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ABSTRACT:
The timbre of marimba and other idiophone bars can sometimes be polluted by untuned torsional modes, leading to

substandard instruments or rejected materials. Makers have complained of problems with these untuned modes over

a specific range of notes. Marimba, vibraphone, and similar idiophone bars are tuned by carving one side of the bar

to bring up to three flexural modes into harmonic relationships. Torsional and other mode types are commonly left

untuned. The relative frequency of these untuned modes with respect to the fundamental mode will vary along the

keyboard. This paper investigates tuning both torsional and flexural modes simultaneously. This tuning is achieved

using sophisticated carved geometries, and without employing concentrated masses or additional materials. Bars are

modeled using three-dimensional finite elements. Geometry is defined by a large number of input parameters.

Algorithms are implemented to identify bar modes automatically, eliminating the need for human intervention.

Tuning is performed via a Newton-Raphson approach using the Moore-Penrose generalized matrix inverse to solve

systems of tuning equations. This method is found to be effective at finding satisfactory bar geometries in proximity

to initial conditions. Numerous example marimba and vibraphone bar models are provided, representing both typical

and atypical modal tuning ratios. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005062
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I. INTRODUCTION

The bars of marimbas, vibraphones and similar bar per-

cussion instruments are tuned by shaping their geometry.

Bars are typically tuned by carving out a “cutaway” or

“undercut” on the bottom of the bar, while maintaining a flat

playing surface on top. A bar’s fundamental frequency will

be tuned to its intended musical note. Some number of addi-

tional higher partials will also be tuned to harmonic ratios of

the fundamental. Lower notes on marimbas and vibraphones

will commonly have two additional partials tuned, while a

single additional partial will be tuned for higher notes. The

ratios of these tuned partial frequencies to the fundamental

is most often set to 1:4:10 for marimbas and vibraphones

while 1:3:6 can be observed in xylophones (Moore, 1970;

Ordu~na-Bustamante, 1991).

The fundamental and tuned partials of these bars are

produced by flexural modes of vibration with movement

transverse to a bar’s playing surface. These modes are thus

commonly termed “transverse modes” in the literature.

Other modes types, including lateral-flexural, axial, and tor-

sional modes, are not typically tuned. Figure 1 shows exam-

ples of these mode types for a bar with free-free boundary

conditions, along with the naming scheme adopted in this

work. While many of these modes will have a negligible

effect on a bar’s sound, makers have complained of certain

torsional modes polluting bar timbre (Stevens, 2015) leading

to reject bars and wasting valuable materials. These tor-

sional modes can be excited when striking a bar away from

its longitudinal axis of symmetry.

This paper investigates using a three-dimensional (3D)

finite element (FE) model to tune torsional and/or lateral-

flexural modes of aluminum or rosewood bars in addition to

the commonly tuned transverse modes (termed “vertical

modes” in this work). All modes are tuned only by varying

geometry and without attaching any concentrated mass or

reinforcing materials. Sections of uniform thickness are

maintained at the ends of each bar to be consistent with typi-

cal professional instruments and to provide locations for

support cable holes.

II. BACKGROUND

Numerous studies of idiophone bars are available in the

literature. These studies include finite difference models

(Chaigne and Doutaut, 1997; Ordu~na-Bustamante, 1991),

1D FE models with beam elements (Henrique and Antunes,

2003; Petrolito and Legge, 1997, 2005) to 3D FE models

with continuum elements (Bestle et al., 2017; Bork et al.,
1999; Bretos et al., 1999). Topics covered include optimiz-

ing bar geometry (Henrique and Antunes, 2003; Kirkland

and Moradi, 2016; Petrolito and Legge, 1997, 2005), com-

paring FE models with experimental measurements (Bestle

et al., 2017; Bork et al., 1999; Bretos et al., 1997, 1999),
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modeling for fabrication via CNC mill (Kirkland and

Moradi, 2016), and sequential fabrication and model updat-

ing for wooden bars (Mingming, 2011).

Various methods of shape optimization have been

employed in the literature to tune bar cutaways. Henrique

and Antunes (2003) applied both simulated annealing and

sequential quadratic programming (SQP) to tune the modes

of 1D vibraphone bar models by minimizing an error func-

tion. Petrolito and Legge (2005) also employed SQP in tun-

ing 1D aluminum bars, though their approach set modal

frequencies as constraints and sought to optimize bar vol-

ume and/or smoothness. Kirkland and Moradi (2016)

adopted that same approach to tune 3D models of vibra-

phone bars while optimizing bar volume. Soares et al.
(2021) used an evolutionary optimization algorithm to tune

1D bars with simplified undercuts, using a combination of

mode tuning, bar volume and/or smoothness objectives.

The 3D idiophone bar models cited above are nominally

three-dimensional in that, at any given point along their

length, bar thickness is uniform across their width. Put dif-

ferently, each of the 3D bars previously considered is essen-

tially a 2D model extruded into the third dimension.

Previous work by the authors (Beaton and Scavone,

2019) investigated using 3D finite element models to tune

vertical-flexural bar modes. Bar cutaway geometry in that

work was defined either by interpolating between defined

cross-sections at specified positions or interpolating over a

grid of thickness control points. Cross-sectional interpola-

tion required a small number of inputs and was coupled with

Newton-Raphson iterations to tune an equal number of

vertical-flexural modes. This approach led to smooth bar

geometries but had limited ability to affect torsional

behavior. Surface interpolation required a large number of

inputs and was coupled with genetic algorithms to tune

vertical-flexural modes. That approach yielded bar geome-

tries that were in tune, though not smooth. Alternative

genetic algorithm formulations could certainly lead to bars

that are both smooth and in tune, though a large number of

model runs would likely be required.

This study furthers these previous efforts by using 3D

finite element analysis to tune bar torsional modes. Cutaway

geometries are defined using a surface interpolation

approach with enforced symmetry (see Sec. III). This

approach allows for greater flexibility than cross-sectional

interpolation, while maintaining a manageable number of

inputs. While studies cited above employed optimization

methods to tune bar geometry, in this work the tuning prob-

lem is formulated as solving a system of nonlinear equa-

tions. Petrolito and Legge (2005) considered this

formulation, though they expected that the number of input

variables must equal the number of tuned modes and thus

would “not allow sufficient latitude for describing the shape

of the structure.” As will be shown, this formulation can be

employed while allowing the number of input variables to

exceed the number of tuned modes. To accommodate the

additional input variables, models are tuned using a

Newton-Raphson approach adapted to solve underdeter-

mined systems of tuning equations (see Sec. III A). This

method provides the advantages of gradient-based solving

while determining both search direction and step size simul-

taneously, rather than sequentially, as is sometimes required

with other methods. The resulting analyses demonstrate the

feasibility of tuning both flexural and torsional bar modes

solely via changes to cutaway geometry.

III. METHODOLOGY

Bar cutaway geometry was defined by interpolating

thickness over a 2D grid of control points. This same

method was employed in previous work by the authors

(Beaton and Scavone, 2019). Figure 2 shows an example

layout of control points. To enforce cutaway symmetry, and

reduce the number of input variables, some control points

were defined by mirroring others. The control points in

group 1 of Fig. 2 were set as inputs, with group 2 defined by

mirroring group 1. Group 3 control points were defined by

mirroring groups 1 and 2. This doubly mirrored approach

served to enforce two planes of cutaway symmetry and was

termed a quarter-surface definition. Several analyses were

FIG. 1. (Color online) Vibration mode types and labels considered in this

work. Undeformed bar geometry is outlined in black. Free-free boundary

conditions are employed. Mode types: (V)—vertical-flexural mode, (A)—

axial mode, (L)—lateral-flexural mode, (T)—torsional mode. Note that the

bar cutaway in this example results in coupling between deformation types.

Vertical deformation is present in the axial mode, while torsional deforma-

tion occurs in the lateral-flexural mode.

FIG. 2. (Color online) Detailed view of example control points and groups

used to define bar cutaway geometry. Typically, group 1 points were used

as design inputs while points in groups 2 and 3 were defined by mirroring.

Sections of uniform thickness at each end of the bar are not shown.
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also run using a half-surface definition, in which groups 1

and 2 of Fig. 2 were inputs, with group 3 again mirrored.

Given the same doubly symmetric initial geometry, these

half-surface models yielded results essentially identical to

the quarter-surface models. With equivalent results and

lower computational costs, quarter-surface definition was

adopted for all analyses in this work.

Marimba and vibraphone bars of notes F3 and C4 were

selected for analysis. Marimba bars were modeled as rose-

wood while vibraphone bars were defined as aluminum.

Table I outlines modeled bar dimensions while Table II

details the material properties used. Bar dimensions were

based on measured values from an Adams marimba and

Yamaha vibraphone. Rosewood material properties were

adopted from Bork et al. (1999). Aluminum properties were

based on the popular 6061 alloy (Battelle Memorial

Institute, 2020).

A. Tuning approach

The bar tuning problem is formulated as

set gðxÞ ¼ 0; Tmin � xn � Tmax; n 2 1;N½ �; (1)

where gðxÞ is a vector of tuning functions, x is a vector of

bar thickness values at the control points in Fig. 2, Tmin and

Tmax are thickness limits defined in Table I, and n is an index

variable up to the total number of control points, N. A single

tuning function in the gðxÞ vector takes the form

gkðxÞ ¼
fmodel;kðxÞ � ftarget;k

ftarget;k
; (2)

where gkðxÞ is the kth tuning function, fmodel;kðxÞ the mod-

eled frequency of the kth tuned mode, and ftarget;k the target

frequency for that mode. With this formulation each tuning

function, gkðxÞ, represents the normalized error between the

modeled frequency of the kth tuned mode, for a given input

vector x, and the target frequency for that mode. Thus when

gkðxÞ ¼ 0 the kth tuned mode is perfectly in tune. In practice

a tolerance is employed such that if jgkðxÞj � 1 cent 8k, Eq.

(1) is considered solved.

Generally each tuning function, gkðxÞ, will be nonlinear

as the modal frequencies in fmodel;kðxÞ will be nonlinear

functions of the control point thickness values in x. Let K be

the total number of tuned modes, while N is the total number

of control points in Fig. 2. For all models considered in this

work K � 6 and N¼ 48, so K � N. Equation (1) thus

describes an underdetermined nonlinear system (Macconi

et al., 2009). The roots of this system represent bar geome-

tries that tune the specified modes to their desired

frequencies.

Equation (1) was solved by applying the Newton-

Raphson method to an underdetermined system using a gen-

eralized inverse Jacobian matrix. Recall that roots of nonlin-

ear scalar functions can be found using the familiar formula

for Newton-Raphson iteration

yiþ1 ¼ yi �
hðyiÞ
h0ðyiÞ

; (3)

where yi is the estimated root of nonlinear function h(y) at

the ith iteration, and h0ðyÞ the first derivative of h(y).

Equation (3) is applied iteratively from a given starting

point, y0, to find a root of the nonlinear function. This

approach can be expanded to vector inputs and functions as

yiþ1 ¼ yi � J�1ðyiÞpðyiÞ; (4)

where vector yi is the estimated root of vector function pðyÞ
at the ith iteration, and JðyÞ is the Jacobian matrix of partial

derivatives of pðyÞ with respect to the components of y.

Applying Eq. (4) requires inverting JðyÞ (or rearranging and

solving a system of equations), thus the number of terms in

pðyÞ must equal the number of inputs in y to ensure JðyÞ
will be a square matrix.

With K tuned modes, function gðxÞ in Eq. (1) will be a

column vector of length K. Using N control point thickness

values as inputs, x will be a column vector of length N. Thus

the Jacobian matrix JðxÞ containing partial derivatives of

gðxÞ will have dimensions K�N. In such a case, Eq. (1) can

be solved by modifying Eq. (4) to

xiþ1 ¼ xi � JþðxiÞgðxiÞ; (5)

where JþðxÞ is the Moore-Penrose inverse (Ben-Israel,

2002; Penrose, 1955) (sometimes called the pseudoinverse)

of JðxÞ, which now contains the partial derivatives of gðxÞ.
Note that Eq. (5) takes the same form as the Gauss-Newton

method for solving nonlinear least squares problems. When

TABLE I. Modeled bar dimensions based on measurements of an Adams

marimba and Yamaha vibraphone. L and W give bar length and width,

respectively. Tmax indicates the maximum thickness of the indicated bar, as

occurs in the uniform segments at each end. Tmin gives the minimum

observed bar thickness over the whole instrument.

Instrument Note

Bar dimensions [mm]

L W Tmax Tmin

Marimba F3 406 58 24 6

Vibraphone C4 333 57 13 5

TABLE II Bar material properties with: density, q, Young’s modulus, E,

Poisson’s ratio, �, and shear modulus, G. Rosewood properties are adopted

from the literature (Bork et al., 1999). Aluminum properties are from the

standard 6061 alloy (Battelle Memorial Institute, 2020).

Material q [kg/m3] E [GPa] � G [GPa]

Aluminum 2700 68.9 0.33 25.9

Rosewood 1080

x-axis 23.0

y-axis 2.3

z-axis 1.15

xy-plane 0.30 3.0

yz-plane 0.60 1.0

xz-plane 0.45 3.0
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applied to solve an underdetermined linear system the

Moore-Penrose inverse will produce the solution with mini-

mum norm (Ben-Israel and Greville, 2003). Applying the

Moore-Penrose inverse in Eq. (5) thus produces the esti-

mated solution, xiþ1, of Eq. (1) which lies nearest the current

estimate xi. Any values in xiþ1 lying outside the thickness

limits in Table I are replaced with the corresponding limit

value. Convergence will slow as values in xiþ1 reach one of

the thickness limits. To mitigate this effect, Eq. (5) is modi-

fied as

xiþ1 ¼ xi � JðxiÞDðxiÞ½ �þgðxiÞ; (6)

where DðxÞ is a diagonal binary matrix. This matrix serves

to remove the effects of any inputs that have hit a limit and

would be pushed beyond that limit if included in the calcula-

tion. The matrix is defined as

DðxÞ ¼ diag b1ðxÞ; b2ðxÞ;…; bNðxÞ½ �; (7)

bnðxÞ ¼
0 if JþðxÞgðxÞ

� �
n > 0; xn ¼ Tmin;

or JþðxÞgðxÞ
� �

n < 0; xn ¼ Tmax;

1 otherwise:

8>><
>>:

(8)

Using this formulation, Eq. (6) is applied in the same

iterative manner as Eq. (4) to find the roots of gðxÞ.
Examples of other approaches to solve Eq. (1) can be found

in the literature, including Levenberg-Marquardt-type meth-

ods (Kanzow et al., 2004), and methods also employing the

Moore-Penrose inverse (Macconi et al., 2009). The method

used here is selected for its relative simplicity and emphasis

on finding solutions similar to initial geometry.

B. Finite element model

Figure 3 shows an example bar model from this work.

All models considered are comprised of either 8-node or

20-node hexahedral continuum elements arranged in a struc-

tured finite element mesh. The numbers of elements along

the bar’s length, width and thickness directions were defined

and adjusted parametrically. Free-free boundary conditions

were employed in the calculation of mode shapes and fre-

quencies. The calculated results are natural frequencies

without consideration of damping. Analyses were performed

using finite element software written by the first author and

verified against the open-source program CALCULIX (Dhondt,

2019). The Jacobian matrix of Eq. (5) was populated in a

semi-analytical manner. Nodal coordinate derivatives with

respect to input variables were approximated using finite

differences. From there, objective function derivatives were

computed analytically using established methods to com-

pute the required eigenvalue sensitivities (Wang et al.,
1985). Bar cutaway thickness was limited to the range of

values shown in Table I. These limits were based on mea-

surements of existing instruments, recognizing a need for

structural integrity. Evaluation of bar strength or fatigue

when subjected to mallet strikes was not considered in this

work.

IV. MODE IDENTIFICATION

An important and sometimes challenging aspect of this

work was automatically identifying the 3D mode shapes.

Finite element solvers produce modes ordered by frequency,

with no indication of mode type (see Fig. 1). Over the

course of bar tuning it is common for modal frequencies to

change sufficiently to reorder the modes. For this reason, the

program cannot be instructed to tune, for example, the first,

third and fifth modes of the finite element model, as the

modes of interest may not always appear in these positions.

It is desirable that the tuning algorithms run unsupervised,

without any need for the analyst to identify modes manually.

For this reason, functions were implemented to identify

modes automatically, without the need of human

intervention.

This section uses the coordinate system shown in Fig. 3

when discussing bar mode shapes and deformations. Here,

and throughout the paper, modes are named using the mode

type letter abbreviation from Fig. 1, along with the number

corresponding to that mode type. Thus, the third vertical

mode is labeled “mode V3”; the first torsional mode is

“mode T1” and so on. The overall ordering of modes is

inconsequential, provided the number of modes calculated is

large enough to capture those of interest.

A. Shape recognition

While the popular modal assurance criterion (discussed

in Sec. IV B) is often applied to identify modes, it can do so

only by comparison with a set of reference modes. It was

preferable here to identify modes based solely on their dis-

placed shapes. This allowed the tuning algorithm to execute

with any geometry that is generally bar-shaped, regardless

of outer dimensions, mesh or material. With the mode types

shown in Fig. 1 solely of interest, an algorithm was imple-

mented to identify modes by considering nodal

displacements.

It is important to note here that this algorithm performs

well on flat bars but can break down for bars with large cut-

aways. In such cases, coupling between deformation types is

often observed. For example, as is shown in Fig. 1, longitu-

dinal modes can include significant vertical displacements;

FIG. 3. (Color online) Initial (untuned) geometry of an F3 marimba bar

with arbitrary “carved” cutaway shape. Model coordinate axes align with

bar dimensions as: x axis! length, y axis! width, z-axis! thickness.
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lateral-flexural modes can include torsional displacements.

These cases are discussed in subsequent sections.

1. Axial modes

Over the frequency ranges considered in this work, only

the first axial mode, with primary deformation along the

bar’s longitudinal axis, appeared. Thus, this mode was sim-

ple to identify. If the maximum absolute nodal displacement

in the x-direction is larger than the maximum absolute dis-

placements in the y- and z-directions, the mode is identified

as axial.

2. Flexural modes

Flexural modes were identified by locating and assess-

ing areas with low displacement magnitude (i.e., the norm

of the three displacement components); these are the dark

blue areas shown in Fig. 4 and throughout the paper. First,

all nodes with displacement magnitude below a specified

threshold were marked (pink dots, Fig. 4). These nodes were

then separated into contiguous groups, based on element

connectivity. Then, a line of best fit was calculated for each

group (green lines, Fig. 4). Identification of flexural modes

was based on the number and orientation of these lines. Two

or more groups, each with a best-fit line parallel to the y axis

indicates a vertical-flexural mode. Similarly, two or more

groups, all with best-fit lines parallel to the z-axis indicates

a lateral-flexural mode. For flexural modes, the mode num-

ber (e.g., third vertical mode, second lateral mode) is one

less than the number of low-displacement groups.

3. Torsional modes

For flat and near-flat bars, over the frequency ranges

considered, it was possible to identify torsional modes

largely via process of elimination. After ruling out axial and

flexural modes, any remaining modes were identified as tor-

sional. For bars with significant cutaways, where torsional

deformation may be present in lateral modes, a check was

performed on the rotation of bar ends. If they were found to

rotate to a greater extent about the z-axis than the x axis, the

mode was instead labelled as lateral-flexural. This method

of identifying torsional modes by process of elimination was

feasible for this work as other mode types, outlined below,

appeared only in frequency ranges well above any modes

that were tuned.

4. Modes not considered

Several mode types not considered above occur well

beyond the range of frequencies relevant to bar tuning.

These include axial modes along the y- and z-axes, flexural

modes in the y-z plane, and torsional modes about the y- or

z-axes.

B. Modal assurance criterion

The method of identifying modes via shape recognition

proved reliable for bars of uniform thickness or with simple,

modest undercuts. However, this method could run into

trouble when faced with complex cutaway geometry or deep

undercuts producing significant coupled deformation, partic-

ularly in lateral modes. To avoid unidentified or misidenti-

fied modes interrupting tuning iterations, the previously

described shape identification was employed in identifying

modes for the initial geometry (i.e., for the 0th iteration),

and the popular modal assurance criterion (MAC)

(Allemang, 2003) was applied to identify modes in subse-

quent iterations. In each case, modes identified in the previ-

ous iteration were used as reference modes. This approach

produced generally satisfactory results, with a few important

exceptions detailed below.

1. Degenerate modes

Whenever two modes in a bar model were very close in

frequency the possibility of observing degenerate modes

occurred. The mode shape of one or both degenerate modes

will look like a weighted combination of the two modes

with similar frequencies. Identification by automated shape

recognition is not feasible in such a scenario and is fre-

quently even difficult for an analyst to perform manually.

The MAC also struggles in such cases as there will be rows

and columns in the MAC matrix with two similar values,

thus producing ambiguity.

Degenerate modes were observed in this work either

when tuning two different modes to have the same fre-

quency, or when iterative geometry changes would cause

modes to reorder, producing degenerate modes in an inter-

mediate step. In this second case, degenerate modes could

appear during the tuning process even if they would not be

expected with the final geometry.

When degenerate modes were encountered, a third iden-

tification approach was applied which maps the current

geometry back to a geometry with known modes. This

approach is outlined below.

2. Similar modes

The coupling of lateral and torsional deformations pro-

duced by deep undercuts can yield modes with incredibly

similar shapes. Figure 5 shows one such case. The modes

FIG. 4. (Color online) example of identifying modes based on shape recog-

nition. Nodes highlighted in pink were identified as having low displace-

ment magnitude. Lines of best fit for each node group (including interior

nodes, not shown) are plotted in green. The bar’s color map indicates dis-

placement magnitude for the first mode of an aluminum C2 bar with initial

carved geometry. Shape recognition identifies this as mode V1.
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displayed have nearly indistinguishable shapes, while their

frequencies differ by a full 22%. In this and similar cases,

using MAC for mode identification between iterations can

result in ambiguous results even in the absence of degener-

ate modes. Such cases are, however, easily handled using

the same approach employed to identify degenerate modes,

as outlined in Sec. IV C.

C. Mapping models to geometry with known modes

In cases where degenerate modes were encountered a

third, robust yet labor intensive mode identification

approach was employed. In this method, the current geome-

try, with degenerate modes, is mapped to a (typically sim-

pler) reference model with known modes. A mapping

variable, m, is defined to compute input vectors for interme-

diate models between the reference model and the current

model. These intermediate input vectors are calculated as

xint ¼ xref þ m xdeg � xrefð Þ; m 2 0; 1½ �; (9)

where xint is the intermediate model input vector, xref is the

reference model input vector, m is the mapping variable,

and xdeg is the degenerate model input vector. From here the

method works by using the known modes at m¼ 0 to iden-

tify modes in models with progressively larger values of m
using MAC. The degenerate modes can then be identified in

one of two ways. Both options involve generating and evalu-

ating intermediate models with values of m progressively

closer to 1. MAC is used to identify modes in the intermedi-

ate models, using the model with the next-highest value of

m as reference (beginning with the known model at m¼ 0).

In the first option, this process continues with progressively

larger values of m until an intermediate model is produced

that enables identifying the degenerate modes (at m¼ 1)

using MAC.

If identifying the degenerate modes in this manner

using MAC proves problematic, an alternative is to generate

and evaluate enough intermediate models to enable approxi-

mating the frequency of a given mode (e.g., mode V3) as a

function of m. These functions can then be used to predict

the frequency of a given mode type at m¼ 1. Additional

intermediate models are generated until the resulting fre-

quency predictions align with the degenerate mode frequen-

cies sufficiently well to identify the modes.

V. RESULTS AND DISCUSSION

Figure 6 shows the resulting geometry for a rosewood

bar model tuned to frequency ratios of 1:4:10:2:8:6 for

modes V1, V2, V3, T1, T2, and L1, respectively. Figure 7

plots the tuned mode shapes for this bar.

This model exhibits several features appearing in other

models as discussed below. Near each end of the cutaway,

material is concentrated along the bar’s center while the

edges are thin by comparison, creating a sort of central

“spine.” These spines, and the thinner areas adjacent them,

reduce torsional and lateral bending stiffness locally, lower-

ing the frequency ratios of modes T1, T2, and L1 compared

to their untuned state. This effect is evident in Fig. 7 as

modes T1 and T2 show significant change in twist angle

near these spines. At the bar’s midpoint material is distrib-

uted near the edges of the bar away from its center, having

the opposite effect of increasing the bar’s torsional and lat-

eral bending stiffness in these areas.

Average thickness across the bar’s width shows signifi-

cant change at two positions: a noticeable step in the spine

thickness at about a quarter of the cutaway length, and at

each end of the thickened edges along the bar’s midpoint.

These features clearly affect mode V3 as Fig. 7 shows con-

centrations of curvature in this mode at each of these

locations.

Figure 8 shows a progression of submodels. Each sub-

model is the product of a separate analysis with a different

set of modes tuned. Model 1(a) tunes a single mode only.

Model 1(b) tunes the same mode as model 1(a), and one

more. Each subsequent submodel tunes the same modes as

the previous one, plus one additional mode. The target

modal frequency ratios are outlined in Table III. Model 1(f),

the final submodel in Fig. 8, also appears in Fig. 6, while

model 1(e) is shown again in Fig. 9.

Also, included in Fig. 8 are frequency ratios for six

modes in each submodel, some of which are left untuned.

Open circle markers indicate tuned modes while all other

markers represent modes left untuned in the corresponding

submodel. Models 1(a), 1(b), and 1(c) are remarkably simi-

lar, with little deviation from the initial geometry in Fig. 3.

This is unsurprising as these models progressively tune

modes V1, V2, and V3 to the standard 1:4:10 ratios. The

FIG. 5. (Color online) Top view of mode shapes that are similar without

being degenerate. Results shown are from an Adams C3 bar model tuned to

the typical 1:4:10 vertical mode ratios. Coupling between lateral and tor-

sional deformations make it virtually impossible to identify either mode

without additional information. (A) Mode L2, f¼ 2260 Hz. (B) Mode T3,

f¼ 2759 Hz.

FIG. 6. (Color online) Tuned geometry of model 1(f), a rosewood F3 bar

tuned to modal frequency ratios: V1-1, V2-4, V3-10, T1-2, T2-8, L1-6.
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frequency ratios of modes T2 and V3 are very close in

model 1(c), indicating an increased risk of timbral issues for

such a bar. This demonstrates the potential problem when

tuning vertical bending modes in the standard fashion while

leaving torsional modes untuned.

More interesting geometry begins to appear in model

1(d), which adds mode T1 to the set of tuned modes. The

spines discussed previously first appear in this submodel

and become more pronounced in models 1(e) and 1(f).

Some edge thickening is also apparent in model 1(d),

becoming more noticeable in model 1(e), and more concen-

trated in model 1(f).

Table III outlines input parameters for all example

models considered in this work. All models were run using

quarter-surface definition with a 4� 12 grid of control

points, as shown in Fig. 2. Convergence was defined as

having all tuned modes within one cent of their respective

target values. Marimba bar examples with rosewood mate-

rial properties are shown in Figs. 9 and 10. Vibraphone

bar models with aluminum material properties are pro-

vided in Fig. 11. Bar outer dimensions are detailed in

Table I.

Results will be referenced by model number in the dis-

cussion below. See Table III and Figs. 9–11 for info and

resulting bar shapes for each model.

A. Geometry variability

The tuned bar shapes in Figs. 9–11 are quite interesting

and show great variability in geometry. They also range in

complexity. Model 10, which tunes only vertical modes,

looks very similar to a commercial vibraphone bar while

models 2 and 6(a) show only small deviations from typical

marimba bar geometry. Other results, like models 3, 4, 6(b),

or 7 are very different from any bar seen on a professionally

made instrument today.

FIG. 7. (Color online) Tuned mode shapes of model 1(f), a rosewood F3

bar model tuned to frequency ratios: V1-1, V2-4, V3-10, T1-2, T2-8, L1-6.

The undeformed bar position is shown as a black outline of the outer bar

dimensions (cutaway omitted).

FIG. 8. (Color online) Geometry and modal frequency ratios for all model 1

submodels. Model 1(a) begins by tuning only Mode V1. Each successive

model tunes one additional mode until modes V1, V2, V3, T1, T2, and L1

are all tuned in model 1(f). Plotted above is the progression of frequency

ratios for the six modes over each submodel. Circle markers indicate a

mode that is tuned in that submodel. All other markers represent untuned

modes.

TABLE. III Summary of example model input parameters.

Material Note

Target tuning ratios
Initial

geometry

Model

No.V1 V2 V3 T1 T2 L1

Rosewood F3 1 — — — — — Carved 1(a)

1 4 — — — — Carved 1(b)

1 4 10 — — — Carved 1(c)

1 4 10 2 — — Carved 1(d)

1 4 10 2 8 — Carved 1(e)

1 4 10 2 8 6 Carved 1(f)

1 4 10 — 11 — Carved 2

1 4 8 2 8 — Carved 3

1 5 9 3 7 — Carved 4

1 4 10 2 10 6 Carved 5

1 4 10 2 10 — Carved 6(a)

Flat 6(b)

Aluminum C4 1 3 9 — 7 — Carved 7

1 4 8 3 10 — Carved 8

1 4 10 3 12 8 Carved 9

1 5 11 — — — Carved 10
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B. Initial geometry

Models 6(a) and 6(b) in Fig. 10 demonstrate the impor-

tance of initial geometry selection. These models are each

tuned to have the same frequency ratios but have very dif-

ferent geometries. Model 6(a) was initiated with the carved

geometry shown in Fig. 3. Model 6(b) began with a flat bar

of uniform thickness. These results demonstrate how each

iteration of the tuning algorithm searches for the acceptable

geometry nearest the current geometry for that iteration. The

effects on final bar geometries are evident in Fig. 10, as

model 6(a) is relatively smooth, having started from an ini-

tial geometry with a smooth cutaway. By contrast, the cut-

away of model 6(b) includes several areas with maximum

allowable thickness, reflecting the fact that this tuning run

began with a uniform bar of maximum allowable thickness.

When applying this tuning method, the analyst should there-

fore select a desirable bar geometry as starting point.

C. Hinge segments

Models 3 and 4 include thin cutaway segments concen-

trated over short lengths. These thin segments have the

effect of concentrating mode shape curvature in local zones,

thus behaving like a sort of hinge. The positions of these

hinges determine which mode(s) they will affect. In model 4

a hinge near the midpoint along the bar’s length will serve

to lower modes V1 and V3, while having a minimal effect

on mode V2. This is reflected in the tuning ratios of model

4, where the tuning of mode V2 is increased to five times

the fundamental—higher than is typically seen. Model 3

includes locally thin areas near the ends of the cutaway

which curve slightly across the bar’s width. The locations of

these hinge areas will serve to concentrate curvature in

mode V3, thereby reducing its frequency ratio to the value

of eight seen in this model. Model 7 includes similar, more

elongated hinge areas at the ends of its cutaway. These

FIG. 9. (Color online) Tuned rosewood bar geometries for note F3. Ratios

of modal frequencies to the fundamental are indicated for each bar; “-” indi-

cates a mode left untuned. Model numbers are outlined in Table III.

FIG. 10. (Color online) Tuned rosewood bar results for note F3. Ratios of

modal frequencies to the fundamental are indicated for each bar; “-” indi-

cates a mode left untuned. Model numbers and initial geometries are out-

lined in Table III. Though tuned to the same frequency ratios these models

used different initial geometries (see Table III).

FIG. 11. (Color online) Tuned aluminum bar geometries for note C4.

Ratios of modal frequencies to the fundamental are indicated for each bar;

“-” indicates a mode left untuned. Model numbers are outlined in Table III.
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elongated hinges result in lowered frequency ratios for

modes V2 and V3, which are tuned below their typical val-

ues in this model.

Interestingly, model 4 also displays two sets of angled

hinge segments on either side of the central hinge at the

bar’s midpoint. These angled hinges have the greatest effect

on mode T2, lowering its frequency ratio to seven.

D. Lateral material distribution

With bar outer dimensions and thickness limits fixed,

distribution of materials across a bar’s width (along the y
axis) is the most effective way to affect its torsional behav-

ior. This is most readily observable in models 1(f), 4, and 5.

Model 5 includes a locally thickened area along its center

with thin areas on either side, forming a central spine.

Similar features appear in other models to varying degrees.

These central spines with adjacent thin areas serve to main-

tain vertical bending stiffness while reducing torsional and

lateral bending stiffness. Such an effect is most evident in

model 5 which tunes mode L1 down to a frequency ratio of

six. The opposite effect is observed in model 4, which con-

centrates material at the bar’s edges over large portions of

the cutaway. This geometry increases the frequency of tor-

sional modes, particularly mode T1. The combination of

very thick edges and angled hinge segments (discussed

above) in model 4 has the combined effect of raising the fre-

quency ratio of mode T1 while lowering that of mode T2.

E. Constraint effects

Different tuning ratios may be more or less easily

attained, or even infeasible, depending on a bar’s note and

outer dimensions. All models in this work were constrained

to use measured outer dimensions from existing bars tuned

to the typical 1:4:10 ratios. It stands to reason then that mod-

els 4 and 7 have some of the most unusual geometry, as fre-

quency ratios for the three vertical bending modes in these

models depart significantly from 1:4:10.

Outer bar dimensions play a key role in determining the

feasibility of tuning torsional and lateral modes. Bars posi-

tioned on the lower end of a marimba keyboard, around note

C2 for a five-octave marimba, tend to have long cutaways

with mostly thin bar material. Such bars leave little available

material with which to tune other modes. Fortunately,

marimba bars with problematic torsional modes tend to be

further up the keyboard. Such bars will generally provide

greater flexibility in distributing material to tune torsional

modes.

The effect of bar outer dimensions is also evident in the

vibraphone bar models of Fig. 11. As shown in Table I, end

thickness measured for the Yamaha vibraphone bar was

slightly more than half that of the Adams marimba bar,

while their minimum thickness values were similar. This

left a smaller proportion of material for the tuning algorithm

to distribute in the vibraphone bar models. With less distrib-

utable material available, the vibraphone bar models showed

fewer feasible tuning ratios than the marimba bar models.

This situation is reflected in the number of models shown in

Fig. 11 and the tuning ratios selected. Larger outer bar

dimensions would surely increase the number of tuning

ratios achievable for these aluminum bars.

Maintaining segments of uniform thickness at each end

of the bar will also limit attainable frequency ratios to some

extent. Previous works (Henrique and Antunes, 2003;

Soares et al., 2021) that allowed bar thickness to vary over

the entire length were able to achieve a variety of ratios in

vertical bending modes. Uniform ends were maintained in

this work to provide material for pass-through support

cables.

Dual symmetry imposed by the quarter-surface defini-

tion in Fig. 2 will also serve to limit feasible tuning ratios.

This symmetry provided computational benefits by reducing

the number of inputs. Some may also argue symmetric cut-

aways are aesthetically more desirable. Nevertheless, it may

be interesting to explore feasible bar tuning without this

imposed symmetry.

F. Strength considerations

The results presented here are intended to demonstrate

tuning feasibility, not necessarily viable bar designs.

Modeling of bar stresses during a mallet strike was not con-

sidered in this work. The imposed lower thickness limits in

Table I are based on minimum observed thicknesses near

the midpoints of existing bars. Worst-case bending stresses

can be expected at these positions when mallet strikes occur

in these same locations. Limiting modeled bar thickness to

these minimum values should produce bars with generally

comparable strength performance. However, bars with rap-

idly varying geometry, such as models 3, 4, and 6(b) may

produce stress concentrations not present in typical bars.

Fatigue could also become a concern where deformations

are concentrated in small areas, as may be observed in the

hinge segments described above. Any fully viable bar design

must address strength considerations such as these.

G. Practical fabrication aspects

Any of the bars in Figs. 9–11 would require automated

manufacturing on equipment like a CNC mill to produce

such complex shapes while tuning multiple modes to precise

frequencies. The natural variability of wood, both between

samples and even within a sample, will complicate achiev-

ing accurate results through CNC milling. Actual wood will

depart to varying extent (possibly quite significantly) from

the uniform orthotropic materials used in computer models.

Some work has been done exploring marimba bar fabrica-

tion via CNC mill (Mingming, 2011). Sharp edges and steep

slopes observed in models 3, 4, and 6(b), may also prove

impractical for wood, in light of its anisotropy and inherent

heterogeneity.

As a manufactured isotropic material, aluminum lends

itself more readily to CNC milling, though the process is by

no means trivial. Aluminum idiophone bars produced by
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CNC mill also appear in the literature (Kirkland and

Moradi, 2016) with uniform thickness across their width.

Another important practical consideration is the possi-

bility of beating if two modes designed to have the same fre-

quency are slightly misaligned. Such a scenario could arise

due to manufacturing tolerances, material variability or

modeling error. This issue could occur with models 3, 5,

6(a), and 6(b) given their repeated frequency ratios.

Considering these practical aspects, model 2 is likely

the most viable candidate for fabrication amongst the

marimba bar models. This model tunes the frequency ratio

of mode T2 one integer multiple higher than that of mode

V3, while leaving modes T1 and L1 untuned. Model 2 is

thus intended to separate the frequencies of modes V3 and

T2 while departing only mildly from typical cutaway

geometry.

H. Mode participation

A common question in discussing this work is: “what

are the relative magnitudes of these modes in the bar’s

response?” The answer depends on several factors. The

most important factor is strike location and direction. If the

bar is struck at a point where a mode has significant dis-

placement along the direction of the strike, that mode will

be excited. Bars are typically struck perpendicular to the

playing surface with motion predominantly in the z-

direction. Figure 4 shows a bar with color map correspond-

ing to the fundamental mode shape. A mallet strike in a red

area in Fig. 4 would produce maximum participation of this

mode, whereas a strike in a blue area would produce mini-

mum participation. A second factor in modal participation is

radiation efficiency. In the first torsional mode, shown in

Fig. 1(T), the mode shape is anti-symmetric about the bar’s

centerline (along the x axis). On either side of the centerline

the motion of this mode is 180� out of phase. Thus, it is not

expected that this mode would contribute significantly to the

bar’s far-field response. Support conditions on a real instru-

ment and the presence of resonator tubes would also affect

sound radiation from each mode. These considerations pro-

vide some interesting avenues for future investigation.

I. Algorithm performance

The algorithm outlined in Sec. III successfully tuned

bars to the frequency ratios in Table III as well as numerous

others. Not all frequency ratios were achievable using

the model, constraints and tuning approach described in

Sec. III. If an analysis did not converge after a specified

maximum number of iterations, its target frequency ratios

were deemed infeasible within this framework.

As expected, the algorithm identified geometries that

tuned the specified modes while prioritizing similarity to the

given initial geometry. This is evident in models 6(a) and

6(b) as well as model 10. Though only vertical modes are

tuned in model 10, it can be shown that the final input vector

for model 10 is closer to its initial input vector than if thick-

ness had remained constant across the bar’s width (as is the

case in the initial carved geometry). This results from inte-

rior control points exerting greater influence on tuning than

control points on the bar’s edge.

Convergence rates were observed to slow down as

the control point thickness inputs began reaching one of

the thickness limits in Table I. The binary matrix added in

Eq. (6) improved convergence in these cases. Further

improvement was achieved by setting control point thickness

values in the initial geometry (see Fig. 3) near the lower limit.

With many thickness inputs beginning near the lower limit,

these values tended to move away from that limit during tun-

ing rather than toward it. This approach also improved con-

vergence rates, with the caveat that thin initial cutaway

geometries will lead to relatively thin final geometries.

The mode identification methods outlined in Sec. IV

generally performed well, though some issues were noted

identifying lateral modes in the relatively thin vibraphone

bars.

VI. CONCLUDING REMARKS

This work has demonstrated the feasibility of tuning

marimba and vibraphone bar vertical, lateral, and torsional

modes using cutaway shapes that vary along the bar’s length

and width. No concentrated masses or additional materials

were employed. The resulting bar shapes are complex and

would require automated milling to produce. The Newton-

Raphson method, applied to an underdetermined system

using the Moore-Penrose inverse, performed well in tuning

feasible frequency ratios while favoring bar shapes similar

to initial geometries. This approach provides the efficiency

benefits of gradient-based tuning, while allowing a number

of input variables greater than the number of tuned modes.

The surface interpolation employed provides great flexibil-

ity in defining bar cutaway geometry while maintaining a

manageable number of inputs for the tuning procedure.

Methods were implemented to automatically identify mode

shapes, even in the presence of degenerate modes. This abil-

ity is a necessary ingredient for any algorithm seeking to

tune specific 3D modes without the need for human

intervention.

The resulting bar geometries represent interesting new

shapes with varying degrees of viability for bar design.

While numerous frequency ratios were successfully tuned,

using even harmonics, odd harmonics, or a mixture, not all

ratios were possible with the constraints and methods

employed. In some cases, achieving a desired set of fre-

quency ratios may require relaxing symmetry constraints

and increasing the number of geometry control points, for-

going sections of uniform thickness at bar ends, or adjusting

overall bar dimensions or materials. There are, of course,

some frequency ratios that may never be possible due to

practical limitations of bar dimensions and material

properties.

These results raise interesting questions. To what extent

will such tuned torsional modes be audible, depending on

mallet strike location? What frequency ratios for these

J. Acoust. Soc. Am. 149 (6), June 2021 Douglas Beaton and Gary Scavone 3767

https://doi.org/10.1121/10.0005062

https://doi.org/10.1121/10.0005062


modes would be preferable for performers and listeners?

Could such modes be used to create noticeably variable bar

timbre depending on strike location? How will the perfor-

mance of fabricated bars compare with predicted model

results? Such questions provide potential avenues for future

research.
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