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Abstract

This thesis presents numerical investigations of the aeroacoustic aspects of clarinet-
like instruments. A customized simulation system based on the two-dimensional lat-
tice Boltzmann method is developed to address acoustic problems involving complex
boundary conditions carrying a low Mach number mean flow. The simulation is accel-
erated by means of GPU parallel computing.

The accuracy and stability of the modeling system are substantiated by benchmark
acoustic problems involving static boundaries, which include the acoustic transmission
and radiation characteristics of axisymmetric waveguides terminated by different ge-
ometries, as well as the aeroacoustic behavior of whistles with complicated curved ge-
ometries. The effect of non-zero subsonic mean flow is investigated. The numerical
results agree well with those provided by available theories and experimental data. The
accuracy of the 32-bit representation of floating-point numbers in the GPU-accelerated
computations is also verified.

Aspects of fluid-acoustic-structure interaction of a clarinet that comprises a dynamic
mouthpiece-reed structure and an acoustic resonator are investigated in both a quasi-
stationary regime and a dynamic regime. The effect of different lay geometries is inves-
tigated as well. For the case of a fixed reed, the vena contracta factor varies very little
over approximately 80% of the duration, which is in general agreement with the current
theory. For the case of a slowly moving reed, hysteresis is found in the numerical flow
due to the inertia of the fluid volume. The vena contracta factor is greater than unity in
the region of high pressure differences, which is in contrast with the theoretical assump-
tion and is due to the non-uniform height across the reed channel. In simulations carried
out for a dynamic regime with acoustic feedback, the phenomenon of flow separation
/ reattachment in a reed channel, as well as the vena contracta factors, are significantly
different from the theoretical expectations. The acoustic perturbation of the pressure
and velocity fields in a mouthpiece chamber and reed channel are visualized with high
resolution. The effect of different lay geometries is observable in many aspects, includ-
ing the earlier acceleration of volume flow in the short channel and the extra energy
dissipation in the long channel with a ditch at the end.
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Sommaire

Cette thèse présente des analyses de simulations numériques de certains aspects aéroa-
coustiques d’instrument de musique à anche simple ressemblant à la clarinette. Un
système de simulation sur mesure basé sur la méthode de Lattice-Boltzmann à 2 di-
mensions est développé pour résoudre des problèmes acoustiques avec des conditions
frontière complexes et un écoulement fluide subsonique à faible nombre de Mach. La
simulation est accélérée par du calcul en parallèle sur un GPU.

La précision et la stabilité du système de simulation sont évaluées avec des simula-
tions de référence ayant des conditions frontière statiques, incluant la transmission et la
radiation dans des guides d’onde axisymétrique se terminant par des géométries con-
nues, ainsi que le comportement aéroacoustique de sifflets avec différentes géométries
courbes. L’effet d’un écoulement subsonique moyen non nul est analysé. Les résultats
numériques sont en accord avec les résultats théoriques et expérimentaux disponibles.
La précision de la représentation sur 32-bit des nombres flottants dans les calculs ac-
célérés sur le GPU est aussi vérifiée.

Les aspects fluid-acoustique-structure interaction de la clarinette comprenant une
structure dynamique anche-bec et un résonateur acoustique sont analysés en régime
quasi stationnaire et en régime dynamique. L’effet de la géométrie de la table est analysé.
Dans le cas d’une anche fixe, le facteur de vena contracta varie très peu pour 80% de la
durée de la simulation, ce qui est en accord avec la théorie actuelle. Dans le cas d’une
anche en mouvement lent, nous trouvons de l’hystérésis dans les résultats numériques
en conséquence de l’inertie du volume fluide. Le facteur de vena contracta est supérieur
à 1 dans la région de grande différence de pression, ce qui contraste avec les hypothèses
théoriques et est une conséquence de la hauteur non uniforme du canal le long de
l’anche. Dans les simulations en régime dynamique avec retour d’onde acoustique,
le phénomène de séparation / attachement de la couche limite dans le canal d’anche,
de même que le facteur de vena contracta sont significativement différent des attentes
théoriques. Les perturbations des champs de pression et de vitesse acoustiques dans la
chambre du bec et dans le canal d’anche sont visualisées en haute résolution. L’effet de
changement dans la géométrie de la table du bec est observable selon plusieurs aspects,
incluant une accélération antérieure du débit dans un canal court et une augmentation
de la dissipation d’énergie dans un canal long.
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Chapter 1

Introduction

1.1 Background

Woodwind music instruments such as the clarinet have largely remained in their present
form for more than a century. The sound production of a clarinet depends on flow-
induced vibrations, with the reed modulating the air flow entering into the instrument
by opening and closing a narrow channel defined between the reed tip and the lay of
the mouthpiece. There are still many aspects of their playing behavior that are not com-
pletely understood from a scientific perspective.

Besides traditional theoretical and experimental approaches, computational simula-
tions have become popular in the field of musical acoustics thanks to the development
of new numerical algorithms and inexpensive computation resources. Numerical sim-
ulations have many advantages when it comes to performing faster, better and with
cheaper computations, as well as in certain situations where theoretical modeling and
experimental measurements are either very difficult or impossible.

The methods of computational modeling of woodwind music instruments vary from
realtime simulations, such as the digital waveguide modeling of virtual woodwind in-
struments (Smith, 1992; Välimäki, 1995; Scavone, 1997), to non-realtime numerical meth-
ods that can provide high accuracy, such as the computational analysis and computer
aided design of woodwind instruments based on the finite element method (Lefebvre
and Scavone, 2010, 2012), to the direct numerical simulations of the physical behaviors
of fully coupled woodwind instruments on the microscopic scale (da Silva et al., 2007;
Obikane, 2011; Giordano, 2013, 2014).
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On the macroscopic scale and without considering aeroacoustic effects, the acoustic
behavior of a woodwind musical instrument is governed by the acoustic wave equation.
For problems involving aerodynamic phenomenon, such as turbulences, vortex shed-
ding and interactions between an aerodynamic field and an acoustic field, the wave
equation is inadequate and more fundamental governing equations such as the Euler
equations or the Navier-Stokes equations should be explored. In this sense, the acoustic
solution is considered as a perturbation to a more complicated aerodynamic flow prob-
lem, for which the modern computational fluid dynamics (CFD) methods have been
very successful. But since “the nature, characteristics, and objectives of aeroacoustic problems
are also quite different from the commonly encountered CFD problems” (Tam, 1995), issues
pertinent to aeroacoustics must be studied separately when we apply CFD methods to
the analysis of related aeroacoustic problems (Tam, 1995; Wells and Renaut, 1997).

In addition to other traditional CFD techniques, a relatively new tool called the lattice
Boltzmann method (LBM) has attracted much attention over the last three decades. The
main advantage of the LBM is represented by its simplicity in simulating the fluid field
and acoustic field involving complicated boundary conditions directly and simultane-
ously in one single step. Also, the LBM is by nature well suited for parallel computation,
which is advantageous for computationally intensive problems that require high spatial
resolutions and large temporal scales.

The LBM simulation of woodwind music instruments was pioneered by Skordos
(1995), who worked on recorders and organ pipes, and by Kühnelt (2007), who worked
on flutes. However, their models were limited to rather simplified static geometries
with low spatial resolutions. A more interesting LBM simulation of an isolated clarinet
mouthpiece without an acoustic resonator was reported by da Silva et al. (2007), who
successfully solved the fluid-structure interaction associated with the mouthpiece-reed
system in the dynamic regime.

1.2 Objectives and Scope

The main objective of this thesis is to develop a numerical framework that is capable
of simulating the fully coupled fluid-acoustic-structure interaction in clarinet-like in-
struments with geometrical changes. This work is a continuation of the PhD thesis
research conducted by da Silva (2008). The simulation of a dynamic clarinet is char-
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acterized by a vibrating structure (the reed) interacting with an isentropic viscous flow
at the limit of low compressibility and low acoustic amplitude shaped by static bound-
ary conditions, including complex solid walls and anechoic boundaries. Instead of using
traditional continuum-based computational aeroacoustic (CAA) methods (either decou-
pled approaches or direct numerical simulation) to solve the compressible Navier-Stokes
equations, the particle-based LBM was chosen because of its several advantages, which
include its simplicity and capability of solving the acoustic and flow field simultane-
ously under a reasonable computational cost, a good robustness for complex boundary
conditions and a second-order accuracy.

With respect to the software implementation of a LBM-based numerical simulation
system, a researcher can either utilize one of many existing commercial or open-source
packages, such as PowerFlow, Palabos, Sailfish, openLBMflow, CFDEM, waLBerla, etc.,
or build a customized simulation system using a general programming language suit-
able for scientific computation, such as Matlab, Python or C++. Either option comes with
its own advantages and disadvantages. From a user’s point of view, a closed-source
commercial software such as PowerFlow is not only expensive but also hides implemen-
tation details that a researcher may be interested in or need for further processing, thus it
is less preferred in a scientific investigation compared to other open-source alternatives.
This is especially true for the implementation of a moving boundary coupled with the
finite difference scheme of a distributed reed model, which requires a fully coupled in-
teraction of acoustic-fluid-structure fields that is essential to the simulation of a dynamic
clarinet. Unfortunately, this feature is not directly supported by PowerFlow. Moreover,
even in the versions of PowerFlow available in 2016, coupling the standard rigid wall
prescribed by a velocity with another numerical solver of a vibrating reed model seems
very difficult if not impossible. Likewise, the fully coupled moving boundary and the
distributed reed model are not immediately included in any other existing open-source
LBM solvers. Therefore, it is justifiable that da Silva chose to develop a customized
Matlab code from scratch to address the simulation problems throughout his PhD thesis
research.

In the present thesis research, for the same reason, we also chose to develop a new
customized simulation system using a general programming language rather than using
an existing software package. The new system is partly evolved from the Matlab code
of the old system used by da Silva. Due to computational limits, the old system did not
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include acoustic resonator and radiation domain components in the dynamic clarinet
implementation. Also, the stability of the old system in simulations involving a fluid
with a very low viscosity, as well as the efficiency of the numerical procedure represent-
ing a moving boundary or a complex curved boundary needed to be improved. To solve
these problems, we found that it was more efficient to re-implement a new framework
rather than to modify or tweak the Matlab code of the old system. Compared to the old
system, the new system is significantly improved in terms of robustness, efficiency and
flexibility. Since a new system is potentially open to new bugs, it must be verified or val-
idated before we can perform any useful simulations and trust its outcome. Therefore,
a significant part of this research is engaged in validating the new simulation system in
a number of different situations.

This thesis research has been organized in three sequential steps.

• The first step is to re-implement a customized LBM-based simulation system, which
is capable of modeling acoustic systems with arbitrarily shaped solid boundaries.

• The second step is to verify the simulation system by addressing various bench-
mark acoustic problems featured by various static boundaries. The accuracy, sta-
bility and efficiency of this system are of particular concern. Furthermore, the
verified model is used to investigate problems where the analytical solutions or
experimental results are not available yet.

• The last step is to develop a complete clarinet model that comprises an acoustic
resonator coupled to a dynamic mouthpiece-reed system. The aero-dynamic as-
pects of the dynamic flow and its dependency on the reed channel geometry are
investigated.

There are several major differences between the present thesis research and the pre-
vious work conducted by da Silva (2008). In addition to the reimplementation, improve-
ment and validation of the new LBM-based numerical simulation system, the contribu-
tions of this thesis research are also exhibited in the following aspects:

• The numerical investigation of the radiation directivity pattern of an axisymmetric
waveguide has been extended to cases including the effects of both flow param-
eters (non-zero mean flow with different velocities) and geometrical parameters
(horn extension with different curvature radius).
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• The numerical investigation of realistic whistles has been carried out, which ex-
amines the stability of the new system simulating an acoustic problem involving
a complicated geometry and a jet with relative high speed in a low viscosity fluid
field during a long simulation time.

• In the simulations of a clarinet in the quasi-stationary regime, the complete non-
linear characteristic curves including cases of both a fixed reed and a slowly mov-
ing reed have been investigated.

• In the numerical simulations of a clarinet in the dynamic regime, acoustic oscilla-
tions have been initiated and the flow behaviors in the reed channel as well as in
the mouthpiece chamber have been visualized with high fidelity, which has never
been reported in prior literature. Moreover, a noticeable inverse flow due to the in-
fluence of acoustic coupling, which cannot be predicted in the old system (da Silva,
2008), has been discovered.

• A preliminary numerical investigation has been carried out on the influence of
minor geometrical changes of the internal mouthpiece shape on the timbre and
playability of a dynamic clarinet in soft playing condition, including a rapid ex-
pansion of the reed channel at the end and two different channel lengths.

1.3 Outline

The presentation of this research work is outlined as follows.
Chapter 2 presents an elementary review of the theoretical background of fluid dy-

namics and acoustics that are useful for the discussions in the subsequent chapters. This
chapter does not attempt to provide many details or comprehensive discussions, for
which one can refer to textbooks dedicated to their respective fields.

Chapter 3 presents an introduction to the fundamental concepts of the LBM theory
as well as its numerical procedures. A comprehensive discussion of various boundary
conditions used in this study are provided. The software implementation and the paral-
lel programming procedure are provided as well. The models discussed in this chapter
provide the fundamental simulation tools for the subsequent numerical investigations.

The objectives of Chpt. 4 are twofold. First, the validity of the LB models built in the
previous chapter is verified by solving benchmark acoustic problems associated with
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various static solid boundaries, which include acoustic waveguides with different open-
ended geometrical terminations and whistles with complicated geometries. The effects
of subsonic mean flow conditions on the radiation properties of the acoustic systems are
discussed. Second, the verified models are used to investigate phenomena that have not
yet been solved analytically.

In Chpt. 5, the LB model is extended to a clarinet-like system comprising a dynamic
mouthpiece-reed system and a fully coupled acoustic resonator with one end open in the
radiation domain. The interface integrating the moving solid boundary (the reed) and
the fluid dynamic and acoustic domains is developed from the technique proposed by
da Silva et al. (2007), but the present simulation system is different and improved in sev-
eral important aspects, including an acoustic component, an improved pressure source
procedure, improved numerical stability and an efficient parallel computing scheme.
The flow behavior of the new clarinet model in the quasi-stationary regime is investi-
gated first. Then under a soft playing condition, the aeroacoustic aspects of the flow
in the dynamic regime are investigated. The effects of the reed channel geometry on
the flow behavior in both quasi-stationary and dynamic regimes are analyzed and com-
pared to those predicted by a theoretical model (van Zon et al., 1990).

Finally, the general conclusions and suggestions for future research are provided in
Chpt. 6.
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Chapter 2

Theoretical Background

This chapter provides a short review of theoretical concepts useful for subsequent dis-
cussions of the lattice Boltzmann methods in Chpt. 3 and the investigations of the acous-
tic and aeroacoustic behaviors of the acoustic structures and wind instruments pre-
sented in Chpts. 4 and 5.

The forthcoming sections are organized as follows: Section 2.1 briefly discusses fluid
dynamics from different scales, which helps us distinguish the theoretical models based
on the continuum hypothesis from those based on the particle level. Section 2.2 dis-
cusses the fundamental governing equations of fluid dynamics, including the conserva-
tion laws of mass and momentum as well as the derivation of the famous Navier-Stokes
equations. In addition, the adiabatic relation between pressure and density is derived
based on the adiabatic approximation. For a comprehensive discussion on fluid dynam-
ics, one can refer to the textbooks of Batchelor (1967), Fox et al. (2004), White (2011) and
Kundu et al. (2012). Section 2.3 shows how the acoustic wave equations are derived from
the Navier-Stokes equations. Plane wave propagation in ducts is also discussed. Gen-
eral discussions of acoustics can be found in books written by Pierce (1989) and Kinsler
et al. (2000). Finally, an elemental discussion of boundary conditions and boundary lay-
ers are presented in Sec. 2.4.

2.1 The Scale of Fluid Flow

A fluid, including both liquids and gases, can be investigated on different scales. From
a macroscopic point of view, a fluid is continuous and is different from a solid due to
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the fact that it deforms continuously under a shear stress, which can be observed by
a layperson in everyday life. From a microscopic and discrete point of view, a fluid is
formed from an aggregation of a large number of moving molecules, which are either
widely spaced (for the case of a gas) or closely spaced (for the case of a liquid). In
principle, the behavior and properties of molecules themselves can be studied at the
microscopic level and be related to the macroscopic bulk properties of materials using
probability theory, as is done in the branch of physics known as kinetic theory or statistical
mechanics.

For most engineering problems, however, the underlying motion of discrete molecules
is not considered directly. Rather, a fluid is modeled as a continuum in a much larger
scale and is characterized by its macroscopic properties such as fluid pressure, density,
velocity, temperature, etc. In other words, the state of a fluid is described by a contin-
uous function of space and time that represents the appropriate averages of molecular
characteristics in a small area surrounding the point of interest. This continuum hypoth-
esis holds if the ratio of the mean free path l (average traveling distance of a molecule
between collisions) to the length scale L of the system, known as the Knudsen number
(Kn = l/L), is much less than unity. Let’s consider air at room temperature and atmo-
spheric pressure with a mean free path of the order 5 × 10−8m (Kundu et al., 2012, pp.
5). In this case the length scale associated with a Knudsen number of 0.01 is 5× 10−6 m,
which is very small compared to the characteristic geometry size of a typical woodwind
instrument.

2.2 Fundamentals of Fluid Dynamics

Given the continuum hypothesis based on the low Knudsen condition, any property of
a fluid is a continuous function of space and time. From a Eulerian point of view, we
observe the fluid as if it passes by the coordinate fixed in space. The most important
variable in fluid dynamics is the velocity field:

u(x, t) = iux(x, y, z, t) + juy(x, y, z, t) + kuz(x, y, z, t). (2.1)

The acceleration vector field a of the flow is derived by the total time derivative of
the velocity vector field:
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Figure 2.1 Differential control volume.

a =
Du

Dt
=
∂u

∂t
+ (u · ∇)u, (2.2)

where the gradient operator is given as ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

.
Now we can consider an infinitesimal but macroscopic fixed control volume (dx, dy, dz)

of a specific collection of neighboring fluid particles called a differential control volume, as
depicted in Fig. 2.1. If we confine our analysis to classical Newton’s laws and set aside
nuclear reactions and relativistic effects, the basic laws of conservation of mass, mo-
mentum and energy apply directly to the differential control volume, from which we
can derive the governing equations of fluid dynamics describing the fluid behaviours
at the macroscopic level. This is the top-down approach, in contrast to the bottom-up
approach based on kinetic theory.

In order to apply basic physical laws to a control volume, we must convert the math-
ematics to a specific region instead of individual masses. The Reynolds transport theorem
is used for the conversion which can be applied to all the basic laws involving the time
derivative of fluid properties.

For an arbitrary fixed control volume V enclosed by the control surfaceA, the Reynolds
transport theorem is written as (White, 2011, pp. 144–146)

d

dt
Bsyst =

d

dt
(

∫
CV

βρ dV ) +

∫
CS

βρ(u · n) dA, (2.3)

whereB is any fluid property (mass, density, momentum, energy, etc.) of a local system,
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β = dB/dm is the intensive value ofB per unit mass in any small portion of the fluid, dV
is the elemental volume, ρ dV is a differential mass of the fluid, dA is the differential area
of the surface enclosing the system, u · n is the flux term, where u is the flow velocity
and n is the outward normal unit vector on the control surface.

The Reynolds transport theorem relates the time derivative of fluid propertyB within
the control volume V to the rate of change of B of the control surface A. Alternatively,
we can rewrite the flux term u ·n explicitly as the combination of a positive outflow and
a negative inflow, and in this way the expanded form of the Reynolds transport theorem
is given by

d

dt
Bsyst =

d

dt

(∫
CV

βρ dV ) +

∫
CS

βρu cos θ dAout −
∫
CS

βρu cos θ dAin

)
, (2.4)

where θ is the angle between the local velocity u and the local normal vector n, u cos θ dAin

and u cos θ dAout represent the inflow volume and the outflow volume, respectively.

2.2.1 Conservation of Mass

The basic conservation law of mass is given by:

dm

dt
= 0. (2.5)

This basic law can be applied to a differential control volume (dx, dy, dz) depicted in
Fig. 2.1, which states that the fluid mass does not change.

Then we apply the Reynolds transport theorem to the differential control volume.
Letting B = m and β = dm/dm = 1, and combining the equation of mass conservation
(Eq. 2.5) and the Reynolds transport theorem (Eq. 2.4), the integral form of the mass
conservation relation results:

dm

dt
= 0 =

d

dt

(∫
CV

ρdV

)
+

∫
CS

ρ(u · n)dA. (2.6)

Since the flow through each side of the control volume is approximately one-dimensional,
Eq. 2.6 can be written as:∫

CV

∂ρ

∂t
dV +

∑
i

(ρiAiui)out −
∑
i

(ρiAiui)in = 0, (2.7)
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where ρiAiui is the mass flow term on all six faces (three inlets and three outlets).
The volume integral of an infinitesimal element can be simply approximated by a

differential term: ∫
CV

∂ρ

∂t
dV ≈ ∂ρ

∂t
dx dy dz. (2.8)

The inlet mass flow on the left face of the infinitesimal control volume can be written
as ρu dx dy, and the slightly different outlet mass flow on the right face can be written as
[ρu + (∂ρu/∂x)dx] dy dz. Similarly, we can write the mass flow terms for the up / down
and front / back face pairs. Introducing the mass flow terms on all six faces as well as
Eq. 2.8 into Eq. 2.7, we obtain the partial differential equation of mass conservation, or
the equation of continuity:

∂ρ

∂t
+

∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz) = 0. (2.9)

Using the vector gradient operator, the equation of continuity can be written in the
compact form:

∂ρ

∂t
+∇ · (ρu) = 0. (2.10)

It should be noted that we only assume that the density and velocity are continuum
functions during the derivation of the equation of continuity. In fact, the equation of
continuity is quite general and is valid for various flows, be they steady or unsteady,
viscous or inviscid, compressible or incompressible.

If the density variation of a flow is very small, i.e., ∂ρ/∂t ≈ 0, the flow is considered
incompressible. In such a case, the density term can be neglected and the equation of
continuity reduces to

∇ · u = 0. (2.11)

By using some density approximations (White, 2011, pp 235), the explicit criterion
for an incompressible flow is given as

u2

c2
s

= M2 � 1, (2.12)
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where cs is the speed of sound and the dimensionless number M = u/cs is called the
Mach number. A flow with a Mach number less than 0.3 is commonly considered incom-
pressible (Kundu et al., 2012, pp. 99). For problems studied throughout this thesis, this
condition is usually satisfied, i.e., the air flow at standard conditions with a velocity less
than about 100m/s.

2.2.2 Conservation of Momentum

Conservation of momentum can be derived by applying Newton’s second law and the
Reynolds transport theorem to a differential control volume (dx, dy, dz). First we recall
the Newton’s second law in terms of the time derivative of momentum:

dF =
d

dt
(mu). (2.13)

Let B = mu and β = dB/dm = u, and combine Eq. 2.13 and the Reynolds transport
theorem Eq. 2.4, we obtain the linear momentum relation as:

dF =
∂

∂t

(∫
CV

uρdV

)
+
∑
i

(ṁiui)out −
∑
i

(ṁiui)in, (2.14)

where dF is the net force on the differential control volume and ṁ =
∫
CS
ρu ·n dA is the

mass flux.
Given that the inlet momentum flux on the left face of the infinitesimal control vol-

ume is ρuu dy dz, the outlet mass flow on the right face would be [ρuxu+ ∂
∂x

(ρuxu dx)] dy dz.
The momentum flux terms for other faces can be derived in a similar way.

The volume integral of an infinitesimal element can be simply reduced to the differ-
ential term:

∂

∂t
(uρ dV ) ≈ ∂

∂t
(ρu dx dy dz). (2.15)

Introducing Eq. 2.15 and the momentum flux terms on all six faces into Eq. 2.14, with
some simplifications by cancelling out redundant terms and using the notation of the
total acceleration, we can obtain the intermediate result:

dF = ρ
Du

Dt
dx dy dz. (2.16)

The net force dF includes the body forces due to external fields (gravity, magnetism
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and electric potential) and surface forces due to the stresses on the sides of the control
surface. For the problems investigated throughout this thesis, the body forces can be
neglected. The surface forces include both normal forces due to the hydrostatic pressure
and the viscous shear stresses that arise from the frictional forces due to the velocity
gradients in the motion of fluid elements. If the hydrostatic stress on the faces normal
to x-axis is σxx, the shear viscous stresses in y- and z-direction on a face normal to x-axis
are τyx and τzx, respectively, and assuming each of the component is proportional to the
element volume dV = dx dy dz, then the x-component of the net force is written as

dFx =

(
∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
dx dy dz. (2.17)

Likewise, the y- and z-components of the net force are derived as:

dFy =

(
∂τxy
∂x

+
∂σyy
∂y

+
∂τzy
∂z

)
dx dy dz, (2.18a)

dFz =

(
∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

)
dx dy dz. (2.18b)

The compact form of the differential momentum equation can be obtained by substi-
tuting the net force term in Eq. 2.16 by the stress tensors given in Eq. 2.17 and 2.18:

ρ
Du

Dt
= −∇p+∇ · τij. (2.19)

The derivation of the stress tensor σ and τ is beyond the scope of this work, but the
results can be found in standard textbooks of fluid dynamics (e.g. Fox et al., 2004; White,
2011). The shear stress tensor τij stands for a viscous stress in the j direction on a face
normal to the i axis, which may be expressed in terms of velocity gradients and fluid
properties as follows:

τxy = τyx = µ

(
∂uy
∂x

+
∂ux
∂y

)
, (2.20a)

τyz = τzy = µ

(
∂uz
∂y

+
∂uy
∂z

)
, (2.20b)

τzx = τxz = µ

(
∂ux
∂z

+
∂uz
∂x

)
, (2.20c)
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where µ is the dynamic viscosity.
The normal stress tensor σ corresponding to friction from bulk-expanding motion is

expressed as:

σxx = −p− 2

3
µ∇ · u + 2µ

∂ux
∂x

, (2.21a)

σyy = −p− 2

3
µ∇ · u + 2µ

∂uy
∂y

, (2.21b)

σzz = −p− 2

3
µ∇ · u + 2µ

∂uz
∂z

. (2.21c)

Introducing the shear and normal stress tensor (Eq. 2.20 and Eq. 2.21) into Eq. 2.19,
one can write the compact form of the differential momentum equation in terms of basic
fluid properties (density, pressure, velocity and viscosity) as

ρ
Du

Dt
= −∇p+ µ

[
∇2u +

1

3
∇(∇× u)

]
, (2.22)

where ∇× u is the curl of the velocity field.

2.2.3 Adiabatic Approximation

The problems studied throughout this thesis are characterized by an acoustic wave
propagation superimposed on a viscous air flow at a low Mach number (M < 0.3).
The amplitude of the acoustic waves is represented in terms of variations of the fluid
density. Along with the acoustic wave oscillation, the internal energy of the fluid is
changed by the quick compression and expansion of the air due to the vibrations of the
fluid molecules. The coupling between the variations of temperature and the variations
of density and momentum of the flow is described by the partial differential equation of
energy conservation.

When the air flow is at room temperature and atmospheric pressure, the amplitude
of the acoustic wave is several orders smaller than the nominal density of the fluid and
the coupling between the density and the variation of momentum and temperature is
extremely small and can be neglected. In this case, we can assume that the heat is not
transferred between different parts of the flow but rather the small local temperature
oscillations are confined in local heat reservoirs in every point in space. Instead of us-
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ing the equation of energy conservation, the relation between the pressure, density and
temperature of a homentropic flow can be approximated by the exact Laplacian relation,
also known as the adiabatic law:

p

p0

=

(
ρ

ρ0

)γ
=

(
T

T0

)( γ
γ−1

)

, (2.23)

where p, ρ and T are the instantaneous value of pressure, density and absolute temper-
ature degree in Kelvin, respectively, and γ is the ratio of the specific heats of the gas.
The sub-index 0 indicates the value before an adiabatic change. The relation between
the instantaneous variables p, ρ and T , and the associated small variations, namely p′, ρ′

and T ′, are expressed as:

p = p0 + p′, (2.24a)

ρ = ρ0 + ρ′, (2.24b)

T = T0 + T ′. (2.24c)

Introducing the above small variations in Eq. 2.24 into the adiabatic law and expand-
ing it to first order in small quantities, we can obtain

p

p0

= 1 +
p′

p0

=

(
1 +

ρ′

ρ0

)γ
' 1 + γ

ρ′

ρ0

. (2.25)

So the small variations of pressure and density are related by:

p′ =

(
γ
p0

ρ0

)
ρ′. (2.26)

On the other hand, the mean values of the thermodynamic variables are related by
the equation of state for gases,

p0 = ρ0RT0, (2.27)

where R is the gas constant, which is equal to 287 J kg−1K−1 for dry air (Kundu et al.,
2012, p. 17). Equations 2.26 and 2.28 give

p′ = c2
sρ
′, (2.28)



2 Theoretical Background 16

where cs =
√
γRT0 is the speed of sound.

The precise adiabatic relation between pressure and density is derived from Eq. 2.24
and Eq. 2.28 as

p = c2
sρ+ (p′0 − c2

sρ0), (2.29)

which is commonly simplified to the following relation by removing the offset term on
the right hand side:

p = ρc2
s. (2.30)

The adiabatic approximation holds as long as the variations of pressure and density
are small and the flow is below the explicit criterion for an incompressible flow, i.e.
M < 0.3.

2.2.4 Navier-Stokes Equations

The Navier-Stokes equations are a set of non-linear partial differential equations that
describe the fluid motion. To solve them numerically, the number of equations should
be no less than the number of unknowns. The compressible form of the Navier-Stokes
equations is composed of the continuity equation (Eq. 2.10) and the equation of momen-
tum conservation (Eq. 2.22). For three-dimensional flows, there are four unknowns, i.e.,
ux, uy, uz and ρ, where the pressure p is mapped to the density ρ by the adiabatic relation
(Eq. 2.30).

The subsonic air flows investigated throughout this thesis can be described as slightly-
compressible and almost isothermal. The variations of viscosity with the temperature is
very small such that it can be assumed constant. The convective term ∇× u = 0 in Eq.
2.22 can be omitted, and the equation of momentum conservation is reduced to

ρ
Du

Dt
= −∇p+ µ∇2u. (2.31)

By expanding the compact form of the continuity equation and the equation of mo-
mentum conservation, the Navier-Stokes equations for incompressible flow are written
as follows:
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∂ρ

∂t
+
∂(ρux)

∂x
+
∂(ρuy)

∂y
+
∂(ρuz)

∂z
= 0, (2.32a)

ρ

(
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂uy
∂y

+ uz
∂uz
∂z

)
+ c2

s

∂ρ

∂x
− µ

(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)
= 0, (2.32b)

ρ

(
∂uy
∂t

+ ux
∂ux
∂x

+ uy
∂uy
∂y

+ uz
∂uz
∂z

)
+ c2

s

∂ρ

∂y
− µ

(
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

)
= 0, (2.32c)

ρ

(
∂uz
∂t

+ ux
∂ux
∂x

+ uy
∂uy
∂y

+ uz
∂uz
∂z

)
+ c2

s

∂ρ

∂z
− µ

(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

)
= 0. (2.32d)

2.3 Acoustic Wave Equations

An acoustic wave in a compressible fluid medium is a mechanical oscillatory motion of
the fluid particles in small amplitude. When the fluid is deformed (compressed or ex-
panded) by an external disturbance, individual infinitesimal elements of the fluid move
back and forth in the direction of the force and initiate a propagation of a wave on
the macroscopic scale. The partial differential equations governing the propagation of
acoustic waves are called the acoustic wave equations, which describe mathematically the
spatial-temporal evolutions of the acoustical variables of interest (velocity, density, pres-
sure, etc.).

The acoustic wave equations can be derived directly from the Navier-Stokes equa-
tions (Kinsler et al., 2000). Assuming the mean flow is zero and the acoustic disturbance
(the deviation of each flow variable from its equilibrium value in comparison to the
equilibrium value) is very small, we decompose the variables of interest into the sum of
an equilibrium value and a perturbed value:

p = p0 + p′, (2.33a)

u = 0 + u′ = u′, (2.33b)

ρ = ρ0 + ρ′. (2.33c)

Since the viscosity has a negligible effect on the acoustic waves, the viscous stress
term can be omitted from the momentum conservation equation (Eq. 2.31), which re-
duces to Euler’s equation:



2 Theoretical Background 18

ρ
Du

Dt
= −∇p. (2.34)

Substituting Eq. 2.33 to the continuity equation (Eq. 2.10) and Euler’s equation, we
can obtain the linearized form (omitting some small quadratic terms):

∂ρ′

∂t
+ ρ0∇ · u′ = 0 (2.35)

and
∂u′

∂t
+
c2
s

ρ0

∇ρ′ = 0. (2.36)

We have used the approximation ρ0 + ρ′ ≈ ρ0 in the above derivations.
To obtain a single differential equation with one dependent variable, we need some

further manipulations. Taking the time derivative of Eq. 2.35 and assuming that ρ0 is a
weak function of time, we obtain

∂2ρ′

∂t2
+ ρ0∇ ·

(
∂u′

∂t

)
= 0. (2.37)

Then taking the divergence of the Euler equation (Eq. 2.36), we have

∇ ·
(
∂u′

∂t

)
+
c2
s

ρ0

∇2ρ′ = 0. (2.38)

Eliminating the divergence term between these two equations gives the linear loss-
less wave equation for the acoustic density

∂2ρ′

∂t2
− c2

s∇2ρ′ = 0, (2.39)

where ∇2 is the three-dimensional spatial Laplacian operator.
Actually, the wave equation is applicable to any acoustics variables. The linear loss-

less wave equation for velocity and pressure are expressed respectively as

∂2u′

∂t2
− c2

s∇2u′ = 0 (2.40)

and
∂2p′

∂t2
− c2

s∇2p = 0. (2.41)
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Since we have used the irrotational approximation that the curl of particle velocity
is zero, i.e., ∇× u = 0, the acoustic velocity can be expressed as the gradient of a scalar
potential function,

u′ = ∇φ, (2.42)

where φ is identified as the velocity potential, which satisfies the wave equation within
the same approximations:

∂2φ

∂t2
− c2

s∇2φ = 0. (2.43)

A real fluid is not curl-free everywhere (especially in the vicinity of boundaries), but
Eq. 2.43 still holds because the rotational effects are very small for most part of the sound
propagation.

2.3.1 Harmonic Plane Waves

A simple but interesting case of the acoustic wave is the plane wave, where each acoustic
variable has constant amplitude and phase on the plane perpendicular to the direction
of propagation. The propagation of a plane pressure wave in the x-direction is described
by the one-dimensional wave equation

∂2p′

∂t2
− c2

s

∂2p′

∂x2
= 0, (2.44)

whose harmonic solution in complex form is given by a sum of two traveling waves in
opposite directions

p′ = Aej(ωt−kx) + Bej(ωt+kx), (2.45)

where the complex constants A and B are independent of position, and we have the
following relations:

cs = ω/k = 2πf/k = fλ, (2.46)

where ω is the frequency in radians per second, f is the frequency in Hz, k is the spatial
frequency (wavenumber) and λ is the wavelength. The associated particle velocity in
the direction of propagation is given by

u′ =
1

ρ0cs

[
Aej(ωt−kx) −Bej(ωt+kx)

]
. (2.47)
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2.4 Boundary Conditions and Boundary Layer

Throughout this thesis, we are dealing with fluids interacting with either a static solid
boundary or a moving boundary, so it is necessary to discuss the boundary conditions.

If the velocity on the surface of a solid boundary is ub at a point x, and the fluid
velocity is u, since the normal component of the fluid velocity must be equivalent to the
normal component of the boundary velocity, we have

u · n = ub · n, (2.48)

where n is the unit vector normal to the solid surface. For a static solid boundary,
Eq. 2.48 reduces to

u · n = 0. (2.49)

In the case of a reed on a clarinet’s mouthpiece, the boundary location may change
over time. If the solid surface is described by the equation χ(x, t) = 0, the boundary con-
dition taking the deformation of the surface into account is called the kinematic boundary
condition, which is expressed as (da Silva, 2008)

Dχ

Dt
=
∂χ

∂t
+ u · ∇χ = 0. (2.50)

The boundary condition presented above only discusses the normal component of
the fluid velocity. For viscous fluids, the influence of the tangential component of the
fluid velocity must be taken into account. The condition of continuity of the velocity
requires that the tangential component of the velocity is continuous across the solid
boundary. Actually, no matter however small the viscosity ν may be, the no-slip con-
dition must be satisfied such that the tangential component of the fluid velocity at the
solid boundary is equivalent to that of the boundary velocity. Due to the viscous stress,
the tangential movement of the fluid particles in the vicinity of the solid wall is retarded
by the stagnant fluid particles at the wall. The thin shear layer where the viscous effects
are dominant is called the boundary layer, which was first introduced by Ludwig Prandtl
in 1904.

Figure 2.2 illustrates a uniform viscous flow with a constant upstream velocity of
U over a semi-infinite sharp flat plate parallel to the flow direction. A shear layer of
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Figure 2.2 Boundary layer on a semi-infinite flat plate.

unknown thickness grows along the downstream direction. The flow is retarded by
the no-slip wall condition and its velocity profile u(y) is rounded, which merges into
the external velocity U at a thickness y = δ(x). Practically, the disturbance thickness
δ is defined as the distance from the surface at which the velocity is within 1% of the
constant free stream, u(x, y) ≈ 0.99U , because the location of the boundary layer edge
(where the velocity gradient equals to zero) is not obvious to find.

The boundary layer equations for a steady incompressible viscous flow over a flat
plane surface can be derived from the mass and momentum conservation equations
of the incompressible Navier-Stokes equations (Eq. 2.32). For a flow characterized by a
large Reynolds number (Rex = Ux/ν � 1), the shear layer must be very thin, hence some
approximations apply, such that uy � ux, ∂ux/∂x � ∂ux/∂y and ∂uy/∂x � ∂uy/∂y.
Thus, the y-momentum equation can be neglected entirely and the pressure gradient on
the y-direction is negligible. Prandtl’s boundary layer equations for two-dimensional
incompressible flow is then given by

∂ux
∂x

+
∂uy
∂y

= 0 (2.51)
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and
ux
∂ux
∂x

+ uy
∂ux
∂y
≈ U

dU

dx
+

1

ρ

∂τ

∂y
, (2.52)

where the shear stress is given by:

τ =

µ∂u∂y for laminar flow,

µ∂u
∂y
− ρu′xu′y for turbulent flow,

where the tensor ρu′xu′y plays the role of a stress and is called the Reynolds stress tensor
(Kundu et al., 2012, pp. 556).

For most flow problems, the boundary layer equations cannot be solved exactly. But
for simple cases such as the laminar flow past a semi-infinite flat plate, the exact solu-
tion is given by Blasius (Blasius, 1907; Tani, 1977) based on the insight that the lami-
nar boundary layer velocity profile is self-similar. To avoid difficulties, an approximate
method known as the Karman momentum integral can be used to obtain approximate in-
formation on boundary layer growth (thickness δ as a function of x) in general cases
(laminar or turbulent boundary layers, with or without a pressure gradient). This ap-
proach is achieved by applying the basic continuity equation and momentum equations
to a differential control volume enclosing a short section of the flow on the plate. The
Karman equation presents

τw
ρ

=
d

dx
(U2θ) + δ∗U

dU

dx
, (2.53)

where τw is the wall shear stress along the plate, the displacement thickness δ∗ is defined
as

δ∗ =

∫ δ

0

(
1− u

U

)
dy, (2.54)

and the momentum thickness θ is defined as

θ =

∫ δ

0

u

U

(
1− u

U

)
dy. (2.55)

The Karman equation is restricted to two-dimensional steady incompressible flow
with no body forces parallel to the surface, and is valid for either a laminar or turbulent
boundary layer flow.
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One of the interesting predictions made by the boundary layer theory is the flow
separation phenomenon. As we will see in Chpt. 5, the reed’s oscillatory behavior is
strongly influenced by the flow separation, which is observable in the visualized veloc-
ity fields during the oscillation period.
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Chapter 3

Lattice Boltzmann Method

3.1 Introduction

We have discussed the Navier-Stokes equations in Chpt. 2, which are macro-scale level
descriptions based on the continuous mechanics approach and have been widely used in
the majority of the macroscopic fluid problems. However, macroscopic models are not
able to capture the micro-flows related to complex physical effects such as turbulence,
multiphase flows, etc.

If we study the fluid flow on the particle level, i.e., the motion of each molecule is
tracked individually and the interaction of molecules is described by Newtonian formu-
lation, this is called the Molecular Dynamics approach (MD). Theoretically, one can obtain
the position and velocity of each molecule at any time by solving the equations based on
Newton’s second law applied to each particle. The macroscopic quantities of the fluid,
such as density, velocity and temperature, are no more than the ensemble average of the
corresponding microscopic quantities. The transport coefficients of the fluid, such as vis-
cosity, thermal conductivity, diffusivity, etc., can also be obtained from the microscopic
quantities through linear transformation. The main problem, though, is that the num-
ber of unknowns is extremely large. The number of molecules N for a small volume
of fluid in practice is on the order of Avogadro’s number 1023, and for a N-body sys-
tem, the number of unknowns is 6N . Thus, it is impractical to solve the whole system
for even a tiny volume of fluid with the most advanced computer resources available
nowadays. Also, for most problems, we are interested in the collective behaviors of the
system rather than the motion of every individual molecular constituent.
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Besides the molecular dynamics model at the microscopic level and the continuum
models at the macroscopic level, one can also model the fluid behavior on a mesoscopic
level, less straightforwardly, using the kinetic theory. The kinetic theory attempts to
study a fluid from a statistical point of view, i.e., the evolution of the fluid is formulated
to a transport equation in terms of particle distribution functions. One particularly im-
portant transport equation is the Boltzmann equation, which is difficult to solve directly
but which can be solved numerically using the lattice Boltzmann method (LBM).

The LBM originated from a simplified molecular dynamical model simulating the
fluid flow effects on a microscopic scale called Lattice Gas Automata (LGA), from which
the incompressible Navier-Stokes equations in the limit of a small Knudsen number can
be recovered (Frisch et al., 1986, 1987). Instead of handling single particles, the LBM han-
dles particle distributions and treats collisions in a manner different from the LGA. The
equations of the LBM can also be derived from the continuum Boltzmann Equation (BE)
(Sterling and Chen, 1996; Wolf-Gladrow, 2004). In the limit of a small Knudsen number,
the Navier-Stokes equations can be recovered from the lattice Boltzmann equation using
the Chapman-Enskog expansion (Chapman and Cowling, 1960).

Compared to traditional computational fluid dynamics and aeroacoustic techniques,
the LBM has several advantages: solving both scales associated with the acoustic and
flow fields in a single time-step, the direct acquisition of the pressure field, the straight-
forward boundary condition schemes and the relatively easy programming and paral-
lelization. Over the last few decades, the LBM has developed quickly and has attracted
significant attention in the industrial and academic communities. Nowadays, the LBM
has become a viable numerical tool for modeling fluid flows in computational fluid dy-
namics (CFD), computational aeroacoustics (CAA) and beyond. For an in-depth de-
scription of the LBM, one can refer to textbooks by Succi (2001), Wolf-Gladrow (2004),
Sukop and Thorne (2006), Guo and Shu (2013), or excellent review papers (Chen and
Doolen, 1998; Aidun and Clausen, 2010).

This chapter aims to provide the fundamental concepts of the LBM theory as well as
its software implementation. The sections are organized as follows: Section 3.2 briefly
introduces the two different approaches leading to the generic lattice Boltzmann equa-
tions and the LBGK model used in the forthcoming chapters. Section 3.3 discusses the
initial conditions as well as various boundary conditions involved in this study. Section
3.4 deals with the numerical procedures of the lattice Boltzmann models. Section 3.5 ex-
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plores the GPU parallel programming that greatly accelerates the LBM’s computations.

3.2 Fundamental Theory of LBM

3.2.1 From LGA to LBE

The Lattice Gas Automata (LGA) simulates the fluid as a set of particles residing on a
regular lattice. The processes of collision and propagation of these particles are based on
some physical laws such that the mass, momentum, and energy are conserved. A LGA
comprises a regular lattice, where the nodes on the lattice can take a certain number of
different state variables {ni}, i ∈ {1, ...,M}, which describes the population of M given
velocities ci. In LGA, the time and space are discrete and the state variables are Boolean
(0 or 1). The evolution equation of the LGA is given by

ni(x + ei, t+ 1) = ni(x, t) + Ωi(x, t), (i = 0, 1...,M), (3.1)

where ei are the local particle velocities, Ωi(x, t) is the collision operator that depends
on ni(x, t).

The evolution of the LGA model is divided into two steps: streaming and collision.
In the streaming step, the state variables propagate from node to node according to the
velocity ci. In the collision step, the particles arrive at a node interact and change their
velocity directions, and the state of the node is determined by collision rules that are
based on conservation laws of physical quantities (mass, momentum, energy). After
each evolution step, the state of a given node is determined by the previous state of both
this node and its neighbouring nodes.

The LGA has the advantages of straightforward boundary conditions, simple cod-
ing and inherent parallel nature. But there are several intrinsic defects when it is used
in fluid flow simulations, such as statistical noise, lack of Galilean invariance and a
velocity-dependent pressure.

A fix to the statistical noise problem of LGA is proposed by McNamara and Zanetti
(1988). They replaced the Boolean occupation variables ni with the mean population of
particles, which are real numbers between 0 and 1. The evolution equation of the LGA
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then becomes

fi(x + ei∆x, t+ ∆t) = fi(x, t) + Ωi(x, t), (i = 0, 1...,M), (3.2)

where fi is the particle velocity distribution function along the ith direction, and ∆x and
∆t are time and space increments, respectively. This is an important step that translates
the LGA into the lattice Boltzmann model. Equation 3.2 is called the lattice Boltzmann
equation (LBE). The collision operator Ωi(x, t), which represents the rate of change of
fi in collisions, is required to satisfy the conservation of mass and momentum at each
node:

M∑
i=1

Ωi = 0, (3.3)

M∑
i=1

Ωei = 0. (3.4)

The macroscopic quantities of density and momentum can be recovered from the
moments of the distribution function fi as

ρ =
M∑
i=1

fi (3.5)

and

ρu =
M∑
i=1

fiei. (3.6)

The collision operator Ωi in the LBE can be obtained in various ways, but here we
focus on the most simple and popular one. Inspired by the method of relaxation that is
well known in computational fluid dynamics and many physical problems, Qian et al.
(1992) used the relaxation process to replace the collision term in the LBE, which is writ-
ten as

fi(x + ei∆x, t+ ∆t) = (1− ω)fi(x, t) + ωf eqi (x, t), (3.7)

where ω is the relaxation parameter. This scheme is linearly stable for 0 < ω < 2.
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3.2.2 From BE to LBE

Aside from the MD approach, the N-body fluid system can be alternatively described
by the Hamiltonian formulation

H = H(q,p, t), (3.8)

where H is the total sum of the kinetic energy and the potential energy of the system, q
is the 3N spatial coordinates of the N molecules and p is the 3N conjugate momenta.

Following the Hamiltonian approach, and using the concept of probability distribution
function (PDF) fN(q,p, t), the state of an infinitesimal volume in the 6N dimensional
phase space is described by the probability fN dq dp. The partial differential equation
describing the evolution of fN is called the Liouville equation:

∂fN
∂t
−

N∑
j=1

[
∂H
∂qj

∂fN
∂pj
− ∂H
∂pj

∂fN
∂qj

]
= 0. (3.9)

The Liouville equation can be represented by a chain of evolution equations in terms
of reduced s-particle probability distribution functions Fs(1 ≤ s ≤ N) defined as

Fs(q1,p1, . . . , qs,ps) =

∫
fN(q1,p1, . . . , qs,ps)dqs+1dps+1 . . . dqNdpN . (3.10)

The chain of PDFs, called the BBGKY hierarchy (Bogoliubov et al., 1962), is iden-
tical to the Liouville equation and is fully coupled. Both the Liouville equation and
the BBGKY hierarchy are difficult to solve. The strategy to simplify the problem is to
truncate the BBGKY to certain orders that approximate the original chain under some
assumptions. The simplest case would be to define a PDF by truncating the BBGKY
chain to the first order:

f(x, e, t) = mNF1(q1,p1, t), (3.11)

where x = q1 is the particle position and e = p1/m is the particle velocity. The single
particle velocity distribution function f represents the population of particles within the
velocity volume element de with velocity e inside the infinitesimal volume element dx
at position x and at time t. The evolution of f is described by the Boltzmann equation,
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which is written as
(∂t + e · ∇)f(e,x, t) = J(f), (3.12)

where J(f) represents the effect of intermolecular collisions, which is given, based on
Boltzmann’s assumptions of collision of two particles, by

J(f) =

∫
[(f1′f2′ − f1f2)|e1 − e2|σ(θ)dθ]de2, (3.13)

where f12 is the two-body distribution function prior to the molecules’ collision and f1′2′

is the distribution function after, e1 and e2 are the velocities of molecules 1 and 2, σ(θ)

is the differential cross-section of the volume where the collision takes place and θ is the
scattering angle.

Bhatnagar et al. (1954) proves that the collision term in Eq. 3.13 can be approximated
by an operator that contains a single relaxation parameter ωc. The well known BGK
collision operator is given by

J(f) = −1

τ
(f − f eq), (3.14)

where τ = 1/ωc is the single relaxation time of the disturbance f to the equilibrium state
f eq. The BGK operator describes that f − f eq decays exponentially as e−t/τ .

The Boltzmann equation with BGK approximation is written as

(∂t + e · ∇)f(e,x, t) = −1

τ
(f(e,x, t)− f eq(e,x, t)), (3.15)

where f eq is the Maxwellian distribution function

f eq(e,x, t) =
ρ

(2πRT )3/2
exp

[
−(e− u)2

2RT

]
, (3.16)

where R is the gas constant given by the ratio of the Boltzmann constant to the particle
mass.

In the limit of low Mach number flow, f eq can be expanded into a Taylor series:

f eq =
ρ

(2πRT )D/2
exp

(
− e2

2RT

)[
1 +

(e · u)

RT
+

(e · u)2

2RT
− u2

2RT

]
. (3.17)

The discretization starts from the velocity space, e, which is represented by a finite
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set of velocities, ei. To determine the correct discretization scheme, the conservation law
of mass and momentum requires the following quadratures to hold:∫

ekf eqde =
∑
i

wie
k
i f

eq(ei), 0 ≤ k ≤ 3, (3.18)

where wi are the weights and ei are the lattice velocities. Then by defining fi(x, t) =

wif(x, ei, t) and f eqi (x, t) = wif
eq(x, ei, t), the discrete-velocity BGK Boltzmann equation

is given as

(∂t + ei · ∇)fi = −1

τ
(fi − f eqi ). (3.19)

Assuming a Lagrangean behavior such that the lattice velocity ei = ∆x/∆t, Eq. 3.19
can be discretized in space and time using a first order finite difference scheme, which
leads to the BGK lattice Boltzmann equation (BGK-LBE):

fi(x + ei∆t, t+ ∆t)− fi(x, t) = −1

τ
(fi − f eqi ). (3.20)

Equation 3.20 is identical to Eq. 3.7 derived from the LGA, where τ = 1/ω is the
relaxation time. The left hand side of Eq. 3.20 represents the propagation process of the
distribution functions fi. The right hand side represents the collision operator, which
determines the change rate of fi due to intermolecular collisions.

The kinematic viscosity in lattice units is related to the relaxation parameter by

ν =
2/ω − 1

6
. (3.21)

Equation 3.21 shows the kinematic viscosity of a fluid is in proportion to the relax-
ation time, or the averaged collision period of the molecules.

The discrete form of the equilibrium function f eqi is given by (Qian et al., 1992)

f eqi (x, t) = wiρ

[
1 +

u · ei
c2
s

+
(u · ei)2 − c2

su
2

2c4
s

]
, (3.22)

where cs is the speed of sound in lattice units. The velocity weights wi are used to
guarantee the isotropy of the fourth-order tensor of velocities and Galilean invariance,
which is important for recovering the Navier-Stokes equations.
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He and Luo (1997) show that the incompressible Navier-Stokes equations can be
recovered from the lattice Boltzmann model by using the Chapman-Enskog procedure,
as long as the fluid flow is in the low Mach number limit.

3.2.3 LBGK models

According to the standard DdQn (d-dimensional, n-velocity) nomenclature of the types
of lattice geometries (Qian et al., 1992), the weight wi of the three popular LB models,
D1Q3, D2Q9 and D3Q19, are given in Table 3.1. The speed of sound cs is model depend-
ent, but for these three models cs = 1/

√
3.

model static vert. / hort. diag.

D1Q3 2/3 1/6 0

D2Q9 4/9 1/9 1/36

D3Q19 1/3 1/18 1/36

Table 3.1 Velocity weights for three lattice models.

The D2Q9 lattice model has been used throughout this study due to its similicity,
numerical stability and computational efficiency.

Figure 3.1 D2Q9 structure.

Figure 3.1 illustrates the D2Q9 lattice structure used in this thesis, where the non-
diagonal directions are indexed by 1, 2, 3, 4 and the diagonal directions are indexed by
5, 6, 7, 8. Index 0 is reserved to the rest site. Using this indexing scheme, the equilibrium
distribution function in each direction i can be written explicitly as:
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f eqi =
4

9
ρ

[
1− 1.5

u2

c2
s

]
, for i = 0, (3.23a)

f eqi =
1

9
ρ

[
1 + 3

ei · u
c2
s

+ 4.5
(ei · u)2

c4
s

− 1.5
u2

c2
s

]
, for i = 1, 2, 3, 4, (3.23b)

f eqi =
1

36
ρ

[
1 + 3

ei · u
c2
s

+ 4.5
(ei · u)2

c4
s

− 1.5
u2

c2
s

]
, for i = 5, 6, 7, 8, (3.23c)

where the lattice velocities ei are given by

e0 = (0, 0), (3.24a)

e1,3, e2,4 = (±1, 0), (0,±1), (3.24b)

e5,6,7,8 = (±1,±1). (3.24c)

3.2.4 Multiple Relaxation Times

The LBGK model in Eq. 3.20 is called a Single Relaxation Time (SRT) model because
it has a single relaxation rate for all of the modes. Due to its simplicity, the LBGK-
SRT model is probably one of the most popular lattice Boltzmann models and it gener-
ally performs well. However, for simulations dealing with fluids that have very small
kinematic viscosities such as air, numerical instabilities may arise from the SRT model
because of the strong anisotropy of the dispersion relations dictated by the lattice sym-
metry (Lallemand and Luo, 2000).

A Multiple Relaxation Time (MRT) collision scheme is proposed by d’Humieres (1994),
where the single relaxation parameter is replaced by a relaxation matrix and the colli-
sion is performed in moment space while the propagation is still executed in velocity space.
Lallemand and Luo (2000) prove that the numerical stability of the LBGK model can be
greatly improved by carefully separating the kinetic modes with different relaxation
rates in the MRT collision scheme.

The LBE with a MRT is obtained by using a multiple relaxation time matrix in the
collision operator:

f(x + ei∆t, t+ ∆t)− f(x, t) = −Λ(f − f eq), (3.25)
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where f = (f0, f1, · · · , fq−1)T is the vector of distribution functions in the velocity space
V, Λ is the multiple relaxation time matrix. The collision process in the moment space
M is expressed as

m(x + ei∆t, t+ ∆t)−m(x, t) = −S(m−meq), (3.26)

where m are the moments of the distribution functions, meq are the moments of the
equilibrium distribution functions and S is a diagonal matrix. f is mapped to the mo-
ment space through a transformation matrix M ,

m = Mf = (m0,m1, · · · ,mq−1)T , (3.27)

and S is given by
S = MΛM−1. (3.28)

The transformation matrix of a standard D2Q9 LBGK-MRT model is given as

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1


. (3.29)

In a MRT model, although the collision step is executed in the moment space, the
streaming step is still executed in the velocity space. Generally, the MRT model is im-
plemented by a more efficient approach that combines the two steps into one single step
of evolution:

f(x + ei∆t, t+ ∆t)− f(x, t) = −M−1S(m−meq). (3.30)
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3.3 Initial and Boundary Conditions

3.3.1 Initial Conditions

The initial states of the distribution function f(t = 0) can be approximated by its equi-
librium states f eq(t = 0). This scheme is straightforward and works well for systems
not sensitive to initial conditions, i.e., systems with steady or quasi-steady flows. This
scheme is called the equilibrium scheme.

For systems involving unsteady or strong nonlinear flows, the final results may con-
tain large errors evolving from tiny initial errors. In this case, the accuracy of the initial
value of f(t = 0) can be further improved using the more complicated non-equilibrium
scheme, which is first proposed by Skordos (1993). In this scheme, the distribution func-
tion f is decomposed to the equilibrium part f eq and the non-equilibrium part fneq,
where the latter is expanded to a Taylor series and the higher-order terms are omit-
ted. The distribution function itself is also expanded into a series using the Chapman-
Enskog method. Using some mathematical manipulations and ignoring small higher-
order terms, fneq can be explicitly expressed as functions of velocity u and ρ, from which
the initial states of the distribution function f(t = 0) can be obtained.

Since the results of this study are not sensitive to initial conditions, the equilibrium
scheme is chosen for the initialization of the distribution functions.

3.3.2 Boundary Conditions

The boundary operator in a lattice Boltzmann model describes the interaction between
the fluid particles and the particles of the boundary wall. The implementation of a
boundary condition can be either straightforward, such as in the case that a physical
wall is aligned with the grid coordinates, or relatively complicated in the case of arbi-
trary shaped boundaries or moving boundaries.

A solid wall boundary can be implemented using two schemes. The explicit boundary
scheme uses special boundary nodes, also called dry nodes, to represent boundaries,
contrary to those nodes representing fluids or wet nodes. This scheme is depicted in
Fig. 3.2, where the black nodes represent dry nodes and the white nodes represent wet
nodes.

In the implicit boundary scheme, the boundary curves are not defined directly on the
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nodes. Rather, the propagation of fluid nodes near the boundary curves are changed
by a predefined procedure associated with the boundaries. In Fig. 3.3, a solid wall is
defined by the line AB which passes through the mid-points of links between two arrays
of nodes. All the neighboring nodes close to the line AB, i.e., all the nodes inside the
dashed rectangular area, must be treated properly after the propagation.

Figure 3.2 Explicit boundary nodes (black nodes).

Figure 3.3 Implicit boundary curve.

Since the implicit boundary scheme provides better accuracy and can be extended
to complicated non-aligned geometries using an interpolation or extrapolation scheme,
it is used throughout this study. The boundary conditions used in this research are
discussed in the following sub-sections.

3.3.3 No-Slip Condition

Perhaps the simplest approach to describe the solid walls of a wind instrument is the
no-slip boundary condition. This approach assumes the solid wall has a sufficient ru-
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gosity such that the tangential advection of solid particles is refrained and the tangential
component of the fluid particles at the solid wall is zero.

Figure 3.4 No-slip condition.

Figure 3.4 depicts the procedure of the no-slip condition in four steps. Step I shows
the states of f4, f7 and f8 of a grid node at position x at time t in the pre-streaming
stage. In step II, the traveling particles pass through the solid boundary and arrive at
the neighboring sites. In step III, a bounce-back scheme is applied to all three particles
that have crossed the solid wall by inverting their directions. In step IV, the particles
propagate along their new directions at time t+ ∆t. This procedure can be described by
the following formulas:

f6(x, t+ ∆t) = f8(x, t),

f2(x, t+ ∆t) = f4(x, t),

f5(x, t+ ∆t) = f7(x, t).

For boundaries aligned with the grid coordinates, the no-slip condition provides a
second-order accuracy of representing the viscous boundary layer phenomena. Non-
aligned boundaries and curved boundaries can also be handled by no-slip conditions
using an interpolation or extrapolation procedure.

3.3.4 Free-Slip Condition

The free-slip condition is useful for simulating smooth walls where the tangential com-
ponents of the flow velocities at the wall are untouched and the effects of the viscous
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boundary layers are minimized. It is also useful in the case of representing a vertically
symmetric 2D system by a half plane, where the axis of symmetry is numerically iden-
tical to a free-slip condition.

Figure 3.5 Free-slip condition.

Figure 3.5 depicts the procedure of the free-slip condition in four steps. Step I shows
the states of f4, f7 and f8 of a grid node x1 at time t in the pre-streaming stage. In
step II, the particles propagate and arrive at the solid boundary. In step III, the vertical
components of the velocity are flipped while the horizontal components are unchanged.
In step IV, the particles propagate in their new directions at time t + ∆t and arrive at
new destinations. This procedure can be described by the following formulas:

f6(x0, t+ ∆t) = f7(x1, t),

f2(x1, t+ ∆t) = f4(x1, t),

f5(x2, t+ ∆t) = f8(x1, t).

3.3.5 Curved Boundary

The no-slip boundary condition works for either simple straight walls or arbitrarily
shaped walls. However, the implementation can be tricky when the boundary is a non-
aligned wall or an arbitrary curved wall.

The simplest curved boundary scheme uses a staircase to approximate the curved
wall AB, as shown in Fig. 3.6(a). The staircase can be either defined on the lattice grids
using the explicit boundary scheme or represented by a set of line sections using the
implicit boundary scheme (which gives slightly better accuracy). The no-slip boundary
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(a) Curve AB and the staircase (shown as an ex-
plicit boundary scheme).

(b) Crossing vectors for direction 5.

(c) Intersection point and cross-
ing distance d0.

Figure 3.6 Curved boundary.

condition is implemented directly on the staircase. This scheme provides first-order
accuracy and works well as long as the spatial resolution of the lattice is high enough.

For the case of complicated curved walls, it is time consuming to manually find all
the boundary nodes shaping the staircase. A new searching procedure was developed in
this research which can more efficiently find the curved boundary nodes in all directions.
This procedure is exemplified for direction 5 in Fig. 3.6(b) and described in the following
steps:

1. Find a rectangular lattice that completely encloses the curved wall and enumerate
all the vectors for direction 5 inside the rectangular box.



3 Lattice Boltzmann Method 39

2. Keep track of vectors crossing the curveAB, such as
−−→
a0b0,

−−→
a1b1, . . . ,

−−→
a8b8. A crossing

vector is found if there is an intersection between the vector and the curve.

3. The boundary nodes can be derived from the intersection points. For example, for
vector

−−→
a0b0, either point a0, b0 or the middle point of line a0b0 can be defined as a

boundary node for the no-slip boundary condition.

This procedure should be performed for all 8 directions. Practically, an arbitrary
curved wall can be well approximated by a set of line-segments, where the length of
each segment must be shorter than the spatial resolution of the lattice. Then, the problem
of searching the intersection between a vector and a curve is reduced to searching the
intersection between a vector and each line-segment of the curve, which is a very simple
analytical geometry problem.

Essentially, other than the automatic searching procedure, this alternative scheme
works in the same way as the simple staircase scheme. When the points of ai or bi are
selected as the boundary nodes, the curved boundary is implemented as the explicit
boundary scheme. If the middle points of the crossing lines are selected, the implicit
boundary scheme is implemented, which gives slightly better accuracy.

To achieve second-order accuracy, the interpolation scheme proposed by Bouzidi
et al. (2001) and Lallemand and Luo (2003) or extrapolation scheme proposed by Guo
et al. (2002) can be used. For such a case, the distance measured from the end of the
crossing vector to the intersection, depicted as d0 in Fig. 3.6(c), is required.

3.3.6 Moving Boundary

A moving boundary condition can be implemented based on the curved boundary con-
dition by incorporating the effects of interaction between the boundary wall and the
fluid particles surrounding the boundary. To improve the accuracy, the fractional dis-
tance between the lattice nodes and the curved boundary should be handled by an in-
terpolation or extrapolation procedure, and the effects of momentum transfer between
the solid wall nodes and fluid nodes should be included. In Chpt. 5, the oscillating
reed in the mouthpiece of a hybrid clarinet scheme is represented by a moving curved
boundary.
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3.3.7 Non-Reflecting Boundary

3.3.7.1 Ideal Non-Reflecting Boundary

In the context of computational acoustics / aeroacoustic simulations, an ideal non-reflecting
boundary allows the aerodynamic field to pass freely, such that the incident acoustic
waves coming from any angle and carrying any frequency components or any transient
features are absorbed completely. Therefore, the numerical simulation is not contami-
nated by any wave reflections.

The effectiveness of a non-reflecting boundary can be evaluated by its frequency-
dependent transmission and reflection coefficients. This can be explained intuitively
in the case of 1D plane wave propagation. If the complex pressure amplitude of the
incident wave is Pi, that of the reflected wave Pr, and that of the transmitted wave Pt,
then the pressure transmission and reflection coefficients are defined as:

T = Pt/Pi, (3.31)

R = Pr/Pi. (3.32)

When the plane wave reaches the interface of an ideal non-reflecting boundary, all
of its components are transmitted and nothing is reflected, so Pr = 0 and Pt = Pi.
Therefore, the transmission coefficient T = 1 and the reflection coefficient R = 0 at all
frequencies.

Let’s consider a cylindrical pipe with a characteristic impedanceZ1 that is terminated
by an unknown boundary at an open end, where the impedance is defined as the ratio
of acoustic pressure to acoustic volume flow at a particular frequency. The discontinuity
is described by a change of acoustic impedance, say, Z2. The reflection coefficient at the
boundary is given by (Kinsler et al., 2000):

R =
Z2 − Z1

Z2 + Z1

. (3.33)

If there is an ideal non-reflecting boundary at the open end, R = 0, which implies
Z2 = Z1, meaning the pipe terminated by an ideal non-reflecting boundary at one end is
equivalent to a semi-infinite pipe. For a pipe with a uniform cross-sectional area S filled
with a homogeneous fluid, the impedance is purely resistive, i.e. Z1 = ρ0cs/S. There-
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fore, an ideal non-reflecting boundary condition should demonstrate a purely resistive
impedance for all frequencies.

The characteristic impedance discussed above does not take the viscous and ther-
mal losses into account. In a 1D lossy tube, the characteristic impedance is not purely
resistive but related to rv, the ratio of the tube radius a to the viscous boundary layer
thickness, and rt, the ratio of a to the thermal boundary layer thickness. Thus, in a sim-
ulation of a wave propagating in a lossy pipe, an ideal non-reflecting boundary should
have some dissipation and dispersion behavior such that the thermoviscous losses are
taken into account. This requirement also holds for the 2D and 3D cases.

3.3.7.2 Non-Reflecting Boundaries for LBM

The LBM is relatively new and robust non-reflecting boundary schemes are still in de-
velopment. On the other hand, users of the direct numerical simulation (DNS), which
is another one-step aeroacoustics simulation tool, have proposed many non-reflecting
boundary schemes, such as the zero f gradients (ZFG) methods (Li et al., 2006), extrap-
olation method (EM) (Chen et al., 1996; Maier et al., 1996), the characteristic bound-
ary conditions (Thompson, 1987, 1990; Giles, 1990), the perfectly matched layer method
(PML) (Hu, 1996, 2001, 2005, 2006; Hu et al., 2006), the C l continuous method (Loh,
2003) and the absorbing boundary condition (ABC) (Kam et al., 2006), etc. Some of the
non-reflecting boundaries developed for the DNS can be extended to the LBM, while
others may not be appropriate. One challenge of implementing open boundaries for the
LBM scheme is that the macroscopic conditions, such as velocity and pressure, cannot
be directly specified. Rather, they need to be converted into the distribution function f ,
which is not a trivial task.

Some of the non-reflecting boundaries that can be extended to the LBM are briefly
introduced in the following paragraphs.

3.3.7.2.1 Zero f Gradients Methods (ZFG) This method is implemented by setting
the gradient of the distribution function along the direction normal to the boundary to
zero. Li et al. (2006) used this method in LBM simulations to calculate benchmark aeroa-
coustic problems and obtained acceptable agreement with the reference DNS solution.
Najafi-Yazdi and Mongeau (2012) recently compared the ZFG with the PML in aeroa-
coustic simulations and found that boundaries using the ZFG scheme result in many
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more reflections than that using the PML scheme.

3.3.7.2.2 Extrapolation Method (EM) and Filtering Method (FM) The extrapolation
method is first proposed by Chen et al. (1996). In this scheme, the lattice Boltzmann
model is treated as a special finite difference scheme of the kinetic equation for the
discrete velocity distribution functions. An additional layer of sites is attached to the
outside wall boundaries and the distribution functions are calculated by extrapolation
in each time step before the streaming operations are performed. The extrapolation
method can be arranged for either the distribution function f or its first gradient ∇f in
all the directions, and can be used with a low-pass filter to reduce the high-frequency
reflections.

3.3.7.2.3 Perfectly Matched Layer (PML) The PML technique was first proposed for
the Maxwell’s equation in the field of electromagnets (Berenger, 1994). Then it was
extended to the linearized Euler equations (Hu, 1996, 2001, 2005) and the nonlinear Euler
and Navier-Stokes equations (Hu, 2006; Hu et al., 2008). More recently, two groups,
Najafi-Yazdi and Mongeau (2012) and Craig (2011), applied the PML technique to the
LBGK model in the presence of a non-zero mean flow. In their models, an additional
PML layer is attached to the outer boundary of the LBM lattice. The outgoing waves
decay exponentially in the PML layer before they reach the outer boundaries.

3.3.7.2.4 Absorbing Boundary Condition (ABC) The concept of the ABC was first ex-
tended from the DNS to the LBM by Kam et al. (2006). It is implemented by adding an
extra damping term to the governing equation of the LBGK-SRT model:

∂f

∂t
+ ξ · ∇f = −1

τ
(f − f eq)− σ(f eq − fT ), (3.34)

where fT are the target distribution functions, σ = σm(δ/D)2 is the absorption coeffi-
cient, where σm is a constant, D is the width of the absorbing buffer region and δ/D

is the normalized distance measured from the beginning of the buffer zone. The ABC
scheme creates an asymptotic transition towards a target flow defined by the target dis-
tribution function fT , which reduces the amplitude of outgoing waves in the transition
buffer and minimizes the reflected waves. The performance of the ABC scheme is influ-
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enced by the value of both σm and D. Normally, a bigger D results in better absorption
effects. The role of σm is more tricky, where σm = 0.3 is optimum but a higher value does
not necessarily improve the results.

Compared to other options, the ABC scheme is robust, effective, easy to imple-
ment and provides second-order accuracy. It can also be used together with other non-
reflective boundary conditions for a better performance. However, the ABC boundary
does not perform as well for obliquely incident waves and suffers from wave reflections
due to the difference between dispersion properties, because the governing equations of
the absorbing zone do not match the interior lattice Boltzmann domain.

Due to its simplicity and efficiency, the ABC scheme has been chosen as the non-
reflecting boundary of the LBGK models used in this thesis. An interesting bonus of
the ABC scheme is that a source flow can be generated by simply assigning a non-zero
target velocity. This method has been used to generate a mean flow or a pressure source
in our simulations in the forthcoming chapters.

3.4 Numerical Procedure of LBGK model

The numerical procedure of the D2Q9 LBGK model, which is used exclusively in this
study, consists of an initialization stage, an iterative process and a date probing pro-
cess. During the initialization stage, the fluid variables and distribution functions are
initialized according to the simulation parameters. Also, some intermediate boundary
data is generated based on the geometries used in the simulation. The iterative process
executes three key steps in a long while-loop, which include streaming, collision and the
boundary treatments. Finally, a probing scheme is implemented at the end of the it-
erations to obtain the simulation results, which for a given simulation could be either
the time histories or snapshots of the spacial distribution of the fluid variables. Once
the iterative process is finished, the probed data is saved for further post-processing or
visualizations.

Both the SRT and MRT collision schemes have been implemented in the LBGK model,
namely the LBGK-SRT and LGBK-MRT models. The MRT model offers improved nu-
merical stability in the situation involving a very low viscosity and / or a non-zero mean
flow. When the numerical stability is not an issue, the SRT model can be used, which is
about 20% faster than the MRT model.
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3.4.1 Procedure of LBGK-SRT Model

1 Load simulation parameters;
2 Initialization of ρ, u, f , f eq;
3 n = 0;
4 while n ≤ Nsim do
5 Streaming;
6 Boundary conditions;
7 Update ρ and u from f ;
8 Update f eq from ρ and u;
9 SRT Collision;

10 if n%Npb == 0 then
11 Save fluid variables;
12 end
13 n = n+ 1

14 end
Procedure 1: LBGK-SRT model.

The LBGK-SRT model is described by the pseudo code in Procedure 1, where n is
the index of iteration, Nsim is the total number of iterations and Npb is the period of data
probing.

In the beginning, the simulation parameters are loaded into the model, including the
relaxation parameters, dimensions of the lattice, geometry parameters, etc.

The initial states of the space-dependent fluid properties (density ρ and velocity u)
are normally known. The value of the equilibrium distribution function f eq in each
direction is calculated by Eq. 3.22, or more specifically Eq. 3.23 for the D2Q9 model. In
the simplest case, i.e., a system with steady or quasi-steady flow and no specific initial
excitation, the initial states of the distribution function f can be approximated by its
equilibrium states, i.e., f(t = 0) = f eq(t = 0).

The iterations start right after the initialization stage. The index of iterations n is set
to zero at the beginning. In the streaming step, f at every site propagates to all of the
neighboring sites in a unity time step. The streaming process is formulated by

fi(x + ei∆t, t+ ∆t) = fi(x, t). (3.35)

During the streaming process, the traveling particles may encounter various bound-
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aries, such as solid walls, slippery walls, axis-symmetric boundaries and open bound-
aries, etc. In the boundary treatment stage, all the sites that contain particles crossing
boundaries in any of the 8 directions are identified as contaminated sites. For static bound-
aries, the contaminated sites are identified only once at the initialization stage. For mov-
ing boundaries, the contaminated sites must be identified at each iteration. All of the
contaminated distribution functions in the identified sites are recovered by boundary
algorithms based on specific boundary conditions.

After the boundary treatment, the density and velocity fields are recovered from the
local distribution functions on each site, according to Eqs. 3.5 and 3.6. The equilibrium
distribution function f eq on each site is updated by Eq. 3.23.

The SRT collision operator is derived from the BGK evolution equation (Eq. 3.20 or
3.7), which is written as:

f(x, t)post = f(x, t)pre −
1

τ
(f(x, t)pre − f(x, t)eq), (3.36)

where fpre and fpost are distribution functions before and after the collision operator,
respectively.

The fluid variables are probed and saved at the interval of Npb after the collision
stage. The post-collision distribution functions f(x, t)post are fed into the next streaming
operator and the iteration continues.

3.4.2 Procedure of LBGK-MRT Model

The pseudo code in Procedure 2 describes the LBGK-MRT model, which is different
from the LBGK-SRT model only in two aspects. First, a number of variables in the mo-
ment space are initialized before the iterative loop, including the transformation matrix
M and M−1, diagonal matrix S as well as zero-filled containers of distribution func-
tions m and meq. Second, during the iteration process, the collision operator is per-
formed in the moment space, so the distribution functions f and f eq are transformed
into the moment space before the collision and transformed back to the velocity space
afterwards. Apart from that, both models share the same code for the remaining parts.
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1 Load simulation parameters;
2 Initialization of ρ, u, f , f eq;
3 if Using MRT then
4 Initialization of M ,M−1,S, m, meq;
5 end
6 n = 0;
7 while n ≤ Nsim do
8 Streaming;
9 Boundary treatments.;

10 Update ρ and u from f ;
11 Update f eq from ρ and u;
12 if Using MRT then
13 Transform f to m;
14 Transform f eq to meq;
15 Collision in moment space;
16 Transform m to f ;
17 end
18 if n%Npb == 0 then
19 Save fluid variables;
20 end
21 n = n+ 1

22 end
Procedure 2: LBGK-MRT model.

3.4.3 Software Implementation

At the prototype stage, both the SRT and MRT models were implemented on a desktop
computer CPU using the open-source Python/NumPy software package, which provides
functionalities and an interactive computing shell comparable with common commer-
cial software like MatLab. The data probed from the simulation was saved in NumPy’s
N-dimensional array class called ndarray. The post-processing code was also developed
in the Python/NumPy environment, and the visualizations were produced using the
matplotlib module.

At the workhorse stage, the SRT model and the MRT model were re-implemented
using a GPU-accelerated parallel computation technique, which will be discussed in the
next section.
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3.5 Parallel LBGK Model on GPU

The LBM is expensive in terms of both computational cycles and memory consump-
tion. Fortunately, the LBM is well suited for parallel implementation due to its simple
and explicit algorithm and the feature that information coupling only occurs among the
nearest neighbor cells.

The Graphics Processing Unit (GPU) is a dedicated computational component that
was originally designed to rapidly manipulate computer graphics and process image
signals. Over the last decade, GPUs have been also used as general-purpose highly
parallel processors for high-performance scientific computations.

There are some drawbacks of GPU accelerated computations. Some complex data
structures are difficult for the GPU due to the lack of pointers. GPU computation may
be inefficient for algorithms with complex control flows. In addition, GPU computation
is restricted by the relatively small on-board memory. Fortunately, the data structures
and the program control flow of a LBGK model are usually simple, and the on-board
memory of a modern GPU is large enough for a reasonable lattice size of a LBGK model.

3.5.1 Previous Work

Li et al. (2003) accelerated the computation of a LBGK model with the grid size of 1283 on
a single nVidia GeForce4 GPU. In the next year, the same group (Fan et al., 2004) scaled
a bigger 3D LBGK model onto a GPU cluster equipped with 32 nodes by decomposing
the LBM lattice space into sub-domains, each of which is a 3D block, and each GPU node
computes one sub-domain. Their model consisted of a 640× 320× 80 lattice simulating
the transport of airborne contaminants in a small city area. Their simulation speed was
0.317 seconds per iteration, which is a speed-up of about 4.6 times compared to a CPU
cluster running the same model. Since then, as the newer, faster and cheaper GPUs have
become available, many researchers have successfully used the combination of GPU and
parallel LBM as a valid tool for simulating fluids and developed various optimization
methods (Ryoo et al., 2008; Tölke, 2010; Kuznik et al., 2010; Obrecht et al., 2011; Rinaldi
et al., 2012; Habich et al., 2013).

In the present study, both the SRT and MRT models discussed in Sec. 3.4 were re-
implemented and parallelized on a single nVidia GeForce GTX 670 GPU using the Py-
CUDA language (Klöckner et al., 2012). These models were used in various simulations
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(a) nVidia CUDA hardware architecture. (b) CUDA programming model.

Figure 3.7 nVidia CUDA programming model. (source nVidia).

presented in Chpts. 4 and 5.

3.5.2 GPU Programming Model

Number of SMs 7
Number of SPs per SM 192

Total number of SPs 1344
Registers per SM 65536

Maximum number of threads per SM 2048
Maximum number of threads per block 1024

Shared memory per block 49152 bytes
Global memory 4096 MBytes

Processing Power (GFLOPS) 2459.52 (32-bits), 102.48 (64-bits)

Table 3.2 Features of the nVidia GeForce GTX 670.

We now briefly present the hardware architecture and the parallel programming
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model used to accelerate the LBGK models. CUDA, or Compute Unified Device Archi-
tecture, is a parallel GPU computing specification and programming model first released
by nVidia in early 2007. Figure 3.7(a) shows the main aspects of a CUDA-compatible
GPU. A GPU consists of a scalable array of multithreaded Streaming Multiprocessors
(SMs). Each SM contains an array of Stream Processor (SP) cores and a shared memory
which is accessible to SPs on the same SM. Each SP contains a fully pipelined integer
arithmetic logic unit (ALU) and a floating-point unit (FPU) that executes one integer or
floating-point instruction per clock cycle. A device memory, usually named the global
memory, is accessible by all SPs on the device (the GPU) and the host (the CPU). Figure
3.7(b) shows the CUDA programming model. A GPU is designed to execute hundreds
or thousands of lightweight threads concurrently. A thread executes a function called
the kernel that contains the instructions to be run in parallel on the GPU. Threads are
grouped into blocks and grids, and are indexed by two structures, blockIdx and threa-
dIdx, each containing the three fields x, y and z. When a kernel is invoked by the CUDA
program on the host CPU, a large amount of threads are automatically distributed to
multiprocessors with available execution capacity. This process is automatically man-
aged by an architecture called SIMT (Single-Instruction, Multiple-Thread), such that a
compiled CUDA program can execute on any CUDA-enabled GPU with any number of
multiprocessors.

Table 3.2 gives some of the features of the nVidia GeForce GTX 670 processor used
in this study. The overall processing power of a GPU is evaluated by its GFLOPS, or
109 floating-point operations per second. The GTX 670 GPU performs around 102.48
GFLOPS in double precision (64-bit) calculations, which is 24 times lower than the per-
formance in single precision (32-bit) calculations. Another issue is that a double preci-
sion number occupies double size in the memory compared to a single precision num-
ber. Because of this, we decided to use single precision calculations exclusively in the
GPU parallel model for much better performance (simulation time) and half the mem-
ory consumption (maximum lattice cells allowed in the LBGK model). The accuracy of
the GPU model using single precision floating-point numbers will be validated in Chpt.
4 as well as in Appendix A.
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Figure 3.8 Flowcharts of CPU model and GPU model.

1 Load simulation parameters;
2 Initialization of ρ, u, f , f eq;
3 if Using MRT then
4 Initialization of M ,M−1,S, m, meq;
5 end
6 Upload data to GPU;
7 n = 0;
8 while n ≤ Nsim do
9 LoopOnGPU();

10 if n%Npb == 0 then
11 Download data (fluid variables) from GPU ;
12 end
13 n = n+ 1

14 end
Procedure 3: Parallel LBGK model: procedure on CPU. In the initialization stage,
data is uploaded from CPU to GPU. For each iteration in the loop stage, the com-
putationally intensive GPU function is invoked by a PyCUDA command on CPU
and data is exchanged between CPU and GPU using a set of PyCUDA commands
on CPU.
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1 Def LoopOnGPU():

2 Streaming;
3 Boundary treatments.;
4 Update ρ and u from f ;
5 Update f eq from ρ and u;
6 if Using MRT then
7 Transform f to m;
8 Transform f eq to meq;
9 Collision in moment space;

10 Transform m to f ;
11 else
12 SRT Collision;
13 end

Procedure 4: Parallel LBGK model: procedure on GPU.

3.5.3 Software Implementation

In the CUDA Toolkit provided by nVidia, the underlying programming language is
CUDA C, which consists of extensions to the standard C language and a runtime li-
brary, which allows the developer to define a kernel as a C function and specify the grid
and block dimension each time the function is called. Many other language bindings
have been developed by third parties, which generally provide easy accesses to nVidia’s
CUDA API.

Because our LBGK models were completely programmed in Python, we selected
one of the open-source Python bindings of CUDA, PyCUDA (Klöckner et al., 2012), as
the development tool to implement the parallel LBGK models on the GPU. Some Py-
CUDA features that particularly suit our needs include the GPU run-time code genera-
tion (RTCG), a complete access to the CUDA API and a NumPy-like array class called
gpuarray. All functions in our CPU LBGK models written in Python can be seamlessly
re-used in the GPU model, and the ndarray data objects on CPU can be switched with
the gpuarray objects on GPU.

The GPU LBGK model is largely derived from the CPU LBGK model. Thanks to
the object-oriented paradigm of Python, a large part of the code in the CPU model can
be re-used in the GPU model. Figure 3.8 depicts the bare-bones flow chart of the CPU
Model alongside the GPU Model. We parallelized the most computationally intensive
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operators on the GPU, including streaming, boundary treatment and collision (SRT and
MRT), and added the necessary code for GPU initialization and data transfer between
CPU and GPU, where almost all of the LBM initialization code are reused. The proce-
dures on the CPU and the GPU are described by the pseudo code in Procedure 3 and
4, respectively. The procedures in the while-loop of the CPU model are replaced by a
single function LoopOnGPU(), which consists of a series of kernel functions performing
the parallelized computations of steaming, boundary treatments, updating distribution
functions and collisions on the GPU.

Figure 3.9 Mapping lattice grid to thread grid on the GPU.

Figure 3.9 depicts how the lattice grid is mapped to the thread grid on the GPU.
Each node of the lattice is linked to one thread on the multiprocessor, which executes
the same kernel functions implementing the LBGK operators during the main while-
loop. The number of threads per block is set in order to obtain the maximal number of
concurrent threads running on each multiprocessor.

We use a rather simple approach that all of the fluid variables (distribution func-
tions, density and velocities) are saved in the global memory, which is big and slow,
while the simulation parameters and coefficients (such as the relaxation parameter, the
velocity weights, etc) are saved in shared memory, which is small but fast. In the case
of the collision operator, the parallelization is straightforward because all computations
occur locally and there is no information exchange between nodes. In the case of the
streaming operator, there is some information exchange between neighboring cells, so
a certain number of access to the global memory in the kernel function is unavoidable.
The computation of the boundary treatment of the static curved walls requires a lot
more overhead since a node is influenced by several neighboring nodes. That said, the
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kernel function is optimized to some extent because the boundary data (i.e., the contam-
inated nodes and the distances between nodes and walls on all 8 directions) has been
pre-calculated in the initialization stage in the CPU and copied to the global memory of
the GPU. The parallelization of the moving curved wall and the distributed reed model
used in Chpt. 5 requires further attention because the boundary data and the reed’s
status need to be updated on the fly at every iteration.

Time per iteration Time per 100000 iterations
CPU model 1.06 (seconds) 29.44 (hours)
GPU model 0.053 (seconds) 1.47 (hours)

Table 3.3 Performance of CPU model compared to GPU model (a D2Q9
LBGK model with a 1000× 1000 lattice).

Table 3.3 compares the performances of a D2Q9 LBGK model with a 1000 × 1000

lattice running on a CPU and a GPU. A speedup ratio above 20 is achieved for the
GPU model, which is an advantageous feature particularly useful for computationally
intensive simulations of the hybrid clarinet model presented in Chpt. 5.

One of the major limiting factors of the GPU-accelerated computations in general
is the high latency associated with the data transfer between the global memory on
the device and the memory on the host. In order to minimize this negative impact in
our GPU model, the data transfer between CPU and GPU during the main loop only
occurs at the interval of Npb times the execute period of the function LoopOnGPU(). The
performance of the system might be further improved using optimization techniques,
such as those presented in (Ryoo et al., 2008; Tölke, 2010; Kuznik et al., 2010; Obrecht
et al., 2011; Rinaldi et al., 2012; Habich et al., 2013). However, such optimizations were
beyond the desired scope of this thesis research and the achieved performance level of
the GPU models was satisfactory for our needs.
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Chapter 4

Numerical Modeling of Acoustic
Systems with Static Boundaries

4.1 Overview

When compared to traditional numerical techniques, there has been less investigation
on the use of the lattice Boltzmann method (LBM) to solve acoustic problems, though
several interesting studies have been reported. For example, Buick et al. (1998, 2000) in-
vestigated sound waves in an unbound fluid using a two-dimensional lattice Boltzmann
scheme with a Bhatnagar-Gross-Krook (BGK) approximation (Bhatnagar et al., 1954).
Later on, Buick et al. (2011) investigated the jet formation at a pipe end. Viggen (2011)
investigated the effects of viscosity on spatially damped acoustic waves using the BGK
scheme. More recently, Viggen (2013) implemented acoustic multipole sources in an
acoustic field with zero viscosity in the LBM scheme by including a source term and us-
ing a regularized collision operator. In aeroacoustic problems involving the interaction
between the flow and the acoustic fields, Li et al. (2006) simulated wave propagations in
the presence of compressible flow regimes. Kam et al. (2010) simulated the scattering of
acoustic waves and Li and Shan (2011) proposed a LBM scheme for adiabatic acoustic
phenomena. Lew et al. (2010) simulated the axisymmetric subsonic turbulent cold jet
issuing from a pipe and its influence on sound radiation. Subsequently, Habibi et al.
(2011) added a heat transfer model to the LBM scheme to study heated jets.

For the case of acoustic transmission and radiation of a static axisymmetric waveg-
uide immersed in a stagnant fluid domain, da Silva (da Silva and Scavone, 2007; da Silva,
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2008; da Silva et al., 2009) provide excellent results based on lattice Boltzmann technique,
where the effect of the cold subsonic mean flow as well as the horn extension attached at
the pipe end is also extensively investigated. The work of da Silva demonstrates that a
BGK lattice Boltzmann model can be used to accurately predict the acoustic propagation
of a radiating axisymmetric waveguide.

In Chpt. 3, we have discussed the lattice Boltzmann model and its CPU serial imple-
mentation on Python/NumPy platform as well as its GPU parallel implementation on a
PyCUDA platform. Both the Python and the PyCUDA implementations have been pro-
grammed independently by the author from scratch, where the BGK-SRT LBM scheme
is consistent with the Matlab implementation used by da Silva (2008). These LBM mod-
els are developed to address acoustic problems involving complex static boundaries or
dynamic boundaries and carrying a quiescent or non-zero mean flow. In general, the
GPU model is preferred because it is much faster than the CPU model. The running
speed is especially important for problems involving a very long simulating time. How-
ever, the lattice size of the GPU model is limited by a rather small on-board memory
and the accuracy might be slightly compromised by the 32-bit representation of floating-
point numbers used on a GPU. The latter issue need to be scrutinized for computations
involving weak acoustic signals usually found at distances far from an acoustic source.

The first objective of this chapter is to verify the LBM code developed in this study by
simulating acoustic systems with static boundaries, i.e., to address the benchmark prob-
lem of sound transmission and radiation of unflanged pipes as well as horns, including
the measurement of reflection coefficient R, the length correction l/a and the radiation
directivity G(φ). The simulation conditions will be limited to the radiation of normal
(planar) modes and low compressibility regimes. For this reason, the numerical scheme
used in this paper is based on an isothermal model represented in a two-dimensional ax-
isymmetric scheme. Furthermore, the reliability and applicability of the GPU LB model
on acoustic systems with complicated curved boundaries in the presence of a relatively
high speed fluid flow is verified. For this specific purpose, two whistles are modeled
and their aeroacoustic behavior is investigated numerically. Moreover, the accuracy of
the GPU LB model at various Reynolds numbers and grid resolution, which has been
benchmarked against the analytical results of a 2D Posieuille flow, is presented in Ap-
pendix A.

The second objective is to use the verified LB model to conduct further investigations
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of phenomena for situations where the analytical solutions or experimental results are
either unavailable yet or very difficult to obtain.

This chapter is structured as follows. Section 4.1 gives the general introduction. Sec-
tion 4.2 discusses the numerical investigation of the acoustic transmission of unflanged
thin-wall cylindrical pipes in terms of reflection coefficient and length correction. Sec-
tion 4.3 investigates the external acoustic radiation field of the same system discussed
in Sec. 4.2. The effect of the non-zero mean flow and the horn extension at the open
end of the axisymmeric waveguide will be investigated as well. Section 4.4 investigates
whistles comprising a complicated curved boundary measured from realistic objects,
where the MRT technique is used to improve the stability of the numerical simulation
in the condition of low viscosity and high jet speed, which is also commonly found in
the numerical simulation of clarinet-like woodwind instruments. Section 4.5 provides a
conclusion and suggestions for further investigations.

4.2 Acoustic Transmission in Pipes

4.2.1 Introduction

The cylindrical pipe is widely used in woodwind instruments. The propagation of plane
acoustic waves in axisymmeric pipes and their reflection at open ends is a classical prob-
lem, and has been studied analytically and experimentally by many researchers. The
sound wave propagating to the output end is partly transmitted into the external space
and partly reflected back into the bore. The ratio of the magnitude of the reflected wave
pressure p− to the incident wave pressure p+ measured at the output end (x = L) is
defined as the reflection coefficient

R ,
p−

p+
, (4.1)

from which the radiation impedance can be derived as:

Zr = Zc

(
1 +R

1−R

)
, (4.2)

where Zc = ρcs/S is the characteristic acoustic impedance, ρ is the density of air, cs is the
speed of sound and S is the cross-section area of the pipe.



4 Numerical Modeling of Acoustic Systems with Static Boundaries 57

The complex reflection coefficient can also be expressed as the product of its magni-
tude |R| and a phase term:

R = −|R|e−2jkl(ω), (4.3)

where k = ω/cs is the wavenumber and ω = 2πf is the angle frequency. The phase term
2kl(ω) is related to the inertia of the acoustic flow when it interacts with the surround-
ing fluid at the open end, where the complex and frequency-dependent parameter l,
known as the length correction, extends the equivalent length of the pipe and makes the
resonance frequencies of the cylindrical pipe lower. The length correction plays a role
in the intonation of woodwind instruments since even subtle variations of the resonant
frequency, i.e. ∆f = O(−1), are perceptually obvious. For convenience, l(ω) is simply
noted as l.

The reflection coefficient and the length correction are strongly influenced by the
geometrical characteristics at the open end. They have become an interesting subject to
many musical acoustics researchers since both the playability and the intonation of the
woodwind instruments are influenced by the radiation impedance, which is just another
expression of the reflection coefficient. The real part of Zr is related to the dissipation
of acoustic energy (resistive). In this case, the energy is lost through transmission. The
imaginary part is related to the accumulation of energy either by kinetic or potential
energy (reactive). In the case of an open end, the reactive phenomena is related to the
inertia of air in the open end but also with the elastic property of the same mass of air at
the open end.

The derivations of the analytical predictions ofR at the open end of a cylindrical pipe
are usually based on some simplified boundary conditions which are relatively easy to
analyze. The theoretical radiation impedance Zr at the end of a pipe of radius a with
an infinite plane baffle are given as (Rayleigh and Strutt, 1896; Olson, 1957; Fletcher and
Rossing, 1991):

Zr = A+ jB, (4.4)

where the acoustic resistance A and acoustic reactance B in terms of the dimensionless
quantity ka (also is called the Helmholtz number) are given by:

A = Z0

[
(ka)2

2
− (ka)4

22 · 3
+

(ka)6

22 · 32 · 4
− · · ·

]
(4.5)
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and
B =

Z0

πk2a2

[
(2ka)3

3
− (2ka)5

32 · 5
+

(2ka)7

32 · 52 · 7
− · · ·

]
. (4.6)

For the case of a flanged pipe in the absence of mean flow, Norris and Sheng (1989)
give the approximation of the modulus |R| and the dimensionless length correction l/a
over the frequency range (0 < ka < 3.8) as:

|R| = 1 + 0.323ka− 0.077(ka)2

1 + 0.323ka+ 0.923(ka)2
(4.7)

and
l/a =

0.82159− 0.49(ka)2

1− 0.46(ka)3
, (4.8)

respectively.
For the case of an unflanged thin wall pipe in the absence of mean flow, Levine and

Schwinger (1948) give the first exact solution of the analytical sound propagation model
in the form of an integral equation based on the Wiener-Hopf technique. For the case of
a pipe with a finite wall thickness, Ando (1968, 1969) propose to use the outer radius of
the pipe instead of the inner radius for the value of a. The following equations are the
results given by Levine and Schwinger (1948) and corrected by Ando (1968).

The modulus of the reflectance at the open end is given by:

|R| = exp

{
−2ka

π

∫ ka

0

tan−1(−J1(x)/N1(x))

x[(ka)2 − x2]0.5
dx

}
. (4.9)

The dimensionless length correction l/a is given by:

l/a =
1

π

∫ ka

0

log πJ1(x)[(J1(x))2 + (N1(x))2]1/2

x[(ka)2 − x2]1/2
dx+

1

π

∫ ∞
0

log[1/(2I1(x)K1(x))]

x[x2 + (ka)2]1/2
dx. (4.10)

Norris and Sheng (1989) provide a simple close-form expression of the modulus |R|
and length correction l of an unflanged pipe over the frequency range 0 < ka < 3.8,
which is an approximation of Levine and Schwinger’s rather complicated solution:

|R| = 1 + 0.2ka− 0.084(ka)2

1 + 0.2ka+ 0.416(ka)2
(4.11)
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and
l/a =

0.6133 + 0.027(ka)2

1 + 0.19(ka)2
. (4.12)

In the low frequency limit, as ka → 0, the reflection coefficient |R| = 1, and the
dimensionless length correction l/a is 0.82159 for a flanged pipe and 0.6133 for an un-
flanged pipe, respectively. The relation of the length correction l and the resonance
frequencies of a closed-open pipe, which influences the intonation of a woodwind in-
strument, is given by

fn =
(2n+ 1)cs
4(L+ l)

, (4.13)

where n = 1, 2, 3, · · · .
Because of the thermoviscous losses at the pipe walls, the propagation of sound

waves in a pipe is dissipative. Kirchhoff (1868) shows that, for a homogenous medium
in the absence of a mean flow, the effect of losses can be taken account by using a com-
plex wavenumber

K =
ω

cs

[
1 +

1− j√
2s

(
1 +

γ − 1

ξ

)
− j

s2

(
1 +

γ − 1

ξ
− γ(γ − 1)

2ξ2

)]
, (4.14)

where γ is the specific heat ratio, ξ2 = µCp/κth is the Prandtl number, µ is the dynamic
viscosity, Cp is the specific heat coefficient, κth is the thermal conductivity, s = a

√
ρ0ω/µ

is the shear wavenumber and a is the pipe radius. The negative imaginary part of the
complex wavenumber represents the contribution of the damping effect. Equation 4.14
indicates that the thermoviscous losses becomes large for a pipe with a very small radius
a that at the same order of magnitude as the acoustic viscous shear layer. That happens
in very narrow capillar tubes or very low frequencies. Inside the bore of a woodwind
instrument, where the radius is much larger compared to a capillary tube, the thermo-
visous losses are not particularly significant.

For a pipe carrying a non-zero subsonic mean flow, the reflection coefficient and the
length correction at the open end are strongly influenced by the flow speed, (Munt, 1990;
Peters et al., 1993), which is measured by the Mach number M = U0/cs, where U0 is the
mean volume flow divided by the pipe cross-sectional area πa2. The problem involving
the effects of mean flow is also commonly characterized by two other parameters: the
mean flow Strouhal number Sr0 = ωa/U0 = ka/M and the acoustic Strouhal number Srac =
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ωa/u′, where u′ is the amplitude of the acoustic velocity at the open end of the pipe.
The early studies on the acoustic transmission through the open end of a cylindrical

pipe carrying a mean flow include the work of Carrier (1956) and Lansing et al. (1970) on
the uniform flow problem, that is the flow is the same both inside and outside the pipe,
where a simple modification of Levine and Schwinger’s technique on the pipe in the
absence of a mean flow has been used. For the problem of the flow mismatch between
the ambient fluid surrounding the open end and the jet issuing from the open end, the
first investigations were made by Mani (1973) for a two-dimensional duct and by Savkar
(1975) for a cylindrical duct, respectively. However, their solutions are not exact and the
effect due to the instabilities of the jet shear layer is not taken into account.

The exact solution of the linear analytical model of the sound transmitting through
the open end of a cylindrical pipe in the presence of a subsonic flow issuing into the
ambient fluid is given by Munt (1977, 1990). His model assumes that a uniform flow is
separated from the ambient fluid (stagnant or co-flowing) by an infinitely thin cylindri-
cal shear layer, which is inherently unstable. The governing equations are built upon
the velocity potential wave equation in cylindrical coordinates. The boundary condi-
tions are based on several assumptions including a rigid pipe wall, continuous pressure
across the vortex layer and continuity of particle displacement across the vortex layer. In
addition, a full Kutta condition is imposed on the vortex layer near the edge of the pipe
and the condition of causality is applied which implies that the sound field shall vanish
for impulsive excitation before the source is switched on. Due to the acoustic perturba-
tions, the shear layer oscillations grow exponentially as they are convected away from
the edges of the pipe end. The instability plays an important role and the sound field
generated by the instability is an inseparable part of the exact solution to the thin shear
layer model. The full Kutta condition imposed at the trailing edge of the pipe implies a
finite velocity and zero pressure fluctuations at the edges, and the acoustic disturbance
in the jet can create a transfer of acoustic energy into kinetic energy in the jet vortex
sheet. Also, the Kutta condition implies that the magnitude of the pressure reflection
coefficient approaches a value of −1.0 for all Mach numbers if the Helmholtz number
approaches zero. The full Kutta condition was discussed by Howe (1979) for the case of
low Mach numbers and low frequency.

The mathematical solution of Munt’s model is based on Fourier transform and Wiener-
Hopf technique. By applying a Kutta condition and causality, a solution is presented
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which possesses an instability wave term that dominates within a region of approxi-
mately 45 degrees to the downstream jet axis. A numerical evaluation of the far-field
sound radiation pattern is given in (Munt, 1977), which is in good agreement with the
experimental measurement by Pinker and Bryce (1976) for the case of a cold jet. In
(Munt, 1990), the solution is extended to the inner sound field and the acoustic reflec-
tion coefficient at the open end of the jet pipe is given in the form of integral equations,
where the numerical evaluation for the amplitude of the plane wave reflection coeffi-
cient |R| as a function of ka at moderate to low jet Mach numbers (0.01 ≤ M ≤ 0.6)
and low frequencies (0 < ka < 1.5) is given. Munt’s prediction of |R| is a significant
improvement over the approximated theoretical prediction provided by Savkar (1975),
and is in good agreement with many experimental results (Alfredson and Davies, 1970;
Schlinker, 1977; Moore, 1977; Coelho, 1980; Allam and Åbom, 2006), where within a crit-
ical range of ka at low frequencies, the reflection coefficient |R| reaches some peak values
exceeding unity, which might be caused by the shear layer instability. As ka approaches
zero, |R| approaches unity for all values of M .

The model presented in (Munt, 1977) is expressed in terms of integral equations,
which is rather complicated to solve. Rienstra (1983) and Cargill (1982a,b) provided
a simple explicit formula approximating Munt’s solution of far field patterns and re-
flection coefficient at the open end of the pipe for the case of small Strouhal numbers
(Sr0 = ka/M ) and low frequencies. Both of them discussed the two distinguish con-
ditions that whether a full Kutta condition was imposed at the sharp edge of the pipe
end or not. When the Kutta condition was imposed, a similar behavior for the magni-
tude of the reflection coefficient was found. But a significantly different behavior was
found for the case of no Kutta condition, where the magnitude of the reflection coef-
ficient in the low Strouhal number limit is equal to |R| = (1 − M)/(1 + M), which
means all of the acoustic energy at the pipe end is reflected back. In the low Mach num-
ber limit, Howe (1979) discussed the problem of sound radiations that depends on the
imposition of a Kutta condition at the edge of the flat plate, which is an extension of
(Munt, 1977). He found that when a Kutta condition is enforced, the vortices are con-
vected with the mean flow and no sound is radiated. Cargill (1982b) predicted that |R|
exceeded unity at Sr0 ≈ π, which was in accordance with the experimental results pro-
vided by Mechel et al. (1965) and Ronneberger (1967). More recently, Bierkens (2002)
solved Munt’s model numerically in terms of absolute amplitude of the reflection coef-
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ficient for the plane wave case. Panhuis (2003) extended Bierkens’ work and provided
the numerical results of both the complex values of reflection coefficient and the phase
of the reflection coefficient and the length correction for both the plane mode and higher
modes, which cover different values of the Helmholtz number ka and Mach numbers
(0.01 ≤M ≤ 0.6).

Munt’s theoretical prediction of the plane pressure reflection coefficient of a sharp-
edged pipe carrying a subsonic mean flow has been verified experimentally by Pe-
ters et al. (1993) using a multi-microphone measurement technique for low frequencies
(ka < 0.3) and low jet speeds (M < 0.2). He also confirmed the effect of the wall thick-
ness (Ando, 1969), and the influence of vortex shedding due to high amplitude of the
acoustic field (Disselhorst and van Wijngaarden, 1980). The first complete experimental
validation of Munt’s theoretical model is presented by Allam and Åbom (2006). Using
a full plane wave decomposition procedure based on a multi-microphone arrangement
and an overdetermination method in a nonlinear least-squares procedure, they accu-
rately measured the values of the reflection coefficient, the length correction and the
complex wavenumber associated with the damping of plane waves in the duct carrying
a subsonic mean flow. The measured result of damping is in good agreement with the
model by Dokumaci (1997) for δ+

A < 10 and the model by Howe (1995) for δ+
A < 30,

respectively, where δ+
A is the normalized boundary layer thickness. They also found that

the pressure reflection calculated using the maximum flow velocity instead of averaged
flow velocity is in better agreement with Munt’s prediction.

Numerical techniques have been successfully used to investigate sound transmis-
sion of pipes involving complex conditions for some decades. Compared to traditional
analytical models and experimental approaches, numerical techniques shine on inves-
tigating objects featured by complicated geometries and variables that are difficult or
even impossible to obtain from conventional experimental methods.

In the specific case of sound radiation from the open end of ducts, da Silva and
Scavone (2007) investigated the sound radiation from an unflanged cylinder immersed
in a stagnant fluid. Later, they investigated the influence of a subsonic mean flow on the
sound transmission in ducts terminated by horns with different geometries (da Silva
et al., 2009) and by a catenoidal horn resembling the end of a clarinet-like instrument
(da Silva et al., 2010). The accuracy of da Silva’s LBM model is demonstrated by the
excellent agreements found between numerical and analytical results in terms of the
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reflection coefficient and the length correction at the open end.

4.2.2 A Pipe Carrying a Quiescent Flow

The goal of this section is to verify the LB models by addressing the classical problem of
the reflection of plane waves propagating in an unflanged cylindrical pipe immersed in
a quiescent fluid. The results of both the CPU and GPU SRT models are compared with
the established theoretical model provided by Levine and Schwinger (1948) in terms of
pressure reflection coefficient R and the dimensionless length correction l/a.

4.2.2.1 LBM Scheme

Figure 4.1 LB model of the axisymmetric pipe with a quiescent flow for the
measurements of reflectance and length correction.

The numerical scheme is described by an axisymmetric cylindrical structure im-
mersed in a fluid domain surrounded by open boundaries, as illustrated in Fig. 4.1.
This scheme takes advantage of the axisymmetry such that the system can be fully rep-
resented by a half-plane without losing accuracy. The fluid domain defined by the half-
plane is represented by a rectangular D2Q9 lattice consisting of 1000 by 500 cells.

The top, left and right side of the fluid domain are treated with an absorbing bound-
ary condition (ABC) proposed by Kam et al. (2006), which is a transition buffer with
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a target flow prescribed at the outlet. The non-reflecting condition is achieved by set-
ting the distribution function of the target flow, fTi , to the equilibrium state, i.e., ρt = ρ0

and ut = 0, where ρ0 is the undisturbed density of the fluid. For collisions inside the
transition buffer, an extra damping term is added to the collision equation of the single
relaxation time BGK lattice Boltzmann scheme:

fi(x + ei∆t, t+ ∆t)− fi(x, t) = −1

τ
(fi − f eqi )− σ(f eqi − fTi ), (4.15)

where τ = 1/Ω is the relaxation time, σ = σm(δ/D)2 is the damping coefficient, σm is
a constant that normally equals to 0.3, δ is the distance measured from the beginning
of the buffer zone and D is the thickness of the buffer. Inside the transition buffer, the
amplitude of outgoing waves is attenuated asymptotically and the reflections from the
outside boundary are minimized. The thickness of the ABC buffer used in the model is
15 cells, corresponding to a frequency-averaged pressure reflection coefficient of order
of magnitude smaller than 10−3 for both perpendicular and oblique sound incidence.
The lower boundary of the radiation domain representing the axis of symmetry of the
system is treated with a free-slip condition.

The length and the radius of the cylindrical waveguide is L = 500 and a = 20 in
lattice cells, respectively. The walls of the waveguide are represented by a solid bound-
ary of zero thickness based on spatial interpolations (Bouzidi et al., 2001; Lallemand and
Luo, 2003). The outer walls are treated by a simple bounce-back scheme (Succi, 2001) for
which the viscous boundary phenomena are represented with second-order accuracy.
Since the boundary layer plays a fundamental role on the radiation, the inner walls are
treated using a free-slip scheme (Wolf-Gladrow, 2004) in order to reduce the inherent
viscous boundary layer effects that result in a transfer of momentum by the tangential
motion of particles along the walls.

The undisturbed dimensionless fluid density is set as ρ0 = 1.0 for convenience. To
ensure the numerical stability and to make the viscosity as small as possible, the relax-
ation parameter of the SRT model is set to Ω = 1.95, which is equivalent to a relaxation
time of τ = 0.5128, or a dimensionless kinematic viscosity of ν = 4.27× 10−3.

In order to compare ν with the kinematic viscosity of air in standard conditions,
which is νair = 1.51 × 10−5 (m2/s), the dimensionless value needs to be converted to
physical units. Suppose that the numerical cylindrical waveguide represents the bore
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of a clarinet that has an inner radius of ap = 8 × 10−3 (m), the spatial resolution is dx =

ap/a = 4 × 10−4 (m) and the corresponding kinematic viscosity in physical units can be
obtained by νp = 340×

√
3× dx× ν = 10−3 (m2/s).

4.2.2.2 Representing a 3D Axisymmetric Flow in a 2D Model

The fluid/aeroacoustic system discussed in this study is characterized by a 3D axisym-
metric flow in an unflanged cylindrical pipe. Although it is possible to simulate the 3D
flow using a 3D LB model, this approach would require significant computational re-
sources (CPU time, memory, etc.). Rather, an axisymmetric 2D LBGK scheme is chosen
for its efficiency and simplicity. Halliday et al. (2001) first proposed an axisymmetric
model for the steady 3D axisymmetric tube flow problems, where they inserted several
spatial and velocity-dependent source terms into the RHS of the collision equation of
a regular LBGK D2Q9 model, such that the Navier-Stokes equations in cylindrical po-
lar coordinates can be recovered from the lattice Boltzmann equation by performing a
Chapman-Enskog expansion. Later, Niu et al. (2003) derived an axisymmetric model for
the Taylor-Couette flow problems. Lee et al. (2005) further proposed an axisymmetric
scheme based on the incompressible LBGK D2Q9 model for simulations of 3D pulsatile
flow.

Throughout this study, the axisymmetric incompressible LBGK D2Q9 model by Lee
et al. (2005) is employed to simulate the 3D axisymmetric flow in a circular pipe. This
scheme assumes that the flow is symmetric about the pipe’s axis and thus can be ex-
pressed by the incompressible Navier-Stokes equations in cylindrical polar coordinates.
Based on this assumption, the azimuthal component of velocity uφ and the φ coordinate
derivatives vanish. Consequently, the flow can be represented by the axial and radial
coordinates, x and r, respectively, which can be written as a vector x for convenience.
The governing equation of the axisymmetric model is written as

fi(x + ei∆t, t+ ∆t)− fi(x, t) = −1

τ
(fi − f eqi ) + h

(1)
i + h

(2)
i , (4.16)

which has the same form as the BGK lattice Boltzmann equation (Eq. 3.20) except that
two source terms are introduced to the RHS. The equilibrium distribution function f eq

of the axisymmetric model is identical to that of the incompressible LBGK D2Q9 model
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given by He and Luo (1997) 1, which is written as

f eqi (x, t) = ωi
(ρ0 + δρ)

c2
s

+ ωiρ0

[
ei · u
c2
s

+
(ei · u)2

2c4
s

− u2

2c2
s

]
, (4.17)

where ei is the discrete velocity connecting each site to its neighbor lattices, ω0 = 4/9,
ω1 = ω2 = ω3 = ω4 = 1/9 and ω5 = ω6 = ω7 = ω8 = 1/36 and cs = 1/

√
3 is the speed of

sound in lattice units.
The source terms are given by

h
(1)
i = −ωiρ0ur

r
(4.18)

and
h

(2)
i = ωi

3ν

r
[∂rp+ ρ0∂xuxur + ρ0∂rurur + ρ0(∂rux − ∂xur)cix]. (4.19)

The velocity derivation terms ∂rur, ∂xux and ∂rux − ∂xur in Eq. 4.19 can be solved
using the technique proposed by Lee et al. (2005). Specifically, the terms ∂rur, ∂xux and
∂rux+∂xur are explicitly calculated from the higher-order moments of fi (Lee et al., 2005,
Eq. (9)). The term ∂rux − ∂xur is equal to ∂rux + ∂xur − 2∂xur, where the unknown term
∂xur at lattice node (i, j) can be calculated using the finite difference method provided
in (Lee et al., 2005, Eq. (10)), that is, (∂xur)i,j = ((ur)i+1,j − (ur)i−1,j)/2.

According to previous experiments, the axisymmetric model derived by Lee et al.
(2005) provides accurate results and offers a simpler numerical implementation. Gen-
erally speaking, an incompressible LBGK model is able to capture acoustic wave phe-
nomena, provided that these are within the linear regimes characterized by low Mach
numbers and low wave amplitudes. The highest Mach number used in this thesis is
M = 0.15, which makes the flow slightly compressible. However, the incompressible
model is still valid because the slightly unsteady compressible form of the Navier-Stokes
equations can be fully recovered from the isothermal form of the Boltzmann equation
by performing the Chapman-Enskog expansion (Qian et al., 1992; Wolf-Gladrow, 2004).

4.2.2.3 Source Signal

The exciting broadband signal is a customized swept-frequency signal running from a
low frequency kas = 0.01 to a high frequency kae = 3.8 (less than the first evanescent

1It is slightly different from Eq. 3.22 given by Qian et al. (1992).



4 Numerical Modeling of Acoustic Systems with Static Boundaries 67

Figure 4.2 Source signal.

mode of the pipe), where ka is the dimensionless wavenumber, the subscript s and e

indicate the starting and the ending, respectively. In order to provide a relatively high
frequency resolution in both low frequency and high frequency bands within a relatively
short time duration, the exciting signal ut is made up of a linear combination of a linear
chirp signal ut1 and a logarithmic chirp signal ut2. The excitation is implemented by a
source buffer with a length of 60 cells at the left end of the pipe using the same technique
as an absorbing boundary condition but prescribed by a non-zero target velocity given
by
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ut = H(n−Nt) · u′0 · (ut1 + ut2)/2,

ut1 = sin

[
cs
a

(
kas + kae

(n−Nt)∆t

N −Nt

)]
,

ut2 = sin

[
cs
a

(
kas

(
kae
kas

) (n−Nt)∆t
N−Nt

)]
,

(4.20)

where n is the time step, N is the total number of iterations in the simulations, Nt is a
short initialization iterations, u′0 is the amplitude of the acoustic particle velocity along
the axial direction and ∆t = 1 is the time increment of the numerical scheme. H(n) is
the Heaviside step function given by

H(n) =

0, n < 0,

1, n ≥ 0.
(4.21)

The source signal used in the simulation is illustrated in Fig. 4.2, where 15 percent of
the total duration of the envelope of the signal has been ramped by a Hanning window
at the head and the end to prevent unwanted higher modes from being excited.

The suitable grid resolution of the simulation is relative to the ratio of the lattice
cells per unit length of the model, or CPW, which depends on the maximum frequency
analyzed in the problem. Wilde (2006) proposed that a minimum value of 12 cells per
wavelength is required such that the phase speed error is reduced to less than 1 percent.
In this simulation, the maximum dimensionless frequency of analysis (ka = 3.8, which
corresponds to a wavelength of λ = 2π/k = 2πa/ka ≈ 33 in lattice cells) can be well
represented in the simulation. Moreover, the grid resolution determined by the lattice
cells of the radius, which is a = 20, are suitable for simulating acoustic waves with high
frequency components up to ka = 10.47 based on the criterion defined by Wilde.

4.2.2.4 Signal Probing and Post-Processing

The purpose is to obtain the acoustic pressure reflection coefficient R(x = x0) at the
open end of the pipe, which will be written as R for the matter of convenience. Since
the wavefront is not plane at the open end, and the travelling wave in two opposite
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directions can not be measured directly, we can not simply calculate R by its theoreti-
cal definition, i.e. the ratio of the reflected pressure wave p−(x = x0) and the incident
pressure wave p+(x = x0).

In this study, the reflection coefficient R is calculated from the radiation impedance
Zr at the open end by the relation

R = (Zr − Zc)/(Zr + Zc), (4.22)

where Zc ≈ ρcs/S is the characteristic impedance of the pipe, ρ is the density of air, cs
is the speed of sound and S is the cross-section of the pipe. The technique proposed by
Dalmont et al. (2001) has been used to obtain the radiation impedance, which is briefly
described here.

The time history of the acoustic pressure p(t) and the volume velocity u(t) at x = x1,
which is a distance of ∆ from the open end (x = x0), is measured. To ensure a plane
wavefront under the first cut-off frequency, the distance ∆ should be larger than 4a. The
input impedance being looked from x = x1 can be calculated by

Z1 =
P (x = x1)

U(x = x1)
, (4.23)

where P and U is the Fourier transformed version of p and u in frequency domain. The
radiation impedance Zr can then be calculated from Z1 by

Zr = jZc tan

[
arctan

(
Z1

jZc

)
− k∆

]
. (4.24)

The complex reflection coefficient R can be obtained from the radiation impedance by
Eq. 4.22. The length correction l can be derived from its relation withR and its modulus:

l =
j

2k
log

(
R

−|R|

)
. (4.25)

4.2.2.5 Results

The results of the magnitude of the reflection coefficient |R| and the dimensionless
length correction l/a obtained from the CPU SRT model are presented in Fig. 4.3 along
with the theoretical predictions by Levine and Schwinger (1948). Overall, the numerical
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(a) Magnitude of reflection coefficient |R|.

(b) Dimensionless length correction l/a.

Figure 4.3 CPU SRT model, comparison between numerical results (solid)
and analytical predictions (- - - -) of the reflection coefficient and length
correction of an unflanged cylindrical pipe in the absence of a mean flow
(M = 0).
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(a) Magnitude of reflection coefficient |R|.

(b) Dimensionless length correction l/a.

Figure 4.4 GPU SRT model, comparison between numerical (solid) and an-
alytical predictions (- - - -) of the reflectance and length correction of an un-
flanged cylindrical pipe in the absence of a mean flow (M = 0).
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result of the magnitude of the reflection coefficient |R| is in good agreement with the
theoretical prediction. For the region of ka < 1.5, the numerical result of |R| is slightly
lower than that predicted by the theory, though for the region of 1.5 < ka < 3.8, the nu-
merical result is almost perfectly overlapped on the theoretical prediction. Interestingly,
the numerical result of |R| obtained from a previous LBM simulation by da Silva (2008)
shows a slightly higher amplitude than the theoretical predictions, and the discrepan-
cies are attributed by the author to the effect of energy leakage caused by the truncation
of the time history of the probed signal, which is the response of a Hanning-shaped
impulse signal.

The dimensionless length correction l/a obtained from the numerical simulation has
been compared to the theoretical predictions, as depicted in Fig. 4.3(b). A disagreement
of about 4% is found in both the low frequency region ( ka < 0.1) and the high frequency
region (ka > 3.25). Similar patterns of disagreements have been reported by da Silva
(2008) who attributes the energy leakage to the truncation effect of the probed signal in
time domain.

We notice that although the exciting signal used in the present simulation is much
longer than the Hanning-shaped impulse signal used by da Silva (2008), the discrep-
ancies do not vanish but show a different characteristic. Besides the possible effect of
energy leakage, the discrepancies might be also attributed to the accuracy of the nu-
merical system, which is related to various factors including the time resolution, spatial
resolution, radiation domain size and numerical precision representing floating-point
numbers.

The results of |R| and l/a obtained from the GPU SRT model are presented in Fig.
4.4. They are very close to the results obtained from the CPU SRT model. In general,
the differences between the results of the GPU SRT model and the CPU SRT model are
barely noticeable. A minor difference can be found in |R| at ka ≈ 0.3, where the GPU
result shows a slightly bigger disagreement to the theoretical prediction than that of the
CPU result, which might be caused by the lower digital precision (32-bit) offered by the
GPU computation platform. Overall, both the CPU SRT model and the GPU SRT model
show good results compared to either the theoretical predictions or the previous LBM
predictions presented in (da Silva, 2008).
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4.2.3 A Pipe Carrying a Mean Flow

This section simulates the transmission of acoustic waves out of a cylindrical pipe car-
rying a subsonic laminar cold mean flow. The GPU SRT model, which has been verified
in Sec. 4.2.2 for the case of a cylindrical pipe carrying a zero flow, is exclusively used in
this section.

4.2.3.1 LBM Scheme

Figure 4.5 LB model of an axisymmetric pipe carrying a subsonic mean flow
for the measurement of reflection coefficient and length correction at the open
end.

Figure 4.5 depicts the numerical scheme representing a cylindrical pipe carrying a
subsonic mean flow, which is almost the same as the system used in Sec. 4.2.2 except
that one new probing point is added at x2.

In order to ensure the numerical stability in the situation of a non-zero mean flow
and to make the viscosity as small as possible, the heuristic relaxation parameter Ω of
the SRT model is chosen based on Mach number, as presented in Tab. 4.1



4 Numerical Modeling of Acoustic Systems with Static Boundaries 74

M Ω
0.05 1.9
0.1 1.88

0.15 1.83

Table 4.1 Relaxation parameter Ω for different Mach numbers.

4.2.3.2 Source Signal

The system is excited by a source signal generated from a source buffer, which was
described in Sec. 4.2.2. The source signal ut consists of a customized swept-frequency
signal running from a low frequency kas = 0.01 to a high frequency kae = 1.5, which is
the highest Helmholtz numbers predicted by Munt (1990), superimposed on a DC offset
representing the non-zero mean flow. The formula of ut is expressed as

ut = u0 +H(n−Nt) · u′0 · (ut1 + ut2)/2,

ut1 = sin

[
cs
a

(
kas + kae

(n−Nt)∆t

N −Nt

)]
,

ut2 = sin

[
cs
a

(
kas

(
kae
kas

) (n−Nt)∆t
N−Nt

)]
,

(4.26)

where n is the time step,N is the total number of iterations in the simulation,Nt is a short
initialization iterations, u0 is the velocity of the non-zero mean flow, u′0 is the amplitude
of the acoustic particle velocity along the axial direction, ∆t = 1 is the time increment of
the numerical scheme and H(n) is the Heaviside step function. To fulfill the condition
of low acoustic amplitude specified in (Munt, 1990), the ratio of u′0/u0 ∼ 0.1 is used.

Before the acoustic source is superimposed, there should be enough initialization
time to allow the fluid in the pipe to accelerate from stagnation to a steady state. The
initialization time can be determined by

Nt ≥ Nt0 + Lx/(M cs), (4.27)

where Nt0 ' 4000 is the acceleration time for a source buffer with a thickness equiva-
lent to 60 cells (da Silva et al., 2009), M is the Mach number of the non-zero mean flow
and Lx = 1000 is the maximum traveling distance of the plane sound wave in the axial



4 Numerical Modeling of Acoustic Systems with Static Boundaries 75

direction in the radiation domain. For example, the minimum initialization time corre-
sponding to M = 0.036 is Nt = 5.21 × 104. For the jet speeds (M = 0.05, 0.1, 0.15) tested
in this study, Nt is assigned to a safe constant value of 80000.

4.2.3.3 Signal Probing and Post-Processing

The wavenumber of the propagating acoustic waves are involved in the calculation of
both the reflection coefficient and the length correction. For the case of thermoviscous
acoustic wave motions in pipes with flow, the wavenumber is complex and is influ-
enced by both the effect of viscous damping and the effect of convection due to the
non-zero mean flow. Typically, the complex wavenumber can be decomposed to two
components, K = K+ + K−, where K− and K+ are the components related to the
left- and right-traveling waves, respectively. A number of theoretical models and ex-
perimental measurements of the complex wavenumber including the mean flow effect
have been reported in literature (Davies et al., 1980; Dokumaci, 1997; Allam and Åbom,
2006). However, none of these results can be directly used in the post-processing of the
present LB simulations, not only because of the differences between the data obtained
from different sources, but also due to two inherent issues of the LB models. Firstly, the
artificial viscosity being used in the current LB model is higher than that used in those
theoretical models and experimental measurements. Secondly, although the boundary
layer effect in the LB simulations is roughly approximated by the no-slip boundary con-
ditions imposed on the pipe walls, it is still not an accurate reproduction of the real
physical phenomenon.

In the present study, the complex wavenumbers as well as the reflection coefficient
and length correction are calculated together from the signals of pressure and volume
velocity probed at two different positions using the modified two-microphone method
(TMM) proposed by da Silva (2008), which is based on the established multi-microphone
method used by Peters et al. (1993) and Allam and Åbom (2006). The procedure is based
on the linear theory of plane acoustic wave propagation in pipes and is described here,
where all variables are in the frequency domain.

The four known signals of pressure and volume velocity probed at two different
positions x = x1 and x = x2 (depicted in Fig. 4.5), namely p1, p2, u1 and u2, can be
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decomposed to left- and right-travelling signals:

p1 = p+
1 + p−1 ,

p2 = p+
2 + p−2 = p+

1 e
−jk+∆12 + p−1 e

jk−∆12 ,

u1 =
1

ρcs
(p+

1 − p−1 ),

u2 =
1

ρcs
(p+

2 − p−2 ) =
1

ρcs
(p+

1 e
−jk+∆12 − p−1 ejk

−∆12),

(4.28)

where ∆12 is the distance between the two probing positions x1 and x2, the superscripts
+ and − indicate the right- and left-traveling directions, respectively. In this study, the
distance between the two virtual microphones is chosen as ∆12 = 1.5a.

Equation 4.28 can be expressed in the form of matrix,
p+

1

p−1

p+
2

p−2

 =


1 1 0 0

0 0 1 1

1/ρcs −1/ρcs 0 0

0 0 1/ρcs −1/ρcs


−1 

p1

p2

u1

u2

 , (4.29)

from which the four unknowns, p+
1 , p−1 , p+

2 and p−2 can be solved. The complex wavenum-
bers associated with the left- and right-traveling waves can then be solved as:

k+ =
j

∆12

log

(
p+

2

p+
1

)
,

k− =
−j
∆12

log

(
p−2
p−1

)
.

(4.30)

Finally, we can obtain the reflection coefficient and length correction as

R =

(
p−1
p+

1

)
ej(k

++k−)∆ (4.31)

and
l =

j

(k+ + k−)
log

(
R

−|R|

)
, (4.32)

where ∆ is the distance between x1 and x0 (see Fig. 4.5).



4 Numerical Modeling of Acoustic Systems with Static Boundaries 77

4.2.3.4 Results

Figure 4.6 depicts the Helmoholtz numbers associated to the left- and right-traveling
components of complex wavenumbers, k+a and k−a, for viscous flow with three differ-
ent jet speeds (M=0.05, 0.1, 0.15). For convenience, the lossless ka for the case of inviscid
quiescent fluid is plotted alongside the lossy one as a reference. In general, the ampli-
tudes of both k+a and k−a are strongly influenced by the jet speeds (measured by Mach
numbers), where a higher jet speed results in a larger deviation from the reference of
the lossless ka. The imaginary part of the complex Helmoholtz numbers are also de-
picted, which seems very small and contributes little to the calculations of the reflection
coefficient and the length correction.

Figure 4.7 depict the results of the reflection coefficient at the open end obtained
from the GPU SRT model plotted as both a function of the Helmholtz number ka (left)
and a function of the Strouhal number Sr0 = ka/M (right). The theoretical predictions
provided by Munt (1990) as well as the experimental data provided by Allam and Åbom
(2006) are plotted alongside the numerical results. For cases of all three Mach numbers,
overall, very good agreements between the numerical results, the theoretical predictions
and the experimental results are observed throughout the frequency range 0 ≤ ka ≤ 1.5.
The agreement for the two lower Mach numbers (M = 0.05, 0.1) is better than that for
the largest Mach number (M = 0.15), where the highest deviation (3%) from the theory
is found at ka ≈ 0.3. The slightly poor performance of the model in the highest Mach
number can be explained by the fact that a Mach number of M = 0.15 is at the upper
limit of the flow velocity allowed (M ≤ 0.15) by the axisymmetric lattice Boltzmann
scheme for simulations of low compressible fluid.

Interestingly, the performance of the present simulation in the high frequencies is as
good as that in the low frequencies, where in a similar LB simulation, da Silva (2008)
reported a much higher discrepancy for the results in the high frequency areas for all
flow velocities. The better performance of the present simulation may be attributed to
either a higher spatial resolution, i.e., a doubled lattice size (1000 × 500) is used in this
study instead of the smaller one (500× 250) used by da Silva (2008), or the mixed swept-
frequency exciting signal which provides a better balance of components over the whole
frequency range than that provided by a conventional single linear or logarithmic chirp
signal of the same duration.

It can be noted that all curves in Fig. 4.7 have a value of 1 for ka → 0 and have a
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(a)

(b)

(c)

Figure 4.6 GPU SRT model, comparison between complex wavenumbers
calculated from the simulations of an unflanged cylindrical pipe in the pres-
ence of a mean flow: (a) Mach=0.05, (b) Mach=0.1, (c) Mach=0.15.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7 GPU SRT model, comparison between numerical results, ana-
lytical predictions and experimental measurements of the magnitude of the
reflectance at the open end of an unflanged cylindrical pipe in the presence
of a mean flow: (a) (b) Mach=0.05, (c) (d) Mach=0.1, (e) (f) Mach=0.15.
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maxima higher than unity in the low frequency region. More specifically, all peaks are
found at almost the same Strouhal number Sr0 ∼ π/2. This phenomenon is exactly the
same as that predicted by Munt (1990), i.e., for a jet pipe issuing a non-zero subsonic
mean flow, the pressure reflection coefficient initially increases with frequency, reach-
ing a maximum value at a nearly constant Strouhal number and thereafter decreasing,
but still remaining higher than the value it had in the pipe without flow (Levine and
Schwinger, 1948). The conservation of energy is not violated since |R| is always less
than (1 + M)/(1 −M). According to the theory of Munt (1990), the peak region is due
to the coupling between the acoustic source and the wave of vortical instabilities at the
vortex sheet of the jet in a stagnant fluid, i.e., the acoustic reflection is reinforced by the
transfer of kinetic energy from the flow to the acoustic field due to the interaction of the
unstable vortex sheet with the lip of the pipe, and the instability of the vortex sheet is
reinforced by the acoustic energy transmitted from the pipe end. This phenomenon is
well visualized by da Silva et al. (2009).

The numerical results of the dimensionless length correction as a function of the
Helmholtz number and of the Strouhal number are compared with the theoretical pre-
dictions (Munt, 1990) and the experimental results (Allam and Åbom, 2006) in Fig. 4.8.
In general, the numerical results are in excellent agreements with the theoretical data in
the high frequency region (ka > 0.5). In the low frequency region (ka < 0.5), all curves
show that the values of the length correction are greatly reduced due to the influence of
the mean flow. According to Rienstra (1984), the dimensionless length correction l/a is
reduced to 0.2554

√
1−M2 as ka→ 0 due to the mean flow effect, which is much shorter

than that in the case of pipes without flow (Levine and Schwinger, 1948). However, the
numerical results show a much shorter length correction for ka < 0.2, and the devia-
tion becomes bigger for a higher Mach number. The discrepancy might be explained by
two facts. The first fact lies in the low compressibility limit (M ≤ 0.15) of the LB model,
where the accuracy of a simulation involving a flow at the upper limit is likely degraded
to some extent. Another fact is related to the inherent limitation of the two-microphone
method. As Åbom and Bodén (1988) suggested, to avoid a large sensitivity to errors in
the input data, the two-microphone method should be restricted to a frequency range
which is related to the Mach number and the distance between the two microphones
∆12, which is given by:
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8 GPU SRT model, comparison between numerical results, analyt-
ical predictions and experimental measurements of the length correction at
the open end of an unflanged cylindrical pipe in the presence of a mean flow:
(a) (b) Mach=0.05, (c) (d) Mach=0.1, (e) (f) Mach=0.15.
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0.1π(1−M2) < k∆12 < 0.8π(1−M2). (4.33)

For the value used in this study, i.e., ∆12 = 1.5a, the valid frequency ranges for
different Mach numbers are given in Table 4.2, which suggests that the results in the low
frequency region ka < 0.2 are more sensitive to errors of the input data.

M ka (min) ka (max)
0.05 0.2089 1.6713
0.1 0.2073 1.6588
0.15 0.2047 1.6378

Table 4.2 Valid ka range of the two-microphone method for ∆12 = 1.5a.

4.2.4 Pipes with Horn Extension

One of the advantages of the LB model is its capability of handling boundaries involving
complicated curved geometries. For example, we can easily change the open end of the
acoustic waveguide to an arbitrary shaped termination. At this stage, we are interested
in simulating the acoustic system of an unflanged pipe with a circular horn attached
to the open end, which is normally found in the family of woodwind instruments. To
the best knowledge of the author, the exact analytical model for a pipe terminated by
a circular horn is not available yet. Peters et al. (1993) experimentally investigated the
reflection coefficient and length correction of a pipe terminated by a horn with a radius
of curvature four times of the pipe radius (r = 4a). For the case of zero mean flow,
Selamet et al. (2001) obtained the reflection coefficients and length corrections of pipes
terminated by curved interface surfaces of various radius and for a wide range of the
Helmholtz number (0 < ka ≤ 3.0) using the boundary element method (BEM), where
the results are in good agreement with the experimental results provided by Peters et al.
(1993). For the case of non-zero subsonic mean flow, Hirschberg et al. (1989) observed
that a horn at the pipe end can increase the transfer of kinetic energy from the flow to
the acoustic field at the open end, which was confirmed by an experiment conducted
by Peters et al. (1993) where a peak region greater than unity was found in the low
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frequency region of the energy reflection coefficient, which is defined as

|RE| = |R|2
(

1−M
1 +M

)2

. (4.34)

The LB simulation of the acoustic system of a cylindrical pipe terminated by a circu-
lar horn was first presented by da Silva (2008). He obtained the reflection coefficients
and the length corrections of horns of two different radius of the curvature (r = 2a and
r = 4a), which were in good agreements with results obtained by BEM for the case of
zero mean flow.

In this section, we continue to verify the new GPU LB model by simulating a pipe
terminated with a horn using the same parameters of geometry and flow in accordance
with (da Silva, 2008). The acoustic properties inside the pipe in terms of |R| and l/a will
be investigated in the current section. Further, the radiation directivity of a pipe termi-
nated with a horn issuing a mean flow of various Mach numbers will be investigated in
the next section.

Figure 4.9 LB model of the axisymmetric pipe terminated by a horn for the
measurements of reflectance and length correction.

Figure 4.9 depicts the LB scheme of the axisymmetric pipe terminated by a horn for
the measurements of reflection coefficient and length correction, which has the same lat-
tice parameters as the one illustrated in Fig. 4.5. The new solid boundary is constructed
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by attaching a quarter circle wall to the end of a straight unflanged cylinder. The horn
wall is implemented by the curved boundary condition discussed previously in Chpt. 3.
Two different cylindrical horns with different curvature radii, namely r = 2a and r = 4a,
have been investigated.

4.2.4.1 Horns with a Quiescent Flow

Figure 4.10 depicts the magnitude of the reflection coefficient R obtained from the GPU
LB model for an unflanged pipe extended by horns with two different curvature radii r.
The reflection coefficient is measured at the end of the straight section of the pipe, which
is consistent with Peters et al. (1993), Selamet et al. (2001) and da Silva (2008). Since there
is no analytical model available for horns, the GPU LBM results are compared with the
BEM results provided by da Silva (2008), which are obtained from the software package
Sysnoise using the same geometry parameters and are in good agreements with results
provided by Selamet et al. (2001). In addition, the theoretical prediction (Levine and
Schwinger, 1948) for the |R| of the unflanged pipe without a horn extension is plotted
alongside for comparison.

In general, the R obtained from the GPU model is never greater than unity, and its
overall shape is in good agreement with the BEM results. Compared with the analytical
results of the cylindrical pipe, the influence of the horn extension is almost negligible for
the low frequency limit (ka < 0.2), but becomes significant for the high frequency limit.
The differences between the results of the horns with two different curvature radii are
obvious in the high frequency region, where the large curvature radius corresponds to
the bigger amount of reflected acoustic wave.

Figure 4.10 depicts the dimensionless length correction l/a in comparison with the
BEM results. A general good agreement between the LBM results and the BEM results
has been found for horns with both curvature radii. For the low frequency limit ka < 0.1,
the LBM results are slightly higher than the BEM results, this discrepancy is also found
in the previous LBM results provided by da Silva (2008). Compared to the case of |R|,
the influence of different curvature radii on the length correction l/a is mainly found
in the low frequency region. It is interesting that the length correction of the pipe with
a horn extension is much higher that that of a straight unflanged pipe, this is because
the length corrections presented in Fig. 4.10 comprise the effects of not only the inertial
effect of the fluid load surrounding the open end but also the effect due to the extra
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(a)

(b)

Figure 4.10 GPU SRT model, comparison between LBM and BEM results
(da Silva, 2008) of the magnitude of the reflectance |R| as a function of ka for
horns with different curvature radii in the absence of a mean flow (M = 0):
(a) r = 2a, (b) r = 4a. The |R| of the unflanged pipe without a horn extension
(Levine and Schwinger, 1948) is plotted for comparison.
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(a)

(b)

Figure 4.11 GPU SRT model, comparison between LBM and BEM results
(da Silva, 2008) of the length correction l/a as a function of ka for horns with
different curvatures in the absence of a mean flow (M = 0): (a) r = 2a, (b)
r = 4a.
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length of the horn extension.

4.2.4.2 Horns Carrying a Mean Flow

The LBM results of the acoustic transmission in a cylindrical pipe with horn extensions
in the presence of a non-zero mean flow is briefly presented here. Since the purpose is to
verify the new GPU LB model on problems involving curved boundaries and a non-zero
mean flow, the geometric configurations and flow parameters have been chosen exactly
the same as that used by da Silva (2008), i.e., the curvature radii of horn are r = 2a, 4a,
and the Mach numbers are M = 0.05, 0.1, 0.15, respectively.

Figure 4.12 depicts the effect of the mean flow and the curvature radii of the horn
extension on the behavior of the reflection coefficient |R|. In general, the present results
are in good agreement with the results obtained from a previous LBM model developed
in Matlab by da Silva (2008). For the low frequency limit 0 < ka < 0.5, the effect of the
mean flow on |R| is significant where a peak of |R| much higher than unity is found for
both curvature radii, which is similar to the case of the unflanged pipe carrying a mean
flow. The magnitude of the peak of |R| seems not to be influenced by the curvature
radii. As ka→ 0, the magnitude ofR converges to 1 for all Mach numbers and curvature
radii of the horns.

For the case of the effect of mean flow on length correction, the results are depicted
in Fig. 4.13, which are also in very good agreement to the results reported by da Silva
(2008). The effect of a mean flow is only obvious for the low frequency limit ka <

πa/2r, where the length correction drops dramatically as the Mach number increases.
The magnitude of the peak of the length correction is not influenced by the mean flow,
but is influenced by the curvature radius of the horn.

4.2.5 Summary

This section addresses the classical problem of the acoustic transmission in an unflanged
cylindrical pipe immersed in a quiescent fluid by using an axisymmetric two-dimensional
lattice Boltzmann scheme.

For the case of the cylindrical pipe carrying a zero mean flow, the results of both
the CPU SRT model and the GPU SRT model, in terms of pressure reflection coefficient
|R| and length correction l/a, have been compared with the established theoretical pre-
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(a)

(b)

Figure 4.12 GPU SRT model, comparison of the magnitude of the re-
flectance |R| as a function of ka for horns with different curvatures in the
presence of a mean flow with different Mach numbers: (a) r = 2a, (b) r = 4a.
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(a)

(b)

Figure 4.13 GPU SRT model, comparison of the length correction l/a as a
function of ka for horns with different curvatures in the presence of a mean
flow with different Mach numbers: (a) r = 2a, (b) r = 4a.
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dictions provided by Levine and Schwinger (1948) and excellent agreements have been
found. In general, the difference between the CPU SRT model and the GPU SRT model
is negligible.

For the case of the cylindrical pipe carrying a non-zero subsonic mean flow, the GPU
SRT model has been exclusively used for the numerical simulation. A two-microphone
method is used to calculate the complex wavenumbers where the influence of both the
themoviscosity and the convection have been taken into account. The results of pressure
reflection coefficient |R| and length correction l/a have been compared with established
theoretical predictions provided by Munt (1990) and the experimental data provided by
Allam and Åbom (2006). In general, good agreements between the numerical results,
the analytical results and the experimental data have been found. However, the numer-
ical results show a shorter length correction for the low frequency limit ka < 0.2, and
the deviation from the theoretical prediction is larger for a higher Mach number. The
discrepancy might be due to two facts. One is that the accuracy of the low compressible
LBM model is degraded in the upper limit of the flow velocity M = 0.15, another one is
that the accuracy of the two-microphone method is degraded in the low frequency limit
ka < 0.2. Further investigations are needed to address this problem.

The effect of the horn extension attached to the end of a cylindrical pipe has been
investigated for different Mach numbers by using the GPU SRT model, where two dif-
ferent curvature radii of the horn have been studied, namely r = 2a and r = 4a. For the
case of a horn carrying a zero mean flow, the results of |R| and l/a obtained from the
GPU SRT model is in excellent agreement with the results obtained from a BEM model-
ing of the same acoustic system. For the case of a horn carrying a non-zero mean flow,
the presented numerical results well agree to the results obtained from a previous LBM
model developed in Matlab by da Silva (2008).

Specifically, the reliability and the accuracy of the GPU SRT model is successfully ver-
ified by the numerical results presented in this section, where three different conditions
have been considered, including 1) the acoustic transmission inside an axisymmetric
thin wall cylindrical pipe, 2) the effect of a non-zero subsonic mean flow, and 3) the ef-
fect of a curved horn extension attached at the end of pipe. In the next section, the same
model will be used to investigate the sound radiation in the far field out of the open end
of an axisymmetric waveguide.
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4.3 Acoustic Radiation Out of Pipes

4.3.1 Introduction

The mechanisms of sound radiation from the open end of ducts have been investi-
gated by many researchers over the last century and remains an important problem
in acoustics. Among all the sound radiation parameters, the acoustic directivity, which
is a measure of the angular distribution of acoustic energy around the sound source, is
paramount to defining strategies for noise control in systems such as exhaust pipes, jet
engines, ventilation systems and so on.

Nevertheless, exact analytical solutions for the directivity problem are only avail-
able for very simple geometries (cylindrical and annular pipes) and low compressibility
regimes. In situations involving realistic outlet systems, the geometrical characteris-
tics and flow conditions differ considerably from the conditions imposed by available
analytical models. For such cases, numerical techniques provide essential tools for ad-
dressing the problem.

The first exact analytical model for the sound directivity from cylindrical pipes was
proposed by Levine and Schwinger (1948), which was based on the Wiener-Hopf tech-
nique. The solution is limited to normal mode propagation (plane waves) and assumes
a stagnant mean flow. Munt (1977) extended this model by considering the presence
of a low-Mach number mean flow. In his solution, a full Kutta condition is imposed at
the edges of the pipe, the mean flow is assumed to be uniform (plug) and the vortex
sheet separating the jet and the outer fluid is considered infinitely thin. The solution is
exact, provided that the Helmholtz number ka < 1.5 and the Mach number M < 0.3.
Rienstra (1984) improved Munt’s solution by introducing a complex parameter to take
into account the effects of unsteady vortex shedding in the vicinity of the trailing edge,
with particular attention to the energy balance between the sound and the fluid fields.
Based on the work of both Munt and Rienstra, Gabard and Astley (2006) presented an
extended model that includes a center body for the cases of annular pipe and proposed
an explicit numerical procedure for evaluating the solutions for higher frequencies and
higher compressibility regimes (0 < ka < 60 and 0 < M < 0.8).

Numerical techniques have also been used to tackle problems of sound radiation di-
rectivity of ducts involving more complex conditions. For example, Rumsey et al. (1998)
analyzed the generation and propagation of unsteady duct acoustic modes resulting
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from a rotor-stator interaction in a 3D configuration by using a Navier-Stokes numerical
simulation. Zhang et al. (2004) modeled the sound radiation from an unflanged duct of
aircraft engines through linearized Euler equation (LEE) solutions. Özyörük et al. (2004)
predicted the sound fields of ducted fans carrying an axisymmetric non-uniform back-
ground flow by solving the LEE. Chen et al. (2004) analyzed the planar wave radiation
from an unflanged duct by solving the LEE. More recently, Hornikx et al. (2010) pre-
sented a numerical solution for calculating the sound field radiated from an automotive
exhaust pipe situated over a rigid surface. The mean flow was represented by Reynolds
averaged Navier-Stokes equations (RANS) and the sound field represented by the lin-
earized Euler equations, which were resolved with the Fourier pseudo-spectral time
domain technique (PSTD) . The first work investigating the sound radiation directivity
from an unflanged cylindrical pipe was presented by da Silva and Scavone (2007). Their
results are in good agreement with the theoretical prediction provided by Levine and
Schwinger (1948), but the influence of mean flow over the directivity pattern as well as
the comparison with experimental results are not provided. Also, the effect of a geomet-
rical expansion at the pipe end, such as the horn ending or the flare bell normally found
in the woodwind instrument family, are not included in their investigation.

The objective of this section is to extend the GPU parallel LB model discussed in the
previous section to the problem of the radiation directivity of an unflanged thin pipe
carrying either a quiescent flow (M = 0) or a subsonic mean flow (0 < M ≤ 0.15).
The conditions will be limited to the radiation of normal (planar) modes and low com-
pressibility regimes. For this reason, the numerical scheme used in this section is based
on an isothermal model represented in a two-dimensional axisymmetric scheme. The
simulation results for an unflanged thin-wall pipe will be compared to the analytical
model provided by Levine and Schwinger (1948) and the experimental data provided
by Gorazd et al. (2012), for the case of a zero flow. The directivity results obtained when
considering a subsonic mean flow will be compared with the analytical results from
Gabard and Astley (2006) and with the experimental results by Gorazd et al. (2012). The
phenomenon associated with the zone of relative silence observed in the simulations will
be discussed. Moreover, the same GPU LB model will be used to investigate the influ-
ence of a horn extension attached at the end of the unflanged thin pipe on the radia-
tion directivity. The influence of the numerical precision representing the floating-point
numbers will be investigated. Finally, a summary of the results and suggestions for
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further investigations will be provided.

4.3.2 Numerical Scheme

Figure 4.14 LB model of the axisymmetric pipe for the measurements of
radiation directivity.

The numerical scheme representing a cylindrical pipe immersed in a rectangular
fluid area depicted in Fig. 4.14 is similar to the one presented in Sec. 4.2. Here the
purpose is to analyse the external acoustic field in terms of sound radiation directivity,
which is the distribution of acoustic energy as a function of the angle measured about
the pipe’s main axis for plane wave radiation.

The length and the radius of the cylindrical waveguide is L = 469.5 and a = 10 in
lattice cells, respectively. The walls of the waveguide are represented by a solid bound-
ary of zero thickness based on spatial interpolations (Bouzidi et al., 2001; Lallemand and
Luo, 2003). The outer walls are treated by a simple bounce-back scheme, the inner walls
are treated using a free-slip scheme. The relaxation parameter of the SRT model is set
to Ω = 1.75 for all Mach numbers, which is equivalent to a dimensionless viscosity of
ν = 0.0238. In fact, due to the BGK limitations, the viscosity asserted is one order of
magnitude higher than that of air in normal conditions. A higher viscosity could re-
sult in two significant effects: 1). Accentuated wave dissipation, particularly at higher
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frequency components, and 2). Spurious directivity artifact caused by the interaction
between the viscous boundary layer and the rim of the pipe. In fact, if the viscosity is
relatively high, the pipe can be seen as a capillary tube, where the radiation directivity
is dominated by viscous phenomena. These effects are significantly minimized by mea-
suring sound pressures at positions sufficiently close to the sound source (open end)
and imposing a free-slip condition at the pipe wall. This last boundary condition is in
accordance with the exact model from Munt (1977), which is inviscid and the singularity
at the sharp edge of the pipe is treated with a full Kutta condition.

The system is excited by the swept-frequency broadband signal described in Eq. 4.26,
running from ka = 0.1 to ka = 3.8 (less than the first evanescent mode of the pipe). For
the case of a non-zero mean flow, the source signal is superimposed on a DC offset. The
excitation is implemented by a source buffer with a length of 60 cells at the left end of
the pipe using the same technique as an absorbing boundary condition but prescribed
by a non-zero target velocity, which is obtained from the source signal buffer on each
iteration. An initialization time is set to Nt = 800, 000 to allow the fluid in the whole
domain to accelerate from stagnation to a steady state.

The time histories of fluid density are probed at 75 points evenly distributed around
the semi-circle (corresponding to angle increments of 2◦), with the center point at the
outlet of the duct in the range of θ = 0◦ to θ = 150◦. The measuring points are rounded
to the nearest lattice nodes. The measuring distance is d = 250 cells from the outlet. The
acoustic pressure p′ is calculated by

p′(θ, t) = (ρ(θ, t)− ρ0)c2
s, (4.35)

where ρ(θ, t) is the spontaneous fluid density and ρ0 is the equilibrium density. For
the case of zero mean flow, ρ0 is nearly a constant and usually has the value of 1. For
non-zero mean flow, however, ρ0 in the vicinity of the probing points fluctuates over
time and the fluctuating density cannot be calculated by simply subtracting the stagnant
field density (a value of 1) from the spontaneous fluid density. For such a case, a DC-
blocking filter specified by the transfer functionH(z) = (1− z−1)/(1− αz−1) can be used
to remove the offset caused by the flow, where the value of α is usually given by 0.995

and z is the Laplace Transform variable. A smaller α allows faster tracking of fluctuation
of DC levels but at the cost of greater low-frequency attenuation.
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Once the time history of acoustic pressures has been obtained, the pressure directiv-
ity as a function of angle θ and frequency f can be calculated by

G(θ, f) =
P (θ, f)

Ph
, (4.36)

where P (θ, f) is obtained through performing a Fourier transform on the time history
of sound pressure p′(θ, t) measured at the same distance d and Ph =

√∑
P 2(θ)/N is the

square root of the averaged value of P 2(θ, f) over all measured angles.

4.3.3 A Pipe Carrying a Quiescent Flow

The LBM scheme in the absence of mean flow is first validated by comparing its results
with the established analytical model proposed by Levine and Schwinger (1948) in the
form of relative pressure directivity. For six different frequencies expressed in terms of
the Helmholtz number (ka = 0.48, 1, 2, 2.5, 3, 3.5) that are below the cut-on frequencies
of higher-order modes, the numerical simulations of both CPU SRT model and GPU SRT
model are in good agreement with the analytical results, as shown in Fig. 4.15 and Fig.
4.16, respectively. The tiny ripples found for ka = 0.48 and ka = 1 in the numerical re-
sults can be explained by the fact thatG(θ) should be measured in the far-field condition,
which is not fully satisfied for low frequencies given the size of the lattice (1000 × 500

cells) and the measuring radius (250 cells) used in this study (due to computation time
limits). Not surprisingly, the results for higher frequencies (ka ≥ 2) are smooth and the
ripples are barely observed.

There are small discrepancies between the results of CPU model and GPU model.
For example, for angles less than about 15◦ and ka = 2.5, 3.0, 3.5 , there are about 2 dB
drops in the results of GPU model compared to that of the CPU model. This is likely
due to the effect of the 32-bit precision of the floating-point numbers used on the GPU
platform, which is not a salient issue for acoustic signals inside the pipe, but has a more
prominent influence over the acoustic signals probed in the far field carrying a relatively
lower energy.

To evaluate the far-field condition in this simulation, we measured the acoustic impe-
dance Z = P/U as a function of ka at a distance d = 250 and angle φ = 0 from the outlet
of the pipe, where P and U are obtained by performing a Fourier transform on the time
history of acoustic pressure p and particle velocity u, respectively. As depicted in Fig.
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Figure 4.15 CPU SRT 64-bit model, comparison between numerical (solid)
and analytical predictions Levine and Schwinger (1948) (- - - -) of the acoustic
pressure directivity as a function of the angle in the absence of a mean flow:
(a) ka = 0.48, (b) ka = 1, (c) ka = 2, (d) ka = 2.5, (e) ka = 3, (f) ka = 3.5.
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Figure 4.16 GPU SRT 32-bit model, comparison between numerical (solid)
and analytical predictions Levine and Schwinger (1948) (- - - -) of the acoustic
pressure directivity as a function of the angle in the absence of a mean flow:
(a) ka = 0.48, (b) ka = 1, (c) ka = 2, (d) ka = 2.5, (e) ka = 3, (f) ka = 3.5.
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Figure 4.17 Evaluation of the far-field condition in terms of acoustic impe-
dance in the radiation domain: (a) amplitude of acoustic impedance, (b)
phase of acoustic impedance. The measuring distance is d = 250 cells from
the outlet.
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Figure 4.18 GPU SRT model, comparison between numerical (solid), ana-
lytical predictions (- - - -) and experimental measurements (red dot) of the
acoustic pressure directivity as a function of the angle in the absence of a
mean flow (M = 0): (a) ka = 0.74, (b) ka = 1.48, (c) ka = 2.96.
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4.17(a), the amplitude of the impedance Z quickly approaches the characteristic impe-
dance of the medium, Zc = ρ0cs, for values of ka ≥ 1. A similar phenomenon can be
found for the phase between the acoustic pressure and particle velocity, φ, which grad-
ually approaches zero for ka ≥ 2, as depicted in Fig. 4.17(b). It is worth mentioning
that the phase and the characteristic impedance will never converge completely to zero
and ρc, respectively, due to the viscous nature of the fluid (Viggen, 2011). The results
suggest that the far-field condition is not fully satisfied for ka < 1, while for ka ≥ 1,
the acoustic impedance Z of the spherical wave propagating into the radiation domain
approximates that of a plane wave.

The results of both Fig. 4.15 and Fig. 4.16 show discrepancies at high angles (more
obvious for θ > 100◦). We believe that the high viscosity may change the characteris-
tics of sound dispersion in the simulation, which consequently influences the radiation
directivity and results in errors.

From Fig. 4.15(f) and Fig. 4.16(f), we can observe smoothing of directivity character-
istics of numerical results in the vicinity of θ = 100◦ compared to that of the analytical
results for the high frequency ka = 3.5. That might be attributed to the issue that, in
the numerical simulation, there may be some transfer of energy from the exciting broad-
band signal to higher-order modes, while for the case of the analytical model, no higher
modes are involved and the energies are exclusively coming from the dominant plane
mode. More specifically, the exact analytical model derived by Levine and Schwinger
only takes into account the directivity due to plane mode propagation up to ka = 3.82.
While the source in this study acts like a piston, it is possible that energy might be trans-
ferred to higher-order modes (via mode-coupling) near structural discontinuities, either
in the form of evanescent or perhaps even propagating waves. Due to the shortness of
the pipe, some of the energy associated with these higher modes may find its way out
of the pipe. A similar phenomenon was reported in a recent experimental measurement
conducted by Gorazd et al. (2012), where the curves presenting the directivity charac-
teristics of the experimental results (excited by broadband noise) around θ = 100◦ and
for higher frequencies (ka ≥ 2.96) are smoothed compared to those analytical results
obtained for a single-frequency exciting signal.

In the next step, the numerical (GPU SRT model) and analytical results are compared
with the experimental results by Gorazd et al. (2012) in the form of relative pressure
directivity. All three results (numerical, analytical and experimental) have been nor-



4 Numerical Modeling of Acoustic Systems with Static Boundaries 101

malized to the same dB level, as depicted in Fig. 4.18. For the two lower frequencies of
ka = 0.74 and 1.48 and for angles within the range of 0◦ < θ < 90◦, the three results are in
good agreement with each other, despite the fact that the measurements are carried out
using 1/3 octave broadband noise and the calculation of numerical and analytical re-
sults are based on a single frequency. As the angle increases, the measurements are still
in good agreement with the analytical results, though the numerical results have dis-
crepancies less than 3 dB compared to the analytical results. For the higher frequency
of ka = 2.96, the numerical results are in good agreement with both the analytical re-
sults and the measurements for angles within the range of 0◦ < θ < 75◦. As the angle
increases from 75◦ to 150◦, both the measurements and the numerical results deviate
from the analytical results, but in opposite ways. Compared to the analytical results, the
highest discrepancies are found at the largest angle of θ = 150◦, which is +3.8 dB for the
measurements and −2.6 dB for the numerical results, respectively.

4.3.4 A Pipe Carrying a Mean Flow

For the case of a cold mean flow (i.e., the temperature gradient between the jet and the
outer stagnant flow is zero) with a low Mach number (M = 0.036), the numerical results
of the GPU model are compared with the theoretical prediction given by Gabard and
Astley (2006) as well as the recent experimental results obtained by Gorazd et al. (2012)
in the form of normalized pressure directivity, as depicted in Fig. 4.19. All three results
(numerical, analytical and experimental) have been represented in the form of pressure
directivity and normalized to the same dB level.

In general, the results are in good agreement for angles in the range 0◦ < θ < 60◦.
Discrepancies between the numerical and analytical results become more obvious as the
angle increases and the maximum differences are found to be at θ = 150◦, i.e., −3.11

dB for ka = 0.74, −2.22 dB for ka = 1.48 and −2.3 dB for ka = 2.96, respectively. For
all three frequencies and for most angles, the analytical solution is located between the
numerical and the experimental results.

For the case of a cold mean flow with a higher Mach number (M = 0.15), the numer-
ical results of the GPU model are compared with the theoretical prediction only, since
no experimental results are available from (Gorazd et al., 2012) for M = 0.15. The com-
parisons are depicted in Fig. 4.20. In general, good agreement is found for angles in the
range 30◦ < θ < 150◦. For most angles, the discrepancy from the theory is less than 3
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(a) (b)

(c)

Figure 4.19 GPU SRT model, comparison between numerical (solid), ana-
lytical predictions (- - - -) and experimental measurements (red dot) of the
acoustic pressure directivity as a function of the angle in the presence of a
mean flow at M = 0.036: (a) ka = 0.74, (b) ka = 1.48, (c) ka = 2.96. The zone
of relative silence is indicated by a grey arrow.
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Figure 4.20 GPU SRT model, comparison between numerical (solid), ana-
lytical predictions (- - - -) of the acoustic pressure directivity as a function
of the angle in the presence of a mean flow at M = 0.15: (a) ka = 0.74, (b)
ka = 1.48, (c) ka = 2.96, (d) ka = 3.77. The zone of relative silence is indicated
by a grey arrow.
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dB. The deviation of the simulation from the theoretical results is mainly found in the
region of angles less than 30◦. Interestingly, the trough at θ = 100◦ found in the analyti-
cal results for ka = 3.77 is actually observed in the numerical curve but at a lower angle
and with some fluctuations. This is in contrast to the result obtained from a previous
64-bit LB model excited by a single chirp signal (Shi et al., 2013), where the trough is
totally missed in the previous numerical results. The improvement in the current nu-
merical result might be owing to the new exciting signal comprising both a linear and a
logarithmic chirp component used in the current LB model, which has a better balanced
energy in the high frequency region.

An important feature of the directivity characteristics in the presence of a non-zero
mean flow concerns the so-called zone of relative silence, where the sound wave in the
vicinity of the axis is subject to additional attenuation. The result from the theoretical
analysis of Savkar (1975) and Munt (1977) suggests that, for high frequencies and large
Mach numbers, the zone of relative silence is so obvious that a cusp can be observed at
θ = θs in the directivity pattern. Assuming that the medium outside the duct is stagnant
and the speed of sound remains constant, the zone of relative silence is defined by its
characteristic angle (Savkar, 1975)

θs = cos−1

(
1

1 +M

)
, (4.37)

where M is the Mach number inside the duct.
Even for the case of a low Mach number (M = 0.036), the zone of relative silence

(θs = 15.15◦) can be observed in both the experiments and the numerical results for
ka = 2.96, as depicted in Fig. 4.19(c). For the case of a higher Mach number (M = 0.15),
the zone of relative silence (θs = 29.59◦) are more obviously observed in the numerical
results for all four frequencies (ka = 0.74, 1.48, 2.96 and 3.77).

However, we also observed that the numerical results demonstrate significant dis-
crepancies compared to Gabard’s model for the region of angles less than 30◦. This might
be either due to the effect of high viscosity of the LBM scheme or some unknown effects
associated with the 2D axisymmetric LBM scheme, where the higher modes can not be
captured, and some spurious 2D transversal modes might be generated per se. The
modes below the cut off frequency die out exponentially as they propagate downstream
and their contribution on the directivity is negligible, although some acoustic energy
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Figure 4.21 LB model of the axisymmetric pipe terminated by a horn for the
measurements of radiation directivity.

associated with these modes may find its way out of the pipe due to its reduced length.
However, at values of ka above the first cut off frequency for plane modes (ka > 1.8),
the energy associated with transversal modes will propagate downstream and provide
a significant contribution on the directivity pattern. This is evidenced in Fig. 4.20(c)
(ka = 2.96) and 4.20(d) (ka = 3.77), where the highest deviation from Gabard’s model
for the region of angles less than 30◦ is more than 10 dB.

4.3.5 Pipes with Horn Extension

In Sec. 4.2.4, we have presented the reflection coefficient and length correction of a pipe
terminated by a horn with two different curvature radii obtained from the GPU LB
model. The effect of mean flow has also been investigated. Using the same GPU LB
model, we are able to investigate the effect of the horn extension on acoustic radiation
directivity in the far field of the same system.

Figure 4.21 depicts the LB scheme of the axisymmetric pipe terminated by a horn
for the measurements of radiation directivity. The system has the same geometry pa-
rameters as the one illustrated in Fig. 4.9 for the measurement of reflection coefficient
and length correction. Two cylindrical horn profiles have been investigated, namely
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r = 2a and r = 4a, where r is the curvature radius of the horn. The horn wall is imple-
mented by the curved boundary condition discussed previously. The lattice parameters
of the LB model and the flow parameters are identical to that used in the model de-
picted in Fig. 4.14. The simulation is carried out for three different Mach numbers, i.e.,
M = 0, 0.036, 0.1, 0.15.

The procedure of signal probing and processing follows the same steps described
in Sec. 4.3.2. The time histories of the acoustic pressure p′(θ, t) are probed at 75 points
evenly distributed around the semi-circle (corresponding to an angle increments of 2◦),
with the center point at the intersection of the straight pipe and the horn extension in
the range of θ = 0◦ to θ = 150◦. The measuring distance is d = 250 cells from the
center point (which is actually much larger than it appears in Fig. 4.21). The pressure
directivity G(θ, f) is calculated from the acoustic pressure distribution in far field by Eq.
4.36.

The radiation directivity pattern as a function of ka and Mach numbers obtained
from the far field of the end of pipe with horn extensions are presented in Fig. 4.22, for
the horn profile of r = 2a, and Fig. 4.23, for the horn profile of r = 4a, respectively.
Since there is no analytical prediction and experimental results of radiation directivity
available for horn carrying mean flow, the numerical results are compared with the the-
oretical directivity shape of the unflanged pipe in the absence of mean flow provided by
Levine and Schwinger (1948). In the following discussion, for convenience, the numer-
ical model of the pipe with a horn extension will be called LBM horn and the analytical
model of the cylindrical unflanged pipe without a horn extension will be called LS pipe,
respectively.

In general, both the geometry parameter (the horn profile) and the flow parameter
(Mach number) play important roles in the directivity pattern. The influence of the
geometry parameter can be evaluated by comparing the curves of the LBM horn and
the LS pipe for the case of zero mean flow (M = 0). If we divide the whole region into a
low angle region and a high angle region by θ ≈ 20◦, which is close to the characteristic
angle θs discussed in Eq. 4.37, we can observe that the value of G(θ) of the LBM horn is
much lower than that of the LS pipe for the cases of ka ≤ 2.5 in the high angle region.
This trend can be found for cases of both r = 2a and r = 4a, which suggests that the
horn extension strongly influences the directivity characteristic of the pipe.

The phenomenon of zone of relative silence has been discussed previously in Sec.
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Figure 4.22 GPU SRT 32-bit model, comparison between analytical predic-
tions Levine and Schwinger (1948) (unflanged pipe, - - - -) and numerical
(horn radius=2a) of the acoustic pressure directivity as a function of the an-
gle in various mean flow: (a) ka = 0.48, (b) ka = 1, (c) ka = 2, (d) ka = 2.5,
(e) ka = 3, (f) ka = 3.5.
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Figure 4.23 GPU SRT 32-bit model, comparison between analytical predic-
tions Levine and Schwinger (1948) (unflanged pipe, - - - -) and numerical
(horn radius=4a) of the acoustic pressure directivity as a function of the an-
gle in various mean flow: (a) ka = 0.48, (b) ka = 1, (c) ka = 2, (d) ka = 2.5,
(e) ka = 3, (f) ka = 3.5.
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4.3.4. For the case of non-zero mean flow (M > 0), the same phenomenon also can be
observed in the directivity patterns of the LBM horn, where a peak at the characteristic
angle θs (Eq. 4.37) can also be found. In fact, the directivity characteristic is strengthened
by the horn extension in the presence of a mean flow. For example, for the case of the
highest jet velocity (M = 0.15) and the highest frequency (ka = 3.5, 3.77), the difference
of the value ofG(θ) at θ = 0 and its peak value at θs in the curve of the LBM horn is about
8 dB bigger than that found in the LS pipe. This phenomenon of stronger directivity is
also observed in the high angle region of the curve of the LBM horn. For example, for the
case of the highest mean flow speed M = 0.15, the difference of G(θs) and G(θ = 150◦)

for the LBM horn is about 27 dB at the frequency of ka = 3.0 and 26 dB at ka = 3.5,
where the corresponding difference for the LS pipe is about 22 dB at ka = 2.96 and
24 dB at ka = 3.77. The phenomenon of zone of relative silence is reinforced by the
flow speed for the LBM horn and the characteristic angle θs is influenced by the Mach
number, which is also found for the case of unflanged pipe.

The influence of the curvature radius of the horn extension on the directivity pattern
can be observed by comparing Fig. 4.22 (r = 2a) and Fig. 4.23 (r = 4a). In the low
angle region (inside the zone of relative silence), the G(θ) is influenced by the effect of
mean flow to a lesser extent for the case of r = 4a than that for the case of r = 2a.
In the high angle region (θ > θs), the value of G(θ) of the LBM horn with the bigger
curvature radius (r = 4a) for all Mach numbers is much lower than that for the case of
the smaller curvature radius (r = 2a). In other words, a bigger curvature radius of the
horn extension results in a stronger directivity pattern, i.e., a larger deviation from the
LS model in general. Interestingly, for the case of r = 4a, the variation of the value of θs
associated with the Mach number is less than that for the case of r = 2a.

4.3.6 Influence of Bit Depth

In order to investigate the influence of the bit depth representing the floating-point num-
bers used in the CPU and GPU model, especially its influence on the relatively weak
signal obtained in the far field, the simulation of the acoustic radiation directivity from
an unflanged pipe carrying a zero mean flow is performed on the same LB SRT model
implemented on three different platforms: the CPU SRT 64-bit model, the CPU SRT 32-
bit model and the GPU SRT 32-bit model. The CPU 64-bit model and the CPU 32-bit
model are implemented on the Python/NumPy platform by specifying the data type of
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NumPy array to float64 and float32, respectively, where the float32 represents a single
precision (32 bits in total, including a sign bit, 8 bits exponent and 23 bits mantissa) and
the float64 represents a double precision (64 bits in total, including a sign bit, 11 bits
exponent, 52 bits mantissa). The GPU 32-bit model is implemented on the PyCUDA
platform by using the class of pycuda.gpuarray.GPUArray, which supports a NumPy-like
array with 32-bit precision by default.

Figure 4.24 Comparison the results of three LBM-SRT models (CPU SRT 64-
bit, CPU SRT 32-bit and GPU SRT 32-bit), Acoustic density signals are probed
at a distance of 250 cells and angle of 32 degree from the open end.

Figure 4.24 depicts the first 1500 samples of the acoustic density signals probed at a
distance of 250 cells and angle of 32◦ from the open end of a cylindrical pipe in the three
different LB-SRT models. Some small irregularities can be observed on the signal probed
from both the CPU 32-bit model and the GPU 32-bit model, where the signal probed
from the CPU 64-bit model is smooth. The waveform of the signal obtained from both
the CPU 32-bit model and the GPU 32-bit model slightly deviated from that obtained
from the CPU 64-bit model. It can also be observed that the difference between the signal



4 Numerical Modeling of Acoustic Systems with Static Boundaries 111

(a) (b)

(c) (d)

(e) (f)

Figure 4.25 Comparison of numerical results between three LBM-SRT mod-
els (CPU 64-bit, CPU 32-bit, GPU 32-bit) and analytical predictions Levine
and Schwinger (1948) (- - - -) of the acoustic pressure directivity as a function
of the angle in the absence of a mean flow: (a) ka = 0.48, (b) ka = 1, (c)
ka = 2, (d) ka = 2.5, (e) ka = 3, (f) ka = 3.5.
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probed from the CPU 32-bit model and the GPU 32-bit model is almost negligible.
Figure 4.25 depicts the radiation directivity pattern obtained from the CPU 64-bit

model, the CPU 32-bit model and the GPU 32-bit model, alongside the theoretical pre-
diction provided by Levine and Schwinger (1948). Despite the tiny difference found in
the time history of the probed signals from the three models, in general the discrepan-
cies between the directivity patterns of the three LB models is barely noticeable, though
there is a tiny difference between the numerical results obtained from the 32-bit models
(CPU and GPU) and the CPU 64-bit model.

4.3.7 Summary

This section presents a numerical investigation of the sound radiation pattern at the
open end of axisymmetric cylindrical waveguides using an axisymmetric two-dimensional
LBM SRT scheme implemented on both CPU and GPU platforms.

The CPU SRT model and the GPU SRT model were first validated by comparing
the numerical results with the analytical prediction provided by Levine and Schwinger
(1948) and the experimental results provided by Gorazd et al. (2012) for the case of an
unflanged cylindrical pipe carrying a quiescent flow. Then for the case of an unflanged
cylindrical pipe carrying a non-zero mean flow, the numerical results of the GPU SRT
model were compared with the theoretical prediction provided by Gabard and Astley
(2006) for Mach number M = 0.036 and M = 0.15 as well as experimental results ob-
tained by Gorazd et al. (2012) for Mach number M = 0.036. Very good agreement was
found between the theoretical and experimental results for the case of no flow and the
lower Mach number of M = 0.036. For the relatively higher Mach number of M = 0.15,
the numerical result agrees well with the theoretical prediction for angles greater than
30◦, though significant discrepancies are observed for angles less than 30◦. The effects of
the so-called zone of relative silence are clearly observed in the results of non-zero mean
flow even for a very low Mach number (M = 0.036). This is interesting for studies of
musical acoustics involving woodwind instruments, which normally exhibit a very low
Mach number flow.

The aforementioned discrepancies for the case of θ < 30◦ and M = 0.15 are not well
explained yet. For further investigations conducted by either experimental measure-
ments or numerical simulations, some limitations should be considered. The theoretical
model of the unflanged cylindrical pipe carrying a mean flow assumes an infinitely thin
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vortex sheet separating the jet and the neighboring quiescent fluid, which is not true
for far field situations. In addition, the present numerical simulation shows that the
directivity pattern in directions close to the axis is very sensitive to the probing dis-
tance, which is probably due to the influence of the unstable vortex sheet with the lip
of the pipe. Moreover, in order to better explain the aforementioned smoothing effects
demonstrated in the LBM results (see Fig. 4.15(f) and Fig. 4.16(f)), we need more insight
towards the axisymmetric D2Q9 model in terms of its capability of fully representing
the higher radial modes, although the anti-axisymmetric circumferential modes are not
supported for sure.

The effect of a horn extension at the open end of a thin wall cylindrical pipe on acous-
tic radiation directivity in far field is investigated using the GPU LB model. The results
show that both the geometry parameter of the horn extension and the flow parameter
play an import role in the directivity pattern. The influence of the horn profile is evalu-
ated by comparing its directivity pattern to that of the unflanged cylindrical pipe for the
case of zero mean flow. The result shows that the directivity effect is reinforced by the
horn extension. For the case of none zero flow, the phenomenon of zone of relative si-
lence observed in the system of a cylindrical pipe attaching a horn extension presented
in Sec. 4.3.4 is similar to that observed in the system of an unflanged cylindrical pipe
presented in Sec. 4.3.5. The influence of the curvature radius of the horn extension is
investigated, where it shows that a big curvature radius of the horn results in a stronger
directivity effect.

Finally, the influence of the bit depth representing the floating-point numbers on
different computation platforms is investigated for the relatively weak acoustic signal
measured in the radiation field out of the cylindrical waveguide. The results show that
the accuracy of the GPU LB model is almost the same as the CPU LB model in 32-bit
mode and is in general good enough for the sound radiation problems, although the
accuracy of the 64-bit model is slightly better than that of the 32-bit models.

4.4 Aeroacoustic Behavior of Whistles

4.4.1 Introduction

The objective of this section is to numerically investigate the aeroacoustic behavior of
whistles using the GPU LB model. In this section, we continue to ascertain the reliabil-
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ity, validity and the extension of applicability of the GPU LB model on acoustic systems,
especially for those involving conditions of complicated curved boundary and relative
high speed fluid volume flow in that they are typically found in wind instruments and
remain a challenge to the numerical stability and accuracy of LBM models. Compared
to the simple geometry of a cylindrical pipe or horn, a whistle has a complicated geome-
try and is very difficult, if not impossible, to investigate analytically. For this reason, the
whistle is chosen as the target acoustic system to be investigated numerically. Besides,
the numerical technique of simulating a whistle will be re-used in Chpt. 5 to simulate a
clarinet, for which the numerical stability is also challenged by the complicated geome-
try and the relatively high speed fluid volume flow.

The sound production of aerodynamic whistles and air-reed instruments, or the phe-
nomenon of flow-excited acoustic resonance in general, is subject to the interaction of
two closely integrated systems: the aerodynamic generator, which includes an air jet
impinging on a sharp edge (the labium) acting as an acoustic dipole, and the ancillary
structure functioning as an acoustic resonator.

Depending on the sound generating mechanisms, Chanaud (1970) categorized aero-
dynamic whistles into three classes. Class I whistles only consist of purely hydrody-
namic oscillations such as aeolian tones. Class II whistles involve direct acoustic feed-
back but without any ancillary structures. Examples of this type of whistle include edge
tones, hole tones, ring tones and human whistling, etc. Class III whistles are those fea-
tured by a resonant or reflecting structure controlling the frequency of the tone.

The musical instruments of Class III include the ocarina, Chinese Xun, Japanese
tsuchibue, etc., and the flute-like instruments, such as flute, organ pipe, recorder, etc.
The ocarina-type instruments are distinguished by a Helmholtz resonator. On the other
hand, the resonator of a flute-like instrument consists of a pipe-like air column. We con-
sider the sport whistle as a special ocarina-type instruments characterized by a Helmholtz
resonator excited by the edge tone.

The edge tone phenomenon, produced by blowing a jet of air that impinges on a
sharp edge, has been investigated by a number of authors but its mechanics are still not
completely understood. Since some decades ago, the theory and empirical formulas for
edge tones have been presented by a number of authors (Brown, 1937a,b; Curle, 1953;
Powell, 1961; Coltman, 1968, 1976). Brown (1937a) might be the pioneer who experi-
mentally investigated the edge tone. In his apparatus, both the velocity of the air exiting
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a brass slit and the distance of wedge-to-orifice can be adjusted. Using a setting of con-
stant jet velocity, he found the threshold of distances for the onset and extinction of an
edge tone. Then using a setting of constant distance, he demonstrated four stable stages
of edge tone related to different velocities. The dependence of the frequency f of the
edge tone on the distance h and the jet velocity U for a specific slit width of 1.0mm is
described by an empirical formula

f = 0.466k(U − 40.0)(1/h− 0.07), (4.38)

where k = 1, 2.3, 3.8 and 5.4 are coefficients related to the four different stages corre-
sponding to the fundamental frequency and other overtones. In the same stage, the fre-
quency of oscillation is in proportion to the jet velocity U , but it jumps to another stage
hysteretically if U exceeds a threshold value. In another paper, Brown (1938) provided
valuable discussion regarding the interaction between edge tones and pipe tones.

4.4.2 Previous Works

In the last two decades, there has been growing interest in the use of computational
fluid dynamic (CFD) tools or computational aeroacoustic (CAA) techniques based on
the solution of the Navier-Stokes equations to investigate the aero-acoustic behaviors of
edge tones and the more complicated phenomenon related to acoustical feedback from
an ancillary resonator. However, the direct numerical simulation (DNS) of aero-acoustic
problems are still expensive and limited to simple geometries and short time scales (typ-
ically 10 to 20ms), which is due to the huge consumption of computing resources.

Dougherty et al. (1994) numerically replicated Brown’s experiments of edge tone in-
cluding all four stages by using a compressible full Navier-Stokes flow solver based on a
finite-volume scheme and obtained excellent agreement on frequency results compared
with Brown’s data. The direct simulation of flute-like instruments can be found in more
recent literature by Obikane and Kuwahara (2009), Obikane (2009, 2011) and Giordano
(2013, 2014). Giordano simulated a recorder using a two-dimensional and then a three-
dimensional Navier-Stokes solver based on a finite difference scheme and presented
both qualitative results concerning dynamics of the density and air jet, and quantita-
tive results for the sound spectrum and its dependence on blowing speed. On the other
hand, the numerical simulation of ocarina-type instruments is less commonly found in
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literature. Kobayashi et al. (2009) reproduced the sound vibration of an ocarina and in-
vestigated the relationship between the oscillation frequencies and the blowing speed
using compressible large-eddy simulations (LES). Miyamoto et al. (2010) simulated a
recorder-like instrument using the LES method and showed interesting results includ-
ing spatial distributions of air density, flow velocity, vorticity and Lighthill’s aeroacous-
tic source. They also compared the changes of frequencies with jet velocity to both edge
tone and resonance frequencies of the pipe. Liu (2012) simulated a pea-less whistle using
a hybrid CFD scheme and compared the frequencies with the experimentally measured
results. But as Kobayashi et al. (2009) pointed out, the hybrid model consisting of sepa-
rate stages of fluid mechanics and sound propagation is not well suited for simulating a
Helmholtz resonance subjected to the elastic property of air.

The LBM modeling of flue instruments was pioneered by Skordo’s work on recorders
and organ pipes (Skordos, 1995). He simulated the interaction between fluid flow and
the acoustic waves within the instruments at different blowing speeds based on a two-
dimensional model. Kühnelt (2003, 2004, 2005, 2007) simulated several flute-like instru-
ments including organ pipe and square flue pipe using three-dimensional LB models
and obtained interesting results including the visualization of jet formation and vortex
motion, the time history of fluctuating density and the steady state spectra at different
jet speeds. Unfortunately, due to the restriction of computer resources, Kühnelt’s mod-
els are based on rather simplified geometries with a large lattice spacing (in the range
from dx = 0.175 to 0.3mm). Also, he had to increase the viscosity by 10 times higher
than air to maintain the numerical stability, and consequently increased the jet speed by
the same factor to get an identical Reynolds number.

In this study, we carried out the simulation of pea-less sport whistles using the two-
dimensional LBM. The relatively simple implementation of boundary conditions of the
LBM allows us to handle the complicated curved boundary measured from a real whis-
tle. Skordos (1995) and Kühnelt (2003, 2004, 2005, 2007) used unrealistic higher viscosi-
ties in their LBM scheme to maintain numerical stability. This was most likely due to
the restriction of the single relaxation time (SRT) scheme, which is prone to be unstable
in conditions of very low viscosities. In contrast, we used the multiple relaxation time
(MRT) scheme to maintain the numerical stability and consequently we were able to use
a more realistic, lower viscosity appropriate for air in our simulations. However, we
should keep in mind that LBM is slightly compressible and valid for M < 0.15. Due to



4 Numerical Modeling of Acoustic Systems with Static Boundaries 117

this reason, the blowing speeds in our simulations are restricted to relatively low values.

4.4.3 Numerical Scheme

Figure 4.26 Whistles of different size.

Figure 4.26 shows pea-less whistles of different size and color which can be found at
many convenient stores. The structure of a whistle consists of a narrow flue channel and
a cavity resembling a Helmholtz resonator. The cross-sectional area of the opening at the
end of the flue channel, or the flue exit, is smaller than the inlet, such that the jet flow is
accelerated before it leaves the flue exit. It is known that the sound of a whistle combines
both edge tone and Helmholtz resonance sounds (Chanaud, 1970). As the jet impinges
upon the edge of aperture of the cavity, the force exerted by the edge on the flow acts as
an acoustic dipole which creates sound oscillations. Part of the sound field propagates
back towards the orifice where the flow is more sensitive to disturbances. In this way,
the oscillation is reinforced and maintained and the feedback cycle is completed. This
is how the edge tone is established. Meanwhile, the edge tone excites the Helmholtz
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resonator such that sound energy is reinforced for the preferred resonance frequency.
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(a) Whistle I.
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(b) Whistle II.

Figure 4.27 Boundaries of the whistles.

H (mm) W (mm)
Whistle I 1.245 12.7
Whistle II 0.45 13.15

Table 4.3 Height (H) and width (W ) of the two whistles.

The LBM scheme is described by thin walls resembling the cross section of a whis-
tle immersed in a fluid domain surrounded by open boundaries. The fluid domain is
represented by a rectangular D2Q9 structure (Qian et al., 1992). The left, right, top and
bottom boundaries of the radiation domain are implemented by absorbing boundary
conditions prescribed with a zero velocity (Kam et al., 2006).

We generated 2D thin curved boundaries (Guo et al., 2002) based on the geome-
try profile measured from the clear whistle (Whistle I) and the red whistle (Whistle II)
shown in Fig. 4.26. The curved boundaries were then imported into the 2D LB model
by a custom Python script, as shown in Fig. 4.27. The height H and the width W of the
open mouth of the resonance cavity of the two whistles are given in Table 4.3. Whistle
I features a smaller ratio of W/H and a smooth wall inside the wind channel. For both
whistles, the height of the channel is almost 10 times smaller that the depth. In such
a situation, a 2D model would give reasonable results. The walls are treated by a sim-
ple bounce-back scheme (Succi, 2001), which creates a no-slip condition at the wall and
simulates a viscous boundary layer.
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nX nY dx (mm)
Whistle I 1760 1472 0.037
Whistle II 2624 2176 0.025

Table 4.4 Size of the two LB models.

The size of the LB model representing the two whistles is given in Table 4.4, where
nX and nY are the number of lattice cells along the x- and y-axis, respectively. The
spatial resolution dx representing the unit length of one lattice cell is decided by both
the available computing resources and the smallest geometrical length of the boundary,
which is the height H measured at the exit of the flue channel for our specific case. The
number of lattice cells representing the height H is 40 for Whistle I and 18 for Whistle II,
respectively, which is sufficient in consideration of both stability and accuracy, according
to our previous experiences.

The dimensionless kinematic viscosity ν can be calculated from the physical kine-
matic viscosity of air ν∗ and the spatial resolution dx by the relation ν∗ = νc∗sdx

cs
, where

c∗s is the physical speed of the sound and cs is the speed of sound in lattice units. The
undisturbed fluid density was set as ρ0 = 1.0 (in lattice units) for convenience.

The source flow is implemented by a source buffer attached at the left end of the flue
channel using absorbing boundary conditions with a non-zero target velocity prescribed
by the source signal. The jet speed is measured at the center of the flue exit.

The time histories of fluid density are probed above the open mouth using a sam-
pling rate of 80 kHz, where the coordinates of the probing point is (x = 1000, y = 800)
for Whistle I and (x = 1400, y = 1100) for Whistle II. A DC-blocking filter must be used
in the post-processing to remove the fluctuation caused by the fluid flow.

4.4.4 Results

4.4.4.1 Jet Formation and Oscillation

Figure 4.28 shows how the jet is formed at the start-up stage. The formation of the first
vortex is demonstrated in Fig. 4.28(a) ∼ 4.28(c). The vortex shedding above the flue exit
are clearly visible in Fig. 4.28(c) ∼ 4.28(f). Inside the resonator, the vortex shedding is
far less strong but still observable.

Figure 4.29 shows the jet motion around the labium during the course of one cycle for
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(a) (b) (c)

(d) (e) (f)

Figure 4.28 The formation of the jet during start-up. The colors represent

the absolute value of velocity (
√
u2
x + u2

y). The red color corresponds to the
highest speed and the dark blue to the lowest speed. For the simulation the
jet speed at the center of the flue exit is Ujet = 30m/s.

Whistle I at Ujet = 30m/s. The air jet oscillates mainly above the labium. This behavior
is qualitatively similar to that found in a 2D DNS of a recorder by Giordano (2013), but
different from that observed in a 3D DNS carried out by the same author (Giordano,
2014). According to Miyamoto et al. (2013), this phenomenon is due to differences in
energy dissipation and vortex motion in two and three dimensions.

4.4.4.2 Sound Oscillation

The time histories of the acoustic density (in numerical units) measured above the open
mouse for four different jet speeds (Ujet = 10, 20, 30, 40m/s) are shown in Fig. 4.30. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.29 Images of the air speed near the flue channel exit and labium of
Whistle I during one cycle. The colors represent the absolute value of velocity

(
√

u2
x + u2

y). The red color corresponds to the highest speed and the dark blue
to the lowest speed. For the simulation the jet speed at the center of the flue
channel is Ujet = 30m/s.

amplitude of the signal at the start-up stage is almost in linear proportion to the jet
speed, as we will find later. The oscillation is not visible for Ujet = 10m/s, though it is
visible for the other three higher jet speeds.

The normalized spectrum of the simulation for three different jet speeds are depicted
in Fig. 4.31. For Ujet = 20m/s, there is almost no harmonics found in the result, suggest-
ing the typical behavior of a Helmholtz resonance. For Ujet = 30 and 40m/s, harmonics
emerge in the results, though they are not necessarily relative to the high-frequency
components in the case of Ujet = 20m/s. The simulation results show a relatively high
level of noise compared to the peak frequency, which is probably due to the rather short
simulation time which is insufficient for the build-up of a steady oscillation. Another
reason could be due to the fact that the signals were measured in the near field, which
includes lots of noise.
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Figure 4.30 Numerical density of whistle I with various jet speed. Jet speed:
(a), Ujet = 10m/s. (b), Ujet = 20m/s. (c), Ujet = 30m/s. (d), Ujet = 40m/s.

4.4.4.3 Change of Frequency and Amplitude with Jet Speed

Figure 4.32(a) shows the change of peak frequency with increase of jet speed Ujet in the
simulation of Whistle I. The edge tone frequencies of the four stages given by Brown’s
empirical equation (Eq. 4.38) are also depicted (fb1, fb2, fb3 and fb4). No overtone is
observed, which is typical for Helmholtz-type resonators. In the range of 13 ≤ Ujet ≤ 18,
the simulation results are close to the curve of fb4, the fourth stage of Brown’s edge
tone, but this might be only a coincidence, because the oscillation is not stable for low
jet speeds. A transition is observed in the range of 20 < Ujet < 25. For jet speeds beyond
25, the simulation results are very close to the edge tone curve.

The same comparison of the change of peak frequency with increase of jet speed is
made for Whistle II, as depicted in Fig. 4.33(a). We notice fluctuations of the frequen-
cies for jet speeds higher than 20m/s, which is not surprising because the simulation is
terminated before the steady acoustic oscillation can be developed.
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(a) (b)

(c)

Figure 4.31 Normalized spectrum of whistle I with various jet speeds: (a),
Ujet = 20 (m/s) . (b), Ujet = 30 (m/s). (c), Ujet = 40 (m/s).



4 Numerical Modeling of Acoustic Systems with Static Boundaries 124

(a)

(b)

Figure 4.32 Peak frequency and normalized magnitude of whistle I for var-
ious jet speeds. 4.32(a): peak frequency and frequency of edge tone (fb1, fb2,
fb3 and fb4, see Eq. 4.38), (b) normalized magnitude.
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(a)

(b)

Figure 4.33 Peak frequency and normalized magnitude of whistle II for
various jet speeds. (a): peak frequency and frequencies of edge tone (fb1, fb2,
fb3 and fb4, see Eq. 4.38), (b) normalized magnitude.
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The magnitudes of the peak frequency of simulation are depicted in Fig. 4.32(b) for
Whistle I and Fig. 4.33(b) for Whistle II. The curve is normalized to 0 dB for jet speed
at Ujet = 36 for Whistle I and Ujet = 25 for Whistle II. Overall, the amplitude increases
almost linearly for jet speeds less than 10m/s. We can observe some fluctuations and
slight drops in the range of 20 < Ujet < 25 for Whistle I and 15 < Ujet < 20 and 20 <

Ujet < 25 for Whistle II.
The results reported above are in partial agreement with measured data known to

the authors but not available for publication at this time. In particular, the peak frequen-
cies in the spectrum of the simulation are close to those of the measured results, and
similarities have been found in the change of frequency with the increasing jet speed.
The measured results display a general increase of oscillation frequency with jet speed,
except for a transition zone found in the mid-range of jet speeds (20 < Ujet < 25). The
frequency curves of both simulations and measured results of Whistle I are close to the
edge tone curve for higher jet speeds (Ujet ≥ 25). On the other hand, the measured re-
sults show a dip in the magnitude of the peak frequencies in the mid-range of jet speeds
(in the transition zone) that was not observed in the LBM results.

4.4.5 Summary

We have presented results from a two-dimensional LBM simulation of whistles, includ-
ing 1) the qualitative visualization of the jet formation and vortex shedding, and 2) the
quantitative results of the spectrum and the change of peak frequencies for various jet
speeds. We are able to use a low viscosity thanks to the MRT technique. Also, the
simulation speed is greatly improved by the parallel GPU computing, which makes it
feasible for more simulations, longer simulation time, larger fluid domain and higher
space resolutions.

However, the actual simulation time is still restricted by some factors. The fluid
vortices is not well absorbed by the absorbing boundary conditions, which results in
spurious reflections from the open boundaries after a certain amount of iterations. Even
with the help of MRT, the numerical stability for conditions of relatively high jet speeds
is not well maintained after a certain amount of iterations. The Mach number in LBM
is limited to about 0.15, or even lower for low viscosity cases, so it is not capable of
handling all possible jet speeds found in a typical whistle. Nonetheless, for flute-like
instruments with relatively low jet speeds, such as the recorder and organ pipes, the
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LBM can be a good simulation tool.

4.5 Conclusion

The essential objective of this chapter was to provide a reliable, accurate and efficient
LBM model capable of representing the acoustic system comprising waveguides con-
structed by static solid boundaries. Another objective was to use the verified model to
provide a deeper understanding of some phenomena that have not yet been addressed
analytically.

Three benchmark problems, namely the acoustic transmission in pipes, acoustic ra-
diation out of pipes and aeroacoustic behavior of whistles, were numerically investi-
gated based on the customized two-dimensional isothermal LB models implemented
on a GPU platform and / or a CPU platform.

Both the CPU SRT model and GPU SRT model demonstrate good accuracy on simu-
lations of the wave propagation inside an axisymmetric waveguide immersed in a stag-
nant fluid field. The numerical results in terms of reflection coefficient and length cor-
rection are in excellent agreement with the established analytical predictions provided
by Levine and Schwinger (1948). When the condition of a non-zero subsonic mean flow
is introduced to the system, the numerical results are still in good agreement with the
available analytical predictions provided by Munt (1990) and the experimental results
provided by Allam and Åbom (2006). One drawback of the proposed LB model is its
questionable results of the length correction for the low frequency limit ka < 0.2, which
might be related to the degraded accuracy of the two-microphone method in the low
frequency limit. For the case of a horn carrying a non-zero mean flow, the presented nu-
merical results well agree to the results obtained from a previous LBM model developed
in Matlab by da Silva (2008).

For the second benchmark problem on the radiation directivity pattern of an ax-
isymmetric waveguide, the presented LB models also show good agreement with the
analytical results provided by Levine and Schwinger (1948), for the case of an unflanged
cylindrical pipe issuing a zero mean flow, and the analytical results provided by Gabard
and Astley (2006) and the experimental results provided by Gorazd et al. (2012), for the
case of an unflanged cylindrical pipe carrying a non-zero mean flow. The effects of the
so-called zone of relative silence are well predicted by the LB model. The numerical
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investigation on the influence of a horn extension shows that the directivity effect is re-
inforced by the presence of a horn extension, this is especially true for a horn profile with
a bigger curvature radius. A quick numerical investigation shows that, although the bit
depth (32-bit) representing the floating-point numbers on the GPU platform is only a
half of that used by the Python/NumPy and Matlab LB model on a main stream CPU
platform (64-bit), the GPU LB model is still good enough to address the sound radiation
problems.

Finally, to examine the stability of the GPU LB model on acoustic systems involving
a complicated geometry and a jet with relative high speed in a low viscosity fluid field
during a long simulation time, two realistic whistles with slightly different geometries
were simulated. Throughout the simulations, the numerical stability is well maintained
mainly thanks to the curved boundary based on extrapolation algorithm (Guo et al.,
2002) and the MRT scheme (d’Humieres, 1994; Guo and Shu, 2013).
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Chapter 5

Numerical Modeling of Acoustic
Systems with Moving Boundaries

5.1 Overview

In Chpt. 4, we have discussed the application of parallel GPU LB models on acoustic
problems involving complex curved boundaries and non-zero mean flows. Our goals
in this chapter is to extend the GPU LB model one step further: simulating a single-
reed woodwind instrument which comprises a dynamic mouthpiece-reed structure and
a fully coupled acoustic resonator. A clarinet-like system has been chosen as the target
instrument, because it has been relatively thoroughly investigated previously such that
we are able to compare some of the numerical results with prior literature. Since the LB
model at our disposal is limited to 2D, we will focus on problems that can be reasonably
represented in 2D. Any problems involving 3D behaviors, such as tone holes, will be
excluded.

A clarinet can be roughly divided into a non-linear active component (the mouthpiece-
reed system) and a linear passive component (the instrument’s resonant bore). Previous
studies on the resonator components have produced many useful discoveries and sat-
isfactory models. As well, studies on the non-linear mouthpiece-reed system have pro-
duced some important results. Most previous models are restricted to quasi-stationary
approximations that are over-simplified because they assume that the flow in a mouth-
piece with an oscillating reed is the same as that in a mouthpiece with a fixed channel
height at any given instant. The characteristic of the mouthpiece-reed system, defined
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as the non-linear relationship of the volume flow and the pressure difference across the
reed channel, is expressed as an explicit function if the effects of inertia, damping and
acoustic coupling are neglected. Since the pioneering work of Backus (1963) on small
amplitude vibrations, the non-linear function of single-reed woodwind instruments in
the quasi-stationary condition has been investigated experimentally and theoretically
by a number of authors (Nederveen, 1969; Worman, 1971; Wilson and Beavers, 1974;
Saneyoshi et al., 1987; Fletcher, 1993; Kergomard, 1995; Kergomard et al., 2000; Ollivier
et al., 2004, 2005; Dalmont et al., 2003; Almeida et al., 2007).

A more sophisticated model taking the viscous phenomena into account has been
proposed by Hirschberg et al. (1990), which is based on results obtained from the nu-
merical simulation of a steady viscous flow passing through a two-dimensional Borda
tube. They found that for sufficiently high Reynolds number (Re > 10), the flow pat-
tern is strongly influenced by the minor geometry difference measured by the ratio of
L/h, where L and h are the length and the height of the reed channel, respectively. This
model has been experimentally validated and improved by van Zon et al. (1990). The
same flow behavior has been found by Dalmont et al. (2003) using a realistic mouth-
piece in the stationary condition (with a static reed). However, the flow measured in
a mouthpiece with a moving reed suggests that the quasi-stationary model is unreal-
istic in dynamic regimes (van Zon et al., 1990), where the reed’s behavior is strongly
influenced by the detachment / reattachment phenomenon caused by unsteady flow.

Previous attempts of investigating the behavior of unsteady flow in a dynamic regime
involving a moving reed by experimental measurements are limited to qualitative re-
sults (van Zon et al., 1990; Lorenzoni and Ragni, 2012). Also, it is not a trivial task to
simulate the unsteady flow in a dynamic regime using traditional computational fluid
dynamic (CFD) approaches based on continuum theory. For such a task, da Silva (2008)
showed that the particle-based lattice Boltzmann method is a promising tool. He sim-
ulated the flow in a clarinet mouthpiece of different geometries using a 2D LB model
for cases of both static and free oscillating reed. In the quasi-stationary regime, da
Silva’s results agree well with van Zon’s quasi-stationary model for both short and long
reed channels. In the dynamic regime, however, the results obtained in a LBM sim-
ulation show some significant discrepancies compared to the results predicted by the
quasi-stationary model. His LBM simulation also confirmed the hypothesis discussed
by Hirschberg et al. (1994), which states that even in the absence of acoustic feedback,
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a self-sustained oscillation can be developed from the aerodynamic forces acting on the
reed due to the energy absorbed from the fluid field. Despite potential problems that
might be introduced by simulating a 3D mechanic-acoustic system in a 2D scheme, da
Silva’s simulation was less realistic because of two other issues. The first issue is that his
model was driven by a negative flow source located at the open end of the mouthpiece.
This scheme is justifiable in the quasi-stationary regime or the dynamic regime when
an acoustic feedback is not involved, but is different from the blowing scheme used by
musicians. Another issue is the lack of an acoustic resonator in his bore-less system.

The present study aims to simulate a complete clarinet that comprises a dynamic
mouthpiece-reed structure and a fully coupled acoustic resonator using a relatively
realistic blowing scheme. The aero-dynamic aspects of the dynamic flow and its de-
pendency on the reed channel geometry in both quasi-stationary regime and dynamic
regime involving an acoustic coupling will be investigated.

To archive that, a hybrid clarinet model is developed, which includes a LBM-MRT
scheme representing the fluid and acoustic domain and a finite difference (FD) scheme
representing the motion of reed based on the distributed model proposed by Avanzini
and van Walstijn (2004). The interaction of the moving reed and the fluid is solved by
the extrapolated curved wall scheme proposed by Guo et al. (2002).

The computation cost of the present model is significantly higher than that of da
Silva’s model, mainly because of the prolonged duration of the acoustic oscillations and
the extra lattice cells required by the acoustic resonator and a radiation domain. To solve
this problem, both the LBM-MRT model and the FD reed model have been parallelized
and implemented on a PyCUDA-GPU platform such that the total time required by one
simulation is reduced to a reasonable time-frame, i.e., measured by hours or days rather
than by weeks.

The player’s lip force and the coupling of the player’s vocal tract is not included in
the present system. Also, only the soft playing condition is investigated, i.e., the reed tip
does not collide with the lay during the stable stage of the oscillation. This is not due to
any restriction of the model but rather an issue in limiting the length and scope of the
thesis.

This chapter is organized as follows. Section 5.2 provides a review of the quasi-
stationary flow model proposed by Hirschberg et al. (1990) and van Zon et al. (1990),
and the previous experimental and numerical investigations with respect to the flow
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behaviors in single-reed woodwind instruments. Section 5.3 introduces the numeri-
cal scheme used in this study. Section 5.4 provides the results and discussions in the
quasi-stationary regime. Section 5.5 provides the results and discussions in the dynamic
regime. Finally, Sec. 5.6 provides a conclusion and suggestions for further investiga-
tions.

5.2 Previous Flow Behaviour Studies

It is not trivial to measure the flow in the reed channel or mouthpiece chamber of a
clarinet under normal playing conditions. As a result, the majority of previous studies
are restricted to quasi-stationary conditions. As well, the flow is assumed to be steady,
inviscid, incompressible and laminar.

The first result of experimentally measured characteristics of a single-reed instru-
ment under steady flow and low blowing pressure conditions was given by Backus
(1963). He fit his experimental results by a non-linear expression which relates the vol-
ume flow U , the pressure difference across the reed channel ∆p and the opening h, given
as U = 37∆p2/3h4/3. However, the validity of Backus’ empirical formula was questioned
by later researchers (Hirschberg et al., 1990; Hirschberg, 1995; Gilbert, 1991).

Assuming no pressure recovery from the reed channel to the air column input, most
flow models describe the relationship between the volume flow and the pressure differ-
ence across the reed channel by means of the stationary Bernoulli equation (Wilson and
Beavers, 1974; Saneyoshi et al., 1987; Fletcher, 1993), given as

U = Sj

√
2|∆p|
ρ

sgn (∆p), (5.1)

where ρ is the density of the air, w is the effective width of the reed channel, h is the
opening of the reed channel and Sj = wh is the effective cross section of the jet.

Then assuming the opening is linearly related to the pressure difference by its stiff-
ness, the volume flow U can be described by the elementary model:

U =

wh
(

1− ∆p
PM

)√
2|∆p|
ρ

sgn (∆p), if ∆p ≤ PM

0, if ∆p > PM
, (5.2)



5 Numerical Modeling of Acoustic Systems with Moving Boundaries 133

where PM is the threshold of pressure closing the reed channel. Since the Bernoulli equa-
tion is only valid for inviscid and irrotational flow, the elementary model only holds for
a range of Reynolds number in which inertial forces predominate over the viscous force
but the flow regime is still laminar, which would be between 10 (as stated by Hirschberg
et al. (1990)) and ∼ 2000. Here the Reynolds number is defined as Re = U/wν, where ν
is the kinematic viscosity of the fluid.

Hirschberg et al. (1990) proposed a more complex flow model using numerical sim-
ulations which takes the effects of flow separation and friction into account. This model
is improved and verified based on experimental results by van Zon et al. (1990). De-
pending on the geometry of the flow channel characterized by L/h, where L and h are
the length and the height of the flow channel respectively, there are two types of flows.

For short channels (L/h ≤ 1), the flow is estimated by a contracted uniform flow:

U = αwh

√
2|∆p|
ρ

sgn (∆p), (5.3)

where α is a dimensionless contraction parameter (also called the vena contracta factor or
vcf ), typically found in the range of [0.5, 0.611] in van Zon’s measurement.

For long channels (L/h ≥ 4), the flow is given by

U = Ω

[
1−

√
1− h4(24c− 1)∆p

72ρν2(L− lr)2(1− δ∗)2

]
, (5.4a)

Ω = 12ν w(L− lr)(1− δ∗)2/h(24c− 1), (5.4b)

where ρ is the undisturbed density of the fluid, lr ' 2h is the distance from the entrance
of reed channel to the reattachment point where the fully separated flow develops into
a Poisseuille flow, δ∗ = 0.2688 is a generalization of the boundary layer thickness for an
arbitrary h and c = 0.0159 is a constant.

Dalmont et al. (2003) measured the flow behavior using an artificial mouth-lip system
and a real clarinet mouthpiece and found a flow behavior similar to that described by the
quasi-stationary flow model. Interestingly, Almeida et al. (2007) measured double-reed
woodwind instruments and found that the normalized pressure flow characteristics of
a bassoon and an oboe are similar to that of a clarinet and can be well described by the
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quasi-stationary model.
da Silva et al. (2007) simulated the flow into an anechoically terminated mouthpiece

of clarinet with different geometries of reed channel using the two-dimensional lattice
Boltzmann method for cases of both a static and an oscillating reed in the absence of
acoustic coupling. For the case of a static reed, da Silva’s results agree well with van
Zon’s model for both short and long reed channels in terms of vena contracta factor and
volume flow. Nonetheless, the characteristic in the static regime provided in (da Silva
et al., 2007) is not complete because only a discrete number of values of mouth pressure
were tested.

The flow in the dynamic regime featured by a moving or oscillating reed is more dif-
ficult to measure. The vena contracta factor measured in the dynamic regime provided
by da Silva et al. (2007) is constant for about 40% of the duty cycle, which is significantly
different from van Zon’s prediction in a quasi-stationary condition. Since the acoustic
coupling is not included in the numerical model, the oscillation frequency and the cor-
responding Strouhal number in da Silva’s results are an order of magnitude higher than
under normal playing conditions. Also, the simulation was less realistic because the
flow was generated by a negative pressure source at the outlet of the mouthpiece.

More recently, Lorenzoni and Ragni (2012) measured the flow velocity field inside the
mouthpiece of a tenor saxophone driven by an artificial blowing machine using the par-
ticle image velocimetry (PIV) technique. The measured vena contracta factor is found to
be a constant value around 0.6 for about 50% of the duty cycle, which is in good accor-
dance with van Zon’s steady experiments and suggests that a constant vena contracta
factor is a reasonable first approximation for sufficiently large reed openings. Unfortu-
nately, the phenomenon of flow detachment and reattachment is not provided in their
results due to the low spatial resolution. In the next year, using the numerical clarinet
model proposed in (da Silva et al., 2007), da Silva et al. (2013) prescribed artificial sinu-
soidal oscillations of different frequencies and amplitudes on the reed tip in the hope
to simulate a more realistic playing condition. They found that for the case of a short
reed channel, the averaged vena contracta factor is proportional to the playing dynamic.
For the case of a long reed channel, an analysis based on the numerical results implies
that the jet formed at the entrance does not reattach on the reed walls within the reed
channel. This conclusion is in contrast with previous results provided by Hirschberg
et al. (1990) and van Zon et al. (1990). The reattachment point may be verified in a vi-
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sualization with a better spatial resolution, which was not available in (da Silva et al.,
2013).

5.3 Numerical Scheme

The present study aims to investigate the aeroacoustic aspects in the mouthpiece-reed
system of a clarinet using numerical modeling. The investigations are scheduled at two
stages. At the preliminary stage, the objective is to obtain a complete characteristic of
the reed in the quasi-stationary regime roughly and quickly. Subsequently, the objective
is to investigate the flow behavior with some more details in a dynamic regime featured
by a vibrating reed driven by aerodynamic forces and coupled with acoustic oscillations.

To archive this purpose, a hybrid clarinet model is developed. The full system is de-
scribed by a clarinet immersed in a fluid domain surrounded by open boundaries. The
dynamics of the fluid field are solved by a 2D rectangular LBM-MRT scheme. The clar-
inet comprises a static mouthpiece, a moving thin reed and an acoustic resonator. The
mouthpiece, resembling the geometry of a realistic clarinet, is a 2D structure defined by
static solid thin walls. The moving curved wall of the reed is associated with a 2D dis-
tributed reed model implemented by an implicit finite difference scheme (Avanzini and
van Walstijn, 2004). The acoustic resonator is an axisymmetric cylindrical pipe with one
end attached to the outlet of the mouthpiece and another end open in an axisymmetric
acoustic radiation domain.

5.3.1 The Reed Model

y

x

Lr

w
b(x)

Figure 5.1 Geometry of the distributed reed model.
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Following the approach proposed by Chaigne and Doutaut (1997) and Avanzini
and van Walstijn (2004), the mechanical system of the vibrating reed is modeled as a
clamped-free bar with length Lr, slowly varying non-uniform thickness b(x) and a con-
stant width w, shown in Fig. 5.1. The material is assumed homogeneous and isotropic,
such that the density ρr and Young’s modulus Y are constants. Neglecting the con-
tributions of flexural waves on longitudinal and horizontal directions, the governing
differential equation is represented by the relationship of the distributed driving force
F (x, t) and the vertical displacements y(x, t), which is written as

F (x, t) = ρrA(x)

[
∂2y

∂t2
(x, t) + γB

∂y

∂t
(x, t)

]
+

∂2

∂x2

[
Y I(x)

(
1 + η

∂

∂t

)
∂2y

∂x2
(x, t)

]
, (5.5)

where t is time, x ∈ [0, Lr] is the horizontal position, A(x) = wb(x) is the cross-section
area, I(x) = A(x)B2(x)/12 is the moment of inertia about the longitudinal axis, η is the
viscoelastic damping coefficient and γB is the fluid damping coefficient which represents
the losses due to the surrounding fluid. In the case that the reed model is fully coupled
with a LB fluid model, γB should be neglected.

The boundary conditions of the reed system are imposed by the geometrical con-
straints of the clamped-free structure and the combined external forces due to the pres-
sure difference across both sides of the reed’s surface and the interaction with the player’s
lip and the mouthpiece lay. Following the earlier work of da Silva et al. (2007), the lip
force is neglected in the present model, and the interaction with the mouthpiece lay is
simply modeled as an inelastic collision, which is somewhat unphysical but is accept-
able because the influence on flow behavior is barely noticeable (da Silva et al., 2007).

Reed length Lr = 34.0× 10−3 (m)
Reed width w = 13.0× 10−3 (m)

Reed density ρr = 500 (Kg/m3)
Young’s modulus Y = 5.6× 109 (N/m2)

Viscoelastic damping coefficient η = 6.0× 10−7 (s)
Fluid damping coefficient γB = 100 (s−1)

Table 5.1 Geometric and mechanic parameters of the reed.

Equation 5.5 can be discretised in both time and space and represented by an im-
plicit finite difference scheme. The result in matricial form is given by Avanzini and van
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Walstijn (2004) as

y(n+ 1) = A0y(n) + A1y(n− 1) + AFF (n), (5.6)

where n is the discrete time step, the vector y contains the instant values of the dis-
tributed displacement of the reed, the matrices A0, A1 and AF are constant coefficients
calculated based on the physical parameters of the reed, and the vector F represents the
instant external vertical force distributed on the reed surface, which is calculated from
the pressure difference across both sides of the reed’s surface in a fully coupled system.

Table 5.1 gives the geometrical and mechanical parameters of the reed used in this
study, which are chosen both from laboratory measurements and by estimation based
on numerical simulations (Avanzini and van Walstijn, 2004).

5.3.2 The LBM Scheme

L3 L2

Figure 5.2 Hybrid clarinet model.

The LBM scheme depicted in Fig. 5.2 is described by solid thin walls resembling the
cross section of a mouthpiece-reed system of a clarinet immersed in a fluid domain,
which is represented by the same rectangular D2Q9 structure used in Chpt. 4. The do-
main boundaries along the solid walls of the clarinet are treated by a simple bounce-
back scheme (Succi, 2001), which creates a no-slip condition at the wall and simulates a
viscous boundary layer. The remaining boundaries have an absorbing boundary condi-
tions (ABC) prescribed with a zero velocity (Kam et al., 2006).

The system is partitioned by a dashed line, where a 2D area is on the right side
(upstream) and an axisymmetrical semi-3D area is on the left side (downstream). On
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the right side, the static walls of the mouthpiece are coupled with a dynamic reed. The
entrance of the reed channel is situated inside a mouth cavity functioning as an air reser-
voir, which is enclosed by three flow sources (SRC). The SRC is a variation of the ABC
scheme generating a positive source flow that can be prescribed based on a customized
pressure profile.

The moving curved boundary associated with the moving reed is solved by an ex-
trapolation scheme proposed by Guo et al. (2002). This technique represents the no-slip
condition and the transfer of momentum from the reed to the flow with an accuracy
of second order. The displacement and the velocity of the reed is updated by the reed
model driven by the aerodynamic force imposed on the reed’s surface in each iteration,
and the curved boundary is updated accordingly.

Geometric parameters Values (mm)
h 1.2 (quasi-stationary), 1.0 (dynamic)
D1 20.0
D2 16.0
D3 4.0
L1 15.2
L2 64.8
L3 0 (quasi-stationary), 64.0 (dynamic)

Table 5.2 Geometric parameters of the clarinet.

On the left side, an axisymmetric cylindrical pipe that functions as an acoustic res-
onator is immersed in a radiation domain. The right end of the pipe is connected to the
outlet (the vertical dashed line) of the mouthpiece. The axisymmetric flow on the left
side is implemented by adding an extra axisymmetric source term to the right hand side
of the collision equation of LBM, as described by Eq. 4.16. The axisymmetric flow is then
directly coupled to the upstream 2D flow coming from the outlet of the mouthpiece, for
which the collision equation without an axisymmetric source term is used, as described
by Eq. 3.20. Physically, this can be interpreted as a semi-infinite 2D channel coupled
to a 3D cylindrical pipe. This hybrid scheme attempts to simulate the structure of a
realistic clarinet, which can be described as an axisymmetric cylindrical pipe attached
to a semi-2D mouthpiece chamber with a rectangular-like cross-section. The choice of a
semi-3D axisymmetric pipe is justified by the reflection coefficients measured at its open
end, which has a higher magnitude compared to the counterpart associated with a 2D
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channel. A higher reflectance at the open end provides sufficient energy to compensate
the losses, which is essential to maintain the acoustic standing wave in the pipe.

(a) Short reed channel. (b) Long reed channel.

(c) Long reed channel with a ditch at the
end.

Figure 5.3 Three different lay geometries used in the simulations.

A number of fundamental geometry parameters of the clarinet are given in Table 5.2.
These parameters are read by a Python script to generate the boundary data required by
the numerical model. Other geometrical dimensions are derived from the fundamental
parameters. The height of the reed channel entrance at rest is h = 1.2 (mm) for the
quasi-stationary simulations and h = 1.0 (mm) for the dynamic simulations. Since a
higher spatial resolution is used in the dynamic simulations, we use a smaller value of
h to reduce the computation cost. Also, a smaller aperture can facilitate the acoustic
oscillations.

In the dynamic simulations, the length of the acoustic pipe L3 is set to 64.0 (mm),
which is four times of the inner diameter D2. The size of the radiation domain on the
left side is measured by 2D2 and 2(D2+D3) in the x- and y-direction, respectively. For the
quasi-stationary case, since acoustic resonances are not desired, the acoustic resonator



5 Numerical Modeling of Acoustic Systems with Moving Boundaries 140

dx h nX nY nX × nY
8.5× 10−5(m) 12 2125 538 1,143,250
4.25× 10−5(m) 24 4214 1008 4,247,712

Table 5.3 Number of cells corresponding to different spatial resolutions.

is removed by simply setting L3 to zero.
The length of the reed channel L is either 4h or h, depending on which lay geometry

is engaged. Figure 5.3 depicts the three different lay geometries used in this study. The
short and long reed channel (Figs. 5.3(a) and 5.3(b)) will be investigated in all simula-
tions. For the dynamic case, the effect of a ditch cut at the end of the long reed channel
(Fig. 5.3(c)) will be investigated.

The total number of cells of the LB model is scalable and is related to the physical
dimension and the spatial resolution dx, which is defined as the unit length of one lattice
cell. A simulation using a very small dx provides more details of the flow behavior, but it
also requires more cells which in turn costs more computation resources and demands a
longer simulation time. At the preliminary stage of this study, a relatively rough spatial
resolution, dx = 8.5 × 10−5 (m), has been chosen for the quasi-stationary simulations.
At the later stage of dynamic simulations, a smaller value of dx = 4.25 × 10−5 (m) is
chosen in order to capture more details of the flow behavior in the rather small space
inside the reed channel. Table 5.3 compares the typical number of cells related to the
two different spatial resolutions, where h = 1.0 (mm) is the equilibrium tip opening of
the reed channel, nX and nY are the lengths of the lattice in the x- and y-dimension and
nX × nY is the total number of cells. A half value of dx requires about four times the
total number of cells, corresponding to about four times the memory consumption and
simulation time.

5.4 Investigations of the Quasi-stationary Regime

In this section, we investigate the nonlinear characteristics of the mouthpiece-reed sys-
tem in order to cross-check the validity of the quasi-stationary flow model for cases
of both a fixed reed and a freely moving reed. The simulations are carried out in the
absence of aero-dynamic or acoustic oscillations. The investigation for the case of an os-
cillating reed in the presence of acoustic feedback will be presented in the next section.
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5.4.1 Setup of Simulations

The setup of the numerical simulations is based on the hybrid clarinet model discussed
in Sec. 5.3. To obtain the complete curve of the characteristics, the volume flow must
be measured in a quasi-stationary condition, i.e., the air flow is free to pass through the
reed channel under both fixed and slowly moving reed conditions. In such a case, the
transfer of momentum between the fluid and the reed is neglected.

For a fixed reed, it is easy to fulfil the requirement of the quasi-stationary condition
using a slowly varying profile of mouth pressure in the simulations. For the case of a
freely moving reed, as the mouth pressure continuously increases from zero to a maxi-
mum value until the reed reaches the lay, the reed channel is changing from fully open to
fully closed. In this process, a tiny initial disturbance of the reed might be reinforced by
the acoustic feedback from the mouthpiece chamber as well as the resonator. Dalmont
et al. (2003) used an orifice as a non-linear acoustic absorber to thwart possible acoustic
oscillations in the experimental measurement. To serve a similar purpose in this study,
the outlet in the left side of the mouthpiece is replaced by an absorbing boundary condi-
tion (ABC) which is used as a pressure-reducing element and a nonlinear absorber that
suppresses possible standing waves in the mouthpiece.

The inside boundaries of the mouth cavity are equipped with SRC prescribed with
non-zero pressure and velocity, functioning as both the flow source and an acoustical
absorber. The pressure in the mouth cavity (pm) and in the mouthpiece chamber (pa),
as well as the volume flow in the reed channel (U ) are measured, averaged and saved
during the simulation. The pressure difference dp is calculated as dp = pm − pa. Due
to the viscoelasticity of the reed and the inertia and damping effects of the fluid, it is
very possible to observe a hysteresis effect due to the change of the rest position of the
reed when closing versus when opening. Thus, the measurement of the flow for both
an increasing mouth pressure and a decreasing mouth pressure is required in order to
obtain the full picture.

The spatial resolution is set at a relatively large value of dx = 8.5× 10−5 (m), and the
equilibrium tip opening of the reed channel is set as h = 1.2×10−3 (m), corresponding to
about 14 cells. The time step is dt = 1.44× 10−7 (s). To maintain the numerical stability
in the moving reed configuration, the lattice relaxation parameter is chosen as Ω = 1.88

and used in both static reed and moving reed cases, corresponding to a relatively high
physical kinematic viscosity of 5.33× 10−4 (m2/s). The duration of such a simulation is
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set to 68ms, or 500,000 iterations. According to our previous experience, this duration
is the minimum value required to prevent the oscillation from occurring in case the reed
is not fixed.

Two different geometries of reed channel, namely the short channel (L/h = 1, Fig.
5.3(a)) and the long straight channel (L/h = 4, Fig. 5.3(b)) have been used in the quasi-
stationary simulations for both a static reed and a moving reed, respectively. There are
two main differences between the present study and the previous work conducted by
da Silva et al. (2007). For the case of a static reed, the complete characteristic is measured
continually for both increasing mouth pressure and decreasing mouth pressure. For the
case of a moving reed, the disturbance of acoustic oscillations is minimized by using
two approaches. One approach is to use a relatively slow change rate of the mouth pres-
sure. Another approach is to use a higher fluid damping coefficient in Avanzini and van
Walstijn’s reed model, keeping key mechanical parameters such as Young’s modulus
of elasticity and viscoelastic damping coefficient unchanged such that the mechanical
characteristic of the reed is not affected.

5.4.2 Results of Static Reed

The results of the stationary simulations for the cases of short channel and long channel
are shown in Figs. 5.4 and 5.5, respectively.

Figures 5.4(a) and 5.5(a) depict the time history of the target pressure pmt prescribed
on the SRC in the mouth cavity, the measured mouth pressure pm, the average pressure
in the mouthpiece chamber pa and the pressure difference across the reed channel dp =

pm − pa. In a typical simulation, the target pressure pmt increases linearly from zero to
the highest value 9.5 kPa in a duration of about 28.87 ms (200,000 iterations, marked as
Stage I) and holds for about 7.22 ms (50,000 iterations), then decreases linearly to zero in
the duration of about 28.87 ms (marked as Stage II), and holds there for about 7.22 ms
until the simulation is finished. The mouth pressure follows the pattern of pmt though at
a reduced level. Since the reed is fixed, the reed channel is fully open during the course
of the simulation and the mouth pressure never reaches the prescribed pressure due to
the non-zero flow passing through the mouthpiece.

The measured flow U is compared to the Bernoulli flow Ub and the theoretical flow
Uz calculated from van Zon’s model for both the short channel and the long channel,
as shown in Figs. 5.4(b) and 5.5(b), respectively. Since the opening and the width of
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(a) Pressure profile. (b) Flow as function of time.

(c) Flow as function of pressure difference. (d) vcf as function of pressure difference.

Figure 5.4 Results of static reed, short channel (L/h = 1).

the reed channel is fixed, the Bernoulli flow is only related to the measured pressure
difference dp. Figures 5.4(c) and 5.5(c) represent the same flow data as a function of
pressure difference, where U(1) and Uz(1) are the flows associated with Stage I, and
U(2), Uz(2) are the flows associated with Stage II. The contraction parameter of van
Zon’s model for the short channel is 0.7. In general, the measured flow is lower than the
Bernoulli flow due to the flow separation occurring at the entrance of the reed channel.
For the short channel, the measured flow is in good agreement with van Zon’s model for
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(a) Pressure profile. (b) Flow as function of time.

(c) Flow as function of pressure difference. (d) vcf as function of pressure difference.

Figure 5.5 Results of static reed, long channel (L/h = 4).

most of the duration. However, for the long channel, the measured flow is significantly
lower than the theoretical flow, which is only a little bit lower than the Bernoulli flow.

The phenomena of flow contraction, caused by the boundary layer effects on the
walls of the lay and the reed and the flow separation at the entrance, can be quantita-
tively described by the vena contracta factors vcf = U/Ub, as depicted in Figs. 5.4(d)
and 5.5(d), where vcf(1) is associated to Stage I and vcf(2) is associated to Stage II. The
vena contracta factors of van Zon’s model, noted as vcfz(1) and vcfz(2), corresponding
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to Stage I and Stage II respectively, are depicted in parallel.
In the case of short channel, the measured vcf is in good agreement with theoretical

vcfz for most of the duration. In the case of long channel, the measured vcf is signifi-
cantly lower than the theoretical vcfz. Also, the vcf corresponding to the long channel is
lower than that of the short channel, which might be explained by the relatively higher
damping in the long channel that is caused by friction from the flow and the walls. In
other words, the pressure drop due to viscous dissipation in the long channels is much
more accentuated. The numerical volume flow in the long channel probably is underes-
timated due to the relatively low spatial resolution in the reed channel. We will improve
this situation in the later dynamic simulations in Sec. 5.5 using a higher spatial resolu-
tion.

A slight hysteresis effect can be observed in the region of low pressure difference
for both geometries, i.e., dp < 0.5 kPa for the short channel and dp < 1 kPa for the
long channel. Since the reed is fixed, the hysteresis phenomena cannot be caused by the
viscoelasticity of the reed, rather, it is more likely due to the inertia of the air flow. We
notice the variation of vcf is very small in about 80% of the duration of the simulation for
both geometries, which suggests that a constant vcf used in the quasi-stationary model
is a reasonable approximation for the case of a fixed reed.

5.4.3 Results of Moving Reed

Throughout the dynamic simulations, the reed is moving as the pressure difference
across the reed channel changes. The results corresponding to the short channel and
the long channel are depicted in Figs. 5.6 and 5.7, respectively.

Figures 5.6(a) and 5.7(a) depict the time history of the target pressure pmt prescribed
on the absorbing boundary in the mouth cavity, the measured mouth pressure pm, the
average pressure in the mouthpiece chamber pa and the pressure difference across the
reed channel dp = pm − pa. The target pressure is prescribed in the same way as in the
simulations of the fixed reed, i.e., pmt increases linearly from zero to the highest value
of 9.5 kPa, holds, and then decreases linearly and holds at zero until the simulation is
finished.

Before the reed closes in Stage I, the mouth pressure increases along with pmt, though
at a reduced level. The pressure in the mouthpiece pa increases and reaches a peak value
in about 9 (short channel) to 12 ms (long channel), then decreases because the amount
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(a) Pressure profile. (b) Opening as function of pressure difference.

(c) Flow as function of time. (d) Flow as function of pressure difference.

(e) vcf as function of pressure difference.

Figure 5.6 Results of moving reed, short channel (L/h = 1).
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(a) Pressure profile. (b) Opening as function of pressure difference.

(c) Flow as function of time. (d) Flow as function of pressure difference.

(e) vcf as function of pressure difference.

Figure 5.7 Results of moving reed, long channel (L/h = 4).



5 Numerical Modeling of Acoustic Systems with Moving Boundaries 148

of flow entering into the mouthpiece chamber is reduced due to a smaller opening of
the reed channel. When the reed is completely closed at the closing pressure, which is
about 8783 Pa for the short channel and 8939 Pa for the long channel, there is almost
no flow entering into the mouthpiece chamber, and pa drops to zero. In Stage II, pa
starts to increase when the decreasing mouth pressure is lower than the closing thresh-
old. The threshold of the closing pressure in Stage II is lower than that in Stage I. This
phenomenon is explained by the bifurcation delay (Atig et al., 2004; Bergeot et al., 2014).

Figures 5.6(b) and 5.7(b) depict the reed channel opening as a function of dp for the
case of short channel and long channel, respectively. For the most part, the opening
is almost linearly related to dp. A hysteresis effect is found in the region of dp that is
higher than about 7 kPa. There is a sudden drop and increase of opening when the
mouth pressure reaches the closing pressure in Stage I and Stage II, respectively.

Figures 5.6(c) and 5.7(c) depict the Bernoulli flow Ub, the measured flow U and the
theoretical flow Uz calculated from van Zon’s model as a function of time. Figures 5.6(c)
and 5.7(c) represent the same flow data as a function of pressure difference, where U(1),
Uz(1) and U(2), Uz(2) are the flow associated with Stage I and Stage II, respectively. The
contraction parameter of van Zon’s model for the short channel is 0.7.

The measured flow in the moving reed case shows some differences to the quasi-
stationary model. The measured flow shows hysteresis for cases of both short channel
and long channel. The quasi-stationary model, on the other hand, only shows hystere-
sis for the long channel because the displacement of reed is taken into account. For the
short channel, the measured flow U is higher than the Bernoulli flow Ub and theoreti-
cal flow Uz of the quasi-stationary model in the region where dp is more than about 3
kPa. Similarly, for the long channel, U is higher than Ub and Uz in the region where
dp is more than about 4 kPa. It can also be observed in Figs. 5.6(e) and 5.7(e) that the
vena contracta factor shows a value larger than unity in the region of higher dp. This
phenomenon might be explained by the discussion in Dalmont et al. (2003), where the
quasi-stationary model assumes the reed channel with a fixed separation point and a
uniform height, which is questionable in the case of a more realistic clarinet mouth-
piece, in which the height across the reed channel varies and the separation point may
change. The discrepancies might also be related to the flows of low Reynolds number
that cannot be described by the Bernoulli’s equation. The measured vcf associated with
the region of dp > 6.5 kPa is questionable and is discarded due to the dramatical change
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of both U and Ub, as depicted in the region around about 43 ms in Figs. 5.6(c) and 5.7(c).

5.4.4 Discussions

The staircase-like ripples found in the measured flow and opening for the cases of mov-
ing reed (Figs. 5.6 and 5.7) might be explained by the low spatial resolution. Even in
the full opening, the tip height is represented by only 14 cells. When the reed channel
is nearly closed, the cells are even fewer and insufficient to represent the flow crossing
the reed channel and the boundary layer effect. When the reed tip is moving across a
fluid cell, there is an abrupt change of the pressure difference across the surfaces of the
reed which functions as a step exciting signal. The staircase-like ripples are probably re-
sulted from the reed’s motion driven by the step-like aerodynamic force. One may think
that there might having some sort of acoustic reflections at the outlet of the mouthpiece,
which might be driving the reed. To verify this hypothesis, we can calculate the funda-
mental oscillation frequency due to the acoustic resonance of the mouthpiece, which is
approximated by f0 ' 340/(2 ∗ L) = 2623Hz, where L = 64.8× 10−3 (m) is the length of
the mouthpiece chamber. On the other hand, there are about 6.5 ripples during the time
span of 10ms, which corresponds to a fundamental frequency of ' 650Hz that is much
lower than the frequency of the hypothetic acoustic standing wave. Thus, the ripples
are not driven by the acoustic reflections.

The measurements can be further improved by using a higher spatial resolution, as
we will do in the next section for the case of an oscillating reed. However, this problem
cannot be fully solved by simply using an extremely large lattice because of the limited
computation and memory resources allowed by the GPU device, and the results are al-
ways dubious when the opening is very small. An adaptive grid refinement technique
(Rohde et al., 2006) might be helpful but is not implemented in the current model yet.
Nevertheless, a low-discretized lattice can still capture reasonable well global parame-
ters such as the averaged volume flow.

Due to the relatively higher numerical viscosity, the Reynolds number in the numer-
ical simulation is lower than the realistic one. In the situation of the static reed, the
highest Reynolds number is 140, which is much lower than the realistic Reynolds num-
ber 4762 (assuming the same volume velocity). Consequently, the measured flow is not
exactly the same as the Bernoulli flow and the quasi-stationary model, which is based
on the assumption of inviscid flow. A low numerical viscosity is not practical for the
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(a) Absolute velocity.

(b) Velocity profile of the jet passing through the reed channel.

(c) Velocity profile depicted in a larger scale.

Figure 5.8 Visualization of the velocity field, short channel.
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(a) Absolute velocity.

(b) Velocity profile of the jet passing through the reed channel.

(c) Velocity profile depicted in a larger scale.

Figure 5.9 Visualization of the velocity field, long channel.
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dynamic reed case because, apart from the issue of numerical stability, there is the diffi-
culty of eliminating the noise caused by acoustic oscillations when the viscosity is very
low. Nevertheless, useful results can still be obtained from the current model.

As already noted in Fig. 5.5(b), the predicted volume flow rate deviates largely from
van Zon’s model for the long channel case. We attempted to investigate this discrepancy
by estimating the boundary layer thickness from the spatial distribution and evolution
of the jet. Figures 5.8(a) and 5.9(a) visualize the velocity field (u =

√
u2
x + u2

y) for the
cases of static short and long reed channels respectively, from which we can observe
that the flow is passing through the reed channel and is dissipated in the mouthpiece
chamber. Figures 5.8(b) and 5.9(b) depict the velocity profile of the jet passing through
the short and long reed channel, respectively. In the short channel, a flow separation can
be observed at the entrance and the total critical thickness of the boundary layers on both
the top and bottom walls is about 7 cells, corresponding to an averaged dimensionless
thickness of 0.2333 for one wall, which is slightly lower than the thickness of 0.2688 used
in van Zon’s model. For the case of long channel, a reattachment of the flow occurs after
a distance on the order of the reed channel height, and a Poiseuille flow is developed
after a transition zone. The averaged dimensionless thickness of the boundary layer
is about 0.3 (9 cells in total). The lower volume flow for the long channel case might
be caused by the boundary layer thickness which is slightly higher than that used in
van Zon’s model, But it could also be influenced by the flow pattern characterized by a
low Reynolds number, because the boundary layer thickness estimated from the velocity
profile is not very accurate due to the low-discretization. In a dynamic situation, though,
the flow profile would certainly not match van Zon’s assumption. The flow detachments
at the reed tip can be better observed in Figs. 5.8(c) and 5.9(c), where the velocity profiles
in the neighboring area of reed tip are depicted in a larger scale. The magnitude of the
counter-flow at the reed wall is much lower than that of the maximum flow velocity but
still can be observed.

5.5 Investigations of the Dynamic Regime

In this section, we investigate the characteristics of the mouthpiece-reed system of a
clarinet with an acoustic resonator in the dynamic regime.



5 Numerical Modeling of Acoustic Systems with Moving Boundaries 153

5.5.1 Setup of Simulations

The hybrid clarinet model discussed in Sec. 5.3 has produced reasonable good results in
the quasi-stationary simulations presented in Sec. 5.4, though we have also found some
of the results might be compromised by the rather low spatial resolution. With some
refinement in this model, we are able to simulate the clarinet in the dynamic regime as
well in a reasonably short time span, which is an aspect that must be taken into account
when the system is fully coupled with aerodynamic and acoustic oscillations.

Firstly, to facilitate the acoustic oscillation, we set the aperture of the reed channel at
rest to h = 1 (mm), which is slightly smaller than the one used in the quasi-stationary
simulations. We also found that an acoustic oscillation is much easier to obtain when
the reed is less rigid, so a smaller Young’s modulus with a half value of that used in Sec.
5.4 is chosen here, i.e., Y = 2.8 × 109 (N/m2). The next refinement is using a higher
spatial resolution, dx = 4.25 × 10−5 (m), which corresponds to about 24 cells covering
the tip aperture at rest. Therefore we are able to capture more details of the flow behav-
ior, which is essential to visualize the phenomenon of flow separation and reattachment
in the reed channel. Last but not least, in order to provide a precise and stable pres-
sure source in the mouth cavity in the presence of strong acoustic oscillations typically
found in the dynamic simulations, we improved the SRC scheme previously used in
the quasi-stationary simulations with an auto-feedback procedure (AFP), such that the
target pressure and velocity of the SRC is not only read from the prescribed static profile
but also compared and adjusted with the instantaneous pressure measured in the mouth
cavity.

The lattice relaxation parameter is chosen as Ω = 1.88, which is the same as the
value used for quasi-stationary simulations, but the corresponding physical kinematic
viscosity of the fluid changes to 2.66 × 10−4 (m2/s) because of the new smaller dx. The
time step is dt = 7.22 × 10−8 (s). The duration of each simulation is set to 500,000
iterations, or about 36ms.

All three different geometries depicted in Fig. 5.3 are used in the dynamic simu-
lations, namely a), short channel (L/h = 1), b), long channel (L/h = 4) and c), long
channel with a ditch at the outlet.

The source signal has been generated by the three SRC buffers attached on top of
the inner walls of the mouth cavity. In order to simulate the playing of a clarinet by
a musician, the mouth pressure pm is prescribed by an “attack-drop-sustain” profile,
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Geometries pmt0 pmt
Short channel 3000 (Pa) 700 (Pa)
Long channels 3000 (Pa) 1000 (Pa)

Table 5.4 Mouth pressures prescribed for different lay geometries.

i.e., pm increases from zero to an initial high target pressure pmt0 in a very short time
span (1 percent of the total simulation time, or about 0.36 ms), then drops quickly in
0.07 ms and remains a constant value pmt until the end of the simulation. In the present
study, only the soft playing condition is investigated, i.e., the amplitude of the mechanical
vibration is kept at a small level such that no beating happens during the stable stage.
In such a case, the flow consists of a small oscillation component superimposed on a
steady component, and the reed and air-column vibrations are nearly sinusoidal. Table
5.4 lists the playing parameters used in the simulations. The initial target pressure pmt0
is close to the threshold of pressure closing the reed channel, which is lower than the
one found in the quasi-stationary simulations using a harder reed. It takes some try and
errors to find the appropriate pmt to maintain a soft oscillation without a beating reed
during the whole simulation. A lower pmt is assigned for the short channel geometry
because the reed is very prone to beating.

The analysis is performed on two steps. In the first step, the velocity field and the
pressure field in the whole mouthpiece chamber are qualitatively visualized, which pro-
vide an overview of the distribution and evolution of the fluid flow and the pressure
field. In the second step, the time histories of reed tip displacement, pressure differ-
ence across the reed channel and volume flow in one reed duty cycle are analyzed, and
the numerical volume flow is compared to the results predicted by van Zon’s quasi-
stationary model.

Due to the huge amount of data generated in the simulations, it is not practical to
save all the velocity and density fields at every single time step. For the qualitative
visualization in the first step, 40 snapshots of velocity and density field in a rectangular
area enclosing the baffle and the reed channel have been probed during the period of
two acoustic cycles. The period of one acoustic cycle Tac in a static clarinet with a closed
reed channel can be approximated from the effective length of the system including the
length correction by

Tac ≈
4(L3 + L2 + 0.61a)

cs
= 1.53 (ms), (5.7)
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where cs = 340 (m/s) is the speed of sound, L3 = 64 (mm) is the length of the bore,
L2 = 64.8 (mm) is the length of mouthpiece and a = 8 (mm) is the radius of the bore.
The fundamental acoustic resonance frequency of the system under the static condition
is obtained by fac = 1/Tac ≈ 654 (Hz). The actual fundamental operating frequency of
the system under the dynamic condition must be lower due to the additional effective
volume of the reed channel caused by the reed’s motion. Nonetheless, we can obtain
some 20 frames for one full reed duty cycle from the probed data of 40 frames.

Figure 5.10 Three probing points in reed channel.

For the analysis in the second step, the time histories of pressure in the mouth cavity,
the mouthpiece and the radiation domain out of the pipe are probed, namely pm, pa
and rad, as depicted in Fig. 5.2. The velocity profiles and the reed displacements at the
outlet x0, the middle (x1) and the inlet (x2) of the reed channel, as depicted in Fig. 5.10,
are probed and used to calculate the corresponding volume flow (U0, U1 and U2) and
openings (h0, h1 and h2). The corresponding sampling period is set to 10 × dt, which is
more than enough for our analysis while the data size is reduced by 10 times.

5.5.2 Waveform and Spectrum

The time histories associated with the displacement of the reeds measured at their tips,
yrtip, as well as pressures measured in the mouth (pm), in the middle of the mouthpiece
(pa) and in the radiation domain (rad) and the pressure difference across the reed chan-
nel (dp = pm − pa) for different lay geometries are depicted in Fig. 5.11, respectively.
The reed oscillation associated with the short channel presents a lower amplitude and a
longer transient period before the oscillation becomes almost stable, this is likely due to
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(a) Short channel.

(b) Long channel.

(c) Long channel with a ditch.

(d) Short channel.

(e) Long channel.

(f) Long channel with a ditch.

Figure 5.11 Time histories of displacements of reed tips (left) and
pressures (right) for different geometries.
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(a) Short channel.

(b) Long channel.

(c) Long channel with a ditch.

(d) Short channel.

(e) Long channel.

(f) Long channel with a ditch.

Figure 5.12 Normalized waveforms (left) and spectrum (right) of
reed tips (yr) and acoustic pressures (pa in mouthpiece, rad in ra-
diation domain) for different geometries.
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the lower prescribed mouth pressure associated with the short channel (pm = 700 Pa)
compared to the one associated with the long channels (pm = 1000 Pa). There is no
beating except for the very first cycle when the systems are excited by a step-like initial
pressure signal. Since the reed is relatively soft and there is no lip forces, the reed tip
can move below the equilibrium point by 0.25 mm. Due to the time required for the
acoustic wave propagating back and forth in the pipe and in the radiation domain, there
is a phase delay between the radiated pressure (rad) and the pressure measured in the
mouthpiece (pa). As expected, the amplitude of rad is significantly lower than that of
pa, because most acoustic energy is dissipated in the pipe due to themoviscous losses
and wall frictions. Having said that, the pressure rad captured in the radiation domain
is a near-field representation. Therefore, it does not represent exactly what we hear.

Figure 5.12 compares the normalized waveform (left) of the reed tip oscillation (yr)
and the acoustic pressures (pa, rad) extracted from the relatively stable part of the time
histories and the corresponding power spectrum (right) for all three geometries, where
the frequencies of the relatively strong modes (amplitudes greater than −40 dB) are an-
notated. First of all, the fundamental frequency f0 associated with all three geometries
is significantly lower than the theoretical fundamental frequency (f (static)

0 = 654 (Hz))
estimated from the effective length of the system in static condition. f (s)

0 = 556 (Hz) as-
sociated with the short channel has a value lower by 15 percent, and f

(l)
0 = 586 (Hz) as-

sociated with the long channel is lower than f (static)
0 by 10 percent. These phenomenon is

explained by the additional length correction caused by the reed volume velocity (Ned-
erveen, 1998, pp. 28-35). There are some differences between the spectrum of the short
channel and the long channel. For example, the fundamental mode of the short chan-
nel is lower than that of the long channel by 5.5% (556 Hz vs. 586 Hz), which makes
sense in that the effective length of the mouthpiece-bore system having a short channel
is longer. Also, most higher modes of the mouthpiece-bore system with the long chan-
nels are stronger than that of the short channel case, excepts for the second mode. These
differences are likely explained by the lower pm used for the short channel geometry. On
the other hand, the ditch cut at the outlet of the long channel does not make a noticeable
difference in the spectrum.
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(a) Short channel. (b) Long channel. (c) Long channel with a ditch.

Figure 5.13 Instances selected for visualization in
one ducy cycle.

Geometry Opening stage Largest opening Closing stage
Short channel (a) n=1,2,3,4,5,6 n=8 n=10,13,15,17,19

Long channel (b&c) n=1,3,4,5,6,7 n=9 n=11,13,15,17,19

Table 5.5 Instances selected for sequential field visualizations in one duty
cycle.

5.5.3 Field Visualizations in One Duty Cycle

The velocity field and density field in the mouthpiece area has been captured and visu-
alized in various manners. For the economic reason, only 40 snapshots roughly covering
two acoustic cycles in the middle of the stable oscillations are saved for each simulation.
Figure 5.13 depicts the motion of the reed tip in 40 instances for different lay geometries.
The instances covering one duty cycle are depicted as red dots, where the indices of in-
stances at the beginning and the end of the duty cycle are indicated. During one duty
cycle, we select 12 instances for sequential field visualizations, i.e. 6 instances during
the opening stage, 1 instance at the largest opening and 5 instances during the closing
stage, as shown in Table 5.5. The redundant measurements outside of the duty cycle are
discarded.

5.5.3.1 Pressure Field in Mouthpiece

Figures 5.14, 5.15 and 5.16 depict 12 instances of the sequential pressure fields in terms
of normalized fluid density in the mouthpiece chamber as well as the reed channel and
part of the mouth cavity. The reed is represented by a red thick curve and the walls of the
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(a) n=1 (0T) (b) n=2 (0.05T) (c) n=3 (0.11T)

(d) n=4 (0.16T) (e) n=5 (0.21T) (f) n=6 (0.26T)

(g) n=8 (0.37T) (h) n=10 (0.47T) (i) n=13 (0.63T)

(j) n=15 (0.74T) (k) n=17 (0.84T) (l) n=19 (0.95T)

Figure 5.14 Short channel: pressure field (back-
ground) and profile of averaged pressure (thick black
dashed line) in mouthpiece.

Geometry pm (Pa) dynamic range of pa (Pa)
Short channel 701 [-523, 845]
Long channel 1035 [-904, 955]

Long channel with a ditch 1034 [-902, 972]

Table 5.6 Mean value of pm and dynamic range of pa in one duty cycle for
different lay geometries.

baffle by black lines. The color in the background is mapped to the normalized density
field. The mean value of the mouth pressure and the minimum and maximum values of
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(a) n=1 (0T) (b) n=3 (0.11T) (c) n=4 (0.17T)

(d) n=5 (0.22T) (e) n=6 (0.28T) (f) n=7 (0.33T)

(g) n=9 (0.44T) (h) n=11 (0.56T) (i) n=13 (0.67T)

(j) n=15 (0.78T) (k) n=17 (0.89T) (l) n=19 (1T)

Figure 5.15 Long channel: pressure field (back-
ground) and profile of averaged pressure (thick black
dashed line) in mouthpiece.

the pressure in one duty cycle in the mouthpiece have been mapped to three horizontal
thin black dashed lines, respectively. These values for each geometry are listed in Table
5.6. The pressure variations in the mouthpiece chamber are visualized by the thick black
dashed curve.

The pressure fields associated with the three geometries share some similarities. For
all instances in the duty cycle, the pressure variation in the left part of the mouthpiece,
i.e. far away from the outlet of reed channel, is negligible, that is partly in agreement
with the assumption by van Zon et al. (1990) that the pressure in the mouthpiece is uni-
form and equal to the pressure at the end of the reed channel. The influence on the
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(a) n=1 (0T) (b) n=3 (0.11T) (c) n=4 (0.16T)

(d) n=5 (0.21T) (e) n=6 (0.26T) (f) n=7 (0.32T)

(g) n=9 (0.42T) (h) n=11 (0.53T) (i) n=13 (0.63T)

(j) n=15 (0.74T) (k) n=17 (0.84T) (l) n=19 (0.95T)

Figure 5.16 Long channel with a ditch: pressure
field (background) and profile of averaged pressure
(thick black dashed line) in mouthpiece.

pressure field due to the acoustic coupling is negligible because the dimension of the
mouthpiece is much smaller than the wavelength of the low acoustic modes carrying
higher energy. However, the pressure variations in the area near the outlet of the reed
channel are not negligible, this is particularly true for the short channel geometry. Only
at the very instant of the largest tip opening, the pressure in the whole mouthpiece is
almost uniform and identical to the mouth pressure. In other words, the pressure dif-
ference is near zero when the reed channel is fully opened. In the intermediate stages
between the fully opened and fully closed reed channels, the pressure difference is not a
constant as assumed by quasi-stationary theory but is influenced by the channel open-
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ing, i.e., the pressure difference in the downstream direction increases as the channel is
closing, and vice verse. The prominent pressure variations found in the area close to the
outlet and inside the reed channel should be attributed to the complex flow patterns in
the mouthpiece and the reed channel, which will be discussed later.

5.5.3.2 Velocity Field in Mouthpiece

The velocity fields associated with the three geometries are visualized in two different
zoom levels. Figures 5.17, 5.18 and 5.19 provide snapshots of the normalized absolute
velocity field u =

√
u2
x + u2

y in the mouthpiece chamber, taken at 12 different instances
within the same duty cycle. The direction and magnitude of the velocity vector asso-
ciated with each cell is indicated by the white arrows and the raw image is kept as
background. For the sake of clarity, the velocity vector is plotted sparsely at 24 cells
intervals.

For all three lay geometries, the flow direction is from right to left. The maximum
magnitude of velocity is 10.1 (m/s) for the short channel, 15.6 (m/s) for the long channel
and 15.6 (m/s) for the long channel with a ditch, respectively. The region of highest
velocity is mainly found along the upper surface of the mouthpiece, this phenomenon
is also found in the numerical results by da Silva et al. (2007) for the case of a dynamic
anechoically terminated mouthpiece of clarinet and experimental results by Lorenzoni
and Ragni (2012) for the case of a saxophone under the normal playing condition, but is
different from the quasi-stationary case shown in Figs. 5.8 and 5.9, where the jet of high
velocities out of the reed channel is still close to the reed wall.

For the case of the short channel, the flow pattern during the opening stage is com-
plex. In the lower part of the mouthpiece near the reed wall, there is a flow in the oppo-
site direction due to the acoustic coupling. Along the upper surface of the mouthpiece,
the fluid field is dominated by positive flow. In between, there are zero velocity regions
in the middle of the mouthpiece chamber and vortices formed in the downstream direc-
tion due to the interaction of positive flow and negative flow.

For the case of the long channels (with and without a ditch), the negative flow and
zero velocity region due to the influence of the acoustic wave are also found in the mid-
dle of the mouthpiece chamber during the opening stage, but there is no vortices be-
cause the positive flow is much stronger than the negative one due to a high pressure
prescribed in the mouth. In the instances of the largest tip opening and during the
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(a) n=1 (0T) (b) n=2 (0.05T) (c) n=3 (0.11T)

(d) n=4 (0.16T) (e) n=5 (0.21T) (f) n=6 (0.26T)

(g) n=8 (0.37T) (h) n=10 (0.47T) (i) n=13 (0.63T)

(j) n=15 (0.74T) (k) n=17 (0.84T) (l) n=19 (0.95T)

Figure 5.17 Short channel: absolute velocity field u
(background) and velocity vectors (white arrows) in
mouthpiece.
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(a) n=1 (0T) (b) n=3 (0.11T) (c) n=4 (0.17T)

(d) n=5 (0.22T) (e) n=6 (0.28T) (f) n=7 (0.33T)

(g) n=9 (0.44T) (h) n=11 (0.56T) (i) n=13 (0.67T)

(j) n=15 (0.78T) (k) n=17 (0.89T) (l) n=19 (1T)

Figure 5.18 Long channel: absolute velocity field u
(background) and velocity vectors (white arrows) in
mouthpiece.
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(a) n=1 (0T) (b) n=3 (0.11T) (c) n=4 (0.16T)

(d) n=5 (0.21T) (e) n=6 (0.26T) (f) n=7 (0.32T)

(g) n=9 (0.42T) (h) n=11 (0.53T) (i) n=13 (0.63T)

(j) n=15 (0.74T) (k) n=17 (0.84T) (l) n=19 (0.95T)

Figure 5.19 Long channel with a ditch: absolute ve-
locity field u (background) and velocity vectors (white
arrows) in mouthpiece.
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closing stage, the direction of the flow motion is almost uniform in the middle of the
mouthpiece chamber, and there is no obvious vortices. The influence of the ditch on the
flow pattern in the major part of the mouthpiece chamber is negligible, but there is a
weak vortex formed in the ditch area and the jet is slightly inclined to the upper surface
due to the Coanda effect, which is observable at instances 0.74T and 0.84T in Fig. 5.19.

5.5.3.3 Zoomed-In Field Visualization in the Reed Channel

Figures 5.20, 5.21 and 5.22 provide a clear view of various phenomena observed in the
reed channel during one duty cycle. The curl of the normalized velocity field is kept as
the background from which the jet can be identified. On top of that, the white arrows
present the direction and magnitude of the velocity vectors distributed at an interval of
5 cells in the x-direction. The green arrows plotted at an interval of every 3 cells along
the reed surface present the normalized aerodynamic force exerting on the reed due to
the pressure difference across both surfaces of the reed. Since the restitutive elastic force
of the reed is not taken into account, the green arrows do not change directions during
the duty cycle and are always positive. The mean value of the mouth pressure and
the minimum and maximum values of the pressure in the mouthpiece during one duty
cycle have been mapped to three horizontal thin black dashed lines, respectively, where
their values for each geometry are provided in Table 5.6. Using the same mapping scale,
the thick black dashed curve qualitatively illustrates the mean pressure profile in the
reed channel and the nearby mouthpiece chamber delimited by the inner lay wall and
the upper surface of the reed.

For the case of the short channel (Fig. 5.20), a jet is formed at the channel’s entrance
and is distinguished from the upper and bottom boundary layers during the opening
stage (from 0T to 0.37T ). The different colors mapped on the boundary layers (blue and
red) indicate the negative and positive velocity gradients of the fluid in the vicinity of
the walls of the lay and the reed, respectively.

As the reed continues to move down (dh/dt > 0), there is a separation region con-
sisting of cells with near zero velocities formed on the bottom of the reed channel right
next to the entrance. This phenomenon has been discussed by van Zon et al. (1990) in
the quasi-stationary model of flow where a separation is expected at the entrance of the
reed channel if the edges of the mouthpiece and the reed are sharp. In the present sim-
ulation, however, the flow adheres to the upper lay wall where no separation occurs
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(a) n=1 (0T) (b) n=2 (0.05T) (c) n=3 (0.11T)

(d) n=4 (0.16T) (e) n=5 (0.21T) (f) n=6 (0.26T)

(g) n=8 (0.37T) (h) n=10 (0.47T) (i) n=13 (0.63T)

(j) n=15 (0.74T) (k) n=17 (0.84T) (l) n=19 (0.95T)

Figure 5.20 Short channel: the curl of velocity field
(background), the velocity profile (white arrows), the
pressure profile (thick dashed line) and the aero-
dynamic force profile on the reed (green arrows).
Zoomed in in the vicinity of reed channel.
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(a) n=1 (0T) (b) n=3 (0.11T) (c) n=4 (0.17T)

(d) n=5 (0.22T) (e) n=6 (0.28T) (f) n=7 (0.33T)

(g) n=9 (0.44T) (h) n=11 (0.56T) (i) n=13 (0.67T)

(j) n=15 (0.78T) (k) n=17 (0.89T) (l) n=19 (1T)

Figure 5.21 Long channel: the curl of velocity field
(background), the velocity profile (white arrows), the
pressure profile (thick dashed line) and the aero-
dynamic force profile on the reed (green arrows).
Zoomed in in the vicinity of reed channel.
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(a) n=1 (0T) (b) n=3 (0.11T) (c) n=4 (0.16T)

(d) n=5 (0.21T) (e) n=6 (0.26T) (f) n=7 (0.32T)

(g) n=9 (0.42T) (h) n=11 (0.53T) (i) n=13 (0.63T)

(j) n=15 (0.74T) (k) n=17 (0.84T) (l) n=19 (0.95T)

Figure 5.22 Long channel with a ditch: the curl of
velocity field (background), the velocity profile (white
arrows), the pressure profile (thick dashed line) and
the aerodynamic force profile on the reed (green ar-
rows). Zoomed in in the vicinity of reed channel.
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on the rail tip, this is probably due to the thick edge of the mouthpiece tip. The same
phenomenon of semi-detached flow is also reported by da Silva et al. (2007).

The quasi-stationary model assumes a uniform Bernoulli flow detached all the way
through the short channel. The numerical results presented here are more complex. The
flow can be described as uniform and fully detached from the reed only at the very be-
ginning part of the reed channel. As the jet travels downstream, the separation region
gradually shrinks due to the momentum transfer by viscosity from the jet to the sep-
aration region, known as the Coanda effect. Meanwhile, the uniform profile of the jet
gradually grows into a parabolic shape and the jet eventually develops into a Poisseuille
flow as it arrives at the end of the reed channel. As the jet is injected into the mouth-
piece chamber, it is detached from both the reed and the inside wall of the lay due to the
abrupt expansion of geometry.

During the closing stage (from 0.47T to 0.95T ), the separation region on the bottom of
the reed channel disappears and the jet attaches to the reed’s surface all the way through-
out the reed channel. This phenomenon is also in contrast with the quasi-stationary
model which assumes a constant fully separated flow. Actually, during the early part
of the opening stage (from 0T to 0.11T ) and throughout the closing stage (from 0.63T

to 0.95T ), the flow can be better described as a Poisseuille flow not only because of its
parabolic velocity profile but also the gradient of the downstream pressure profile (the
thick black dashed curve), which decreases downstream gradually though not linearly.

In general, the pressure gradient along the downstream direction inside the reed
channel decreases as the reed channel aperture increases. For most instances during the
duty cycle, the pressure profile in the reed channel is neither uniform nor smooth. At the
channel entrance, there is a big drop between the pressure inside the reed channel and
in the mouthpiece. After this initial drop, the pressure variation downstream in the reed
channel is still not negligible, which decreases as the reed channel aperture increases.
Consequently, the force distributed on the reed (depicted by the green arrows) is not
uniform when the channel aperture is not very large.

For the long channel geometries (Figs. 5.21 and 5.22), a separation region also forms
between the jet and the reed during the opening stage. Due to the Coanda effect, the
flow reattaches to the reed at a distance of about 2Hrc from the channel entrance, where
Hrc is the tip aperture at rest. This phenomenon is in accordance with the prediction
of the quasi-stationary model. During the closing stage, the flow is developed into a
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Figure 5.23 One duty cycle selected from time histories of reed tip for dif-
ferent geometries (a: short channel, b: long channel, c: long channel with a
ditch).

Poisseuille flow featured by a parabolic velocity profile. The linear decreasing pressure
profiles at the instances of n = 13 and 15 are typical for a Poisseuille flow.

Besides the longer distance between the reattachment point and the entrance found
in the long channel, we also observe that the flow reattachment occurs at about 0.53 ∼
0.56T in the long channel, which is delayed compared to ∼ 0.47T for the case of the
short channel. A similar phenomenon is also reported by da Silva et al. (2007) for the
case of an anechoically terminated mouthpiece. This characteristic is explained by the
combined effects of the inertia associated with different fluid volumes within the reed
channel and the flow induced by the reed.

5.5.4 Characteristics of Dynamic Flows in One Duty Cycle

We now carry out further investigations regarding the dynamic characteristics in one
single oscillation period. The one reed duty cycle has been selected based on the wave-
forms of the reed tip motion sampled at the period of 10×dt. Figure 5.23 depicts the one
duty cycle selected for all three cases of lay geometries, where the short channel, long
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(a) Opening in one cycle. (b) Energy flow in one cycle.

(c) Reynolds number as a function of opening.

Figure 5.24 Opening, Normalized energy flow and Reynolds number in one
cycle for different geometries (a: short channel, b: long channel, c: long chan-
nel with a ditch).
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channel and long channel with a ditch are represented by a (red solid line), b (black solid
line) and c (blue dashed line), respectively. The two horizontal red dashed lines indicate
the location of the rail tip (y0 + Hrc) and the reed tip at rest (y0), respectively. In the
soft playing condition, the reed is not beating so the reed tip is always below the rail tip
during the one duty cycle. Since there is no lip force engaged and the reed is relatively
soft, the reed tip can move to a place lower than y0. The oscillation periods associated
with the geometries of long channel are very close to each other by themselves and are
about 5.3% shorter than that for the short channel.

Figures 5.24(a) and 5.24(b) depict the channel opening h and the normalized energy
flow E as a function of normalized time during one single period of T . The opening
stage and the closing stage are distinguished by the dashed line and the solid line, re-
spectively. The energy flow is defined as E = 1

Mr

∑Mr−1
m=0 F (m) · ẏr(m), where Mr is the

total number of nodes of the distributed reed model, F (m) stands for the aerodynamic
force measured on the reed at mth node and ẏr(m) is the velocity measured on the reed
atmth node. A negative energy E(−) indicates an opposite direction of the energy trans-
fer, which means that the system is losing energy. A positive energy E(+) indicates that
the energy is transferred from the flow to the reed due to the work of the aerodynamic
force. For all cases, the shift from negative to positive energy flow coincides with the
maximum opening. The negative and positive energy regions are completely mapped
to the opening stage and the closing stage, respectively, which is because the direction
of aerodynamic force is almost always positive. Consequently the force is out of phase
with the reed motion during the opening stage and in phase with the reed motion during
the closing stage.

The net energy absorbed by the system can be evaluated by the ratio E(+)/E(−),
which has been calculated for each geometry and displayed in Fig. 5.24(b). The higher
net energy absorbed in the cases of long channel explains their higher amplitude of reed
oscillation in Fig. 5.24(a). Actually, the net energy ratio for the short channel case is less
than one, which indicates a slightly damped oscillation which is not clearly observable
in the waveform of yrtip (Fig. 5.11) during the relatively short simulation time. For the
cases of the two long channels, the slightly smaller value of the net energy ratio found
for the geometry with a ditch is most likely caused by the extra energy dissipation in the
ditch region.

Figure 5.24(c) depicts the Reynolds number Re = U/wν as a function of opening.
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Strong hysteresis can be found in all cases, which is ascribed to the complex flow pat-
terns which will be discussed later. Except for very small openings, the Reynolds num-
ber in general is larger than 10, which is sufficiently high for simulating the flow sep-
aration phenomenon (van Zon et al., 1990), as we have previously discovered in the
field visualizations. However, due to the inherent limitation of maximum value of ve-
locity, i.e. M < 0.15, that is allowed in the LBGK scheme simulating an incompressible
fluid, the Reynolds number can not be much higher in the simulations. The very high
Reynolds numbers (e.g., Re > 1000) reported in previous publications (da Silva et al.,
2007, 2013) based on similar LBGK schemes are questionable and should be verified.

5.5.4.1 Dynamic Flow Behaviors in the Reed Channel

Here we carry out a further investigation on the dynamic flow behaviors in the reed
channel. For all cases of lay geometry, the displacement of the reed and the volume flow
per unit width (U/w) during one duty cycle probed at three different points (x0, x1 and
x2, see Fig. 5.10) are plotted in parallel in Fig. 5.25. The reed oscillations for all geome-
tries are slightly asymmetric but close to sinusoidal, where the opening stage is about
40% and the closing stage is about 60%. The waveforms of volume flow during one duty
cycle are rather complex and very different from sinusoidal. This phenomenon is due
to the net effects of different components of the volume flow. In the dynamic regime
and in the presence of acoustic coupling, the effective volume flow can be expressed as
U = Udp + Uw + Uac, where Udp is the flow driven by the pressure difference across the
reed channel, Uw is the flow induced by the movement of reed and Uac is the flow driven
by the acoustic field accumulated inside the mouthpiece-bore system. The volume flow
crossing the reed channel is not uniform but rather a function of x, this is particularly
true for the geometries of the long channel. The contribution of acoustic flow is rela-
tively stronger in the vicinity of the end of reed channel (x0), while the influence of Uw is
stronger in the upstream part (x1 and x2) of the reed channel. Moreover, the effect of Uw
is stronger for the case of the long channel, especially at the instances near the closure of
the channel when Udp is very small. The volume flow Udp also varies in the reed channel
because it is influenced by the boundary layer on the walls and the separation region
when it exists, where they are neither uniform in the reed channel nor consistent during
the duty cycle.

Figures 5.26(a) and 5.26(b) depict the pressure difference across the reed channel dur-
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(a) Short channel. (b) Long channel.

(c) Long channel with a ditch.

Figure 5.25 Displacement of reed tip (top) and volume flow per unit width
(bottom) probed at three locations (x0, x1, x2) during one cycle for different
geometries.
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(a) dp as function of time. (b) dp as function of opening.

Figure 5.26 Pressure difference for different geometries.

ing one duty cycle as a function of time and opening, respectively. For geometries of the
long channel, the pressure difference is always positive and is almost linearly related to
the opening, although hysteresis exists due to the different flow behaviors at the open-
ing stage and the closing stage. For the case of the short channel, the pressure difference
is more complex.

Step I II III IV V
Start 0T 0.33T 0.44T 0.56T 0.75T
End 0.33T 0.44T 0.56T 0.75T 1T

Table 5.7 Five steps during one duty cycle for the cases of long channel.

5.5.4.1.1 Long Channel Based on the measured results, we try to explain the charac-
teristics of the volume flows measured at x0, x1 and x2 for the case of the long channel,
namely U0, U1 and U2. Because the ditch has little influence on the volume flow, we will
only discuss the long channel without a ditch. For convenience, we roughly divide the
one single duty cycle into five sequential steps. The start and end time of every step is
shown in Table 5.7.

The range of Step I is from the beginning of the duty cycle (0T ) to the instant when
the reed tip reaches the equilibrium point (' 0.33T ). During this period, the opening h
increases and the pressure difference monotonically decreases. In general, the volume
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flows measured at all three points accelerate over time t, i.e. −dU/dt > 0, where the mi-
nus sign indicates the direction of the flow is from right to left. We can also observe that
the flows decelerate in the downstream direction, i.e. −dU/(−dx) < 0, due to not only
the damping but also the net effects of −Uw and −Uac, where the minus sign indicates a
negative contribution to the net flow.

The−Uw has more influence on U1 and U2. As the reed moves down, the influence of
−Uw compared to Udp decreases over time, this enlarges the gap between U0 and U1 and
U2 over time, as we can find in Figs. 5.25(b) and 5.25(c).

The inverse acoustic flow−Uac coming from the mouthpiece has more influence near
the end of the reed channel. The visualization of the velocity field in the mouthpiece
chamber (Fig. 5.18) shows that the acoustic flow increases and reaches a local maximum
at ' 0.17T and then decreases and vanishes after ' 0.33T . The bump of the curve of U0

at ' 0.17T (Fig. 5.25(b)) is ascribed to the strong negative contribution of the acoustic
flow at that instant. The influence of acoustic flow is also related to the relatively smaller
magnitude of U0 compared to U1 and U2 after 0.17T , this phenomenon of flow slowing
down can be directly observed from the velocity profile from 0T to 0.33T , as depicted
in Fig. 5.21. The flow slowing down is also related to the friction of walls in the long
channel.

It is interesting that U2 is always greater than U1 during Step I in Fig. 5.25(b), despite
the fact that the jet height at x2 is smaller than that at x1 due to the presence of the sepa-
ration region in the upstream part of the reed channel. If we look at the gradient of the
pressure profile at Step I in Fig. 5.21 (from 0T to 0.33T ), we will find significant pressure
drops at the entrance (x2), but only a very small amount of drops in the middle (x1),
this is particularly true for the instances after 0.22T . So the main part of the flow at x1

is not driven by the local pressure difference, but rather it is formed by the fluid parti-
cles from upstream due to inertia. Also, U1 might be further weakened by the negative
acoustic flow downstream. The influence of acoustic pressure can be observed at the in-
stant 0.33T in Fig. 5.21, where despite the global positive pressure difference between the
mouth pressure and the pressure in the mouthpiece chamber, the local pressure gradient
inside the reed channel is actually in the opposite direction, i.e., p(x0) > p(x1) > p(x2).

Step II is defined in the range between 0.33T and 0.44T , corresponding to the re-
gion where the reed tip moves from y0 to the lowest point (or the instant of the biggest
aperture). The flow pattern in Step II differs from that in Step I by the flow decelera-
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tion over time (−dU/dt < 0), while the phenomenon of flow deceleration over space
(−dU/(−dx) < 0) is similar. In this stage, the pressure difference decreases until slightly
above zero. The contribution of −Uw and −Uac is almost negligible. These combined
factors explain the phenomenon that U1 and U2 quickly decrease and U0 decreases rela-
tively slowly.

The end of Step III is defined at 0.56T , corresponding to the instant that the reed
tip moves back to y0. The phenomenon of flow deceleration over time continues, but
the flow across the reed channel switches to the acceleration mode (−dU/(−dx) > 0).
During this step, although the pressure difference slightly increases, the local pressure
differences at x1 and x2 are still very small and the contribution of Uw is very small, so
U1 and U2 continue to decrease due to thermoviscous losses. The amount of U0 is still
relatively big because of inertia.

Step IV is defined in the range between 0.56T and 0.78T covering a large portion of
the closing stage, where the aperture decreases and the pressure difference increases.
The separation region between the jet and the reed vanishes at about 0.56T . This stage is
indicated by the flow acceleration over time (−dU/dt > 0) and the flow acceleration over
space (−dU/(−dx) > 0). The increasing of U0, U1 and U2 is mainly driven by the pressure
gradient across the reed channel, as shown in Fig. 5.21 at instances of 0.67T and 0.78T .
The pressure gradient is almost uniform in the reed channel (dp/(−dx) ≈ constant),
which helps to explain the same increasing rates for flows measured at all three places
(−dU0/dt ≈ −dU1/dt ≈ −dU2/dt).

Step V ranges from 0.78T to 1T . During this stage, the opening is very small and Uw

plays a more important role due to the smaller flow driven by the pressure difference.
All flows measured at three places decrease because the amount of Udp is restricted by
the small opening, despite the fact that the pressure difference increases. At ' 0.89T ,
when the opening becomes very small, the flows decrease at a lower rate because of the
positive contribution of Uw.

Step I II III IV V
Start 0T 0.25T 0.38T 0.52T 0.75T
End 0.25T 0.38T 0.52T 0.75T 1T

Table 5.8 Five steps during one duty cycle for the case of short channel.
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5.5.4.1.2 Short Channel A similar analysis is performed for the dynamic flow behav-
ior in the short reed channel. The one single duty cycle for the short channel is divided
into five steps in time, as shown in Table 5.8.

The range of Step I is from 0T , the beginning of the opening stage, to ' 0.25T , when
the reed tip arrives at the equilibrium point. Like the case of the long channel, the
volume flows measured at all places accelerate over time, and the flow slows down
along the downstream direction. Compared to the case of the long reed channel, there
are two differences observed here. First, there is no inverse flow found during the early
opening stage. The acoustic oscillation in the case of the short channel is weak due
to a low mouth pressure. During Step I, the velocity field in the mouthpiece chamber
shown in Fig. 5.17 is unstable and the flow driven by the acoustic oscillation is not stably
formed in one direction. Consequently, the flow measured at the end of the reed channel
is dominated by Udp and is not much disturbed by Uac. That said, the influence of the
acoustic oscillation can still be observed through the positive gradient of pressure profile
downstream (dp/(−dx) > 0) found in the short reed channel, as shown at the instances
of 0.16T , 0.21T and 0.26T in Fig. 5.20. Second, the difference between U0, U1 and U2

are much smaller than that found in the case of the long channel. This phenomenon is
mainly explained by the reduced damping in a shorter distance and the simple uniform
flow pattern formed in a short channel (Fig. 5.20) which, unlike what happens in the
long channels (Figs. 5.21 and 5.22), is not altered by a flow reattachment in the middle
of the channel.

Step II is defined in the range between 0.25T and 0.38T , the latter corresponding
to the instant of the biggest aperture and the smallest pressure difference. The phe-
nomenon of flow deceleration in the downstream direction (−dU/(−dx) < 0) is similar
to that in the case of the long channel, but to a less extent. During this stage, the pressure
difference continuously decreases to about zero.

Step III is defined in the range between ' 0.38T to ' 0.52T , corresponding to the
period when the reed tip moves from the point of maximum opening back to the equi-
librium point y0. In most time during this short period, the averaged pressure in the
middle of mouthpiece chamber is slightly higher than the averaged mouth pressure.
This negative pressure difference results in a slight deceleration of the volume flow in
the upstream direction, but is not enough to switch the jet to an opposite direction due
to the inertia of the fluid volume.
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Step IV is defined in the range between ' 0.52T to ' 0.75T covering the main part
of the closing stage. It is indicated by a decreasing opening and an increasing pressure
difference. During this step, the jet is attached to the reed. A Poiseuille flow is fully
developed all through the reed channel which can be confirmed by the velocity profiles
and the linearly dropping pressure profiles, as shown in Fig. 5.20 at the instances of
0.63T and 0.74T . This stage is indicated by the flow acceleration over time (−dU/dt > 0)
and the flow acceleration in the downstream direction (−dU/(−dx) > 0). The very small
differences between U0, U1 and U2 are attributed to the short channel length and the
uniform boundary layers formed on both the upper lay wall and the reed wall.

Step V ranges from ' 0.75T to 1T . During this period, due to the lower mouth
pressure, the pressure difference is significantly lower than that in the case of the long
channel. Also, because the reed receives less energy from the fluid than that in the case
of the long channel (see Fig. 5.24(b)), the aperture of the short channel in Step V is bigger
than that of the long channel (see Fig. 5.24(a)). Thus, despite the lower dp, the volume
flows measured in the short channel are actually higher than that measured in the long
channel, because a bigger aperture allows more flow entering into the reed channel and
a shorter channel has less damping.

5.5.4.1.3 Differences Between Short Channel and Long Channel Overall, the volume
flow U in the short channel accelerates earlier into the mouthpiece chamber during the
opening stage. This phenomenon is similar to that reported by da Silva et al. (2007) for
the case of an anechoically terminated mouthpiece in the absence of acoustic coupling,
where the earlier acceleration of volume flow helps the jet adhere on the reed surface
earlier. This is also true for the present simulations with the acoustic coupling. The
adhesion phenomenon in the short channel starts after ' 0.47T (Fig. 5.20), and the same
phenomenon occurs in the long channel after ' 0.56T (Fig. 5.21). In all cases of the
present simulations, the jet never detaches from the upper rail wall. This phenomenon
was mentioned but not clearly observable in the visualizations in (da Silva et al., 2007)
due to the low resolution.

The higher oscillation amplitudes in the geometries of the long channel is mainly
due to the higher net energy measured by the ratio E(+)/E(−), which is related not
only to the lay geometry, but also to the higher mouth pressure. The aerodynamic forces
shown in Figs. 5.20, 5.21 and 5.22 (green arrows) seem not significantly influenced by
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the attachment length, but only related to the mean pressure profile. This seems some-
what different from the results obtained by da Silva et al. (2007). In the latter case, the
conditions were fairly different in that there was no acoustic feedback and the attach-
ment/reatachment played a significant role. In the present study, however, there is an
acoustic field inside the mouthpiece-bore system, and the force on the reed is mainly
dominated by this effect.

5.5.5 Discussions

The numerical results show some fundamental discrepancies compared to the quasi-
stationary predictions. As we have discovered in the field visualizations of the reed
channel (Figs. 5.20, 5.21 and 5.22), the phenomenon of flow separation / reattachment in
the dynamic regime are significantly different from the quasi-stationary predictions. In
the short channel, the flow detached from the reed only in the opening stage but attached
to the rail tip during the full duty cycle, which is in contrast with the fully separated flow
assumed by the quasi-stationary theory. In the case of the long channel, the discrepan-
cies are also obvious, where the separation and reattachment phenomenon only occurs
during the opening stage, which is in contrast to the fixed reattachment point assumed
by the quasi-stationary model. In general, the results obtained in the present dynamic
simulations agree qualitatively to the dynamic results reported by da Silva et al. (2007).

Figure 5.27 compares the numerical volume flows U/w in the dynamic regime to
the predictions of the quasi-stationary model by van Zon in one duty cycle for all three
geometries. On the left side, the volume flows are presented as functions of time (top),
opening (middle) and pressure difference (bottom), respectively. The vena contracta
factors vcf are presented in parallel on the right side. For the numerical results, the
opening stage and the closing stage are represented by the dashed line and the solid line,
respectively. The dot line represents the theoretical predictions. The three geometries
are distinguished by colors, i.e., a) short channel in red, b) long channel in black, c) long
channel with a ditch in blue.

In Figs. 5.27(a) and 5.27(d), the curves of the numerical results of U/w and vcf as a
function of time exhibit trends similar to the counterparts of the quasi-stationary model,
though discrepancies in terms of phase delay and magnitude are clearly observable. The
phase delay should be expected considering the existence of inertia of the fluid volume
and the time associated with the acoustic wave propagation. Also, in Figs. 5.27(b) and
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(a) Volume flow in one cycle.

(b) Volume flow in function of opening.

(c) Volume flow in function of dp.

(d) vcf in one cycle.

(e) vcf in function of opening.

(f) vcf in function of dp.

Figure 5.27 Compare the numerical results with the theoretical pre-
dictions in terms of volume flow and vena contracta factor in one
duty cycle for different geometries.
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5.27(c), strong hysteresis is found in the numerical results in all geometries which is in
stark contrast with the quasi-stationary predictions. Similar phenomena are observable
in the results of vena contracta factors in Figs. 5.27(e) and 5.27(f).

Now we can take a close look in the case of the short channel. During the time span
from' 0.38T to' 0.52T , there is an inverse flow (U/w > 0) found in the quasi-stationary
results, which is caused by the negative pressure difference at the instant of the biggest
opening. This phenomenon is not found in the numerical results, though the trend of
flow deceleration is similar. As previously discussed, this discrepancy is ascribed to the
inertia of the fluid volume, which is not considered in the quasi-stationary model. As
expected, the constant vcf predicted by the quasi-stationary model is not found in the
numerical results. During the time span from ' 0.1T to ' 0.3T and from ' 0.5T to
' 0.95T , or during ' 0.65% of the duty cycle, the numerical vcf fluctuates between 0.4

and 0.8, corresponding to a deviation of ' 33% from the theoretical prediction, which is
larger compared to the deviation reported by da Silva et al. (2007) for the short channel.

Besides the large discrepancy found in the region of big opening and small pressure
difference, another big discrepancy is found in the region of very small opening, which
can be clearly observed in Figs. 5.27(e) and 5.27(f). In the early opening stage of the
short channel, the opening is very small, i.e. 0.2 < h < 0.4 or 2.5 < L/h < 5, thus the
geometry is similar to a long channel. The flow is not fully separated and is more like
a Poiseuille flow, so the quasi-stationary model for the geometry of the short channel is
not valid. This is also true for the late closing stage, where the Poiseuille-like flow in the
reed channel attaches to both the rail tip and the reed. Due to the influence of the flow
induced by the reed (Uw), the volume flow in the closing stage is slightly larger than that
in the opening stage at the same opening, which explains the smaller deviation in the
late closing stage and the hysteresis.

For the geometries of the long channel, the numerical results also exhibit promi-
nent discrepancies compared to the quasi-stationary predictions. During the opening
stage, the numerical volume flow is constantly lower than that predicted by the quasi-
stationary model. This is probably due to the losses caused by the relatively high nu-
merical viscosity and the friction between the fluid and the walls. Additionally, this is
also due to inertial effects because the volume of fluid inside the long channel is bigger,
which takes more force to accelerate. The discrepancy is slightly bigger during the pe-
riod from ' 0.25T to ' 0.33T , corresponding to a big opening between 0.8 and 1.1 mm.
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This can be explained by the fact that the pressure profile in the reed channel during this
period is almost flat (see, e.g., Figs. 5.21 at 0.28T and 0.33T ), consequently, the volume
flow at the end of reed channel driven by the pressure difference is even weaker.

During the early closing stage between ' 0.44T and ' 0.7T , the trend of a lower
numerical volume flow continues until ' 0.7T , after then the numerical volume flow
is higher than the theoretical prediction. Actually, the quasi-stationary model for the
long channel does not hold in the late closing stage because the separation region van-
ishes and the reed channel is dominated by fully developed Poiseuille flow, which is in
contrast to the phenomenon of separation / reattachment assumed by the theory.

5.6 Conclusion

In this chapter, we investigated the aeroacoustic aspects of a clarinet using a 2D hybrid
numerical model. The fluid and the static walls were simulated using a GPU-accelerated
parallel LB MRT model, which had been verified in Chpt. 4. The reed was simulated us-
ing the distributed model proposed by Avanzini and van Walstijn (2004). The interface
integrating the reed model and the LB model was based on the technique developed by
da Silva et al. (2007), which was re-implemented and parallelized on the GPU-PyCuda
platform.

There were several improvements of the present numerical scheme compared to the
one developed by da Silva et al. (2007). The numerical stability of the LB model was
improved by the MRT scheme and the extrapolation scheme (Guo et al., 2002). The sim-
ulation speed was greatly improved by the parallelization of the LB model and the reed
model implemented on the GPU platform, which was essential for the computationally
intensive simulations involving acoustic oscillations which has a prolonged oscillating
period and requires a longer transient period before the stable oscillation is obtained.
The positive pressure source blowing into the mouth was a more realistic scheme than
the negative pressure source at the outlet of the mouthpiece.

In the simulations of the quasi-stationary regime, the outlet of the mouthpiece was
blocked by an absorbing boundary to thwart possible acoustic oscillations. We then
investigated cases of both a fixed reed and a slowly moving reed and measured the
complete non-linear characteristic curves including both the increasing and decreasing
stages of mouth pressure. The influence of the geometry of reed channel was inves-
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tigated, including the case of the short channel and the long channel. The numerical
results were compared to the results predicted by the quasi-stationary model based on
a simplified memoryless reed and the Bernoulli flow. In the case of the fixed reed, the
vena contracta factor measured in the short channel was in good agreement with the
theoretical counterpart, but the numerical volume flow measured in the long channel
was underestimated, which was probably due to the higher damping in the long chan-
nel. In the case of the slowly moving reed, the numerical flow showed more hysteresis
compared to the quasi-stationary model. We also found that the low spatial resolution
reduced the accuracy of the measurement of the numerical volume flow and caused the
staircase-like ripples in the results.

In the simulations of the dynamic regime, the outlet of the mouthpiece was attached
to an axisymmetric cylindric pipe with its other end open in a radiation domain. By
fine tuning geometrical and numerical parameters of the hybrid model and using a soft
reed, we were able to initiate the acoustic oscillation of the clarinet in a relatively short
time span. Then we investigated the dynamic flow in the mouthpiece-reed system with
three different lay geometries in the soft playing condition. Thanks to the high spatial
resolution used in the dynamic simulations, the flow behaviors in the reed channel were
visualized with high clarity.

The influence of the aerodynamic and acoustic oscillations on the velocity fields and
pressure profiles were observed in both the mouthpiece chamber and the reed channel,
which explained some fundamental discrepancies between the numerical results and
the quasi-stationary predictions. For all geometries, the phenomena of flow separation
/ reattachment in the dynamic regime were similar to the results reported by da Silva
et al. (2007) for the case of an anechoically terminated mouthpiece of clarinet in the
dynamic regime without acoustic coupling, but were significantly different from the
prediction of the quasi-stationary theory. Based on the high fidelity visualizations, we
qualitatively discussed the evolution of volume flow measured at different places along
the reed channel during the duty cycle, which would be very difficult, if not impossible,
to investigate using traditional experimental approaches.

We then compared the volume flow measured at the end of reed channel in one
duty cycle with the quasi-stationary predictions. The numerical volume flow and vcf

as a function of time exhibited trends similar to the quasi-stationary predictions, but
showed significant discrepancies in terms of phase delay, magnitude and hysteresis,
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which were caused by inertia of the fluid volume and the complex influences due to
the aerodynamic and acoustic oscillations. A noticeable inverse flow was found at the
beginning of the opening stage for the long channel case in the present study and was
explained by the influence of acoustic coupling. This phenomenon was not found in
either quasi-stationary predictions or the numerical results obtained by da Silva et al.
(2007).

The differences between the results of short / long channel were clearly observable
in almost every aspect. To obtain the acoustic oscillation without the beating of reed,
the mouth pressure prescribed to the short channel case was lower by 30% than that for
the long channel cases. The spectrum of the results obtained from the short channel case
was different from that of the long channel case by the smaller amplitude of the higher
harmonics, which suggested a mellow tone. But it was not clear if this difference of tim-
bre was just caused by the different mouth pressures or also due to the direct influence
of lay geometries. The influence of the ditch was noticeable but not particularly strong
in most results, though the ratio of absorbed energy in one cycle for the case of long
channel with a ditch was slightly lower than the one without a ditch, which might sug-
gest a little difference in terms of playability. In general, how the playability and timbre
of a real clarinet is influenced by minor difference of lay geometries is an interesting
topic.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis research, a customized numerical simulation system implementing the
lattice Boltzmann method was developed to investigate acoustic problems involving
complex static boundaries or dynamic boundaries and carrying a quiescent or non-zero
subsonic mean flow. This system was first implemented on the Python-CPU platform
and then parallelized and re-implemented on the PyCUDA-GPU platform using the
GPU-accelerated computing technique. The GPU model achieved a speedup ratio of
about 20 compared to the CPU model. The numerical stability under the conditions of
complicated geometry, low fluid viscosity and non-zero mean flow was well maintained
by using the multiple relaxation time scheme (d’Humieres, 1994) and the extrapolated
curved boundary condition (Guo et al., 2002). Subsequently, numerical investigations of
a set of acoustic problems were carried out based on this simulation system.

Acoustic Systems with Static Boundaries

The investigation of acoustic systems with static boundaries was presented in Chpt. 4,
which involved the acoustic transmission and radiation characteristics of axisymmetric
waveguides terminated by different geometries, as well as the aeroacoustic behavior of
whistles with complicated geometries. The accuracy and stability of the LBM simulation
system was substantiated by a set of benchmark acoustic problems.

The first set of simulations was carried out to determine the acoustic transmission
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properties at the open end of axisymmetric cylindrical waveguides in terms of reflection
coefficient and length correction. The effects of geometrical parameters (the geometric
profile of the termination) and flow parameters (the Mach number) were investigated.
For the case of a cylindrical pipe immersed in a quiescent fluid domain, the numerical
results were in good agreement with the theoretical predictions provided by Levine and
Schwinger (1948). For the case of a cylindrical pipe carrying a subsonic non-zero mean
flow in the range of M ≤ 0.15, in general the numerical results were also in good agree-
ment with the theoretical predictions provided by Munt (1990) and the experimental
results provided by Allam and Åbom (2006), though a slight discrepancy was found for
ka < 0.2 most likely due to the degraded accuracy of the two-microphone method in
the low frequency limit. The effects of the horn extension with different profiles for both
the quiescent flow case and the non-zero mean flow case were on par with the results
provided by da Silva (2008).

The second set of simulations was carried out to determine the sound radiation direc-
tivity pattern at the open end of axisymmetric cylindrical waveguides. Also, the effects
of horn extensions and non-zero mean flows were investigated. For the case of a cylin-
drical pipe carrying a quiescent flow, the numerical results were in excellent agreement
with the theoretical predictions provided by Levine and Schwinger (1948) and the ex-
perimental results provided by Gorazd et al. (2012). For the case of a cylindrical pipe
carrying a subsonic non-zero mean flow in the range of 0.036 ≤ M ≤ 0.15, in general
the numerical results were in good agreement with the available theoretical predictions
and experimental results (Gabard and Astley, 2006; Gorazd et al., 2012), though discrep-
ancies were found for the case of small angles (θ < 30◦) and the highest flow speed
(M = 0.15). The numerical results show that the directivity effect was reinforced by the
horn extensions, where a big curvature radius of the horn resulted in a stronger directiv-
ity effect. A comparison between the signal measured in the far-field of the CPU model
and of the GPU model showed that the sound radiation problem can be well represented
by single precision (32-bit) floating-point numbers.

The third set of simulations was carried out to investigate the aeroacoustic behav-
ior of whistles featuring complicated curved boundaries and relative high speed fluid
flows, where the stability of the GPU model was well maintained during a long simula-
tion time. However, the results show that the absorbing boundary conditions could not
absorb the fluid vortices very well.
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Acoustic Systems with Moving Boundaries

The investigation of acoustic systems with moving boundaries involved a clarinet-like
system comprised of a mouthpiece of different geometries together with a dynamic
moving reed. The reed’s motion was described by the distributed model proposed
by Avanzini and van Walstijn (2004) and the interaction of the moving boundary was
solved by the extrapolated curved boundary condition proposed by Guo et al. (2002).
Both the LBM scheme and the reed model have been parallelized on the PyCUDA-GPU
platform.

The first set of simulations of the quasi-stationary regime were based on a relatively
low spatial resolution (dx = 8.5 × 10−5m), where the outlet of the mouthpiece was
blocked by an absorbing boundary and two different lay geometries were involved,
namely the short channel and the long channel. The complete non-linear characteristic
curves of the mouthpiece-reed system were measured and compared to the theoretic
predictions provided by van Zon et al. (1990).

For the fixed reed, the numerical volume flow was in good agreement with the theo-
retical predictions in the short channel case but was significantly lower in the long chan-
nel case, likely due to the relatively higher damping effect. For both geometries, the
vcf did not vary greatly over 80% of the duration, which suggests that a constant vcf
used in the quasi-stationary model is a reasonable approximation for full reed channel
openings.

For the slowly moving reed and both lay geometries, hysteresis was found in the nu-
merical results, which was mainly due to the inertia of fluid volume. Also, the numerical
vcf results were greater than unity in the region of high dp, which was in contrast with
the quasi-stationary model and was explained by the non-uniform height across the
reed channel and flow behaviors that deviated from the theoretical assumptions. The
numerical results were limited by a low spatial resolution, which sometimes induced a
staircase-like ripple in the measured volume flow.

The second set of simulations of the dynamic regime used a higher spatial resolution
(dx = 4.25 × 10−5 m). An axisymmetric cylindrical pipe with a length four times its di-
ameter functioning as an acoustic resonator was attached to the outlet of the mouthpiece
at one end and open in a radiation domain at the other end. The dynamic viscous flow
in the mouthpiece-reed system with three different lay geometries in the soft playing
condition was investigated.
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Overall, there were fundamental discrepancies between the numerical results and
the quasi-stationary predictions using the same geometrical parameters, which were
mainly attributed to the unsteady flow associated with the aerodynamic and acoustic
oscillations. The phenomena of flow separation /reattachment in the reed channel were
similar to the results obtained by da Silva et al. (2007) in the absence of an acoustic
oscillation, but were significantly different from the predictions of the quasi-stationary
theory, which assumes a fully detached flow for the short channel geometry and a fixed
reattachment point for the long channel geometry.

The effect of acoustic coupling was relatively strong at the outlet of the reed chan-
nel where a noticeable inverse flow was found at the beginning of a duty cycle for the
long channel case. In general, for all geometries the pressure and velocity fields in the
mouthpiece chamber and the reed channel were modulated by the acoustic perturba-
tion, which were observable in the high resolution visualizations presented in this study.
Consequently, the vcf in one single duty cycle deviated significantly from the prediction
of quasi-stationary model, especially in the region of either a big opening or a very small
opening of reed channel.

The effect of a varying channel length was clearly observable in many aspects. Dur-
ing one duty cycle, the volume flow in the short channel accelerated earlier due to the
smaller fluid volume, which in turn helped the jet adhere to the reed surface earlier
and helped to initiate the acoustic oscillation at a lower mouth pressure condition. The
influence of the ditch was observable but not very strong, where the ratio of absorbed
energy in one cycle was slightly reduced because of the extra energy dissipation due to
the vortices formed in the vicinity of the ditch area.

6.2 Future Research

The investigation of the dynamic clarinet can be improved in several ways in the future.
To compare the influence of the geometry in the soft playing condition, the same mouth
pressure should be used for both the short channel case and the long channel case, which
requires some further adjustments of simulation parameters. Using the same model, the
investigation can be carried out in the hard playing conditions which may bring some
new insights on nonlinear phenomena. Also, the investigation can be easily extended to
various situations including different geometries (pipe length, minor geometry change
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of the pipe end and the mouthpiece lay, etc.).
Another interesting new topic would be to find a more accurate modeling of the tran-

sient behavior of a clarinet, i.e., the quick variations at the onset of the oscillation. This
problem can be investigated to some extent by observing the threshold of pressure oscil-
lation, which is influenced by the mouth pressure, as well as the frequency of oscillation
at the threshold. Previous studies on this topic assume an unrealistic constant flow and
mouth pressure (Backus, 1963; Dalmont and Frappe, 2007). More recently, influences
of time-varying pressures (Bergeot et al., 2014), reed motion induced flow (Silva et al.,
2008), lip force and the player’s vocal tract have been discussed. The simulation sys-
tem developed for this research can be extended to include these aspects without major
changes.

From the engineering aspect, the simulation can be improved by using a higher spa-
tial resolution, which is generally limited by available computational and memory re-
sources. To solve this problem, one option would be using a GPU cluster combined
with the multiple block technique (Fan et al., 2004). Another option is to use the adap-
tive grid refinement technique (Rohde et al., 2006). Also, the performance of the present
GPU model can be further improved by using various optimization techniques, such as
those presented in (Ryoo et al., 2008; Tölke, 2010; Kuznik et al., 2010; Obrecht et al., 2011;
Rinaldi et al., 2012; Habich et al., 2013).

One of the major limitations of the present LBM simulation system is its 2D repre-
sentation, which cannot accurately describe the 3D real fluid behavior involving vortex
motions and energy dissipation, as well as the energy transfer between flow and the
acoustic field. The present D2Q9 LB model of the clarinet using a spatial resolution of
dx = 4.25×10−5m requires∼ 4.25×106 cells. For a D3Q19 model using the same spatial
resolution, the total number of cells would be ∼ 8.5 × 109, which is a big challenge for
both computational power and memory capacity.
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Appendix A

Benchmarks

Numerical Scheme

This section presents the benchmark results of a 2D Poiseuille flow problem solved by
the GPU LBM model presented in Chpt. 3, which uses a single-precision presentation of
floating-point numbers.

Figure A.1 depicts the numerical scheme of the benchmark simulation. The 2D flow
evolves in a straight channel with a length of L = 4a. The lower and the upper wall
are defined by y = −a and y = a, respectively, upon which a no-slip condition for the
velocity is enforced. The solid walls as well as all corner nodes are implemented in a
generic way that works for all boundary conditions and for all types of flows. The flow
is driven by a constant pressure drop along the channel produced by the SRC buffer at
the inlet and the ABC buffer at the outlet of the channel. An extra ABC buffer adjacent to
the left side of the SRC absorbs unwanted leakages. Both SRC and ABC are implemented
by the same absorbing boundary condition proposed by Kam et al. (2006), where a SRC
is distinguished from an ABC by a non-zero target velocity ut. The width of the buffers
of both SRC and ABC is set to 15 lattice cells.

The initial condition is the equilibrium distribution, using a constant density ρ0 = 1

and a zero velocity. The steady-state at time step n is evaluated by

Diff(n) =

∑
i

∑
j |ux(i, j, n)− ux(i, j, n− 1)|+ |uy(i, j, n)− uy(i, j, n− 1)|∑

i

∑
j |ux(i, j, n)|+ |uy(i, j, n)|

, (A.1)

where ux and uy are the velocity components on the x- and y-directions, i and j are the
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Figure A.1 2D Poiseuille flow channel.

space indices along the x- and y-directions.
The numerical error is evaluated by the l2-norm of the difference between the nu-

merical velocities u and the analytical velocities of the Poiseuille flow u(a):

Error(n) =

√∑
i

∑
j

|u(i, j)− u(a)(i, j)|2 /P , (A.2)

where the sum runs over all P nodes in the fluid domain.
The analytical velocity profile of 2D Poiseuille flow in a channel of width 2a is inde-

pendent of location on the x-direction and is given by:{
u

(a)
x = u0

(
1− y2

a2

)
u

(a)
y = 0

, (A.3)

where u0 is the peak velocity at the centerline. The Reynolds number is defined as

Re =
u0N

ν
, (A.4)

where N = 2a is the grid resolution, ν =
(

1
Ω
− 0.5

)
/3 is the kinematic viscosity and Ω is

the relaxation parameter.

Results

The first set of simulations are designed for quickly comparing the numerical accuracy
of the LBM SRT model to that of the LBM MRT model. The half width of the channel is
set to a = 5.5 in lattice units, corresponding to a grid resolution ofN = 11. The centreline
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of the channel (y = 0) is on-grid and the upper / lower walls (y = ±5.5) are off-grid.
The dimensionless target velocity of the SRC is set to a constant value (M = 0.1) for
all simulations. Two different relaxation parameters (Ω = 1.6, 1.9) have been used. The
total number of numerical steps is Nsim = 2000.

Figures A.2, A.3 and A.4 present the time history of the Reynolds numbers, Diff and
Error calculated from the numerical flow, respectively. The measured Reynolds numbers
(Fig. A.2) indicate that the flow is in the laminar regime throughout all simulations.
After about 1000 numerical steps, all simulations converge to a steady-state defined by
Diff ≤ 10−5, as depicted in Fig. A.3. Figure A.4 shows that the accuracy of the LBM SRT
model and the LBM MRT model is almost in the same level and the expected second-
order accuracy is found for all cases. Also, the condition of a lower Reynolds number /
higher viscosity results in a lower value of Error.

Figure A.2 Time history of Reynolds number for different collision modes
(SRT vs. MRT) and relaxation parameters (Ω). Simulation parameters: a =
5.5, M = 0.1.

The second set of simulations are performed to investigate the accuracy of the LBM
MRT model at different Reynolds numbers. The grid resolution is kept to a constant
value of N = 11 or a = 5.5. The numerical viscosity is kept constant using Ω = 1.99. The
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Figure A.3 Time history of Diff for different collision modes (SRT vs. MRT)
and relaxation parameters (Ω). Simulation parameters: a = 5.5, M = 0.1.

total number of simulation steps is Nsim = 120, 000, which is big enough to ensure that
the steady-state is reached for all simulations. To achieve a target Reynolds number in
the steady state, the dimensionless velocity prescribed in the SRC is computed by

Mtarget =

√
3 (2/Ω− 1) Retarget

6N
. (A.5)

In order to compensate the offset between the velocity um measured in the flow and the
target velocity ut prescribed in the SRC, a negative feedback loop described by Fig. A.5
is used.

The mean value of Error obtained in steady-state associated with different Reynolds
number are depicted in Fig. A.6, which shows that the LBM MRT model is generally
more accurate at lower Reynolds numbers. The numerical results are in second-order
accuracy for Re = 0.1, 1, 10, 100. For the case of Re = 1000, Error is slightly higher than
1%.

The third set of simulations are performed to investigate how the accuracy of the
LBM MRT model is influenced by grid resolution. The numerical viscosity is kept con-
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Figure A.4 Time history of Error for different collision modes (SRT vs. MRT)
and relaxation parameters (Ω). Simulation parameters: a = 5.5, M = 0.1.

Figure A.5 Negative feedback loop for velocity correction.

stant using Ω = 1.6. The total number of simulation steps is Nsim = 120, 000. Seven
different grid resolutions, N = 5, 11, 21, 41, 81, 161 and 321, have been tested. To obtain
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Figure A.6 The mean value of Error as a function of Reynolds number. Sim-
ulation parameters: a = 5.5, Ω = 1.99.

a constant Reynolds number (Retarget = 10) for all simulations, the target dimensionless
velocity in the SRC is computed by Eq. A.5 and the negative feedback loop described
by Fig. A.5 is used. Figure A.7 shows that the LBM MRT model has a third-order accu-
racy for N < 50 and a fourth-order accuracy for N > 50. The model is generally more
accurate using a larger grid resolution.
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Figure A.7 The mean value of Error as a function of grid resolution. Simu-
lation parameters: Ω = 1.6, Re = 10.
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