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ABSTRACT:
This paper proposes an acoustic model of the saxophone mouthpiece as a transfer matrix (TM). The acoustical

influence of the mouthpiece is investigated, and the TM mouthpiece model is compared to previously reported

mouthpiece representations, including cylindrical and lumped models. A finite element mouthpiece model is first

developed, from which the TM model is derived, and both models are validated by input impedance measurements.

The comparison of acoustic properties among different mouthpiece models shows that the TM mouthpiece is more

accurate than the other two models, especially in preserving the high-frequency acoustic characteristics. The TM

model also produces the best overall tuning of the first several impedance peaks when coupled to a measured saxo-

phone impedance. The internal and radiated sound pressure are synthesized for an alto saxophone connected to differ-

ent mouthpiece models by jointly modeling the input impedance and the radiation transfer function using recursive

parallel filters. Differences are found among mouthpiece models in terms of oscillation thresholds, playing frequencies,

spectral centroids, pressure waveforms, and bifurcation delays, which can be partially explained by differences in the

tuning and high-frequency characteristics. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0003814
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I. INTRODUCTION

The mouthpiece of the saxophone, like that of the clari-

net, is a fundamental component of the instrument, onto

which a reed is attached and through which a player can

excite the instrument. There are many different makes and

models of mouthpieces available, and variations of geome-

try of the mouthpiece can have important influence on the

sound and playability of the instrument (Pipes, 2018;

Wyman, 1972). The ways in which the mouthpiece exerts

this influence can be associated with the underlying solid,

fluid, and acoustic fields and their interactions. For example,

the tip opening height and the curvature of the lay are criti-

cal aspects of the reed-mouthpiece interaction (Avanzini

and van Walstijn, 2004), different reed channel lengths alter

the flow profile (van Zon et al., 1990), and the chamber

geometry of the mouthpiece impacts the acoustic input

impedance (Andrieux et al., 2016). Moreover, the interac-

tions among different fields, like the fluid-structure interac-

tions (da Silva, 2008) and the aeroacoustics (Hirschberg

et al., 1996), also play an important role. In this paper, we

focus on the acoustical modeling of the mouthpiece, with

the goal of achieving a more accurate and flexible represen-

tation of an actual saxophone mouthpiece that can be

applied both to sound synthesis and to investigate mouth-

piece design variations. This model is also compared to pre-

viously reported mouthpiece acoustic representations.

The saxophone body is a truncated conical air column

with modal frequencies that are not harmonically related

(Ayers et al., 1985). The mouthpiece completes the conical

frustum by providing the volume equivalent to that of the

missing part of the cone so that the fundamental frequency

and the harmonics are better tuned (Benade, 1990). For the

low-frequency range, where the wavelength is large com-

pared to the dimension of the mouthpiece, the mouthpiece

can be modeled as a parallel acoustic compliance that is

determined only by the volume of the mouthpiece (Chen

et al., 2009; Kergomard et al., 2016). However, such a

lumped model is less accurate at high frequencies, where the

admittance of the parallel acoustic compliance overwhelms

that of the resonator. The “cyclone” model provides another

way to represent the mouthpiece as a pure cylinder

(Scavone, 2002). Similar to the lumped mouthpiece model,

the volume of the cylinder is the same as that of the missing

part of the cone. The cylindrical mouthpiece is coupled to

the saxophone body based on mass conservation and pres-

sure continuity at the junction between the cylinder and the

conical frustum. Kergomard et al. (2016) extended the

cylindrical mouthpiece model by allowing a cross section

discontinuity. It is shown that the behavior of the cylindrical

mouthpiece model, including the resulting mouthpiece inter-

nal pressure waveform and the inharmonicity of the com-

plete instrument, highly depends on the mouthpiece length

and diameter. While the cylindrical model with a short

length resembles the lumped model, more and more higher-

frequency components are introduced as the mouthpiece

becomes longer. The dependence of the acoustic behavior

on the variable length of the cylindrical mouthpiece model
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might bring about uncertainties when used in a sound syn-

thesis scheme. A cylinder-cone mouthpiece model was pro-

posed by van Walstijn and Campbell (2003) for the clarinet.

It approximates the mouthpiece as a cylindrical section fol-

lowed by a conical section. However, the structure near the

tip of a real mouthpiece is more like a cone, and the remain-

ing part of the mouthpiece is more cylindrical so that the

neck of the saxophone can be easily attached. Considering

the mouthpiece is a non-reciprocal acoustic unit, reversing

the order of the cone and the cylinder can lead to a very dif-

ferent behavior. A more precise model of the saxophone

mouthpiece was proposed (Andrieux et al., 2014; Andrieux

et al., 2016) using the finite element (FE) method. The FE

model was validated by the measured mouthpiece input

impedance and was coupled to a measured input impedance

of the saxophone body to study the mouthpiece geometry’s

influence on the instrument. To the authors’ knowledge, this

is the only work that has considered a more accurate geome-

try of a mouthpiece. However, the FE model is time-

consuming to develop and compute, making it inappropriate

for sound synthesis and the analysis of transient behaviors.

To overcome the limitations of the above-mentioned

models, we propose to model the mouthpiece as a transfer

matrix (TM). The TM model is derived from the FE model so

that the acoustic properties contributed by the complex mouth-

piece geometry are intrinsically retained. For this reason, the

TM mouthpiece model is more accurate than the cylindrical

and lumped mouthpiece models, as shown by comparing the

measured input impedance of a system composed of a mouth-

piece coupled to a truncated cone (the mouthpiece-cone sys-

tem) with that calculated using different mouthpiece models.

As well, the TM model provides a compact mouthpiece repre-

sentation that can be used for real-time sound synthesis. In

this paper, the sound of the saxophone with different mouth-

piece models is synthesized using the framework proposed by

(Maestre and Scavone, 2016; Maestre et al., 2018). The differ-

ences in the sound, as well as the dynamics, among different

mouthpiece models are explored and discussed.

The paper is organized as follows: Sec. II describes the

FE model and the derivation of the TM model. The valida-

tions of the FE model and the TM model, as well as the

details of the input impedance measurement, are presented

in Sec. III. The comparison of acoustic properties between

the TM mouthpiece and other mouthpiece representations

is shown in Sec. IV. The synthesis model is reviewed in

Sec. V, and the comparisons of the sound and the dynamics

behavior are presented and discussed. Finally, the perspec-

tives of this study are discussed in Sec. VI.

II. ACOUSTICAL MODELING OF THE SAXOPHONE
MOUTHPIECE

A. Finite element modeling of the mouthpiece

A three-dimensional (3D) alto saxophone mouthpiece

model was built using the computer-aided design (CAD)

software Autodesk
VR

Fusion 360. The reed was assumed to

be fixed in an open position but with closed side slits, result-

ing in a rectangular tip window at the input end. The

extracted inner geometry is shown in Fig. 1(a).

The 3D model was imported into COMSOL Multiphysics
VR

for the FE simulation. A plane wave pressure source was set

as the inlet boundary condition at the tip window of the

mouthpiece. Viscothermal losses at the wall surfaces were

imposed using an acoustic admittance defined as (Chaigne

and Kergomard, 2016)

Ywall ¼
1

qc

ffiffiffiffi
jk

p
sin2h

ffiffiffiffi
lv

p
þ ðc� 1Þ

ffiffiffi
lt

ph i
; (1)

with q the fluid density, c the speed of the sound, k the

wavenumber, h the angle of the incidence of the wave,

lv ¼ l=qc the vortical characteristic length, lt ¼ lv=Pr the

thermal characteristic length, c the ratio of specific heats, l
the fluid dynamic viscosity, and Pr the Prandtl number. The

mesh of the FE model, shown in Fig. 1(b), was constructed

with a maximum element size of 6 mm, which allows the

model to have at least 7–8 nodes per wavelength at 8 kHz.

B. TM modeling of the mouthpiece

The TM method has been widely applied to the study of

the wind instrument resonator, including the effects of the

tone hole (Keefe, 1990; Lefebvre, 2010) and the cutoff fre-

quency (Petersen et al., 2019), to name a few. It is based on

the acoustical two-port theory that assumes a linear acousti-

cal system with two terminals (Pierce, 2019). The black-box

region between terminals can be characterized by a 2� 2

matrix written as

T ¼ T11 T12

T21 T22

� �
; (2)

with all the matrix elements as functions of frequency. It

defines the relationship of the acoustic pressure and volume

velocity between the input and the output of the acoustic

system:

FIG. 1. (Color online) The (a) inner geometry and the (b) meshing of the mouthpiece.
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Po

Zc
oUo

� �
¼ T

Pi

Zc
i Ui

� �
; (3)

where Zc ¼ qc=S is the characteristic acoustic impedance

and S is the cross section area. The subscripts i and o repre-

sent the input and the output side of the acoustic system,

respectively.

The TM of the mouthpiece is built based on several

assumptions. First of all, the acoustic system has to be linear

and passive. This is true only when the sound source of the

saxophone is decoupled from the mouthpiece. Even though

the reed is treated as part of the boundaries in the mouth-

piece, its vibration is not. In this way, the excitation and the

nonlinearity of the system can be modeled separately, and

the mouthpiece can be treated as a linear and passive acous-

tic system. Another assumption is that only the propagating

mode is considered on both the input and the output surface.

This assumption is satisfied at the input surface by assuming

a plane wave sound source, as it was set in the FE model.

On the output side, it is assumed that the discontinuity

between the mouthpiece and the connected resonator, e.g., a

saxophone bore or a truncated cone, is small enough that

any excited evanescent modes decay sufficiently within the

mouthpiece and do not interact with other discontinuities. In

addition, it is also assumed that the discontinuities within

the mouthpiece are far enough from the output plane.

To derive the TM of the mouthpiece, the two-load

method was used by running the FE simulation twice with

two different output boundary conditions (Lefebvre, 2010).

With the simulated pressure and volume velocity at both the

input and the output, the following linear equation system

can be solved to obtain the four elements of the TM:

p1
o Zc

oU1
o 0 0

0 0 p1
o Zc

oU1
o

p2
o Zc

oU2
o 0 0

0 0 p2
o Zc

oU2
o

2
66664

3
77775

T11

T12

T21

T22

2
66664

3
77775 ¼

p1
i

Zc
i U1

i

p2
i

Zc
i U2

i

2
66664

3
77775: (4)

The superscripts 1 and 2 represent two different simula-

tions with the loads set as a theoretical unflanged radiation

impedance and the characteristic impedance, respectively.

The closed mouthpiece input impedance can be calculated as

Zclosed ¼ T11=T21, which agrees well with that calculated by

the FE model as shown in Fig. 2. Comparing the input imped-

ance calculated by the TM model to that calculated by the FE

model, the largest discrepancies in the resonance peak magni-

tudes and frequencies are 0.7 dB and 0.2%, respectively. Since

the wall admittance is applied to the solid boundaries of the

FE model, viscothermal losses are intrinsically included in the

derived TM model. However, because the TM model is

derived from the FE simulation with specific temperature and

corresponding physical variables, viscothermal losses are

immutable once the TM is derived.

To enable the application of the TM mouthpiece model

to other studies, the TM is approximated with four 10th-

order polynomials to fit all complex matrix elements Tij up

to 8 kHz.1 The estimation errors, defined as Eij

¼ jjTij � Tpoly
ij jj2=jjTijjj2, for all elements are less than 0.5%,

where Tpoly
ij are approximated matrix elements. The polyno-

mial approximation is available online (Computational

Acoustic Modeling Laboratory, 2018).

III. MODEL VALIDATIONS

A. Input impedance measurements

The FE and TM models were validated by comparisons

with measured input impedances. The acoustic impedance

measurements were performed with a custom-build multi-

microphone system (Lefebvre and Scavone, 2011) consist-

ing of six microphones along a cylindrical impedance head

of 6.5 mm radius, providing a cutoff frequency slightly

greater than 15 kHz. Three resonance-free calibration loads

were used similar to the ones described by Dickens et al.
(2007), including a quasi-infinite impedance, an almost

purely resistive impedance, and an unflanged pipe radiation

load. For this paper, the input impedances of an alto saxo-

phone mouthpiece, a 40 cm-long truncated cone made of

carbon fibre (3� taper angle), and the combination of the

mouthpiece and the truncated cone (the mouthpiece-cone

system) were measured. To connect the mouthpiece to the

impedance head, an adapted structure having the same inner

geometry as the mouthpiece was designed and 3D-printed

for the measurement. The surface of the reed and the side

slits were closed by the walls in the adapter, with only a

small rectangular tip window open to the impedance head.

When measuring the input impedance of the mouthpiece

alone, the mouthpiece was closed by a 3D-printed block that

shortened the mouthpiece inner length by 1 cm. For consis-

tency, the truncated cone was inserted the same distance into

the mouthpiece when measuring the mouthpiece-cone system.

The input impedances of the truncated cone, closed

mouthpiece, and mouthpiece-cone system are shown in Fig. 3.

Compared to the truncated cone, the frequencies of the first

few impedance peaks of the mouthpiece-cone system are

lower because the mouthpiece lengthens the instrument. The

FIG. 2. (Color online) The comparison of the modulus (top) and argument

(bottom) of mouthpiece input impedances computed by the FE model and

the TM model.
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mouthpiece also modulates the input impedance of the resona-

tor by amplifying it around the mouthpiece’s resonance fre-

quencies. This indicates a similar role as that played by a

trumpet mouthpiece (Causs�e et al., 1984), which helps explain

the brightness contributed by the mouthpiece.

B. Validation of the FE model

The FE model of the mouthpiece was validated by com-

paring the simulated closed mouthpiece input impedance

with the measured one, as shown in Fig. 4. A frequency-

domain phase correction was applied to the measured data

to compensate for sub-sample time delay discrepancies.

Good agreement is achieved up to 15 kHz with maximum

discrepancies of 1.8 dB in the magnitudes and 0.5% in the

frequencies between the resonance peaks of the measured

and simulated input impedances. There are relatively larger

discrepancies around the anti-resonant frequencies than the

resonant frequencies, which is mainly attributed to the dis-

continuity between the impedance head and the mouthpiece

tip window and might be potentially mitigated by taking

into account the influence of higher-order modes using the

multimodal method (van Walstijn et al., 2005). The onset of

the higher-order mode can be observed around 1.4 kHz in

both the measured and FE-modeled input impedances. This

corresponds to the cutoff frequency of the mouthpiece,

above which non-planar modes are observed in the pressure

iso-surface plot in COMSOL. It is worth noting that the cutoff

frequency of the mouthpiece is larger than 12.7 kHz, the cut-

off frequency of an ideal cylindrical pipe with a radius equal

to that of the mouthpiece shank (the cylindrical part of the

mouthpiece into which a resonator is inserted).

C. Validation of the TM model

The mouthpiece-cone system was used to validate the

TM model derived in Sec. II B. The measured input imped-

ance of the conical frustum Zcone was coupled to the TM

mouthpiece as a load impedance. Since the diameter of the

cone is different from that of the mouthpiece shank, there

exists a discontinuity at the interface. Because the diameter

difference is small, the influence of the non-propagating

modes on the propagating mode is neglected, and the acous-

tic impedances on the two sides of the junction are assumed

equal to each other. However, the discontinuity, as illustrated

in Fig. 5, should be carefully treated when using the normal-

ized acoustic impedance ~Z ¼ Z=Zc in the calculations. The

normalized impedance on the right of the junction is written

as ~Z2 ¼ ~Z1S2=S1, where S1 and S2 are the cross section areas

on the left and right of the junction, respectively.

The input impedance of the mouthpiece-cone system

can then be calculated with the following equation:

~Zmc ¼
T11 þ T12= ~Z2

T21 þ T22= ~Z2

: (5)

The comparison between the measured and calculated

input impedances is shown in Fig. 6. The calculated input

impedance generally matches the measured one, with the

largest peak magnitude discrepancy of 1.8 dB and the largest

peak frequency deviation less than 1%. As mentioned

before, the discrepancies around the anti-resonances are rel-

atively larger, which is due to the measurement error caused

by the discontinuity between the impedance head and the

mouthpiece tip window.

IV. ACOUSTIC COMPARISON BETWEEN DIFFERENT
MOUTHPIECE MODELS

A. Mouthpiece coupled to a truncated cone

The TM mouthpiece model can be compared to two

previously reported mouthpiece representations, i.e., the

FIG. 3. (Color online) The measured input impedances of the truncated

cone, the closed mouthpiece, and the mouthpiece-cone system.

FIG. 4. (Color online) The measured input impedance of the closed mouth-

piece and that simulated using the FE model.

FIG. 5. An illustration of the junction between the mouthpiece and the

resonator.
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cylindrical mouthpiece model and the lumped mouthpiece

model. For each of the mouthpiece representations, the input

impedance of a combined mouthpiece-cone system is calcu-

lated using the input impedance of the truncated cone mea-

sured in Sec. III as the load impedance.

The cylindrical mouthpiece model takes the mouthpiece

as a pure cylinder that has the same volume Vm as the miss-

ing part of the truncated cone. In this paper, the cylindrical

mouthpiece is modeled based on the TM representation as

Tcyl ¼
coshðCLÞ ZcsinhðCLÞ

Z�1
c sinhðCLÞ coshðCLÞ

" #
; (6)

where C depends on the acoustic constants of the air

(Chaigne and Kergomard, 2016) and includes the wall losses

due to viscothermal effects.

For consistency, the radius of the cylinder is chosen to

be equal to that of the mouthpiece shank S2 so that the

length of the mouthpiece L ¼ Vm=S2 is fixed. The input

impedance of the mouthpiece-cone system ~Zmc is calculated

using Eq. (5) by substituting T with Tcyl.

The lumped mouthpiece model approximates the mouth-

piece as an acoustic compliance Cm ¼ Vm=ðqc2Þ in parallel

with the impedance of the resonator. This lumped representation

is often sufficient for low frequencies, where the wavelength is

large compared to the characteristic length of the mouthpiece.

Taking the same load impedance Z2 used with the other mouth-

piece models, the input impedance of the mouthpiece-cone sys-

tem with a lumped mouthpiece is calculated as

Zlumped
mc ¼ 1

1

Z2

þ jx Cm

: (7)

The input impedances of mouthpiece-cone systems

with different mouthpiece models are compared with the

measurement in Fig. 7. The calculations with the TM

mouthpiece model result in the best match to the measured

input impedance compared to the other two mouthpiece rep-

resentations. Because all three mouthpiece models have the

same mouthpiece volume, they have a similar behavior at

low frequencies where the lumped model assumption is

valid. However, the performance of the lumped mouthpiece

degrades quickly as it shunts high-frequency components.

The high-frequency characteristics of the cylindrical mouth-

piece model show significant discrepancies from the mea-

sured and TM mouthpiece responses because of the

oversimplified geometric approximation. Derived from the

FE model, the TM mouthpiece intrinsically contains the

complex geometry information of the mouthpiece, which

provides advantages in preserving the high-frequency struc-

ture over the other models.

B. Mouthpiece coupled to an alto saxophone

Previous input impedance [ZðxÞ ¼ PðxÞ=UðxÞ] and

radiation transfer function [EðxÞ ¼ TðxÞ=UðxÞ] measure-

ments of an alto saxophone (without mouthpiece) made by

Maestre et al. (2018) were used to investigate the coupling

of the different mouthpiece models with an alto saxophone.

PðxÞ and TðxÞ are the frequency-domain mouthpiece pres-

sure and radiated pressure, respectively, and UðxÞ is the

volume flow rate at the entrance of the resonator in the fre-

quency domain. As with the mouthpiece-cone system, cou-

pled responses were obtained with the measurements as load

impedances. In the junction between the shank of the

mouthpiece and the neck of the saxophone, there is a discon-

tinuity that was accounted for by multiplying the measured

saxophone body input impedance by the cross section area

ratio S2=S1 so that we were able to obtain the impedance on

the mouthpiece side of the junction ~Z2 ¼ ~Z1S2=S1.

Similarly, the radiation transfer function was also multiplied

by the same factor so that ~E2 ¼ ~E1S2=S1. Input impedances

of the entire instrument can be calculated using either Eq.

(5) for the TM mouthpiece and cylindrical mouthpiece or

Eq. (7) for the lumped mouthpiece. For the cylindrical

mouthpiece and the TM mouthpiece, the radiation transfer

function can be derived as follows using the TM elements:

FIG. 6. (Color online) The measured input impedance of the mouthpiece-

cone system and that calculated with the TM model using Eq. (5).

FIG. 7. (Color online) The measured input impedance of the mouthpiece-

cone system and that calculated using the TM mouthpiece model (TMM),

the cylindrical mouthpiece model (Cyl.) and the lumped mouthpiece model

(Lumped).
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~Esax ¼
~E2

T21
~Z2 þ T22

: (8)

For the lumped mouthpiece, the radiation transfer func-

tion is calculated as

~E
lumped

sax ¼
~E2

~Z
lumped

sax

~Z2

: (9)

As an example, the input impedances and the radiation

transfer functions with and without the TM mouthpiece are

shown in Fig. 8 for the note B[4 (written).

The mouthpiece helps tune the fundamental frequency

and the harmonics by completing the truncated cone of the

saxophone body. To compare the influence of the different

mouthpiece representations on the alignment of the imped-

ance peaks across the entire playing range, each mouthpiece

model was tuned separately when coupled with the measure-

ment for the F4 (written) fingering by adjusting the mouth-

piece volume to align the first input impedance peak to the

corresponding equal-tempered scale frequency.

As shown in Fig. 9, the deviations (in cents) between

the frequency of the first or second peak of the input imped-

ance and the equal-tempered scale frequency of each note

are compared among different fingerings with and without

different mouthpiece models. Comparisons are made to the

first input impedance peak for first register notes (below D5)

and to the second peak for the remaining (second register)

notes. For the body of the saxophone alone (without mouth-

piece), the deviation is large and generally increases with

the fundamental frequency within each register. All the

mouthpiece models help reduce such deviation, though the

tuning performance varies from note to note. The TM

mouthpiece performs similarly to the other two mouthpiece

models in the first register, while it shows the least deviation

in the second register.

Following the definition of the inharmonicity parameter

used by Gilbert et al. (2019), the inharmonicity for the notes

of the first register was characterized as I ¼ ðf2 � 2f1Þ=2f1,

where f1 and f2 are the two lowest resonance frequencies of

the input impedance. The comparison of the inharmonicities

between the saxophone with different mouthpiece models is

displayed in Fig. 10, showing that the input impedance

peaks of the saxophone with the TM mouthpiece are more

harmonically aligned than the others.

More comparisons between the saxophones with dif-

ferent mouthpiece models for the note B[4 (written) are

shown in Fig. 11, including the input impedance, normal-

ized input impedance, reflection function, and radiation

transfer function. All mouthpieces have the same volume

in this comparison, and as expected, they have similar

behavior in the lower-frequency range. The magnitude and

the frequency of the first peak match each other very well,

while the difference between the second peak is more sig-

nificant. Comparing the normalized input impedances,

magnitude differences are readily apparent. This is

FIG. 8. (Color online) Comparisons of the input impedance and radiation

transfer function with (solid lines) and without (dashed lines) the TM

mouthpiece for the note B[4 (written). The vertical solid and dashed lines

correspond to the equal-tempered scale frequencies of the first and second

harmonics of the note, respectively. The input impedance and radiation

transfer function with the TM mouthpiece are calculated using Eqs. (5) and

(8), respectively.

FIG. 9. (Color online) The deviation in cents between the first or second

input impedance peak and the equal-tempered scale frequency of different

notes.

FIG. 10. (Color online) Input impedance peak inharmonicities for the dif-

ferent mouthpiece representations.
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because the impedance is normalized by values of Zc that

are calculated with different cross section areas for differ-

ent mouthpiece models. For the cylindrical and lumped

mouthpieces, the shank cross section area is used (see

Fig. 5). However, the TM mouthpiece results are normal-

ized by the cross section area at the mouthpiece tip, which

is much smaller than the shank area. At higher frequen-

cies, the input impedance magnitudes of the TM mouth-

piece and the cylindrical mouthpiece converge toward the

specific impedance (or a normalized value of 1). However,

due to the increase in the acoustic admittance used in the

lumped model, the input impedance magnitude continues

to decrease, which causes the reflection function to

approach 1 as the frequency increases. Such a behavior

can be especially problematic in the context of sound syn-

thesis, as mentioned by Kergomard et al. (2016), so a pre-

processing must be applied to force the reflection function

toward zero, as discussed in Sec. V.

The differences in the magnitude level of the normal-

ized input impedance also lead to differences in the magni-

tudes of the reflection function R ¼ ð ~Z � 1Þ=ð ~Z þ 1Þ. As

can be seen from its definition, the magnitude of the reflec-

tion function will have minima around frequencies where
~Z � 1. Because the input impedance magnitude of the TM

mouthpiece system is generally lower than that of the other

two mouthpiece models and the magnitudes of the first two

peaks are just above 1, the jRj-plot of the TM mouthpiece

has extra dips around 2000–4000 Hz, and their positions do

not correspond with those of the other two models.

Finally, the comparison of the radiation transfer func-

tion shows that all three different mouthpiece models have a

similar behavior at the low frequencies, and the high-

frequency characteristics of the TM mouthpiece are more

significant compared to those of the other mouthpiece mod-

els. This is consistent with the discussion about the input

impedance comparison.

V. SOUND AND DYNAMICS COMPARISON BETWEEN
DIFFERENT MOUTHPIECE MODELS

This section describes the synthesis of alto saxophone

sounds using different mouthpiece models and measured

saxophone impedances in order to analyze the influence of

different mouthpiece models on the nonlinear dynamics and

properties of the rendered sound. Based on the work by

Maestre et al. (2018), the saxophone was represented by the

classic three-equation single-reed instrument model

(Chaigne and Kergomard, 2016), which was discretized

based on a combination of three different schemes

(Guillemain et al., 2005; Maestre and Scavone, 2016;

Scavone and Smith, 2006). As previously described, the dif-

ferent mouthpiece models were coupled to measured input

impedance and radiation transfer functions of an alto saxo-

phone. From this frequency-domain data, we fit recursive

parallel filters that jointly represented the mouthpiece and

the resonator as an efficient digital filter that was used for

audio synthesis for a subsequent analysis of dynamics and

sound properties. The results of the note B[4 (written) were

taken as an example to quantitatively compare the perform-

ances of different mouthpiece models with the discussion of

possible explanations for their differences in sound charac-

teristics and dynamics behavior.

A. The synthesis model

The standard three-equation single-reed instrument

model comprises three unknowns: the mouthpiece pressure

p, the volume velocity u, and the reed tip displacement y
away from the equilibrium position. Dimensionless varia-

bles are used in the governing equations as

~p ¼ p

pM
; ~u ¼ Zc

u

pM
; ~y ¼ y

H
; (10)

where pM is the mouth pressure at which the reed channel is

closed, Zc is the characteristic impedance at the input of the

resonator, and H is the distance at equilibrium from the tip

of the reed to the lay of the mouthpiece. For the sake of sim-

plicity, all the tildes are subsequently omitted.

The pressure-controlled reed is modeled by a single-

degree-of-freedom damped oscillator that is governed by the

following equation:

1

x2
r

d2y

dt2
þ qr

xr

dy

dt
þ y ¼ �Dp; (11)

where xr ¼ 2pfr with fr being the reed resonance frequency,

and qr is the reed damping coefficient. The variable

FIG. 11. (Color online) Comparisons (from top to bottom) of the modulus

of the physical input impedances, the modulus of the normalized input

impedances, the argument of the normalized input impedances, the reflec-

tion functions, and the radiation transfer functions between the TM mouth-

piece (solid lines), the cylindrical mouthpiece (dashed lines), and the

lumped mouthpiece (dotted lines) coupled with the measured impedance of

the alto saxophone resonator for the note B[4 (written).
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Dp ¼ c� p is the pressure difference between the mouth

pressure c and the pressure in the mouthpiece p.

The linear resonator, composed of the mouthpiece and

the saxophone, is modeled based on the input impedance of

the entire system,

ZðxÞ ¼ PðxÞ
UðxÞ : (12)

The nonlinearity of the saxophone is governed by the

Bernoulli flow equation:

u ¼ fð1þ yÞsignðc� pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jc� pj

p
; 1þ y � 0;

0; 1þ y < 0;

(

(13)

where f ¼ ZcwH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðqpMÞ

p
, with w the reed channel width.

Equations (11)–(13) compose the governing equations

of the saxophone model, which need to be discretized for

the time-domain sound synthesis.

The discretization of the reed model is performed by

way of the bilinear transform (Scavone and Smith, 2006),

leading to

YðzÞ
DPðzÞ ¼

�4x2
r z�1

a0 þ 2ðx2
r � a2Þz�1 þ ða2 � graþ x2

r Þz�2
;

(14)

where gr ¼ qr=xr; a0 ¼ a2 þ graþ x2
r and a ¼ xr=

tan ðxr=2fsÞ is the bilinear transform constant that controls the

frequency warping and is defined to match the reed resonance

frequency between the continuous and discrete domains.

The input impedance ZðxÞ is modeled as a recursive

parallel filter (Maestre and Scavone, 2016; Maestre et al.,
2017). Akin to a discretized modal expansion, its resonant

behavior is conveyed by a number of parallel one-zero, two-

pole resonators in the z-domain:

ZðzÞ ¼
XN

n¼1

ðb0;n þ b1;nz�1ÞHnðzÞ; (15)

where

HnðzÞ ¼
1� z�1

ð1� pnz�1Þð1� �pnz�1Þ ; (16)

with pn and �pn being a pair of complex conjugate poles.

As described by Maestre et al. (2018), the impedance

digital filter Z(z) can be decomposed into a linear form

ZðzÞ ¼ B0 þ z�1VðzÞ; (17)

where B0 ¼
PN

n¼1 b0;n is a constant and V(z) is the collection

of the remaining terms depending only on the history. The

pressure is then obtained by discretizing Eq. (12) and

substituting Eq. (17), leading to a time-domain form

p n½ � ¼ B0u n½ � þ q n½ �; (18)

where q½n� only depends on the history of u½n�, i.e., on

u½n� k� with k � 1.

By substituting Eq. (18) into the discrete version of Eq.

(13), the volume flow rate u½n� can be solved explicitly as

(Guillemain et al., 2005)

u n½ � ¼
1

2
signðc� q n½ �Þð�B0w n½ �2 þ w n½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0w n½ �Þ2 þ 4jc� q n½ �j

q
1þ y n½ � � 0;

0; 1þ y n½ � < 0;

8<
: (19)

where w½n� ¼ fð1þ y½n�Þ. Afterward, p½n� can be updated

using Eq. (18).

To obtain the radiated sound, we employed again the

scheme proposed by Maestre et al. (2018), which jointly

approximates the input impedance ZðxÞ and the radiation

transfer function EðxÞ as a single set of recursive digital filters

in parallel form. As in the case of the impedance, this leads to

a time-domain expression for the radiated sound pressure as

t n½ � ¼ D0u n½ � þ g n½ �; (20)

where D0 is constant and g½n� only depends on u½n� k�,
with k � 1.

Thus, to summarize, the acoustic pressure p½n�, flow

rate u½n�, and radiated sound pressure t½n� were computed as

follows:

(1) Update the reed position y½n� using Eq. (14).

(2) Update q½n� and g½n� in Eq. (18) and Eq. (20), corre-

spondingly, based on previous samples of the flow rate

u½n� k� with k � 1.

(3) Explicitly solve the flow rate in the mouthpiece u½n�
using Eq. (19).

(4) Calculate the mouthpiece pressure p½n� and the radiated

pressure t½n� using Eqs. (18) and (20), respectively.

(5) Go back to step 1.

The number of parallel sections N depends on the fin-

gerings and the mouthpiece models and was manually

selected. A higher-note fingering normally has a smaller N
than that of a lower-note fingering, for it involves less prom-

inent modes. For a resonator with N ¼ 32 parallel sections

and a sampling frequency of 48 kHz, this model ran at a
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speed more than 30 times faster than real-time on one logi-

cal core of a laptop computer.

B. Fitting of the input impedance and the radiation
transfer function

To design the digital filters corresponding to the imped-

ance model and the radiation model, we employed the non-

linear optimization described by Maestre et al. (2018). The

sound synthesis model was designed to run at a standard

audio sample rate of 48 kHz. Some preprocessing was per-

formed before fitting the digital filter coefficients. For the

cases of TM mouthpiece and cylindrical mouthpiece repre-

sentations, the target normalized input impedance magni-

tude above 8 kHz was set to 1, with a cross-fade region from

7 to 8 kHz. This assumes that no sound is reflected from the

end of the instrument above 8 kHz. For the lumped mouth-

piece representation, the target normalized input impedance

magnitude was cross-faded to 1 in the region from 2 to

3 kHz, for reasons noted in Sec. IV. For all three mouthpiece

models, the magnitude of the radiation transfer function was

set to –40 dB above 8 kHz, as this response exhibited some

noise at higher frequencies due to limitations of the mea-

surement space.

The fittings of the input impedance and the radiation

transfer function are shown in Fig. 12. For the lumped

mouthpiece model, N ¼ 14 parallel sections were used,

while N ¼ 32 for the cylindrical and the TM mouthpiece

models.

C. Analysis of nonlinear dynamics and sound
properties

The sound of the saxophone was synthesized at the

sampling frequency 48 kHz for the note B[4 with different

mouthpiece models. The resonance frequency of the reed

was fr ¼ 1500 Hz, the damping factor was qr ¼ 1:5, the

stiffness of the reed was kr ¼ 8� 106 Pa/m, the density was

q ¼ 1:18 kg=m3, and the speed of sound was defined as

347.23 m/s. The width of the mouthpiece tip window was

w ¼ 12 mm, and the equilibrium height of the reed channel

was H0 ¼ 0:8 mm. The reed parameters were initially cho-

sen based on values provided in the literature (Colinot et al.,
2020; Petersen et al., 2019), though they were subsequently

modified so that the synthesized sounds of different mouth-

piece models were in the same regimes. These values corre-

spond to f ¼ 0:3 in Eq. (13) for the lumped and cylindrical

mouthpiece models, which falls into the typical range f 2
½0:1; 1� (Kergomard et al., 2016).

The synthesis was performed using a linearly varying

mouth pressure with a fixed slope k ¼ 0.01. The normalized

mouth pressure c either increased from 0 to 3 or decreased

from 1.2 to 0. The comparisons of the bifurcation diagrams,

fundamental frequencies, and spectral centroids exhibited

by different mouthpiece models are shown in Fig. 13 for the

increasing and decreasing mouth pressure profiles.

Unlike the traditional bifurcation diagram generated by

solving a nonlinear system theoretically (Dalmont et al.,
2000) or numerically (Colinot et al., 2020), the one shown

at the top of Fig. 13 was obtained by extracting the envelope

of the synthesized mouthpiece pressure p, as has been used

by Colinot et al. (2019). Though it cannot show all bifurca-

tion branches or types, this diagram presents the stable solu-

tions from which it is possible to identify the different

dynamics thresholds, including the oscillation threshold,

extinction threshold, inverse oscillation threshold, and

inverse extinction threshold, and compare them between dif-

ferent mouthpiece models. In addition, one may notice the

sudden jump taking place in the bifurcation diagram along

the lower envelope around c ¼ 1:5, which corresponds to

the point that the oscillation changes from the Helmholtz

FIG. 12. (Color online) The fitting of the modulus (top) and argument (middle) of the impedance and the radiation transfer function (bottom) of the lumped

mouthpiece (left), cylindrical mouthpiece (center), and TM mouthpiece (right). In each plot, dashed lines (red) and solid lines (blue) are used to represent

the original data and the model, respectively.
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motion to the inverted Helmholtz motion, as discussed by

Dalmont (2007). While the overall characteristics remain

similar, the main differences between mouthpiece models

revolve around the extinction threshold identified in the

bifurcation diagram. The thresholds where the regime

changes from Helmholtz motion to inverted Helmholtz

motion also vary among different mouthpiece models. The

difference in thresholds is partially explained by the inhar-

monicity difference as shown in Fig. 10. However, though

inharmonicity of impedance peaks has been shown to influ-

ence dynamics (Dalmont et al., 1995; Doc and Vergez,

2015; Gilbert et al., 2019), its impact on different oscillation

thresholds is still unclear.

The playing frequency fp was also compared based on

its deviation from the frequency of the first peak of the input

impedance f1,

fcents ¼ 1200 log2

fp

f1

� �
; (21)

and the difference can be as large as 15 cents between

mouthpiece models. Such differences are partially contrib-

uted by the inharmonicity among different mouthpiece mod-

els as discussed in Sec. IV B (Coyle et al., 2015; Dalmont

et al., 1995; Gilbert et al., 2019).

The spectral centroids of the radiated sound were com-

pared as well. As shown at the bottom of Fig. 13, the TM

mouthpiece has the highest spectral centroid, mainly due to

its more accurate representation of higher-frequency charac-

teristics as indicated in the input impedance and the radia-

tion transfer function.

The waveforms of the pressure inside the mouthpiece of

two different regimes are shown in Fig. 14. The mouthpiece

pressure waveforms for the three different models are gener-

ally similar to each other, though the TM mouthpiece result

displays the largest fluctuation, especially when the reed is

closed (around the valleys of the pressure waveform). This

can be traced to the discontinuity in the flow model as the

reed channel starts to close and the fact that the TM mouth-

piece model reflects more high-frequency components.

When c ¼ 2, the saxophone is oscillating under the

inverted Helmholtz motion. It is interesting to see that the

cylindrical mouthpiece has a more similar waveform to

the TM mouthpiece than to the lumped mouthpiece model.

This could indicate that under the inverted Helmholtz

motion, where the closing phase of the reed channel is lon-

ger than the opening phase, the inertance of the mouthpiece

plays an important role in determining the waveform.

However, such an assumption needs to be further tested

before a conclusion can be drawn.

Finally, the so-called bifurcation delay was quantita-

tively compared among different mouthpiece models. The

bifurcation delay was first proposed in the context of the

clarinet by Bergeot et al. (2014) and is defined by the differ-

ence between the theoretical oscillation threshold and the

dynamic threshold simulated under dynamic conditions (as

in our experiments). In practice, the bifurcation delay is cal-

culated as BD ¼ Pmdt � Pmst. Pmst is the minimum value of

a static blowing pressure above which an instability can

emerge. Pmdt is the dynamic oscillation threshold where the

periodic oscillation occurs when the mouth pressure

increases. However, the theoretical oscillation threshold is

FIG. 13. (Color online) Comparisons

of the bifurcation diagrams (top), play-

ing frequencies (middle), and radiated

sound spectral centroid (bottom) for

increasing (left) and decreasing (right)

mouth pressure profiles. The (inverse)

oscillation thresholds and (inverse)

extinction thresholds are shown in the

bifurcation diagrams as vertical solid

and dashed lines, correspondingly.
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nearly impossible to estimate for a real instrument. As

shown in the results by Bergeot et al. (2014), decreasing the

mouth pressure changing rate k will make the measured

inverse extinction threshold closer to the theoretical static

oscillation threshold. Based on this, Pmst was set to the

inverse extinction threshold with the smallest pressure

change rate of k ¼ 0.01. The comparison of BD and its

changes with k are displayed in Fig. 15. For a better sense of

the difference, the pressure is shown in pascals rather than

dimensionless pressure in this figure.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an acoustic model of the

mouthpiece as a TM. The TM model was derived from a FE

mouthpiece model and was validated by comparing the cal-

culated input impedance of a mouthpiece-cone system with

measurements. The same measured input impedance was

also used to compare calculated results using lumped and

cylindrical mouthpiece models. The TM mouthpiece model

was shown to be the most accurate representation among all

three models, providing also the highest degree of fidelity in

the high-frequency region.

Using a sound synthesis model based on parallel recur-

sive filters, the three different mouthpiece models were cou-

pled to the same alto saxophone, and a comparison was

performed in terms of the fundamental frequency, inharmo-

nicity, dynamics threshold, playing frequency, spectral cen-

troid, pressure waveform, and bifurcation delay. Different

mouthpiece models clearly show varying behaviors that can

be explained by differences in their inharmonicity and high-

frequency characteristics. In this paper, basic comparisons

were aimed at demonstrating differences in terms of a num-

ber of acoustical and dynamical features in simulated played

conditions, and we leave a detailed analysis of other fea-

tures, such as the influence of inharmonicity or higher

modes on the dynamics, for future studies.

The proposed TM model is flexible and appropriate for

multiple applications as the TM provides an efficient way

to model the mouthpiece while being accurate enough to

retain the complex mouthpiece geometry information. The

TM model, which could be applied to other instruments,

such as the clarinet, can be coupled to different resonators

by taking either the measured or calculated resonator input

impedance as the load impedance, and this can be useful

for instrument prototyping purposes. It should also be

straightforward to use the TM mouthpiece model in a vari-

ety of sound synthesis schemes, leading to a better simula-

tion of both high- and low-frequency regions. In that

regard, a potential application is to transform the TM

scheme into a time-domain scattering representation, such

as those used with digital waveguide models (Scavone,

1997; van Walstijn, 2002).

The TM model can characterize acoustical influences

on the sound and dynamics behavior of the saxophone.

However, it is important to note that both dynamics and the

sound are influenced by aeroacoustic aspects, e.g., the vor-

tex sound and the turbulence, as well, which are not

addressed by this model.
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1The TM mouthpiece model derived from the FE model is accurate to as

high as the mouthpiece’s cutoff frequency around 14 kHz, though only the

part below 8 kHz was validated in this paper.

FIG. 15. (Color online) The comparison of the bifurcation delays with dif-

ferent mouth pressure changing rate k.

FIG. 14. (Color online) The comparison of the waveforms among three

mouthpiece models when (a) c ¼ 0:8 and (b) c ¼ 2.
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