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ABSTRACT

The problem of designing a modal reverberator to match a
measured room impulse response is considered. The modal rever-
berator architecture expresses a room impulse response as a parallel
combination of resonant filters, with the pole locations determined
by the room resonances and decay rates, and the zeros by the source
and listener positions. Our method first estimates the pole positions
in a frequency-domain process involving a series of constrained
pole position optimizations in overlapping frequency bands. With
the pole locations in hand, the zeros are fit to the measured impulse
response using least squares. Example optimizations for a medium-
sized room show a good match between the measured and modeled
room responses.

1. INTRODUCTION

Modal synthesis has long been used in computer music to simulate
large resonating acoustic structures [1]. It was arguably first un-
derstood by Daniel Bernoulli circa 1733 [2], when he realized that
acoustic vibrations could be seen as a superposition of pure har-
monic (sinusoidal) vibrations. Constituting a flexible and efficient
approach as compared to convolution techniques, modal structures
have been recently proposed for implementing reverberation: [3, 4]
suggest synthesizing late-field room reverberation using randomly
generated modes; [5, 6] describe how to use measurements to de-
sign room reverberation and electromechanical reverberators from
spectral peak picking, and implement them as a parallel sum of
resonators in a structure termed a “modal reverberator.”

The modal reverberator relies on a numerically robust parallel
structure [7] that provides computational advantages, as the parallel
structure can be efficiently computed, and only audible modes need
to be implemented. The parallel decomposition leads to precise
control over decay rate, equalization, and other reverberation fea-
tures, as they can be individually adjusted on a mode by mode
basis, and are easily slewed over time. Another advantage of the
modal reverberator structure is that separate parameters control
the spatial and temporal features of the reverberation: The mode
frequencies and dampings are properties of the room or resonating
object, describing the mode oscillation frequencies and mode decay
times. The mode amplitudes are determined by the source and lis-
tener positions according to the mode spatial patterns (given room
dimensions and boundary conditions). In this way, the poles of the
resonant filters are fixed according to the room, and the zeros are
derived from the source and listener positions within the room. In
this work, we are concerned with designing a modal reverberator—
that is, finding the poles and zeros of each resonant mode filter—so
that its output approximates a given measured room response.

In the context of adaptive acoustic echo cancellation, [8, 9]
proposed methods for estimating the poles and zeros of moderately
low-order transfer functions used to represent the low-frequency
region of room responses: using multiple impulse responses ob-
tained for different source and listener positions in the same room,
a set of “common acoustical poles" are first estimated using a least-
squares technique; then, different sets of zeros are estimated and
interpolated to model the localization of the source and listener.

In [10], low-frequency modes were identified in the room im-
pulse response spectrogram from local peaks in estimated reverbera-
tion time as a function of frequency. This approach can successfully
find modes and their associated poles and zeros, though it is only
applicable to long-lasting, low-frequency modes.

In [6], the resonant filter parameters were estimated from a
measured room impulse by first finding the mode frequencies from
peaks in the room impulse response magnitude spectrum. The num-
ber of modes was given by the number of spectral peaks above a
given threshold relative to the critical-band-smoothed magnitude
spectrum. The mode dampings were estimated from the rever-
beration time in a band of frequencies about the respective mode
frequencies. Finally, the mode amplitudes were found via least-
squares fit to the measured impulse response, given the estimated
mode frequencies and dampings. While this approach produced a
good match between the measured and modeled impulse responses,
and could be implemented in such a way as to generate audio effects
such as pitch shifting and distortion [11, 12], it was thought that
further optimization could noticeably improve the result. Consider
a pair of modes that are close in frequency. The stronger mode
would likely bias the peak frequency of the weaker mode, as its
spectral peak would be on the sloping shoulder of the stronger
resonance. In addition, while it is common for adjacent modes to
have dampings that differ by a fair amount, the damping assigned to
adjacent modes using the approach of [6] would be nearly identical.

In this work, we use an approach similar to that of [13, 14, 15,
16] to optimize initial estimates of the mode pole parameters. As
a medium-sized room could have upwards of a couple thousand
modes to be modeled, our approach optimizes the mode parameters
in a set of overlapping frequency bands so that any given band
optimization has a manageable number of parameters. Once the
mode pole parameters (equivalently, the mode frequencies and
dampings) are estimated, a linear least-squares fit to the measured
impulse response is used to find the mode filter zeros.

The rest of the paper is organized as follows. Section 2 in-
troduces a modal reverberator parallel structure and outlines the
procedure for pole-zero design from an impulse response measure-
ment. Section 3 describes the procedure used for pole initialization,
and Section 4 describes the pole optimization algorithm. Finally,
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Section 5 presents some preliminary results and Section 6 discusses
potential improvements and applications.

2. MODAL REVERBERATOR DESIGN

Given a reverberation impulse response measurement h(t) and an
input signal x(t), one can obtain the reverberated output signal y(t)
from x(t) by y(t) = h(t) ∗ x(t), where ’∗’ denotes convolution.
The modal synthesis approach [1] approximates h(t) by a sum of
M parallel components hm(t), each corresponding to a resonant
mode of the reverberant system h(t). In the z-domain, each parallel
term can be realized as a recursive second-order system Hm(z).
This is expressed as

Y (z) = Ĥ(z)X(z) =

M∑
m=1

Hm(z)X(z), (1)

where Ĥ(z) is a 2M -order digital approximation of h(t), and each
m-th parallel term Hm(z) is

Hm(z) = (g0,m + g1,mz
−1)Rm(z) (2)

with real numerator coefficients g0,m and g1,m, and

Rm(z) =
1

1 + a1,mz−1 + a2,mz−2
(3)

is a resonator with real coefficients defined by a pair of complex-
conjugate poles pm and p?m. Denominator coefficients are related
to pole angle and radius by a1,m = −2|pm| cos∠pm and a2,m =
|pm|2, and define the m-th modal frequency fm and bandwidth
βm via fm = fs∠pm/2π and βm = −fs log|pm|/π respectively,
where fs is the sampling frequency in Hz. Numerator coefficients
g0,m and g1,m are used to define the complex gain of the m-th
mode [17].

2.1. Design problem

The problem of designing Ĥ(z) from a given measurement h(t)
involves a modal decomposition, and it can be posed as

minimize
p,g0,g1

ε(Ĥ,H), (4)

where p is a set of M complex poles inside the upper half of the
unit circle on the z-plane, g0 and g1 are two sets of M real coeffi-
cients, and ε(Ĥ,H) is an error measure between the model and the
measurement. To find good approximations of dense impulse re-
sponses, one needs to face decompositions on the order of hundreds
or thousands of highly overlapping modes. In this work we solve
this non-linear problem in two steps: first, we find a convenient
set of M modes via constrained optimization of complex poles p;
second, we obtain the modal complex gains by solving a linear
problem to find coefficients g0,g1 as described in Section 2.2.

2.2. Estimation of modal gains

Given a target frequency response H(ejω) and M complex poles
p1 · · · pm · · · pM , it is straightforward to solve for the numerator
coefficients by formulating a linear problem. Let vector h =
[h1 · · ·hk · · ·hK ]T contain K samples of H(ejω) at normalized
angular frequencies 0 ≤ ωk < π, i.e., hk = H(ejωk ). Likewise,
let vector r0m = [r0m,1 · · · r0m,k · · · r0m,K ]T sample the frequency

response of Rm(z) with r0m,k = Rm(ejωk ), and vector r1m =

[r1m,1 · · · r1m,k · · · r1m,K ]T the frequency response of z−1Rm(z)

with r1m,k = e−jωkRm(ejωk ). Next, let Q be the K × 2M ma-
trix of basis vectors constructed as Q = [r01 · · · r0M , r11 · · · r1M ].
Finally, let vector g contain the numerator coefficients arranged
as g = [g0,1 · · · g0,M , b1,1 · · · b1,M ]T . Now we can solve the
least-squares projection problem

minimize
g

‖Qg − h‖2. (5)

2.3. Pole optimization

Recently we proposed methods for modal decomposition of string
instrument bridge admittance measurements (e.g., [14, 16]) using
constrained pole optimization via quadratic programming as de-
scribed in [15], with complexities in the order of dozens of modes.
In such methods, a quadratic model is used at each step to numeri-
cally approximate the gradient of an error function that spans the
full frequency band. Because in this work we deal with decomposi-
tions of much higher order, using this technique to simultaneously
optimize hundreds or thousands of poles is impractical. Therefore,
we propose here an extension of the method to allow for several
pole optimizations to be carried out separately, for different over-
lapping frequency bands. Optimized poles are then collected and
merged into a single set from which numerator coefficients are
estimated by least-squares as described above leading to (5).

3. INITIALIZATION PROCEDURE

A trusted initial set of pole positions is essential for nonlinear, non-
convex optimization. Once the order of the system is imposed, pole
initialization comprises two main steps: modal frequency estima-
tion and modal bandwidth estimation. Modal frequency estimation
is based on spectral peak picking from the frequency response
measurement, while modal bandwidths are estimated from analyz-
ing the energy decay profile as obtained from a time-frequency
representation of the impulse-response measurement.

To impose a modal density given the model order M, we assume
that the decreasing frequency-resolution at higher frequencies in hu-
man hearing makes it unnecessary to implement the ever-increasing
modal density of reverberant systems. To that end, we devised a
peak-picking procedure to favor a uniform modal density over a
warped frequency axis approximating a Bark scale [18]

3.1. Estimation of modal frequencies

Estimation of modal frequencies is based on analysis of the log-
magnitude spectrum Υ(f) of the impulse response. From Υ(f),
all N peaks in fmin ≤ f < fmax, with 0 ≤ fmin < fmax < fs/2,
are found by collecting all N local maxima after smoothing of
Υ(f). For each peak, a corresponding peak salience descriptor is
computed by frequency-warping and integration of Υ(f) around
each peak, as described in [16].

Next, a total of B adjacent bands are defined between fmin

and fmax, each spanning from delimiting frequencies fbl to fbr and
following a Bark scale. This is carried out by uniformly dividing
a Bark-warped frequency axis $ into B portions spread between
warped frequencies $min and $max, and then mapping delimiting
warped frequencies $b

l and $b
r to their linear frequency counter-

parts. To map between linear and warped frequencies, we use the
arctangent approximation of the Bark scale as described in [18].
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From all N initial peaks and corresponding annotated frequen-
cies and saliences, picking of M modal frequencies is carried out
via an iterative procedure that starts fromB lists of candidate peaks,
each containing the initial Nb peaks that lie inside band b. First,
we define the following variables: P as the total number of picked
peaks, N as the total number of available peaks, and Nb as the
number of available peaks in the b-th band. The procedure for peak
picking is detailed next:

1: if N ≤M then
2: pick all N peaks
3: else
4: P ← 0
5: while N − (M − P ) > 0 & M > P do
6: A← b(N − P )/Bc
7: C ← (N − P ) mod B
8: b← 1
9: while b ≤ B do

10: D ← A+ C mod b
11: E ← min(D,Nb)
12: pick the highest-salience E peaks in list b;

remove those E peaks from list b.
13: Nb ← Nb − E
14: N ← N − E
15: P ← P + E
16: end while
17: end while
18: end if

Once the M peaks have been selected, parabolic interpolation
of Υ(f) around eachm-th peak is used for defining them-th modal
frequency fm.

3.2. Estimation of modal bandwidths

Modal bandwidth estimation starts from computing a spectrogram
of the impulse response, leading to a time-frequency log-magnitude
representation Υ(t, f) from which we want to estimate the decay
rate of all L frequency bins within fmin ≤ f < fmax. Several
methods have been proposed for decay rate estimation in the context
of modal reverberation (see [3] and references therein). Since in
our case we only aim at providing a trusted initial estimate of
the bandwidth of each mode, we employ a simple method based
on linear interpolation of a decaying segment of the magnitude
envelope Υ(t, fl) of each l-th frequency bin, as follows.

The decaying segment for the l-th bin is delimited by start
time tls and end time tle. First, tls is defined as the time at which
Υ(t, fl) has fallen 10 dB below the envelope maximum. Second,
tle is defined as the time at which Υ(t, fl) has reached a noise
floor threshold Υth. To set Υth, we first estimate the mean µn and
standard deviation σn of the noise floor magnitude, and then define
Υth = µn + 2σn.

By linear interpolation of the decay segment of each l-th fre-
quency bin, the decay rate τl is obtained from the estimated slope,
and the bandwidth βl is computed as βl = 1/πτl, leading to the
bandwidth profile β(fl). Finally, each modal bandwidth βm is
obtained by interpolation of β(fl) at its corresponding modal fre-
quency fm.

3.3. Pole positioning

Since optimization is carried out in the z-plane, we use estimated
frequencies and bandwidths to defineM initial pole positions inside

the unit circle on the z-plane by computing their angle ωm and
radius |pm| as ωm = 2πfm/fs and |pm| = e−πβm/fs . We use
px to denote the vector of initial pole positions.

4. POLE OPTIMIZATION ALGORITHM

Pole optimization is carried out by dividing the problem into many
optimization subproblems, each focused on one of B frequency
bands and dealing with a subset of the initial poles. In each b-th
subproblem, we optimize only those poles for which corresponding
modal frequencies lay inside the b-th frequency band. To help with
mode interaction around the band edges, we configure the bands to
be partially overlapping. After optimization, we collect optimized
poles only from the non-overlapping regions of the bands.

Prior to segmenting into bands or performing any optimization,
we use the set px of initial M poles to solve problem (5). This
leads to initial gain coefficient vectors gx0 and gx1 . These, together
with initial poles px, are used to support band pre-processing and
optimization as detailed below.

4.1. Band preprocessing

We first uniformly divide the Bark-warped frequency axis $ into
B adjacent bands between $min and $max. Band edges of the b-
th band are $b

l and $b
r . Next, an overlapping region is added

to each side of each band, extending the edges from $b
l and

$b
r to $b

L and $b
R respectively. The outer edges are defined as

$b
L = $b

l − δ
b($b

r −$b
l ) and $b

R = $b
r + δb($b

r −$b
l ), with

δb being a positive real number. The outer edges define the b-th
(extended) optimization frequency band, on which the b-th opti-
mization problem is focused. This is illustrated in Figure 1, where
each optimization frequency band is conformed by three subbands:
a center subband matching the original, non-overlapping band, and
two side subbands.

Once the optimization bands have been configured on the
warped frequency axis $, all band edges are mapped back to the
linear frequency axis f . Then, for each b-th band, two sets of
poles pb and p¬b are created from the initial set px as follows.
Set pb includes all U poles whose modal frequencies fu are in
fbL ≤ fu < fbR , while set p¬b includes the remaining O poles
(with O = M − U ), i.e., those poles whose modal frequency fo
is not in fbL ≤ fo < fbR . Moreover, from initial gain vectors gx0
and gx1 we retrieve the gains corresponding to poles in pb and to
poles in p¬b, leading to two pairs of gain vectors gb0, gb1 and g¬b0 ,
g¬b1 . Finally, with arranged sets of poles and gains, we construct
two models Hb(z) and H¬b(z) of the form of Ĥ(z) in (1). The
first model,

Hb(z) =

U∑
u=1

(gb0,u + gb1,uz
−1)Rbu(z) (6)

with resonatorsRbu(z) constructed from poles pb, will be optimized
to solve the b-th band subproblem (see Section 4.2). The second
model,

H¬b(z) =

O∑
o=1

(g¬b0,o + g¬b1,oz
−1)R¬bo (z) (7)

with resonators R¬bo (z) constructed from poles p¬b, presents fixed
coefficients and is used to pre-synthesize a frequency response to be
used as a constant offset during optimization of the model (6) above
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(see Section 4.3). We include this offset response to account for
how (fixed) off-band modes contribute to the frequency response of
model (6) during optimization.

SIDE 

SUBBAND

SIDE 

SUBBAND

CENTER 

SUBBAND

OPTIMIZATION BAND

BANDBAND BAND

Figure 1: Optimization preprocessing: partition into overlapping
frequency bands on a Bark-warped frequency axis $ (depicted is
band b).

4.2. Band optimization

We parametrize the initial set of U modes inside the b-th band
by representing each u-th mode as a z-plane complex pole pair
pbu in terms of two parameters: an angle parameter wbu = |∠pbu|
and a radius parameter sbu = − log(1 − |pbu|). This leads to two
parameter sets: a set wb = {wb1 · · ·wbU} of angle parameter values,
and a set sb = {sb1 · · · sbU} of radius parameter values. With this
parametrization, we state the b-th band optimization problem as

minimize
wb,sb

ε(Ĥb, Hb)

subject to Cb,
(8)

where Cb is a set of linear constraints specific to band b and
ε(Ĥb, Hb) is an error function, also specific to band b, computed
as described in Section 4.3. Note that numerator coefficients have
been left out as they are not exposed as variables in the optimiza-
tion (see [15]). Constraints Cb are used to restrict the position
and arrangement of poles inside the b-th unit circle sector used
to represent the b-th band on the z-plane. We have schematically
represented the optimization process in Figure 2. We map band
edge frequencies fbL and fbR to sector edge angles ωbL and ωbR via
ωbL = 2πfbL/fs and ωbR = 2πfbR /fs respectively.

A key step before constraint definition is to sort the pole param-
eter sets so that linear constraints can be defined in a straightforward
manner to ensure that the arrangement of poles in the b-th unit cir-
cle sector is preserved during optimization, therefore reducing the
number of crossings over local minima (see [15]). Elements in sets
wb and sb are jointly sorted as pairs (each pair corresponding to a
complex-conjugate pole) by ascending angle parameter wu.

From ordered sets wb and sb, linear constraints Cb are defined
as follows. First, stability is enforced by 0 < sbu. Then, poles are
constrained to stay in the b-th sector via ωbL ≤ wbu < ωbR . Next,
to aid convergence we constrain the pole sequence order in set
wb to be respected. This is expressed by wbu−1 < wbu < wbu+1.
Moreover, assuming that initialization provides an already trusted
first solution, we can bound the search to a region around the
initial pole positions. This can be expressed via the additional

inequalities w− < wbu < w+ and s− < sbu < s+, where ’−’
and ’+’ superscripts are used to indicate lower and upper bounds,
respectively.

We solve this problem by means of sequential quadratic pro-
gramming [19]. At each step, the error surface is quadratically
approximated by successive evaluations of the band approximation
error function described in Section 4.3.

4.3. Band error computation

At each i-th step of the optimization, given a set of poles pb|i
defined from current values in parameter sets wb and sb, the error
ε(Ĥb|i, Hb) is computed by solving a linear problem similar to 5,
but restricted to the b-th frequency band.

First, let vector h = [h1 · · ·hk · · ·hK ]T contain K samples
of the measurement H(ejω) at normalized angular frequencies
ωbL ≤ ωk < ωbR , i.e., hk = H(ejωk ). Similarly, let vector
v = [v1 · · · vk · · · vK ]T contain K samples of the frequency re-
sponse of model Ĥ¬b(z), i.e., vk = Ĥ¬b(ejωk ). Then, we obtain
U frequency response vectors r0u|i = [r0u,1|i · · · r0u,k|i · · · r0u,K |i]T

by using pb|i to evaluate each Rbu(z) in the same frequency range,
i.e., r0u,k|i = Rbu(ejωk )|i. Likewise, we obtain U vectors r1u|i =

[r1u,1|i · · · r1u,k|i · · · r1u,K |i]T by evaluating each z−1Rbu(z), i.e.,
r1u,k|i = e−jωkRbu(ejωk )|i. Next, all 2U vectors r0u|i and r1u|i
are arranged to form a basis matrix Qb|i of size K × 2U as
Qb|i = [r01|i · · · r0U |i, r11|i · · · r1U |i]. Finally, let vector gb con-
tain the numerator coefficients of model Hb(z) arranged as gb =
[gb0,1 · · · gb0,U , gb1,1 · · · gb1,U ]T . With all these, we solve the least-
squares problem

minimize
gb

‖Qb|igb + v − h‖2 (9)

and use obtained vector gb to compute the i-th step error as

ε(Hb|i, Ĥb) = ‖Qb|igb + v − h‖2. (10)

4.4. Pole collection and problem solution

Once the poles of the B overlapping frequency bands have been
optimized, the final set poles p is constructed by collecting all
optimized poles inside each of theB center subsectors, i.e., all poles
whose angle parameter w satisfy ωbl ≤ w < ωbr ,∀b ∈ {1 . . . B}.
Using collected poles, we solve problem (5) of Section 2.2.

5. EXAMPLE RESULTS

We carried out a set of test examples to model an impulse response
measurement taken from a medium-sized room at a sampling fre-
quency of 48000 Hz. In our models, we explored different orders
M = 800, 1200, 1600, 1800, with modes in the region between 30
Hz and 20 kHz. In all cases, we chose to use a sufficiently large
number of bands B = 200, with a constant overlapping δb = 1.0.
Example synthesized impulse responses are available online1.

In Figure 3 we display the spectrogram of the target impulse re-
sponse plus three example models of order M = 800, 1200, 1800.
While we observe an overall good match both in frequency and time,
it is clear how the response of lower order models (e.g., M = 800)
present a more sparse modal structure, especially in the high end.

1http://ccrma.stanford.edu/∼esteban/modrev/dafx2017
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OPTIMIZATION 

SECTOR

UNIT CIRCLE

SIDE  

SUBSECTOR

CENTER      

SUBSECTOR

SIDE 

SUBSECTOR

Initial pole position, off-sector

Initial pole position, on-sector

Optimized pole position, discarded

Optimized pole position, collected

Figure 2: Schematic representation of pole optimization inside a frequency band, which is mapped to a sector of the unit circle on the z-plane.

As it can be perceived from listening to the modeled responses, this
leads to a metallic character in the sound.

To get an idea of the how the modeling error is reduced during
optimization, we compare the error H(ω)− Ĥ(ω) obtained before
and after optimization. This is featured in Figure 4 for M = 1600,
where it is possible to observe the coarse envelope of the error to
decrease by 5 to 10 dB in all frequency regions.

For a detail of how optimization improves the modeling ac-
curacy, in Figure 5 appear the magnitude responses of the target
measurement (middle), initial (bottom) and optimized models (top)
of M = 1600 for three different frequency regions. With regard
to the time domain, initial and optimized impulse response models
are compared to the target measurement in Figure 6, where it is
possible to observe how optimization helps to significantly reduce
the pre-onset ripple of the model.

6. CONCLUSION

We have presented a frequency-domain pole-zero optimization
technique to fit the coefficients of a modal reverberator, applied
to model a mid-sized room impulse-response measurement. Our
method, which includes a pole initialization procedure to favor
a constant density of modes over a Bark-warped frequency axis,
is based on constrained optimization of pole positions within a
number of overlapping frequency bands. Once the pole locations
are estimated, the zeros are fit to the measured impulse response
using linear least squares. Our initial explorations with example
models of a medium-sized room display a good agreement between
the measured and modeled room responses, demonstrating how our
pole optimization technique can be of practical use in modeling
problems that require thousands of modes to accurately simulate
dense impulse responses.

Our initial results show a promising path for improving the
accuracy of efficient modal reverberators. At the same time, opti-
mization could lead to a reduction of the computational cost given
a required accuracy. Besides carrying out a more exhaustive ex-
ploration of model orders and parameter values (e.g. frequency-
dependent overlapping factor), gathering data from subjective tests

could provide a good compromise between perceptual quality and
computational cost. In terms of constraint definition, upper and
lower bounds are still set by hand—further exploration could lead
to methods for designing bounds for pole radii by attending to a
statistical analysis of observed modal decays and therefore avoid an
excess in pole selectivity. A potential development aims at making
the whole process to be iterative: use the optimized solution as an
initial point, perform again the optimization, and repeat until no
improvement is obtained; this could perhaps have a positive effect
in the vicinity of band edges, though its significance would need to
be tested.

In conclusion, we note that modal synthesis supports a dynamic
representation of a space, at a fixed cost, so that one may simulate
walking through the space or listening to a moving source by simply
changing the coefficients of the fixed modes being summed. The
modal approach may thus be considered competitive with three-
dimensional physical models such as Scattering Delay Networks
[20, 21, 22] in terms of psychoacoustic accuracy per unit of com-
putational expense. In that direction, an imminent extension of
our method deals with simultaneously using N impulse response
measurements of the same space (a set of measurements taken for
different combinations of source and receiver locations, as previ-
ously proposed in [8] for low-order equalization models of the low
frequency region) to optimize a common set of poles: at each step,
poles in each frequency band are optimized via minimization of a
global error function that simultaneously accounts for the approxi-
mation error of N models (one per impulse response) constructed
from the the same set of poles. A common set of poles suffices for
each fixed spatial geometry, or coupled geometries.
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Figure 5: Magnitude response of an example model with M = 1600, displayed for three different frequency regions.
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Figure 6: Initial (top) and optimized (bottom) impulse response example models, for M = 1600.
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