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ABSTRACT
In this paper, a novel and user-friendly granular analysis/synthesis system particularly geared towards en-
vironmental sounds is presented. A granular analysis component and a grain synthesis component were
intended to be implemented separately so as to achieve more flexibility. The grain analysis component seg-
ments a given sound into many ‘grains’ that are believed to be microscopic units that define an overall sound.
A grain is likely to account for a local sound event generated from a microscopic interaction between objects.
Segmentation should be able to successfully isolate these local sound events in a physically or perceptually
meaningful way. The second part of the research was focused on the granular synthesis that can easily modify
and re-create a given sound. The granular synthesis system would feature flexible time modification with
which the user could re-assign the timing of grains and adjust the time-scale. Also, the system would be
capable of cross-synthesis given the target sound and the collection of grains obtained through an analysis
of sounds that might not include grains from the target one.

1. INTRODUCTION
Nowadays, audio rendering in virtual reality applica-
tions, especially games, requires higher standards to
meet the users’ demands. Conventional ways of sound
generation in games, mostly playing pre-recorded sam-
ples, are often limited in their lack of ability to deal with
variations in sounds, for interactions between objects in
games occur in various ways. This problem demands
model-based sound synthesis techniques capable of gen-
erating many sound instance variations without having
to use additional sound samples. Sounds that appear in
games are in general non-musical/verbal, often referred
to as ‘environmental’ or ‘everyday’ sounds. Such sounds
are generated mostly either from interactions between
objects or environmental background that is given in the
virtual space, including bouncing, breaking, scratching,
rolling, streaming, etc. It is very important to maintain
the quality of such sounds for a feeling of reality. In
general, every synthesis technique has its own strength
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and it differs according to the types of sounds. There-
fore it is crucial to choose a synthesis technique appro-
priately, given the sounds to be dealt with. The granu-
lar analysis/synthesis technique is regarded as one of the
promising methods to deal with sounds in games since
the technique can easily preserve complex sound textures
and create variations of the given sound by mosaicking
grains. Thus, it would be helpful to develop a novel
granular analysis-based synthesis framework that could
be used easily by non-signal processing experts to al-
low parametric synthesis controls to generate many vari-
ations of complex sounds. This framework could bene-
fit from granular synthesis to fill the gap between infor-
mation contained locally in the waveform (specific to a
grain) and global information about the sound production
process, such as resonance frequencies. It could also use
information derived from an understanding of physical
processes to control the density and time-distribution of
sound grains.

Since Curtis Roads implemented granular synthesis us-
ing digital computers [1] for the first time, there have
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been many works done on granular analysis/synthesis for
various applications. Picard et al.[2] used a dictionary of
short sound with respect to a given target sound by se-
lecting best matched sound segments in a dictionary with
time modification. Granular analysis/synthesis environ-
ments, provided with GUI have also been developed by
several researchers, as found in [3], [4], [5], [6]. They
serve as tools that enable users to intuitively and inter-
actively synthesize sounds for various applications using
the granular analysis/synthesis framework.

The goal of the research presented in this paper is to flex-
ibly synthesize complex sounds within the framework of
granular analysis/synthesis. To this end, not only existing
granular analysis/synthesis techniques are enhanced and
customized, but also novel features are introduced, cul-
minating in a user-friendly granular analysis/synthesis
scheme. In the analysis stage, a measure referred to
as the ‘stationarity’ is proposed to categorize a com-
plex sound into the region where distinctive micro sound
events can be identified (non-stationary region) and the
region where the boundaries of the micro sound events
are too ambiguous to be distinguished from each other
(stationary region). This is done to adjust parameters
associated with granular analysis so as to achieve more
promising granular synthesis. In the synthesis stage, to
enable flexible synthesis of complex sounds aiming at
various kinds of interaction scenarios, time modifica-
tion allows for seamless time stretching and shrinking
with the aid of proposed gap-filling algorithms and also
for grain time remapping by re-ordering the locations of
grains, which leads to modifying given complex sounds
in a physically meaningful way.

2. GRANULAR ANALYSIS SYSTEM
The granular analysis system involves the decomposition
of a sound into short snippets, termed as the ‘grains’,
on the assumption that a sound is generated from nu-
merous micro-interactions between physical objects. In
the proposed granular analysis system, analysis is based
on a process similar to onset/transient detection for seg-
menting a sound composed of grains that have percus-
sive/impulsive characteristics. The grain analysis system
is implemented in MATLAB with a GUI where one can
set all the parameters (Fig. 1). The parameters used for
analysis are listed in the Table.1.

2.1. Grain Analysis
In order to perform the task of granular analysis, it is
essential to transform an audio signal into a form that

Fig. 1: GUI for granular analysis.

Granular analysis parameters
Density window

Spectral Flux Hop length
Analysis STFT window

RMS window

Segmentation

HPF frequency
Silence threshold
Offset threshold

Stationary Hop length
Analysis Window length

Threshold
Stationary Threshold
regions Min peak height
Non-stationary Threshold
regions Min peak height

Table 1: Granular analysis parameters.

reveals and emphasizes the transients in the audio sig-
nal, referred to as the detection function [7]. Among
many detection functions that have been devised so far,
no dominant detection function that outperforms other
detection functions exists, so a detection function is cho-
sen and used depending on the nature of the given audio
signal and the purpose of the analysis. We have chosen
to use a detection function that measures differences in
the spectral content of transient and non-transient parts
of the signal.

The well-known short-time Fourier transform (STFT) [8]
is used for frame-by-frame analysis, enabling compari-
son of spectral content between neighboring short por-
tions of the signal sequentially. The STFT of x(n) is
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given as

Xk(n) =
N−1

∑
m=0

x(hn + m)w(m)e−2 jπmk/N ,

n = 0,1,2, · · · (1)

where h (‘Hop Length’ in Fig. 1 and Table.1) is the hop
length and w is the window of length N (‘STFT Window’
in Fig. 1 and Table.1). Xk(n) is the kth discrete Fourier
transform (DFT) coefficient of the nth frame. In order
to detect transients, the Spectral Flux (SF) was chosen,
which is defined as below [7],

S(n) =
N−1

∑
k=0
{H(|Xk(n)|− |Xk(n−1)|)}2 (2)

where S(n) is the value of the SF at the nth frame.
H(x) = (x+|x|)

2 is a half-wave rectifier employed to put
an emphasis on only the positive changes. The SF first
measures the square of the Euclidian distance between
magnitude spectra of successive frames and takes into
account only the energy increases in frequencies. De-
pending on the nature of the signal to be analyzed, high-
pass filtering can be conducted to reveal transients more
vividly [9]. The parameter referred to as the ‘HPF fre-
quency’ (Fig. 1 and Table.1) actually defines the cut-off
frequency of the high-pass filter.

2.2. Grain Segmentation

2.2.1. Peak Detection
Since a typical impact sound begins with a transient,
broadband energy and then continues with decaying res-
onances, peaks in the SF are likely to appear around the
beginning point of a local impulsive event. A peak in the
SF, S(npeak), is defined as

S(npeak−1)≤ S(npeak)≥ S(npeak + 1) (3)

where npeak is a sample index on which the peak is lo-
cated. A valley in the SF, S(nvalley), is defined as,

S(nvalley)≤ S(nvalley−1)

and S(nvalley)≤ S(nvalley + 1) (4)

where nvalley is a sample index on which the valley is
located. Prior to conducting peak selection, noise com-
ponents in the SF that may be confused as meaningful
peaks are first discarded by partitioning the overall sig-
nal into silent/non-silent regions. In order to do this, we

propose a parameter referred to as the ‘silent threshold’
(given in the ‘Segmentation’ category as in Fig. 1, Ta-
ble.1) and calculate the frame-based short time root mean
square (RMS) of the overall signal as

RMS(n) =

√√√√ 1
Nrms

Nrms−1

∑
m=0

|x(hrms ·n + m)|2 (5)

where Nrms, hrms is the length of the frame and the hop
length used, respectively (the ‘RMS window’ and the
‘Hop Length’ in the ‘Analysis’ category as in Fig. 1
and Table.1). Regions where RMS(n) are smaller than
the silent threshold could be labeled silent regions and
peaks only in the non-silent regions are considered to re-
duce the chances of including unnecessary noise com-
ponents. Also, a parameter called the ‘Peak Thresh-
old Height’ (given as the ‘Threshold’ in the categories
of ‘Non-Stationary Regions’ and ‘Stationary Regions’
(Fig. 1 and Table.1) is defined to ignore peaks whose
heights appear to be too small, depending on the nature
of the given signal. By using the peak detection method
proposed in [10], peaks that satisfy a certain condition
are picked to determine the grain segmentation. That
condition is associated with a ratio γ in such a way that:

γ <
S(npeak)

(S(nl
valley)+ S(nr

valley))/2
(6)

where S(npeak) is the SF value at the peak location and
S(nl

valley) and S(nr
valley) are the SF values at the neigh-

boring valleys to the left and right sides of the peak
S(npeak). The ratio γ is referred to as the ‘Minimum Peak
Height’ (given as ‘Min Peak Height’ in the categories of
‘Non-Stationary Regions’ and the ‘Stationary Regions’
(Fig. 1 and Table.1)). Only when the ratio of the peak
and the valleys is larger than the minimum peak height,
is S(npeak) chosen as the grain segmentation boundary.
A grain segmentation boundary is set in such a way that
the beginning point of a grain is set at npeak− h

2 , a sam-
ple index ahead of the peak location by half of the hop
length, to consider rising time in the attack phase of an
impulsive event.

2.2.2. Stationarity Analysis
A ‘stationary sound’ is regarded as a sound that would
convey more consistent and regular impressions to lis-
teners, e.g. that of a gentle brook, in terms of texture.
The stationary sounds usually consist of numerous sound
events of very short durations heavily blended with each
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other so that an individual sound event is scarcely identi-
fiable in the overall sound, thus the previously introduced
grain segmentation method would tend not to result in
meaningful sound events. Therefore it is desirable to be
able to adjust criteria for grain segmentation according
to the ‘stationarity’ of a given sound. To achieve this, we
first propose a measure to detect which part of the signal
is stationary or non-stationary. Here we assume that the
stationarity is closely related to how a signal looks in the
time domain, in such a way that a stationary part would
look statistically flat while a non-stationary signal would
look rather ‘bumpy’. The measure proposed is referred
to as the ‘stationarity measure’ and is defined as,

sm(n) =

Nsm
√

∏
Nsm−1
m=0 |x(hsm ·n + m)|

1
Nsm

∑
Nsm−1
m=0 |x(hsm ·n + m)|

(7)

where hsm is the hop length and Nsm (given as the ‘Hop
Length’ and the ‘Window Length’ in the ‘Stationary
analysis’ category in Fig. 1 and Table.1) is the frame
size. The numerator and the denominator are the geomet-
ric mean and the arithmetic mean of the absolute values
of the samples contained in the nth frame. This can be
viewed as the time domain version of the ‘spectral flat-
ness measure’ [11]. The spectral flatness measure corre-
sponds to the extent that a signal is bumpy in the time
domain, as indicated by sm(n). Once stationary/non-
stationary parts are partitioned, we can individually set
the parameters associated with peak detection, so that
there are tighter conditions for non-stationary parts and
more relaxed ones for stationary parts, as separated into
the ‘Non-stationary’ and the ‘Stationary’ categories in
Fig. 1 and Table.1. Fig. 2 shows an example of partition-
ing a signal into stationary/non-stationary regions on the
basis of the stationarity measure. The signal in the top
pane consists of two types of applause sounds. The one
on the left of the blue dashed vertical line in the middle
is applause by a large number of people, while the one
to the right of the blue dashed vertical line is by a small
number of people. The middle pane shows the sm(n),
and it is obvious that the applause by the large audience
has a higher and consistent sm(n), whereas the one by
the small audience has a lower and varying sm(n). The
bottom pane shows that, on the basis of the stationarity
measure, the parameters for peak detection can be sep-
arately set and yield different grain segmentation results
accordingly.

2.3. Meta Data
For further applications, such as feature matching-based
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Fig. 2: Comparison of stationarity measure depending
on the nature of a signal. (a) Original signal. The signal
consists of two types of applause sounds. The one on the
left of the blue dashed vertical line in the middle is ap-
plause by a large audience, while the one to the right of
the blue dashed vertical line is by a small audience. (b)
Stationarity measure of the signal in (a). The blue hor-
izontal line is the silent threshold, set as 0.65. The hop
length and the window length used are 6144 and 1024,
respectively. (c) The result of grain segmentation with
respect to two different sets of parameters. For the sta-
tionary part, the left side, the peak height threshold is
-45dB and the minimum peak height is 11dB, and those
for the non-stationary part, the right side, are respectively
-25dB, 3dB.

synthesis [4], meta data associated with a grain gk(n) (kth
grain in the dictionary), features widely used in music in-
formation retrieval (MIR) and psychoacoustics research,
are extracted as auxiliary information. Selected features
that constitute meta data are the following (they are all
normalized between 0 to 1).

• Energy

en(k) =
lk

∑
m=0
|gk(m)|2 (8)

lk : kth grain’s length

• Spectral Centroid

sc(k) =
∑

N−1
m=0 m|Gk(m)|

∑
N−1
m=0 |Gk(m)|

(9)

Gk(m) : mth DFT coefficient of gk

N : DFT length
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• Spectral Tilt

st(k) =
N ∑

N−1
m=0 m|Gk(m)|−∑

N−1
m=0 m ·∑N−1

m′=0 |Gk(m′)|

N ∑
N−1
m=0 m2− (∑

N−1
m=0 m)

2

(10)

• Spectral Flatness

s f l(k) =

N
√

∏
N−1
m=0 |Gk(m)|

1
N ∑

N−1
m=0 |Gk(m)|

(11)

2.4. Grain Dictionary
All segmented grains are separately stored in a grain
dictionary together with the side information. In many
cases, a grain has a long tail with small amplitude. We
can set the parameter referred to as the ‘Offset thresh-
old’ (Fig. 1 and Table.1), which defines the amplitude
threshold below which the tail is discarded, to efficiently
compress the size of the grain wave data. In the grain
dictionary, an element that represents a grain contains
the following: grain wave data, the starting point and
the end point in the original signal, meta data, sampling
rate. As will be explained later, the starting point and the
end point data enable time modification at the synthesis
stage.

3. GRANULAR SYNTHESIS
With the granular synthesis system we have developed,
the user can flexibly manipulate the temporal aspects of
a sound dictionary. With a sound dictionary given, a user
can perform time-scaling (stretching/shrinking) and can
shuffle grains at will. To this end, algorithms that can fill
gaps which inevitably arise when grain timings are mod-
ified have been devised. As shown in Fig. 3, the grain
synthesis system consists of three components. In the
grain dictionary component, the user can load target and
corpus grain dictionaries from which grains are selected
for the synthesis. Once the grain dictionary is loaded,
the user can manipulate the temporal length of the given
sound by stretching or shrinking intervals between grains
by adjusting parameters that belong to the time stretch-
ing component. The component of time scrub allows for
more flexible time modification in conjunction with time
stretching, by enabling users to scrub the original order
of the grain sequence in the dictionary.

3.1. Grain Dictionaries: Target and Corpus

The granular synthesis system requires two types of dic-
tionaries for synthesis. One is the target dictionary and

Fig. 3: GUI for synthesis.

Time Stretching Parameters

Method
Grain Extrapolation
Itakura-Saito
MFCC

Time Stretch Factor α (> 0)

Window Type Symmetric
One-sided

Grain Start Overlap Number of samples overlapped
Grain Stop Overlap Number of samples overlapped
Grain Selection range Number of grains
Cloud Size Number of grains

Table 2: Time stretching parameters.

the other is the corpus dictionary. In our granular anal-
ysis/synthesis system, the target dictionary provides the
time position information of grains as a target reference.
Let i(k) denote the starting time sample index of the kth
grain, gk, in the target dictionary. The initial operation
of the granular synthesis system is to shift the time posi-
tions of grains in the corpus dictionary, making the start-
ing time positions of the kth grain in the corpus dictio-
nary become i(k). With the time modification processes
that will be explained below, synthesis with respect to the
target sound is achieved in flexible ways.

3.2. Time Stretching/Shrinking
One of the main time modification schemes used in the
granular synthesis system is time stretching and shrink-
ing. Once grains in the given corpus are rearranged with
respect to i(k), the time modification, either stretching or
shrinking, is conducted by controlling intervals between
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i(k). The time stretch factor α (α > 0) controls the time
modification. The new sample index of the starting time
of grains in the corpus dictionary after time modification
is given as

i′(k) = round(α · i(k)) (12)
0 < α < 1 : shrinking

α > 1 : stretching

where ‘round’ denotes the rounding operation. Time
modification inevitably gives rise to unnecessary gaps
between grains, as in

i′(k + 1)− i′(k) > lk (13)

where lk is the length of the kth grain in the corpus dic-
tionary. Not only time stretching but also time shrinking
could possibly create gaps since the lengths of the grains
in the target dictionary are not the same as those in the
corpus dictionary. Fig. 4 shows how time modification
creates gaps. These gaps give rise to audible artifacts
associated with signal discontinuities. It is essential to
devise a way to fill gaps to remove the audible artifacts.
In the present granular synthesis system, two different
approaches for gap filling are proposed.

3.3. Gap Filling Strategies

3.3.1. Gap Filling with Grain Extension Method
One way to fill a gap is to extend the grain placed right
ahead of the gap. The idea of grain extension is in-
spired by the audio signal interpolation/extrapolation that
have been studied and developed for application to sig-
nal restoration for disturbed and missing data [12] [13]
[14]. The grain extension algorithm used here is based
on the Linear prediction (LP), using samples at the end
of the grain to be extended as initial data for the LP. In
[12], an audio extrapolation technique based on the Burg
algorithm-based LP is proposed, which has been adopted
for this grain extension. Estimated LP coefficients allow
for extrapolation of a grain in such a way that past sam-
ples are filtered with the FIR filter whose coefficients are
the LP coefficients. In order first to estimate the LP coef-
ficients to use for grain extension, we begin with a linear
prediction of the last sample of a grain g(n) of length L,

ĝ(L) =
p

∑
m=1

amg(L−m) (14)

where am are the LP coefficients estimated using the last
p samples of g, and ĝ(L) is the estimate of the last sam-
ple of the grain g(L). p is the LP order. Given g(L), am
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Fig. 4: Time stretching and gap filling. (a) original se-
quence of grains gk,gk+1,gk+2 of length lk, lk+1, lk+2, re-
spectively. (b) time stretched with the time stretch factor
α = 2. (c) Gap filling with grain extension (d) Gap filling
with additional grains.

are estimated using Burg’s method. Once the LP coef-
ficients are estimated, they are used to extrapolate g(n)
by predicting the future samples. The first extrapolated
sample, ĝ(L + 1) is obtained as

ĝ(L + 1) =
p

∑
m=1

amg(L−m + 1) = Ag1 (15)

where A and g1 are

A = [ a1 a2 · · · ap−1 ap ] (16)
g1 = [ g(L) g(L−1) · · · g(L− p + 1) ]T (17)

In the same way, we can proceed to produce further sam-
ples just by updating g1 with newly extrapolated sam-
ples. For example, in order to produce ĝ(L+ r), which is
calculated as ĝ(L + r) = Agr, gr should be given as

gr =





[ ĝ(L + r−1) · · · ĝ(L + r− p) ]T if r > p
[ ĝ(L + r−1) · · · ĝ(L + 1)︸ ︷︷ ︸

r−1

· · ·

g(L) · · · g(L− p + r)︸ ︷︷ ︸
p−(r−1)

]T otherwise.
(18)
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The number of samples to be extrapolated is deter-
mined by the sum of the length of the gap and the pa-
rameter ‘Grain Stop Overlap’ (Table.2), which specifies
how many samples are overlapped between neighboring
grains. The LP order p can be arbitrarily chosen as long
as L > p. In general, the more samples used to estimate
the LP coefficients, the more accurate the estimate of the
LP coefficients becomes [15].

3.3.2. Gap Filling with Additional Grain-Based
Method
Since the gap part would likely be similar to the parts
where grains are present, natural gap filling could be
achieved by placing the most similar grains in the parts
where there are grains in the gap, until the gap is com-
pletely filled. The optimal grains for the gap are deter-
mined on the basis of how similar they are to the grain
placed ahead of the gap. Rather than extrapolating exist-
ing grains to fill gaps, these optimal additional grains are
chosen from the grain dictionary and placed in the gap.
This strategy gives a different kind of audible sensation
to the listeners. In order to preserve the natural percep-
tion when filling gaps in this way, it is essential to choose
grains appropriately. To keep the feeling of continuity
with neighboring grains, additional grains that are to be
filled into gaps are selected according to the similarity to
the existing grain.

As the measures for representing the similarity, we use
two features that are based on the spectral distance. One
is the Itakura-Saito (IS) distance [16]. The IS distance
is a measure of the perceptual difference between two
spectra, defined as follows,

DIS(k,k′) =
1

2π

[∫
π

−π

Pk(ω)

Pk′(ω)
− log

Pk(ω)

Pk′(ω)
−1
]

dω (19)

where Pk(ω),Pk′(ω) are the two spectra to be compared.
The other is the distance based on Mel Frequency Cep-
stral Coefficients (MFCC). The MFCC are a perceptually
based spectral feature widely used in speech recognition
and music information retrieval [17]. The MFCC dis-
tance between the two grains is given as

DMFCC(k,k′) =
Ck ·Ck′

|Ck||Ck′ |
(20)

where Ck and Ck′ are kth and k′th grains’ MFCC vectors.

3.3.3. Grain Selection Range and Cloud Size
The simplest way to select an additional grain would be
to select the grain that has the smallest measurable dis-

tance from the preceding grain ahead of the gap. In prin-
ciple, the methods based on additional grains are sup-
posed to compare the target grain, the existing one al-
ready given ahead of the gap, with all the remaining
grains in the corpus dictionary. This often requires heavy
computation when the size of the dictionary is huge. In
particular, if the target sound is relatively homogeneous,
then searching through the entire grain dictionary would
be excessive in the extreme as it would be highly likely
that all the grains in the dictionary are spectrally similar.
In order to let users adjust the tradeoff between the com-
putation load and the extent to which the target grain and
the chosen grain are similar to each other, another param-
eter, referred to as the ‘Grain Selection Range’ (Fig. 3,
Table.2), is proposed. The grain selection range deter-
mines a pool of grains in which a search for an additional
grain is conducted. If the grain selection range is given
ngsr and the kth grain is the target grain, the candidate
grains are defined by their orders in the dictionary, k′, as

{k−ngsr ≤ k′ ≤ k + ngsr, k′ 6= k} (21)

As it is highly likely that the same grain would be re-
peatedly chosen, especially when the grains in the grain
selection range are alike in terms of spectral content, au-
dible artifacts could often be found in the resulting syn-
thesized sound. To prevent this, instead of selecting the
very best matched grain, an additional grain is randomly
chosen from among a pool of best-matched grains. The
number of grains in this pool is referred to as the ‘Cloud
Size’ (Fig. 3, Table.2). The larger the cloud size, the
more random the selection. If the cloud size is set to 1,
then the best-matched grain is selected. Note that if the
cloud size is given as ncs, then it should satisfy the con-
dition ncl ≤ ngsr. Once an additional grain is selected,
the amplitude of that grain is normalized to the average
power of the target grain preceding the gap and the grain
succeeding the gap.

3.4. Windowing
As grains are overlapped and added, it is likely that au-
dible artifacts occur at the joints of grains as a result of
abrupt change of amplitude. To remedy this situation, a
grain is first weighted with a window function to taper
either the end side or the beginning side, or both sides.
The shape of the window is determined by the length of a
grain and the values of the ‘Grain Start Overlap’ (Fig. 3,
Table.2) and the ‘Grain Stop Overlap’ parameters. The
Grain Start Overlap is the number of samples at the be-
ginning of the grain to be tapered, and the Grain Stop
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Overlap is the number of samples at the end of the grain
to be tapered, respectively. Let nstart , nstop be the values
of the Grain Start Overlap and the Grain Stop Overlap
and L be the length of the grain in concern, then using
the Hann window, the window is defined as

w(n) =





0.5(1− cos(π
n

nstart
)).

for 0≤ n≤ nstart

1.
for nstart < n < L−nstop

0.5(1 + cos(π
n− (L−nstop)

nstop
).

for L−nstop ≤ n≤ L

(22)

Depending on values of nstart and nstop, one can make
a window either double-sided or one-sided. In general,
a one-sided window with no tapering at the beginning is
used to preserve the attack transient of a grain. This is of-
ten the case when using the grain extension method. On
the other hand, a double-sided window could be used to
smooth both sides of a grain used for bridging two grains
into the gap when using the additional grain method.

3.5. Grain Extension Method vs. Additional
Grain-Based Method
One thing to take note of is the characteristics of syn-
thesized sounds in accordance with the proposed gap-
filling methods. The principal difference of the grain ex-
tension method and the additional grain-based method
is the grain density after synthesis. The grain den-
sity of the sound synthesized with the grain extension
method varies proportionally with the time stretch fac-
tor, whereas that of the sound synthesized with the ad-
ditional grain-based method is invariant with respect to
the time stretch factor. Fig. 5 shows an example of syn-
thesis with time stretching. Depending on the nature of
the given sound and the user’s purpose, either method
could be preferred. For example, one can create two dif-
ferent kinds of clap sounds based on time modification.
Fig. 6 shows the difference of the time stretched synthe-
sis due to the choice of gap-filling methods1. The synthe-
sis using the grain extension method results in a decrease
of the grain density inversely proportional to the time
stretch factor; on the other hand the synthesis based on
the additional grain-based method keeps the grain den-
sity of the original clap sound. This aspect actually pro-
vides users with another option in synthesis, allowing for

1Sound examples are available at
http : //www.music.mcgill.ca/∼ lee/AES49
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(b) time stretched sound with ratio 2
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(d) synthesized sound with additional grain method (Itakura−Saito)

Fig. 5: (a) Original sound. (b) Original sound stretched
with the time stretch factor α = 2. (c) Gap filling with
the grain extension method. (d) Gap filling with the ad-
ditional grain method.

synthesized sounds that are sparse in terms of the grain
density. In this case, the grain extension method plays
the role of polishing each grain to avoid incurring audi-
ble artifacts due to the abrupt ends of grains.

3.6. Grain Time Remapping
The concept of grain time remapping allows for more

variations. Since all the grains have their own time posi-
tions representing locations of grains on the time axis,
grain time remapping often allows for creating differ-
ent scenarios for sound generations in the same environ-
ment. This can result in many interesting effects. For
example, grain time remapping of the rolling ball sound
would provide listeners with a variety of acoustic sen-
sations since the time sequence of the grains has to do
with the trajectory of the rolling ball, as mentioned in
the previous chapter. Thus adjusting the time sequence
actually have the effect of changing the trajectory of the
ball. For example, if the time sequence of the grains is
reversed (Fig. 7-(b)), the resulting synthesis will sound
as if the ball were rolling backward along the trajectory
of the original sound.
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Fig. 6: Time stretched clap sounds. a) Original sound.
Blue vertical bars denote the grain boundaries. (b) Time
stretched sound by a factor α = 2, with the grain exten-
sion method. (c) Time stretched sound by a factor α = 2,
with the additional grain-based method (Itakura-Saito).

time (original)

time (synthesis)

time (original)time (original)

time (synthesis) time (synthesis)

(a) (b) (c)

Fig. 7: grain time remapping examples. (a) no grain time
remapping. (b) grain time remapping in reverse order. (c)
random grain time remapping.

4. CONCLUSION
The outcome of the current research consists of two com-
ponents. One is granular analysis and the other is gran-
ular synthesis. Both components were implemented in
MATLAB and managed through GUIs. The granular
analysis system is designed to detect onset-like events so
that it can segment a given sound into grains. The granu-
lar analysis system is also able to discern stationary/non-
stationary regions in the given sound and apply different
segmentation parameters for each region, which enables
users to apply different criteria for defining the grain in
each region. In addition, useful audio features are also
calculated for each grain for potential use in synthesis.
Segmented grains are tagged with timing information
and audio-features are stored in a dictionary. In con-

junction with the granular analysis system, a novel, user-
friendly granular synthesis system is presented, whereby
the user can modify the temporal aspect of the sound
in various ways with not only conventional time-scaling
(stretching/shrinking) but also user-defined grain time
remapping functions.

Future work will include several research tasks that could
potentially enhance the current research outcomes. One
would be finding an efficient way for grain compression
other than using the ‘Offset Threshold’ parameter, taking
advantage of the fact it is likely that redundant grains
exist in a dictionary. Another problem to think about is
how to figure out the inherent rhythmic aspect of a given
sound. If we could analyze the rhythm of environmental
sounds, though it might be hard to do so compared to
those of speech and music, it would be beneficial in terms
of the flexibility of the synthesis system.
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