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A method is proposed to determine the transfer matrix parameters of a discontinuity in a waveguide
with the finite element method (FEM). This is used to characterize open and closed woodwind
instrument toneholes and develop expressions for the shunt and series equivalent lengths. Two
types of toneholes are characterized: Unflanged toneholes made of thin material, such as found on
saxophones and concert flutes, and toneholes drilled through a thick material, such as found
on most instruments made of wood. The results are compared with previous tonehole models from
the literature. In general, the proposed expressions provide a better fit across a wide range of
frequencies and tonehole sizes than previous results. For tall toneholes, the results are in general
agreement with previous models. For shorter tonehole heights, some discrepancies from previous
results are found that are most important for larger diameter toneholes. Finally, the impact of a
main bore taper (conicity) on the characterization of toneholes was investigated and found to be
negligible for taper angles common in musical instruments.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3685481]
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I. INTRODUCTION

The goals of the research presented in this paper are to
derive the transfer matrix parameters of woodwind instru-
ment toneholes using the finite element method (FEM), to
develop simple formulas valid for any tonehole height and
diameter, and to address the potential impact of a main bore
taper. The proposed method can also be applied to derive
transfer matrix parameters for other discontinuities in a
uniform waveguide.

The quality of a woodwind music instrument can be
estimated in part by analyzing the frequencies, magnitudes,
and harmonicity of its resonances, as well as its tonehole
lattice cutoff frequency. This information can be deduced
from the input impedance or reflectance of an instrument.
The transfer matrix method (TMM) provides an efficient
means for calculating the input impedance of a hypothetical
air column (Caussé et al., 1984; Keefe, 1990). With the
TMM, a geometrical structure is approximated by a
sequence of one-dimensional segments, such as cylinders,
cones, and closed or open toneholes, and each segment is
represented by a transfer matrix (TM) that relates its input
to output frequency-domain quantities of pressure (P) and
volume velocity (U). The multiplication of these matrices
yields a single matrix, which must then be multiplied by an
appropriate radiation impedance at its output. That is,
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where Zrad is the radiation impedance. The input impedance
is then calculated as Zin¼Pin/Uin.

Among all possible sources of error in the calculation of
the input impedance of woodwind instruments using the
TMM, the transfer-matrix representation of toneholes is of
primary importance. Woodwind instrument toneholes have
been theoretically characterized using modal decomposition
(Keefe, 1982b; Dubos et al., 1999) and simulated with the fi-
nite difference method (FDM) (Nederveen et al., 1998).
However, the theoretical characterizations are sometimes
limited because the geometries of the toneholes found on
real instruments differ to some degree from the idealized
geometries for which the models are developed. Indeed,
woodwind instrument toneholes may be undercut, rounded
off at each end, be noncylindrical, and/or have a keypad sus-
pended above them. Many of these more realistic geometries
are too complex to be characterized analytically. For exam-
ple, previous tonehole models have approximated the
saddle-shaped surface at the junction between the air column
and the tonehole as planar. This may lead to a small error of
unknown magnitude that is increasingly important for larger
diameter toneholes. Further, these calculations have not
accounted for the coupling between the internal and external
discontinuity that occurs when the tonehole height is smaller
than its radius. A generic numerical method to estimate the
tonehole parameters for any geometry would be useful to
determine if any of these features change the parameters of
the toneholes in a significant manner and to develop appro-
priate formulas if this is the case.

In this paper, a method based on the solution of the
Helmholtz equation in three dimensions (r2Pþ k2P ¼ 0)
using the FEM is presented. Numerical simulations with
the FEM do not suffer from the previously mentioned
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limitations and allow the verification and extension of
previous theory. The method involves the solutions of an
arbitrary tonehole geometry with two different boundary
conditions. The transfer matrix parameters of the discontinu-
ity are then obtained from these solutions by solving a sys-
tem of linear equations. This approach may be applied to
arbitrary geometries, enabling the characterization of various
discontinuities, such as toneholes, constrictions, and diame-
ter mismatches.

Two types of toneholes commonly found in woodwind
instruments are characterized in this paper: (1) An unflanged
tonehole made of thin material, such as found on saxophones
and concert flutes and (2) a tonehole drilled through a thick
material, such as found on the clarinet, oboe, recorder, and
most instruments made of wood (see Fig. 1). Based on the
FEM results, formulas are proposed and compared to previ-
ous results from the literature. Here, the objective is to
propose the most simple formulas that are accurate enough
for the problem of designing woodwind instruments, rather
than formulas that “exactly” fit the FEM results.

The calculation of the input impedance of woodwind
instruments using the TMM ignores internal and external
tonehole interactions. It is assumed that the toneholes are
located sufficiently far from each other that the evanescent
modes excited near one tonehole do not interact with
those of adjacent toneholes, a condition that becomes more
problematic on instruments with larger toneholes that are
spaced more closely together. It is also assumed that
the sound radiated from one tonehole does not interact with
the radiated sound from other open toneholes, as if they are
radiating in different spaces. Therefore, input impedances
calculated using the TMM and the formulas presented in
this paper are expected to differ to some degree from
measurements on woodwind instruments. Nevertheless,
the characterization of the single woodwind instrument
tonehole remains fundamental and the basis for further
improvements.

II. TONEHOLE TRANSMISSION MATRIX

The tonehole TM can be approximated as a symmetric T
section (see Fig. 2) depending on two parameters, the shunt
impedance Zs and the series impedance Za. The TM of the
tonehole is written as (Keefe, 1982b)

Thole ¼
1þ Za

2Zs
Za 1þ Za

4Zs

# $

1=Zs 1þ Za
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2
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775: (2)

The shunt and series impedances may be expressed in terms
of equivalent lengths ts and ta. For an open tonehole state
[superscript (o)],

ZðoÞ
s ¼ Z0hðjktðoÞs þ nÞ; (3)

ZðoÞ
a ¼ jkZ0t

ðoÞ
a (4)

and for a closed state [superscript (c)],

YðcÞ
s ¼ jktðcÞs =Z0h ; (5)

ZðcÞ
a ¼ jkZ0t

ðcÞ
a ; (6)

where Z0 ¼ qc=pa2 is the characteristic impedance of an
assumed cylindrical primary air column of radius a,
Z0h ¼ qc=pb2 is the characteristic impedance of the tonehole
of radius b, k ¼ 2pf=c is the wavenumber, f is the frequency,
q and c are, respectively, the density of air and the velocity
of sound in air, and n characterizes radiation losses when the
tonehole is open. For an unflanged pipe, n ¼ ðkbÞ2=4 is a
low frequency approximation (Dalmont et al., 2002).

To evaluate ZðoÞ
s , Dalmont et al. (2002) proposed the

following:

ZðoÞ
s ¼ jZ0h kti þ tan½kðtþ tm þ trÞ&f g; (7)

where t is the physical height, ti is the inner length correc-
tion, tm is the matching volume length correction, and tr the

FIG. 1. Diagram representing a tonehole on a pipe: Unflanged tonehole on the left, tonehole on a thick pipe on the right.

FIG. 2. Transmission matrix representation of a symmetric tonehole.
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radiation length correction. The matching volume length cor-
rection is calculated with (Nederveen et al., 1998)

tm ¼ bdð1þ 0:207d3Þ=8: (8)

The radiation length correction is obtained from the radiation
impedance Zr of the opening with (Dalmont et al., 2002)

tr ¼ arctan½Zr=ðjZ0hÞ&=k: (9)

This is a complex quantity that includes the effect of radia-
tion losses. For an unflanged tonehole, the model of an
unflanged pipe in the low frequency approximation is
satisfactory,

Zr ¼ Z0h ½0:25ðkbÞ
2 þ jk0:61b&: (10)

For a tonehole drilled through a thick pipe, a formula for the
radiation length correction was proposed by Dalmont and
Nederveen (2001),

dcyl ¼ 0:822' 0:47 b=ðaþ tÞ½ &0:8: (11)

This result was experimentally validated by Dickens (2007).
A data-fit formula for the inner length correction ti based

on simulation results using the FDM was proposed by
Nederveen et al. [1998, Eq. (40)],

ti ¼ ð0:82' 1:4d2 þ 0:75d2:7Þb: (12)

A theoretical equation based on modal decomposition was
also reported by Dubos et al. [1999, Eq. (73)],

ti ¼ 0:82' 0:193d' 1:09d2 þ 1:27d3 ' 0:71d4
% &

b

' tðoÞa =4; (13)

where the series equivalent length tðoÞa is defined in the
upcoming Eq. (15).

For the series equivalent length tðoÞa of an open tonehole,
Nederveen et al. (1998, Fig. 11) proposed a formula based
on the results of simulations with the FDM,

tðoÞa ¼ '0:28bd2: (14)

Using modal decomposition, Dubos et al. [1999, Eq. (74)]
gave

tðoÞa ¼' bd2

1:78 tanhð1:84t=bÞ þ 0:940þ 0:540dþ 0:285d2
:

(15)

For closed toneholes, the shunt impedance is given by
Nederveen (1998),

ZðcÞ
s ¼ jZ0h ½kti ' cot½kðtþ tmÞ&; (16)

where the inner length correction ti is negligible at low fre-
quencies and is often ignored.

For the series equivalent length tðcÞa of a closed tonehole,
Nederveen [1998, Eq. (A3.5)] proposed

tðcÞa ¼ 'ð2t=pbÞ arctanðb=2tÞbd2; (17)

whereas Dubos et al. [1999, Eq. (74)] gave

tðcÞa ¼' bd2

1:78cothð1:84t=bÞþ 0:940þ 0:540dþ 0:285d2
:

(18)

The series equivalent length of a closed tonehole is equal
to that of an open tonehole when t > b. For instance, Eqs.
(15) and (18) give the same results when t=b ! 1 (Dubos
et al., 1999),

tðo;cÞa ¼ 'ð0:37' 0:087dÞbd2: (19)

For instruments played directly with the fingers, there exists
a negative length correction caused by the reduction of the
tonehole volume by the finger, which protrudes inside it. A
modification to Eq. (18) was given by Dickens (2007) to
account for this effect. In this study, no attempt was made to
model the presence of a finger. In general, when the tonehole
height t is shorter than its radius b, a dependence of the shunt
and series impedances over t is expected.

III. ESTIMATION OF THE REQUIRED ACCURACY
OF THE EQUIVALENT LENGTHS

In this section, the acceptable error in the parameters of
the transfer matrix of open or closed toneholes is estimated
using the theory and notation presented by Nederveen (1998,
Sec. 32). Based on pitch discrimination results of Hartmann
(1996), a maximum tolerable error in the calculation of the
playing frequencies is assumed to be 65 cents (0.3%),
whereas 61 cent (0.06%) is below the threshold of audibil-
ity. A tolerance of 0.2% appears reasonable.

The playing frequencies of wind instruments are deter-
mined by the coupling between a nonlinear generator and
the linear response of the instrument. The physics of this
complex problem have been the subject of many publica-
tions; see Fletcher (1999) for a summary. For the purpose of
this paper, it is assumed that the playing frequency is directly
related to the resonance frequencies of the instrument,
including a length correction to approximate the effect of the
generator. That is, it is assumed that an error of 0.2% in the
estimation of the resonance frequencies will lead to an error
of 0.2% in the playing frequencies, which is likely not
exactly the case but should be relatively close.

For the shunt equivalent length of an open tonehole tðoÞs ,
this error can be evaluated from a first order approximation.
It is assumed that the tonehole shifts the frequency by one
semitone, so that Lc/Lo¼ (1þ g) ( 1.06, where Lc is the
acoustic length of the tube when the tonehole is closed and
Lo is the acoustic length when the tonehole is open. The
acoustic length L is related to the first resonance frequency
with L ¼ c=2f for conical reed instruments and flutes and
L ¼ c=4f for cylindrical reed instruments. It is possible to
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calculate the derivative of the tonehole equivalent length
with respect to a change in the acoustic length of the instru-
ment, that is, how much the tonehole equivalent length
should increase to produce a unit change in the acoustic
length of the instrument,

dtðoÞs

dLo
¼ d2ð1' zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k=gLo

p
; (20)

where k ¼ tðoÞs =d2 and z ¼ 0:5g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k=gLo

p
' 1

( )
. The

maximal error in the open tonehole shunt equivalent length is

DtðoÞs ¼ dtðoÞs

dLo
DLo; (21)

with DLo ¼ 0:002Lo (0.2% accuracy).

The error DtðoÞs was calculated for varying geometries
and lengths Lo. The acceptable error varies with geometry. In
general, a wider and taller tonehole can tolerate a larger error
in its equivalent length. An accuracy of 0.2b on the shunt
equivalent length is found to be acceptable in most cases.

For the open series equivalent length, the required accu-
racy is

DtðoÞa ¼ dtðoÞa

dLo
DLo ( 0:002Lo; (22)

because tðoÞa represents a change in acoustic length.
In the case of closed toneholes, all of the toneholes

located before the first open tonehole have an influence on
the resonance frequency of the instrument. Thus, there is a
cumulative effect and the worse case always occurs for the
lowest note of an instrument. In the case of the closed shunt
impedance, the maximal error is calculated approximately
from a simplification of Eqs. (35.12-13) from Nederveen
(1998), which yields

DtðcÞs ¼ dtðcÞs

dLc
DLc (

4

Nd2
) 0:002Lc; (23)

and for the series length correction term,

DtðcÞa ¼ dtðcÞa

dLc
DLc (

1

N
) 0:002Lc; (24)

where N is the number of toneholes on the instrument.
In Sec. VI, these estimated values are used to display

the range of validity of the various length corrections in the
figures using gray regions.

IV. FEM PROCEDURE

The FEM allows a three-dimensional representation of a
geometric structure with coupled internal and external
domains, taking into account any complexities of the geome-
try under study with no further assumptions. For all the sim-
ulations, curved third-order Lagrange elements are used. All
open simulated geometries include a surrounding spherical

radiation domain that uses a second-order nonreflecting
spherical-wave boundary condition on its surface, as
described by Bayliss et al. (1982). Further discussion of this
topic can be found in Tsynkov (1998) and Givoli and Neta
(2003). The effect of the thermoviscous losses is negligible
for most woodwind instrument toneholes because the bound-
ary layer thickness is small relative to their size and because
they are short in height. Therefore, no attempt was made to
account for such losses in this study. As well, results from
the literature do not include the effect of losses and thus,
inclusion of such would complicate the comparisons. That
said, thermoviscous losses can be included in the FEM simu-
lations if desired (Kampinga et al., 2010). The simulations
were performed with a speed of sound c¼ 343m/s and a
density q ¼ 1:25 kg/m3.

A commercial FEM software package was validated
with the simulation of a flanged and an unflanged pipe radi-
ating into a sphere with the aforementioned boundary condi-
tion. The radiation impedance was calculated for values of
ka varying from 0.1 to 1 (from 546.9 to 5459Hz) in steps of
0.1 with an additional low-frequency point at 0.01 (54.6Hz).
The refinement of the mesh along geometry discontinuities
is critical to the accuracy of the solution (mainly for the
imaginary part). It was found that 100 elements along the
circular edge where the pipe ends produce good results.
The total number of degrees of freedom for the validation
models and the tonehole models varied between 30 000 and
80 000 depending on the geometry. The end corrections
were found to be in agreement with theory (Levine and
Schwinger, 1948; Norris and Sheng, 1989) to great accuracy
(Lefebvre, 2010). The error is less than 0.1% for the low
frequency point and less than 0.5% for all frequencies for
the unflanged case; for the flanged pipe, the results were
compared with an approximate formula from Norris and
Sheng (1989) and the error is around 2% for the highest
frequency point, which may be in part an error in the approx-
imate formula used for the verification. The error on the real
part is less than 0.1% for the low frequency point in both
cases; it is less than 1% for all frequencies in the unflanged
case and less than 3% for the flanged case.

For the purposes of this paper, the results of the FEM
simulations must be transformed to a TM characterization of
the object under study (Tobj). The TM method is useful to
characterize any type of discontinuity embedded in a wave-
guide, i.e., which has an input and an output plane. One
requirement is that the evanescent modes occurring near the
discontinuity must be sufficiently damped at the input and
output planes of the simulated model. Thus, cylindrical seg-
ments are required in the FEM simulations before and after
the discontinuity. The lengths of these segments is specified
as five times the input radius in order to ensure the evanes-
cent modes have decayed by a factor of more than 1) 10'3,
based on the theory of guided waves (Pierce, 1989). That
being said, as mentioned in the introduction, the distance
between adjacent toneholes on woodwind instruments is
often insufficient for this condition to be fully met; this
means that the evanescent modes excited near a tonehole
interact with the other toneholes, an effect that limits the
accuracy of calculations based on the transfer matrix method.
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The transfer matrix T obtained from the simulations is
that of the complete cylinder–object–cylinder system. It con-
tains four frequency-dependent, complex-valued parameters
relating input quantities to output quantities of pressure (P)
and volume velocity (U). In order to obtain these four
parameters from the FEM results, the problem has to be
simulated two times with different boundary conditions.
By combining the results for the two simulation cases
(subscripts 1 and 2), a system of linear equations is written
to solve for the four parameters of the transfer matrix,

Pout1 Uout1 0 0
0 0 Pout1 Uout1

Pout2 Uout2 0 0
0 0 Pout2 Uout2

2

664

3

775

T11
T12
T21
T22

2

664

3

775 ¼

Pin1

Uin1

Pin2

Uin2

2

664

3

775: (25)

The transfer matrix made of these coefficients can be
expressed as T ¼ Tcyl1TobjTcyl2 , where the TM of a cylindri-
cal duct is

Tcyl ¼
cos kL jZ0 sin kL

j sin kL=Z0 cos kL

" #

: (26)

The effect of the cylinders is removed by calculation using
the inverse of the cylinder’s transfer matrix to obtain the
coefficients of the matrix Tobj of the object under study.
Finally, making use of Eq. (2), the shunt and series impedan-
ces are retrieved.

If the object under investigation is symmetric, only one-
half of the geometry is solved (see Fig. 1). On symmetry
plane A, two boundary conditions are defined alternately: A
null normal acceleration for the symmetric case (case 1) and
a null pressure for the anti-symmetric case (case 2). From
the values of the pressure and normal velocity on the input
plane of the model, the values on the output plane for both
simulation cases are deduced,

Pout1 ¼ Pin1 ; (27)

Uout1 ¼ 'Uin1 ; (28)

Pout2 ¼ 'Pin2 ; (29)

Uout2 ¼ Uin2 : (30)

The model of a tonehole has another symmetry (plane B) so
that only one-quarter of the geometry is required. A typical
geometry and mesh for an unflanged tonehole is shown in
Fig. 3.

Dalmont et al. (2002) used a similar method, but simpli-
fied the problem by assuming the symmetry condition
T11¼T22 and the reciprocity condition T11T22' T12T21¼ 1.
That simplification is not used in this study because it does
not work for a tonehole on a conical bore and because it is
not necessary in a numerical approach, where both pressures
and velocities are available. For a symmetric system, the cal-
culation method that is proposed requires two solutions of a
model that is one-half the size, which takes less time and
memory than the solution of a single larger model. The

approach used by Keefe (1982a) is based on the displace-
ment of the resonance frequencies and gives results only at
discrete frequency points.

V. FEM TONEHOLE MODELVALIDATION

The FEM simulation results are compared with the ex-
perimental data obtained by Dalmont et al. (2002) and Keefe
(1982a). Dalmont et al. (2002) measured the shunt and series
equivalent lengths of a single tonehole on a pipe of radius
a¼ 10mm as a function of frequency for two different tone-
hole geometries: (1) d¼ 0.7, t/b¼ 1.3 and (2) d¼ 1.0,
t/b¼ 1.01. They also measured the real part of the shunt
impedance for the larger diameter tonehole. Both tonehole
geometries were flanged at their open end. The FEM results
are also compared with data obtained by Keefe (1982a), who
measured the shunt and series equivalent lengths of a single
unflanged tonehole on a cylinder of radius a¼ 20mm for
two tonehole geometries: (1) d¼ 0.66, t/b¼ 0.48 and (2)
d¼ 0.32, t/b¼ 3.15.

The shunt equivalent length tðoÞs as a function of ka (in
steps of 0.05) obtained from the FEM simulations is dis-
played in Figs. 4 and 6 in comparison to these experimental
results. The FEM results are in good general agreement with
the experimental results of Dalmont et al. (2002). In the
lower frequency range, the FEM results match the theoretical
results. In the results of Dalmont et al. (2002), the equivalent
length is found to be 0.66 0.3mm larger than predicted for
d¼ 1 and 0.56 0.3mm for d¼ 0.7. The FEM results do not
show this trend. In the higher frequency range, it is found
that the equivalent length becomes larger than predicted
with previous results, indicating a frequency dependence of
the inner length correction, in accordance with the experi-
mental results of Dalmont et al. (2002).

FIG. 3. Typical mesh for the case of a tonehole on a cylindrical pipe.
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The real part of the shunt impedance obtained from the
FEM simulations is displayed in Fig. 5 in comparison to the
experimental results of Dalmont et al. (2002) and theoretical
calculations without viscothermal losses. The FEM and
experimental results are in general agreement. The real part
appears to be slightly larger than predicted by theory near
the maximum.

In the case of the unflanged toneholes studied by Keefe
(1982a), good agreement is found between the theoretical
values, the FEM results and his experimental data for the

tonehole of tall height (see Fig. 6). For the unflanged tone-
hole of short height, there are discrepancies: The experimen-
tal data and the FEM results give larger shunt equivalent
lengths for the higher frequencies compared to the theory,
even though the experimental data does not quite fit the
FEM results. As noted by Dalmont et al. (2002), Eq. (7) is
valid when t > b. The tonehole of short height in Fig. 6 is
shorter than its radius; the discrepancies confirm that the
model is not valid in this case and suggest that the inner
length correction is frequency dependent.

For the large-diameter tonehole (d¼ 1.0), Dalmont et al.
(2002) found a series equivalent length tðoÞa of 2.86 0.3mm,
whereas the FEM result is 2.90mm. For the smaller tonehole
(d¼ 0.7), their results (tðoÞa ¼ 0.956 0.3mm) and the FEM
result (1.02mm) are in agreement.

Keefe (1982a) found a value of tðoÞa ¼ 0.86 0.2mm for
the large-diameter (d ¼ 0:66) tonehole. The FEM result is
0.78mm. For the small-diameter (d ¼ 0:32) tonehole, Keefe
(1982a) found that no series length correction was experi-
mentally detectable. The FEM result is 1.9) 10'5mm,
which also confirms this result.

When the large-diameter tonehole is closed by a brass
plate, Keefe (1982a) found a shunt equivalent length of
tðcÞa ¼ 6.26 0.4mm, whereas the value from the FEM is
7.55mm. The theoretical value tþ tm is 7.49mm. When the
tonehole was closed with a standard wind instrument
leather pad, Keefe (1982a) reported a smaller value of
tðcÞa ¼ 5.46 0.2mm. This is a rather significant difference
(maximal tolerable error approximately 1mm), which
deserves further experimental verification. Similarly, the
FEM gives a closed tonehole series equivalent length
of tðcÞa ¼ 0.64mm, whereas Keefe (1982a) measured a value
of 0.36 0.2mm when closed by a brass plate and
0.46 0.2mm when closed by a standard wind instrument
leather pad. The accuracy that is required, based on the
analysis in Sec. III, is *0.1mm. Closed toneholes have
received little attention compared to open toneholes and the
experimental results of Keefe (1982a) do not fit with the
FEM or theoretical results. Therefore, further experimental
examination appears necessary.

FIG. 4. Shunt length correction tðoÞs as a function of ka for the two toneholes
studied by Dalmont et al. (2002): d ¼ 0:7 and t=b ¼ 1:3 (top graph),
d ¼ 1:0, t=b ¼ 1:01 (bottom graph). FEM results (filled circles), experimen-
tal data from Dalmont et al. (2002) (solid line) and theoretical results with
Eqs. (3) and (7) (dashed line).

FIG. 5. Real part of the shunt impedance divided by (kb)2 as a function of
ka for the tonehole of d ¼ 1:0 studied by Dalmont et al. (2002). FEM results
(filled circles), experimental data from Dalmont et al. (2002) (solid line) and
theoretical results with Eq. (7) (dashed line).

FIG. 6. Shunt equivalent length tðoÞs as a function of ka for the two toneholes
studied by Keefe (1982a): d¼ 0.66 and t=b¼ 0.48 (bottom curves), d¼ 0.32
and t=b¼ 3.15 (top curves). FEM results: For d¼ 0.66 (filled circles) and
for d¼ 0.32 (filled squares). Experimental data from Keefe (1982a) (markers
with error bar) and theoretical results with Eqs. (3) and (7) (dashed line).
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VI. RESULTS

In this section, the results of FEM simulations for the
characterization of both types of toneholes, as depicted in
Fig. 1, are presented.

The toneholes were simulated using the FEM for a
wide range of geometric parameters (d ¼ b=a from 0.1 to
1.0 in steps of 0.05, t/b from 0.1 to 0.3 in steps of 0.05 and
from 0.3 to 1.3 in steps of 0.2 and ka from 0.1 to 1.0 in
steps of 0.05 with an additional low-frequency point at
ka¼ 0.01). The lowest frequency simulated was 55 Hz.
For all parameters, the four terms of the transfer matrix
were obtained and the shunt and series length corrections
calculated using the procedure previously described in
Sec. IV. Accurate data-fit formulas were previously
reported (Lefebvre, 2010), although they exceed the accu-
racy requirements for the design of music instruments, as
defined in Sec. III. In this paper, revised equations that are
as simple as possible within the specified error tolerance
are presented.

From the simulation results, an expression for the inner
length correction was deduced (Lefebvre, 2010),

ti=b ¼ 0:822' 0:095d' 1:566d2 þ 2:138d3

' 1:640d4 þ 0:502d5:
(31)

Figure 7 compares this equation with those of the literature;
they are very similar to each other.

A. Open toneholes

In Fig. 8, the simulation results for the low-frequency
value of the total open shunt length correction (ti þ tm þ tr)/b
is shown for the two extreme cases of short and tall toneholes
of both types. For the unflanged toneholes, the effect of the
tonehole height is only apparent for holes of small diameter.
This can be attributed to variations in the radiation length
correction with varying height but the effect is negligible, as
indicated by the gray area of validity. For a tonehole drilled
through a thick pipe, the radiation length correction is calcu-
lated with Eq. (11). The simulation results are in good agree-
ment with the formula found in the literature, confirming
their validity.

From the simulation results, it appears that the inner
length correction is frequency dependent. A multiplicative
factor Gðd; kaÞ, which is a function of d and ka, can be mul-
tiplied by the expression for ti to capture this frequency
dependence,

Gðd; kaÞ ¼ 1þ HðdÞIðkaÞ½ &; (32)

where

HðdÞ ¼ 1' 4:56dþ 6:55d2

and

IðkaÞ ¼ 0:17kaþ 0:92ðkaÞ2 þ 0:16ðkaÞ3 ' 0:29ðkaÞ4:

The open shunt impedance for any tonehole height and
diameter can be calculated with Eq. (7) using the inner
length correction of Eq. (31) multiplied by the factor of
Eq. (32). Figures 9 and 10 show tðoÞs for two different tone-
hole heights, both with and without the factor G. The
frequency-dependent inner length correction better matches
the FEM results, which is particularly significant for tone-
holes with a larger diameter (large value of d).

In the simulation results, the real part of the open shunt
impedance was found to be equal to 0:25ðkbÞ2 for all tone-
holes with a maximal deviation of 1.5%.

FIG. 7. Comparison of the inner length corrections ti: Equation (12) (dashed
line), Eq. (13) (dotted line), and Eq. (31) (solid line).

FIG. 8. Total open shunt length correction ðtðoÞs ' tÞ=b ¼ ðti þ tm þ trÞ=b as
a function of d. FEM results: Unflanged tonehole (filled markers) and tone-
hole on a thick pipe (unfilled markers); tall t¼ 2b (squares), and short
t¼ 0.1b (circles) toneholes. Experimental data from Keefe (filled triangles
with error bars). Model for an unflanged tonehole: Sum of Eqs. (31) and (8)
and tr/b¼ 0.61 (dotted line), with its validity range in gray. Model for a
tonehole on a thick pipe: Sum of Eqs. (31), (8), and (11) (both dashed lines).

J. Acoust. Soc. Am., Vol. 131, No. 4, April 2012 A. Lefebvre and G. P. Scavone: Characterization of woodwind toneholes 3159

Downloaded 13 Apr 2012 to 132.206.14.222. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



The low-frequency value of the open tonehole series
length correction does not need to be known with great
accuracy because of its small impact on the resonance fre-
quencies of woodwind instruments. This is shown in Fig. 11
for both types of toneholes and for the two extreme cases of
short and tall chimney heights. The results for both types of
toneholes are almost identical. Equation (15) from Dubos
et al. (1999) is in relative agreement with the simulation
results for toneholes of tall height but not for toneholes of
short height. The following fit formula matches the simula-
tion results:

tðoÞa =bd2 ¼ '0:35þ 0:06 tanhð2:7t=bÞ: (33)

B. Closed toneholes

The FEM results for closed toneholes confirm that the
shunt length correction is very well represented by the length
tþ tm, i.e., by the volume of the tonehole. The effect of the
inner length correction grows in importance with frequency.

Figure 12 shows the FEM results in comparison with
Eq. (16), with and without the term ti, confirming that ti can
be ignored at low frequency.

Figure 13 displays the series length correction tðcÞa of
closed toneholes of both types for the two extreme cases of
short and tall chimney heights [using the data fit formula
given by the upcoming Eq. (34)]. Equation (18) from Dubos
et al. (1999) is in good agreement with the simulation
results, as was expected because the theoretical development
of Dubos et al. (1999) was based on an exact formulation of
Green’s function. The results for the tall tonehole are the
same as for an open hole (see Fig. 11), as expected. When
the toneholes are short in height, the series length correction
term diminishes in magnitude in a different manner depend-
ing on the type of tonehole,

tðcÞa =bd2 ¼ '0:12' 0:17 tanhð2:4t=bÞ: (34)

The dependence of the series length correction of an open or
closed tonehole on the tonehole height is most important for
toneholes of large diameter (as indicated by the region of va-
lidity). This is displayed in Fig. 14 for both types of tonehole

FIG. 10. Shunt equivalent length tðoÞs in millimeter as a function of ka for
three values of d (0.2, 0.5, and 1.0, from bottom to top curve) and a value of
t¼ 1.1b for an unflanged tonehole. FEM results (filled circles). Model:
tðoÞs ¼ZðoÞ

s =ðjkZ0h Þ with ZðoÞ
s evaluated using Eq. (7) where ti is evaluated

with Eq. (31) (dashed line) and with Eq. (32) (solid line). Validity range in
gray.

FIG. 12. Shunt admittance of a closed tonehole as a function of ka for three
values of d (0.2, 0.5, and 1.0, from bottom to top curve) and t¼ 2b. FEM
results (filled circles). Model: Equation (16) with ti¼ 0 (dashed line) and
with ti defined by Eq. (31) (solid line).

FIG. 9. Shunt equivalent length tðoÞs in millimeters as a function of ka for
three values of d (0.2, 0.5, and 1.0, from bottom to top curve) and a value of
t¼ 0.25b for an unflanged tonehole. FEM results (filled circles). Model:
tðoÞs ¼ZðoÞ

s =ðjkZ0h Þ with ZðoÞ
s evaluated using Eq. (7) where ti is evaluated

with Eq. (31) (dashed line) and with Eq. (32) (solid line). Validity range in
gray.

FIG. 11. Series length correction tðoÞa /bd2 as a function of d. FEM results:
Unflanged tonehole (filled markers) and tonehole on a thick pipe (unfilled
markers, mostly hidden); tall t¼ 2b (squares) and short t¼ 0.1b (circles)
toneholes. Data fit formula Eq. (33) (solid line) with validity range in gray,
and theoretical Eq. (15) (dotted line) for t¼ 2b and t¼ 0.1b (see lower right-
hand corner). Data points by Keefe (1982a) (unfilled square with error bar)
and by Dalmont et al. (2002) (unfilled triangles with error bar).
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with d ¼ 1:0. For an open tonehole, Eq. (15) overestimates
the magnitude of the series equivalent length for toneholes
of short height. The use of Eq. (33) is expected to improve
results for instruments with toneholes of large diameter and
short height. For a closed tonehole, Eq. (18) matches rela-
tively well the simulation results. Equation (17) overesti-
mates the magnitude for tall toneholes. The new data fit
formula, Eq. (34), better matches the simulation results of an
unflanged tonehole. In all cases of short toneholes, the
dependence on t is sufficiently important to cause errors in
the evaluation of the resonance frequencies of an instrument
with many closed toneholes if it is not accounted for, due to
the cumulative effect (Debut et al., 2005). For a saxophone,
an error of 25 cents in the estimation of the lowest resonance
was found when using Eq. (14) or (19), which are only valid
for a closed tonehole when t > b.

The calculations of Dubos et al. (1999) for an open
tonehole of short height was based on a rough approxima-
tion of Green’s function, whereas it was correct for a closed
tonehole. The FEM results for the series equivalent lengths
confirm this difference; the theoretical formula by Dubos
et al. (1999) better matches the FEM results for a closed
tonehole.

VII. IMPACT OF CONICITY

Previous studies of woodwind instrument toneholes
have only considered holes in cylindrical waveguides.
Although the influence of an air column taper on the TM
parameters of the tonehole is likely small, because the taper
angle of woodwind instruments is small, the magnitude of
this potential effect is unknown.

A tonehole on a conical bore is no longer symmetric. In
this situation, the model represented by Eq. (2) is modified
as follows:

Thole ¼
1 Zau

0 1

" #
1 0

1=Zs 1

" #
1 Zad

0 1

" #

¼
1þ Zau=Zs Zau þ Zad þ ZauZad=Zs

1=Zs 1þ Zad=Zs

" #

; (35)

where Zau and Zad are the series impedances for the upstream
and downstream halves of the tonehole, respectively.

In a manner similar to that for toneholes on cylindrical
bores, the TM of the tonehole on a conical bore is obtained
using the FEM. The conical system only has one symmetry
plane, thus requiring one-half of the model to be simulated
(compared with one-quarter in the cylindrical case). This
revised procedure was first validated using a cylindrical
model and the exact same results (within 0.1%) as reported
in the previous section were obtained. Notably, the upstream
and downstream values of the series equivalent lengths were
identical.

The transfer matrix Thole of the tonehole was obtained
from the transfer matrix T of the simulated system by multi-
plying this matrix by the inverse of the TM of the two
segments of truncated cones, Tconeu and Tconed ,

Thole ¼ T'1
coneu

TT'1
coned

; (36)

where the TM of a conical waveguide can be found in
Fletcher and Rossing (1998)

The objectives are to determine whether or not the shunt
impedance Zs is different from that derived for a cylindrical
bore and to determine the effect of the asymmetry on the val-
ues of Zau and Zad . The tonehole parameters were obtained
for two conical waveguides with taper angles of 3+ and 6+.
Bassoons and oboes have respective taper angles of approxi-
mately 0.8+ and 1.5+. Alto and soprano saxophones have re-
spective taper angles of approximately 3+ and 4+. A few
saxophone toneholes are located in the beginning of the flar-
ing bell where the angle increases. An angle of 6+ is a rea-
sonable practical limit.

As for toneholes on a cylindrical bore, a data-fit formula
for the shunt equivalent length of the open tonehole is
obtained from the simulation data (with the same set of pa-
rameters). The maximal observed difference between the
two data-fit formulas was 4) 10'5 b. This is a very small
difference and the authors thus conclude that the shunt
length corrections are not significantly changed relative to
their values on a cylindrical bore.

FIG. 13. Series length correction tðcÞa /bd2 as a function of d. FEM results:
Unflanged tonehole (filled markers) and tonehole on a thick pipe (unfilled
markers, partly hidden); tall t¼ 2b (squares) and short t¼ 0.1b (circles).
Data fit formula Eq. (34) (solid line) with validity range in gray. Theory:
Equation (18) (dotted line).

FIG. 14. Series length correction tðo;cÞa =bd2 as a function of t/b for d¼ 1.0
for open and closed toneholes of both types. FEM results: Unflanged tone-
hole (filled markers) and tonehole on a thick pipe (unfilled markers); open
toneholes (circles) and closed toneholes (triangles). Data fit formulas: Equa-
tions (33) and (34) (solid line). Theory: Equations (15) and (18) (dashed
line), Eq. (17) (dashed-dotted line). Validity range in gray.
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The sum of the upstream and downstream series length
corrections, tðoÞa =bd2, computed for a conical bore with a
taper angle of 3+and 6+, is shown in Fig. 15. For the smaller
taper angle and d > 0:5, the FEM results are close to the
values given by Eq. (33). The results for smaller toneholes
differ more significantly from Eq. (33) although they
remain well within the validity range and are thus consid-
ered negligible. The results for a cone with a taper angle of
6+ reveal discrepancies from Eq. (33) that are more signifi-
cant, even for higher values of d, with simulated values fall-
ing on or slightly outside the range of validity. However,
this taper angle is beyond most practical cases in musical
instruments.

The conclusion of this analysis is that the use of TM
parameters developed for toneholes on cylindrical bores is
valid for conical bores, at least up to an angle of 3+and prob-
ably for most applications in musical instruments.

VIII. CONCLUSION

A method to derive the transfer matrix parameters of a
discontinuity in a waveguide was developed and applied
successfully to the case of woodwind instrument toneholes.
Simple polynomial fit formulas were developed that match
the FEM results. These results confirm the validity of the
equations from the literature for tall toneholes (t > b). For
large-diameter toneholes of shorter height, the shunt equiva-
lent length of an open tonehole increases more with fre-
quency than predicted by previous expressions. This can be
explained by a frequency-dependent inner length correction.
The series equivalent length increases in magnitude as the
tonehole height decreases, but not as much as predicted by
previous formulas.

For closed toneholes, the formulations found in the
literature are correct but new equations are proposed that
better match the FEM results. The reduction in the magni-
tude of the series equivalent length for short toneholes
must be accounted for when calculating the resonance fre-
quencies of woodwind instruments, particularly for the
lowest notes, because of the cumulative effect of this term;
otherwise, the calculated resonances will be higher than
they should be.

The possible impact of a main bore taper (angles of 3+

and 6+) on the characterization of toneholes was estimated
from FEM simulations. The shunt equivalent length was
found to be unaffected by a bore taper. The series equivalent
length term differs to some extent, although it remains within
the estimated maximal tolerable error for a taper angle of 3+.
Thus, the parameters of a tonehole on a cylindrical bore can
be used safely on a conical bore instrument, at least up to a
taper angle of 3+.

This method can be applied to the case of a hanging key
above a tonehole, a tonehole with undercutting, a tonehole
with rolled chimney or to other particular geometric features.
Future work will include an experimental verification of the
transfer matrix parameters of open and closed toneholes of
short height.
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