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ABSTRACT

The digital waveguide mesh (DWM) has proven to an efficient and
accurate method for simulating multi-dimensional wave propaga-
tion in various applications such as physical modeling of musical
instruments and room acoustics. However, problems appear when
fitting a DWM to an arbitrary boundary because of the geometric
constraints of a given mesh element. A finer mesh grid is often
used in an attempt to resolve this situation, which entails an as-
sociated computational cost increase. This paper presents a con-
formal method for the rectilinear DWM as an efficient alternative.
The proposed conformal method aims at better approximating rigid
boundaries that are normally not well suited for a rectilinear DWM
structure. It is inspired by the conformal method developed for the
Finite Domain Time Difference (FDTD) scheme where a cell asso-
ciated with the boundary is split with respect to a particular criterion
and the material constant of the cell is adjusted accordingly [1]. By
means of the interleaved waveguide network (IWN) [2], the confor-
mal method is successfully achieved in the DWM.

Index Terms— Digital waveguide mesh, Finite domain time
difference scheme, conformal method, interleaved waveguide net-
work.

1. INTRODUCTION

The digital waveguide mesh (DWM) is an extension of the one-
dimensional digital waveguide to multiple dimensions, describing
wave propagation by using the d’Alembert solution of the wave
equation [3]. Due to its simple and intuitive structure, the DWM has
been actively studied in the realms of physical modeling of musical
instruments, room acoustics and speech processing [4]. However,
due to its inherent geometrical limits, errors occur when dealing
with boundary shapes that do not well fit a given mesh grid. Such
an error may be alleviated by using a finer mesh grid or a more
complex mesh structure, but such approaches result in higher com-
putational complexities. In contrast, Laird et al.[5] proposed a novel
approach that makes use of a triangular mesh structure attached with
rimguides, which is a set of additional fractional delays, giving rise
to a better fit to curved boundaries.

In this paper, we propose another way of efficiently dealing
with boundaries that don’t exactly fit a DWM grid. It is motivated
by the conformal method developed for the Finite Domain Time
Difference (FDTD) scheme, originally proposed in [6] addressing
electromagnetic wave propagation. Schneider et al.[1]’s conformal
method addressed the problem of simulating acoustic wave propa-
gation using the FDTD involving a pressure-release boundary that

doesn’t fit an FDTD grid. In a cell associated with a velocity node
through which the boundary passes, the cell is split if a certain cri-
terion is satisfied and then the mass associated with the cell is re-
duced by half. We extend this simple yet efficient method to the
DWM using an interleaved waveguide network (IWN) [2], which
gives access to a velocity node in a DWM in the form of a scatter-
ing junction.

The remainder of this paper is organized as follows. Section
2 provides a review of the conformal methods developed for the
FDTD. In Section 3, we present a conformal method for the DWM
using the IWN, and Section 4 presents the simulation result of the
conformal method in the DWM as well as a comparison against the
FDTD simulation.

2. CONFORMAL METHOD IN FDTD

2.1. Staircase approximation

In the 2D FDTD scheme, the simplest way of modeling the
pressure-release region, referred to as the Stair-p method [1], is
to set the pressure node outside the boundary to zero. This arises
when 0 < L ≤ 1 in Figure 1 which illustrates a cell associated with
a velocity node. Other nodes are updated according to the usual
FDTD update equations [1]:
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where the value of pressure at time step n is denoted as p(n) with
the subscript (i, j), indicating the node location in the grid and the
values of velocity are denoted as vx(n), vy(n) for x and y compo-
nents, subscripted in the same way as the pressure value. ρ and c are
the mass density and the speed of wave propagation of the acoustic
medium. Δ and T are the spatial step and the time step, respec-
tively. Another staircase approximation method, referred to as the
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Stair-v method [1], sets a pressure node to zero if any of its neigh-
boring velocity nodes are outside the boundary, in order to avoid
the large distortion that would occur if using Stair-p method when
0 < L < 1/2 (Figure 1).

pi,j(n) pi+1,j(n)

vx,i+ 1
2 ,j(n)

Pressure release region, p = 0
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Figure 1: A 2D FDTD cell in which a velocity node v
x,i+

1
2

,j
is

centered.

2.2. Conformal method

In [1], authors proposed a simple conformal method in the FDTD
scheme to handle a boundary that doesn’t fit a FDTD grid. Their
conformal method not only sets pressure nodes outside the bound-
ary to zero but also takes into account the change of the mass in the
cell as the cell at the boundary is split. From Figure 1, Newton’s
second law can be derived as

ρΔ2 ∂

∂t
vx, i+ 1

2 , j = −Δ(pi+1,j − pi,j) (4)

where the force difference between the left-side and the right-side of
the cell is represented at the right-hand side. Under the assumption
that a pressure-release boundary exactly passes through the center
of the cell in Figure 1 in such a way that L = 1/2, then the mass
of the cell is reduced by half, and from (4) we can derive the fol-
lowing equation by using the central difference scheme for the time
derivative in the left-hand side.
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The factor 2 on the right-hand side of (5) indicates the mass reduc-
tion by half and (5) can be viewed as a modified version of updating
equation (2), to be assigned to a split-cell.

The authors of [1] also proposed a more advanced criterion of
splitting a cell referred to as the quantized split-cell (QSC) method
and showed that it yields more accurate results than those obtained
when using either Stair-p or Stair-v method. Figure 2 shows the
scenarios of splitting a cell containing either a vx node or a vy node
using the QSC method. A cell is split when the two following condi-
tions are satisfied : 1) the boundary line intersects the mid-line (the
dashed-line in the middle that passes through all three nodes) of the
cell and 2) the intersection is within the range of 1/4 < L < 3/4,
as shown in Figure 2, regardless of the curvature and the tilt of the
boundary. Then, the pressure node outside the boundary is set to
zero while the velocity node is updated according to the modified
update equation (5). The authors of [1] also investigated reducing
the mass of the cell by a factor of 1/L, rather than 2, but found
mixed results in terms of accuracy.
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Figure 2: Split cells, Left : cell of vx node, right : cell of vy node.
Grey region represents the pressure-release region.

3. CONFORMAL METHOD FOR THE RECTILINEAR
DWM

Since the conformal method needs access to a velocity node placed
in between the neighboring pressure nodes for cell-splitting and
mass reduction, we employed an IWN to consider a velocity node
in a rectilinear DWM where only pressure nodes are present in gen-
eral. The IWN contains junctions of both pressure and velocity,
placed a half sample apart in both x and y directions from each
other, as in the FDTD scheme. In addition, by attaching a self-loop
to a junction, spatially varying material constants (the mass density
and the bulk modulus in the case of acoustic waves) can be handled.
At the velocity node of the split cell in the FDTD scheme, the mass
density is different from that inside the boundary by a factor of 0.5.
To deal with the reduced mass at the split cell in a DWM, mass
reduction should be considered at the velocity junction, and thus
the voltage-centered type IWN [2] is used. The voltage-centered
type IWN enables adjustment of the material constant at the veloc-
ity junction; therefore a reduction of mass in the velocity node can
be managed in a way analogous to the conformal method in the
FDTD scheme. In the voltage-centered type IWN, pressure junc-
tions are updated using the general parallel junction update equation
and a series velocity junction located between pressure junctions is
updated in accordance with the update equation derived from the
scattering junction relation. To derive the update equation for the
velocity junction of a split cell, the scattering junction associated
with a self-loop should first be investigated. As described in [1], for
example, we consider a lossless acoustic medium and the situation
given in the left side of Figure 2 where the boundary line is such
that the condition for the QSC method is satisfied. By means of the
voltage-centered type IWN, impedances of the velocity junction at
the (i + 1

2
, j) are given as [2],
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where YE,i,j, YW,i+1,j are the east side and west side port admit-
tances of the pressure junctions at the nodes (i, j) and (i + 1, j),
respectively. We use N , S, E, W , C respectively indicating north,
south, east, west and the self-loop for the notation of directions
hereafter. Z
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Figure 3: Scattering relation at the velocity junction (i + 1
2
, j)

east side and the self-loop port impedances of the velocity junction
at the node (i + 1

2
, j), respectively. ρi,j , ρi+1,j are the mass densi-

ties at the nodes (i, j) and (i+1, j), respectively and v0 is defined as
the ratio Δ

T
. We let ρi,j = ρi+1,j to preserve the relation v0 =

√
2c

[7] for the 2D DWM at all nodes, satisfying the Courant-Friedrichs-
Lewy (CFL) condition. Note that the factor 2 in the denominator of
the first term on the right-hand side of (8) indicates that the mass is
reduced to half, corresponding to the factor 2 in (5), and the second
term on the right-hand side of (8) is described in terms of the mass
density, by converting the bulk modulus to the mass density using
the relation c =

√
(bulk modulus)/(mass density). By let-

ting ρi,j = ρi+1,j = ρ, impedances above can be re-written as,
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As this scattering occurs at the series junction of velocity, we can
derive scattering relations in terms of wave variables. Reflection
and transmission coefficients characterizing the scattering junc-
tion can be obtained by first deriving beta parameters from the
impedances in (9) and (10) [7] as follows
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Thus expressions of pressure wave variables describing the series
junction at (i + 1

2
, j) are given as (Figure 3)
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The naming convention for a pressure wave variable p−q
i,j (n) is such

that +,− signs in the superscript mean ‘incoming’ to and ’outgo-
ing’ from the junction at the node (i, j), respectively and q in the
superscript indicates the direction that a junction side faces and the
self loop, either N , S, E, W and C. If we write equations above
in terms of wave variables associated with the junctions at (i, j) and
(i + 1

2
, j), we have
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By shifting half samples in all variables in (17), (18), we obtain
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By substituting (23) into (20) and (21), we can supply all the neces-
sary wave variables to the neighboring pressure junctions pi,j and
pi+1,j for the update in the DWM. p−C

i+
1
2

,j
(n) is the only variable

to be determined to operate the scattering junction and we initially
set this value as zero.
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4. SIMULATION RESULT

We consider an ideal circular surface in the rectilinear 2D DWM
with no loss, assuming a pressure-release region outside the bound-
ary. Therefore, pressure traveling waves are perfectly reflected at
the boundary. The mode frequencies of this ideal circular surface
are given analytically as [8]:

fmn =
c

2πr
xmn. (24)

where r is the diameter of the circular membrane and xmn is the
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Figure 4: Results of the conformal method, Top : DWM, Bottom :
FDTD
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Figure 5: The upper line is the magnitude response of the DWM
simulation with the conformal method and the lower line is that of
the DWM simulation with the Stair-p method. The blue dashed
lines indicate the frequencies of the modes as given by (24).

nth zero crossing point of the Bessel function Jm(x), respectively.
In this simulation, the radius of the circle is set to 19 spatial sam-
ples (19Δ). The sampling rate used is 44100Hz. A gaussian pulse

of width 4 (σ = 4 for 1

σ
√

2π
e
− x2+y2

σ2 ) is injected at the center
node ((0,0)) of the circle and the pressure value at the node (-6,6)
is picked up. We first compared the FDTD simulation result and
the DWM simulation result obtained from the conformal method to

verify that the results are the same. Figure 4 shows the compari-
son of these two results. Figure 5 shows the comparison between
the DWM simulation with the Stair-p method and the one with the
conformal method. It is shown that mode frequencies obtained us-
ing the conformal method are better aligned with the analytic so-
lution up to 3500 Hz. At higher frequencies, however, the con-
formal method becomes increasingly subject to distortion, though
always outperforming the Stair-p method. While the computational
complexity at a split node is significantly higher than that of sim-
ple fixed- or open-boundary reflection, split nodes only exist along
boundaries and thus, in general, this method will not significantly
increase the computational demands of a complete simulation.

5. CONCLUSION

We presented a conformal method for the 2D DWM to efficiently
manage the situation where a mesh grid does not fit the boundaries
of a given shape. Using an IWN, a scattering junction at the velocity
node of a split cell is constructed, enabling the adjustment of the
mass of the cell. The proposed conformal method in a DWM shows
the same results as the one obtained using the conformal method
originally developed for the 2D FDTD scheme. Accordingly, the
proposed conformal method improves the performance of a DWM
model when dealing with the boundary as described. Future work
includes extensions to higher dimension DWMs and other types of
boundary condition besides the rigid boundary.
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