
Proceedings of the 2002 International Computer Music Conference, Göteborg, Sweden 1

RtAudio: A Cross-Platform C++ Class for Realtime

Audio Input/Output

Gary P. Scavone

gary@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics

Department of Music, Stanford University

Stanford, California 94305-8180 USA

Abstract

This paper presents a cross-platform C++ class for
realtime audio input and output streaming. RtAu-
dio provides a flexible, easy to use application pro-
gramming interface (API) which allows complete
audio system control, including device capability
querying, multiple concurrent streams, blocking
and callback functionality. RtAudio is currently
supported on Windows platforms using the Direct-
Sound API, Linux platforms using both the OSS
and ALSA APIs, and on Irix platforms. Support
for OS-X and Steinberg ASIO drivers is planned
for Spring 2002.

1 Introduction

While programming languages have gained
standardized support across the myriad of com-
puter platforms and operating systems in exis-
tence, a commonly supported API for audio pro-
gramming is far from a reality. As a result, an
attempt to provide multi-platform support for an
audio application can prove difficult at best. To
further complicate matters, multiple audio driver
interfaces often exist for a single operating system.
For example, Windows platforms have Direct-
Sound, Windows Multimedia Library, and ASIO
(Steinberg) driver options, Linux platforms have
Open Sound System (OSS) and Advanced Linux
Sound Architecture (ALSA) drivers, and Macin-
tosh platforms have Sound Manager, ASIO and
Core Audio drivers. RtAudio was designed to pro-
vide a common interface across a variety of these
APIs in as flexible, yet simple, manner as possible.

RtAudio was originally developed to provide
audio input/output support for the Synthesis
ToolKit in C++ (STK) [Cook and Scavone, 1999].
However, the latest release of RtAudio (version
2.0, January 2002) was designed to function in-
dependently from STK, as well as any libraries
other than those necessitated by the underlying

platform-specific audio interfaces.

2 Features & Design Goals

RtAudio is a C++ class which provides a com-
mon API for realtime audio input/output across
Linux, Irix, and Windows operating systems.
RtAudio significantly simplifies the process of in-
terfacing with computer audio hardware. It was
designed with the following goals:

• object-oriented C++ structure

• single independent header and source file for
easy inclusion in programming projects

• blocking and callback functionality

• flexible, easy to use, audio device parameter
control

• automatic internal conversion for data for-
mat, channel number compensation, de-
interleaving, and byte-swapping

• control over multiple audio streams and de-
vices with a single class instance

• audio device capability probing

RtAudio incorporates the concept of audio
streams, which represent independent audio out-
put (playback) and/or input (recording) “connec-
tions” to audio devices. Available audio devices
and their capabilities can be enumerated and then
specified when opening a stream. Multiple streams
can run at the same time and, when allowed by the
underlying audio API, a single device can serve
multiple streams.

The RtAudio API provides both blocking (syn-
chronous) and callback (asynchronous) function-
ality. Callbacks offer a simple means for achiev-
ing non-blocking audio input/output. Blocking
functionality is often necessary for explicit con-
trol of multiple input/output stream synchroniza-
tion or when audio must be synchronized with
other system events. All public RtAudio func-
tions are thread-safe. This allows users to safely



Proceedings of the 2002 International Computer Music Conference, Göteborg, Sweden 2

embed blocking RtAudio functions within a multi-
threaded programming structure of their own de-
sign.

RtAudio offers uniform support for 8-bit, 16-
bit, 24-bit, and 32-bit signed integer data for-
mats, as well as 32-bit and 64-bit floating point
formats. When an audio device does not na-
tively support a requested user format, RtAudio
provides automatic format conversion. In addi-
tion, internal routines will automatically perform
any byte-swapping, channel number compensa-
tion, and channel de-interleaving required by the
underlying audio driver or hardware.

On Linux platforms, both native ALSA and
OSS audio APIs are supported. Portability to
other OSS supported systems, such as Solaris and
HP-UX, is untested but most likely easily achieved.
The ALSA driver model was recently incorporated
into the Linux development kernel and will likely
gain wide acceptance in the near future. The
ALSA API provides a more developed level of sup-
port for professional quality audio devices than
OSS. On Windows platforms, only the Direct-
Sound API is currently supported. On SGI plat-
forms, the newer “al” API is supported.

The RtAudio API incorporates many of the
concepts developed in the PortAudio project
[Bencina and Burk, 2001]. RtAudio distinguishes
itself from PortAudio in its object-oriented, C++
framework, single-file encapsulation, native block-
ing support, ALSA support, thread-safe routines,
and slightly less ambitious API (which makes
RtAudio less prone to bugs and easier to maintain
and extend).

All source code for RtAudio is made freely
available, allowing full user extensibility and cus-
tomization. RtAudio is distributed with a tutorial
and complete API documentation in HTML, PDF,
and RTF formats.

3 The RtAudio API

All uses of RtAudio must begin with object in-
stantiation. The default constructor RtAudio()

scans the underlying audio system to verify that
at least one audio input/output device is available.
RtAudio uses C++ exceptions to handle critical
errors, necessitating try/catch blocks around most
member functions as well as constructors. Like-
wise, all uses of RtAudio must end with class de-
struction.

RtAudio uses a C++ exception handler called
RtError, which is declared and defined within the
RtAudio class files. An RtError can be caught by
type, providing a means for error correction or at
a minimum, more detailed error reporting. Al-
most all RtAudio methods can ”throw” an RtEr-
ror, most typically if an invalid stream identifier

is supplied to a method or a driver error occurs.
There are a number of cases within RtAudio where
warning messages may be displayed but an excep-
tion is not thrown.

3.1 Device Capabilities

RtAudio provides the following functions for
use in probing the number and capabilities of avail-
able audio devices:

int getDeviceCount (void);

void getDeviceInfo (int device,

RTAUDIO_DEVICE *info);

The RTAUDIO DEVICE structure contains in-
formation commonly required in assessing the ca-
pabilities of an audio device, including its name,
minimum and maximum number of input, output,
and duplex channels, supported sample rates, and
native data formats.

3.2 Stream Creation & Parameters

In addition to the default constructor, RtAudio
provides an overloaded constructor which allows a
stream to be immediately opened with a given set
of device parameters. Alternately, a stream can be
opened after instantiation in much the same way.

RtAudio (int *streamId,

int outputDevice,

int outputChannels,

int inputDevice,

int inputChannels,

RTAUDIO_FORMAT format,

int sampleRate,

int *bufferSize,

int numberOfBuffers);

int openStream (int outputDevice,

int outputChannels,

int inputDevice,

int inputChannels,

RTAUDIO_FORMAT format,

int sampleRate,

int *bufferSize,

int numberOfBuffers);

A stream is opened with specified output and
input devices, output and input channels, data for-
mat, sample rate, and buffer parameters. When
successful, a stream identifier is returned which
must be used for subsequent function calls on the
stream. Audio devices are identified by integer
values of one and higher, as enumerated by the
getDeviceInfo() function. In addition, the sys-
tem default input/output devices are identified by
a zero value. When a device identifier of zero is



Proceedings of the 2002 International Computer Music Conference, Göteborg, Sweden 3

specified during stream creation, RtAudio first at-
tempts to open the default audio device(s) with the
given parameters. If that fails, an attempt is made
to find a device or set of devices which will meet the
given parameters. If all attempts are unsuccessful,
an RtError is thrown. When a positive, non-zero
device value is specified, no additional devices are
probed. Example program code is provided in the
appendix of this paper.

Because RtAudio can be used to simultaneously
control more than a single stream, it is necessary
that the returned stream identifier be provided to
nearly all public methods.

The bufferSize parameter specifies the desired
number of sample frames which will be written to
and/or read from a device per write/read oper-
ation. Both the bufferSize and numberOfBuffers
parameters can be used to control stream latency,
though there is no guarantee that the passed values
will be accepted by a device. In general, lower val-
ues for both parameters will produce less latency
but perhaps less robust performance. Both param-
eters can be specified with values of zero, in which
case the smallest allowable values will be used. The
bufferSize parameter is passed as a pointer and the
actual value used by the stream is set during the
device setup procedure.

3.3 Stream Control

An opened stream will not begin to in-
put/output data until it is “started” using the
startStream() function. Several other useful
functions are listed below as well. A stream can be
stopped and “restarted” as many times as neces-
sary. Once the stream is closed, however, it ceases
to exist. The abortStream() function stops a
stream immediately, dropping any remaining audio
samples in its queue. The stopStream() function
plays out any remaining data in its queue before
stopping.

void startStream (int streamId);

void stopStream (int streamId);

void abortStream (int streamId);

void closeStream (int streamId);

In general, the stopStream() and
closeStream() methods should be called af-
ter finishing with a stream. However, both
methods will implicitly be called during object
destruction if necessary.

The remaining steps involved in audio playback
or recording vary depending on whether blocking
or callback functionality is used.

3.4 Blocking Input/Output

Blocking read/write functionality provides syn-
chronous control of audio processing. In this mode,

the user must first get a pointer to the stream
buffer, provided by RtAudio, for use in feeding data
to/from the opened stream. Memory management
for the stream buffer is automatically controlled
by RtAudio. The bufferSize value returned dur-
ing stream creation defines the length, in sample
frames, of the stream buffer. Multichannel data in
the stream buffer must be in interleaved order.

char *const getStreamBuffer (int streamId);

void tickStream (int streamId);

int streamWillBlock (int streamId);

After starting the stream, the sequence of
events then consists of filling or reading from
the stream buffer between calls to tickStream().
The tickStream() function blocks until the
data within the stream buffer can be com-
pletely processed by the audio device. The
streamWillBlock() function is provided as a
means for determining, a priori, whether the
tickStream() function will block, returning the
number of sample frames that cannot be processed
without blocking.

3.5 Callback Functionality

Callback functionality provides non-blocking,
asynchronous control of audio processing. In this
mode, the user defines a global C function which is
periodically called when the audio device is ready
to receive/send a new buffer of audio data. The
callback function fills or reads interleaved data
from the stream buffer, interfacing with the user
program in an application-dependent manner. In-
ternally, callback functionality involves the cre-
ation of a separate process or thread which pro-
vides non-blocking access to an audio device.

void setStreamCallback (int streamId,

RTAUDIO_CALLBACK callback,

void *userData);

void cancelStreamCallback (int streamId);

The cancelStreamCallback() function disas-
sociates a callback function from an open stream.
The user can subsequently set a new callback func-
tion for the stream or even use blocking functions.

It should be noted that it is not possible to ex-
plicitly synchronize multiple simultaneous callback
streams. When synchronous control is required in
a non-blocking scheme, users should create their
own thread in which they embed RtAudio block-
ing functions.

4 Summary

RtAudio provides a flexible and easy to
use cross-platform API for realtime audio in-



Proceedings of the 2002 International Computer Music Conference, Göteborg, Sweden 4

put/output within an object-oriented C++ frame-
work. This paper has briefly presented some
features and uses of RtAudio. Within the con-
fines of this space, it is impossible to address
all the necessary issues of interest to audio ap-
plication programmers. We recommend that in-
terested parties download the RtAudio distribu-
tion (http://www-ccrma.stanford.edu/~gary/-
rtaudio/) and read the extensive documentation
provided.

References

R. Bencina and P. Burk. PortAudio - an Open
Source Cross Platform Audio API. In Proc. 2001
Int. Computer Music Conf., pages 263–266, Ha-
vana, Cuba, 2001. Comp. Music Assoc.

P. R. Cook and G. P. Scavone. The Synthesis
ToolKit (STK). In Proc. 1999 Int. Computer
Music Conf., pages 164–166, Beijing, China,
1999. Comp. Music Assoc.

A Programming Examples

The following program example outlines the use
of RtAudio in a simple, blocking playback situa-
tion. For the sake of clarity and space, error check-
ing is omitted.

// playback.cpp

#include "RtAudio.h"

int main()

{

int buffer_size = 256; // sample frames

int id; // the stream id

RtAudio *out;

// Open a 2 channel output stream during

// class instantiation using the default

// device, 32-bit floating point data,

// and 44100 Hz sample rate. Suggest the

// use of 4 internal device buffers of

// 256 sample frames each.

out = new RtAudio(&id, 0, 2, 0, 0,

RtAudio::RTAUDIO_FLOAT32,

44100, &buffer_size, 4);

// Get a pointer to the stream buffer

float *buf;

buf = (float *)out->getStreamBuffer(id);

// An example loop which runs for about

// 40000 sample frames

int count = 0;

out->startStream(id);

while (count < 40000) {

// Generate samples and fill the buffer

// with buffer_size sample frames.

...

// Trigger the output of the data buffer

out->tickStream(id);

count += buffer_size;

}

out->stopStream(id);

out->closeStream(id);

delete out; // Cleanup.

return 0;

}

The last program example demonstrates call-
back functionality in a simple duplex, pass-through
scenario. Again, error checking is omitted.

// duplex.cpp

#include <iostream.h>

#include "RtAudio.h"

// Pass-through callback function.

int pass(char *buffer, int size, void *)

{

// Surprise!! Nothing to do here.

return 0;

}

int main()

{

int buffer_size = 256; // sample frames

int stream; // the stream id

RtAudio *audio;

// Open a 2 channel input/output stream

// during class instantiation using the

// default devices, 64-bit floating point

// data, and 44100 Hz sample rate.

// Suggest the use of 2 internal device

// buffers of 256 sample frames each.

audio = new RtAudio(&stream, 0, 2, 0, 2,

RtAudio::RTAUDIO_FLOAT64,

44100, &buffer_size, 2);

// Set the stream callback function

audio->setStreamCallback(stream,

&pass, NULL);

audio->startStream(stream);

cout << "Hit <enter> to quit." << endl;

char input;

cin.get(input);

audio->stopStream(stream);

audio->closeStream(stream);

delete audio; // Cleanup

return 0;

}


