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ABSTRACT

This paper investigates the nonlinear characteristics of the
mouthpiece-reed system of a clarinet using the lattice Boltz-
mann method (LBM) in a two dimensional domain. The mouth-
piece has been investigated for cases of both a fixed reed and
a moving reed, with the outlet of the mouthpiece being re-
placed by an absorbing boundary to thwart possible acoustic
oscillations. The influence of the geometry of reed channel has
been investigated. Numerical results are compared to the quasi-
stationary model based on a simplified memoryless reed and the
Bernoulli flow.

1. INTRODUCTION

A clarinet can be roughly divided into a non-linear active com-
ponent (the mouthpiece-reed system) and a linear passive com-
ponent (the instrument’s resonant bore). The sound production
of a clarinet depends on flow-induced vibrations, with the reed
modulating the air flow entering into the instrument by opening
and closing a narrow channel defined between the reed tip and
the lay of the mouthpiece.

Previous studies on the resonator components have pro-
duced many useful discoveries and satisfactory models. On
the other hand, studies on the non-linear mouthpiece-reed sys-
tem have been relatively less reported. The characteristic of
the mouthpiece-reed system is defined as the non-linear rela-
tionship of the volume flow and the pressure difference across
the reed channel. Since the pioneering work of Backus [1], the
non-linear function of single-reed woodwind instruments has
been investigated experimentally and theoretically by a number
of authors ([2], [3], [4], [5], [6], [7], [8], [9], [10]).

Besides traditional experimental and theoretical ap-
proaches, computational simulations have become popular in
the field of musical acoustics thanks to the development of new
numerical algorithms and inexpensive computers. Numerical
simulations have advantages related to precise parametric con-
trol, as well as in certain situations where experimental mea-
surements and theoretical modeling are either very difficult or
impossible.

The present paper provides a numerical investigation of the
nonlinear element and the physical phenomena involved using
a relatively new computational fluid dynamic (CFD) tool called
the lattice Boltzmann method (LBM). Compared to other tra-
ditional CFD techniques, the main advantage of LBM is rep-

resented by its simplicity in simulating the interactions of the
moving reed, the air flow and the acoustic field directly and
simultaneously. Also, LBM is well suited for parallel computa-
tion, which is advantageous for problems involving complicated
geometries and long simulation times.

To obtain the complete characteristics of the reed, the vol-
ume flow must be measured in a quasi-static condition, i.e., the
air flow is free to pass through the reed channel and the trans-
fer of momentum between the fluid and the reed is neglected.
For a fixed reed, it is easy to obtain a quasi-static condition in
the simulations. But for the case of a freely moving reed, a
tiny initial disturbance of the reed might be reinforced by the
acoustic feedback from the mouthpiece chamber as well as the
resonator. Dalmont used an orifice as a non-linear acoustic ab-
sorber to thwart possible acoustic oscillations in the experimen-
tal measurement [9]. In this study, the open end of the resonator
is replaced by an absorbing boundary condition (ABC) that is
used as a pressure-reducing element and a nonlinear absorber
that suppresses possible standing waves in the mouthpiece. On
the other hand, the inside boundaries of the mouth cavity are
also equipped with an ABC prescribed with non-zero pressure
and velocity, functioning as both the flow source and an acous-
tical absorber.

The objectives of this paper are to obtain the complete non-
linear characteristic curve including both the increasing and de-
creasing stage of mouth pressure to compare the flow behavior
for cases corresponding to both fixed reed and moving reed and
to verify the validity of the quasi-stationary model.

2. PREVIOUS WORK

The first result of experimentally measured characteristics of a
single-reed instrument under steady flow conditions was given
by Backus [1]. He fit his experimental results by a non-linear
expression relating the volume flow U and the pressure differ-
ence ∆p and the opening h, given as U = 37∆p2/3h4/3. How-
ever, Backus’ empirical formula has not been verified by other
researchers.

Assuming no pressure recovery from the reed channel to
the air column input, most flow models describe the relationship
between the volume flow and the pressure difference across the
reed channel by means of the stationary Bernoulli equation ([2],
[4], [3]), given as:
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U = Sj

√
2∆p

ρ
, (1)

where ρ is the density of the air, Sj = wh is the effective cross
section of the jet, w is the effective width of the reed channel
and h is the reed opening.

Then assuming the reed opening is linearly related to the
pressure difference by its stiffness, the volume flow U can be
described by the elementary model:

U =

{
wh
(

1 − ∆p
PM

)√
2∆p
ρ
, if ∆p ≤ PM

0, if ∆p > PM
(2)

where PM is the closing pressure of the reed channel. Since the
Bernoulli equation is only valid for inviscid flow, the elemen-
tary model only holds for the case of relatively high Reynolds
number (Re = U/wν), where w is the width of the reed used
as the characteristic length, and ν is the kinematic viscosity of
the fluid.

Hirschberg et al. [11] proposed a more complex flow model
using numerical simulations which takes the effect of flow sep-
aration and friction into account. This model is improved and
verified based on experimental results by Van Zon et al. ([12]).
Depending on the geometry of the flow channel, which is char-
acterized by L/h, where L and h are the length and the height
of the flow channel respectively, there are two types of flows.

For short channels (L/h ≤ 1), the flow is estimated by a
contracted uniform flow

U = αwh

√
2∆p

ρ
sgn(∆p), (3)

where α is the dimensionless contraction parameter, typically
found in the range of [0.5, 0.611] in Van Zon’s measurement.

For long channels (l/h ≥ 4), the flow is given by

U = Ω
[
1 −

√
1 − h4(24c−1)∆p

72ρν2(L−lr)2(1−δ∗)2

]
Ω = 12ν w(L−lr)(1−δ∗)2

h(24c−1)

(4)

where ρ is the undisturbed density of the fluid, δ∗ = 0.2688 is
a generalization of the boundary layer thickness for an arbitrary
h, and c = 0.0159.

Dalmont et al. [9] measured the flow behavior using an arti-
ficial mouth-lip system and a real clarinet mouthpiece and found
a flow behavior similar to that described by the quasi-stationary
flow model. Interestingly, Almeida et al. [10] measured double-
reed woodwind instruments and found that the normalized pres-
sure flow characteristics of a bassoon and an oboe are similar
to that of a clarinet and can be well described by the quasi-
stationary model.

Da Silva [13] simulated the flow into a clarinet mouthpiece
of different geometries using the lattice Boltzmann method for
cases of both static and free oscillating reed. Da Silva’s results
agree well with Van Zon’s model for both short and long reed
channels in terms of vena contracta factor as a function of re-
duced Reynolds number as well as the volume flow as a func-
tion of pressure difference. However, the characteristic given in
[13] is not complete because only a discrete number of values
of mouth pressure were tested. Also, the simulation was less
realistic because the flow was generated by a negative pressure
source at the left end of the mouthpiece.

To obtain the complete curve of flow characteristics, the
mouth pressure should continuously increases from zero to a
maximum value until the reed reaches the lay such that the reed

Figure 1: The LBM scheme of the mouthpiece and the mouth
cavity.

channel is changing from fully opened to fully closed. Also,
due to the viscoelasticity of the reed and the inertia and damping
effects of the fluid, it is possible to observe a hysteresis effect
due to the change of the rest position of the reed when closing
versus when opening. This requires the measurement of the
flow for both an increasing mouth pressure and a decreasing
mouth pressure.

3. NUMERICAL PROCEDURE

In this study, we carried out the simulation of a mouthpiece-reed
system of a clarinet using the two-dimensional LBM. On one
hand, the relatively simple implementation of boundary condi-
tions of the LBM allows us to easily explore different geometri-
cal boundaries of a clarinet. On the other hand, the efficiency of
our computation is greatly improved by using a parallel comput-
ing technique based on a low-cost Nvidia GPU graphic card in-
stalled on a personal computer. We used the multiple relaxation
time (MRT) scheme [14] [15] and a relatively high numerical
viscosity to maintain the numerical stability.

The LBM scheme, as depicted by Fig. 1, is described by
thin walls resembling the cross section of a mouthpiece-reed
system of a clarinet immersed in a fluid domain. The fluid do-
main is represented by a rectangular D2Q9 structure [16]. The
domain boundaries along the solid walls of the mouthpiece are
treated by a simple bounce-back scheme [17], which creates a
no-slip condition at the wall and simulates a viscous boundary
layer. The remaining boundaries have an absorbing boundary
conditions prescribed with a zero velocity, as proposed by Kam
et al. [18].

The size of the LB model representing the clarinet is given
by nX = 1240 and nY = 589, which are the number of lattice
cells along the x- and y-axes, respectively. The space resolution
dx = 8.5·10−5 m representing the unit length of one lattice cell
is determined by both the available computing resources and the
smallest geometrical length of the boundary, which is the maxi-
mum value of the opening h of the reed channel. The number of
lattice cells representing the height h is 14, which is sufficient
in consideration of both stability and accuracy, according to our
previous experiences. The time step is dt = 1.44 · 10−7 s. To
improve the numerical stability in the dynamic reed configura-
tion, the lattice relaxation time is chosen as 0.532 and used in
both static reed and dynamic reed cases, corresponding to a rel-
atively high physical kinematic viscosity of 5.33 · 10−4 m2/s.

The LB model is implemented by a custom parallel com-
puting code written in Pycuda [19], and runs on a desktop PC
equipped with a Nvidia GeForce GTX 670 graphics card. The
speed-up factor is about 20 compared to the same model run-
ning on the CPU in serial mode.

The reed is based on the one-dimensional distributed model
of a clamped-free bar with varying cross section and resolved
with an implicit finite difference scheme, as proposed by
Avanzini and Van Walstijn [20]. The length and width of the
reed are specified as 34 mm and 13 mm, respectively. The
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equilibrium tip opening is 1.2 mm. The external force com-
ponent applied on the reed’s surface is calculated from the pres-
sure field around the reed in each iteration, where the torsional
and longitudinal modes are neglected. The interaction between
the reed and the mouthpiece lay is considered to be inelastic, as
discussed and justified in [20].

The problem of a moving curved boundary associated with
the moving reed is solved by using an extrapolation scheme pro-
posed by Guo et al [21]. This technique represents the no-slip
condition and the transfer of momentum from the reed to the
flow with an accuracy of second order. The displacement and
the velocity of the reed is updated by the reed model based on
the aerodynamic force upon the reed’s surface in each iteration,
and the curved boundary is updated accordingly.

To eliminate the acoustic oscillation of the reed caused by
the acoustic coupling of the chamber in the mouthpiece, an ab-
sorbing boundary scheme prescribed with a zero velocity, as
proposed by Kam et al. [18], is placed along the cross-section
at the left open end.

The source flow in the mouth is implemented using a vari-
ation of the absorbing boundary scheme, where the pressure
of a non-zero target flow is prescribed with a customized pro-
file. The pressure in the mouth cavity (pm) and in the mouth-
piece chamber (pa), as well as the volume flow in the mouth-
piece chamber (U ) are measured, averaged and saved during
the simulation. The pressure difference dp is calculated as
dp = pm − pa. A typical duration of such a simulation is
about 68 ms, or 500,000 iterations.

Two geometries of reed channel have been used in the sim-
ulation, namely the short channel (L/h=1) and the long channel
(L/h=4), as depicted in Fig. 2.

(a) (b)

Figure 2: Two geometries of the reed channels: (a) short chan-
nel (L/h=1), (b) long channel (L/h=4).

Also, we conducted the simulation for both a static reed
(stationary simulation) and a moving reed (dynamic simula-
tion), respectively. There are two main differences between the
present study and the previous work [13]. For the case of a
static reed, the complete characteristic is measured continually
for both increasing mouth pressure and decreasing mouth pres-
sure. For the case of a moving reed, the disturbance of acoustic
oscillations is minimized by using two approaches. One ap-
proach is to use a relatively slow change rate of the mouth pres-
sure. Another approach is to use a higher fluid damping coef-
ficient in Avanzini and Van Walstijn’s reed model, keeping key
mechanical parameters such as Young’s modulus of elasticity
and visco-elastic constant unchanged such that the mechanical
characteristic of the reed is not affected.

4. RESULTS

4.1. Static Reed

The results of the stationary simulations for the cases of short
channel and long channel (depicted in Fig. 2) are shown in Figs.
3 and 4, respectively.

Figures 3(a) and 4(a) depict the time history of the tar-
get pressure pmt prescribed on the absorbing boundary in the
mouth cavity, the measured mouth pressure pm, the average
pressure in the mouthpiece chamber pa and the pressure dif-
ference across the reed channel dp = pm − pa. In a typical
simulation, the target pressure pmt increases linearly from zero
to the highest value 9.5 kPa in a duration of about 28.87 ms
(200,000 iterations, marked as Stage I) and holds for about 7.22
ms (50,000 iterations), then decreases linearly to zero in the du-
ration of about 28.87 ms (marked as Stage II), and holds there
for about 7.22 ms until the simulation is finished. The mouth
pressure follows the pattern of pmt though at a reduced level.
Since the reed is fixed, the reed channel is fully open during the
course of the simulation and the mouth pressure never reaches
the prescribed pressure due to the non-zero flow passing through
the mouthpiece.

The measured flow U is compared to the Bernoulli flow Ub
and the theoretical flow Uz calculated from Van Zon’s model
for both short channel and long channel, as shown in Fig. 3(b)
and 4(b), respectively. Since the opening and the width of the
reed is fixed, the Bernoulli flow is only related to the measured
pressure difference dp. Figures 3(c) and 4(c) represent the same
flow data as a function of pressure difference, where U(1) and
Uz(1) are the flows associated with Stage I, and U(2), Uz(2)
are the flows associated with Stage II. The contraction parame-
ter of Van Zon’s model for short channel is 0.7. In general, the
measured flow is lower than the Bernoulli flow due to the flow
separation occurring at the entrance of the reed channel. For
the short channel, the measured flow is in good agreement with
Van Zon’s model for most of the duration. However, for the long
channel, the measured flow is significantly lower than the the-
oretical flow, which is only a little bit lower than the Bernoulli
flow.

The phenomena of flow contraction, caused by the bound-
ary layer effects on the walls of the lay and the reed and the flow
separation at the entrance, can be quantitatively described by the
vena contracta factors vcf = U/Ub, as depicted in Figs. 3(d)
and 4(d), where vcf(1) is associated to Stage I and vcf(2) is
associated to Stage II. The vena contracta factors of Van Zon’s
model, noted as vcfz(1) and vcfz(2), corresponding to Stage I
and Stage II respectively, are depicted in parallel.

In the case of the short channel, the measured vcf is in good
agreement with theoretical vcfz for most of the duration. In
the case of the long channel, the measured vcf is significantly
lower than the theoretical vcfz . Also, the vcf corresponding to
the long channel is lower than that of the short channel, which
might be explained by the relatively higher damping in the long
channel that is caused by friction from the flow and the walls.

A slight hysteresis effect can be observed in the region of
low pressure difference for both geometries, i.e., dp < 0.5 for
short channel and dp < 1 for long channel. Since the reed
is fixed, the hysteresis phenomena cannot be caused by the vis-
coelasticity of the reed, rather, it is more likely due to the inertia
of the air flow. We notice the variation of vcf is very small in
about 80% of the duration of the simulation for both geome-
tries, which suggests that a constant vcf used in the quasi-static
model is a reasonable approximation for the case of a fixed reed.

4.2. Dynamic Reed

Throughout the dynamic simulations, the reed is moving as the
pressure difference across the reed changes. The results corre-
sponding to the short channel and the long channel are depicted
in Figs. 5 and 6, respectively.

Figures 5(a) and 6(a) depict the time history of the tar-
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get pressure pmt prescribed on the absorbing boundary in the
mouth cavity, the measured mouth pressure pm, the average
pressure in the mouthpiece chamber pa and the pressure differ-
ence across the reed channel dp = pm−pa. The target pressure
is prescribed in the same way as in the simulations of the fixed
reed, i.e., pmt increases linearly from zero to the highest value
of 9.5 kPa, holds, and then decreases linearly and holds at zero
until the simulation is finished.

Before the reed closes in Stage I, the mouth pressure in-
crease along with pmt, though at a reduced level. The pres-
sure in the mouthpiece pa increases and reaches a peak value
in about 9 (short channel) to 12 ms (long channel), then de-
creases because the amount of flow entering into the mouthpiece
chamber is reduced due to a smaller opening of the reed chan-
nel. When the reed is completely closed at the closing pressure,
which is about 8783 Pa for the short channel and 8939 Pa for the
long channel, there is almost no flow entering into the mouth-
piece chamber, and pa drops to zero. In Stage II, pa starts to
increase when the decreasing mouth pressure is lower than the
closing threshold. The threshold of the closing pressure in Stage
II is lower than that in Stage I. This phenomenon is explained
by the bifurcation delay, which is discussed in [22].

Figures 5(b) and 6(b) depict the reed channel opening as a
function of dp for the case of short channel and long channel,
respectively. For the most part, the opening is almost linearly
related to dp. A hysteresis effect is found in the region of dp
that is higher than about 7 kPa. There is a sudden drop and in-
crease of opening when the mouth pressure reaches the closing
pressure in Stage I and Stage II, respectively.

Figures 5(c) and 6(c) depict the Bernoulli flowUb, the mea-
sured flow U and the theoretical flow Uz calculated from Van
Zon’s model as a function of time. Figures 5(c) and 6(c) rep-
resent the same flow data as a function of pressure difference,
where U(1), Uz(1) and U(2), Uz(2) are the flow associated
with Stage I and Stage II, respectively. The contraction param-
eter of Van Zon’s model for short channel is 0.7.

The measured flow in the case of the moving reed shows
some differences to the quasi-stationary model. The measured
flow shows hysteresis for cases of both short channel and long
channel. The quasi-stationary model, on the other hand, only
shows hysteresis for the long channel because the displacement
of reed is taken into account. For the short channel, the mea-
sured flow U is higher than the Bernoulli flow Ub and theoret-
ical flow Uz of the quasi-stationary model in the region where
dp is more than about 3 kPa. Similarly, for the long channel, U
is higher than Ub and Uz in the region where dp is more than
about 4 kPa. It can also be observed in Figures 5(e) and 6(e)
that the vena contracta factor shows a value larger than unity in
the region of higher dp. This phenomenon might be explained
by the discussion in [9], where the quasi-stationary models as-
sumes the reed channel with a fixed separation point and a uni-
form height, which is questionable in the case of a more realistic
clarinet mouthpiece. The discrepancies might also be related to
the flows of low Reynolds number that cannot be described by
the Bernoulli’s equation. The measured vcf associated with the
region of dp > 6.5 kPa is questionable and is discarded due
to the dramatical change of both U and Ub, as depicted in the
region around about 43 ms in Figures 5(c) and 6(c).

5. DISCUSSIONS AND CONCLUSIONS

The staircase-like ripples found in the measured flow and open-
ing for the cases of moving reed (Figs. 5 and 6) might be stud-
ied from two aspects. The first influence comes from the me-
chanical oscillation of the reed initiated by the relatively quick

changing rate of the mouth pressure, especially in the decreas-
ing stage of the pm curve. A slower changing rate can reduce
the likelihood of acoustic oscillations at the cost of a prolonged
simulation time. The measurements times reported in [9] are
between 50 to 100 seconds, but this time scale is not practical
in the current model even using parallel GPU computation. An-
other factor is related to the low spatial resolution. When the
reed channel is nearly closed, the cells can be very few and in-
sufficient to represent the flow crossing the reed channel and
the boundary layer effect. This problem cannot be immediately
solved by simply using an extremely large lattice because of
the limited computation and memory resources allowed by the
GPU device. An adaptive grid refinement technique [23] might
be helpful but is not implemented in the current model yet. Nev-
ertheless, a low-discretized lattice can still capture reasonable
well global parameters such as the averaged volume flow.

Due to the relatively higher numerical viscosity, the
Reynolds number in the numerical simulation is lower than
the realistic one. In the situation of static reed, the highest
Reynolds number is 140, which is much lower than the realistic
Reynolds number 4762 (assuming the same volume velocity).
Consequently, the measured flow is not exactly the same as the
Bernoulli flow and the quasi-stationary model, which is based
on the assumption of inviscid flow. A low numerical viscosity is
not practical for the dynamic reed case because, apart from the
issue of numerical stability, there is the difficulty of eliminating
the noise caused by acoustic oscillations when the viscosity is
very low. Nevertheless, useful results can still be obtained from
the current model.

As already noted in Fig. 4(b), the predicted volume flow
rate deviates largely from Van Zon’s model for the long channel
case. We attempted to investigate this discrepancy by estimat-
ing the boundary layer thickness from the spatial distribution
and evolution of the jet. Figures 7(a) and 8(a) visualize the ve-
locity field (u =

√
u2
x + u2

y) for the cases of static short and
long reed channels respectively, from which we can observe that
the flow is passing through the reed channel and is dissipated in
the mouthpiece chamber. Figures 7(b) and 8(b) depict the ve-
locity profile of the jet passing through the short and long reed
channel, respectively. In the short channel, a flow separation
can be observed at the entrance and the total critical thickness
of the boundary layers on both top and bottom walls is about 7
cells, corresponding to an averaged dimensionless thickness of
0.2333 for one wall, which is slightly lower than the thickness
of 0.2688 used in Van Zon’s model. For the case of long chan-
nel, a reattachment of the flow occurs after a distance on the
order of the reed channel height, and a Poiseuille flow is devel-
oped after a transition zone. The averaged dimensionless thick-
ness of the boundary layer is about 0.3 (9 cells in total). The
lower volume flow for the long channel case might be caused
by the boundary layer thickness which is slightly higher than
that used in Van Zon’s model, But it could also be influenced by
the flow pattern characterized by a low Reynolds number, be-
cause the boundary layer thickness estimated from the velocity
profile is not very accurate due to the low-discretization. In a
dynamic situation, though, the flow profile would certainly not
match Van Zon’s assumption. The flow detachments at the reed
tip can be better observed in Fig. 7(c) and 8(c), where the veloc-
ity profiles in the neighboring area of reed tip are depicted in a
larger scale. The magnitude of the counter-flow at the reed wall
is much lower than that of the maximum flow velocity but still
can be observed.

The current LBM scheme is limited by its 2D nature, which
is not fully capable of representing the 3D behavior of the real
flow. Further, the flow measured from the mouthpiece-reed sys-
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tem with a fully coupled acoustic resonator will be more realis-
tic. This will be investigated in our next research project.
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(a)

(b)

(c)

(d)

Figure 3: Static reed, short channel (L/h = 1): (a) pressure pro-
file, (b) flow as function of time, (c) flow as function of pressure
difference, and (d) vcf as function of pressure difference.

(a)

(b)

(c)

(d)

Figure 4: Static reed, long channel (L/h = 4): (a) pressure pro-
file, (b) flow as function of time, (c) flow as function of pressure
difference, and (d) vcf as function of pressure difference.
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(a)

(b)

(c)

(d)

(e)

Figure 5: Moving reed, short channel (L/h = 1): (a) pressure
profile, (b) opening as function of pressure difference, (c) flow
as function of time, (d) flow as function of pressure difference,
and (e) vcf.

(a)

(b)

(c)

(d)

(e)

Figure 6: Moving reed, long channel (L/h = 4): (a) pressure
profile, (b) opening as function of pressure difference, (c) flow
as function of time, (d) flow as function of pressure difference,
and (e) vcf.
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(a)

(b)

(c)

Figure 7: Velocity field, static short reed channel: (a) absolute
velocity, (b) velocity profile of the jet passing through the reed
channel, (c) velocity profile depicted in a larger scale.

(a)

(b)

(c)

Figure 8: Velocity field, static long reed channel: (a) absolute
velocity, (b) velocity profile of the jet passing through the reed
channel, (c) velocity profile depicted in a larger scale.
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