idiophone bar flexural and torsional modes concurrently. Tuning is achieved by

creating three-dimensional cutaway geometries that vary along both the length and width

of the bar (whereas examples in the literature vary only along the length). Bar behaviour is

modelled via finite element analysis using three-dimensional solid elements. Cutaway geom-

etry is parametrized in a versatile manner, with an arbitrary number of input parameters.

Methods are developed to solve the underdetermined mathematical problem arising when

the number of input parameters exceeds the number of tuned modes. Examples of rosewood

and aluminum bars tuned using this method are provided. An aluminum prototype bar is

fabricated and tested to validate the design methodology.

A second aspect of this thesis research seeks to enable evaluation of proposed bar designs

via listening to virtual models of the sound they produce. To achieve this, a hybrid model

for idiophone sound radiation is developed. This hybrid model combines a dynamic time

history finite element analysis with a modal model, leveraging the advantages of each. The

time history model simulates the first ten to fifteen milliseconds of a mallet impact, captur-

ing excitation of the bar and interaction between the bar and mallet head. A modal model
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represents the bar’s linear response and decay after the mallet impact has concluded. The

hybrid model thus constricts the computationally expensive time history model, while allevi-

ating any need for recordings or measurements of prototype bars in fitting parameters of the

modal model. All of this is accomplished using the same geometric inputs and definitions as

the developed bar design methodology, integrating bar design and evaluation within a single

computational framework.
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Résumé

Cette thèse développe des méthodes de calcul pour la conception et l’évaluation de barres id-

iophones, avec un accent mis sur les marimbas et les vibraphones. Les méthodes développées

utilisent des modèles informatiques pour permettre l’évaluation de nouvelles conceptions de

barres et de nouveaux matériaux, réduisant ou retardant le besoin de prototypes physiques.

Les principaux apports de ce travail portent à la fois sur les méthodes de conception et sur

les méthodes d’évaluation.

L’accord traditionnel des barres de marimba consiste à tailler un “cutaway” ou un “un-

dercut” au bas de la barre pour ajuster les fréquences jusqu’à trois modes de flexion de

vibration. D’autres types de modes, tels que les modes de torsion, ne sont généralement pas

réglés, leurs fréquences étant laissées au hasard. Les fabricants se sont plaints de problèmes

de timbre sur une plage spécifique du clavier marimba, où ces modes non accordés peuvent

avoir des fréquences proches de celles d’un mode de flexion accordé. Des rapports anecdo-

tiques indiquent que ce problème crée un gaspillage non négligeable de bois. La simulation et

les mesures expérimentales conduites dans cette recherche de thèse confirment la proximité

des fréquences modales accordées et non accordées sur cette gamme de notes.

Pour résoudre les problèmes de modes non accordés, cette recherche de thèse développe une

méthodologie de conception pour régler simultanément les modes de flexion et de torsion de la

barre idiophone. Le réglage est obtenu en créant des géométries de coupe tridimensionnelles

qui varient à la fois sur la longueur et sur la largeur de la barre (alors que les exemples de la

littérature ne varient que sur la longueur). Le comportement des barres est modélisé selon

une analyse par éléments finis à l’aide d’éléments solides tridimensionnels. La géométrie

de coupe est paramétrée de manière polyvalente, avec un nombre arbitraire de paramètres

d’entrée. Des méthodes sont développées pour résoudre le problème mathématique sous-

déterminé survenant lorsque le nombre de paramètres d’entrée dépasse le nombre de modes

accordés. Des exemples de barres en bois de rose et en aluminium accordées selon cette

méthode sont fournis. Une barre prototype en aluminium est fabriquée et testée pour valider

la méthodologie de conception.

Un deuxième aspect de cette recherche de thèse vise à permettre l’évaluation des concep-

tions de barres proposées via l’écoute de modèles virtuels du son qu’elles produisent. Pour
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ce faire, un modèle hybride de rayonnement sonore idiophone est développé. Ce modèle hy-

bride combine une analyse temporelle dynamique par éléments finis avec un modèle modal,

tirant parti des avantages de chacun. Le modèle temporel simule les dix à quinze premières

millisecondes d’un impact de maillet, capturant l’excitation de la barre et l’interaction en-

tre la barre et la tête du maillet. Un modèle modal représente la réponse linéaire de la

barre et sa décroissance après l’impact du maillet. Le modèle hybride restreint ainsi le

coût élevé en calculs du modèle temporel d’éléments finis dynamique, tout en atténuant

le besoin d’enregistrements ou de mesures des prototypes de barres lors de l’ajustement

des paramètres du modèle modal. Tout cela est accompli en utilisant les mêmes entrées et

définitions géométriques que la méthodologie de conception de barres développée, combinant

la conception et l’évaluation des barres dans un cadre de calcul unique.
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Chapter 1

Introduction and Motivation

1.1 Background

1.1.1 Marimba History

Origins of the marimba can be traced back a very long time to what today may be described

as “primitive” instruments. In fact, one of the world’s oldest known instruments is a litho-

phone comprised of stone bars tuned to a type of pentatonic scale (Adcock, 2017). The New

York Times (1954) described the instrument as a “Stone-Age ‘Marimba’ ”, and reported that

prehistorians believe its construction may date back more than 4,000 or 5,000 years. Tool

markings on the stones provide evidence of purposeful tuning (Adcock, 2017), as does their

pentatonic scale. Clearly the origins of bar percussion instruments are ancient indeed.

MacCallum (1969) provides an excellent history of the marimba in more recent times.

Published in 1969, his book provides possible origins of the marimba with wooden bars.

There are, however, many such possible origins, and the true provenance of the instrument

remains mired in obscurity.

MacCallum later describes the instrument’s proliferation in Guatemala, beginning circa

1894. It was around this time the modern layout, with two rows of bars arranged to resem-

ble the black and white keys of a piano, first appeared. MacCallum indicates the largest

Guatemalan marimbas as spanning six and a half octaves from note F1 to B7. Resonators

were commonly made of soft pine or cedar, with a shape that combines a pyramidal frustum

on top and inverted pyramid on the bottom. This flaring of the resonators allows for shorter

lengths than uniform tubes of the same pitch.

Per MacCallum, marimba manufacturing enjoyed a golden age in the United States from

1910 to 1920. The J. C. Deagan Company was a prominent contributor in this era, offering

marimbas anywhere from three octaves to six octaves in size and available in half-octave
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increments. Deagan also created and produced the “nabimba” - essentially an instrument

comprised of the lower few octaves of a marimba. They even produced a “marimbaphone” —a

type of marimba wherein the bars and resonators could be rotated 90 degrees such that the

bar ends pointed up and the resonator tubes were parallel to the floor. In this configuration

the bars were played by bowing their ends (which were curved for this purpose).

Around 1920, manufacturers in the United States ceased production of marimbas with

notes below C3, and four-octave marimbas because the standard. More exotic instruments,

like the nabimba, also disappeared from catalogues. This situation remained the norm until

Musser introduced the four-and-a-third octave marimba, beginning with note A2, in 1960.

At the time of MacCallum’s writing, Musser was the only manufacturer producing marimbas

larger than four octaves. Bass marimbas, with notes beginning at C2, were available upon

special order.

Fast forward to today and marimba size availability has expanded once more. Five-octave

marimbas are commonly available from major manufacturers, including Adams, Bergerault,

Malletech, Marimba One, Musser and Yamaha. Such instruments will typically include notes

C2 through C7. It is not unusual to see marimbas of this size of service in an orchestra.

Presently, the Schulich School of Music has three marimbas of this size.

1.1.2 Historical Tuning

According to MacCallum (1969), prior to the 1920’s, only the fundamental mode and fre-

quency was considered when tuning marimba bars. Such bars were then at the mercy of the

“clank note” (most prominent overtone). Should this clank note fall near, but not directly

on, a higher octave of the fundamental, bar timbre could be rendered intolerable. MacCal-

lum points out that striking a bar directly in its centre would minimize the clank, implying

that the clank is indeed a product of the second vertical bending mode. Limiting mallet

strikes to the centre of each bar is impractical and would be overly burdensome for players.

Quality manufacturers would surely have repurposed or discarded bars with unacceptable

clank notes.

MacCallum (1969) goes on to describe “octave tuning”, which allows the player to strike

anywhere on the bar and produce a satisfactory sound.

In the case of marimba bars modern tuning brings down the errant first two

overtones to notes of the same lettered name of the fundamental note. Tuning

the third overtone is often done, but is difficult and is a luxury. It is usual to

tune the bars of the xylophone (which are supposed to be rather thick) so that

the most prominent overtone is a fifth lettered note above the fundamental.
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This description departs in some ways from modern marimba tuning practice. Today, the

second partial of a marimba bar is typically tuned two octaves higher than the fundamental,

which would indeed give it the same lettered note, thereby matching MacCallum’s described

practice. However, these days the third partial is commonly tuned to a factor of 10 times

the fundamental, an interval of roughly three octaves and a major third. Thus this second

overtone would not share the same lettered note as the fundamental. Achieving MacCallum’s

description would require tuning this overtone to either eight times the fundamental, for

a three-octave increase, or 16 times the fundamental, for a four-octave increase. Tuning

the second overtone down to a ratio of eight times the fundamental may be achievable,

with concentrated removal of material at strategic locations. Such tuning would likely be

difficult, and may result in a fragile bar. Tuning the third partial up to a ratio of 16 times

the fundamental is surely impractical, given the proportion of bar materials that affect both

of these vibration modes. Claims of tuning a marimba bar’s fourth partial (third overtone)

have only appeared anecdotally while working on this thesis. Given the variation in measured

overtone frequencies notable in Appendix A, any such claims of tuning the third overtone

seem dubious at best. If MacCallum has inadvertently used the term “overtone” the way

the term “partial” is used today, his description of bar tuning would make more sense as a

logical improvement over tuning only the fundamental. One can only speculate whether this

is, indeed, the case.

Published not long after MacCallum’s book, Moore’s thesis (Moore, 1970) indicates tuning

ratios of 1:4:10 for the first three partials of a marimba bar. It can be supposed then, with

some confidence, that the tuning ratios seen today in marimba bars first appeared somewhere

between 1920 and 1970, and were motivated by a desire to improve bar timbre and avoid

the so-called “clank tones”.

This phenomenon of untuned “clank tones” producing problematic bar timbre persists to

this day, though the vibration modes responsible and range of occurrence on the keyboard

have changed. Addressing this issue forms part of the motivation for this work, as described

in the next section.

1.2 Motivation

1.2.1 Troublesome Torsional Modes

The bars of marimbas, xylophones, vibraphones and similar bar percussion instruments are

tuned by carving an “undercut” or “cutaway” on the bottom of the bar. Figure 1.1 shows

an example of such a cutaway on a Bergerault F]3 marimba bar. Shaping a bar in this
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manner produces desirable timbre while providing a smooth playing surface on the bar’s

topside. Typically, up to three flexural modes of vibration are tuned to produce harmonic

relationships between their modal frequencies. For marimbas and vibraphones, the first three

flexural modes are most commonly tuned to have their frequencies align in ratios of 1:4:10,

while 1:3:6 may be observed in xylophones (Moore, 1970).

Figure 1.1: Photo of the bottom of a Bergerault F]3 marimba bar. The central area where
material has been removed is the bar’s cutaway. Also visible are two holes drilled across the
bar’s width to house support cables.

Bars also exhibit other mode types, including flexure in both vertical and lateral directions,

as well as torsional and axial modes. Figure 1.2, borrowed from Beaton and Scavone (2021a),

shows examples of each mode type along with the names used to describe them here. Other

mode types that do not significantly affect bar timbre (e.g. axial modes along a vertical axis)

are omitted. These other mode types will have frequencies well above our range of interest

and radiate a negligible amount of sound.

Makers have complained that, over a specific range of the marimba keyboard, the frequen-

cies of untuned torsional modes may fall close enough to those of tuned flexural modes to

pollute bar timbre (Stevens, 2015), sending valuable tonewood to the reject bin. Solving

this problem forms part of the motivation for this work. Specifically, it is desirable to rem-

edy the problematic torsional modes solely by shaping a bar’s cutaway, and without adding

concentrated mass or secondary materials to the bar. This approach is preferred as adding

materials would incur the additional costs of these materials and require some form of (likely

adhesive) connection, which could become a point of failure.

1.2.2 Enabling Design Exploration

New Materials

Modern day professional quality marimbas and xylophones are invariably made with rose-

wood bars. MacCallum (1969) mentions a number of possible materials for making marimba

bars, including Mexican ironwood, Brazilian Pernambuco wood, “chico zapote” (sapodilla),

“encino roble” (white oak), hormigo, which was the preferred choice for Guatemalan marim-

bas, and “bois d’arc” (bodark) a wood native to the southern United States. MacCallum

agrees with Moore (1970), though, that rosewood (specifically Honduran rosewood; Dalber-
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L) T)
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Figure 1.2: Vibration mode types and naming convention in this thesis. Undeformed bar
geometry is outlined in black. Free-free boundary conditions are employed. Mode types: (V)
- vertical-flexural mode, (A) - axial mode, (L) - lateral-flexural mode, (T) - torsional mode.
Note that the bar cutaway in this example results in coupling between deformation types.
Vertical deformation is present in the axial mode, while torsional deformation occurs in the
lateral-flexural mode. Figure taken from Beaton and Scavone (2021a).

gia stevensonii) was the only material used for the manufacture of quality marimba and

xylophone bars in the United States at the time of their respective publications. This trend

continues to today, where a search for new or used marimbas will yield wholly rosewood

results for quality instruments.

Such uniformity in marimba construction is imperilled somewhat by the vulnerability of

rosewood species around the world. While some species of rosewood (e.g. Brazilian rose-

wood) are more endangered than others, all are in a vulnerable state. The Convention on

International Trade of Endangered Species of Wild Fauna and Flora (CITES) controls inter-

national trade of specific wild animals and plants between participating countries (of which

there are currently 184 listed on the CITES website). Brazilian rosewood has been listed in

Appendix I of CITES since 1992, placing it in the most restrictive category of trade for the
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most endangered species. In 2017, all other species of rosewood were added to Appendix II

of CITES for species under threat, leading to restrictions on global trade. In 2019 an excep-

tion was added to allow the free trade of non-Brazilian species of rosewood used in musical

instruments. While this exception makes it easier to bring instruments across international

borders, clearly there would be advantages to finding a viable alternative to rosewood.

African padauk can sometimes be found in more inexpensive marimbas or xylophones,

possibly intended for practice or instruction. Padauk has even been described as “diet

rosewood” in the context of marimba and xylophone materials (Dooley, 2015). Though

useful for cheaper instruments, the rarity of padauk marimbas reflects a general consensus

on its inferiority to rosewood.

Synthetic materials have found application in musical instruments for some time now. For

example, RainSong guitars are built almost entirely from carbon fibre, while Phoenix Pianos

uses carbon fibre to produce soundboards and other components (e.g. pin blocks, hammer

shanks). Synthetic materials also appear in mallet percussion instruments. Presently Musser

produces synthetic marimba bars using a proprietary material named Keylon. Yamaha also

produces a series of synthetic bars using their own proprietary material called Acoustalon.

These synthetic materials have much lower damping than rosewood, and produce a timbre

quite distinct from any marimba with wooden bars.

Given the situation described above, there exists a motivation to explore new potential

materials for mallet percussion instruments such as marimbas and xylophones. This raises

the obvious question of which materials may be best suited to the task. While some work has

been done to assess the potential of different wood species (Holz, 1996; Aramaki et al., 2007;

Brémaud, 2012), it would be advantageous to also explore new synthetic or other natural

materials without having to first construct prototype bars.

Alternate Tuning Ratios

Addressing the problematic torsional modes described above raises some interesting ques-

tions. If the proximity of torsional mode frequencies to tuned mode frequencies is a problem,

by how much must the modes be separated to fix this problem? With the right frequency

ratios, could the torsional modes be made useful rather than problematic? If so, what would

be the best frequency ratios for tuning some torsional modes along with the flexural modes?

Bork and Meyer (1985) investigated listeners’ preferred frequency ratio for the third partial

of a xylophone sound. Their study used synthesized tones comprised of three partials, each

with independently controlled frequency, peak amplitude and decay time. Listeners were

found to prefer a frequency ratio of about 9.79 for the third partial in the xylophone sound.

This value falls midway between three octaves plus a minor third, and three octaves plus a
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major third, above the fundamental frequency. Such results show that listeners’ preferences

may not necessarily fall on harmonic ratios. This study also demonstrates an advantage of

using synthesized tones for listener evaluation, as creating prototype bars for each tuning

ratio evaluated would be costly, time consuming and wasteful of materials.

The relative amplitudes of each partial in Bork and Meyer (1985), as well as their evolution

over time, are based on measurements of existing rosewood bars. In evaluating new bar

designs, it would be most advantageous if measurements on physical prototypes were not a

required input of the analysis.

Sound Radiation from Virtual Bars

Enabling the evaluation of new materials and tuning ratios by creating virtual models of test

bars is thus the second motivation of this work. It is desirable that such evaluations can be

carried out based solely on material parameters and proposed bar geometry, avoiding any

need to first create a physical prototype. Such an approach would serve to greatly reduce the

time and material cost of creating physical prototypes. In fact, if sufficient data is available

for a candidate material, it could be evaluated without procuring any samples at all.

It is also desirable that an analyst could evaluate a proposed bar design by listening to

its virtual representation. Developing quantitative measures of instrument quality remains a

stubbornly elusive goal in musical acoustics. Rather than attempting to compare bar designs

via any such quantitative measure, the model should instead output the sound radiated from

a bar after a mallet strike. This will allow the analyst (and others) to listen to candidate

bar designs and use their own subjective opinions for comparison. Any such radiated sound

outputs should thus be as realistic as possible, with less importance placed on computational

efficiency.

1.3 Thesis Layout

The subsequent chapters of this thesis are organized as follows:

Chapter 2 provides a review of published literature on computational modelling tech-

niques for idiophone bars. It considers approaches to model vibrational behaviour, as well

as sound radiation. Damping models are discussed, as they play an important role in sound

production. Techniques to solve the mathematical problem of bar tuning are also considered.

Chapter 3 describes the finite element models of idiophone bars used in this work. The

modelling approach described in this chapter is common to work appearing in chapters 4
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and 5.

Chapter 4 outlines a method developed to tune idiophone bars using three-dimensional

cutaway geometries. The tuning problem is defined mathematically, and the solution method

is described. Examples of aluminum and rosewood bars are presented and the solving al-

gorithm’s performance is discussed. The chapter concludes with an overview of fabricated

prototype bars.

Chapter 5 presents a developed hybrid sound radiation model for idiophone bars. The

modelling steps are described in detail. Suggested approaches to compute parameters specific

to the model are provided. Example models are presented and tests are performed to evaluate

the suggested model parameters.

Chapter 6 concludes the thesis, giving a summary of the work and recommending poten-

tial directions for future research.

Appendix A provides information on experimental measurements of marimba bars as well

as stock materials. These measurements investigated the behaviour of professional-quality

instruments and determined material properties for bar models.



Chapter 2

Review of Idiophone Computational

Modelling Literature

2.1 Bar Vibration Modelling

Modelling the vibrational properties of idiophone bars is of primary importance in this

work. Specifically, any models created must determine the modal frequencies at which the

bar will vibrate for a given cutaway profile. While numerous options exist for modelling

a bar’s natural frequencies, the Finite Element Method (FEM) was selected to model bar

vibration in this research. Its selection was based on numerous factors, including widespread

availability of FEM packages, numerous example applications in the literature, and previous

experience and familiarity with the method. The following sections provide a literature

review of FEM in a context of musical acoustics and, more specifically, applications to

idiophones. Alternative methods that were considered are also briefly discussed.

2.1.1 Background and History of the Finite Element Method

The Finite Element Method is a numerical method for solving differential equations. Turner

et al. (1956) give the first thorough overview of the method as it is known today, including

use of the term “element” in the manner now common. The concept of subdividing a region

for analysis also appears in earlier works by Hrennikoff (1940) and Courant (1943). The

popularity of FEM increased as computers grew faster, thereby enabling larger problems

to be modelled within practical time limits. Today FEM is regularly employed to solve

problems of engineering and design.

FEM as applied to structural analysis (i.e. solving the equations of elasticity) can be gen-

erally divided into two categories based on the types of elements used: solid elements and

structural elements. Each node in a solid element will have a number of displacement degrees-

9
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of-freedom (DOFs) equal to the dimension of the problem (e.g. for a three-dimensional

problem, each node in a solid element will have three displacement DOFs). By contrast,

structural elements include rotational DOFs in addition to displacement DOFs. Structural

elements will also have dimensions less than or equal to the dimension of the problem domain.

For example, it is common to see one-dimensional beam elements and two-dimensional shell

elements modelling structural problems in three-dimensional space. For three-dimensional

problem domains, each node of a structural element will have three displacement DOFs as

well as three rotation DOFs, for a total of six DOFs per node. Structural elements are gen-

erally intended to represent large volumes of material compared to solid elements. In doing

so they reduce the total number of DOFs in a problem, thereby lowering its computational

demand. The following section contains examples of FEM applied to problems of musical

acoustics. Both solid and structural elements can be found in these examples.

2.1.2 Musical Acoustics Applications of Finite Element Analysis

The popularity of FEM in engineering and design also extends to research in musical acous-

tics. Many examples of FEM applied to the analysis of musical instruments are available

in the literature. This section will outline published applications of FEM to percussion

instruments (idiophones), stringed instruments (chordophones) and wind instruments (aero-

phones). The papers discussed herein have been selected to exemplify various model types

and applications. Truly, a detailed and comprehensive review of FEM applications in musical

acoustics could fill volumes. The selection below is intended to be representative, though

certainly not exhaustive.

Bork et al. - 1999

Bork et al. (1999) applied FEM to the modal analysis of a marimba bar and compared

results with experimental measurements. Their model represented a real marimba bar of

note C3 using 8-node three-dimensional solid elements. Figure 2.1 shows the mesh used

in their model. Mesh density was varied along the length of the bar to reduce overall

DOFs and computational costs. The mesh shown used 2880 elements. Modal frequencies

between 100 Hz and 8000 Hz were considered (the fundamental frequency for the C3 bar

was around 130 Hz). Their model produced 24 modes with frequencies within these limits.

An average runtime of 10 hours was reported for their modal analyses, using a software

package called CASTEM on HP workstations. Similar models built today using the program

CalculiX (Dhondt) and a desktop computer will run in a few seconds.
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Figure 2.1: Marimba bar finite element mesh from Bork et al. (1999). Three distinct mesh
densities can be seen along the bar’s length.

Bork et al. (1999) defined their geometry by measuring a rosewood marimba bar at discrete

points along its length and used an averaged value for the cutaway thickness. Experimental

modal analysis was performed to measure mode shapes and frequencies. The modal fre-

quencies predicted by FEM and those measured experimentally agreed to within 1% below

500 Hz and within 4% below 4000 Hz. Sensitivity analyses were reported for some of their

results. They found the bar’s fundamental frequency is sensitive to changes in bar thick-

ness, with a 0.5 mm change over the length of the cutaway resulting in an 8% change in

fundamental frequency. They found less sensitivity to Poisson’s ratio, noting that changes of

±50% to Poisson’s ratio resulted in changes of only ±5% for modal frequencies under 5 kHz.

Importantly, Bork et al. (1999) noted that assuming isotropic material behaviour may pro-

duce reasonable estimates of the first few vertical-flexural modes, but modelling orthotropic

material behaviour is essential to capture accurate behaviour of torsional modes.

Bretos et al. - 1999

Bretos et al. (1999) applied FEM to the modal analysis of wooden bars for musical instru-

ments. Their aim was to study the influence of elastic material parameters and undercut

shapes on modal frequencies. Three types of bar geometry were considered: constant cross-

section, parabolic undercut and rectangular undercut. Figure 2.2 displays the meshes used

for each geometry type, along with the control parameters hu and Lu. Each mesh used 150

three-dimensional solid elements with a total of 668 nodes. The outer dimensions of the
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bar were 330 mm x 34 mm x 18 mm, yielding an aspect ratio exemplary of xylophone bars.

Material properties were modelled after a tropical wood commonly known as Azobé.

mechanical parameters were taken for Lophera alata azobe [15]. The density value
was � � 1020 kg=m3. Regarding the elastic tensor, the wood was modelled as an
orthotropic material [13] characterized by the following parameters: (a) Young
moduli: E1 � 19:2 GPa; E2 � 4:7 GPa and E3 � 2:9 GPa; (b) Poisson ratios: �12,
�13 � 0:03; �23 � 0:3; (c) Shear moduli: G12 � 2 GPa; G13 � 1:4 GPa and
G23 � 0:96 GPa. The sub-indices 1,2,3 refer to the direction -parallel, radial and
tangential- to the grain respectively and they correspond to the directions of X-axis,
Y-axis and Z-axis (Fig. 1).
Using the ®nite element modelling described above, two kinds of results were cal-

culated. First, the vibrational pattern of the natural eigenmodes of constant and
non-constant wooden bars were obtained; second, the frequency responses of these
bars to random signals applied at the ends and centre of the bar were recorded. The
values for the input admittances and bandwidths were ®nally obtained with these
spectra. The calculation of frequency responses requires input data for the damping
of the eigenmodes. The ®nite element method asks for values of the damping ratio.
Taking into account the relationship between this magnitude and the quality factor
[16], this latter parameter can be ®nally introduced. Thus, a medium value of Q=50
has been used for all the eigenmodes.

3. Experimental set-up

The experimental set-up used here was the same as that reported in an earlier
publication [9]. It comprised a Dual Channel Signal Analyzer (Bruel & KJaer Model

Fig. 1. Meshes de®ned for the ®nite element modelling (a) constant-section bar; (b) parabolic undercut

bar; (c) rectangular undercut bar).

144 J. Bretos et al./Applied Acoustics 56 (1999) 141±156

Figure 2.2: Wooden bar finite element meshes from Bretos et al. (1999). Three geometry
types were considered: a) constant cross-section, b) parabolic undercut and c) rectangular
undercut.

In analyzing the sensitivities of modal frequencies, Bretos et al. (1999) identify four material

parameters as having significant influence: Young’s modulus in the principal (longitudinal)

direction, E1, shear moduli along the principal axis, G12 and G13, and density, ρ. They

indicate that elastic parameters in the secondary axes (E2, E3 and G23) do not affect any

of the natural eigenmodes. This is true for the modes considered in the paper. Elastic

parameters in the secondary axes will, in fact, affect some modes of vibration; however,

for any typical xylophone or marimba bar geometry, such modes will be much higher in

frequency than the tuned modes and unlikely to noticeably affect the bar’s timbre.

Part of their parametric study considered how different undercuts affect the ratio of fre-

quencies between the first two vertical flexural modes, f2/f1. To reduce the risk of damage

from mallet strikes they impose a limit on the undercut depth, hu, such that hu ≤ 0.7h,

where h is the overall bar thickness. Their study considered undercut lengths, Lu, up to

0.9L, where L is the overall bar length. Their results show that over these undercut length

and depth ranges a frequency ratio of f2/f1 = 3 (as is common in xylophone bars) is always
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attainable. Their results also show that a frequency ratio of f2/f1 = 4 (more common for

marimba bars) is attainable provided that Lu ≤ 0.75L. Their investigation did not report

on undercut influence on the third vertical bending mode frequency, f3.

In addition to the numerical sensitivity and parametric analyses, bars were fabricated for

vibration testing and comparison with model results. One bar of constant cross-section was

tested, along with a bar with parabolic undercut, tuned to note E4, and a bar with rectan-

gular undercut, tuned to C4. The experimental setup used a forced vibration measurement

technique described by Bretos et al. (1997). Two different excitation points were selected:

one intended to excite many modes and another intended to excite only vertical flexural

modes. For all three bars tested Bretos et al. (1999) found the measured spectral peaks

aligned well with modal frequencies from the finite element models.

Henrique and Antunes - 2003

Henrique and Antunes (2003) applied one-dimensional structural finite elements in opti-

mizing bar geometry for mallet percussion instruments. Their model utilized Timoshenko

thick-beam elements which account for shear deformations and rotary inertia. This is in con-

trast to classical Euler-Bernoulli beam elements, which assume a beam’s cross-section is small

compared to its length. Previous experimental work has demonstrated Timoshenko beam

theory to be more accurate in capturing the dynamic behaviour of percussion instrument

bars than classical Euler-Bernoulli beam theory (Orduña-Bustamante, 1991). Additional

examples of bar vibration modelled using one-dimensional beam elements are available in

the literature (Akay et al., 1983; Petrolito and Legge, 1997), including work by the same

authors (Henrique et al., 2001).

Henrique and Antunes (2003) tested two optimization methods for tuning bar geometry: a

stochastic method called simulated annealing, and a deterministic method called sequential

quadratic programming. One example provided in their paper is the tuning of an aluminum

vibraphone bar to a fundamental frequency of 880 Hz with frequency ratios 1:4:10 between

the first three flexural modes. Their objective function calculated errors between the three

tuned modes and their target frequencies, along with a parameter to quantify surface rough-

ness. The bar was divided into 64 beam elements. Symmetry was enforced by mirroring the

bar’s geometry about its midpoint, leaving 32 element thicknesses to be defined. Bar length

was either included as an input parameter or imposed as a fixed value.

Stochastic optimization via simulated annealing considered each of the 32 beam element

thicknesses as separate inputs. The procedure tuned each of these inputs independently,

relying on the objective function’s roughness parameter to ensure practical bar geometries.

Figure 2.3(a) displays the resulting bar geometry from simulated annealing for the 880 Hz
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vibraphone bar. Bar length was included as an input variable in this example.
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Figure 2.3: Optimized geometries for an aluminum vibraphone bar tuned to 880 Hz from
Henrique and Antunes (2003). Geometries were optimized via (a) simulated annealing using
element thicknesses as inputs, and (b) sequential quadratic programming using 10 cosinu-
soidal shape functions. Bar length was a variable in each case (note differing x-axis scales
between panels).

For deterministic optimization using sequential quadratic programming, Henrique and An-

tunes (2003) employed orthotropic shape functions to define a bar’s thickness profile. A bar’s

thickness at a given point along its length, H(x), was determined by summing the weighted

contributions of S orthogonal shape functions, ψ(x). Equation 2.1 illustrates this calculation

with weighting coefficients, As, and mean value, A0:

H(x) = A0 +
S∑

s=1

Asψs(x). (2.1)

Thus, for a given set of shape functions, ψs(x), and bar length, L, bar geometry is entirely

defined by the coefficients As, with s ∈ [0, S]. This approach has the advantage of separating

the mesh and geometry definitions, thereby allowing for mesh refinement independent of the

input parameters. It also reduces the problem complexity by limiting the number of inputs

to the selected value of S. Figure 2.3(b) shows results from deterministic optimization of

the example 880 Hz vibraphone bar using 10 cosinusoidal shape functions.

Henrique and Antunes (2003) also investigated nonstandard frequency ratios leading to
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bar geometries not commonly seen in practice. Figure 2.4 shows the resulting geometry

of deterministic optimization with frequency ratios 1:3:5:7:9 and an imposed bar length of

350 mm.
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Figure 2.4: Optimized geometries for an aluminum vibraphone bar tuned to 440 Hz from
Henrique and Antunes (2003). Flexural mode frequencies were tuned to ratios 1:3:5:7:9.
Geometry was optimized via sequential quadratic programming using 10 cosinusoidal shape
functions. Bar length was fixed at 350 mm.

In the second half of their study, Henrique and Antunes (2003) utilized their optimized bar

geometries for sound synthesis via nonlinear dynamical modelling. Their model employed

a modal decomposition of the bar’s response with averaged damping values from previous

experimental results. Nonlinear interaction between the bar and an impacting mallet was

incorporated. Mallet impact force was modelled using the Hertz model, similar to Chaigne

and Doutaut (1997). This synthesis model was used to investigate the effects of varying

strike location and the timbre of bars with unconventional modal frequency ratios.

Kirkland and Moradi - 2016

Kirkland and Moradi (2016) used three-dimensional solid finite elements to investigate the

tuning of vibraphone bars. Up to 10, 000 tetrahedral elements were used in their models,

depending on bar length. They reported selecting tetrahedral elements for their improved

accuracy in dynamic systems; however, they do not give a baseline for comparison or provide

any substantiation. The geometry of their model is interesting in that it uses a spline curve

to define the bar’s cutaway, and also accounts for the holes drilled for cable supports (which

they term “node holes”).

Their goal was to find the geometry of a vibraphone bar that minimizes its mass while

tuning its first three vertical-flexural modes of vibration to frequency ratios of 1:4:10. A

tolerance target of 0.25% was established for the modal frequencies. Their intention was

to enable fabrication of aluminum vibraphone bars on a computer numerical control (CNC)
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mill, without any need for subsequent fine tuning.

Kirkland and Moradi (2016) used sequential quadratic programming (SQP) to tune their

bar geometry. The vertical (thickness direction) coordinates of spline control points were

used as inputs. The bar’s width, end thickness and longitudinal control point coordinates

were held constant. Bar length was initially considered as an input, but it was found that

this resulted in a nonlinear distribution of bar lengths over the vibraphone keyboard, which

would be impractical. They state that five spline control point coordinates were optimized

by the tuning algorithm; however, Table I and Equation 6 of their paper seem to imply that

two of these values may have been held constant, leaving only three input variables.

Kirkland and Moradi (2016) performed analyses by first optimizing a bar without node

holes to within a frequency tolerance of 1.0%; this model was used to determine node hole

locations. Subsequent models added these node holes and the analysis was repeated with

frequencies tuned to within 0.25%.

Figure 2.5: Vibraphone bars tuned to musical note A4 and fabricated via CNC mill per
Kirkland and Moradi (2016).

Results of their tuning process were demonstrated by machining two copies of a bar tuned

to note A4 (442 Hz), as shown in Figure 2.5. They then mounted the sample bars on string

passing through the node holes (similar to the condition on a vibraphone) and recorded

the results of a mallet strike using a microphone. The recorded sounds were fed into the

program Audacity for spectral analysis. The authors report identical measured frequencies
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for the two fabricated bars to the nearest 0.01 Hz. However, they also state that their

measured frequencies are accurate to within ±1.35 Hz. Thus the −2 cents frequency error

reported for their first transverse mode (mode V1 in the nomenclature of this thesis) could be

anywhere from −7.5 cents to 3 cents. While performing experimental modal analysis on the

fabricated bars could have yielded more precise modal frequencies, these results nevertheless

demonstrate the potential for CNC milling to accurately tune aluminum bars.

Despite some minor criticisms here, Kirkland and Moradi (2016) present interesting work.

Their study is instructive in its use of SQP to treat the modal frequencies as constraints.

Bestle et al. - 2017

In work detailed in both a paper (Bestle et al., 2017) and PhD thesis (Bestle, 2017), Bestle

and his co-authors used 20-node three-dimensional solid elements to model and tune alu-

minum vibraphone bars. Figure 2.6 shows an example mesh from one of Bestle’s models.

This model included 12, 267 elements with 59, 257 nodes and a total of 177, 771 degrees-

of-freedom. Bestle also modelled sound radiation from the vibraphone bars using surface

nodes of the finite element mesh. Details of the sound radiation model are discussed in

Section 2.2.1.

Figure 2.6: Example finite element mesh of an aluminum bar model from Bestle (2017).

Bestle et al. (2017) show an example of adjusting bar geometry to change the frequencies

ratios of higher-order partials. They provide an example of a flat bar with a fundamental

frequency of 440 Hz. Two subsequent models with the same outer bar dimensions, but

material removed at strategic locations, are tuned to have the same fundamental frequency,

but different frequencies for other partials. Figure 2.7 shows the geometry of these three

example bars.

Similar to Kirkland (2014), Bestle (2017) used spline curves to define the cutaway of an

aluminum vibraphone bar. A cutaway was optimized for a bar tuned to musical note F3 using

seven input parameters: one defining the length of the cutaway, and six defining depths of

cut at points along the cutaway. Symmetry was enforced by mirroring bar geometry about
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Figure 2.7: Aluminum bar models from Bestle et al. (2017). Each bar is tuned to a funda-
mental frequency of 440 Hz with differing frequencies of higher-order partials.

its centreline. Bar thickness was uniform across its width at any given point along the

longitudinal axis. Equation 2.2 shows the tuning objective function used:

g(x) =
5∑

i=1

wi
|fFEM

i − f target
i |

f target
i

, (2.2)

where x is the vector of geometry inputs, wi are weighting coefficients for the various modes,

fFEM
i are the modelled modal frequencies and f target

i are the corresponding target frequencies.

A vector w = [5, 0, 3, 0, 1]T was used to assign importance factors to the first three vertical

flexural modes while ignoring the other (torsional and lateral flexural) modes during tuning.

Note that this formulation assumes a constant mode ordering. A gradient-based optimization

algorithm was used to minimize the objective function in Equation 2.2, but details of this

algorithm were not reported.

Bestle (2017) goes on to model, optimize and fabricate two aluminum bars on a CNC mill.

The first bar has what is described as a “classic” cutaway, which includes curved transition

zones on each end with a centre portion of uniform thickness (similar to that shown in

Figure 2.6). The second bar, shown in Figure 2.8, uses the spline formulation detailed

earlier. Prototypes of the bars were fabricated and experimental modal analysis performed

on each. Previous measurements on a Yamaha vibraphone bar indicated frequency ratios

of 1:3.99:10.76 between the first three vertical flexural modes. The fabricated, optimized

“classic” cutaway produced ratios of 1:4.03:10.29, while the fabricated, optimized cutaway

with spline definition achieved a ratio of 1:4.01:10.01.

Both works (Bestle et al., 2017; Bestle, 2017) show the suitability of FEM for accurately
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Figure 2.8: Fabricated aluminum vibraphone bar by Bestle (2017). Cutaway geometry was
optimized to tune the frequency ratios of the first three vertical-flexural modes. A CNC mill
was used to fabricate the precise bar geometry.

capturing the modal behaviour of bar models for subsequent fabrication via CNC mill. These

works are also interesting for their proposed approach to model sound radiation from a struck

bar (see Section 2.2.1).

Rucz et al. - 2021

In a paper published while this thesis research was ongoing, Rucz et al. (2021) demonstrated

a coupled vibroacoustic model of a xylophone. Using finite elements, their model considered

a xylophone bar under mallet impact, an adjacent resonator, several nearby bars (whose

presence affects the resonator), and a hemispherical portion of the radiation domain above

the bar. Figure 2.9 shows a schematic of the simulation domain included in their model.

Areas labelled Ωa model acoustical wave propagation via the Helmholtz equation. The

orange-coloured areas represent five xylophone bars (one struck and four passive) governed

by the equation of motion. The acoustic and mechanical fields are coupled in the model.

Mallet impact was modelled using the approach outlined by Chaigne and Doutaut (1997),

which applies the excitation forces on a single finite element node and accounts for interaction

between the bar and mallet at that node.

Both the sound radiation domain, Ωa, and xylophone bars were meshed using three-

dimensional solid finite elements. Rucz et al. (2021) report using hexahedral elements for

the xylophone bars and tetrahedral elements for the acoustic domain, with interpolation em-

ployed between these incompatible meshes. Infinite elements are defined around the exterior

of the unbounded acoustic domain, Γ∞. They report roughly 17, 500 to 25, 000 nodes in the

sound bar meshes and roughly 100, 000 nodes with around 400, 000 elements in the acoustic

domain mesh.

To reduce computational demand, Rucz et al. (2021) use a modal basis to reduce the size

of the coupled system matrices. They then employ Newmark’s method with coefficients for

average acceleration to evaluate the modal system’s response to mallet impact in the time

domain.

Rucz et al. (2021) report evaluating eigenmodes of the acoustic domain to be the most
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Figure 2.9: Schematic of xylophone sound radiation simulation domain from Rucz et al.
(2021). (a) Top view. (b) Side view.

time-consuming step in their analysis, requiring around 40 to 60 minutes for a given example

model. Other preprocessing steps are reported as taking about 15 minutes, while time

domain simulation of a 10-second long bar system response required around three minutes

after completing the other steps.

Rucz et al. (2021) perform several measurements to validate their model, including investi-

gations of rosewood mechanical properties and resonator cavity resonance properties. They

also consider energy distribution between mode types depending on mallet strike location.

Example sound files are provided demonstrating some very realistic sounding mallet strike

results from their model.

Soares et al. - 2021

Two papers using a simplified definition of bar undercuts were published while this thesis

research was ongoing (Soares et al., 2021a,b). The second paper (Soares et al., 2021b),

which discusses tuning of idiophone bar torsional modes, appeared in the literature after

the methods developed in Chapter 4 were completed and published (Beaton and Scavone,

2021a).

Figure 2.10 shows the parameters used to define stepped undercut profiles used in the two

papers. The stepped profile serves to limit the number of input variables while producing

shapes that are simple to manufacture (Soares et al., 2021a).

In the first paper, Soares et al. (2021a) employ these simplified undercuts to define one-

dimensional finite element models of idiophone bars using Timoshenko beams elements. The

flexural modes of these models were then tuned using an evolutionary algorithm. Vari-
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Figure 2.10: Side view of idiophone bar with parameters defining the simplified undercuts
from Soares et al. (2021a). This example has two distinct steps, though generally the model
may use any number of steps.

ous non-standard tuning ratios were considered. Some interesting examples were presented

comparing simplified undercut shapes from the evolutionary algorithm to shapes found by

Henrique and Antunes (2003) using cosinusoidal shape functions (including the bar shown

in Figure 2.4).

The second paper (Soares et al., 2021b) applies this same simplified undercut profile to

three-dimensional finite element bar models, and tunes both flexural and torsional modes. A

surrogate optimization algorithm is employed to reduce the number of function evaluations

(FE modal analyses) required in a global optimization scheme. Several example models are

shown, tuning the first three vertical-flexural modes to the usual 1:4:10 frequency ratios,

while also tuning up to two torsional modes.

Soares et al. (2021b) validate their methods by fabricating three prototype bars with

these stepped undercuts, designed using their optimization approach. Figure 2.11 shows the

three prototype bars along with the frequency ratios of tuned vertical-flexural and torsional

modes. Performance of these bars is discussed in Section 4.5.3.

Figure 2.11: Prototype bars with stepped undercuts fabricated by Soares et al. (2021b).
Frequency ratios are indicated for tuned modes: (V1:V2:V3:V4|T1:T2).

Soares et al. (2021b) also provide sound recordings of their prototype bars being struck

with a typical vibraphone mallet, with resonator tubes positioned beneath each bar. Spec-

trograms of the resulting sounds are provided. The paper concludes with a discussion of
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modal damping and the timbral features of the different recordings.

Perrin et al. - 1983

Perrin et al. (1983) performed modal analysis on an English church bell using an axisymmet-

ric finite element model. Axisymmetric finite elements are designed to analyze axisymmetric

structures (also called solids of revolution) using a two-dimensional mesh of one slice of

their profile. This approach has the advantage of drastically reducing the number of DOFs,

thereby reducing computational complexity compared to a three-dimensional model of the

full structure. The fact that this paper was published in 1983 is evidence of this advantage.

Full three-dimensional finite element bell models became more common in the 1990s (Kim-

mich et al., 1992) and thereafter (Zhang et al., 2007), as the computing power available to

researchers increased.

Perrin et al. (1983) compared their results with experimental measurements of a 56.6 cm

tall, 70.2 cm diameter, 214 kg English church bell tuned to the musical note D5. The bell

was first excited acoustically using four loudspeakers and an oscillator. This setup was used

to identify all apparent partials up to 9.3 kHz. Next the bell was excited magnetically by

attaching a small disc and employing a magnetic transducer. Two accelerometers were then

used to survey the bell’s response when driven at a specific frequency. One accelerometer was

connected to the bell near the drive point, or diametrically opposite it, as a phase reference.

The second accelerometer was held against the bell by hand and used to explore and map

nodal lines of the active mode.

Figure 2.12: Axisymmetric finite element mesh of an English church bell from Perrin et al.
(1983). Solid lines indicate undeformed mesh. Dashed lines show modelled results for the
six-meridian inextensional radial ring driven mode known as the Tierce.



2 – Review of Idiophone Computational Modelling Literature 23

Figure 2.12 shows the axisymmetric finite element mesh employed by Perrin et al. (1983).

Forty elements can be counted in the figure, demonstrating the simplicity of this mesh

compared to many seen today. The use of this relatively small mesh enabled the modelling

of this 214 kg bell at a time when computational power was comparatively limited. By

contrast, a 2007 study modelling wave propagation in chime bells used between one million

and ten million three-dimensional solid finite elements per model (Zhang et al., 2007).

Also shown in Figure 2.12 is the displaced shape of a mode known as the Tierce – one of

the commonly tuned modes of a bell. Perrin et al. (1983) identified 134 vibrational modes

up to 9.3 kHz. They used the mode shapes computed by the finite element model to match

those from experimental measurements and compared frequency results. In some cases mode

shapes calculated by the model, but missing from measurement data, prompted the authors

to perform additional measurements using driving locations informed by model results. Good

agreement was found between modelled and experimental results for lower modal frequen-

cies, with larger deviations seen as frequency increased. This trend, also observed by Bork

et al. (1999), is common in modal analysis using finite elements. Considering the relative

coarseness of the mesh in Figure 2.12, discrepancies between modelled and measured results

for high modal frequencies are not surprising.

McLachlan et al. - 2012

McLachlan et al. (2012) used explicit finite element analysis to model tuning the natural

modes of a gong with a punch. Their model included nonlinear geometry (large displace-

ments) and material behaviour (plastic deformation and residual stresses) to capture the

effects of cold-forging small dimples in the gong. These sophisticated models were validated

by fabricating physical prototypes.

McLachlan et al. (2012) used second-order three-dimensional solid tetrahedral elements in

their gong model. The model was created using simulation software Simulia Abaqus (Abaqus).

Mild steel was selected to model the gong and produce the physical prototype. The steel’s

elastic and elasto-plastic behaviour was determined via measurements on test specimens. An

11.895 kg drop hammer attached to a 1 m pivot arm was used to produce dimples in the

physical prototypes. The hammer’s velocity immediately before impact with the gong was

estimated using a high speed video camera. This value was then used as the initial ham-

mer velocity in the finite element model. After forming dimples, a scanning laser Doppler

vibrometer and shaker were used to measure mode shapes of the prototype gongs.

Panels (A) and (B) in Figure 2.13 display model results for residual stresses after dimple

formation. Panel (C) of Figure 2.13 plots the change in frequency for two vibrational modes

as a function of dimple depth at the centre of the gong. The plot gives results from both
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Figure 2.13: Finite element model results from McLachlan et al. (2012). A) Residual radial
stresses in polar coordinates after dimple formation. B) Residual tangential stresses in polar
coordinates after dimple formation. C) Effect of adding a 20 mm diameter dimple of various
depths on the frequency of the 0,1 and 2,0 modes. Results are shown for both a linear finite
element analysis (FEA) model with residual stresses, and a physical prototype (P’TYPE).

the finite element model and measured physical prototype. Significant differences can be

seen in the change in modal frequencies between the modelled and measured results in

Figure 2.13. Strain rate dependencies for plastic deformation, which were not included in

the finite element model, were identified as a likely source of these discrepancies. Note that

their paper used a m,n naming convention when referring to the gong’s vibrational modes,

where m is the number of meridial nodal lines and n is the number of nodal rings.

Interestingly, McLachlan et al. (2012) report that models run with the dimpled gong ge-

ometry, but with residual stresses removed, showed no appreciable frequency changes in the

0,1 and 2,0 modes. Thus they attribute the change in frequencies of these modes solely to

the presence of residual stresses.

McLachlan et al. (2012) go on to attempt tuning the first five modes of a prototype gong

using four dimples evenly spaced at half the gong’s radius. They provide results showing

the effect of increasing dimple depth on the five modal frequencies of interest; however,

they do not achieve the desired harmonic relationships using dimples alone. Instead, they

report that the harmonic relationships between modes were eventually achieved by stressing

a broad region about the centre of the gong surface to the steel’s yield point without forming

a dimple and then allowing it to spring back. Limited details are provided as to why this

extra step was effective in achieving the desired modal frequencies. They conclude that their

method of creating residual stresses via cold forming small dimples can reliably tune gong

modes to harmonic relationships. The validity of this result is obscured, however, by the

required additional step of yielding a broad area of the centre of the gong.
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Additional Idiophone Modelling Applications

The papers outlined above represent a sample of finite element analysis applied to musical

acoustics research on idiophones. Numerous other applications are available in the literature.

Legge and Petrolito (2007) combined FEM with constrained optimization to tune the

shape of xylophone and marimba bars. Laukkanen and Worland (2011) used FEM to model

sequential removal of material from a vibraphone-like aluminum bar, and compared their

results with measurements of a machined bar.

McLachlan (1997) performed a parametric study of geometry changes and their effects on

gong vibrational modes using FEM. Perrin et al. (2014) modelled the vibrational modes of

a gamelan gong using FEM and compared results with measurements by electron speckle

pattern interferometry (ESPI).

Perrin et al. (1995) employed FEM in analyzing the vibrational modes of several types

of bells. A later study compared FEM results with ESPI measurements of an Indian ele-

phant bell’s vibrational modes (Perrin et al., 2012). Several studies (Kimmich et al., 1992;

McLachlan et al., 2003; Özakça and Göğüş, 2004; Legge and Petrolito, 2007) have used FEM

to optimize bell geometries. Zhang et al. (2007) created a very large FEM model to study

wave propagation in Chinese chime bells with a two-tone acoustic characteristic. Carvalho

et al. (2017) used FEM to study tuning bells by attaching masses at strategic locations.

Their study was motivated by a desire to improve the tuning of existing historic bells. Other

studies have used FEM to recreate or reverse-engineer the sounds of historic bells (Debut

et al., 2016, 2019).

2.1.3 Alternative Modelling Methods

The examples outlined above clearly illustrate the prevalence of FEM in musical acoustics

research. One practical advantage of this ubiquity is the vast assortment of FEM packages,

both commercial and open-source, available to researchers. However, numerous alternative

methods to FEM do exist. Depending on the intended application, some may hold advantages

over FEM and may therefore be more popular. Outlined below are various alternative

methods with discussion of their application.

Finite Difference Method

Another very commonly applied method of solving partial differential equations in musical

acoustics is the Finite Difference Method (FDM). This method is often taught in courses

on musical acoustics, with the advantage that its formulation is easier to understand and

apply to a new differential equation than that of FEM. Specifically, FDM can be applied
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directly to a differential equation by substituting FDM approximations of derivatives into the

equation. By contrast, FEM requires first converting the differential equation into integral

form, a process requiring more sophisticated mathematics. This simplicity in formulation

makes applying FDM to a new differential equation easier than applying FEM.

One disadvantage of FDM compared to FEM is that it can be challenging to define complex

geometries using FDM. FDM is most easily applied on a uniform mesh (whether in space

or time) and grows more complicated when nonuniform spacing is included. By contrast,

once FEM elements have been defined for a given set of governing equations, it is easy to

apply them to model complex geometries. Another disadvantage of FDM is that care must

be taken to avoid numerical instabilities, which can arise from ill-suited discretizations.

FEM and FDM can also be combined to leverage the advantages of both. For example, a

structural dynamic time history model will commonly use a mix of these two methods. An

FEM formulation will commonly be applied to solve the structural equations, while an FDM

formulation will handle the progression in time.

Examples of FDM applications in musical acoustics include 1D models of xylophone bar

vibration (Chaigne and Doutaut, 1997), as well as piano string vibration (Chaigne and

Askenfelt, 1994) and nonlinear cymbal models (Bilbao, 2010).

Boundary Element Method

The Boundary Element Method (BEM) is another numerical approach to solving differential

equations with applications in musical acoustics. BEM differs from FEM in that its formula-

tion is based on boundary integral equations of a problem rather than differential equations.

Solving a problem using BEM requires a knowledge of the problem’s fundamental solution

in an infinite domain. The results of a BEM analysis for a given point in the domain can be

conceptualized as the summed influence of the fundamental solution acting from every point

on the boundary to the point of interest within the domain.

A key advantage of BEM in musical acoustics applications is that only the boundary is

discretized. For exterior problems modelling sound radiation from a vibrating body, this

eliminates the complication of establishing infinite or non-reflecting boundary conditions

(see further discussion in Section 2.2.3). By contrast, FEM and FDM require discretizing

the entire domain. As a result, BEM models will typically require far fewer degrees-of-

freedom than FEM or FDM, leading to smaller system matrices. Defining meshes only on

the boundary can have practical advantages as well, in that geometry data from animation

software or 3D scanners could be more readily imported into a BEM model with less need

for further meshing.

One disadvantage of BEM is that it will often lead to non-symmetric fully populated system
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matrices. This differs from FEM, which typically produces sparsely populated symmetric

matrices that can benefit from efficient solving algorithms. As a result, some of the advan-

tage of having fewer degrees-of-freedom in BEM is offset by its fully populated matrices.

Another drawback of BEM is that it is not well suited for nonlinear problems or domains

with multiple materials. From a practical standpoint, BEM also suffers from a shortage

of available software packages compared to the much more popular FEM. The mathematics

underlying BEM is sophisticated and BEM is less commonly taught at universities compared

to FDM and FEM. For this reason, applying BEM to a new differential equation may be

quite challenging, thereby presenting an obstacle for the analyst. A related disadvantage is

that fundamental solutions may not be available for all problems.

Examples of BEM applications in musical acoustics include modelling sound radiation

from marimba bars (Bestle et al., 2017), optimizing bell geometry (Yu and Kwak, 2011),

and simulating guitar sound radiation (Tahvanainen et al., 2019).

Other Methods

There are many other numerical methods available for solving differential equations. A few

examples with applications in musical acoustics are listed below.

1. Meshfree Methods are a class of numerical methods which, as the name implies, do

not include the types of meshes seen in FEM or FDM. Examples of meshfree methods

include Smoothed Particle Hydrodynamics (SPH), the Element-Free Galerkin Method

(EFG) and numerous others. Specific applications of meshfree methods to musical

acoustics are difficult to find in the literature. Examples of general applications which

could be extended to musical acoustics do exist, such as vibration analysis of a pre-

stressed membrane (Unnikrishnan et al., 2020).

2. Isogeometric Analysis is a relatively recent approach to computational modelling that

uses information (e.g. splines) from computer aided design (CAD) packages to define

the geometry of modelled objects rather than relying on traditional FEM meshes. As

is the case with meshfree methods, examples of general applications to acoustics are

available in the literature (Manh et al., 2011; Kolman et al., 2015; Wu et al., 2015;

Dinachandra and Raju, 2017), though specific applications to musical acoustics are

difficult to find.

3. The Finite Volume Method (FVM) is another numerical method that solves differential

equations by subdividing the problem domain. Similar to FEM, this method requires

meshing the entire problem domain and can more easily handle complex geometries
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than FDM. FVM is more commonly applied to problems of computational fluid dy-

namics (CFD), and is thus better suited to modelling aerophones than idiophones or

chordophones. Examples of FVM applied to musical acoustics include modelling gas

flow inside a bassoon (Richter, 2012).

4. The Scaled Boundary Finite Element Method (SBM) is another relatively recent nu-

merical method for solving differential equations. It is similar to, and compatible with,

FEM, but formulates elements differently. Example musical acoustics applications of

SBM in the literature are rare, but include modelling sound radiation from an an-

cient Chinese bell (Liu et al., 2019a). Example applications to general acoustics in the

literature are more easily found (Liu et al., 2016, 2019b).

The methods listed above are some of the more well-known approaches for solving differen-

tial equations with applications in musical acoustics. Other methods exist but pale in terms

of popularity. For brevity, the discussion of alternative methods to FEM will be limited to

those outlined above.

2.2 Sound Radiation Modelling

In addition to modelling a bar’s vibrational behaviour, this research also considered sound

radiation. The choice of method to model sound radiation was considered after selecting

FEM to model bar vibration. Thus, methods of modelling sound radiation that are compat-

ible or easily interoperable with FEM were strongly preferred. Ultimately, a method that

is herein called the Surface Point Source Method (SPS) was selected. This recent method

was developed by Bestle et al. (2017) and originally applied to model vibraphone bars. It

was selected for use in this research based on compatibility with FEM, relative ease of im-

plementation, and mesh-free formulation (i.e. no meshing of the propagation domain). The

following sections provide a general review of SPS, along with discussion of other methods

considered for sound radiation modelling. A description of the bar modelling used by Bestle

et al. (2017) appears in Section 2.1.2. Mathematical details of the method are discussed in

Section 5.3.3.

2.2.1 Surface Point Source Method

Bestle et al. (2017) approximated the sound radiated from a vibraphone bar (see Section

2.1.2 for description of the bar model) by treating each element on the discretized surface

as a point source emitting a spherical wave. The resulting wavefront encountering a listener
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is then calculated as the summation of component waves from each of the surface point

sources. This approach thus represents an application of Huygens’ principle that each point

on a complex wavefront is itself a source of spherical wavelets that sum to form the complex

wave.

The approach taken by Bestle et al. (2017) decouples the structural dynamics problem

from the sound radiation problem, ignoring any influence of the surrounding air on the bar’s

motion. The wave front emanating from a single surface element to a given listener position

is calculated as:

Sf (t) =
ρ0Af

4πrf
˙̃vf (t)cos(Θf ), (2.3)

where Sf is the sound pressure from element f , ρ0 is the density of air, Af is the surface

element area, rf is the distance from the element centroid to the listener position, ṽf is the

surface element normal velocity and Θf is the angle between the surface element normal and

a vector from the element centroid to the listener position. The sound pressure at a listener

position at time t is calculated by summing the contributions of each surface element with

appropriate time delays:

S(t) =
∑
f

Sf

(
t− rf

c

)
, (2.4)

where c is the speed of sound in air. Thus calculating the resulting sound pressure requires

assembling a buffer of contributions from each element. Since the ratio
rf
c

will not necessarily

be a multiple of the selected time step, contributions from each element must be interpolated

to avoid unwanted artifacts in the resulting sound.

Figure 2.14: Variables in the calculation of sound radiation from a single surface element by
Bestle et al. (2017).

Figure 2.14 illustrates some of the parameters in Equations 2.3 and 2.4. Since sound

radiation is calculated solely based on surface motion and listener position, this method
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avoids any need to discretize the propagation domain. Bestle et al. (2017) also describe a

method to account for relative motion of the listener and sound source, thereby modelling

the Doppler effect with their approach.

2.2.2 Boundary Element Approach

In modelling sound radiation, the Boundary Element Method (BEM) has the significant

advantage that it does not require meshing of the propagation domain. Instead, only the

surfaces of modelled objects need to be meshed. Models in this research consider idiophones

in an anechoic environment, with no sound waves returning from outer walls or any other

surfaces. This is equivalent to modelling the idiophones in an unbounded domain. Thus,

when using BEM to model wave propagation, only the surface of the idiophone itself re-

quires meshing. This saves considerable time and modelling effort compared with the FEM

approaches described below.

Surface meshes used in BEM require careful consideration. Researchers have sometimes

applied rules of thumb when meshing BEM models for acoustics, specifying a minimum

number of elements per wavelength, though example models are more often for interior

problems (Marburg, 2008, 2002). BEM can be prone to numerical issues, such as insta-

bility and fictitious modes, making its application more challenging than one might hope.

Tahvanainen et al. (2019) coupled a FEM structural model of a guitar with a BEM sound

radiation model. Their work used a specific type of BEM called the Fast Multipole Boundary

Element Method (Nishimura, 2002), with improved computation speed.

2.2.3 Finite Element Approach

In contrast to BEM, adopting a finite element approach for modelling sound radiation from an

idiophone requires discretizing the propagation domain. Any required mesh must be limited

to a practical number of elements. The number of required elements will be proportional

to the volume of the modelled domain. Thus it is not feasible to define a domain large

enough that waves reflecting from the boundary would not reach the listener position during

a simulation. The number of elements and DOFs required for such a domain would surely

be computationally prohibitive. Instead, applying FEM to the propagation domain requires

defining some form of computationally non-reflective boundary condition. In other words: a

boundary that permits waves outgoing from the domain to pass without allowing/producing

any returning reflected waves. While simple to state, this condition has proven difficult to

achieve in practice, leading to a great deal of research efforts over the years (Givoli, 2008).

Different approaches to defining such conditions have been explored in the literature. Some
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of these approaches resemble traditional boundary conditions that are defined over a surface

in a three-dimensional model, while others occupy three-dimensional space. So long as

an approach performs well computationally, it does not matter whether additional volume

is required beyond the propagation domain. The literature on approaches to absorbing

boundary conditions is extensive, with a good survey provided by Givoli (2008). Several

approaches detailed in the literature are outlined below. The papers referenced herein are

only a sample of those available.

Absorbing Boundary Conditions

The first boundary conditions considered here resemble more traditional boundaries which

are defined over a surface in a three-dimensional model, and do not require additional el-

ements or nodes. Two early approaches to absorbing boundary conditions considered by

Givoli (2008) to be “classical” are those by Engquist and Majda (1979) and Bayliss and

Turkel (1980).

These methods are considered low-order as their formulation in higher orders leads to

numerical difficulties in implementation. A review of methods designed for implementing

higher-order absorbing boundary conditions is provided by Givoli (2004).

Absorbing Layers

Givoli (2008) credits Israeli and Orszag (1981) as having devised the absorbing layer. As

the name implies, absorbing layers create an effectively absorbing boundary condition using

a layer of finite thickness around the domain. In the original formulation, this was accom-

plished by adding damping terms to the governing equation within the absorbing layer (Israeli

and Orszag, 1981).

Perfectly Matched Layer (PML) is a popular form of absorbing layer first developed

in the 1990s by Berenger (1994). PMLs are designed to have no reflection at the boundary

to the modelled domain, with the solution decaying exponentially within the PML (Givoli,

2008). Figure 2.15 shows an example of a two-dimensional FEM model with a PML defined

around the exterior. The finite width of the PML is clearly demonstrated in the figure.

Since their initial development PMLs have gained popularity in modelling radiative bound-

aries. Bermúdez et al. (2008) provide a survey of developments in PMLs up to 2008. More

recent applications include Kaltenbacher et al. (2013) and Vermeil de Conchard et al. (2019).

PMLs can also be applied with other computational methods, including FDM (Chobeau and

Savioja, 2016) and Meshfree Methods (MFM) (Yang et al., 2019).



2 – Review of Idiophone Computational Modelling Literature 32

Figure 2.15: Example mesh from a two-dimensional model of an open elliptic amphitheatre
from Bermúdez et al. (2008). Amphitheatre boundaries are displayed in white. Light grey
triangular elements represent the air. Darker grey square elements define a perfectly matched
layer to model radiative boundary conditions.

Infinite Elements

As the names implies, infinite elements are designed to represent portions of a domain that is

unbounded in a given direction. Figure 2.16 shows a conceptual sketch of their application.

Early works on infinite elements were first published in the 1970s (Bettess, 1977; Bettess and

Zienkiewicz, 1977). Givoli (2008) credits Burnett (1994) and Astley (1996) with establishing

important milestones in the treatment of waves in unbounded domains.

Infinite elements are regularly applied to problems of acoustic radiation. Recent appli-

cations in the literature include examples of modal analysis with infinite elements (Peters

et al., 2013; Moheit and Marburg, 2017), most notably applied to model sound radiation

from xylophone bars (Rucz et al., 2021).

Similar to PMLs, infinite elements have been coupled with other methods, including

MFM (Wu et al., 2019).

Other Absorbing Boundaries

Further examples of absorbing boundary conditions include continued fraction absorbing

boundaries (Guddati and Lim, 2006) and reciprocal absorbing boundaries (Nguyen and Tas-

soulas, 2018).
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Finite Element

Infinite Element

Figure 2.16: Conceptual sketch of a two-dimensional unbounded domain meshed with finite
elements and infinite elements. Figure from Givoli (2008).

2.2.4 Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method (SBM) is a relatively recent numerical method,

having been initially conceived in the 1990s. It was originally called the “consistent in-

finitesimal finite-element method” and was formulated for dynamic analysis of unbounded

domains (Wolf and Song, 1995). The method has since been expanded to include numerous

problem types including structural dynamics (Song, 2009).

SBM has the same advantage as BEM, in that it requires discretizing only the boundaries

of an unbounded domain (Song, 2018). This leads to a reduction in spatial dimensions by

one and eliminates any need for the absorbing boundary conditions required with FEM.

SBM also provides the option to model a portion of the propagation domain, while still

providing radiative exterior boundary conditions. Liu et al. (2019a) provide an interesting

example of such a case. Their model considered an ancient Chinese bell excited at a single

point by a smooth pulse of finite duration. Figure 2.17 displays portions of the meshed bell

and modelled propagation domain.

2.3 Damping Models

Appropriate modelling of damping is a critical aspect of producing realistic bar sounds.

Relative decay rates of the various vibration modes will have a large effect on a bar’s timbre.

Damping of the bar’s response, in particular, will dominate the overall energy loss compared

with any loss in the propagation medium. Unfortunately, computing a damping matrix is

not nearly as straightforward as forming mass or stiffness matrices, as the physical principles

underlying damping are not as well understood (Adhikari, 2006).

This research employed Rayleigh damping to model the bar’s response to impulsive excita-
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Figure 2.17: Model of an ancient Chinese bell from Liu et al. (2019a). Both the bell and
a portion of the surrounding air are shown. Radiative boundary conditions are imposed at
the outer surface of the modelled air.

tion in the time domain. This choice was based entirely on availability, as Rayleigh damping

is often the only damping model available for dynamic time history modelling in FEM soft-

ware. Details of the damping models used in this research are provided in Section 5.3.2.

The following sections provide a description of Rayleigh damping, as well as an alternative

model that could be considered in certain scenarios. Damping is a complicated phenomenon

attracting substantial research efforts. The approaches listed below are but a sample of those

available in the literature.

2.3.1 Rayleigh Damping

Rayleigh damping was first outlined in the book Theory of Sound (Rayleigh, 1945), originally

published in 1877, and remains popular today. Rayleigh damping computes the damping

matrix, C, as a weighted combination of the mass matrix, M, and stiffness matrix, K:

C = αM + βK, (2.5)

where α and β are coefficients that determine how damping will vary with frequency. This

variation with frequency can be calculated for Rayleigh damping as:

ζ(ω) =
1

2

(α
ω

+ βω
)
, (2.6)
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where ζ is the damping ratio, expressing damping as a portion of critical damping, and ω

is an input radial frequency. Looking at the terms inside the parenthesis of Equation 2.6

the
α

ω
term represents the contribution of mass proportional damping, while the βω term

comes from stiffness proportional damping. Figure 2.18 gives an example of the damping

coefficient from Equation 2.6 as a function of frequency, along with the individual mass

proportional and stiffness proportional components. With the two parameters, α and β,

available in Equations 2.5 and 2.6, Rayleigh damping can generally be calibrated to match

damping values at two specific frequencies. The remaining damping values will follow the

general shape shown in Figure 2.18. This model has remained popular in FEM codes as it is

easy to scale and combine the global mass and stiffness matrices which are already required

in the computation.

Figure 2.18: Plot of damping ratio, ζ, vs. angular frequency , ω, for Rayleigh damping.
Contributions of mass proportional and stiffness proportional damping are shown separately.

2.3.2 Generalized Proportional Damping

Adhikari (2006) provides a versatile method for constructing a damping matrix called Gener-

alized Proportional Damping (GPD). The method requires an input of any arbitrary function

that computes damping ratio, ζ, as a function of radial frequency, ω. Such a function could

be formed, for example, by fitting a polynomial curve to experimentally measured damping

ratios at various frequencies. To compute the damping matrix, each instance of the radial

frequency term, ω, in the input function is replaced by
√

M−1K, where M is the mass matrix

and K is the stiffness matrix. Any constant terms in the input function are multiplied by
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the identity matrix, I. With these matrix substitutions made, the resulting function is mul-

tiplied by 2M
√

M−1K and evaluated at
√

M−1K to produce the damping matrix. Thus,

the method allows a damping matrix to be computed from the global mass and stiffness

matrices, along with any function defining damping ratio as a function of radial frequency.

While this approach sounds very promising in its versatility, computational costs may

become high depending on the complexity of the function selected to compute damping

ratio as a function of frequency (matrix functions may be required). GPD was not available

in any of the FEM packages considered for this thesis. Its use would have necessitated

implementing all solving routines from scratch.

2.4 Tuning Techniques

The problem of tuning idiophone bar cutaway geometry can alternatively be formulated as

minimizing an error function, or solving a system of nonlinear equations. Depending on the

formulation, the problem can be solved using either optimization techniques, or methods

of solving simultaneous nonlinear equations. Numerous tuning techniques were explored

in this research, including both problem formulations. Ultimately the nonlinear system

formulation was selected, as described in Section 4.2.2. The sections below reference sources

which informed the solving method described in Section 4.2.2. Other methods considered or

explored are also discussed.

2.4.1 Solving Nonlinear Systems

Most relevant to the bar tuning problem in this research are underdetermined systems of

nonlinear equations in which each input variable has both a minimum and maximum bound

(sometimes called simple bounds or box constraints in the literature). Macconi et al. (2009)

outline a method for solving such systems. They describe their approach as:

. . . a Gauss-Newton method embedded into a trust-region strategy [taking] ad-

vantage of the so-called Coleman and Li affine-scaling matrix . . .

The Coleman and Li affine-scaling matrix (Coleman and Li, 1996) appears regularly in the

literature on solving such systems.

Levenberg-Marquardt methods, such as those described by Kanzow et al. (2004), provide

an alternative approach of solving underdetermined systems of nonlinear equations subject

to constraints.
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2.4.2 Optimization

Optimization techniques tested in this research were well-known methods described in most

textbooks on the subject. These included gradient descent and sequential quadratic program-

ming, as outlined by Nocedal and Wright (2006).

Genetic algorithms (Goldberg, 1989) were considered early in this research work, with

results reported in a conference paper Beaton and Scavone (2019b). While the literature

on genetic algorithms is vast, several convenient surveys of the method and similar methods

in a structural engineering context form a good starting point (Kicinger et al., 2005; Hare

et al., 2013; Munk et al., 2015).



Chapter 3

Idiophone Bar Finite Element Models

This chapter gives a general overview of the idiophone bar finite element models created in

this work. Similar models were used in both the tuning of torsional modes (Chapter 4) and

hybrid modelling of sound radiation (Chapter 5). Different finite element packages were used

to solve the models, depending on the task under consideration. Finite element programs

were also changed over the course of this research, as modelling needs evolved. The governing

equations, and their approximation using finite element methods, will not be repeated here,

as such information is readily available in standard texts (Cook et al., 2001; Zienkiewicz

et al., 2013).

The following sections outline some salient features of the models and analysis software used

for various tasks and at various times in this work. To avoid ambiguity, modelling aspects

specific to the hybrid sound radiation model (e.g. damping models, boundary conditions,

mallet properties) are discussed in Chapter 5.

3.1 Programming Packages

Three programming packages were used to model idiophone bars in this work, as described

below.

3.1.1 Pylaster

Pylaster is an FEA package written by the author in Python. This software was adapted

from Matlab code used in modelling composite materials for the author’s first master’s

thesis (Beaton, 2010). The package has also been used to automate analysis tasks in bridge

engineering (Radojevic and Kirkwood, 2017). In this work Pylaster was extended to include

features such as 20-node 3D solid elements and an eigenvalue solver for performing modal

analyses.

38
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Pylaster served as the central modelling program in this work. All bar models were orig-

inally defined in Pylaster. In cases where other packages were used, Pylaster models were

exported to input file formats compatible with those other packages. Results were analyzed

in Python scripts written specifically for this work, with output from the various analysis

packages either stored in text-based output files or databases.

3.1.2 Calculix

Calculix (sometimes written in the stylized form “CalculiX”) is an open-source finite element

analysis package originally written for Linux environments (Dhondt). Input file format in

Calculix is similar to, and largely compatible with, the popular commerical FE program

Abaqus (currently offered by Dassault Systemes). Calculix is largely written in FORTRAN,

and thus benefits from the speed of this compiled language.

Calculix was primarily used around the beginning of this research, before a solver for

eigenvalue problems was implemented in Pylaster. Bar tuning algorithms were programmed

to work with either Calculix or Pylaster. Ultimately, Pylaster was selected for bar tuning

as it allowed for easier implementation of semi-analytical modal frequency derivatives with

respect to input variables. This resulted in faster run times for tuning models. Presently,

at the end of each bar tuning analysis a single Calculix model is produced using the final

geometry for record keeping purposes.

Calculix was also considered for dynamic time history models of mallet impacts. However,

producing output at the desired time steps proved easier with the dynamic time-stepping

capabilities of Code Aster than those of Calculix.

3.1.3 Code Aster

Code Aster is an open-source software package for finite element analysis of structural and

thermomechanical problems (Électricité de France). The program is developed and main-

tained by Électricité de France, a multinational electric utility company headquartered in

France and operating in many countries around the world. The name “Code Aster” is an

acronym for the French description of the program’s capabilities: “Analyses des Structures

et Thermomécanique pour des Études et des Recherches”. Overall, Code Aster is a very

large program with many available functionalities. Its core code is written in FORTRAN,

while many modules are written in Python. Python code can be included in Code Aster

input files and will be interpreted by the program when processing those input files.

Code Aster was selected for dynamic time history analysis of mallet impact models in

this work. It was chosen based on its vast array of capabilities, compatibility with Python,
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and flexibility in dynamically changing time steps in time history models. Two rationales

ultimately lead to the decision to use Code Aster:

1. Code Aster was able to produce time history output at consistent time steps (desired

to maintain a uniform sampling rate), while also dynamically altering the time step

when required for model convergence. This did not seem possible with Calculix.

2. It was thought that learning and using Code Aster would be quicker than implementing

the necessary functionality (large displacements, large strains, contact mechanics) in

Pylaster.

Whether or not rationale 2 was indeed true is debatable. Getting the mallet impact models

to successfully run in Code Aster required an enormous amount of time. Such slow progress

with the program was a product of numerous factors. These factors are repeated below for

any future reader who may consider using Code Aster for similar work:

� Commands and error messages written in a foreign language.

� Documentation originally written in a foreign language and machine-translated to En-

glish.

� Memory (RAM) issues - Code Aster would keep many results in memory, even if they

were not requested as output, eventually exhausting memory limits. As a result, anal-

yses had to be broken down into smaller sequential pieces (e.g. a model simulating 2

seconds of bar response to a mallet impact had to be run as a sequence of separate

models, each with a length of 0.15 to 0.25 seconds).

� Disk space issues - Code Aster would store vast amounts of data for each model run,

even after attempts to instruct the program to limit stored data. This data would

be duplicated in each sequential model described above. A simulation of 2 seconds,

sampled at a full 48 kHz, may produce about 11 GB of necessary output, while pro-

ducing hundreds of GB of unrequested temporary files. Available hard drive space on

the Linux machine used to run Code Aster was exhausted on multiple occasions. Only

a single full model could be run at a time, with results transferred to other storage

before running another full model.

� Time history analyses simulating one to two seconds of bar response were performed

for comparison with hybrid radiation model results. These analyses are very compu-

tationally demanding, and would regularly take upwards of three or four days to run.

Some of the problems described above would occur several days into an analysis. Thus

troubleshooting a single model could take a very long time in itself.
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3.2 Geometry Definition

All bar models were defined in Pylaster using a standard procedure to generate desired mesh

density and cutaway geometry. Details are outlined in the following sections.

3.2.1 Mesh Definition

Bar models in this work have a structured finite element mesh comprised of 3D solid elements.

Depending on the application, either 20-node or 8-node hexahedral elements were used.

The numbers of elements in the length, width and thickness directions were specified as

input parameters. Given these parameters, a Python script generated a mesh of the desired

element type with uniform density over a unit cube. This cube was oriented in a natural

coordinate system, (u, v, w), such that u, v, w ∈ [0, 1]. An example of a meshed cube is

shown in Figure 3.1 with 80, 7 and 3 elements in the length (u), width (v) and thickness (w)

directions, respectively.

Most analyses in this work used a mesh of 8-node hexahedral elements. An import ex-

ception were the models employed in bar fabrication (including convergence checks of these

models) which used 20-node elements.

3.2.2 Cutaway Definition

Cutaway geometry was defined by a thickness function, t(u, v), that gives the cutaway thick-

ness at natural coordinates (u, v). Two different types of thickness functions were explored

over the course of this work: cross-section interpolation and surface interpolation. Each

interpolation type is described in the following sections.

Cross-Section Interpolation

Structural engineers commonly think of beams in terms of their cross-sections (i.e. the shape

created if one were to cut a “slice” of the beam, perpendicular to its longitudinal axis).

Idiophone bars are generally beam-like in their shapes and aspect ratios, thus it is natural to

conceptualize their geometry as varying between some number of fixed cross-sections defined

along their length.

Figure 3.2 gives an example of bar cutaway geometry defined by cross-section interpolation.

For ease of understanding, the bar in Figure 3.2 is shown in model coordinates, though in

practice the interpolation occurs in natural coordinates. Each cross-section in the figure

is outlined in blue. The red line demonstrates interpolating bar thickness along the bar’s
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a) b)

c)

Figure 3.1: These panels depict the stages of creating a meshed bar model: (a) a structured
mesh of uniform density is generated over a unit cube in natural coordinates (u, v, w), this
example has (80, 7, 3) elements in the (length, width, thickness) directions; (b) cutaway shape
is defined by scaling w-coordinates of the nodes according to a thickness function t(u, v); (c)
final bar geometry is generated by scaling nodal positions from natural coordinates (u, v, w)
to model coordinates (x, y, z) via Equation 3.1.

length (x- or u-coordinate) for a fixed position along its width (y- or v-coordinate). This line,

which is a contour of the function t(u, v) for a constant value v, is defined using cubic spline

interpolation between the cross-sections. The thickness of each cross-section is evaluated at

the specified v-coordinate. These thickness values and cross-section locations are then used

to interpolate thickness along the u-axis. Cubic interpolation was provided by the Python

function interp1d in the scipy.interpolate module.

Cross-section interpolation was the first type of cutaway definition considered in this work.

It was used mainly to tune vertical bending modes only, demonstrating how frequency ratios

of untuned torsional modes may evolve along the keyboard (Beaton and Scavone, 2019b).

Ultimately, this interpolation type provided limited flexibility in tuning torsional modes, as

achieving a wide range of modal tuning ratios would require an even wider range of possible

input cross-sections (each of which having one or more tunable parameters). Thus, after

producing valuable early results, cross-section interpolation was abandoned in favour of the
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Figure 3.2: Example of a bar cutaway defined by cross-section interpolation. Cross-sections
are outlined in blue. The red line shows an example of thickness interpolated between cross-
sections along the length of the bar. This figure is borrowed from Beaton and Scavone
(2019b).

more versatile surface interpolation described in the next section.

Surface Interpolation

To provide more flexibility in defining sophisticated cutaway geometry (and thus a larger

range of achievable tuning ratios) surface interpolation was employed. In this method, a grid

of control points was defined over the cutaway’s surface. Each point served to control the

cutaway’s thickness locally, with the remaining geometry determined using a 2D interpolation

scheme. Figure 3.3 gives an example layout of control points on a cutaway surface. Panel

(a) of the figure begins with a basic cutaway geometry with control points shown in three

colours. The blue and red points each cover one quarter of the cutaway surface, while the

green points cover half. If desired, these groups can be used to enforce cutaway symmetry,

and reduce the number of inputs used to control geometry. All models considered in this

work took advantage of this symmetry. The blue control points of Figure 3.3 were used

as inputs. These were mirrored across the width of the beam to produce the red control

points. Both red and blue points were then mirrored to produce the green control points.

Figure 3.3 (b) gives an example of a more complex geometry that can be produced using this

approach. The sophisticated cutaway geometry of panel (b) was produced using only the

blue control points shown and mirroring as described. This example shows the versatility

of surface interpolation, as producing a similar geometry using cross-section interpolation

would clearly be difficult.

Two methods of 2D interpolation between control points were explored. The first method
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b)

a)

Figure 3.3: Example of a bar cutaway defined by surface interpolation. This example
demonstrates the use of control point mirroring to enforce double symmetry. The blue dots
shown in panel (a) serve as the control points for bar tuning. Red dots are mirrored versions
of the blue control points. Green dots are mirrored versions of both the blue and red points.
Panel (b) shows a more complex geometry that can be attained by adjusting the blue control
points and mirroring twice. This example uses Clough-Tocher interpolation, thus the control
points lie directly on the cutaway surface.

considered was that provided by the Python function griddata in the scipy.interpolate mod-

ule. This function implements a Clough-Tocher interpolation scheme, a description of which

may be found in Farin (1986). This method was used to produce cutaway geometries in

Beaton and Scavone (2021a), as well as Figure 3.3. With this interpolation scheme, control

points lie directly on the cutaway surface, making their manipulation an intuitive exercise.

One drawback of this approach was that, in certain scenarios, the interpolated surface be-

tween control points could extend above or below the maximum and minimum control point

coordinates. Thus limits on minimum bar thickness over the cutaway, which were enforced

via limits on control point coordinates, could sometimes be violated using this interpolation.

The second 2D interpolation method explored was non-uniform rational B-spline (NURBS)

surfaces (Piegl and Tiller, 1995). Switching to this interpolation was necessary for compat-

ibility with computer aided manufacturing software used to fabricate prototype bars (see

Section 4.5). The most salient difference between NURBS and Clough-Tocher interpolation

is that with NURBS, control points may not (and often will not) be positioned directly on

the cutaway surface. Instead, the control points form a “control polygon”, which roughly

approximates the surface itself. One benefit of this structure is that the NURBS surface

cannot extend beyond the extrema of its control polygon. Thus using NURBS surfaces to

define cutaway geometry will also ensure strict adherence to thickness limits enforced by

limits on control point coordinates.

Examples of cutaway geometries defined using NURBS are provided in Section 4.5.



3 – Idiophone Bar Finite Element Models 45

Table 3.1: Material properties of aluminum and rosewood used in this work. Symbols
include: density, ρ, Young’s modulus, E, Poisson’s ratio, ν, and shear modulus, G. Rosewood
properties are adopted from Bork et al. (1999). Aluminum properties are those of the
standard 6061 alloy (Battelle Memorial Institute, 2020). This table is borrowed from Beaton
and Scavone (2021a).

Material ρ [kg/m3] E [GPa] ν G [GPa]
Aluminum 2700 68.9 0.33 25.9
Rosewood 1080

x-axis 23.0
y-axis 2.3
z-axis 1.15
xy-plane 0.30 3.0
yz-plane 0.60 1.0
xz-plane 0.45 3.0

3.2.3 Coordinate Scaling

The final step in creating a meshed bar model was to convert the meshed cube, with its

applied cutaway, from natural coordinates (u, v, w) to model coordinates (x, y, z). By virtue

of the natural coordinates being defined over a range [0, 1], converting to model coordinates

was a simple matter of scaling: 
x

y

z

 =

L 0 0

0 W 0

0 0 T



u

v

w

 , (3.1)

where L is the overall length of the bar, W is the width of the bar, and T is the end thickness

(i.e. the thickness everywhere outside the cutaway).

3.3 Material Properties

Aluminum and rosewood idiophone bars were considered in this work, reflecting the materials

typically used for vibraphones and marimbas, respectively. Table 3.1 outlines the properties

of these materials generally used for bar models in this work. An important exception

is the models used for bar fabrication. In that case, material properties were based on

measurements of the stock aluminum used for fabrication. This adjustment was made to

maximize tuning accuracy of the fabricated bars. Further info on bar measurements and

stock bar properties is provided in Appendix A.



Chapter 4

Three-Dimensional Tuning of

Idiophone Bar Modes

4.1 Objective

As described in Section 1.2.1, this work seeks to remedy the problem of untuned torsional

modes polluting bar timbre. It is preferable to accomplish this goal solely by shaping bar

cutaways. Other potential approaches, such as adding concentrated mass or reinforcing

materials, would complicate the design and could introduce new points of failure (e.g. ad-

hesives).

Untuned torsional modes become problematic when their modal frequencies come close to

those of tuned flexural modes. To alleviate this issue, the method developed in this chapter

shapes bar cutaways to tune both flexural and torsional modes concurrently.

The method described in this chapter was published by Beaton and Scavone (2021a) in a

special issue of the Journal of the Acoustical Society of America (JASA). This article will

be widely cited in the sections that follow.

4.2 Method

4.2.1 Frequency Targets

Alleviating timbral problems caused by untuned torsional modes can be accomplished by

separating their modal frequencies from those of the tuned flexural modes. This begs the

question: “by how much must these frequencies be separated to produce suitable bar tim-

bre?” The answer to this question is both perceptual, and subjective, as presently there is

no objective measure of “suitable bar timbre”.
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While examples of studies on bar timbre may be found in the literature (Bork and Meyer,

1985; McAdams et al., 2004; Aramaki et al., 2007), perceptual investigation of the effects of

torsional modes with frequencies similar to flexural modes was not considered in this work.

Instead, this chapter takes as a given that an appropriate frequency target can be set for each

mode to be tuned. In practice, one can always choose an arbitrarily large difference between

flexural mode frequencies and torsional mode frequencies that would avoid timbral issues.

In this chapter modes will be tuned to integer multiples of a bar’s fundamental frequency.

Thus any two tuned modes will either be set to have the same frequency, or differ by some

multiple of the fundamental.

Setting two modes to have equal frequency may produce interesting theoretical results,

as will be shown. In practice, however, such bars would be difficult to fabricate with the

precision required to produce effectively equal frequencies in the two modes. More likely the

two frequencies would be close, but unequal, yielding beating effects.

Frequency targets in this work are thus set in three steps:

1. Select the modes to be tuned along with tuning ratios for their frequencies.

2. Set the bar’s fundamental frequency based on the desired musical note and tuning

standard (e.g. A440, A442, etc.).

3. Multiply tuning ratios by the fundamental frequency to produce target frequencies for

each tuned mode.

Throughout this chapter the terms “target frequencies” and “target frequency ratios” or

“target tuning ratios” may be used interchangeably; note that the latter two refer to the same

values, and can be converted to/from the first by multiplying/dividing by the fundamental

frequency.

4.2.2 Tuning Approach

Note that the nomenclature and symbols adopted in this chapter will largely match that of

Beaton and Scavone (2021a). For brevity, only direct quotes from that paper will be cited;

equations will not be cited.

Problem Formulation

The problem of finding a cutaway geometry that tunes modal frequencies to the desired

targets will be formulated as follows. Let x be a vector of input parameters that define the

bar cutaway. For the cutaway definition types described in Section 3.2.2, x will either be
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a vector of values defining cross-sectional properties at specified positions, or a vector of

thickness values defining the cutaway surface at discrete points. Let N be the total number

of input parameters defining the cutaway geometry. For the nth input variable, xn, minimum

and maximum limits are established such that:

Tmin ≤ xn ≤ Tmax, n ∈ [1, N ], (4.1)

where Tmin and Tmax are the minimum and maximum allowable values of input parameter

xn. Equation 4.1 assumes all input parameters in x are of the same type and subject to the

same limits. Individual limits for each input parameter are easily accommodated, with no

difference in the remaining steps of this procedure. Limits to the input variables may be

assigned for practical purposes (e.g. bar cutaway thickness should not exceed the thickness

of available stock materials), strength purposes (e.g. exceeding some minimum thickness

may produce an easily damaged bar) or other purposes.

Let K be the total number of modes tuned by the desired output bar geometry. For the

kth mode, the tuning error function, gk(x), is defined as:

gk(x) =
fmodel,k(x)− ftarget,k

ftarget,k
, (4.2)

where fmodel,k(x) is the frequency of the kth tuning mode in a model with geometry input

vector x, and ftarget,k is the target frequency of tuning mode k. The problem of tuning a

bar’s geometry to produce the desired modal frequencies is then formulated as:

set g(x) = 0, (4.3)

where g(x) is a vector of the K tuning error functions described by Equation 4.2. The

problem defined by Equation 4.3 is subject to the limits on input variables in Equation 4.1.

Tuning Algorithm

In this approach it is assumed that K ≤ N , so there will be at least as many input parameters

as there are tuning modes. The example bar shown in Figure 3.3 uses 48 points to define

the bar’s cutaway. Typical marimba or vibraphone bars will tune up to three modes. In this

work the maximum number of modes tuned is six. Thus, in the problems considered herein,

K ≤ 6� 48 = N . Any time K < N the system in Equation 4.3 becomes underdetermined

and multiple solutions may exist.

While it is possible to solve Equation 4.3 using optimization methods to minimize its norm,
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herein the system is solved directly, using an iterative, gradient-based approach. At any given

iteration, the next estimated input variable vector to solve Equation 4.3 is computed as:

xi+1 = xi − [J(xi)D(xi)]
+ g(xi), (4.4)

J(x) =



∂g1

∂x1

∂g1

∂x2

· · · ∂g1

∂xN
∂g2

∂x1

∂g2

∂x2

· · · ∂g2

∂xN
...

...
. . .

...

∂gK
∂x1

∂gK
∂x2

· · · ∂gK
∂xN


, (4.5)

D(x) =


b1(x)

b2(x)
. . .

bN(x)

 , (4.6)

bn(x) =


0 if [J+(x)g(x)]n > 0, xn = Tmin,

or [J+(x)g(x)]n < 0, xn = Tmax

1 otherwise

, (4.7)

where J(x) is a Jacobian matrix of partial derivatives of the tuning error functions with

respect to the geometry input parameters, and D(x) is a diagonal matrix of binary terms

defined by Equation 4.7. This matrix is similar in concept to the scaling matrix used by

Macconi et al. (2009), though its details differ. Note that the superscript “+” after a matrix

denotes the Moore-Penrose inverse (or pseudoinverse) (Ben-Israel, 2002; Penrose, 1955) of

that matrix. Given some initial input vector, x0, Equation 4.4 is applied iteratively until all

terms in g(x) are within defined tolerances of zero.

Matrix D(x) is designed to aid in convergence of Equation 4.4. Any values in vector

xi+1 that are pushed beyond the limits Tmin or Tmax will be set equal to the limit they

have surpassed. Convergence will slow as values in xi+1 reach one of these limits (Beaton

and Scavone, 2021a). Matrix D(x) helps to mitigate any reduction in convergence rate by

“deactivating” those inputs that have hit their limits, thereby forcing greater reliance on

inputs that still have room for adjustment.
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Jacobian Matrix

Matrix J(x) will be a dense matrix with dimensions K ×N . Populating this matrix will be

the most time consuming operation in each evaluation of Equation 4.4.

The partial derivative terms

{
∂gk
∂xn

}
can be computed numerically or analytically. If these

terms are evaluated numerically, using first-order finite different methods, the function g(x)

will need to be computed N + 1 times per iteration. Computing g(x) requires performing

a finite element modal analysis to determine tuning mode frequencies for a given vector of

input parameters. Depending on the size of the finite element model, performing this modal

analysis N + 1 times could require considerable time, particularly for N = 48, as was used

in this work.

Computing time can be reduced, to some extent, by instead populating J(x) analytically.

To do so, consider a single term within J(x):

∂gk
∂xn

=
∂

∂xn

(
fmodel,k(x)− ftarget,k

ftarget,k

)
=

1

ftarget,k

∂fmodel,k(x)

∂xn
. (4.8)

For brevity, explicit dependence on vector x will be omitted from the following equations for

populating matrix J(x). Frequency fmodel,k is calculated from the equation:

fmodel,k =

√
λk

2π
, (4.9)

where λk, corresponding to tuning mode k, is an eigenvalue that solves the equation:

(K− λjM)φj = 0, (4.10)

where K is the system stiffness matrix of a finite element model of the idiophone bar, M is

the system mass matrix, λj is the jth eigenvalue of the system and φj is the jth eigenvector.

Note that k and j need not be equal, as the K tuned modes will not necessarily be the

first K bar modes. Determining which mode number, j, corresponds to which tuning mode

number, k, is discussed in Section 4.2.3 on mode identification.

Taking the partial derivative of Equation 4.9 with respect to input parameter xn yields:

∂fmodel,k

∂xn
=

1

4π
√
λk

∂λk
∂xn

. (4.11)

The partial derivative of eigenvalue λk with respect to input parameter xn, in Equation 4.11
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can be evaluated as (for derivation see Lund (1994) or Yang and Peng (2020)):

∂λk
∂xn

= φT
j

(
∂K

∂xn
− λj

∂M

∂xn

)
φj. (4.12)

A detailed discussion of evaluating the partial derivative of the system stiffness matrix, K,

with respect to an input parameter, xn, is provided by Wang et al. (1985). For the finite

element models in this work, the system mass matrix, M, is computed as the sum of element

mass matrices, Me. Thus the partial derivative of the system mass matrix, M, with respect

to xn, is equal to the sum of the partial derivatives of the element mass matrices, Me, with

respect to xn. An element mass matrix is computed as:

Me = ρ

∫ 1

−1

∫ 1

−1

∫ 1

−1

NTN det Ae dξ dη dζ, (4.13)

where Me is the element mass matrix, ρ is the material density, N is a matrix of finite

element shape functions, Ae is a Jacobian matrix containing partial derivatives of model

coordinates with respect to natural coordinates ξ, η and ζ. Here the symbol Ae is used for

the finite element Jacobian matrix to avoid confusion with matrix J(x) from Equation 4.4.

The shape function matrix N in Equation 4.13 is a function only of the natural element

coordinates, ξ, η and ζ, and is independent of any input parameter, xn. Thus the derivative

of matrix Me with respect to xn is:

∂Me

∂xn
= ρ

∫ 1

−1

∫ 1

−1

∫ 1

−1

NTN
∂ det Ae

∂xn
dξ dη dζ. (4.14)

Equation 4.14 applies for cases where the material density, ρ, is not a function of any in-

put parameter. Calculation of the term
∂ det Ae

∂xn
is discussed by Wang et al. (1985). Its

calculation involves computing partial derivatives of finite element nodal coordinates with

respect to input parameters. It is in the calculation of this term, which also appears in

the partial derivative of element stiffness matrices, that the effect of input parameters on

cutaway geometry (nodal coordinates) comes into play.

In this work, partial derivatives of nodal coordinates with respect to input parameters were

evaluated numerically using finite different techniques. From there, all terms in Equation 4.12

could be evaluated, followed by Equation 4.11, and finally Equation 4.8, which populates

matrix J(x). This semi-analytical approach, while somewhat extensive in its implementation,

did save some computation time compared to populating matrix J(x) completely numerically.
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Initial Geometry Selection

When the system in Equation 4.3 is underdetermined (i.e. when K < N), the pseudoinverse

in Equation 4.4 has the desirable property of returning the next estimated trial solution, xi+1,

that is nearest the current trial solution, xi. This can be shown by rearranging Equation 4.4

to the following:

[J(xi)D(xi)] (xi − xi+1) = g(xi), (4.15)

which has the familiar general form:

Ax = b. (4.16)

It can be shown that if the general system in Equation 4.16 is underdetermined (with multiple

solutions possible), then applying the pseudoinverse:

x = A+b, (4.17)

yields the solution, x, with minimum norm (Ben-Israel and Greville, 2003). Applying this

result to Equation 4.15 implies that Equation 4.4 produces the new estimate, xi+1, that

minimizes ‖xi − xi+1‖2, making it the estimated new trial solution that lies closest to the

current trial solution, xi.

The overall effect of this property is that the tuning algorithm will generally seek suitable

bar geometries (those that tune modes as desired) similar to whatever bar geometry is present

in the current iteration. As a result, the initial input vector, x0, selected by the analyst will

affect the tuned bar geometry produced by the algorithm. For this reason, it is recommended

that the analyst select a desirable bar shape (by whatever criterion they should choose to

define “desirable”) for the initial geometry, as the final geometry produced by the algorithm

will tend to be similar to this initial geometry (insofar as is feasible, while also tuning the

modes). Examples of the impact of initial bar geometry are provided in Section 4.3.1.

4.2.3 Mode Identification

The ability to identify modes in the finite element results is an essential aspect of successfully

tuning bar cutaway geometry. Finite element modal analyses will return mode shapes and

frequencies sorted in ascending order of frequency. Thus the third mode reported will always

be the one with the third-lowest frequency, and so on. Depending on the initial geometry

provided, it is entirely possible for modes to reorder over the course of tuning bar geometry.

For example, the tuning algorithm in this chapter may be provided an initial geometry
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where mode V3 is the 5th mode overall (i.e. it has the 5th lowest modal frequency in the

model). However, in the final geometry tuned by the algorithm, mode V3 may now be the

6th mode overall. For this reason, it is insufficient to instruct the algorithm to tune the 5th

mode to a specified frequency. Instead, tuning objectives must be defined for modes based

on their mode label (V1, T3, etc.), and the algorithm must identify a mode’s label when

analyzing finite element model results.

Discussion of these methods is also provided in Section IV of Beaton and Scavone (2021a).

Shape Recognition

Emulating the manner in which an analyst would manually identify modes, an algorithm

was implemented to determine mode type based on the shape formed by nodal displace-

ments. This algorithm functioned very well for bars of uniform thickness, but could break

down for bars with long, deep cutaways. The modes of such bars can exhibit coupling be-

tween deformation types. For example, the axial mode in Figure 1.2 includes significant

vertical deformation, while the lateral mode in that same figure includes noticeable torsional

deformation.

The following paragraphs discuss how the mode types shown in Figure 1.2 were identified

via shape recognition in this work. The x-, y- and z-axes used to define model coordinates

are shown in Figure 4.1.

Axial modes were the simplest mode type to identify in this work, as only the first axial

mode (A1) appeared over the frequency range of interest. If a mode’s maximum absolute

nodal displacement in the x-direction was larger than the maximum absolute displacements

in the y- and z-directions, the mode was identified as axial (Beaton and Scavone, 2021a).

Flexural modes are of primary interest in this work, as vertical-flexural modes are tuned

in every model. Their identification is described succinctly by Beaton and Scavone (2021a):

Flexural modes were identified by locating and assessing areas with low dis-

placement magnitude (i.e., the norm of the three displacement components);

these are the dark blue areas shown in [Figure 4.1] and throughout the paper.

First, all nodes with displacement magnitude below a specified threshold were

marked (pink dots, [Figure 4.1]). These nodes were then separated into contigu-

ous groups, based on element connectivity. Then, a line of best fit was calculated

for each group (green lines, [Figure 4.1]). Identification of flexural modes was

based on the number and orientation of these lines. Two or more groups, each
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Displacement Magnitude

Min Max

Low-Displacement Node

Line of Best Fit

Figure 4.1: Example of identifying a vertical-flexural mode via shape recognition based on
node groups with low displacement. Figure from Beaton and Scavone (2021a).

with a best-fit line parallel to the y axis indicates a vertical-flexural mode. Sim-

ilarly, two or more groups, all with best-fit lines parallel to the z-axis indicates

a lateral-flexural mode. For flexural modes, the mode number (e.g., third verti-

cal mode, second lateral mode) is one less than the number of low-displacement

groups.

Torsional modes were also of great interest in this work, as the method described in this

chapter was developed to enable their tuning concurrent with other mode types. Again, from

Beaton and Scavone (2021a):

For flat and near-flat bars, over the frequency ranges considered, it was possible

to identify torsional modes largely via process of elimination. After ruling out

axial and flexural modes, any remaining modes were identified as torsional. For

bars with significant cutaways, where torsional deformation may be present in

lateral modes, a check was performed on the rotation of bar ends. If they were

found to rotate to a greater extent about the z-axis than the x axis, the mode was

instead labelled as lateral-flexural. This method of identifying torsional modes

by process of elimination was feasible for this work as other mode types, outlined

below, appeared only in frequency ranges well above any modes that were tuned.

Modes not considered include axial modes along the y- and z-axes, torsional modes

about those axes, and flexural modes in the y-z plane. In this work, frequencies of these

mode types occur well above the range of interest for bar tuning, which was generally below

6 kHz. As such, these mode types did not appear in finite element results in this work,

rendering their identification unnecessary.
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Modal Assurance Criterion

A popular tool for the identification of mode shapes is the Modal Assurance Criterion (MAC)

(Allemang, 2003). This criterion essentially takes the dot product between two mode shapes,

using the result as a measure of similarity between the two. Compared to shape recognition,

the MAC has the advantage of being much faster to compute, with the drawback that its

use requires a set of known reference modes for comparison.

In this work the MAC was used in conjunction with shape recognition to leverage the

advantages of each. Within a given bar tuning analysis, mode shapes of the initial bar

geometry (i.e. the 0th iteration) were identified via shape recognition. This was generally

successful as initial bar geometries tended to be relatively simple. In subsequent iterations,

the MAC was used to identify modes, with mode shapes identified in the previous iteration

used for reference.

This combination of shape recognition and MAC was generally sufficient to identify modes

during bar tuning. However, caveats could occur in two scenarios:

Degenerate modes occur when two modes have very similar frequencies. In the literature

this is also known as the problem of repeated eigenvalues. In such cases, the mode shape of

each degenerate mode will appear as a weighted combination of the mode shapes from the

two modes with similar frequencies.

Mixing two mode shapes in this manner renders identification by shape recognition infea-

sible. It can even be difficult for an analyst to identify such modes manually. The MAC

also struggles in such cases as there will be rows and columns in the MAC matrix with two

similar values, thus producing ambiguity (Beaton and Scavone, 2021a).

Degenerate modes are most likely to appear when tuning two modes to have the same

frequency ratio. However, they can also occur if the iterative tuning process causes two

modes to reorder, and they end up with similar frequencies during an intermediate tuning

step.

In this work, degenerate modes were identified by mapping from the bar geometry that

caused them to a geometry with known modes. This process is described later in this section.

Similar modes can also cause ambiguity when attempting to automatically identify mode

shapes. This can occur, in particular, for bars with deep cutaways. In such cases, coupling

between deformation types can produce modes with very similar shapes. Figure 4.2 shows an

example of very similar mode shapes that are not degenerate and, in fact, have significantly

different modal frequencies. While difficult to identify using shape recognition or the MAC,
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A)

B)

Figure 4.2: Similar but not degenerate mode shapes. These modes are from a rosewood
bar model with vertical-flexural modes tuned to the typical 1:4:10 ratios. Coupled lateral
and torsional deformations make identifying the modes exceedingly difficult without further
information. (a) Mode L2, f = 2260 Hz. (b) Mode T3, f = 2759 Hz. Figure from Beaton
and Scavone (2021a).

similar modes like these are easily determined by mapping to known modes, as described

below.

Mapping Known Modes

The procedure for identifying degenerate modes by mapping from a bar model with known

modes is described concisely by Beaton and Scavone (2021a):

In cases where degenerate modes were encountered a third, robust yet labor

intensive mode identification approach was employed. In this method, the current

geometry, with degenerate modes, is mapped to a (typically simpler) reference

model with known modes. A mapping variable, m, is defined to compute input

vectors for intermediate models between the reference model and the current

model. These intermediate input vectors are calculated as:

xint = xref +m (xdeg − xref) , (4.18)

where xint is the intermediate model input vector, xref is the reference model input

vector, m is the mapping variable, and xdeg is the degenerate model input vector.

From here the method works by using the known modes at m = 0 to identify
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modes in models with progressively larger values ofm using MAC. The degenerate

modes can then be identified in one of two ways. Both options involve generating

and evaluating intermediate models with values of m progressively closer to 1.

MAC is used to identify modes in the intermediate models, using the model with

the next-highest value of m as reference (beginning with the known model at m =

0). In the first option, this process continues with progressively larger values of m

until an intermediate model is produced that enables identifying the degenerate

modes (at m = 1) using MAC.

If identifying the degenerate modes in this manner using MAC proves prob-

lematic, an alternative is to generate and evaluate enough intermediate models

to enable approximating the frequency of a given mode (e.g., mode V3) as a

function of m. These functions can then be used to predict the frequency of a

given mode type at m = 1. Additional intermediate models are generated until

the resulting frequency predictions align with the degenerate mode frequencies

sufficiently well to identify the modes.

Corner Displacements

Several months after the method described in this chapter was published (Beaton and Scav-

one, 2021a), another paper on the tuning of torsional modes appeared, authored by Soares

et al. (2021b). While the methods used to define and tune bar geometry in that paper are

markedly different than those used here, the need to automatically identify mode types is

shared.

The method used by Soares et al. (2021b) to identify mode shapes considers only the

displacement of nodes at the two corners of one end of a bar. They describe their method

as follows:

In most cases, the same mode type classification used in uniform beams can

be made with regard to undercut beams. However, in some particular geometries,

this formal classification might become ambiguous as some mode shapes pertain

to combinations of different modal families. This typically occurs when two

modes of distinct families are close in frequency. In these cases, care must be

taken to correctly identify the modal family associated with each mode. Here,

a set of simple and reliable criteria was used, based on the evaluation of the

3-D mode shape ψ(s) = [ψx(s), ψy(s), ψz(s)] at two corner points s1 and s2, as

illustrated in [Figure 4.3].

The modal family identification process goes as follows:
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Figure 4.3: Corner nodes used to identify mode shapes, as shown in Soares et al. (2021b).
Visible on the bar’s side is the step-wise cutaway definition employed in their paper.

� Lateral-bending modes and axial modes are identified directly if any of the

conditions are true: max (|ψ(s)|) = |ψy(s1)| (lateral) or max (|ψ(s)|) = |ψx(s1)|
(axial).

� If none of the above are true, i.e., max (|ψ(s)|) = |ψz(s1)|, the mode can

be either vertical-bending or torsional. Then the signs of ψz(s1) and ψz(s2)

provide a disambiguation, i.e., if sign(ψz(s1)) = sign(ψz(s2)), the mode is

vertical-bending; otherwise, if sign(ψz(s1)) 6= sign(ψz(s2)), the mode is tor-

sional.

So far, the authors have seen no mis-identification using these criteria, mainly

because, even in the troubling scenario of coupled modal families, there tends to

be a clear domination of one modal family over the other.

The corner displacements method of mode identification described by Soares et al. (2021b)

is elegantly simple, easy to implement and quick to compute. While not tested rigorously

in this work, this method presents some clear advantages over shape recognition, MAC and

mapping to known modes. That said, only aluminum bars were considered by Soares et al.

(2021b). This method should be tested before use with rosewood bars, as their orthotropic

material properties and tendency for long, deep cutaways may create substantial coupling

between lateral and torsional deformation.

All of the mode identification methods outlined above were applied to bar models with

free-free boundary conditions. Changing these boundary conditions will have a large impact

on mode shapes and frequencies. New methods of mode identification may likely be required

for bar models with different boundary conditions.
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4.3 Example Tuned Bars

The following subsections provide examples of bar geometry tuned over the course of this

research using the methods developed in this chapter. Material and geometry definition

types will be specified for each. The majority of examples covered have appeared previously

through conference presentations (Beaton and Scavone, 2019b, 2021b) or a journal paper

(Beaton and Scavone, 2021a).

4.3.1 Basic Bars

Examples contained in this subsection tune only vertical-flexural modes (V1, V2, etc.) to

illustrate various points.

Untuned Modes in Lower Marimba Octaves

One of the earliest studies performed in this work examined the variation of untuned modal

frequency ratios over the lower two octaves of a five-octave marimba (note C2 to note C4)

(Beaton and Scavone, 2019b). Each bar was modelled using the cross-section interpolation

method described in Section 3.2.2. Three rectangular cross-sections were defined and mir-

rored lengthwise to enforce cutaway symmetry. Using the depths of these three cross-sections

as inputs, modes V1, V2 and V3 were tuned to their typical 1:4:10 ratios so as to produce

results representative of conventional bar tuning. Outer bar dimensions were based on mea-

surements of a five-octave Yamaha marimba. Figure 4.4 plots the resulting frequency ratios

for the first nine modes of each bar from these simulations.

The results of Figure 4.4 confirm anecdotal reports from makers that the frequency of

mode T2 can be close to that of mode V3 over a range from approximately note E3 to

note B3. Figure 4.4 also shows a relatively uniform frequency ratio for mode T1, placing it

consistently between modes V1 and V2, without being near either. Changes in bar width,

which occur only at select points along the keyboard, are noticeable between notes E2 and

F2, and notes F3 and F]3. Interestingly, mode L1 does come close to mode V2 at note

C]2, though the author is not aware of any complaints of timbral issues caused in this case.

This may be related to the mode shapes of L1 and V2. Coupling between torsional and

lateral deformation does allow mode L1 to be excited when striking a bar’s playing surface.

However, areas of the playing surface that, if struck, would excite mode L1 do not line up

well with areas that would excite mode V2. Thus the two modes are less likely to be excited

at the same time. The opposite is true of modes T2 and V3, between which the areas causing

maximal excitation coincide.
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Figure 4.4: Modal frequency ratios from simulated bars over the lower two octaves of a five-
octave marimba. Outer bar dimensions are based on measurements of a Yamaha instrument.
This figure is adapted from Beaton and Scavone (2019b).

Impacts of Initial Geometry

Importance of initial geometry selection is discussed as part of the tuning methodology

described in Section 4.2.2. Figures 4.5 to 4.7 demonstrate the impact of this choice. Each of

the three figures show the initial and final geometry of a marimba bar tuned to the typical

1:4:10 ratios in flexural modes V1 to V3. All three bars have the same outer dimensions,

material properties and number of input parameters. The only differences between the three

are the choice of initial geometry. Figure 4.5(a) begins with a very thin cutaway in its initial

geometry, resulting in a similarly thin cutaway for its tuned geometry in Figure 4.5(b).

Figure 4.6(a) starts with a more moderately thick initial geometry and ends with a bar that

is somewhat hollowed out in Figure 4.6(b), with thicker portions at various location and

along the sides. In sharp contrast to these two, Figure 4.7(a) begins with a bar of uniform

thickness, and outputs a bar with deep “hinge-like” segments that control the relevant modal

frequencies in Figure 4.7(b). These hinged areas provide control over the vertical modes while

keeping large portions of the cutaway quite thick, similar to the initial geometry. Looking

at Figures 4.5 through 4.7 the importance of selecting a desirable initial geometry is clear.
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a) Initial

b) Tuned

Figure 4.5: Example rosewood bar tuned to the typical 1:4:10 ratios using a thin cutaway
as its initial input geometry. (a) Initial geometry. (b) Tuned geometry.

a) Initial

b) Tuned

Figure 4.6: Example rosewood bar tuned to the typical 1:4:10 ratios using a moderate
cutaway as its initial input geometry. (a) Initial geometry. (b) Tuned geometry.

a) Initial

b) Tuned

Figure 4.7: Example rosewood bar tuned to the typical 1:4:10 ratios using a uniform bar
as its initial input geometry. (a) Initial geometry. (b) Tuned geometry.
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Table 4.1: Target tuning ratios of all model 1 submodels in Figure 4.8. Table adapted from
Beaton and Scavone (2021a).

Material Note
Target Tuning Ratios Model

No.V1 V2 V3 T1 T2 L1

Rosewood F3

1 - - - - - 1(a)
1 4 - - - - 1(b)
1 4 10 - - - 1(c)
1 4 10 2 - - 1(d)
1 4 10 2 8 - 1(e)
1 4 10 2 8 6 1(f)

4.3.2 Rosewood Bars

This section provides example tuned rosewood bars, most of which were previously shown

by Beaton and Scavone (2021a). These example bars use the Clough-Tocher interpolation

to compute cutaway geometry, as discussed in Section 3.2.2.

Effects of Tuning Additional Modes

Figure 4.8 shows the effects of tuning progressively more modes in a rosewood example bar.

Each of the submodels in Figure 4.8 used a thin, smooth initial geometry similar to that in

Figure 4.5(a). Model 1(a), shown on the far left of Figure 4.8, tunes only mode V1, leaving

the other reported modes untuned. The tuned geometry of model 1(a) looks very similar to

the smooth, thin, initial geometry, indicating very little change was necessary to tune just a

single mode. Model 1(b) tunes modes V1 and V2, while model 1(c) tunes V1, V2 and V3. In

both cases, the final geometry is still quite smooth and rather similar to the initial geometry.

Notably, the untuned frequency ratio of mode T2 moves from around 8 in model 1(a) to

about 10 in model 1(c), placing it in close proximity to mode V3.

Model 1(d) in Figure 4.8 adds mode T1 to the tuned modes in the progression of submodels,

and produces the first significant change in the tuned bar geometry. These changes become

more pronounced and more interesting in model 1(e), which tunes mode T2 along with the

others from previous submodels. Two “teeth” are noticeable on either side of the bar around

its midpoint. These features become elongated in model 1(f), which tunes mode L1 along

with the others. This set of submodels clearly demonstrates the versatility of tuning torsional

and lateral-flexural modes using the surface interpolation described in Section 3.2.2.
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Figure 4.8: Tuned bar geometries and frequency ratios for models that tune progressively
more modes. Model 1(a) begins by tuning only mode V1. Model 1(b) tunes modes V1 and
V2. These additions continue to model 1(f), which tunes all six of the modes plotted above.
Table 4.1 outlines the tuning targets of each submodel. Figure borrowed from Beaton and
Scavone (2021a).
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Table 4.2: Target tuning ratios of example rosewood bar models in Figure 4.9. Table adapted
from Beaton and Scavone (2021a).

Material Note
Target Tuning Ratios Model

No.V1 V2 V3 T1 T2 L1

Rosewood F3

1 4 10 2 8 - 1(e)
1 4 10 - 11 - 2
1 4 8 2 8 - 3
1 5 9 3 7 - 4
1 4 10 2 10 6 5

Example Tuned Bars

Figure 4.9 provides various examples of tuned rosewood bar geometries. All bars in the

figure are tuned to the note F3. Each bar in Figure 4.9 has outer dimensions 406 mm ×
58 mm × 24 mm based on measurements of an existing marimba. A minimum thickness of

6 mm is maintained throughout these models. Tuning ratios are shown in Figure 4.9 and

summarized in Table 4.2.

The example models in Figure 4.9 tune anywhere from four to six modes, with cutaway

geometries ranging from slightly sophisticated to decidedly impractical. Models 1(e) and

2 show interesting cutaway geometries of reasonable complexity. In some ways, the two

models show opposing features in their cutaways. Model 1(e) tunes mode T2 down to a

frequency ratio of 8, compared to its value of roughly 10 when left untuned in model 1(c)

(see Figure 4.8). By contrast, Model 2 tunes mode T2 up to a ratio of 11. The opposing effects

these models have on mode T2 are reflected in the material distribution over their cutaways.

Near either end of model 1(e)’s cutaway, material is concentrated near the centreline of

the bar, and thinned at the sides. Model 2 shows the opposite pattern, with material

concentrated toward the sides of the bar and thinned near the centreline. These trends are

reversed at the midpoints of the two bars. Material is distributed near the sides of the bar

at the midpoint of model 1(e) (these are the “teeth-like” structures mentioned previously),

whereas model 2 concentrates material along the centreline of the bar at its midpoint.

Model 3 has similar tuning ratios to model 1(e), with the exception that mode V3 is

lowered from a ratio of 10 to a ratio of 8. This change is sufficient to cause significant

changes in cutaway geometry. Most notable are the deep hinge-like regions at the ends of

model 3’s cutaway. These hinges are positioned at a point that will have considerable impact

on mode V3 and substantially less impact on modes V1 and V2. While models 1(e) and 2

have rather modestly complex cutaway geometries, model 3 is on the impractical side, with

rapidly changing slopes and sharps edges.

Model 4 has perhaps the most complex cutaway in Figure 4.9. This very interesting and



4 – Three-Dimensional Tuning of Idiophone Bar Modes 65

Model  4

V1  V2  V3

1 5 9

T1 T2
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-
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T1 T2

2 8
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-

Model  5

V1  V2  V3
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T1 T2

2 10

L1

6

Model  3

 

V1  V2  V3

1 4 8

T1 T2

2 8

L1

-

Model  2

V1  V2  V3

1 4 10

T1 T2

- 11

L1

-

Figure 4.9: Tuned geometries for and frequency ratios for various rosewood bar models of
the musical note F3. Tuning ratios are indicated for each bar with “-” denoting an untuned
mode. Table 4.2 outlines the tuning targets of each example model. Figure borrowed from
Beaton and Scavone (2021a).
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Table 4.3: Target tuning ratios of example aluminum bar models in Figure 4.10. Table
adapted from Beaton and Scavone (2021a).

Material Note
Target Tuning Ratios Model

No.V1 V2 V3 T1 T2 L1

Aluminum C4

1 3 9 - 7 - 6
1 4 8 3 10 - 7
1 4 10 3 12 8 8
1 5 11 - - - 9

entirely impractical geometry is a result of the atypical tuning ratios in the model, in which

modes V2, V3, T1 and T2 are all tuned to odd harmonics. Notable in the cutaway are very

thick areas along the edges, which serve to increase mode T1 to a frequency ratio of 3. A

deep hinge at the bar’s midpoint primarily affects modes V1 and V3. Most interestingly, a

set of slanted hinge-like areas on either side of the midpoint serve to lower mode T2 to a

tuning ratio of 7. While interesting as theoretical results, models 3 and 4 would both be

very difficult to fabricate, even on a CNC mill.

Model 5 is the lone example that includes mode L1 amongst its tuning targets. This mode

is primarily controlled by the long stretch of cutaway in which material is thinned on the

bar edges and thickened slightly along a sort of central “spine”. The resulting cutaway in

this model is less complex than models 3 and 4, but does contain some intricate details at

either end, which could prove challenging to fabricate.

In terms of practicality, models 3 and 5 have an additional caveat not present in the other

example models. In each of models 3 and 5 modes V3 and T2 are tuned to the same frequency

ratio. While again interesting as a theoretical result, in practice any small misalignment in

the frequencies of these modes could produce an unintended beating effect, which is likely

undesirable.

4.3.3 Aluminum Bars

Figure 4.10 provides various examples of tuned aluminum bar geometries. All bars in the

figure are tuned to the note C4. Each bar in Figure 4.10 has outer dimensions 333 mm ×
57 mm × 13 mm based on measurements of an existing vibraphone. A minimum thickness

of 5 mm is maintained throughout these models. Tuning ratios are shown in Figure 4.10 and

summarized in Table 4.3.

The example models in Figure 4.10 again tune anywhere from four to six modes, with

varying levels of cutaway complexity. With an end thickness of 13 mm and minimum thick-

ness of 5 mm the aluminum bar examples in Figure 4.10 provided less distributable material

with which to shape their cutaways compared to the rosewood bar examples in Figure 4.9.
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Model  9

V1  V2  V3

1 5 11

T1 T2

- -

L1

-

Model  6

V1  V2  V3

1 3 9

T1 T2

- 7

L1

-

Model  8

 
V1  V2  V3

1 4 10

T1 T2

3 12

L1

8

Model  7

V1  V2  V3

1 4 8

T1 T2

3 10

L1

-

Figure 4.10: Tuned geometries for and frequency ratios for various aluminum bar models of
the musical note C4. Tuning ratios are indicated for each bar with “-” denoting an untuned
mode. Table 4.3 outlines the tuning targets of each example model. Figure borrowed from
Beaton and Scavone (2021a).

Model 6 has perhaps the most interesting cutaway geometry in Figure 4.10. As is seen in

other models, two hinge-like areas are present at the ends of the cutaway, where they will

have greatest effect on mode V3. Also of note is the interesting X-shaped pattern created

by thickened ridges on either side of the bar’s midpoint. These features presumably affect

mode T2, as it is the only torsional mode tuned in the model.

Model 7 creates a more practical cutaway geometry than model 6. With only slight com-

plexity at the ends of its cutaway, and a smooth, flat area around its midpoint, this example

bar should be relatively easy to fabricate with a CNC mill.
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Model 8 manages to tune six modes, including mode L1, while maintaining a relatively

simply cutaway geometry. The ends of its cutaway even bear some similarity to model 7.

Despite its unsophisticated geometry, some sharp edges may render this example slightly

challenging to fabricate.

Tuning the typical V1, V2, V3 modes to the atypical ratios 1:5:11, model 9 produces the

simplest geometry of any example in Figure 4.10. The straightforward shape with its gradual

slope and rounded edges should be an excellent candidate for fabrication.

Overall, the relatively simplicity of cutaway shapes in Figure 4.10 compared to those in

Figure 4.9 is a product of the aluminum bar examples have less material available to dis-

tribute over their cutaways. This results from the minimum 5 mm thickness of the aluminum

examples representing 38% of their end thickness, leaving 62% of material distributable over

the cutaway. By contrast, the 6 mm minimum thickness of the rosewood bar examples rep-

resents 25% of the end thickness of those bars, allowing 75% of material to be distributed

over their cutaways.

4.4 Algorithm Performance

4.4.1 Tuning Convergence

The bar tuning method outlined in this chapter centres around the iterative application of

Equation 4.4. Given an initial cutaway geometry, each application of Equation 4.4 seeks a

similar geometry that produces the desired frequency ratios in specified modes. Figure 4.11

shows the iterations involved in tuning model 1(e) beginning from the initial geometry shown

in Figure 4.5(a). A tolerance of one cent was enforced for each of the five modes tuned in

Figure 4.11 and in all examples throughout this chapter.

It is apparent from Figure 4.11 that the frequencies of individual modes do not converge

monotonically. Modes V1 and V2 clearly overshoot their target values before later converg-

ing. The little difference apparent between iterations 4 and 5 is a product of the rather

stringent one cent tuning tolerance that was used. In iteration 4 only mode V2 is tuned

within this tight tolerance.

The tuning example in Figure 4.11 shows relatively fast convergence compared to other

models in this research work. This model benefits from a strategy of having many of the

thickness inputs begin near one of their limits (in this example, many values in x0 are set

equal to Tmin). In such scenarios the individual values in each iterative input vector xi tend

to move away from the boundary where they started. In these cases D(x) in Equation 4.6

becomes an identity matrix and the entirety of matrix J(x) is active in Equation 4.4, which
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Figure 4.11: Cutaway geometries and resulting modal frequencies for the iterations required
to tune model 1(e). Iteration 0 is the same initial geometry shown in Figure 4.5(a).

can lead to faster convergence.

Convergence of the example in Figure 4.11 is also aided by the fact that modal frequencies

in iteration 0 are not too distant from their target values. The modes stay well separated

throughout the iterations, implying that at no point were degenerate modes present.

The absence of any of these conditions can slow down convergence. Figure 4.12 shows

algorithm convergence for convergence run 3 of Prototype 2 in Section 4.5, if that model

were run from its initial geometry (in practice, convergence runs begin with the final input

vector from the previous convergence model run).

The example in Figure 4.12 required slightly longer to converge than the example shown
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in Figure 4.11. The two examples begin with very different initial geometries. The initial

geometry in Figure 4.12 was designed to eliminate sharp corners along the cutaway edges.

This was achieved by creating an initial geometry that is thicker near the bar’s centreline and

thinned toward the edges. While successful in creating a tuned geometry free from sharp

edges, modal frequencies from this initial geometry were farther from their target values

than those in Figure 4.11, thus necessitating some additional iterations. Again the effects of

a stringent tuning tolerance are seen in iterations 4 through 7 of Figure 4.12, where small

changes in bar geometry and modal frequencies bring the modes within one cent of their

target frequencies.

Figure 4.12 also gives an example of mode reordering, with modes T1 and V2 reversing

order between iterations 1 and 2.

4.4.2 Non-Convergence

Several scenarios also exist that could result in the algorithm not converging. If the analyst

requests a set of tuning ratios that are infeasible for the input geometries and constraints,

the model will not converge and will instead stop after a maximum number of iterations. In

other, relatively rare cases, the algorithm can enter an “orbit” while trying to tune a feasible

set of tuning ratios. In this scenario, the estimated solution vectors, xi, can enter an orbit,

wherein they alternate between some fixed number of two or more repeated similar vectors.

When this occurs, the algorithm is said to be orbiting about some fixed point that may be

a solution, or may be a local minimum. Such orbits are a known caveat of gradient-based

solving methods. Over hundreds of model runs in this research, orbits were observed to

occur a handful of times.

Troubleshooting

In the event of non-convergence, numerous troubleshooting techniques can be explored before

concluding that a desired set of tuning ratios may be infeasible. Troubleshooting approaches

employed in this work include:

1. Rerunning the tuning algorithm with a different initial geometry.

2. Enforcing a maximum allowable change in input vector for each iteration of Equa-

tion 4.4.

3. Running the tuning algorithm using one less mode tuned. For a given set of modal

tuning objectives to be feasible, any subset of those objectives must also be feasible

(and should be quicker to investigate).
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Figure 4.12: Cutaway geometries and resulting modal frequencies for the iterations required
to tune the model for fabrication bar Prototype 2. The initial geometry in Iteration 0 was
selected to eliminate sharp edges along the sides of the cutaway.

The methods above are by no means an exhaustive list of troubleshooting techniques for

gradient-based tuning methods. For example, one interesting potential approach could be

to create an algorithm to detect orbiting. In the event that orbiting is detected, the tuning

algorithm could be instructed to set the next input vector to the average of those input

vectors present in the orbit.
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Table 4.4: Prototype bar dimensions.
Bar Length [mm] Width [mm] End Thickness [mm]
Prototype 1 400 63.5 19
Prototype 2 365 63.5 18

Table 4.5: Prototype bar modal tuning ratios. Untuned modes are indicated by ‘-’.
Tuning Ratio

Bar V1 V2 V3 T1 T2 T3
Prototype 1 1 4 10 4 14 -
Prototype 2 1 4 10 3 12 22

4.5 Prototype Fabrication

Two aluminum prototype bars were fabricated in this work. The isotropic, manufactured

nature of aluminum makes it an easier starting point than a natural, orthotropic material

like wood. Compared to rosewood, aluminum was also more readily available, and familiar

to the fabrication shop technicians. The number of prototype bars created was ultimately

governed by cost. The bars were produced on a computer numerical control (CNC) mill

at McGill’s Faculty of Engineering Workshop. Each prototype had a price tag of around

$400, with the bulk of this cost paying for shop technician services (only shop technicians

are permitted to operate the CNC mill).

The second prototype bar was produced several months after the first, taking advantage

of lessons learned from that initial bar fabrication. This resulted in vastly improved perfor-

mance of the second bar compared to the first. The following sections describe the modelling,

fabrication and performance of these bars, with an emphasis on the second, more successful,

prototype. Discussion of prototype bar fabrication can also be found in an article (Beaton

and Scavone, 2022) published as this thesis was under review.

4.5.1 Bar Descriptions

Each prototype was tuned to the musical note C4. Bar outer dimensions are given in Ta-

ble 4.4 while Table 4.5 outlines the tuning ratios used for each. Stock aluminum material

of the popular 6061 alloy (Battelle Memorial Institute, 2020) was selected based on price,

availability and ease of machining. Stock material was supplied in 21⁄2-inch by 3⁄4-inch (63.5

mm by 19 mm) bars.
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Prototype 1

In selecting dimensions for the first prototype bar, an effort was made to reduce the amount of

required CNC milling, thereby limiting the bar’s cost. The overall width and end thickness of

the bar were set to match those of the stock material. With a 19 mm thickness, the bar would

be significantly thicker than the 13 mm thick bars measured on a Yamaha vibraphone. For

this reason, no attempt was made to match the bar’s other dimensions to those of a typical

vibraphone bar. The bar’s length was set at 400 mm to allow either end of the stock material

to be cut square to the sides.

With the bar’s outer dimensions set, dozens of analyses were performed. These analyses

explored different combinations of tuning targets (musical note and modal tuning ratios)

and initial input geometries. The musical notes considered were: F3, G3, A3, B3 and C4.

Ultimately, note C4 was selected along with the tuning ratios shown in Table 4.5. This

combination was chosen as its resulting bar geometry was deemed most preferable (in terms

of being practical for fabrication and aesthetically interesting).

Figure 4.13 shows the geometry of the first prototype bar, with panel (a) giving a screenshot

of the modelled geometry and panel (b) a photo of the fabricated bar. Initial bar geometry

was selected so as to avoid any sharp edges along the sides of the cutaway. This is most

obvious near the ends of the cutaway, where material is concentrated along the bar’s central

axis while sloping down toward its sides.

Figure 4.13: Images of Prototype 1: (a) bar model meshed with tetrahedral elements, (b)
photo of fabricated bar. Figure borrowed from Beaton and Scavone (2022).

Though its shape is aesthetically interesting, in terms of vibrational properties Prototype 1

performed quite poorly. The modal frequencies of Prototype 1, measured by experimental

modal analysis (see Appendix A), departed significantly from those predicted by the com-

puter models. The primary source of these discrepancies were significant differences between

the modelled bar geometry (i.e. its intended geometry) and the actual fabricated geometry.

The stock aluminum bar material purchased for prototyping was not a stress-relieved va-

riety. Instead the aluminum stock pieces used for bar fabrication contained residual stresses
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imparted by their manufacture. In the stock bar’s original state, internal forces from these

residual stresses are in equilibrium, and the stock material remains quite straight. Removal

of bar material during CNC milling disturbs the equilibrium of these internal forces, causing

the bar to warp. The milling procedure itself can also impart residual stresses (Beaton and

Scavone, 2022), even on stress-relieved materials, making some degree of warping unavoid-

able.

The warped bar no longer has a flat surface upon which it can be placed in the CNC mill.

To compensate, shop technicians must remove additional material to flatten the warped bar

before additional rounds of milling. The author was not aware of this necessity prior to

fabrication. As shown in Table 4.4, the designed end thickness of Prototype 1 was equal

to the stock bar’s thickness of 19 mm. With no excess thickness to spare, the removal of

material to flatten the bar after warping resulted in Prototype 1 being anywhere from 0.5

mm to 0.8 mm thinner than expected at any given point.

This unanticipated thinning of the bar resulted in a fundamental frequency roughly 10%

lower than intended. Results from Prototype 1 are omitted from the remainder of this section,

as the observed discrepancies in modal frequencies were clearly a result of fabrication issues

and not a product of the tuning procedure described in this chapter.

Prototype 2

After assessing performance of Prototype 1, and diagnosing the source of geometry devia-

tions, a second prototype was designed. The goal in designing Prototype 2 was to minimize

any errors in final bar geometry caused by the fabrication process. To achieve this goal,

Prototype 2 was designed in close collaboration with the fabrication shop technicians, so as

to accurately produce the intended geometry in the final product.

The most important adjustment made to the second prototype was to reduce the overall

thickness of the final design. As shown in Table 4.4, Prototype 2 had an end thickness of

18 mm rather than the 19 mm used in Prototype 1. Given that the stock material was 19

mm thick, this reduction in bar thickness left 1 mm of buffer material that could be removed

to compensate for warping caused by the milling process. Bar width was kept at 63.5 mm,

matching that of the stock material, as advised by the fabrication technicians. Musical note

C4 was maintained, matching Prototype 1.

With the bar note, width and end thickness selected, over 150 bar models were tuned, test-

ing different combinations of bar length, tuning ratios, initial geometries, cutaway lengths

and minimum thickness limits. The aim was to produce a bar with the following character-

istics:

1. Smooth geometry (no sharps edges).
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2. Six tuned modes (one more than Prototype 1).

3. Relatively small amount of material removed for cutaway (reduces warping).

4. Interesting cutaway shape.

Items 1 and 2 were mandatory. Item 3 was considered preferable while Item 4 was optional.

Figure 4.14 shows the geometry selected for Prototype 2, along with a photo of the fabricated

bar.

Figure 4.14: Images of Prototype 2: (a) bar model meshed with 20-node hexahedral ele-
ments, (b) photo of fabricated bar. Figure borrowed from Beaton and Scavone (2022).

The fabricated geometry of Prototype 2 was far more accurate than Prototype 1, leading

to greatly improved bar performance. The same modelling and tuning procedures were

employed for both prototypes. Thus the improved performance of Prototype 2 confirms

that poor performance from Prototype 1 was a product of fabrication issues. To provide

commentary indicative of the performance possible using tuning methods described in this

chapter, the following sections consider only Prototype 2.

4.5.2 Model Convergence Test

Prior to fabrication, each of the tuned bar models selected for prototyping was tested for

convergence. Model runs used for convergence tests were comprised of 20-node hexahedral

elements. Table 4.6 shows the number of elements used in each convergence model run.

Mesh densities were progressively increased until the control point positions, which govern

the NURBS surface defining the cutaway, did not change between runs. Thus the control

point positions from run 5 of Table 4.6, are the same as those from run 6. These control point

positions produced the modal tuning ratios shown in Table 4.5, with each modal frequency

tuned to within one cent of its target value. The final model, with a total of 31, 200 elements,

is shown in Figure 4.14(a).



4 – Three-Dimensional Tuning of Idiophone Bar Modes 76

Table 4.6: Numbers of elements used for Prototype 2 convergence test models. Model X-,
Y- and Z-axes correspond to the bar’s length, width and thickness directions, respectively.

Elements Per Axis
Run Number X Y Z Total

1 40 8 2 640
2 80 12 2 1, 920
3 120 16 3 5, 760
4 160 20 4 12, 800
5 200 24 5 24, 000
6 240 26 5 31, 200

Table 4.7: Measured and modelled modal frequencies for the tuned modes of Prototype 2.
Modelled results were produced from Model 6 in Table 4.6 using both Pylaster and Calculix.
In all cases modelled frequencies in the two programs agreed to the first decimal place.
Measured frequencies were determined using the LSCE method (see Appendix A). Frequency
differences are expressed in cents, relative to the modelled values. Measured frequency ratios
are calculated relative to the measured frequency of mode V1. Table borrowed from Beaton
and Scavone (2022).

Mode
Frequencies Frequency Ratios

Modelled Measured Difference
Target Measured

Difference
[Hz] [Hz] [cents] [cents]

V1 261.7 261.1 -4.1 1 1 -
T1 785.2 772.1 -29.1 3 2.96 -24.9
V2 1046.8 1047.2 0.7 4 4.01 4.6
V3 2616.3 2632.5 10.6 10 10.08 14.2
T2 3139.5 3108.7 -17.4 12 11.91 -13.6
T3 5755.8 5757.1 0.5 22 22.05 3.9

4.5.3 Experimental Modal Analysis and Bar Performance

Assessment of the fabricated bars’ performance was carried out via experimental modal

analysis. The bar under test was supported on two small foam blocks positioned below

the nodes of its fundamental mode. This support condition was designed to emulate how

support cables are located on a vibraphone or marimba. Experimental modal analysis was

then performed according to the same procedure described in Appendix A for rosewood bars.

Table 4.7 outlines the modal frequencies measured for Prototype 2 compared with those

predicted by finite element models used for bar tuning. The average absolute error for the

modal frequencies shown in Table 4.7 works out to 10.4 cents. Average absolute error for

the frequency ratios is 12.2 cents. Measured frequency ratios in Table 4.7 are calculated

relative to the measured frequency of mode V1; thus the reported differences in frequency

ratios depart from the reported differences in frequencies.
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Results shown in Table 4.7 are most readily compared with those of Soares et al. (2021b).

Their work, published several months after Beaton and Scavone (2021a), though likely per-

formed concurrently, also tuned idiophone bar torsional modes. The two works take decidedly

different approaches to parameterizing and shaping bar cutaways. As described earlier in the

chapter, this work tuned bar cutaways in a three-dimensional manner, allowing bar shapes to

vary in all three dimensions. By contrast, Soares et al. (2021b) used what a previous paper

by the same authors (Soares et al., 2021a) called “simplified undercuts”. Their approach

formed bar cutaways that varied in a step-wise manner, with geometry remaining consistent

across the width of the bar.

Soares et al. (2021b) included measurement results for three fabricated bars with different

tuning ratios. Each of their bars tuned four vertical bending modes and two torsional modes.

Looking at Table 4.7 the average absolute tuning ratio error of 12.2 cents is comparable to

the results of Table I from Soares et al. (2021b), which report average absolute errors of 9.0,

10.9 and 32.9 cents for the three bars fabricated in that work. The -4.1 cent error in tuning

Prototype 2’s fundamental frequency is notably better than fundamental frequency errors of

-26, -12 and -38 cents for the three bars of Soares et al. (2021b).

Overall the measured frequency results in Table 4.7 indicate very satisfactory performance

from Prototype 2, thereby demonstrating the potential for the three-dimensional bar tuning

methodology developed in this chapter.



Chapter 5

Hybrid Modelling of Idiophone Bar

Sound Radiation

5.1 Objective

As outlined in Section 1.2.2, this work seeks to enable the evaluation of potential new bar

geometries and materials in a virtual manner, minimizing the need for physical prototypes.

Evaluations are carried out using finite element models (FEM), as described in Chapter 3.

An important aspect of this objective is that FE models of new bar designs should function

without the need for any physical prototype to be built first. The only necessary inputs

must be bar geometry and material properties. The required material properties are:

� Elastic modulus/moduli

� Poisson’s ratio(s)

� Shear modulus/moduli

� Density

� Damping ratio (as a function of frequency)

These properties can be measured from stock material or taken from any available pub-

lished sources. For sound radiation models that include the impact of a mallet, material

properties must be established for both the bar and mallet. The mallet material is an im-

portant consideration, as it will act as a low-pass filter on the radiated sound, with harder

mallets exciting more higher partials.

Time domain models of instrument excitation and sound radiation provide the benefit of

great flexibility, but suffer from high computational costs. For percussion instruments, time

78
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domain models can capture interaction between the mallet head and instrument. Doing so

can account for the mallet head’s mass and the effects it has during impact with the bar.

Including this interaction thus leads to more accurate simulation of the impact excitation and

the radiated attack transient. Chaigne and Doutaut (1997) included mallet/bar interaction in

their simulations of xylophone bar vibration. Henrique and Antunes (2003) later employed

this same approach in their work. Both sets of authors considered one-dimensional bar

models.

Capturing torsional mode behaviour requires three-dimensional bar models with total

degrees-of-freedom orders of magnitude larger than models from these previous works (Chaigne

and Doutaut, 1997; Henrique and Antunes, 2003). Even with today’s computers the in-

creased computational cost of tracking so many nodes can be prohibitive. For this reason,

time history FEM is rarely employed in dynamic structural models with large numbers of

nodes.

The objective of this chapter is thus to create a model that can simulate sound radiation

from an impacted bar, using only geometry and material property inputs, and accounting

for bar/mallet interaction, while reducing computation time in the FE model.

5.2 Concept

To accomplish the objective outlined above, this chapter proposes a Hybrid Sound Radiation

Model. The concept is centred around a hybridization of finite element dynamic time history

analysis, and modal models with decaying sinusoids (also known as Prony models). The

hybrid model produced by this concept will output a waveform that tracks sound pressure

at a given position relative to the instrument. This position, termed the “listening position”

is equivalent to placing a virtual microphone at the corresponding location inside the model,

and outputting the signal it records.

The output waveform will consist of three segments:

(A) Time history excitation: A first segment produced by modelling sound radiation using

the results of a finite element dynamic time history model. This time history

model tracks the bar’s motion in response to a given excitation (mallet strike) and

includes any nonlinear effects, such as interaction between the mallet head and bar.

Any appropriate method may be used to calculate sound radiation at the listener

position based on the simulated motion of the bar.

(B) Crossover : A second segment that serves to transition between the first and third

segments.
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b)a)

Figure 5.1: Example output waveform from the hybrid sound radiation model. (a) Full
result for a model with a simulation time of 2 seconds. (b) Detailed view of the first 50
milliseconds. The three distinct segments of the model are colour-coded with: blue - time
history excitation, orange - crossover, and green - Prony tail.

(C) Prony tail : A third segment produced by simulating sound pressure at the listener

position as a Prony model, with a set number of decaying sinusoids. Parameters for

the modes of this model will be determined using output from the first segment, and

also prior knowledge of the bar behaviour from the damping model input to the time

history model, and a separate finite element modal analysis.

Of the three segments outlined above, segments A and B are by far the most computa-

tionally expensive, as both include results from the time history analysis. Segment C, by

contrast, is much less computationally demanding, as once parameters of the Prony model

are determined, its output signal can be calculated very rapidly. The primary benefit on the

proposed hybrid model is to minimize the required length of segments A and B in favour of

the much less computationally demanding segment C. Figure 5.1 gives an example output

waveform produced using this hybrid model approach. Segments A, B and C in Figure 5.1

are coloured blue, orange and green, respectively. It is immediately apparent how well the

method is able to limit the extent of segments A and B in favour of the computationally

advantageous segment C.

If the output signal in Figure 5.1 were generated using only finite element time history

analysis (i.e. if the signal was comprised entirely of segment A), the required run time on

the desktop computer used in this work would be measured in days. By contrast, the hybrid

model output of Figure 5.1 was generated in less than an hour, the bulk of which time was

spent producing segments A and B.
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All of this begs the question “why not use a Prony model for the entire response?” The

answer here is twofold: first, the time history model is capable of capturing nonlinear phe-

nomena, such as interaction between the mallet head and bar surface, whereas Prony models

rely on the principle of modal superposition, which itself assumes system linearity. Second,

the parameters of a Prony model are determined by fitting the generated output to some

input data. In this method, the input data comes from the time history analysis, along with

a separate modal analysis and input damping model. Absent these initial simulation results

to tune the Prony model parameters, it is common to use recorded data as input for param-

eter fitting (see, for example, Aramaki et al. (2007)). While using recorded data as input is

a perfectly viable approach, the goal of this work is to enable evaluating new materials and

geometries without the need for physical prototypes (which would be required to produce

recorded inputs). By using only material property and geometry inputs, the proposed hy-

brid model approach accomplishes this goal. It does so while leveraging the Prony model’s

efficiency to greatly reduce computational cost compared to a full time history model.

The following sections outline the steps involved in the hybrid sound radiation model, and

provide example results and discussion.

5.3 Method

The objective for this chapter is accomplished by employing a hybrid approach to modelling

bar impact and sound radiation in the time domain. This approach combines a nonlinear

dynamic time history FE model (in which the equations of motion are solved using numerical

time integration) with a modal model comprised of exponentially decaying sinusoids. Sound

radiation is simulated by modelling the bar’s surface as a collection of point sources based

on its finite element mesh (Bestle et al., 2017). Details of the method and example results

are outlined in the following sections.

5.3.1 Overview

The hybrid radiation model is constructed via the following steps:

1. Perform a modal analysis of the bar FE model including the boundary conditions that

will be used to model mallet impact and sound radiation.

2. Run a time history analysis of the mallet impact, including the complete time in which

the bar and mallet make contact and a short duration thereafter.
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3. Simulate sound radiation to a given listener position by treating the bar’s playing

surface as a collection of point sources and inputting surface motion output from Step 2.

4. Select the modes to use in the modal model. Look up frequencies for each mode from

the results of Step 1. Calculate damping ratios for each mode using the damping model

selected for Step 2.

5. Adjust the modal frequencies and damping ratios from Step 4 to account for the effects

of numerical time integration in the time history model.

6. Using the adjusted modal frequencies and damping ratios, fit the amplitude and phase

of each mode to a portion of the radiated sound signal using the second step of Prony’s

Method.

7. With all modal parameters fit, evaluate the decaying sinusoid for each mode over the

desired range of time. Sum these decaying sinusoids to create the modal model.

8. Combine the initial sound radiation from Step 3 with the modal model from Step 7 by

crossfading between the two over a specified overlap.

9. Perform a frequency warping on the radiated sound signal from Step 8 to convert the

adjusted frequencies from Step 5 back to those expected in the modal analysis results

from Step 1.

These steps are explained in further detail in the following sections.

5.3.2 Time Domain Modelling

Impact of the mallet head on the idiophone bar, interaction between the bar and mallet, and

the subsequent bar motion are all modelled in the time domain using the FE model described

in Chapter 3. All models including contact mechanics were run in Code Aster, while some

preliminary models were run in Pylaster and Calculix. Numerous boundary conditions were

considered, though it proved difficult to create boundaries that could adequately restrain

the model while maintaining modal frequencies from bar models with free-free boundaries.

Instead, modal frequencies were determined by a modal analysis using the same boundary

conditions applied for the impact model. Support locations were generally positioned near

areas where the fundamental bar mode has minimal displacement (the “nodes” of the fun-

damental mode) so as to have minimal effect on the bar’s fundamental frequency. However,

restraining these nodes would invariably alter frequencies of the other modes. To produce

a bar with some harmonically tuned modes for the hybrid radiation model, the bar tuning



5 – Hybrid Modelling of Idiophone Bar Sound Radiation 83

Table 5.1: Mallet impact force curve parameters.
Parameter Bork Curve Bestle Curve

A 44.77 76.62
µ 0.5266 0.5899
σ 0.1200 0.1150
t0 -0.8715 -1.148

methods described in Chapter 4 were applied to a bar with the boundary conditions used in

the time domain mallet impact model.

Mallet Impact as a Time-Varying Nodal Load

Some preliminary models defining mallet impact as a time-varying nodal load were run in

Pylaster and Calculix. These models ran successfully, though they did not include interaction

between the bar and mallet, and thus the effect of the mallet’s mass was lost. Applied forces

were spread equally over a number of nodes within a small area on the bar’s playing surface.

The total applied force was varied over time according to one of two excitation functions.

These functions, shown in Figure 5.2 are based on curve fits from data in Figure 2 from Bork

(1990), and Figure 4.14 from Bestle (2017). A modified log-normal function, used to fit each

curve, takes the form:

fm(t) =
A

(t− t0)σ
√

2π
exp

(
− log(t− t0)− µ

2σ2

)
; t > to, (5.1)

where t is time, expressed in milliseconds, and fm(t) gives the mallet impact force in Newtons.

The remaining terms have no physical interpretation and inconsistent units, as Equation 5.1

is here used empirically to fit the mallet impact force curves from the two cited papers. The

log-normal distribution was taken as a basis for this function given its asymmetric pulse-like

shape. Equation 5.1 is not applied as a typical log-normal distribution, as it is not modelling

a random variable and has been modified by adding the term t0. Parameters of the fitted

functions from Figure 5.2 are given in Table 5.1. Note that the fitted log-normal force curves

in Figure 5.2 were used only to test explicit and implicit time integration, as described in the

following section. Example models in Section 5.5 used contact mechanics to simulate mallet

impact. Figure 5.2 also shows an example mallet impact force from these models. Further

discussion is provided in the impact modelling subsection below.
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Figure 5.2: Mallet impulse force curves. Two curve fits based on data from Bork (1990) and
Bestle (2017) are compared with the mallet impact force simulated using contact mechanics.
The three curves have been offset along the time axis to roughly align their initial rise in
force.

Explicit vs. Implicit Time Integration

Models that applied the mallet impact as a time-varying nodal load were used to test running

the analysis with implicit or explicit time integration schemes. It was found that both

integration schemes produced similar results in terms of nodal displacements. However, the

time steps required for stability of the explicit integration scheme were so small, and the

resulting number of required time steps so large, that implicit integration proved to be a

much faster approach. Later it was found that frequency warping corrections, as outlined

in Section 5.3.8, were more accurate for implicit time integration, further reinforcing its

selection for this work.

Impact Modelling

To provide greatest flexibility in modelling mallet impacts, FE models were created including

a model of the mallet head, along with its initial velocity. These models capture the impact

between the mallet head and idiophone bar via finite element contact modelling. Initial

models were run in Calculix, taking advantage of its capacity for contact detection. For

analyses such as these, Calculix has the ability to dynamically adjust the time step size

based on the current state of the model. Doing so can save considerable time for those
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Figure 5.3: Initial geometry of a mallet impact model for use in Code Aster. The bar is
meshed with 720 20-node hexahedral elements. The mallet head is meshed with 1106 10-
node tetrahedral elements.

portions of the analysis where no contact occurs. However, it was found that using dynamic

time step adjustments in Calculix made it difficult to produce results at times corresponding

to the desired audio sampling rate. The dynamically adjusted time steps varied considerably

and resulting surface displacements would need to be interpolated between points with non-

uniform distribution in time.

A decision was made to try running the dynamic impact analyses in Code Aster, as it has

a reputation for being quite powerful, and is largely based on Python, which could make for

easier interfacing with Pylaster. Though the learning curve with Code Aster was onerous,

ultimately, it did prove capable of both dynamically altering the time step during impact

analyses, while still producing output at the time steps desired for audio sampling.

Figure 5.3 shows the initial geometry of a mallet impact model. The mallet head is

modelled as a simple sphere and given initial position close to the bar’s playing surface to

reduce the number of time steps required for pre-impact travel. The mallet head material was

defined with arbitrary material properties loosely approximating rubber, as finding reliable

mechanical properties for rubber in the literature proved very difficult.

Figure 5.2 shows an example mallet impact force simulated via contact mechanics. This

example is from an aluminum bar impact model with initial mallet head velocity of 1.75

metres per second. The resulting force curve has a lower peak than the fitted curves in

Figure 5.2, indicating a softer mallet strike. Some fluctuations are noticeable during the

initial rise in force, which may stem from interaction between the mallet head and bar.

Adjusting the mallet head initial velocity or elastic modulus were each found to affect the

peak force, impact duration and observed fluctuations. Softer mallet impacts were found to
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Figure 5.4: A view from below an Adams five-octave marimba showing the support cable
passing through several bars and resting on cable posts. Rubber wraps are visible that
prevent the bars from striking the metal cable posts. The bar F]3 from Figure 5.5 is visible
toward the right of the photo.

reduce model run times slightly, as models using smaller initial velocities or softer elastic

moduli permitted larger dynamic time steps and required fewer iterations during the impact

simulation. No attempt was made to match the simulated mallet impulse to either of the

fitted curves in Figure 5.2. The relatively soft mallet impact, with its beneficial effect on

run time, was deemed suitable to test and demonstrate the hybrid sound radiation model of

this chapter.

Boundary Conditions

Numerous boundary conditions were explored for the idiophone bars in the mallet impact

models. Modern marimba and vibraphone bars are commonly supported on cables that

pass through holes drilled near the nodes of the fundamental (first flexural) vibration mode.

Positioning the supports in this manner allows movement of the first mode with minimal

restriction. Figure 5.4 gives a view of bars being supported by a cable on an Adams five-

octave marimba. Figure 5.5 gives a detailed view of one of these bars after being removed

from the instrument. The two support holes are clearly visible at either end of the cutaway

in Figure 5.5. Note that the support holes are not parallel. The support hole nearest the

centre of the instrument runs perpendicular to the end of the bar. The hole nearer the edge

of the instrument is drilled at an angle so that a single cable may pass through all support

holes in a straight line as the bars change in length along the keyboard.
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Figure 5.5: An F]3 bar from an Adams five-octave marimba used in experimental modal
measurements (see Appendix A). Oversized holes for the support cable are visible near either
end of the cutaway.

The support holes drilled through the bar are significantly larger than the cable diameter.

This makes it easier to pass the support cable through the hole and also serves to reduce any

restriction on the bar’s movement after it is struck. The amount of play in the cable support

holes is enough that, on one Yamaha marimba, a bar could be lifted about 2 to 3 mm before

encountering resistance from the support cable. The opposite effect was noted when pushing

down on the bar. In that direction the support cable, already engaged to support the bar’s

self weight, stiffens considerably with less than 1 mm movement. This can be attributed to

the help of cable support posts positioned within a few millimetres on either side of the bar.

As the bar moves downward, the angle of the support cable changes quickly, creating a large

stiffening effect.

These support conditions are ideal for marimbas and vibraphones. When striking a bar

with a mallet, the support cable stiffens quickly, ensuring a large portion of the impact

energy will serve to deform the bar (though some will be translated into the bar “bouncing”

up and down on the cable). After the mallet strike, the amount of play in the support cable

holes limits any restriction on bar vibration, particularly that of the fundamental mode.

Reproducing these precise boundary conditions in an FE model is challenging. In the

upward direction there should be a gap, with no resistance, followed by a gradual, yet

nonlinear increase in resistance (with excessive upward movement, the cable would lift off

the cable supports and begin to lift adjacent bars). In the downward direction there should

be an immediate nonlinear stiffening of resistance from the cable. The current version

of Code Aster does not provide an easy mechanism by which to define such a complex

nonlinear boundary condition. Several attempts were made to approximate these boundaries,

including: linear spring supports, bilinear spring supports and linear springs supports with

an initial gap. The desired effect of such support conditions was to allow a bar model that was

tuned using free-free boundary conditions to be used in the impact model without altering

its modal behaviour. None of the FE boundary conditions considered were successful in

doing so.

Linear spring supports, with very low stiffness, had little effect on the bar modes. However,

when low-stiffness springs are used in the impact model, the energy imparted on the bar by
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the mallet head translates primarily into bar motion instead of bar deformation. In other

words, with low-stiffness springs the bar would simply bounce on the springs instead of

deforming and vibrating. Increasing the spring stiffness sufficiently to cause bar deformation

altered the modal behaviour.

Bilinear springs, with initial low stiffness followed by higher stiffness, created artifacts in

the radiated bar sound, as did using spring with initial gaps.

The purpose of the bar impact model was to serve as an input to demonstrate the hybrid

radiation model. While a higher degree of realism in this model is preferable it is not strictly

necessary for its purpose. The decision was made to use fully fixed boundary conditions on

specified support nodes. Figure 5.11 shows the restrained boundary nodes in the aluminum

bar model in Section 5.5.1. These nodes are positioned at the ends of the bar cutaway,

roughly below where support cable holes would be drilled. Only nodes on the sides of the

bar are restrained. On an existing instrument, the support cable passing through the bar

would contact the bar only at the ends of the hole, as there is invariably some sag along the

length of the cable within the bar. Therefore support nodes in the FE model are positioned

at the bar sides only.

Given that changes to bar modal behaviour imparted by the boundary conditions are

unavoidable, and with a desire to observe tuned modes in the mallet impact and hybrid

radiation models, the example bars described in Section 5.5 were tuned using the methods

described in Chapter 4 and the boundary conditions described here.

Damping Model

The most ubiquitous damping model for time history analyses in commercial and open-source

finite element software is Rayleigh damping (Rayleigh, 1945). Originally published between

1877 and 1878 in Lord Rayleigh’s two-volume Theory of Sound, the model has proliferated

and endured. Its popularity is likely due to its simplicity, being a two-parameter model, and

ease of implementation. Using this model, the global damping matrix for a finite element

system is calculated as

C = αM + βK, (5.2)

where C is the system damping matrix, M, is the system mass matrix, K, is the system

stiffness matrix, and α and β are the Rayleigh damping coefficients. Note that, while α and

β in Equation 5.2 are typically arranged in the order shown, with α scaling the mass matrix

and β scaling the stiffness matrix, this is not always the case. Importantly for the current

work, these two parameters are reversed in Code Aster.

Keeping with the notation used in Equation 5.2, damping ratio, ζ, for Rayleigh damping
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Table 5.2: Rayleigh damping coefficients used for time domain modelling.
Material α β

Rosewood 13.877 4.754 · 10−7

Aluminum 4.4521 8.185 · 10−9
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Figure 5.6: Damping models employed in the dynamic time domain finite element models
in this work. Damping ratios vary according to the Rayleigh damping model in Equation 5.3
with coefficients per Table 5.2.

can be calculated as a function of frequency:

ζ(f) =
1

2

(
α

2πf
+ β2πf

)
, (5.3)

where ζ(f) is the damping ratio for a given frequency f (in Hz), and α and β are the

Rayleigh damping coefficients from Equation 5.2. Thus Rayleigh damping is controlled by

two parameters. Depending on the intended modelling application, an analyst can use these

two parameters to precisely set the damping ratios for two different frequencies, or use them

to tune a line of best fit over a number of desired (or measured) damping ratios at various

frequencies.

Table 5.2 gives the Rayleigh damping coefficients used in this work to model rosewood

and aluminum bars in the time domain. These values were determined from measurements

of rosewood marimba bars from professional instruments, and the aluminum stock material

used in fabricating prototype bars. More information on bar measurements is provided in

Appendix A.
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Figure 5.6 plots the damping ratio curves from Equation 5.3 for the parameter values

in Table 5.2. The curve shapes in Figure 5.6 conform to expectations upon examining

Equation 5.3. For low frequencies, mass-proportional damping controlled by the α parameter

dominates the behaviour. As frequency increases, this mass-proportional terms dies off and

the stiffness-proportional component, controlled by the β parameter takes over, with damping

ratio approaching a linear increase with frequency. Therein lies one of the limitation of

Rayleigh damping. With only two parameters available to tune behaviour, damping ratios

can only be controlled within a limited frequency range. The β term in particular exerts a

large effect, as a significant value of β will cause damping to rise rapidly in high frequencies.

By contrast, as is seen for aluminum, a low value of β will keep damping low over a large

range of frequencies. Finding middle ground between these extremes can be challenging with

Rayleigh damping. Some compromise will often be required.

Alternative damping models were also considered for this work. The most promising

model, Generalized proportional damping (GPD) (Adhikari, 2006), allows damping ratio to

be defined as a general function of frequency (using a limited but versatile set of mathemat-

ical functions and operations), and then uses the input damping ratio curve to determine

how the system damping matrix is calculated from the system mass and stiffness matrices.

Though not tested in this work, conceptually this model provides great potential for defining

more varied damping ratio curves than those shown in Figure 5.6 for Rayleigh damping. A

drawback, however, is that calculation of the global damping matrix will be considerably

more complicated than with Rayleigh damping. The more complex the input damping ratio

curve used in GPD, the more time consuming it may be to calculate the system damping

matrix. It may also be necessary to approximate the system damping matrix, if the input

damping curve contains things like trigonometric or exponential functions. Thus, the ad-

ditional computational demand of GPD will be exacerbated in situations where the global

mass and stiffness matrices are changing. So this damping model may result in increased

run times for nonlinear models. Nevertheless, GPD may well provide intriguing new options,

particularly in situations where some portion of the system has consistent mass and stiffness

matrices.

Unfortunately, at the time of this work, GPD was not available as a damping option in

Calculix, Code Aster, or any other available software (to the best of the author’s knowl-

edge). Implementing GPD in Pylaster was considered, and partially completed. To perform

a complete time domain mallet strike model with GPD in Pylaster would also have neces-

sitated implementing contact mechanics in the code. Adding contact mechanics would have

constituted a very large investment in implementation time for something that is ultimately

not an integral part of the hybrid radiation model (which would function equally well with
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Rayleigh damping or GPD). Thus the decision was made to use Code Aster, and its available

Rayleigh damping model, for the mallet strike time domain model.

5.3.3 Sound Radiation Modelling

In principle, the hybrid radiation model developed here can be employed with any sound

radiation model that is compatible with the finite element bar models described in Chap-

ter 3. Several methods of sound radiation modelling were considered, include the Boundary

Element Method (BEM) (Ali and Rajakumar, 2004; Atalla and Sgard, 2015) and Scaled

Boundary Finite Element Method (SBM) (Song, 2018; Liu et al., 2019a). Ultimately, the

method adopted here was that of Bestle et al. (2017). This method was selected for its rel-

ative simplicity and ease of implementation. While the method may have some limitations,

it was found to produce realistic sounds, and was deemed sufficient for demonstrating and

evaluating the hybrid radiation model of this chapter.

The method described by Bestle et al., herein termed the Surface Point Source Method

(SPS), is based on Huygen’s principle that a complex wavefront can be described as the

combined behaviour of a set of simpler wavefronts (Bestle et al., 2017). Employing this

principle, SPS calculates sound radiation by considering the surface motion of sound sources.

A surface is subdivided into a number of smaller component elements, each with an associated

position, tributary area and described motion over time. Each element is then treated as

a monopole source. The resulting radiated sound thus becomes the summed contributions

from each of these monopole sources.

In this work, the source object is an idiophone bar. The relevant sound radiating surface

will be the bar’s playing surface (upon which the mallet is struck). One constraint of this

approach is that the position at which radiated sound is modelled (the “listener position”

or “virtual microphone position”) must be such that a line drawn from this position to any

point on the playing surface will be unobstructed. In practical terms this simply means the

listener position must be facing the bar’s playing surface.

Using this method, radiated sound at a given listener position is calculated as:

p(t) =
∑
n

pn

(
t− rn

ca

)
, (5.4)

where p(t) is the sound pressure at the listener position at time t, pn(t) is the sound pressure

at the listener position contributed by surface element n, rn is the distance from the centroid

of surface element n to the listener position, and ca is the speed of sound in air. Note that

the operand t− rn
c

will generally not be an integer multiple of the sampling time step. Thus
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Figure 5.7: Definition of geometric parameters used in sound radiation modelling by the
Surface Point Source Method. Figure adapted from Bestle et al. (2017).

each time series pn(t) will need to be interpolated when evaluating Equation 5.4. Linear

interpolation was used in evaluating these time series in this work.

Contributions from the individual surface elements is calculated as:

pn(t) =
ρ0

4π

Sn

rn
˙̃vn(t) cos (Θn), (5.5)

where ρ0 is the density of air, Sn is the area of surface element n, ˙̃vn(t) is the first derivative of

surface normal velocity with respect to time and Θn is the angle between the surface normal

and vector from the element centroid to the listener position. Surface normal velocity, ṽn(t),

is calculated as:

ṽn(t) = v̄T
n (t)n̂n, (5.6)

where v̄n(t) is a column vector of velocities in three dimensions for surface element n at time

t, and n̂n is a unit vector normal to surface element n. These parameters, along with others

from Equations 5.4 and 5.5 are shown in Figure 5.7, which is adapted from Bestle et al.

(2017).

5.3.4 Mode Selection

An important factor in the hybrid radiation model is not just how many modes from the

finite element modal analysis are included in the Prony model, but which modes are included.

Some modes present in the modal analysis results will not radiate sound efficiently toward

the listener position. However, if the frequency of one of these modes is near that of a mode

that does radiate sound efficiently, both modes may appear in the hybrid model response
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(when only one should, in fact, appear).

This situation can be remedied by selecting only modes that radiate significant sound

toward the listener position. A method for selecting such modes is outlined below.

Normalized effective modal mass

A useful modal parameter commonly reported by finite element software is the effective

modal mass of each mode in a given direction (global axis). These parameters describe the

amount of mass that is active in a given mode in a given direction. The effective modal mass

is computed as:

meff,n,z =

(
φT

nMuz

)2

φT
nMφn

, (5.7)

where meff,n,z is the effective modal mass of mode n in the global z-direction, φn is the shape

of mode n, M is the global mass matrix, and uz is a vector wherein each entry corresponding

to a displacement degree-of-freedom in the global z-direction is set equal to one, while all

other entries are set to zero. In this work mode shapes were mass-normalized, and thus:

φT
nMφn = 1. (5.8)

Typically of greater interest than effective modal mass is the normalized effective modal

mass. This is the effective modal mass in a given direction, divided by the total effective

mass in that same direction. It is computed as:

m̂eff,n,z =
meff,n,z

mtotal,z

, (5.9)

where m̂eff,n,z is the normalized effective modal mass of mode n in the global z-direction, and

mtotal,z is the total unrestrained mass of the model in the z-direction. In practice, mtotal,z

will be very nearly equal to the total mass of the bar, subtracting only a very small amount

of mass that is tributary to finite element nodes with boundary conditions applied in the

z-direction.

The normalized effective modal mass is commonly used to assess whether a given set of

modes have sufficiently captured the total mass of a structure, active in a given direction.

For example, an engineering standard may specify that a response spectrum analysis, which

employs modal decomposition, must include sufficient modes to capture at least 90% of the

total mass of a structure in a given direction.

Of greater interest in this work, is employing normalized effective modal mass to eliminate

inconsequential modes. Any modes that do not contribute significant mass in the direction
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of the listener position should be discarded. Removing such modes helps to avoid any

interference they may cause in fitting parameters to modes that do contain significant active

mass in the relevant direction.

In the bar models of this work, the global z-axis is oriented perpendicular to each bar’s

playing surface. Thus bar motion in the z-direction is perpendicular to the surface that

radiates sound to the listener position, as described in Section 5.3.3. Normalized effective

modal mass in the z-direction is therefore the relevant measure for including or excluding a

given mode in the hybrid sound radiation model.

In this work, the following approach was employed in the selection of modes for the hybrid

sound radiation model:

1. Identify a frequency range of interest and calculate modes until their frequencies surpass

this range.

2. Calculate normalized effective modal mass in the z-direction for each mode. Eliminate

any modes with normalized effective mass less than 10-10 in the z-direction.

3. Select all remaining modes in the frequency range of interest for use in the hybrid

model.

Note that the threshold of 10-10 for normalized effective modal mass should be considered

a suggested starting point; this threshold has not been exhaustively explored. However, the

normalized effective modal masses of inconsequential modes in this work had magnitudes in

range of 10-26 or smaller (see Tables 5.7 and 5.11). Thus, establishing a threshold for modal

inclusion was hardly ambiguous. Figure 5.18 in Section 5.5.2 illustrates the effect of selecting

only modes with significant normalized effective modal mass.

This technique for selecting modes was largely successful, though certainly not perfect.

Exploration of other approaches to mode selection, perhaps based on some metric of sound

radiation strength, is an avenue for potential future research.

5.3.5 Numerical Time Integration Compensation

The numerical time integration method used in the time history analysis will affect the

spectral content and damping behaviour of the bar’s response in that model. The modes

predicted by the initial modal analysis will be present in the bar’s time history response,

but their modal frequencies will differ from those in the modal analysis results. Damping

behaviour of these modes in the time history model may also differ from that predicted by

the input damping model. To ensure accurate fitting of parameters for the Prony model,

modal frequencies and damping parameters must first be adjusted to account for the effects
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of numerical time integration. This section details how to adjust modal frequencies and

damping parameters for two common types of numerical time integration.

Two popular methods of numerical time integration commonly used for finite element

time history analyses are Newmark’s Method (Newmark, 1959) and the Hilber-Hughes-Taylor

Method (Hilber et al., 1977). Conveniently, the Hilber-Hughes-Taylor Method (HHT) reduces

to Newmark’s Method when certain values of input parameters are specified. This section

will outline numerical time integration compensation for HHT, noting that the same adjust-

ments will work with Newmark’s Method using appropriate parameter values. In principle,

other numerical time integration schemes would also work with the hybrid sound radiation

model, provided their effects on frequency and damping of each mode can be predicted for

compensation prior to fitting parameters of the Prony model.

Integration Method Parameters

Newmark’s method is controlled by two dimensionless input parameters, βw and γw (herein

given the subscript ‘w’ to distinguish from similar variables in this chapter). These parame-

ters control how much the acceleration at the end of a time step enters into the calculation

of velocity (influenced by γw) and displacement (influenced by βw) at the end of that same

time step. Higher values of either parameter produce greater influence of acceleration at the

end of the time step. Setting these parameters will determine the method’s stability and

imposed numerical errors (Newmark, 1959). A common approach when applying Newmark’s

method is to set βw = 0.25 and γw = 0.5. Using these specific parameters is termed the

average acceleration method or midpoint rule, which is unconditionally stable (Cook et al.,

2001). Other values of βw and γw may also be used, with differing effects on stability and

accuracy.

HHT expands on Newmark’s Method by adding another parameter, αh, and using it to

determine βw and γw. Specifically, for unconditional stability with HHT, these parameters

are set to:

βw =
1

4
(1− αh)2; γw =

1

2
(1− 2αh); αh ∈

[
−1

3
, 0

]
. (5.10)

With βw and γw determined by αh in Equation 5.10, HHT becomes a single parameter

method. A common choice, which is also the default option in Code Aster, is to set αh =

−0.1. It can also be observed from Equation 5.10 that setting αh = 0 will produce βw = 0.25

and γw = 0.5, in which case HHT reduces to the average acceleration method.

Numerical Damping and Frequency Compression

Hilber et al. (1977) provide discussion of stability, numerical damping and frequency effects
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for various cases with no input damping. For cases with input damping, such as those models

used in this work, an overview of HHT’s effects on frequencies and damping is provided by

Hilber (1976). Note that the literature tends to speak in terms of period elongation when

describing spectral changes imparted by time integration methods. Discussing period, rather

than frequency, is common in structural engineering where frequencies of interest are typically

less than 1 Hz. In this work it is more convenient to speak in terms of frequency. Thus,

what the literature terms period elongation, herein will be called frequency compression.

The relevant steps to predict frequency and damping behaviour in the time history model

are outlined below. For a more thorough discussion, refer to Hilber (1976), from whom the

following method is sourced.

The effects a numerical time integration scheme will have on frequencies and damping

behaviour can be assessed by analyzing an amplification matrix. This amplification matrix

can be used to recursively calculate displacement, velocity and acceleration of a dynamic

single degree-of-freedom system. For such a system undergoing free vibration (absent any

applied force), the amplification matrix can be applied as follows:

ui+1 = Amui, (5.11)

ui =


ui

u̇i∆T

üi∆T
2

 , (5.12)

where Am is the amplification matrix, ui, u̇i and üi are displacement, velocity and accelera-

tion at time step i, respectively, and ∆T is the time step (inverse of sampling frequency).

Looking at Equation 5.11 it is clear that the system’s behaviour is calculated via repeated

application of the amplification matrix, Am. Thus this matrix contains all relevant informa-

tion about how the system will respond over time. Of particular interest are the eigenvalues

of the amplification matrix.

For HHT with non-zero input damping, Hilber (1976) gives the following amplification

matrix:

Am =

1 + βwA31 1 + βwA32
1
2

+ βw(A33 − 1)

γwA31 1 + γwA32 1 + γw(A33 − 1)

A31 A32 A33

 , (5.13)
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A31 = −Ω2

D

A32 = − 1

D
[2ζΩ + (1 + αh)Ω2]

A33 = 1− 1

D

[
1 + 2ζΩ + (1 + αh)

Ω2

2

]
D = 1 + 2γwζΩ + (1 + αh)βwΩ2

Ω = 2πf∆T



(5.14)

where f and ζ are the frequency and damping ratio for the single-degree-of-freedom system

under consideration; other terms as previously defined or defined in Equation 5.14.

The eigenvalues of Am can be calculated using the following matrix invariants:

A1 = 1− 1

D

[
ζΩ + 1

2
Ω2
(
(1 + αh)(γw + 1

2
)− αhβw

)]
A2 = − 1

D

[
2ζΩ + Ω2

(
1
2
γw + 2αh(γw − βw)

)]
A3 =

1

D
αwΩ2

(
βw − γw + 1

2

)


(5.15)

where A1 is half the trace of Am, A2 is the sum of the principal minors of Am, and A3 is the

determinant of Am. Using these invariants, the eigenvalues of Am can be found by solving

the characteristic equation:

λ3 − 2A1λ
2 + A2λ− A3 = 0, (5.16)

where λ is an eigenvalue of Am. Hilber (1976) shows that within the range of αh values in

Equation 5.10, the eigenvalues of Am, which satisfy Equation 5.16, will occur as two principal

eigenvalues (appearing as complex conjugate pairs) and a third spurious eigenvalue. Let the

complex-valued principal eigenvalues take the form:

λ1,2 = A±Bj. (5.17)

The frequency and damping ratio with which the single-degree-of-freedom system will re-

spond in the time history model can then be calculated as:

f̄ =
Ω̄

2π∆T
, (5.18)
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ζ̄ =
− ln (A2 +B2)

2Ω̄
, (5.19)

Ω̄ = arctan

(
B

A

)
, (5.20)

where f̄ is the numerical frequency and ζ̄ is the total numerical damping. These are the

frequency and damping ratio with which a single-degree-of-freedom system, with natural

frequency f and input damping ζ, will respond in a time history model using HHT. Hilber

(1976) showed that this same procedure can be applied to a linear, time invariant multi-

degree-of-freedom system with numerous modes. For each mode in the system, with modal

frequency f and damping ratio ζ, Equations 5.15 through 5.20 can be applied to determine

that mode’s numerical frequency f̄ and total numerical damping ratio ζ̄.

Section 5.3.6 outlines the procedure for fitting modal parameters in the hybrid sound

radiation model developed in this chapter. One of the benefits of this hybrid radiation

model is that modal frequencies and damping ratios are known in advance, leaving only

amplitudes and phase angles to be determined by fitting. To ensure the hybrid radiation

model produces the same system response that would otherwise have been produced by

a complete time history simulation, the known frequencies and damping ratios used for

parameter fitting must be the numerical frequencies and total numerical damping ratios

calculated from Equations 5.18 and 5.19.

Figure 5.8 plots numerical frequency f̄ as a function of modal frequency f for a system

modelled via HHT with αh = −0.1, a sampling frequency of 48 kHz and a damping ratio of

ζ = 0.001 at all frequencies. Note that the input damping ratio need not be uniform for this

method to apply. The function shown in Figure 5.8, which takes a modal frequency as input

and returns the corresponding numerical frequency resulting from a given time integration

method, is herein called the frequency compression function. Also shown in Figure 5.8 is the

frequency compression function for Newmark’s Method with parameters corresponding to

the average acceleration method.

Figure 5.9 plots total numerical damping, ζ̄, as a function of frequency taking a Rayleigh

damping model as inputs. The specific damping model used as input is that for aluminum

with Rayleigh input parameters as shown in Table 5.2. It is clear from Figure 5.9 that

damping ratio is affected much more in higher frequencies. Note that the average acceleration

method is non-dissipative, in that it does not affect damping ratios.
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Figure 5.8: Example frequency compression functions showing the numerical frequencies
resulting from different time integration methods. The red line shows the effect of HHT on
frequency with αh = -0.1, while the blue line represents Newmark’s Method with βw = 0.25
and γw = 0.5. Both examples use an input damping ratio, ζ = 0.001 for all frequencies and
a sampling rate of 48 kHz.

5.3.6 Modal Parameter Fitting

One of the main efficiencies of this hybrid sound radiation model is in the fitting of modal

parameters. The first portion of the hybrid model is calculated using the sound radiation

methods of Section 5.3.3 with displacement results from the dynamic time history analysis

of Section 5.3.2. The second portion of the hybrid model is comprised of a sum of decaying

sinusoids, which is sometimes called a Prony model after the classic work by de Prony (1795).

Using notation convenient for describing parameters, this sum of decaying sinusoids can be

written as

pp(t) =
N∑

n=1

An exp(−2πfnζnt) cos(2πfnt+ ϕn), (5.21)

where pp(t) is the radiated sound pressure at time t, N is the number of vibration modes

considered, and {An, ζn, fn, ϕn} are the amplitude, damping ratio, frequency (in Hz) and

phase angle (in radians) of the nth mode, respectively. For convenience, Equation 5.21 uses

the damping ratio, ζn, which expresses damping in a given mode as a ratio of critical damping

at that frequency. This convention is adopted for easy compatibility with the damping models

in Section 5.3.2.
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Figure 5.9: Examples of total numerical damping ratios resulting from HHT numerical
time integration with different values of αh. The input damping ratios are those from a
Rayleigh model using input parameters for aluminum from Table 5.2. Results shown assume
a sampling rate of 48 kHz.

A primary benefit of using the Prony model of Equation 5.21 in this hybrid radiation

model, is that the modal frequencies, {fn}, and damping ratios, {ζn}, are already known.

Modal frequencies are determined by running a modal analysis on the same model (including

the same boundary conditions) that is used for the time domain modelling. Note that

these modal frequencies will need to be adjusted, as discussed in Section 5.3.8. Once the

adjusted modal frequencies are known, the damping ratio of each mode can be calculated

from Equation 5.3, or any other damping model used for the time history modelling.

Traditional Prony analysis, which fits the parameters of Equation 5.21 to an observed

time series (or similar measured data) for a given number of modes, N , is performed in two

parts. The first, more complicated part, fits frequency and damping parameters for each

of the modes. The second, simpler part, fits amplitudes and phase angles for each mode,

and is dependent on the frequency and damping parameters already determined. With both

frequency and damping parameters known in advance, the hybrid radiation model has the

advantage of requiring only the second stage of Prony analysis, skipping the first, more

complicated part.

The complete procedure of Prony analysis can be found in numerous texts, including

Marple (1987). The second step, once modal frequencies and decay parameters are known,
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proceeds as follows. For a prony model with N damped sine waves, Equation 5.21 can

rewritten in discrete time as:

x[k] =
N∑

n=1

hnz
k−1
n , (5.22)

hn = An exp (jϕn), (5.23)

zn = exp [(αn + j2πfn)∆T ], (5.24)

αn = −2πfnζn, (5.25)

where x[k] is the signal at discrete time index k, hn is the nth residue of the system - a

complex number containing both the amplitude An and phase angle ϕn of the nth mode, zn

is the nth pole of the system - a complex number containing the damping coefficient αn and

frequency fn of the nth mode, while ∆T is the time step between samples (inverse of the

sampling frequency) and j =
√
−1.

Equation 5.22 can be rewritten in matrix form as:

Zh = x, (5.26)

where:

Z =



1 1 . . . 1

z1
1 z1

2 . . . z1
N

z2
1 z2

2 . . . z2
N

...
...

...

zK−1
1 zK−1

2 . . . zK−1
N


,h =


h1

h2

...

hN

 ,x =


x[1]

x[2]
...

x[K]

 . (5.27)

Once the system’s poles are known, matrix Z can be populated. Then, this matrix can be

used along with the input signal vector x to solve Equation 5.26 for the vector of unknown

residues h. Traditional Prony analysis determines the system poles by finding the roots of a

characteristic equation. In this work, the poles are known in advance from a finite element

modal analysis and an input damping model, so matrix Z can be populated immediately.

Therefore the length, K, of signal x, from the finite element time domain model, need only

be large enough to provide suitable results for the residue vector h. Reducing the required

length of vector x, from the computationally expensive finite element time domain model,

is the major efficiency of this hybrid radiation model approach.

A few important practicalities of solving Equation 5.26 warrant mentioning here. First,

the poles of Equation 5.24 occur in complex conjugate pairs. So, for each modal frequency

selected from the finite element modal analysis results, two complex conjugate poles must be
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defined by inputting one with negative frequency. If desired, the amplitudes of these pairs

of complex conjugate poles may later be combined into a single pole with positive frequency.

A second practicality of solving Equation 5.26, is that frequencies taken from the finite

element modal analysis, and used to populate matrix Z, must be adjusted to account for any

effects of numerical time integration in the finite element time domain model. After fitting

the amplitudes and phase angles for each mode, frequencies for the entire hybrid model can

be readjusted to undo these effects. This procedure is explained in detail in Section 5.3.8.

For the moment, it will suffice to say that frequencies taken from the finite element modal

analysis must be adjusted before being used to define the poles in Equation 5.24. Any such

adjustments will be compensated later in the process.

A third important practicality is that the matrix Z will have dimension K × N , where

generally K > N . So the system described by Equation 5.26 will be overdetermined. This

system must therefore be solved using an appropriate approximate method, such as least

squares. In this work, the vector of residues was determined using the equation:

h = Z+x, (5.28)

where Z+ is the Moore-Penrose pseudoinverse of matrix Z. Note that calculating the pseu-

doinverse of a large matrix can produce significant computational demand. Should this

become problematic, more efficient methods of solving Equation 5.26 may be employed,

potentially taking advantage of the Vandermonde structure of matrix Z (see, for example,

Section 11.5 of Marple (1987)). In this work, with the signal lengths considered for fitting

modal amplitudes and phase angles, Equation 5.28 performed adequately.

Fitting Window

An important aspect of the modal parameter fitting described in this section is the input

signal used to fit the parameters. This input signal appears as vector x in Equations 5.26

and 5.27. Note that it is not the entire output of sound radiation calculated from the finite

element time history model that is used to fit parameters for the Prony model. Instead, a

specific portion of the time history results are used for modal fitting. This selected portion

of time history sound radiation output signal is that which occurs over a specified length of

time called a fitting window.

The fitting window is defined by two parameters: the fitting window start time, and the

fitting window duration (which could as easily be called length). Each of these parameters

are measured in modelled time. So, for example, a fitting window could be defined with a

start time of 8 milliseconds, and a duration of 10 milliseconds. In such a case, the portion of
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signal used to fit modal parameters would be the segment occurring between 8 milliseconds

and 18 milliseconds in simulation time.

In this chapter the fitting window start time and duration are given the variables bfw

and efw, respectively. Together, these parameters will determine the accuracy of the hybrid

sound radiation model, as well as its computational efficiency. Generally speaking, a later

start time and longer duration should lead to great accuracy. However, increasing either of

these variables will necessitate a longer finite element time history model, thereby increasing

computational demand.

Best performance of the hybrid model will occur with the earliest and shortest fitting win-

dow that can still produce suitably accurate results. Selection of fitting window parameters

is discussed in Section 5.4.

5.3.7 Signal Crossover

Once the initial time domain model has been run, and modal parameters for the Prony

model of Equation 5.21 have been determined, the time domain results and Prony model

are combined to create a single output signal. The beginning of this output signal will be

comprised solely of time domain model results. The end, or “tail”, of the output signal will

consist solely of the Prony model. In most cases, this tail will constitute the majority of the

output signal.

Connecting these two portions of the signal has potential to produce artifacts in the output

signal. Specifically, if a significant mode in the time history response is not included in the

Prony tail, the sudden removal of this mode could create artifacts in the hybrid radiation

model output. To avoid the potential of such artifacts, a smooth transition from the initial

time domain model results to the Prony tail will be employed. Between the two segments

there will be a transition zone where the two components are mixed at varying ratios. These

three zones are illustrated in Figure 5.1.

Transition Zone

The transition zone, where the time domain results and Prony tail mix, or “crossover”, must

occur over a time span in which the two component signals are defined. Parameters for the

Prony tail are determined over the length of the fitting window described in Section 5.3.6.

Thus, the Prony tail is undefined for any time t < bfw. So bfw represents the earliest time

at which signal crossover can begin.

The hybrid radiation model will be maximally efficient when the required length of the

finite element time domain simulation is minimized (as this simulation is by far the most
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computationally expensive component). To facilitate the parameter fitting described in

Section 5.3.6, the time domain model must extend to the end of the fitting window. So the

time domain simulation must extend to at least the end time of the fitting window, efw.

Thus, to avoid any unnecessary extension of the time domain model, the transition zone

should not extend beyond efw.

Ideally, the Prony model will contain a sufficient number of modes to capture all relevant

(perceptible) spectral content in the finite element time history model. However, the mod-

elling procedure should allow for the possibility that the time history results may include

some spectral content not present in the Prony tail. Any such content will be attenuated

over the transition zone as the output signal changes from purely time history results to

purely Prony model. Thus, to avoid the potential for artifacts in the hybrid model output,

it is best to provide a gradual transition between the two component signals, avoiding any

abrupt attenuation of excess spectral content.

The preceding paragraphs establish limits on the earliest time at which the transition zone

may begin, and the latest time at which it can end. A longer transition zone would lend

itself well to a smooth/gradual transition. Therefore, to achieve the smoothest transition

possible between the two component signals, the transition zone will be set to its maximum

allowable length. With bfw the earliest allowable transition start time, and efw the latest

allowable transition end time, the transition zone is thus set equal to the fitting window

described in Section 5.3.6.

Mixing Function

Content of the hybrid signal over the transition zone will be a mix of sound radiation cal-

culated from the finite element time history model results, and the Prony tail with fitted

modal parameters. The overall hybrid signal is thus calculated as:

ph(t) =


pt(t) t < btz

m(t)pt(t) + (1−m(t))pp(t) btz ≤ t ≤ etz

pp(t) t > etz

, (5.29)

where ph(t) is the hybrid sound radiation model output at time t, pt(t) is radiated sound at

time t calculated from the time history model, pp(t) is radiated sound at time t calculated

from the Prony model, m(t) is a mixing function at time t, btz is the time at which the signal

transition begins, and etz is the time at which the signal transition ends.

As described in the previous section, it is desirable to have a smooth transition between
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Figure 5.10: Mixing function m(t) from Equation 5.31 along with 1−m(t). The two lines
illustrate how pt(t) and pp(t) are scaled over the transition zone before being summed to
create ph(t).

the time history results and Prony results. Thus the transition time limits are set as:

btz = bfw; etz = efw. (5.30)

To further ensure a smooth transition between the two component signals, the mixing

function, m(t), in Equation 5.29 is defined such that it is continuously differentiable with

zero slope at each end of the transition zone. This is achieved using a half-wavelength of a

cosine wave:

m(t) =


1 t < btz

1
2

(
1 + cos

(
π (t−btz)

(etz−btz)

))
btz ≤ t ≤ etz

0 t > etz

. (5.31)

Figure 5.10 plots m(t) and 1−m(t) over the transition zone to demonstrate how pt(t) and

pp(t) are scaled over this time.

5.3.8 Reversing Numerical Time Integration Compensation

Section 5.3.5 discussed corrections required to use predicted modal frequencies and input

damping parameters to fit the Prony tail to output from the time history model. These

corrections were necessary as the time integration method used in the time history model
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will alter the frequencies and damping behaviour of each mode.

For completeness, the final step in the hybrid radiation model is to undo the adjustments

made in Section 5.3.5. Specifically, it is desirable to remove any numerical damping and/or

frequency deviations imparted by the time integration method. Of the time integration

methods considered in this work, the Hilber-Hughes-Taylor Method (HHT) will impose both

numerical damping and frequency changes, while Newmark’s Method will affect frequencies

only, leaving input damping unchanged.

Damping Adjustment

Using the hybrid model approach, reversing the effects of numerical damping is quite straight-

forward. At this stage in the analysis, for the nth mode in the Prony tail, the following

computational steps have been taken:

1. Modal frequency, fn, was predicted by a finite element modal analysis

2. Input damping ratio, ζn, was computed from the (Rayleigh) damping model for the

input modal frequency, fn (Section 5.3.2).

3. Numerical frequency, f̄n, and total numerical damping ratio, ζ̄n, were computed based

on the time integration method used for the time history model (Section 5.3.5).

4. Modal amplitude, An, and phase angle, ϕn, were fit to the time history results (Sec-

tion 5.3.6).

To reverse the effect of time integration on modal damping the Prony tail is simply con-

structed using input modal damping ratios, ζn, from Step 2, rather than the total numerical

damping ratios of Step 3. It is possible for the total numerical damping for a given mode to

be significantly larger than the corresponding input damping. In such a case, switching from

the total numerical damping ratio, back to the input damping ratio, may create significantly

more contribution from that mode in the hybrid model output. Care must then be taken

to avoid integration methods with excessive numerical damping. If numerical damping is so

large as to effectively remove a mode from the time history response, then switching back to

the input damping value may have an effect similar to amplifying noise.

This approach to reversing numerical damping effects does not remove such effects from

the time history excitation segment of the hybrid model response. However, given the short

duration of this segment, and given that the system is under excitation for much of it, the

effect of leaving numerical damping in the time history excitation was deemed negligible.
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Frequency Adjustment

In contrast to numerical damping effects, reversing frequency compression is not as simple as

changing a mode’s numerical frequency, f̄n, back to its original frequency, fn. As shown in

Figure 5.8, f̄n can differ significantly from fn. These differences become even larger at smaller

sampling rates. Rapidly switching modal frequencies over the crossover segment is expected

to have a non-negligible effect on timbre, particularly for modes where these frequencies differ

significantly. Instead, reversing frequency compression must be accomplished in a manner

that affects all segments of the hybrid model.

Reversing frequency compression is accomplished via the follow steps:

1. Create a hybrid model output signal, x̄h, using the parameters (An, ζn, f̄n, ϕn) for each

mode (note that numerical frequency, f̄n, remains).

2. Zero-pad the hybrid model signal from Step 1 as necessary to produce the desired

frequency resolution in the following steps. If necessary, low-pass filter this signal to

remove any artifacts created by zero-padding.

3. Compute a Fourier transform, X̄h, of the zero-padded hybrid model x̄h from Step 2.

4. Compute the corresponding vector of frequencies, f̄h, based on the sampling frequency

used in creating the hybrid model signal. Values in this vector correspond to the

numerical frequencies (f̄) affected by numerical time integration.

5. Compute a vector of original frequencies, f∗h , by taking numerical frequencies in f̄h,

and computing the inverse of the frequency compression function (Figure 5.8) for the

applicable time integration method. Note that frequencies in f∗h will be non-uniformly

spaced.

The frequency content X̄h, and frequency vector f∗h now represent a non-uniformly

sampled Fourier transform of the desired output signal.

6. Let fh be a vector of uniformly spaced frequencies corresponding to a Fourier transform

of the desired output signal, xh, with applicable sampling frequency. Compute the

frequency content, Xh, of the desired output signal by interpolating X̄h (sampled at

non-uniformly spaced frequencies f∗h), at the uniformly spaced frequencies fh.

7. Finally, compute the inverse Fourier transform of Xh to produce the hybrid model

output signal xh. Trim as necessary to remove padded zeros.
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The output signal xh produced in Step 7 will be the final output of the hybrid sound

radiation model. Its frequency content will correspond to the original input modal frequencies

absent the effects of numerical time integration. This applies to all three segments of the

model, not just the Prony tail.

In cases where finding an analytical inverse to the frequency compression function in Fig-

ure 5.8 would be difficult (i.e. HHT), Step 5 is performed numerically.

Any reasonable one-dimensional interpolation scheme may be selected for Step 6. In this

work, linear interpolation was employed along with significant zero-padding for fine frequency

resolution.

5.4 Model Parameter Selection

5.4.1 Fitting Window Parameters

The ability to set any required parameters of the hybrid radiation model in advance is an

important aspect of creating a versatile and readily applicable method. While things like

material properties and boundary conditions are important parameters of the bar model,

these parameters would also apply if employing other approaches to sound radiation (e.g.

boundary element methods). Some parameters, while not necessary for all possible methods,

do appear in some other methods. For example, modal models appear in many different

applications in musical acoustics and beyond. Therefore, selection of the number of modes

to include in the hybrid radiation model may be informed by experience with modal models

in general.

Most importantly, the parameters that apply uniquely to the hybrid radiation model are

those that define the fitting window described in Section 5.3.6. Specifically, they are the

fitting window start time, and fitting window duration. Setting these parameters will impact

the accuracy of the sound radiation simulation, and also determine the required length of

the time domain modelling. By inspection, it is evident that a later fitting window start

time and longer duration should result in increased accuracy. At the same time, the total

required simulation time for the finite element time history model will be the sum of these

two parameters. Beyond the end of the fitting window, the hybrid model is fully defined by

the Prony tail, and thus no further finite element results are required. So the sum of the

fitting window start time and duration will determine the necessary length of finite element

time domain modelling, which comprises the vast majority of required computational effort.

With these two parameters controlling both output accuracy and computational effort,

selecting suitable values for each in advance will be imperative in creating a useful method.
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Procedures for setting each parameter are outlined in the following sections. Parametric

tests of these parameters are described in Section 5.6.

Fitting Window Start Time

Two considerations will be key in selecting an appropriate start time for the fitting window.

They are:

� Has all nonlinear behaviour of the system dissipated?

� Have all sound waves produced by nonlinear behaviour passed the listener/microphone

position?

For the bar models considered in this work, the significant nonlinear effects stem from inter-

action between the mallet head and the bar during the mallet strike. An obvious minimum

criterion for the fitting window start time thus becomes the time at which the mallet ceases

to be in contact with the bar (herein called the “lift-off” time). After this time, there should

be no further nonlinear interaction in the system.

In addition to the lift-off time, this work also considered the maximum time required

for sound waves to propagate through the bar material. This can be viewed as the time

required for the “information” that the mallet has lifted off the bar to permeate the system.

In the models considered here, the time required for wave propagation is small compared to

the lift-off time, but is included nevertheless. The goal of this section is to find a suitably

accurate yet reasonably efficient combination of window start time and duration. This need

not necessarily be the absolute minimum suitable combination of the two.

Finally, after considering mallet lift-off and time required for waves to traverse the bar,

the necessary time for sound waves to propagate from the bar to the listener/microphone

position must be included.

The fitting window start time is thus calculated by the simple formula,

bfw = tlo + tpb + tpa, (5.32)

where bfw is the fitting window start time, tlo is the mallet lift-off time, tpb is wave propagation

time within the bar and tpa is wave propagation time from the bar to the microphone position.

The lift-off time, tlo can be determined from reports of the number of elements in contact in

the finite element time history model. After this number has peaked and begun to drop, the

lift-off time will be the point at which the number of elements in contact returns to zero. To

be thorough, this number can continue to be checked throughout the fitting window duration
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to confirm there were no secondary impacts from the bar rebounding and contacting the

mallet again (in which case the lift-off time can be extended accordingly).

The wave propagation time, tpb is taken as the time required for a shear wave to twice

travel the longest linear distance in the bar. In this work effects of the bar cutaway are

ignored and the longest linear distance is simply considered the bar’s diagonal length in

three-dimensions. For an isotropic material, shear waves will propagate with equal speed in

all directions. Thus, tpb can be calculated for a bar of isotropic material as:

tpb =
2
√
L2 +W 2 + T 2

csi
, (5.33)

csi =

√
G

ρ
, (5.34)

where {L,W, T} are the length, width and end thickness of the bar, respectively, csi is

the shear wave speed in an isotropic material, G is the shear modulus and ρ the material

density. For an orthotropic material there will be six different shear moduli, in pairs of two,

corresponding to each possible ordered combination of different principal material directions.

For an orthotropic material, Equations 5.33 and 5.34 are combined and rearranged to naively

approximate tpb as:

tpb ≈ 2

√
ρ

(
L2

GLT

+
W 2

GWT

+
T 2

ET

)
, (5.35)

where GLT and GWT are shear moduli between the subscripted directions and ET is the

elastic modulus in the thickness-direction, and {L,W, T} indicate the length, width and

thickness directions, respectively.

Sound propagation in air is taken simply as the longest distance from any corner of the

bar’s playing surface to the virtual microphone position, divided by the speed of sound in

air. Thus:

tpa =
1

ca

4
max
i=1
‖rc,i − r`‖2, (5.36)

where ca is the speed of sound in air, rc,i is the coordinate vector of the ith playing surface

corner of the bar, and r` is the coordinate vector of the microphone position.

Fitting Window Duration

The fitting window duration is selected based on a much simpler criterion. It is expected

that one full period of the lowest modal frequency in the tuned bar should provide a sufficient
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fitting window duration. Thus the fitting window duration is expressed as:

dfw =
1

f0

, (5.37)

where dfw is the fitting window duration and f0 is the fundamental frequency of the bar.

Required Simulation Time

The required time over which the mallet strike and subsequent bar response should be

simulated thus becomes the sum of the fitting window start time and duration:

dsim = bfw + dfw, (5.38)

where dsim is the required duration of the time history simulation, and other terms are

as defined above. Looking at Equation 5.38 it is clear that adding or subtracting time

from either the fitting window start time or duration will have equal impact on the overall

simulation time needed.

The following sections provide details of the example aluminum and rosewood bar models

used to evaluate the hybrid radiation model. Section 5.6 outlines parametric tests performed

on both the aluminum and rosewood example models to test performance of the fitting

window start time and duration criteria suggested above.

5.5 Example Models

Two example models were developed and tested to demonstrate the hybrid radiation model.

The models varied in their bar materials, geometry, tuning ratios, sampling frequencies and

fitting window parameters. Each model was tuned with boundary conditions as described

in Section 5.3.2. These same boundary conditions were applied in the time domain hybrid

sound radiation models. Tuning the bar with the same boundary conditions as the hybrid

radiation model serves to ensure the bar radiates with the same frequencies to which it was

tuned.

5.5.1 Aluminum Bar

Model description

The first example bar used to test the hybrid radiation model is an aluminum bar with

outer dimensions matching those of Prototype 2 described in Section 4.5. While the outer
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Table 5.3: Hybrid radiation aluminum bar example model dimensions.
Dimension Length Width End Thickness
Value (mm) 365 63.5 18

Table 5.4: Hybrid radiation aluminum bar example model modal tuning ratios.
Mode V1 V2 V3 T3
Tuning Ratio 1 4 6 18

bar dimensions (repeated in Table 5.3) match those of the prototype bar, the tuning of this

model differs. This example bar was tuned with the same boundary conditions used in the

mallet impact simulation, so as to produce expected modal frequencies in that simulation.

Table 5.4 outlines the tuning ratios used to shape the cutaway of the example bar. Hybrid

radiation model parameters used in this example are outlined in Table 5.5, while Table 5.6

gives the mallet strike and virtual microphone positions. The tuned bar geometry is plotted

in Figure 5.11.

To assess performance of the hybrid radiation model, the finite element dynamic time

history model of mallet impact and subsequent bar response was run for a simulation time

of two seconds. By comparison, only about 12 milliseconds of finite element simulation time

was required to produce the hybrid model, which was then used to generate two seconds

worth of radiated sound. Thus, for a radiated sound two seconds long, the hybrid radiation

model requires only 0.6% of the dynamic time history simulation time, which comprises the

vast majority of required computational effort.

Model results and discussion

Table 5.7 shows the modal frequencies and normalized effective modal mass for the first

20 modes of the aluminum bar model in Figure 5.11. Of the 20 modes calculated, nine

had significant effective modal mass in the z-direction and were selected for inclusion in the

hybrid radiation model. Interestingly, mode 12 in Table 5.7, corresponding to mode T3 of

the model, did not exhibit significant effective modal mass. Thus, despite being tuned by

the bar geometry shown in Figure 5.11, this mode does not contribute significantly to sound

Table 5.5: Hybrid radiation aluminum bar example model parameters.
Parameter Value
Fitting Window Start Time (ms) 7.73
Fitting Window Duration (ms) 3.82
Number of Modes Included 10
Sampling Frequency (kHz) 48
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Table 5.6: Hybrid radiation example model mallet impact and virtual microphone positions.
The same positions are used for both the aluminum and rosewood example modes. However,
the two example models have different bar dimensions (see Tables 5.3 and 5.8), thus the
relative positions of the mallet impact and virtual microphone differ between the models.

Parameter X [mm] Y [mm] Z [mm]
Mallet strike centroid 150 20 0
Virtual microphone position 185 40 -1500

Figure 5.11: Hybrid radiation aluminum bar example model meshed geometry. Red circles
represent support locations in the finite element model. Origin of the global coordinate
system is shown at the corner of the bar’s playing surface. The model is comprised of 5,760
8-node hexahedral elements.

radiation in this model.

Figure 5.12 shows the resulting sound radiation captured at the virtual microphone posi-

tion from the finite element time history and hybrid radiation models. To facilitate a fair

comparison, the hybrid radiation results in this plot are shown before applying the frequency

warping described in Section 5.3.8. This is necessary as the finite element time history results

do not contain any such warping.

Viewed in the time domain, the waveforms in Figure 5.12 are clearly indistinguishable.

Figure 5.12 was split into two panels to avoid having one waveform obscure the other when

plotted together. Note also that this same example hybrid radiation model is shown in

Figure 5.1, wherein the three distinct segments of the hybrid model are shown. Figure 5.1

gives a sense of just how much the required length of time history modelling can be reduced

by employing this hybrid modelling approach.
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a) Finite Element Dynamic 
Time History Model

b) Hybrid Sound Radiation 
Model

Figure 5.12: Waveforms of radiated sound at the virtual microphone position for the
aluminum bar example model. (a) Results produced using finite element dynamic time
history analysis throughout the simulation†. (b) Results from the hybrid sound radiation
model described in this chapter, before applying the damping and frequency corrections of
Section 5.3.8‡.
†http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_TH.wav
‡http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_HY_NoCorr.wav

Figure 5.13: Frequency content of radiated sound waves shown in Figure 5.12 for the
example aluminum bar time history and hybrid models. Hybrid sound radiation model
results are shown before applying the damping and frequency corrections of Section 5.3.8.

http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_TH.wav
http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_HY_NoCorr.wav
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Table 5.7: Aluminum bar example model, mode frequencies and normalized effective modal
mass in the z-direction. Values reported are from modal analysis in Code Aster.

Frequency Normalized Effective Include
Mode # [Hz] Modal Mass (z-axis) in model?

1 261.6 0.012686 X
2 1046.5 0.001878 X
3 1569.8 0.732680 X
4 1943.9 9.66e-26
5 2008.3 0.024274 X
6 2582.6 2.04e-27
7 2677.1 6.78e-10 X
8 2914.2 1.53e-28
9 3296.4 9.94e-27
10 4120.5 2.26e-26
11 4479.8 0.177019 X
12 4709.3 6.74e-27
13 4829.6 4.35e-29
14 5527.9 3.33e-28
15 5862.3 0.030865 X
16 6000.3 0.002999 X
17 8514.3 0.013583 X
18 8749.2 1.43e-28
19 9565.7 0.000262 X
20 10902.4 3.46e-30

Figure 5.13 shows the frequency content of the sound waves from Figure 5.12. Observable

differences between the two spectra are generally very minor. A small peak in the time

history results spectrum appears just over 500 Hz; this is curious as, per Table 5.7, the

model does not contain a mode near that frequency. The one noticeable difference between

the two spectra occurs around 3300 Hz. A spectral peak occurs near this frequency in the

time history results of Figure 5.13, while this peak does not appear in the hybrid model

results. Per Table 5.7 the corresponding mode at 3296 Hz has very low normalized effective

modal mass and was thus not included in the hybrid model. Interestingly, of the ten modes

excluded due to low modal mass, only this mode is visibly absent in Figure 5.13.

Figure 5.14 demonstrates the impact of reversing numerical time integration effects. The

blue curve in Figure 5.14 plots the hybrid model spectrum for the bar in Figure 5.11 before

reversing time integration effects (this is the same curve shown in Figure 5.13), while the

orange curve plots the same data after reversing these effects. Two predictable outcomes

are readily apparent in Figure 5.14, the first of which are frequency effects. Comparing

peaks between the orange and blue spectra in Figure 5.14, it is evident that peaks in the
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Figure 5.14: Frequency content of the aluminum hybrid radiation model, with† and without‡

reversing the effects of numerical time integration.
†http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_HY_Corr.wav
‡http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_HY_NoCorr.wav

orange spectrum are shifted slightly right compared to those in the blue spectrum. In other

words, the frequencies of these spectral peaks have increased. This effect is more noticeable

in higher frequencies, with obvious changes in peaks above 4 kHz and negligible effect on

the fundamental frequency near 250 Hz. Such results are as expected, given the frequency

compression functions in Figure 5.8, which show larger differences in numerical frequency

at higher modal frequencies. Notwithstanding amplitude differences due to damping cor-

rections, the orange spectrum in Figure 5.14 has a similar shape as the blue spectrum, but

stretching to the right as frequency increases. This verifies that the frequency adjustment

method described in Section 5.3.8 is functioning well.

The second notable changes in Figure 5.14 are the increased magnitudes of peaks in the

orange spectrum. These increases in spectral peak magnitudes at each modal frequency

are a direct result of the damping adjustments described in Section 5.3.8. As shown in

Figure 5.9, the HHT method used in this example model increases damping more at higher

frequencies. Reversing this effect reduces damping more for modes at higher frequencies,

leading to greater increases in their spectral peak magnitudes.

Importantly, there are also examples of peaks in the orange spectrum of Figure 5.14 that

http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_HY_Corr.wav
http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:AL_HY_NoCorr.wav
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Table 5.8: Hybrid radiation rosewood bar example model dimensions.
Dimension Length Width End Thickness
Value (mm) 406 58 24

Table 5.9: Hybrid radiation rosewood bar example model modal tuning ratios.
Mode V1 V2 V3 T1 T2
Tuning Ratio 1 3 4 7 10

do not appear to have a corresponding peak in the blue spectrum. Specifically, these are the

second, lower peak around 6 kHz and the two peaks above 8 kHz. Clearly adjusting these

modes’ damping factors to reverse the effects of numerical time integration has increased

their prominence in the spectrum. Cases such as these should be handled with caution, as

increasing the amplitude of a previously unnoticeable mode is similar in nature to amplifying

noise. In such a scenario, the analyst may compare output spectra from the hybrid model

before and after reversing time integration effects, and decide if any newly present modes

should, in fact, be removed.

5.5.2 Rosewood Bar

Model description

The second example bar used to test the hybrid radiation model is a rosewood bar with outer

dimensions matching an A3 bar measured on a Yamaha 5-octave marimba. While the outer

bar dimensions (repeated in Table 5.8) match those of the measured A3 bar, the tuning of

this model differs. This example bar was tuned with the same boundary conditions used in

the mallet impact simulation, so as to produce expected modal frequencies in that simulation.

The bar was tuned to note F3 rather than A3 and has tuning ratios outlined in Table 5.9.

Hybrid radiation model parameters used in this example are outlined in Table 5.10. Tuned

bar geometry is plotted in Figure 5.15.

To assess performance of the hybrid radiation model, the finite element dynamic time

history model of mallet impact and subsequent bar response was run for a simulation time

Table 5.10: Hybrid radiation rosewood bar example model parameters.
Parameter Value
Fitting Window Start Time (ms) 8.03
Fitting Window Duration (ms) 5.73
Number of Modes Used 12
Sampling Frequency (kHz) 48
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Figure 5.15: Hybrid radiation rosewood bar example model meshed geometry. Red circles
represent support locations in the finite element model. Origin of the global coordinate
system is shown at the corner of the bar’s playing surface. The model is comprised of 5,760
8-node hexahedral elements.

of one second. By comparison, only about 14 milliseconds of finite element simulation time

was required to produce the hybrid model, which was then used to generate a full second

worth of radiated sound. Thus, for a radiated sound one second long, the hybrid radiation

model requires only 1.4% of the dynamic time history simulation time, which comprises the

vast majority of required computational effort.

Model results and discussion

Table 5.11 shows the modal frequencies and normalized effective modal mass for the first

24 modes of the rosewood bar model in Figure 5.15. Of the 24 modes calculated, 12 had

significant effective modal mass in the z-direction and were selected for inclusion in the

hybrid radiation model.

Notably, modes 7 and 10 in Table 5.11, corresponding to modes T1 and T2 of the model, do

not exhibit significant effective modal mass. Thus, as was seen in the aluminum bar example,

once again these tuned torsional modes do not contribute significantly to sound radiation in

this model. This is almost certainly attributable to the rigid boundary conditions (shown

in Figure 5.15) applied to support the bar during the mallet strike. With rigid supports

positioned on the outer edges of the bar, it is not surprising that the torsional modes exhibit

little effective modal mass. On a real marimba, there is substantial play between the cable

supporting a bar and the hole through which it passes (see Figures 5.4 and 5.5). Thus actual
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boundary conditions would be much less restrictive to torsional motion. See Section 5.3.2

for further discussion of boundary conditions.

Figure 5.16 shows the resulting sound radiation captured at the virtual microphone position

in the finite element time history and hybrid radiation models. To facilitate a fair comparison,

the hybrid radiation results in the figure are shown before applying the frequency adjustment

described in Section 5.3.8. This is necessary as the finite element time history results do not

contain any such adjustment.

Figure 5.18 shows the possible effect of including superfluous modal frequencies in the

hybrid model. The blue curve in Figure 5.18 is the same spectrum shown for the hybrid model

in Figure 5.17, which uses only those 12 modes indicated in Table 5.11 for inclusion in the

model. The red curve in Figure 5.18 shows a hybrid model of the rosewood bar that includes

all 24 modes listed in Table 5.11. While the two curves overlap for the majority of frequencies,

clear differences are apparent near 1 kHz. Around this frequency, five spectral peaks are

visible in the red curve that do not appear in the blue curve. These peaks correspond to five

modes in Table 5.11 with negligible normalized effective modal mass. Looking at the time

history model spectrum in Figure 5.17 it is clear that these additional peaks do not appear

in results from the time history model, and thus do not belong in the hybrid model. While

only five of the twelve modes with low modal mass in Table 5.11 produce noticeable peaks

in the red spectrum of Figure 5.18, their inclusion is enough to create an audible change in

timbre. This example thus demonstrates the importance of selecting appropriate modes for

use in the hybrid model.

5.6 Fitting Window Parametric Tests

Parametric tests of fitting window start time and duration were performed to assess the suit-

ability of values suggested for these parameters in Section 5.4. Tests were performed for both

the aluminum example model in Section 5.5.1 and rosewood example from Section 5.5.2. To

focus on changing fitting window parameters, and eliminate other choices from considera-

tion, parametric tests were run using all modes shown in Tables 5.7 and 5.11, not just those

identified as significant. Results for the aluminum model are plotted in Figure 5.19, while

Figure 5.20 gives similar results for the rosewood model.

To assess the performance of different fitting window parameters, a quantitative measure

of output quality was required. Quality was measured by quantifying the similarity between

hybrid models produced using different fitting window parameters, and the signals produced

using time history analysis. Signal similarity, and thereby fit quality, was calculated using a
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a) Finite Element Dynamic 
Time History Model

b) Hybrid Sound Radiation 
Model

Figure 5.16: Waveforms of radiated sound at the virtual microphone position for the rose-
wood bar example model. (a) Results produced using finite element dynamic time history
analysis throughout the simulation†. (b) Results from the hybrid sound radiation model
described in this chapter, before applying the damping and frequency corrections of Sec-
tion 5.3.8‡.
†http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_TH.wav
‡http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_HY_NoCorr.wav

Figure 5.17: Frequency content of radiated sound waves shown in Figure 5.16 for the example
rosewood bar time history and hybrid models. Hybrid sound radiation model results are
shown before applying the damping and frequency corrections of Section 5.3.8.

http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_TH.wav
http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_HY_NoCorr.wav


5 – Hybrid Modelling of Idiophone Bar Sound Radiation 121

Table 5.11: Rosewood bar example model, mode frequencies and normalized effective modal
mass in the z-direction. Values reported are from modal analysis in Code Aster.

Frequency Normalized Effective Include
Mode # [Hz] Modal Mass (z-axis) in model?

1 174.7 0.002688 X
2 523.9 0.000126 X
3 873.0 0.969546 X
4 950.9 6.57E-28
5 1006.8 4.10E-28
6 1092.7 0.000262 X
7 1222.3 6.41E-29
8 1305.5 5.23E-30
9 1511.6 0.000382 X
10 1746.1 1.01E-30
11 2008.6 4.77E-30
12 2491.2 0.025398 X
13 2985.9 2.07E-30
14 3531.9 0.000003 X
15 3694.4 5.61E-31
16 3948.6 0.000109 X
17 4003.7 3.84E-30
18 4928.2 2.97E-31
19 5614.5 0.000075 X
20 5731.7 0.000664 X
21 5746.9 0.000135 X
22 6469.0 7.62E-08 X
23 6682.4 3.02E-33
24 7104.9 4.08E-33

dot product in the time domain:

Fit Quality =
xT

1 x2

‖x1‖2 ‖x2‖2

, (5.39)

where x1 and x2 are the two signals to be compared.

In producing Figures 5.19 and 5.20, signal comparison was limited to the Prony tail segment

of the hybrid model (the green segment in Figure 5.1) and corresponding portion of the

time history results. The time history excitation segment of the hybrid model (the blue

segment in Figure 5.1) is taken directly from the time history results. Thus, including this

initial portion would have unfairly increased the fit quality rating of all hybrid models. The

crossover segment (orange in Figure 5.1) is a mixture of time history and modal results; its

inclusion would also have increased the fit quality of all hybrid models, though to a lesser



5 – Hybrid Modelling of Idiophone Bar Sound Radiation 122

Figure 5.18: Frequency content of the rosewood hybrid radiation model, with† and without‡

removing non-participating modes. Results are shown before applying the damping and
frequency corrections of Section 5.3.8.
†http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_HY_NoCorr.wav
‡http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_HY_NPM.wav

extent than the initial segment. For these reasons, comparing only the third segment was

deemed the most representative approach.

5.6.1 Aluminum Test

Figure 5.19 plots the resulting fit quality for hybrid radiation models of the aluminum ex-

ample bar in Section 5.5.1, using different fitting window parameters. The yellow circle in

Figure 5.19 represents the combination of fitting window start time and duration predicted

by Equations 5.32 and 5.37, and shown in Table 5.5 for the aluminum model.

Looking at Figure 5.19 the large red area shows a plateau, where further increases in

fitting window duration or start time do not significantly increase the fit quality of the

Prony tail. By contrast, the blue area near the bottom of the plot indicates very poor

fit quality. Looking at this area it is evident that a fitting window duration below roughly

two milliseconds would be a very poor choice, regardless of the fitting window start time. The

yellow circle in Figure 5.19, which represents suggested fitting window parameters, occurs

within the red plateau, somewhat near its lower edge. This is an excellent result, as these

http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_HY_NoCorr.wav
http://www.music.mcgill.ca/caml/lib/exe/fetch.php?media=publications:RW_HY_NPM.wav
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Figure 5.19: Fit quality as a function of fitting window start time and duration for the
aluminum bar example model in Section 5.5.1. Colour map indicates the fit quality, defined
by Equation 5.39, between time history model results and hybrid radiation models with
various fitting window parameters. The yellow circle marks the expected suitable parameter
values shown in Table 5.5.

suggested fitting window parameters are intended to produce suitable fit quality while being

relatively efficient (i.e. keeping the total of fitting window start time plus duration low, to

reduce the time history model’s length).

The transition from the region of poor fit to the red plateau of Figure 5.19 varies from left

to right. To the left there is a more gradual slope between the two regions. Lines of equal

fit quality in this region are oriented at a −45◦ angle in the plot, corresponding to positions

with equal totals of fitting window start time plus fitting window duration. In this region

of the plot, the fitting window start time is too early, occurring before the suggested time.

Thus, increasing either start time or duration shows a similar improvement in this region.

On the lower right of Figure 5.19, beyond the suggested fitting window start time, the

transition from poor fit to good fit is more abrupt. The sudden transition is oriented nearly

parallel to the horizontal axis, indicating that further increases in fitting window start time

have little-to-no benefit in this region. Notably, this sudden transition that is parallel to the

horizontal axis begins near the suggested fitting window start time.

In terms of fitting window duration, the suggested value represented by the yellow circle

in Figure 5.19 is clearly within the quality plateau, as one would hope. There is some room

to reduce the fitting window duration while remaining in the plateau zone, which would
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Figure 5.20: Fit quality as a function of fitting window start time and duration for the
rosewood bar example model in Section 5.5.2. Colour map indicates the fit quality, defined by
Equation 5.39, between time history model results and hybrid radiation models with various
fitting window parameters. Range of the colour map is set equal to that of Figure 5.19. The
yellow circle marks the expected suitable parameter values shown in Table 5.10.

increase efficiency by reducing the required length of the time history model. However, there

is no guarantee that a shorter fitting window duration will always suffice, as is evident in

the rosewood example of Figure 5.20.

5.6.2 Rosewood Test

Figure 5.20 plots the parametric test results for fit quality of the rosewood example bar from

Section 5.5.2, using different fitting window parameters. The yellow circle in Figure 5.20

represents the combination of fitting window start time and duration predicted by Equations

5.32 and 5.37, and shown in Table 5.10 for the rosewood model.

Figure 5.20 again shows a large red plateau in fit quality, similar to that in Figure 5.19. In

contrast to Figure 5.19, however, the plateau in Figure 5.20 has an almost square shape. It

is very promising to see the recommended parameters, represented by the yellow circle, near

the lower-left corner of the squarish plateau. This implies both the suggested start time and

duration of the fitting window are performing very efficiently.

Similar to the aluminum example, once again the left side of the plot shows strips of

approximately equal fit quality oriented at a −45◦ angle. To the right of the suggested
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parameters, the transition from the blue region to the red region is not quite so abrupt as

was seen in the aluminum example. However, this transition is once again oriented parallel

to the horizontal axis, indicating that increasing the fitting window start time beyond the

suggest value adds little in the way of fit quality.

The suggested fitting window duration in Figure 5.20 is slightly above a relatively gradual

transition to an area of poor fit. In contrast to the aluminum results, where it appeared

that window duration could be reduced somewhat, Figure 5.20 shows little room for any

reduction in window duration without risking an accompanying loss of fit quality.

While by no means an exhaustive search, the parametric test results in Figures 5.19 and

5.20 both show suitable performance of the fitting window parameter values recommended

in Section 5.4.1 when applied to the example models of Section 5.5. This provides some

confidence in the recommendations of Section 5.4.1.



Chapter 6

Conclusion and Future Directions

This thesis set out to enable the design and evaluation of idiophone bars in a virtual envi-

ronment, reducing the need for physical bar prototypes. The methods and models developed

have achieved this goal. Using the finite element model definition of Chapter 3, the tuning

method developed in Chapter 4 enables the design of a bar cutaway to achieve a desired set

of tuning ratios for specified modes of vibration. The developed tuning approach solves the

problem of timbre pollution from torsional modes by allowing designers to concurrently tune

flexural and torsional modes.

The hybrid sound radiation model developed in Chapter 5 allows analysts and makers to

listen to their bar designs in a virtual manner. This model uses the same computational

framework as the tuning method in Chapter 4, facilitating evaluation of new bar designs.

Both the tuning method and hybrid sound radiation model rely solely on bar geometry and

material properties. Depending on the material selected, these properties can be taken from

published sources, or measured from stock material. Thus bar designs can be devised and

evaluated in a virtual manner, before producing physical prototypes. If sufficient material

property information is available in published sources, new materials could feasibly be tested

before even purchasing material samples.

The developed hybrid model combines finite element dynamic time history modelling with

modal models, leveraging the benefits of each. The time history model enables simulation of

complex physical interactions during excitation of the instrument. The modal model provides

computationally efficient calculation of instrument response after the complex behaviour has

subsided. The hybrid model formulation combines these components in a manner that

minimizes the extent of the computationally expensive time history model.

126
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6.1 Contributions

The research undertaken in this thesis has:

1. Confirmed makers’ anecdotal reports of torsional modes polluting bar timbre through

experimental measurements of marimba bars (Appendix A).

2. Explored the range of bars susceptible to torsional mode problems via simulations

(Section 4.3.1).

3. Established a versatile model for defining three-dimensional bar cutaway geometry

(Section 3.2.2).

4. Developed methods of automatically identifying mode shapes to enable unsupervised

bar tuning algorithms (Section 4.2.3).

5. Produced a method of solving the underdetermined system of nonlinear equations

defining the bar tuning problem, in a manner that incorporates analyst input via

initial geometry selection (Section 4.2.2).

6. Demonstrated the concurrent tuning of flexural and torsional modes using three-

dimensional cutaway geometries (Sections 4.3.2 and 4.3.3).

7. Designed, fabricated and tested a prototype bar to validate the developed modelling

and tuning methods (Section 4.5).

8. Developed a hybrid model of sound radiation from idiophones within the same com-

putational framework established for bar tuning (Chapter 5).

9. Investigated parameters controlling the hybrid model (Section 5.6) and suggested val-

ues for modelling idiophone bars (Section 5.4).

10. Demonstrated the hybrid radiation model through examples of aluminum and rosewood

bars (Section 5.5).

Items 6 and 7 are particularly notable, as they represent the first example of three-

dimensional bar cutaway design in the literature on musical acoustics. Item 8 is noteworthy

in its application of finite element dynamic time history modelling - a method often dismissed

as computationally prohibitive in musical acoustics.
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6.2 Future Directions

The computational design and evaluation framework developed for idiophones in this work

provides a variety of potential avenues for further exploration. Some interesting possible

routes for inquiry include:

� Three-dimensional cutaway fabrication for wooden bars. High quality marimba

bars are invariably manufactured from rosewood. While examples of fabricated alu-

minum bars may be found in this work, and the musical acoustics literature (Laukkanen

and Worland, 2011; Kirkland and Moradi, 2016; Bestle, 2017; Soares et al., 2021b), ex-

amples of fabricated wooden bars have thus far been less common, and moderately

successful (Mingming, 2011). Fabricating sophisticated bar cutaway designs from a

natural material like wood is an interesting and challenging area of potential future

research.

� Exploration of preferable damping behaviour and new material design.

Marimba bars made from synthetic materials are currently available on the market

(e.g. Musser’s Kelon, or Yamaha’s Acoustalon). These instruments offer some ad-

vantages, such as being less affected by changes in humidity. However, the damping

properties of these synthetics produce a sound distinctly different from rosewood. The

methods developed in this thesis offer the opportunity to evaluate new potential mate-

rials for bar manufacture. One could even use listening tests to find desirable material

properties for idiophone bars and then attempt to design a material with the desired

properties.

� Addition of a resonator to the radiation model. As shown by Rucz et al. (2021),

the addition of a resonator to the hybrid sound radiation model would enable listening

to virtual bar designs in an arrangement more reflective of actual playing conditions.

Incorporating resonators in a manner that avoids meshing their full volume would do

much to aid computational efficiency.

� Alternative approaches to mode selection. While mode selection using normal-

ized effective modal mass (see Section 5.3.4) was largely successful, it is by no means

perfect. Exploring alternative methods of mode selection could result in a more univer-

sally reliable approach. Consideration of sound radiation strength, or spectral content

of the initial finite element time domain model results, may help inform such methods.

� Realistic boundary conditions for marimba and vibraphone models. As dis-

cussed in Section 5.3.2, the support conditions for a marimba bar positioned on an
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instrument are challenging to define in a finite element model. The support cables

passing through a bar offer varying degrees of resistance depending on the distance

and direction of travel. Further investigation of boundary conditions could enable

sound radiation from bars designed with free-free boundary conditions to be modelled

without altering their modal behaviour. Defining nonlinear nodal spring supports in

the finite element model is one potential approach. Experimental measurements of bar

displacements on an existing instrument, using varying levels of applied force, could

facilitate defining these nonlinear spring supports.
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G. Farin. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design, 3(2):

83–127, 1986.

D. Givoli. High-order local non-reflecting boundary conditions: a review. Wave Motion, 39

(4):319–326, 2004.

D. Givoli. Computational Absorbing Boundaries. In S. Marburg and B. Nolte, editors,

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element

Methods, pages 145–166. Springer, Berlin, DE, 2008.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Publishing Company, Reading, MA, 1989.

M. N. Guddati and K.-W. Lim. Continued fraction absorbing boundary conditions for convex

polygonal domains. International Journal for Numerical Methods in Engineering, 66(6):

949–977, 2006.

W. Hare, J. Nutini, and S. Tesfamariam. A survey of non-gradient optimization methods in

structural engineering. Advances in Engineering Software, 59:19–28, 2013.

L. Henrique and J. Antunes. Optimal design and physical modelling of mallet percussion

instruments. Acta Acustica united with Acustica, 89(6):948–963, 2003.



References 135

L. Henrique, J. Antunes, and J. de Carvalho. Design of musical instruments using global opti-

mization techniques. In Proceedings of the International Symposium on Musical Acoustics,

pages 545–548, Perugia, IT, 2001.

H. M. Hilber. Analysis and Design of Numerical Integration Methods in Structural Dynamics.

PhD Thesis, University of California at Berkeley, Berkeley, CA, 1976.

H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time

integration algorithms in structural dynamics. Earthquake Engineering & Structural Dy-

namics, 5(3):283–292, 1977.

D. Holz. Acoustically important properties of xylophone-bar materials: Can tropical woods

be replaced by European species? Acta Acustica united with Acustica, 82(6):878–884,

1996.

A. Hrennikoff. Plane Stress and Bending of Plates by Method of Articulated Framework.

PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1940.

M. Israeli and S. A. Orszag. Approximation of radiation boundary conditions. Journal of

Computational Physics, 41(1):115–135, 1981.

B. Kaltenbacher, M. Kaltenbacher, and I. Sim. A modified and stable version of a perfectly

matched layer technique for the 3-d second order wave equation in time domain with an

application to aeroacoustics. Journal of Computational Physics, 235:407–422, 2013.

C. Kanzow, N. Yamashita, and M. Fukushima. Levenberg-Marquardt methods with strong

local convergence properties for solving nonlinear equations with convex constraints. Jour-

nal of Computational and Applied Mathematics, 172(2):375–397, 2004.

R. Kicinger, T. Arciszewski, and K. D. Jong. Evolutionary computation and structural

design: A survey of the state-of-the-art. Computers & Structures, 83(23-24):1943–1978,

2005.

S. Kimmich, R. Reitinger, and E. Ramm. Integration of different numerical techniques in

shape optimization. Structural Optimization, 4(3-4):149–155, 1992.

W. B. Kirkland. Topographical Optimization of Structures for use in Musical Instruments

and Other Applications. Master’s thesis, The University of Alabama at Birmingham,

Birmingham, AL, 2014.



References 136

W. B. Kirkland and L. Moradi. Topographical optimization of structures for use in vi-

braphones and other applications. In Proceedings of the Society for Design and Process

Science 21st International Conference, pages 69–77, Orlando, FL, 2016.
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Appendix A

Bar Measurements

This appendix outlines experimental modal analyses performed on numerous bars over the

course of this work. It is subdivided into two main components: early measurements per-

formed on marimba bars, and later measurements performed on aluminum bars, along with

reanalysis of marimba bar data.

A.1 Marimba Bar Measurements

This section expands on measurement results reported by Beaton and Scavone (2019a). It

contains further results that were presented in a poster at the International Symposium on

Musical Acoustics (ISMA) 2019, but did not appear in the corresponding conference paper

(Beaton and Scavone, 2019a).

A.1.1 Motivation

Near the outset of this work experimental modal analysis was performed on a selection of

marimba bars from different instruments. These measurements assessed how modal tuning

ratios varied between different instruments and different manufacturers. Of primary interest

were the questions:

1. How accurately do manufacturer’s achieve the typical 1:4:10 tuning ratio in their

marimba bars?

2. How do bar tuning ratios vary between different instruments and different manufac-

turers?

3. How do the frequency ratios of untuned modes compare with those of tuned modes?
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4. Do the frequency ratios of modes V3 and T2 come close to each other, as reported

anecdotally by makers and expected by preliminary simulations?

Question 4 was of particular interest in these measurements. Early simulation results (see

Figure 4.4) over the lower two octaves of a marimba indicated that modes V3 and T2 could

have similar frequencies from roughly note E3 through note B3. These results matched

comments made by makers complaining of timbral problems likely caused by torsional modes.

These bar measurements were thus intended to confirm whether untuned mode T2 could have

similar frequency to tuned mode V3 within this range of notes.

A.1.2 Scope

To facilitate a fair comparison between different instruments and makers, all bars measured

were of the same musical note. The note F]3 was selected as it lies within the range E3

to B3. Coincidentally, this note represents a position at which bar widths were observed to

change on numerous instruments (with note F3 and below having larger bar width than note

F]3 and above). From a practical perspective, F]3 was also the most readily accessible bar

in the range E3 to B3, as accidentals are more easily removed from a marimba.

Measurements were performed on as many bars of the note F]3 as could be accessed at

the time. Ultimately, 15 bars were measured, of which two were synthetic and the remainder

made of rosewood. Six manufacturers were represented in the measurement sample. Two

bars had been retuned at some point after their manufacture; a third bar appears to have

been retuned, but this is not known with certainty.

A.1.3 Method

Measurements

Figure A.1 shows the measurement setup used to perform experimental modal analysis.

Bars were supported on small foam blocks positioned below the holes where cables would

support the bars on an instrument (these holes are typically located at the nodes of the bar’s

fundamental mode). The Polytec laser Doppler vibrometer (LDV) was positioned below the

bar, with its laser aimed upward, hitting the bar’s bottom surface near a corner.

With the LDV aimed at the bar’s bottom surface, the Brüel & Kjær (B&K) impact hammer

was positioned to strike the bar on its playing surface. From there, the impact hammer was

used to excite the bar over a grid of strike locations with the LDV recording the bar’s

response to each strike. A minimum of four measurements were recorded for averaging at

each strike position.
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Data processing

Measured data from the impact hammer and LDV was fed into a MATLAB script for pro-

cessing. Modal frequencies were determined using the Complex Mode Indication Function

(CMIF) (Shih et al., 1988; Avitabile, 2018). Results using this method are shown in the

following section for all measured marimba bars.

A.1.4 Results

Figure A.2 displays measured frequency ratio results for the 15 bars considered, along with

geometric data and images of each bar. This figure was taken from the poster presented

at ISMA 2019 Beaton and Scavone (2019a). Bar images are shown approximately to scale,

providing visual indication of the variability in bar geometry. Mode shape images were

produced by MATLAB, and show only vertical displacements.

A.1.5 Discussion

Immediately noticeable in Figure A.2 is the variability in bar size. Bar lengths ranged from

373 mm up to 456 mm. Bar widths, by contrast, were quite consistent. All bars were between

56 and 58 mm wide, save for two exceptions around 50 mm. End thicknesses were similarly

consistent, with all rosewood bars between 22 and 25 mm thick at their ends.

Looking at the frequency ratios, mode V2 is consistently the standard ratio of 4 times the

fundamental, with hardly any deviation observed in any bar. More variability is apparent

in the tuning of mode V3, with some bars noticeably off the typical target of 10. The two

largest deviations, however, belong to bar 8, a synthetic bar, and bar 9, which is by far the

oldest bar, being estimated as 60 years old or more.

Of the untuned modes, mode T1 seems to hover around a ratio of 2 for all of the bars, with

relatively small variability compared to the other untuned modes. Mode L1 shows a much

wider range of observed frequency ratios, ranging from less than 5 to more than 7, though

the two highest values occur in the synthetic bars. Most importantly, the frequency ratio of

mode T2 was indeed observed to be close to that of mode V3. In some cases, such as bars

1, 2, 5 and 10, the two modes had very similar ratios. In the extreme case, the two modes

had frequencies so similar in were so close in bar 15 that CMIF identified them as a single

degenerate mode.

Thus the answer to Question 4 is a resounding “yes”: the frequency ratios of modes T2

and V3 can certainly come close to each other for these bars of note F]3. Similar behaviour

can be expected from bars positioned nearby on the keyboard.
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Figure A.1: Measurement setup for experimental modal analysis of marimba bars. Compo-
nents: 1) Polytec PDV-100 Laser Doppler Vibrometer, 2) Brüel & Kjær Type 8203 Impact
Hammer, 3) test bar, 4) foam supports, 5) pendulum, 6) National Instruments USB-4431
Signal Acquisition Board, 7) laptop with MATLAB digital acquisition platform. Figure
taken from the poster presented at ISMA 2019.
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Figure A.2: Measurement results for the 15 measured marimba bars. Bar images are shown
approximately to scale. Figure taken from the poster presented at ISMA 2019.
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A.2 Additional Bar Measurements and Reanalysis

This section covers bar measurements made in this work, unrelated to those reported by

Beaton and Scavone (2019a). It also discusses further analysis of measurement data from

Section A.1, performed after ISMA 2019.

A.2.1 Motivation

Additional bar measurements were motivated by the following:

1. To measure material properties of the aluminum stock material to be used for bar

fabrication (see Section 4.5), rather than relying on standard published values.

2. To assess the performance of fabricated bar prototypes.

3. To provide damping parameters inputs for the hybrid radiation model in Chapter 5.

The decision was made to determine damping parameters from bar measurements after a

literature search yielded no suitable results.

A.2.2 Scope

Aluminum stock material used for bar fabrication was purchased in four pieces. These pieces

were originally a single, long bar before being cut by the supplier. As all four stock bars were

cut from the same original piece, and since aluminum is a relatively consistent manufactured

material, measurements were performed on just one of the four stock bars.

Both prototype bars described in Section 4.5 were measured to assess their performance.

Data from all of the rosewood bar measurements from Section A.1 was reanalyzed to

determine damping parameters.

A.2.3 Method

Measurements were performed in the same manner described in Section A.1.3. For the stock

aluminum bar, a finite element model estimated the location of nodes of the fundamental

mode. Foam support blocks were placed under these locations for the measurements.

Measurements of stock bar mass and dimensions were taken and used to estimate material

density. Elastic properties of the aluminum stock bar were determined by converging the

finite element model of the stock bar, using the estimated density, and adjusting the input

elastic modulus until the predicted fundamental frequency matched that from measurements.
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Table A.1: Material properties of aluminum used for bar fabrication compared with published
standard values. Density, ρ, was measured for the stock material, as was Young’s modulus,
E. Poisson’s ratio, ν, is taken as the standard published value for both cases. Shear modulus,
G, is calculated from E and ν for isotropic materials. Standard aluminum properties are
those of the 6061 alloy (Battelle Memorial Institute, 2020).

Property ρ [kg/m3] E [GPa] ν G [GPa]
Measured Value 2693 69.39 0.33 26.09
Standard - 6061 Alloy 2700 68.90 0.33 25.90

Poisson’s ratio was set to the standard published value (Battelle Memorial Institute, 2020)

in this procedure.

To determine damping properties for both the aluminum stock bar and previous marimba

bar measurements, data was (re)analyzed using the Least Squares Complex Exponential

(LSCE) method (Brown et al., 1979; Avitabile, 2018). This method represents frequency

response functions as the sum of decaying sinusoids (a Prony model), and thus provides

damping terms for individual modes.

The damping terms and associated modal frequencies calculated by the LSCE method

were used as data describing damping as a function of frequency for each material. Damping

models used in Chapter 5 were determined by fitting Rayleigh damping models to each

material data set in a least squares manner.

A.2.4 Results

Aluminum material properties for the measured stock material are shown in Table A.1.

Density and elastic modulus are based on bar measurements. Poisson’s ratio is taken as

the standard published value, while shear modulus is calculated from the measured elastic

modulus and published Poisson’s ratio.

Modal frequencies for fabricated bar Prototype 2 are provided in Table 4.7, along with

their expected values from the converged finite element model.

Figure A.3 shows measured damping ratios and associated modal frequencies, along with

the best-fit Rayleigh damping model for rosewood. Similar data is shown in Figure A.4 for

aluminum. Corresponding Rayleigh damping parameters for aluminum and rosewood are

shown in Table 5.2.
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Figure A.3: Measured modal frequencies and damping ratios for the rosewood F]3 marimba
bars from Figure A.2. The fitted curve shown is that of a Rayleigh damping model with
parameters given in Table 5.2.
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Figure A.4: Modal frequencies and damping ratios measured for the aluminum stock bar.
The fitted curve shown is that of a Rayleigh damping model with parameters given in
Table 5.2.
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A.2.5 Discussion

Looking at Table A.1 the measured values of density, ρ, and elastic modulus, E, are quite

close to the published standard values for the 6061 alloy. This is as expected for a manufac-

tured material like aluminum, and provides confidence in the measured values.

A few interesting observations can be made from Figure A.3. Notably, damping ratios for

modes V1, V2 and V3 are generally consistent. Mode V1 values are clustered around 186

Hz, while mode V2 data points are clustered, rather tightly, around 744 Hz. Mode V3 data

forms a group around 1840 Hz, with considerably more spread in frequency values (as is

expected based on Figure A.2). The fitted Rayleigh damping model shows generally good

agreement with these mode types and most data in Figure A.3. The sole exception is the

group of data around 300 to 500 Hz, which represent mode T1. Damping ratios for these

modes lie noticeably above the Rayleigh curve. Whether this was caused by some aspect of

the measurements (perhaps the foam blocks supporting the bar), or is simply an aspect of

damping not adequately captured by a Rayleigh model, is difficult to say.

Looking at Figure A.4 the fitted Rayleigh damping model shows generally good agreement

with measured damping ratios for the aluminum stock bar. The sole exception to this may

be the data point around 5400 Hz with a damping ratio around 0.0008. This point represents

mode T3 of the stock bar. Noting the different vertical axis scales in Figures A.3 and A.4, the

aluminum damping ratios are observed to be an order of magnitude smaller than those for

rosewood. This is evident in Figure 5.6 where the two damping models are plotted together.

Given how long a struck aluminum bar’s sound can sustain, compared to that of a rosewood

bar, the much lower damping of aluminum conforms to expectations.
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