
Different Strokes: a Prototype Software System for
Laptop Performance and Improvisation

Mark Zadel and Gary Scavone
Music Technology Area

Schulich School of Music, McGill University
Montreal, Quebec, Canada

{zadel,gary}@music.mcgill.ca

ABSTRACT
This paper presents progress in the design of a new soft-
ware interface for laptop performance and improvisation.
These performances can lack a sense of active creation,
as well as a visual connection between the performer’s ac-
tions and the audio output. This stems partly from cer-
tain patterns in laptop performance in which musicians
resort to heavy automation to cope with performing com-
plex compositions. The software presented here attempts
to address this by requiring that the user create all of
the control sequences on-stage. The user defines graphi-
cal control patterns that are mapped to sample playback.
The current prototype resembles a freehand drawing inter-
face where the strokes create looping and cascading anima-
tions that generate corresponding audio, ultimately creat-
ing music. This style of interface minimizes the use of
prepared material and takes advantage of the computer’s
unique capabilities.

Keywords
Software control of computer music, laptop performance,
graphical interfaces, freehand input, dynamic simulation

1. INTRODUCTION
Laptop performance—musical performance on a stan-

dard computer system without novel controllers, usually
by a solo artist—is an increasingly common mode of live
computer music. The novelty of laptop performance is
starting to fade, however, and it is sometimes criticized by
audiences as being uninteresting. Laptop performances
often foster little sense of the effort, difficulty, or activ-
ity audiences typically expect. A disconnect exists be-
tween the ostensible producer of the music and the music
itself: there is no visible causal link apparent between the
performer’s gestures and the resulting audio[14]. Cascone
notes that the same issues facing live acousmatic music
exist in contemporary laptop performance[2]; these are es-
sentially transferred from live tape music.

Though the live acrobatics of laptop performers can be
intricate and complex, it is more often the case that mu-
sicians exercise limited control over a piece. In these in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NIME 06, June 4-8, 2006, Paris, France
Copyright remains with the author(s).

stances, performance is reduced to triggering events, play-
ing prepared control sequences, calling up presets, and
perturbing scalar parameters. The performance of com-
plex, layered pieces is difficult for a single performer, and
the overwhelming number of variables are cognitively im-
possible to manipulate at once. Performers often have
to resort to preparing automated control sequences and
structures before going on-stage to cope with the complex-
ity of a piece. This allows performance via a manageable
fraction of the system parameters, but comes at the cost
of driving fixed processes with a small set of controls[3].
Further, performance software interfaces are typically or-
ganized as dense on-screen control panels, featuring inde-
pendent scalar widgets that are manipulated individually
via the mouse[8]. This arrangement constricts the con-
trol flow between the musician and the computer system,
additionally compromising live control.

“Preparation” as used here has a different connotation
than it might in acoustic music. Jazz musicians, for ex-
ample, practice various patterns and scales intensively for
use in improvisation. A control sequence programmed into
a computer can be played back exactly, without effort.
Well-prepared human performance is interesting due to
its inherent difficulty and natural variability, while pre-
pared computer playback is not because of its ease and
mechanical consistency.

This research attempts to address some of these issues
in laptop performance by offering an alternative to typical
performance software designs. The software prohibits the
use of predefined control sequences, and aims to allow ex-
pressive performance and improvisatory use. It features
an interface paradigm that focuses on a visual, spatio-
temporal representation. This representation helps estab-
lish a link between performer action and musical output,
hoping to address laptop performance’s lack of visible,
causal gesture. Freehand input via a graphic tablet or
mouse is used to drive the software. Ultimately, the soft-
ware aims to allow for an interesting live experience by
returning a sense of active creation to laptop performance.

This paper presents this software system in compari-
son with various other applications for computer music
performance. The design of the system is presented and
discussed.

2. RELATED WORK
The most widely used examples of laptop performance

software can encourage largely automated live use. These
typically feature control-panel interface designs, which can
constrict live control. The most popular example of con-
temporary performance software is Ableton Live[1], which
allows a musician to layer and process audio clips in real-

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

168



time. Music is performed by starting and stopping groups
of loops, triggering clips, and modifying effects parame-
ters using the on-screen controls. Though some clip re-
arrangement can be done in real-time, it is expected that
the clips and effects setups are arranged before the per-
formance. Pure Data and Max/MSP are the canonical
examples of dataflow music software[12], and are also very
popular for performance. Again, the vast majority of the
work is usually done before the performance in preparing
the patch. The patch is typically controlled live by using
the on-screen widgets.

Less mainstream applications exist that de-emphasize
the use of prepared material and that make use of dynamic
graphics, visual feedback and creative interface design to
enhance interaction and live use. Examples include the
works of ixi software[9] and the FMOL[7] application.

Interfaces for performance which use freehand input also
exist. These make use of a more spatial interface metaphor.
Golan Levin’s work on painterly interfaces[8] features in-
spiring examples of instruments made possible by digital
technology that encourage improvisatory use. The two
examples most relevant here are Levin’s Yellowtail and
Loom applications, as they make use of freehand draw-
ing gestures in a manner similar to our research. These
applications allow the user to draw strokes on the screen
using a pen or a mouse. The drawing gesture is recorded
and replayed repeatedly to animate the on-screen strokes,
and the graphical output is sonified to generate audio out-
put. Amit Pitaru’s Sonic Wire Sculptor [11] creates rotat-
ing, three-dimensional “sculptures” from freehand input
trajectories. The shapes are mapped to sound, allowing
a performer to interactively create looping, multi-voiced
music.

Other musical interfaces also employ a spatial metaphor.
Toshio Iwai’s Electroplankton game for NintendoDS fea-
tures autonomous agents that create music[6]. These are
controlled by the user, and interact with each other and
their environment. Each has individual properties and
sounds. This example is similar to this research in that
the user sets active, spatial structures in motion to gener-
ate musical patterns.

Live coding [4][15] is an innovative laptop performance
technique where artists play pieces through live computer
programming. Our software prototype shares two char-
acteristics with live coding techniques: the desire to build
pieces from minimal starting material in performance, and
the creation of music via concurrent, generative patterns.
Textual programming allows great flexibility and fine gran-
ularity, but takes a substantial amount of effort and tech-
nical proficiency. Our research also aims to allow the live
creation and modification of control patterns, but at a
much higher level using graphical tools. The hope is that
our approach will be a good compromise between control
and efficiency.

3. PROTOTYPE SYSTEM
A prototype system was designed and implemented

which attempts to address some of the above issues and
encourage active, engaging laptop performance. Instead
of preparing note sequences and control mechanisms be-
fore going on-stage, the system requires that the musician
create these mechanisms as performance. The goal was to
foster a more interesting experience for the user, as well as
the audience, and to allow greater performance flexibility.

The system was intended to permit independent control
structures to be assembled quickly and efficiently. The

Figure 1: The interface in action

Figure 2: Particle behaviour at points of intersec-

tion. The colours have been altered to improve

print reproduction.

system targets dance and minimal “glitch” styles, which
are typically structured as layers of looping audio patterns.
A musician is able to generate the same effect by creating
multiple simultaneous control patterns in performance.

The prototype system resembles a freehand drawing ap-
plication, depicted in Figure 1. The program window rep-
resents a two-dimensional space in which the user can draw
strokes. The strokes define paths along which small, white
“particles” may travel. These particles are the active ele-
ments of the system; their movements and positions drive
the sound playback.

Particles have a special behaviour at points where two
strokes intersect. When a moving particle arrives at an
intersection point, it is copied to the other stroke, and
two particles travel outward from the intersection. This is
illustrated in Figure 2.

These simple ideas—particles travelling along strokes
that replicate at the intersections—give rise to the sys-
tem’s behaviour. Sets of overlapping strokes thus create
figures through which the particles travel and cycle. In
turn, these patterns of motion drive audio synthesis, ulti-
mately generating music.

Each drawing gesture made by the user is recorded by
the system. Travelling particles mimic these motions as
they propagate along the strokes, preserving the gestures’
speed and variances. This means that particles always
travel along a stroke in the same direction as its original
drawing gesture.

Any number of particles may travel along a given stroke
at the same time. A particle always follows the user’s
cursor when drawing, causing new particles to be spawned
immediately as intersections are first created.

The motions of these particles govern the sound synthe-
sis via a simple mapping. A stroke can be associated with

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

169



Figure 3: Some typical figures used in performance

a wavetable via keyboard shortcuts. The sound sample is
imagined to be “stretched” along the length of the stroke,
and a given particle moving along the stroke drives the mo-
tion of a corresponding playhead that reads sample data
from the wavetable. Thus, faster drawing motions result
in higher pitches, and slower ones result in lower pitches.
Each stroke is allocated one synthesis voice, and the par-
ticle most recently added to the stroke is the one used to
drive the mapping. Since there is no limit to the number
of strokes, there is no limit to the number of simultaneous
synthesis voices.

As mentioned above, wavetables are associated with
strokes via keyboard shortcuts. The wavetable is selected
from a small, predefined sample set, and subsequently
drawn strokes will be associated with that sample until
another one is chosen. Strokes are coloured according to
their associated wavetable. Silent strokes, with no associ-
ated wavetable, can also be selected for control purposes.

Strokes remain stationary after being drawn. The only
editing operation currently supported is deletion. A voice
may be silenced either by deleting an upstream part of
the figure to stop the flow of particles onto the sounding
stroke, or by deleting the stroke itself. A stroke’s location
on the canvas has no effect on the animation or the sound.
A figure will behave exactly the same regardless of where
it is drawn.

The system can be used with either a graphic tablet
or a mouse. One of the key advantages to this system is
that it uses freehand drawing gestures, which are known to
be very natural[16] and which exhibit interesting, human
variability.

There are a number of typical figures that result from
this system. The simplest is a stroke with a single loop.
A particle orbits around the loop, and a new particle is
emitted on each revolution. Loops can also be made using
multiple strokes. Not all figures need be loops, and cas-
cading sequences of strokes may also be drawn. These are
illustrated in Figure 3.

The system is a self-contained, real-time, graphical ap-
plication implemented in C++. It uses GLUT[5] for graph-
ics, STK[13] for synthesis, and RtAudio[13] for managing
the audio hardware. The code is object-oriented, features
design patterns, and uses the C++ standard template li-
brary. Further implementation details can be found in
[17].

4. DISCUSSION
The prototype system is a first step toward an alter-

native performance interface that attempts to bring an
increased sense of active creation to laptop performance.
It aims to address some of the challenges we detail above.

The system avoids a control-panel-style layout in favour
of a graphical, spatio-temporal representation. This repre-
sentation could help visualize and manage the large amount

of activity present in complex, multi-layered works. Fur-
ther, it helps build a connection between the performer’s
actions, the state of the software system, and the audio
output. If projected, the screen display could help to de-
mystify the performance mechanics for the audience.

With this system, we are returning to the acoustic mu-
sician’s notion of preparation: practicing physical action
on an instrument for performance without automatic aids.
This is reflected in the fact that there is no mechanism
for saving the screen layout or storing predefined con-
trol structures. This forces musicians to approach soft-
ware performance as they might approach acoustic per-
formance: through practice, but not programming. This
philosophy also reinforces the interface’s usefulness in im-
provisation.

The use of freehand gestures is very significant to the in-
terface design. Freehand input with a graphic tablet gives
the performer a natural, high-bandwidth way to interact
with the system that infuses the control data with human
variability. This variability can give the music an organic
quality that is often absent from computer music. A given
piece will sound slightly different each time it is performed,
and it is possible to make mistakes. The use of freehand
input helps to recapture some of these natural, interesting
characteristics of human performance.

The system focuses on the live construction of generative
structures for creating musical patterns. This is similar to
the live coding approach. This aspect of our research tar-
gets styles of computer music where pieces are composed
as layers of looping audio patterns. The system hopes to
allow these structures to be created quickly and efficiently
through graphical means, serving as an intuitive, geomet-
rical way of specifying musical material.

At root, our project aims to be a “spatial language”
for quickly specifying audio patterns. The intention was
to devise a graphical system with atoms, rules and gram-
mar that could be used for creating music. These visual
components would be assembled on-stage by performers to
achieve specific effects and patterns. The system’s gram-
mar is currently limited, but it will be further developed.

An important point is that the system is intended pri-
marily as an interface for audio performance. The visual
component is not necessarily meant to be expressive. In
projecting the graphics, we make visible the performer’s
actions in the same way that one can watch a guitarist’s
hands as he or she plays. The system is more visually self-
explanatory than typical live computer music software,
which could help elucidate the performance for the au-
dience. If the graphics are not projected, however, the
system’s advantages for the performer are still valuable.

There are some outstanding issues present in this early
prototype. The current stroke behaviours make it difficult
to synchronize between two running patterns. Synchro-
nization could be a useful musical tool to have available.
The editing capabilities of the system are currently quite
limited, and only support stroke deletion. Some users have
expressed that it would be useful to include more sub-
tle editing operations. There is also a problem with the
current behaviours for certain stroke topologies. A topol-
ogy with one loop works well, but topologies with two or
more loops constitute a feedback condition. This situa-
tion can be encountered unexpectedly in the course of a
performance. These challenges will be addressed in future
versions of the software.

This project bears similarity to Golan Levin’s work in its
use of freehand drawing gestures and animated stroke tra-

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

170



jectories. While his research provided inspiration for our
work, the overall goals of the two projects differ. Levin’s
work focused on audiovisual performance, the simultane-
ous creation of abstract visuals and sound. As mentioned
above, our project is designed to be a “spatial language”
for audio performance, allowing one to quickly specify
temporal patterns. Levin’s focus was on the aesthetic of
the interaction, while this research focuses on the interface
design issues and the effectiveness of the tool for computer
music performance.

Another work to which this research bears some resem-
blance is Iannis Xenakis’s UPIC system[10]. In UPIC, a
composer uses a graphic tablet to specify two-dimensional
curves that drive various sequencing and synthesis func-
tionality. Our work differs in that we focus on real-time
use, whereas UPIC is strictly an offline system. We also
have a much narrower scope than UPIC, allowing a par-
ticular kind of performance within particular constraints.
Xenakis’s system is a broadly applicable, general-purpose
environment for computer music composition.

An final point to make is that the interface design de-
cisions are idiosyncratic and reflect the opinions of the
designers. They were deemed interesting for this iteration
of the project, but will be developed further. The current
version of the software articulates the flavour of this style
of interface and illustrates some of the possibilities offered
by our approach. Other stroke behaviours and mappings
to audio will be experimented with within the simulation
framework, and the system will certainly evolve in the fu-
ture.

5. CONCLUSION AND FUTUREWORK
This paper has presented research into a software system

for computer music performance. Laptop performance is
becoming increasingly popular, but audiences can be un-
satisfied with the apparent lack of activity and lack of
visual cues it sometimes offers. The prototype software
system takes the first steps toward a new performance in-
terface design that aims to address these issues. It is a
direct-manipulation, graphical interface resembling a free-
hand drawing program that forces control mechanisms to
be assembled live as performance. The system eliminates
the use of predefined control sequences and allows impro-
visation. The variability inherent in the freehand input
helps to recapture some of the “humanness” of acoustic
performance. This scheme highlights one way in which
musicians can exploit the unique affordances of software
systems in a performance context.

The prototype system will be further developed. Us-
ability details will be addressed: the system’s editing func-
tionality will be extended, menus and other interface items
will be added, and the overall graphical feedback will be
improved. MIDI or OSC support could also be added for
controlling external synthesis software instead of using the
application’s internal synthesizer.

Most important, the overall system design will be devel-
oped. While preserving the core principles and feel of the
interface, extended stroke behaviour designs will be found
that enhance the system’s performance capabilities. The
ultimate goal is to have a conceptually minimal system
that allows rich, robust and subtle performance.

6. ACKNOWLEDGMENTS
Thanks to Elliot Sinyor for suggesting “Different Strokes”

as an entertaining working title for this project.

7. REFERENCES
[1] Ableton homepage. http://www.ableton.com/.

[2] K. Cascone. Grain, sequence, system: Three levels of
reception in the performance of laptop music.
Contemporary Music Review, 22(4):101–104, 2003.

[3] N. Collins. Generative music and laptop
performance. Contemporary Music Review,
22(4):67–79, 2003.

[4] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised
Sound, 8(3):321–330, 2003.

[5] GLUT. http:
//www.opengl.org/resources/libraries/glut/,
2006.

[6] T. Iwai. Electroplankton.
http://electroplankton.nintendods.com/, 2005.

[7] S. Jordà. FMOL: Toward user-friendly, sophisticated
new musical instruments. Computer Music Journal,
26(3):23–39, 2002.

[8] G. Levin. Painterly interfaces for audiovisual
performance. Master’s thesis, Massachusetts
Institute of Technology, 2000.

[9] T. Magnusson. ixi software: The interface as
instrument. In Proceedings of the Conference on New
Interfaces for Musical Expression, pp. 212–215, 2005.

[10] G. Marino, M.-H. Serra, and J.-M. Raczinski. The
UPIC system: Origins and innovations. Perspectives
of New Music, 31(1):258–269, 1993.

[11] A. Pitaru. Sonic wire sculptor.
http://www.pitaru.com/sws/, 2003.

[12] M. Puckette. Max at seventeen. Computer Music
Journal, 26(4):31–43, 2002.

[13] G. Scavone and P. Cook. RtMidi, RtAudio, and a
synthesis toolkit (STK) update. Proceedings of the
International Computer Music Conference, pp.
327–330, 2005.

[14] A. Tanaka. Music performance practice on
sensor-based instruments. In M. Wanderley and
M. Battier, editors, Trends in Gestural Control of
Music, pp. 389–405. IRCAM – Centre Pompidou,
2000.

[15] G. Wang and P. R. Cook. On-the-fly programming:
Using code as an expressive musical instrument. In
Proceedings of the Conference on New Interfaces for
Musical Expression, pp. 138–143, 2004.

[16] M. Wright, D. Wessel, and A. Freed. New musical
control structures from standard gestural controllers.
In Proceedings of the International Computer Music
Conference, pp. 387–389, 1997.

[17] M. Zadel. A software system for laptop performance
and improvisation. Master’s thesis, McGill
University, 2006.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

171


