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The goal of this internship was to analyze and compare the acoustical properties of different saxo-
phone mouthpieces, and provide a method to compute the input impedance of mouthpieces. For this
purpose, two different real mouthpieces were modeled and the finite element method (implemented
in COMSOL) was used to calculate their acoustical responses. Several methods were investigated to
automatically extract accurate mouthpiece geometry data (such as using a coordinate measurement
machine) but the data was finally directly measured from molds because of time constraints and
because the shapes involved were not too complicated. Then, input impedances of the mouthpieces
were measured to validate the simulations. Furthermore, some time was dedicated to configure
COMSOL to work on a computer cluster, to perform high performance computing and reduce the
simulation times.
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I. GENERALITIES ON ACOUSTICS AND MUSICAL
ACOUSTICS

A. Classical issues in musical acoustics and goal of this
study

Musical acoustics deals with acoustics of musical in-
struments and more generally acoustics in a musical con-
text. We can distinguish some different research axes in
musical acoustics : some people try to link the subjective
perception to the physical properties of instruments and
answer questions such as “Are the Stradivarius violins
really better than the others ?”1, others try to synthe-
size sound using physical modeling or sound processing,
some want to optimize existing instruments (to help in-
strument makers, for example) or create new ones.
In the Computational Acoustic Modeling Laboratory

(CAML), McGill University, research is conducted re-
garding design optimization of wind music instruments
(mostly saxophones for now). As better understanding
of saxophone acoustics could come from a complete and
accurate modelization of the instrument. For the mo-
ment, the body of the saxophone is assumed to be a one-
dimensional air column with some shape modifications,
and the mouthpiece is assumed to be a cylinder of the
same volume as a real mouthpiece (this is a low-frequency
approximation).
Basically, an auto-oscillating musical instrument can

be schematized as in Figure 1 : a source injects energy
into a non-linear element, which will then create an oscil-
lation, the latter being amplified thanks to a resonator,
which will then interact with the non-linear element. For
the saxophone, the source of energy is the musician, who
imposes a constant pressure at the entry of the saxophone
(the mouthpiece). The non-linear element is a vibrating
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Figure 1. Schematic representation of an auto-oscillating mu-
sical instrument

reed attached to the mouthpiece, which transforms the
constant pressure from the mouth into an oscillating pres-
sure, thanks to the oscillation of the reed. Finally, the
resonator is the body of the saxophone itself.

The goal of this internship was then to develop a
method to compute (calculate) the acoustic response of
real or imagined saxophone mouthpieces in order to im-
prove the modelization of the complete instrument. For
this purpose, two real mouthpieces were modeled in a
Finite Element (FE) software, then their responses were
calculated. Finally, the responses were measured thanks
to a probe, and compared to the computed ones. One can
wonder why we want to calculate the acoustic responses,
since we can measure them. In fact, it is easy to measure
them from the back of the mouthpiece (the side of the
neck), but it is very awkward to measure them from the
front (the side of the mouth), because of the configura-
tion of the mouthpiece. So the idea is to try to validate
the FEM for the calculation of the input impedance seen
from the back, since we can make measurements to check
the accuracy of the simulations. Once the reliability of
FEM to compute the input impedance seen from the back
is demonstrated, we assume that it also works fine for the
input impedance seen from the front. So at the end, only
FEM is used to calculate the input impedance.

B. The Helmholtz equation

To be interested in acoustics means to be interested in
the behavior of the pressure field in response to an exci-
tation, and particularly in the behavior of the inducted
disturbance, often called the “acoustic” value (acoustic
pressure p′, acoustic density ρ′, acoustic temperature T ′,
...). Usually, the amplitude of this disturbance is re-
garded as small compared to the ambient state – without
any excitation – which permits us to use a linear approx-
imation in the equations (the “acoustic approximation”).
That approximation can be used to derive from the Eu-
ler’s equation the well-known “d’Alembert’s equation” –
also simply called the “wave equation” – first derived in
the one-dimensional version by d’Alembert in 1747 for
the case of the vibrating string :

∆p′ = 1
c2
∂2p′

∂t2
. (1)

In linear acoustics, that equation is valid for the acous-
tic pressure p′, but holds for acoustic density ρ′, acoustic

temperature T ′ and the divergence of velocity ∇·v.
Since sound is basically just the oscillation of air at a

certain frequency, when one studies the acoustical prop-
erties of a medium or an object, it is the response to oscil-
lating excitations at different frequencies that is studied.
Furthermore, as the wave equation is linear and has time-
independent coefficients, the resulting field is expected to
be oscillating at the same frequency as the excitation ev-
erywhere. Thus, we can assume, using the complex for-
malism, that p′ (simply noted p hereafter) has the form

p(r, t) = Re
(
p̂(r)ejωt

)
(2)

where ω is the angular frequency of the excitation, and
p̂ is the complex amplitude of p.
The wave equation (1) is then transformed into the

Helmholtz equation

∇2p̂+ k2p̂ = (∇2 + k2)p̂ = 0 (3)

with k = ω
c being the wavenumber and c the speed of

sound in air.
That equation governs the spatial dependency of p,

which permits us to know p completely, since the tempo-
ral part is already known. The goal is then to solve the
Helmholtz equation for the frequencies of interest.

C. Waves in the mouthpiece

In saxophones, and in acoustic tubes in general, wave
propagation can be described by a set of propagation
modes. In the case of a cylindrical duct, all modes except
the planar mode are evanescent below a certain frequency
(the frequency of the first transverse mode). Considering
in a first approximation that mouthpieces have a cylin-
drical shape, with a radius r = 1 cm, it can be shown2
that this frequency is approximately given by :

ft = 1.84c
2πr ∼ 10 kHz (4)

where c = 340 m · s−1 is taken.
For frequencies lesser than ft, the mode is evanes-

cent and then only the plane-wave mode can propagate.
Of course, the first propagating transverse mode is well
within the range of human hearing (20 Hz− 20 kHz) but
excitation of this mode requires transverse circular mo-
tion, which will not occur with any significance in mu-
sical instruments. Then we now assume that there are
only planar waves in the mouthpiece (and in fact we can
even assume that this is also true in the whole instru-
ment, since these modes are not well excited and appear
at high frequencies). That is, p̂ has the form

p̂ = C−e
jkx︸ ︷︷ ︸

p̂−

+C+e
−jkx︸ ︷︷ ︸
p̂+

(5)

where p̂− and p̂+ are the two components of the travelling
wave, respectively travelling in the −x and +x direction,
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and C− and C+ are two complex constants depending on
the boundary conditions.

The linearized Euler equation, in the one-dimensional
case

∂u

∂t
= − 1

ρ0

∂p

∂x
(6)

(ρ0 being the undisturbed air mass density)
now gives us

û = 1
Zc

(p̂+ − p̂−) (7)

(where Zc = ρc is called the characteristic impedance of
air).

D. Input impedance

A classical way to characterize acoustic components
like mouthpieces or musical instruments is to study their
“input impedance” Zin(f) = p̂in(f)/ûin(f), where p̂in
and ûin are the (complex) acoustic pressure and (com-
plex) air particle velocity at the input of the component.
Indeed, the input impedance of a component can give us
a lot of information3. Basically, its amplitude quantifies
the easiness to set in motion the air thanks to a cer-
tain applied oscillating pressure (or a certain applied air
velocity). Furthermore, as a complex valued function,
the phase of the input impedance gives us information
about the relative phase of pressure and velocity, and
we can extract from it information like the reflection co-
efficient, resonant frequencies of the component or even
reconstruct its bore4.

Let us now calculate the input impedance of a cylinder
depending of his load impedance ZL. We have

Zin = p(0)
u(0)

= Zc
1 + C−/C+

1− C−/C+
(8)

and

ZL = p(L)
u(L)

= Zc
C−/C+e

jkL + e−jkL

C−/C+ejkL − e−jkL
. (9)

So

C−/C+ = ZL/Zc − 1
ZL/Zc + 1e

−2jkL

which, injected in equation (8), gives

Zin = Zc
ZL cos(kL) + jZc sin(kL)
Zc cos(kL) + jZL sin(kL) . (10)

Later, we will use that formula to take into account
the effect of an added cylinder at the input of the mouth-
pieces during measurements.

E. A modelisation of the losses

We now present a model to take into account the losses
occurring with acoustic waves5. In practice, viscous drag
and thermal conduction occur along the mouthpiece walls
and cause deviations from ideal (lossless) behavior. Fric-
tion along the walls acts to resist the acceleration of air in
the mouthpiece and thus decreases the resonant frequen-
cies of the mouthpiece. These effects take place within
a thin boundary layer along the bore walls and are car-
ried by vorticity and entropy modes5. The thicknesses
of the viscous and thermal layers are dependent on the
angular frequency ω and the angle of incidence with the
bore θi and diverge as the frequency goes to zero. As
simulations will show, the effect of losses is to reduce the
amplitudes and frequencies of the resonant peaks of the
input impedance, but we will see that a lossless model
is already a fairly good approximation. The modelisa-
tion used consists in adding surface admittance Ys to the
walls, given by :

Ys = 1
2 (1− i) ω

ρc2
[
lvor sin2 θi + (γ − 1) lent

]
(11)

where

lvor = 1
|kvor|

=
√

2µ
ωρ
,

lent = 1
|kent|

=
√

2κ
ωρCp

= lvor√
Pr

,

Pr = µCp
κ
,

kvor and kent are the wave number of the vorticity and
entropy modes, µ is the dynamic viscosity, Cp is the spe-
cific heat capacity, κ the thermal conductivity, and Pr
the Prandtl number.

II. THE FINITE ELEMENT METHOD (FEM)

A. Principles

We used the Finite Element Method (“FEM” here-
after) to compute the input impedances of the saxo-
phone mouthpieces. Since this method could require en-
tire books to be presented, and we did not really need to
go into the details of it during this internship, we will just
present the main ideas necessary to the understanding of
our study.
First of all, it is important to know that the FEM re-

lies on the discretization of the domain of interest. That
is, the first step consists in meshing the domain. Most
commercial FEM software systems include an automatic
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mesh generator (mesher), but it is almost always possi-
ble to specify some constraints on some sub-domain (for
example, one may wants to refine the mesh on some very
thin part of the domain).

The problem is then expressed in a matricial formu-
lation. The complex initial problem is thus reduced to
solving a very big linear system, for which algorithms
are well known and implemented in software. There are
many FEM software systems, each one being very effi-
cient in one or several domain of physics, and with or
without a model builder and an automatic mesher.

The software used is “COMSOL Multiphysics” (for-
merly called “FEMLAB”). It is a commercial software
which has the advantage of permitting cluster comput-
ing. Models from CAD softwares like SolidWorks and
CATIA can be imported into COMSOL but it requires
an additional (paying) module. One of the most interest-
ing features in COMSOL is that different fields of physics
can be coupled. For example one can be interested in the
stresses in the reed in addition to the acoustics of the sax-
ophone mouthpiece. We would then use the “Acoustics”
and “Structural Mechanics” modules and couple them.
In this study, we only used the “Acoustics” module, be-
cause we considered the reed as non-vibrating.

We have

∇2p̂+ k2p̂ = 0. (12)

We multiply it by a scalar function φ and integrate it
over the domain Ω :

∫
Ω
φ
[
∇2p̂+ k2p̂

]
dΩ = 0. (13)

We now use the chain rule u∇ ·A =∇ · (uA)−∇u ·A
with A =∇p̂ and u = φ to obtain

∫
Ω
∇ · (φ∇p̂)dΩ −

∫
Ω
∇φ ·∇p̂ dΩ +

∫
Ω
φk2p̂ dΩ = 0.

(14)
The use of the divergence theorem gives

∫
Γ
φ∇p̂ ·ndΓ −

∫
Ω
∇φ ·∇p̂ dΩ +

∫
Ω
φk2p̂ dΩ = 0. (15)

But equation (6) gives jωû = − 1
ρ0
∇p̂, so we have

−
∫

Γ
ρ0jωûnφ dΓ −

∫
Ω
∇φ ·∇p̂dΩ +

∫
Ω
φk2p̂ dΩ = 0,

(16)
where ûn is the normal velocity on the surface Γ. When
computing an input impedance, the normal velocity is
zero everywhere on Γ except on the exciting surface, on
which it is an arbitrary constant.

The next step in the FEM consists in introducing a
“basis” on which we can decompose the functions φ and
p̂. So, as we are only interested in the values at the nodes
of the mesh, we choose a basis function Ψi for each node

i. For example, in the one-dimensional case, the simplest
choice is to take Ψi as a piecewise linear function, with
Ψi(i) = 1, Ψi(i−1) = 0 and Ψi(i+1) = 0. Other common
used functions are piecewise quadratic or higher orders
polynomials.
So we have


φ ≈ φFEM =

∑
i

φiΨi(x, y, z)

p̂ ≈ p̂FEM =
∑
i

p̂iΨi(x, y, z)
(17)

which injected in the previous equation gives (using the
Einstein notation)

−φiρ0jω

∫
Γ
ûnΨi dΓ − φip̂j

∫
Ω
∇Ψi ·∇Ψj dΩ

+ φip̂jk
2
∫

Ω
ΨiΨj dΩ = 0.

(18)

Then, assuming that ∀i, φi 6= 0,

−ρ0jω

∫
Γ
ûnΨi dΓ − p̂j

∫
Ω
∇Ψi ·∇Ψj dΩ

+ p̂jk
2
∫

Ω
ΨiΨj dΩ = 0.

(19)

Let us now define the matrices

Mij = k2
∫

Ω
ΨiΨj dΩ (20)

and

Kij =
∫

Ω
∇Ψi ·∇Ψj dΩ (21)

and the vector

Fi = −ρ0jω

∫
Γ
ûnΨi dΓ. (22)

Doing this, we can now rewrite (19) in a matrix for-
mulation

Mij p̂j −Kij p̂j = Fi (23)

or

[M −K]


...
p̂
...

 = F. (24)

Now, it is important to note that M , K, and F are to-

tally known, and the only unknown is the vector


...
p̂
...

.
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The goal is then to solve a simple but big linear system,
which is possible thanks to computers and algorithms
adapted to FE problems.

After having solved the system, we know the pressure
field in the domain, but only for the nodes of the mesh.
So if one is interested in the pressure at a point which
is not a node of the mesh, interpolation between known
points is needed. Many interpolating functions can be
chosen, but in most cases polynomials are used and give
good results. In this study, we always used quadratic
interpolating functions.

B. Cluster computing

As we said, COMSOL can be used on a computer
cluster to reduce the simulation times. As part of a
consortium called CLUMEQ, itself in the “Calcul Que-
bec/Compute Canada” networks, McGill University has
access to several clusters. We used one called “Colosse”,
which is located in the city of Quebec, and has 960 nodes,
each with 8 processor cores (7680 cores total) and 24 gi-
gabytes of RAM (23 TB total). Basically, a computer
cluster is just a super-computer with a lot of processors
and RAM. There are several public clusters in most of the
countries. In June 2012, in the list of the 500 most power-
ful computer systems6, we can find that Canada has ten
computer clusters, France has twenty-two and USA has
two hundred fifty two. At this date “Colosse” is ranked
314, with 77.2 TFLOPS · s−1 (77.2 · 1012 FLoating point
Operations Per Second).

The most interesting usage of cluster computing in our
case is the possibility to distribute a parameter on sev-
eral nodes. For example, if we want to run a simula-
tion with an excitation frequency varying between 0 Hz
and 10 kHz, we can launch our simulation on ten nodes,
each node computing the input impedance on a 1 kHz-
range (for example the first node will run the simulation
in the range 0 Hz− 1 kHz, the second node in the range
1 Hz−2 kHz, and so forth). We would then expect a sim-
ulation time proportional to (number of nodes)−1. Fig-
ure 2 presents the results of a benchmark on a simulation
and confirms what we just said. Almost all our simula-
tions were run on eighty cores, reducing the simulation
times by a factor ten compared to simulations run in the
laboratory.

C. A first example : a closed cylinder

Let us now study a first example to detail the proce-
dure of computing an input impedance thanks to COM-
SOL. One of the easiest systems to study in acoustics
is probably a closed cylinder – here “closed” means one
side excitates the air inside the cylinder (with an incident
pressure field), and the other side is closed by a rigid wall.
Furthermore, in our particular case, it is a good choice
for two reasons : 1) we can calculate exactly its resonant
frequencies, and then estimate the accuracy of the simu-
lations; 2) we can model it in a two-dimensional model,
which greatly improve the running time of the simulation.

Figure 2. Simulation times depending on the number of cores
used and comparison with the expectation that the simulation
time should be proportional to (number of cores)−1.

That is why we decided to model a cylinder of length 1 m
and radius 10 cm.

1. Modeling

Since there is a revolution symmetry around the axis
of the cylinder, which implies that what happens in a
section of the cylinder is independent of the section, we
can limit our calculations to a two-dimensional model.
Of course, this symmetry is true only because we will ex-
citate the cylinder with a planar wave. Furthermore, we
can also limit our model to a half section, and impose the
normal-velocity to be zero on the central axis. Finally,
our model just consists in a rectangle whose dimensions
are the radius and length of the cylinder.

(a) (b)

Figure 3. Using the symmetries of the model to reduce the
simulation times : (a) Three-dimensional original model (b)
Two-dimensional reduced problem which consists of a half
section (dark green in the 3D model) of the cylinder.

On one node, the simulation of the two-dimensional
case, from 0 Hz to 1 kHz, with a 1 Hz step takes 12 s,
whereas it takes 74 s in the three-dimensional case.
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2. Boundary conditions

We now have to choose the boundary conditions for
each of the four sides of the rectangle. Since we want to
calculate the input impedance of the cylinder, we need to
choose one of the extremities of the rectangle to inject a
planar wave into the cylinder. Notice here that it implies
the exciting wall is considered as a closed end, since an
opened end would lead to a vanishing pressure. On the
three other sides, we impose a “Hard boundary wall”
condition, since we want to modelize a closed cylinder.
Later, we will want to add some losses so we will need
to change these boundary conditions (adding the wall
admittance (11)).

3. Meshing

The last step before effectively running the simula-
tion is the meshing of the model. Thankfully, COM-
SOL comes with an automatic mesh generator, and we
do not need to really worry about the mesh. It is possi-
ble to select a default mesh quality, or to choose some of
its parameters (like the minimal or maximal size of the
elements, the maximum growing factor, ...). In two di-
mensions, the elements consist of triangles, and in three
dimensions these are tetrahedra. The mesh used here
consists of 2606 elements (triangles).

It is important to fully resolve the waves in space. In
practice, it is recommended to use a maximum mesh el-
ement size that provides about five 2nd-order elements
per wavelength. At the maximum frequency studied here
(2500 Hz) the wavelength is 14 cm.

4. Simulation

Now that we have the complete model, we can run the
simulation. In fact, since we are looking for the input
impedance, which is a frequency-dependent function, we
will run one simulation for each frequency we want. That
is, if we want Z(f) from 0 Hz to 1 kHz, with a resolution
of 1 Hz, we will run 10000 simulations. Of course COM-
SOL can deal with it and we do not need to launch every
simulation manually.

Once the simulation is finished we can ask COMSOL to
extract the value p̂/v̂, on the excited side, that is, the in-
put impedance of the cylinder. Figure 4 shows the input
impedance with and without losses (two different simu-
lations). As explained before, losses were implemented
thanks to the admittance (11).

To check the accuracy of the simulation, we can cal-
culate the resonant frequencies of the cylinder. In fact,
whether the non-excited end of the cylinder is opened
or closed, a certain part of the input pressure wave will
reflect at this end and comes back, then reflects again,
and so forth. This gives rise to standing waves. If the
returning wave is in phase with the driving wave, it will
create a very big pressure at the input, giving birth to
a maximum of |Zin| (we call this a resonance). On the
contrary, if the returning wave is out of phase with the

(a)

(b)

Figure 4. (a) Computed input impedance of a closed cylin-
der, with and without losses. The length is one meter and
radius ten centimeters. (b) Zoom around the first resonance.
Notice that losses decrease amplitudes and frequencies of the
resonances.

driving wave, the two waves will annihilate at the in-
put, then creating a minimum of |Zin| (we call this an
anti-resonance). One important thing to notice is at the
corresponding frequencies (resonance or anti-resonance)
the imaginary part of the input impedance vanishes, so
it is easy to extract them. Indeed, according to equation
(5) we have

p̂−(0)
p̂+(0) = C−

C+
. (25)

For a resonance, this number is real, and for an anti-
resonance, it is imaginary. But in both cases, equation
(8) leads us then to the fact that Zin is real.
Furthermore, the theoretical resonant frequencies of a

closed cylinder are well-known and given by

fn = c

2Ln (26)

where n = 1, 2, 3....
Table I gives the resonant frequencies extracted from

the simulations, with and without losses and the the-
oretical frequencies. We can see that the simulations
seem quite accurate, since the maximum relative error
is 10−3. When losses are taken into account, COMSOL
uses a non-linear solver, which greatly increases the simu-
lation time. Furthermore, for some frequencies, solutions
may not be found (for example, 13th and 14th harmonics
could not be resolved). Finally, even if it seems that in
this case the losses do not change very much the behavior
of the waves (at least for the resonant frequencies), we
will see that the effect of the losses becomes important
as the dimensions of the object studied decrease.
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n COMSOL COMSOL Theoretical
without losses (Hz) with losses (Hz) frequency (Hz)

1 173.38 173.11 173.32
2 346.67 346.33 346.63
3 519.95 519.58 519.95
4 693.23 692.84 693.26
5 866.50 866.12 866.58
6 1039.96 1039.41 1039.89
7 1213.21 1212.72 1213.21
8 1386.79 1386.05 1386.52
9 1560.17 1559.40 1559.84
10 1733.48 1732.78 1733.15
11 1906.85 1906.18 1906.47
12 2080.34 2079.61 2079.78
13 2253.86 - 2253.10
14 2427.34 - 2426.41

Table I. Comparison between theoretical and simulated (with
and without losses) resonant frequencies of a closed cylinder
of length L = 1 m. The 13th and 14th harmonics could not
be resolved in the case with losses, because solutions were not
converging.

To conclude this initial analysis of simulations with
COMSOL, let us talk about some important technical
considerations. One important thing to have in mind
is that COMSOL has actually calculated the pressure
field in the whole domain (even if we are only interested
in the pressure field on a very little sub-domain of the
whole model), and for every frequency. One consequence
is that the output file of a simulation running from 0 Hz
to 5 kHz, with a 0.1 Hz frequency step can be very big :
from 10 GB to 60 GB, depending on the size of the model
and quality of the mesh (i.e. the number of pressure
values stored for each frequency). That is a thing to
consider seriously since saving a 60 GB file can take a
few hours, and almost the same time for opening it ...

D. A more complex example : a trombone horn

To complete our initiation of the computation of input
impedance with COMSOL, we had the opportunity to
participate in a PhD thesis conducted at IRCAM (Paris,
France) by Pauline Eveno. Her thesis is about the charac-
terization of brass instruments and a part of it is focused
on the comparison of different numerical methods to eval-
uate the input impedance of horns. It is part of a project
called PAFI7 aimed at helping craftsmen to design and
characterize their musical instruments.

Pauline gave us the profile of a trombone horn and
asked us to calculate its input impedance using COM-
SOL. An important difference compared to the previous
example of the closed cylinder is that we were asked to
calculate the input impedance with an open end condi-
tion. That is, the horn is radiating in the ambient air. To
modelize such a thing, we had to surround the horn with
a big sphere of air and used the “spherical wave radia-
tion” (anechoic) boundary condition, which “allows an
outgoing wave to leave the modeling domain with mini-
mal reflections” (COMSOL documentation). Of course,

this implies that the studied domain is greatly larger
than in the closed case, but once again, symmetries could
be used. Indeed, a trombone horn presents a revolution
symmetry, so a two-dimensional model was used. Finally,
the model used consists of a half section of the horn, and
a hemisphere (see figure 5).

Figure 5. Model used for the trombone horn. Once again, the
revolution symmetry permits us to greatly reduce the domain.

Figure 6 shows the mesh used for the simulation. This
mesh was automatically generated thanks to the COM-
SOL’s mesher, and contains 14731 elements.
A 0.1 Hz frequency step was used, and the simula-

tion took approximately four hours in the lossless case
(far more in the lossy case), on eight cores (we used the
fastest computer in the laboratory, a 12-core Mac Pro
with 32 GB of RAM). We could not run the simulation
on Colosse, because the output file was too big to handle
(60 GB): saving the file on Colosse took approximately
three hours, and opening it in the laboratory one hour
(plus one hour to download the file from Colosse to the
laboratory), so it was faster to run the simulation on a
less powerful computer, without saving the output file
(just reading it).
Exactly like in the previous case of the cylinder, once

the simulation is complete, we can then extract the input
impedance. Figure 7 shows the input impedance with
and without losses.
One nice thing in the case of the trombone horn is

we could compare our method with others. Indeed,
Pauline contacted different teams using different methods
and asked them to compute the input impedance of the
horn8,9. Figure 8 shows the input impedance computed
thanks to FEM (our simulation), Transmission Matrix
Method with spherical elements (TMM) and the soft-
ware Sysnoise in two different modes (3D or 2D axisym-
metric). The Sysnoise simulations were conducted by
Thierry Scotti and Philippe Herzog (Laboratoire de Mé-
canique et d’Acoustique, Marseille).
We can see that our simulation seems to compare well

with the measured data and most of the other methods.
The discrepancies can come from some error in the model
of the horn, or noise in the measure.
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Figure 6. Mesh used for the computation of the input
impedance of a trombone horn.

III. COMPUTING THE IMPEDANCE OF SAXOPHONE
MOUTHPIECES

Now that we know how to use COMSOL to compute
input impedances, let us focus on saxophone mouth-
pieces. As we said in the introduction, the goal is to
compute their input impedances. But we will see that
measuring it is a tricky procedure, so we will be – at least
to begin with – interested in the impedance seen from the
back of the mouthpiece, rather than from the front (see
figure 9) – we will call it respectively “input impedance
seen from the back” and “input impedance seen from the
front”. That will allow us to check our simulations thanks
to measurements. In a second stage, after having checked
the simulations are coherent with the measurements, the
next step is to compute the “real” input impedance – that
is seen from the mouth – assuming that if our method
is reliable for computing input impedance from the neck
side, it is also reliable for computing it from the mouth
side.

A. What is a saxophone mouthpiece ?

As we said in the first part, the saxophone mouthpiece
is the key element that permits a player to create oscil-

(a)

(b)

(c)

Figure 7. (a) Simulated input impedance of a trombone horn,
with and without losses. (b) Zoom around the first resonance.
(c) Zoom around the second resonance. Notice that losses
decrease amplitudes and frequencies of the resonances. In
both cases a 0.1 Hz frequency step was used.

lations from the constant pressure in his mouth. These
oscillations, generated by the non-linear behavior of the
reed, will then be injected into the body of the saxophone
and resonate to radiate and finally create sound.
There are a lot of different saxophone mouthpieces

on the market. Each mouthpiece can differ from oth-
ers mostly by the material it is made of (ebonite, metal,
plastic, ...), its length, or internal geometry (see figure 9).
We measured the input impedances seen from the back
for five different mouthpieces : Lebayle Jazz Chamber
MMA 7*, Selmer C*, Caravan, Meyer 5M, and Meyer
6M. But since it required a lot of time to model a single
mouthpiece, only the first two ones were modeled. The
Lebayle mouthpiece is shown on Figure 10.
The internal structure of a saxophone mouthpiece is

mainly made of three parts : 1) from the neck, it be-
gins with a cylindrical section, the radius being almost
always of 8 mm, since a certain standard is needed to
adapt them on every saxophone 2) then there is an inter-
mediate section of various shape (semi-hemispherical for
the Selmer C*, for example; cylindrical for the Lebayle
mouthpiece) 3) and finally, a more rectangular section
ends the mouthpiece.
Figure 11 shows how the mouthpiece is inserted in the

mouth. The lower lip is pressing the reed, introducing
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(a)

(b)

(c)

Figure 8. (a) Simulated input impedance of a trombone horn,
thanks to different methods, and comparison with measure-
ment. (b) Zoom around the first resonance. (c) Zoom around
the second resonance.

Figure 9. Structure of a saxophone mouthpiece

some damping in the vibration of the latter.

B. Getting the geometry of mouthpieces

One critical step in our study is the modeling of the
mouthpieces. Indeed, this is almost the only input data
we have to provide to COMSOL, and since we want to
study the effects of differences in internal geometry of
mouthpieces on their input impedances, we had to create
fine models of their interiors.

The first step was then to create molds of the interiors
of the mouthpieces. We made two molds of two different

Figure 10. One of the mouthpieces modeled : the Lebayle
Jazz Chamber MMA 7*

Figure 11. Mouthpiece in the mouth

mouthpieces : the famous Selmer C*, and the Lebayle
Jazz Chamber MMA 7*. The molds were made in sili-
cone.
Then, we had to model the molds in COMSOL. For

doing this, one first approach was to try to use a machine
of the mechanical engineering department. This machine
takes pictures of the object and then creates a three-
dimensional model of its exterior. Even if it works fine,
we were unable to export the model in a format supported
by COMSOL.
We also tried to contact the manufacturers, Selmer and

Lebayle (French companies). Jérôme Selmer was very
interested in our study but did not want to share his data
with us, because of the short duration of the internship.
We hope a collaboration will be possible in a near future
between CAML and Selmer. Unfortunately, Lebayle did
not answer us.
Finally, we resigned to use the COMSOL model builder
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Figure 12. Silicone molds were used to get the internal geom-
etry of the mouthpieces. From top to bottom : the mold cor-
responding to the Selmer mouthpiece, and that corresponding
to the Lebayle mouthpiece.

and manual measurements. Even if there are fewer pos-
sibilities than in a dedicated design software like Solid-
works of CATIA, we succeeded – thanks to the help of
mechanical engineering students – in making respectable
models. Let us note here that silicone is not the best
choice for manual measurements, because of its softness.

Figures 13 and 14 show the models made for the two
mouthpieces.

(a)

(b)

Figure 13. Model of the interior of the Selmer C* mouthpiece
: (a) Three-dimensional view (b) Sectional view

Figure 15 shows the automatic mesh generated by
COMSOL (finest automatic resolution was chosen) and
table II gives some characteristics of the two models.

C. On boundary conditions

Once the model is ready, we need to set up the bound-
ary conditions. As we said, since we only know how to
measure impedance from the back of the mouthpiece, we
choose the end of the mouthpiece (a disk, in fact) as the

(a)

(b)

Figure 14. Model of the interior of the Lebayle Jazz Cham-
ber MMA 7* mouthpiece : (a) Three-dimensional view (b)
Sectional view

Figure 15. Meshing of the Selmer C*

exciting side. Then, since it is easier to model a closed
mouthpiece (that is, the reed is pushed against the ta-
ble), we decided to model that configuration. It should
be emphasized here that this study concerned the static
acoustic response of the mouthpiece and not the com-
plex aeroacoustic behavior of the mouthpiece under nor-
mal dynamic playing conditions, when the reed is moving
back and forth. Thus, this is not a normal playing con-
figuration (there is a little space between the reed and
the table when the musician is not playing), but since we
wanted to validate our method in a first stage, we de-
cided to choose the easiest configuration. Finally, apart
from the exciting side, on which the “Incident pressure
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Selmer Lebayle
Volume 1.32 · 10−5 m3 1.30 · 10−5 m3

Number of elements 54154 36392
Number of degrees of freedom solved for 77797 53813

Meshing time 7.15 s 5.42 s

Table II. Some characteristics of the two models we made.

field” condition is applied, all of the boundaries of the
mold are considered as “Hard boundary walls”.

D. Results and discussion

For each mouthpiece, one first simulation was run, with
a 10 Hz frequency step, to locate the resonances. Then
a second simulation was run with a 0.1 Hz frequency
step, but only around the resonances. The final input
impedance is then extracted doing the “union” of the two
simulations. The total simulation times are 2300 s and
4500 s for the Lebayle and Selmer mouthpieces respec-
tively. The saving times are 1500 s and 2500 s. Finally,
computing the input impedances took respectively some-
thing like 1 h and 2 h.

Figure 16 shows the input impedance of the Lebayle
mouthpiece, with and without losses, and a zoom around
the first resonance (found to be at 2556 Hz in the lossless
case and 2539 Hz in the lossy case).
Figure 17 shows the same graph for the Selmer mouth-

piece. The first resonance was found to be at 2227 Hz in
the lossless case and 2210 Hz with losses considered.
We can show that these values are reasonable. Indeed,

since the volumes of the mouthpieces are known, we can
calculate the first resonant frequencies for cylinders of
equivalent volumes, and same radius. This leads approx-
imately to 2600 Hz, so we can say that our simulation
results are in the right ballpark.

Finally, in cases with losses, a 0.1 Hz frequency step is
not really necessary, since in this case the resonant peaks
are not very sharp. However, such a resolution is required
in the lossless case, in order to get a reliable estimation
of the resonant frequencies and amplitudes.

IV. MEASURING THE IMPEDANCE OF SAXOPHONE
MOUTHPIECES

Now that we have computed the input impedances of
the two mouthpieces, we want to see if our simulations
are coherent with measurements, in order to validate the
method.

There are many different methods to measure input
impedances10–12. We used a viariant of the Two Micro-
phone Three Calibration (TMTC) method.

(a)

(b)

Figure 16. (a) Simulated input impedance of the Lebayle
mouthpiece, with and without losses. (b) Zoom around the
first resonance (2556 Hz in the lossless case and 2539 Hz with
losses). A resolution of 0.1 Hz was used around the reso-
nances, and 10 Hz otherwise.

(a)

(b)

Figure 17. (a) Simulated input impedance of the Selmer
mouthpiece, with and without losses. (b) Zoom around the
first resonance (2227 Hz in the lossless case and 2210 Hz with
losses). A resolution of 0.1 Hz was used around the reso-
nances, and 10 Hz otherwise.

A. The Two Microphone Three Calibration (TMTC)
method

To get the input impedance of an acoustical compo-
nent, the basic idea is to measure pressure and parti-
cle velocity at the input, while the component is excited
at a certain frequency. But measuring the particle ve-
locity is in fact quite tricky and while pressure sensor
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measurements are robust and well developed because of
the broad utility of microphones, there are few equiva-
lent probes to directly measure particle and volume ve-
locity. Flow can be measured directly using something
like a hot-wire anemometer, but for small geometries the
probe usually disturbs the flow, thus rendering the mea-
surement inaccurate. One method which requires only
microphones is the Two Microphone Three Calibration
(TMTC) method13. That method assumes the waves in-
volved are planar (no transverse mode), which is a good
approximation in our situation (see I.C). We will now
present the main aspects of the method.

Let us consider the experimental setup presented in
Figure 18 : a “measurement head” made of brass is at-
tached to the acoustic component under study (a mouth-
piece, in our case). Two microphones are connected to
the measurement head, in order to measure the pressure
in two specific places. Let us call the plane between the
measurement head and the acoustic component the “ref-
erence plane”. A loudspeaker can send an acoustic signal
into the measurement head.

Figure 18. Principle of the Two Microphone Three Calibra-
tion (TMTC) method : two microphones measure pressure
in a measurement head, at the end of which the component
to be studied is attached. At the other end a loudspeaker is
sending a signal.

Let us now just cite the authors, because their expla-
nation is quite clear and does not need reformulation :

We first assume that the excitation is
monochromatic and study the response of the
system at a single frequency. We also assume
that the neck of the acoustical cavity to be
studied is almost cylindrical and that, inside
this neck, the acoustical wave contains only
one single transverse mode; in other words, in
this region, the propagation of the acoustical
wave is equivalent to a one dimensional prob-
lem, so that the solution of the wave equation
can be obtained (in theory) from the value of
the acoustical field and its space derivative at
one point (as in quantum mechanics, for ex-
ample, where the solution of the Schrödinger
equation in a one-dimensional problem can be
obtained from the value of the wave function
and its derivative at one point). We can then
define the wave by two parameters, the values

p0 of the pressure and u0 of the acoustical ve-
locity in a reference plane that we choose at
the end of the neck (the plane where we wish
to measure the impedance). By continuation
of the solution towards the inside of the mea-
surement head, one can obtain the acoustical
wave everywhere inside the head, and in par-
ticular write the signals s1 and s2 provided
by the two microphones as linear functions of
p0 and u0:

{
s1 = αp0 + βρcu0

s2 = γp0 + δρcu0
(27)

where α, β, γ and δ are unknown parameters
that depend on the geometry of the system,
as well as on the gain of the microphones.

We have

Zin = p(0)/u(0) = p0/u0. (28)

Let us now define

y = s2

s1
= γZin + δρc

αZin + βρc
. (29)

We now have

Zin = ρc
Ay +B

y − y0
, (30)

where A = −β/α,B = δ/α, and y0 = γ/α are three
unknown constants to be determined. Theses con-
stants are determined by the phase of calibration. Since
there are three constants, three different measures of
known impedances will be necessary. The most logical
impedance to use is an infinite impedance, that is simply
closing the head by a rigid surface in the reference plane.
By doing this, we obtain directly y0. Then, two references
cavities with known impedances Z ′ and Z ′′ are used and
the corresponding values y′ and y′′ are measured. After
some calculations, we have

Zin = ρc
Z ′(y′ − y0)(y − y′′) + Z

′′(y′′ − y0)(y′ − y)
(y − y0)(y′ − y′′)

(31)
where bars over the impedances denote normalized
impedances (normalized by Zc = ρc).
That relation is the key of the TMTC method, since it

gives the input impedance depending on the ratio of two
microphone signals. What is remarkable in that method
is that the measurement head does not need to be totally
cylindrical. The important thing is that the neck of the
head (near the reference plane) needs to be cylindrical,
to be sure we have a one-dimensional propagation.
Like Laloë and Gibiat explain, “although in principle

two microphones are sufficient, in practice it is useful (if
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not indispensable !) to have more, three or even four”.
We will not present here all aspects of that point, but
the idea is that each pair of microphones cover a certain
range of frequencies with reliability and accuracy.

Furthermore, care has to be taken about signal levels,
since too low a level will induce a bad signal-to-noise
ratio, and too high a level will induce non-linearities.

B. Experimental setup

Our experimental setup is shown on Figure 19. It con-
sists of a measurement head into which six microphones
are inserted. At one end, a loudspeaker can excite the in-
terior of the head. At the other end of the head, an adap-
tator enables an acoustic component to be attached, a
mouthpiece in our case. The microphones are connected
to a sound card and a computer. A MATLAB interface
facilitates calibration and measurement performance.

Figure 19. Experimental setup : six microphones are inserted
in a measurement head. At one end, a loudspeaker can ex-
cite the air inside the head. At the other end, a mouthpiece
can be attached. The microphones are linked to a computer
interface. A MATLAB interface facilitates calibration and
measurement performance.

Each mouthpiece was inserted so that the end of the
mouthpiece reached the same position on the adaptor.
The mouthpiece measurements were completed by insert-
ing each of the mouthpieces so that the base lined up to a
common spot on the mouthpiece adaptor. But since the
mouthpieces were not inserted up to the reference plane,
the measured impedance Zmeas is not exactly the input
impedance of the mouthpiece Zmouth (see Figure 20).
Indeed, there is a cylindrical section of length L, which

we need to “remove” from the measured impedance, in
order to get the impedance of the mouthpiece. For this
purpose, we use equation (10) adapted to our case, that
is :

Zmeas = Zc
Zmouth cos(kL) + jZc sin(kL)
Zc cos(kL) + jZmouth sin(kL) . (32)

from which we can obtain the normalized input
impedance of the mouthpiece

Zmouth/Zc = jZc sin(kL)− Zmeas cos(kL)
jZmeas sin(kL)− Zc cos(kL) (33)

Figure 20. Schematic view of the mouthpiece at the end of
the measurement head. The measured impedance Zmeas is
not directly the input impedance Zmouth of the mouthpiece
: there is a cylindrical section of length L added we need to
take into account.

or

Zmouth = j sin(kL)− Zmeas cos(kL)
jZmeas sin(kL)− cos(kL)

. (34)

C. Results and discussion

Figures 21 and 22 present comparisons between the
measured and computed input impedances. Table III
gives comparisons between the first two resonant frequen-
cies for each mouthpiece.

(a)

(b)

(c)

Figure 21. (a) Comparison between the computed and mea-
sured input impedance of the Selmer mouthpiece. (b) Zoom
around the first resonance. (c) Zoom around the second res-
onance.
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(a)

(b)

(c)

Figure 22. (a) Comparison between the computed and mea-
sured input impedance of the Lebayle mouthpiece. (b) Zoom
around the first resonance. (c) Zoom around the second res-
onance.

First resonance Second resonance
(Hz) (Hz)

Selmer
Simulation (lossless) 2227 4095
Simulation (losses) 2210 4075

Measures 2222 4222

Lebayle
Simulation (lossless) 2556 4469
Simulation (losses) 2539 4437

Measures 2539 4526

Table III. Comparison between the measured and simulated
first two resonant frequencies for the two mouthpieces.

Our simulations seem in good agreement with the mea-
surements. Of course, the resonant frequencies are not
exactly resolved, but the relative maximum error for
the two first resonant frequencies is around 10−2, which
seems fairly good since we had to model the mouthpieces
manually. Furthermore, we can notice that the higher the
frequency is, and the more discrepancies there are. This
seems logical, since higher frequencies are more sensitive
to a higher level of detail of the geometry of the mouth-
piece.

Finally, it appears that accessing more precise simula-
tions only requires better models of the mouthpieces.

V. CONCLUSIONS AND PERSPECTIVES

During this internship, we validated a method based on
finite element method to compute the input impedance
of saxophone mouthpieces, seen from the back of the
mouthpiece. In order to validate the method to com-
pute input impedances, measurements were done thanks
to the TMTC method. Even if there are discrepancies be-
tween measurements and simulations, particularly as we
go into high frequencies, it appeared that “handmade”
models of the mouthpieces gave fairly good results, and
that we can be confident about the method. If one is
seeking more confidence in the method, he will simply
need to have access to more precise geometry data for
the models.
The next step is then to use that method to com-

pute the “real” input impedances of mouthpieces, that
is impedances seen from the side of the mouth (which is
the “real” side of excitation). Even if it is quite easy to
change the exciting side of the mouthpiece on the com-
puter (contrary to measurements), questions still hold
about how exactly the mouthpiece is excited in playing
conditions.
Furthermore, the roles of turbulence in the air flow in

the mouthpiece and vibration of the reed (particularly its
coupling with air) are not yet clear. This present work
could potentially be continued on COMSOL, using the
module “Aeroacoustics”, in order to study the air flow,
or the “Structural Mechanics”, in order to couple it with
the “Acoustics” module and take into account the motion
of the reed during sound production.
Finally, from a more personal point of view, this in-

ternship was a real opportunity to mix two passions :
music (as a saxophonist !) and physics. This is a great
chance. I had the opportunity to meet a lot of “scientific
people” interested in music, and discovered areas of re-
search I never heard of before (do you know what is the
Ballagumi ?).

Acknowledgments

First of all, I would like to thank Gary Scavone – my
internship advisor – who gave me the opportunity to work
in his lab, in such good conditions, and to work on such
an interesting subject. Even if the autonomy he left me
was enjoyable, Gary was always there when needed, and
his wise advice was really appreciated. Next, I want to
thank Antoine Lefebvre, who first worked on my subject
with Gary, then needed to leave the lab, but continued
to give some help. The precious time he dedicated to
help me with the first steps with COMSOL saved me
a lot of time. Darryl Cameron, working at MusicTech
(McGill), Julien Boissinot working at CIRMMT, Maxime
Boissoneault and Félix-Antoine Fortin, both working at
CLUMEQ/Compute Canada must be infinitely thanked,
since they dedicated to me a lot of time in order to make
COMSOL working on Colosse. For their help for creating
the mouthpieces models, I wish to thank Alain Batailly
and Juan Henao. Finally, this work was supported in part
by a grant from the Natural Sciences and Engineering

14



Figure 23. The Ballagumi
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