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1. INTRODUCTION 

Woodwind music instruments are either based on a 

cylindrical or a conical air-column. To behave properly, any 

woodwind instrument must be so designed that the lowest 

resonances of each note of the first register are well aligned, 

i.e. that they are harmonic [1]. This is necessary for two 

reasons. First, this ensures a proper collaboration of each 

resonance in creating a rich, stable tone in the first 

register. Second, this ensures that the second register is well 

tuned with the first. 

 

Conical-bored instruments such as the saxophone deviate in 

geometry from a perfect cone at both extremities. At the 

large end, the flare angle increases and forms the bell, 

enhancing the radiation of sound. The small end of the air 

column is normally cylindrical to allow a mouthpiece to be 

inserted into or over it.  For saxophones, the larger end of 

the neck is also cylindrical so that it can be inserted into the 

main body of the instrument.  Do these deviations hinder or 

improve the harmonicity of the instrument?  

 

In this paper, we study the impact of the bore shape on the 

harmonicity of the resonances for each note of simplified 

saxophone-like instruments. A number of bore shapes were 

investigated including cones of varying taper angle and 

upper bore deviations in order to gather insight into what 

deviations might be necessary for the proper functioning of 

saxophones. The idea involves calculating the positions of 

the toneholes on a given bore shape for the fundamental 

resonance to correspond with the notes of the musical scale 

and then to calculate the deviation of the second resonance 

from perfect harmonicity. This is done with an optimization 

algorithm [2,3]. For a well-designed instrument, the second 

resonance should be within about 10 cents of two times the 

fundamental resonance frequency, where the interval in 

cents is calculated as . One semitone equals 

100 cents. 

 

The transmission matrix method (TMM) provides an 

efficient means for calculating the input impedance of a 

hypothetical air column [4,5]. With the TMM, a geometrical 

structure is approximated by a sequence of one-dimensional 

segments, such as cylinders, cones, and closed or open 

toneholes, and each segment is represented by a matrix 

(TM) that relates its input to output quantities of pressure 

(P) and volume velocity (U).  The multiplication of these 

matrices yields a single matrix, which must then be 

multiplied by an appropriate radiation impedance at its 

output. That is: 
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The normalized input impedance is then calculated as

Z in Pin /Z0Uin .  

 

2. RESULTS 

Many bore shapes were simulated. Four of them were 

selected for this paper. All geometries are made of a 

cylindrical mouthpiece of 15.8 mm diameter and 50 mm 

length followed by the air-columns. Approximating the 

mouthpiece as a cylinder may not be the most appropriate 

model but this is standard practice in the literature and no 

better geometry appears obvious. For the sake of simplicity, 

the cylindrical model was adopted. All four air-columns 

start with a diameter of 12.5 mm, as is typical for an alto 

saxophone (there is a diameter jump). The first air-column 

(A) is a straight conical bore with an angle of 3 degrees. The 

second air-column (B) is also a straight conical bore but 

with an angle of 3.5 degrees. The third air column (C) starts 

with a segment of cylindrical pipe of 25 mm length 

followed by a conical bore with an angle of 3 degrees. 

Finally, the last air-column (D) starts with a segment of 

conical bore of 50 mm length with an angle of 3.5 degrees 

followed by a conical bore with an angle of 3 degrees. The 

first 200 mm of these geometries are displayed in Fig. 1. 

The first register of the instruments is in tune within 1 cent. 

 

An instrument with a larger angle has a smaller truncation 

ratio [6] and is expected to display better harmonicity. 

Similarly, an instrument with an increased taper in the upper 

part of the bore should also have a better harmonicity [7]. 

The geometries were selected to verify these hypotheses. 

  

Figure 2 displays the deviation in cents of the second 

resonance for each note of the first register of the 

instruments. None of these instruments have sufficiently 

good harmonicity for all notes. For all geometries, the 

harmonicity is increasingly problematic for higher notes. 

Geometry A gives a decent harmonicity for the first 9 notes, 

after which the second resonance becomes increasingly too 

high. Geometry B, which differs from A only in the angle of 



conicity results in lower second resonance for all notes, 

which improves the harmonicity for many notes of the 

instruments but worsens other notes. For geometry C and D, 

the harmonicity is worse than for the straight cones.  

 

In a recent paper [8], the input impedance of three complete 

saxophones was measured from which the resonance 

frequencies were estimated. These measurements correlated 

well with the calculated values based on their measured 

geometries and the harmonicity was very good compared to 

values of the current paper. This suggests that the deviations 

from a cone found on these instruments play a role in the 

proper harmonicity of the instrument and that simple 

modifications such as those studied in this paper are not 

sufficient. The question remains what bore shape might 

achieve the best harmonicity for each note. 

 

3. CONCLUSIONS 

It is generally admitted that the air-column shape of a 

saxophone is a cone, but this is only an idealized 

description. This brief study confirms that a straight conical 

tube is not an appropriate geometry for a saxophone, that 

deviations are necessary to bring the second resonance in 

harmonic relation with the first and that simple 

modifications in the upper part such as an increased angle or 

a segment of cylinder are not sufficient. 

 

The application of an optimization algorithm that allows 

simultaneous variation of tonehole positions and bore shape 

could potentially lead to an improved design and a better 

understanding of the relation between the geometry of the 

bore and the quality of the instruments. Ongoing efforts on 

this topic are providing promising results. 
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Figure 1 Radius (in mm) of bore of the top part of the four instruments: A (diamonds), B (squares), C (triangles) and D 

(crosses) 

 

Figure 2  Frequency deviation in cents of the second resonance relative to twice the fundamental resonance for the four conical 

air-columns: A (diamonds), B (squares), C (triangles) and D (crosses). 
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