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ABSTRACT

We present a methodology for digital modeling ofD-dimen-
sional driving-point bridge admittances from vibration mea-
surements on instruments of the violin family. Our study,
centered around the two-dimensional case for violin, viola,
and cello, is based on using the modal framework to con-
struct an admittance formulation providing physically mean-
ingful and effective control over model parameters. In a
first stage, mode frequencies and bandwidths are estimated
in the frequency domain via solving a non-convex, con-
strained optimization problem. Then, mode amplitudes are
estimated via semidefinite programming while enforcing
passivity. We obtain accurate, low-order digital admittance
models suited for real-time sound synthesis via physical
models.

1. INTRODUCTION

String instruments, such as in the violin family, radiate
sound indirectly: energy from a narrow vibrating string is
transferred to a radiation-efficient body of larger surface
area. To a large extent, sound radiation is produced due to
the transverse velocity of the instrument body surfaces (e.g.,
the front or back plates), and such surface motion is trans-
ferred to the body through the force that the string exerts on
the instrument’s bridge. The way in which the input force at
the bridge is related to the transverse velocities of the body
surfaces depends on very complex mechanical interactions
among the bridge itself, the sound post, the front and back
plates, the air inside the body cavity, the neck, etc. Because
of the importance of the bridge in mechanically coupling
the strings and the body, the relation between applied force
and induced velocity at the bridge has been an object of
study for over forty years [1].

In the context of sound synthesis, we are interested in
constructing efficient physical models of violin-family in-
struments. We aim to design digital filters that accurately
represent the string termination as observed from the string-
bridge interaction of real instruments. We model transverse
string motion by means of two-dimensional digital wave-
guides [2] with orthogonal internal coupling.
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Figure 1. Two-dimensional bridge driving-point admit-
tance.

The admittance is a physical measure used to map ap-
plied force to induced motion in a mechanical structure.
In the frequency domain, the velocity vector V(ω) and
force vector F(ω) at a position of the structure are related
via the driving-point admittance matrix function Y(ω) by
V(ω) = Y(ω)F(ω). In order to emulate horizontal and
vertical wave reflection and transmission at the bridge, we
need to construct a digital representation of matrix Y(ω)
in two dimensions, as represented in Figure 1, where sub-
indexes indicate string (horizontal and vertical) polariza-
tions, and Yhv = Yhv (symmetric admittance). By taking
measurements Y from real instruments, one can pose this as
a system identification problem where a parametric model
Ŷ is tuned so that an error measure ε(Y, Ŷ) is minimized.

Leaving aside approaches based on convolution with mea-
sured impulse responses, a first comprehensive work on
efficient digital modeling of violin bridge admittances for
sound synthesis was by Smith [3], where he proposed
and evaluated several techniques for automatic design of
common-denominator IIR filter parameters from admittance
measurements, making real-time violin synthesis an afford-
able task. However, while efficiency and accuracy can be
well accomplished (also when applied to other string in-
struments [4]), positive-realness (passivity) [2] cannot be
easily guaranteed with common-denominator IIR schemes,
leading to instability problems when used to build string
terminations. In that regard, the modal framework [5] of-
fers a twofold advantage: (i) admittance can be represented
through a physically meaningful formulation, and (ii) posi-
tive-realness can be guaranteed.

The modal framework has been used extensively to study
the mechanical properties of violins and other string in-
struments [1], but only recently was applied to synthesize
positive-real admittances by fitting model parameters to
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measurements. In a recent paper [6], Bank and Karjalainen
construct a positive-real driving-point admittance model
of a guitar bridge by combining all-pole modeling and the
modal formulation: they first tune parameters of a common
denominator IIR filter from measurement data, and use the
roots of the resulting denominator as a basis for modal syn-
thesis, so that positive-realness can be enforced. We tackle
a similar problem for the case of violin-family instruments,
but using the modal formulation throughout the complete
fitting process.

The basic principle of the modal framework is the assump-
tion that a vibrating structure can be modeled by a set of
resonant elements satisfying the equation of motion of a
damped mass-spring oscillator, each representing a natural
mode of vibration of the system. Assuming linearity, the
individual responses from the resonant elements (modes) to
a given excitation can be summed to obtain the response of
the system [7]. In theory, a mechanical structure presents
infinite modes of vibration, and experimental modal anal-
ysis techniques allow to find a finite subset of (prominent)
modes that best describe the vibrational properties as ob-
served from real measurements. In general, admittance
analysis via the modal framework begins from velocity
measurements taken after excitation of the structure with a
given force impulse function.

As introduced in [6], a useful set of structurally passive
D-dimensional driving-point admittance matrices can be
expressed in the digital domain as

Ŷ(z) =

M∑
m=1

Hm(z)Rm, (1)

where Rm is a D ×D positive semidefinite (nonnegative
definite) matrix, and each scalar modal response

Hm(z) =
1− z−2

(1− pmz−1)(1− p∗mz−1)

is a second-order resonator determined by a pair of complex
conjugate poles pm and p∗m [5, 6]. The numerator 1 −
z−2 is the bilinear-transform image of s-plane zeros at dc
and infinity, respectively, arising under the “proportional
damping” assumption [5, 6]. It can be checked that Hm(z)
is positive real for all |pm| < 1 (stable poles). In Section 3
below, we will estimate pm in terms of the natural frequency
ωm (rad/s) and the half-power bandwidth Bm (Hz) of the
m-th resonator, which are related to the z-domain pole pm
respectively by ωm = ∠pm/Ts and Bm = log|pm|/πTs,
where ∠pm and |pm| are the angle and radius of the pole
pm in the z-plane, and Ts is the sampling period [2].

Since the admittance model Ŷ(z) is positive real (passive)
whenever the gain matrices Rm are positive semidefinite,
the passive bridge-modeling problem can be posed as find-
ing poles pm and positive-semidefinite gain matrices Rm

such than some error measure ε(Y, Ŷ) is minimized.
In [6], poles from an all-pole IIR fit are used as the modal

basis to estimate Rm. Once the common-denominator IIR
filter has been estimated from measurement data, they find
matrices Rm as follows: First, they independently solve
three one-dimensional linear projection problems, each cor-
responding to an entry in the upper triangle of matrix Y.
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Figure 2. Illustration of the two-dimensional measurement.

This leads to three length-M modal gain vectors. Then,
since simply rearranging such gain vectors as a set of M
independent 2× 2 symmetric gain matrices (matrices Rm

of Equation (1)) does not enforce passivity (all of the Rm

need to be positive semidefinite), the authors ensure passiv-
ity by computing the spectral decomposition of each Rm,
and recompose each matrix after discarding any negative
eigenvalues and corresponding eigenvectors.

In this work, we deal with violin, viola, and cello bridge
driving-point admittance measurements obtained from de-
convolution of bridge force and velocity signals, acquired
by impact excitation and motion measurement via a cali-
brated hammer and a commercial vibrometer (Section 2).
Based on the modal formulation, we estimate modal param-
eters in the frequency domain via spectral peak processing
and optimization of mode natural frequencies and band-
widths (Sections 3, 4, and 5). Then, we use semidefinite
programming to obtain modal gain matrices by solving a
matrix-form, convex problem while enforcing passivity via
a non-linear, semidefinite constraint (Section 5).

2. MEASUREMENTS

We carried out zero-load bridge input admittance measure-
ments on three decent quality instruments (violin, viola,
and cello) from the Schulich School of Music at McGill
University. The instruments were held in a vertical position
by means of a metallic structure constructed from chemistry
stands. Clamps covered by packaging foam were used to
rigidly hold all three instruments from the fingerboard near
the neck. While the bottom part of the body of both the
violin and the viola rested firmly on a piece of packaging
foam impeding their free motion during the measurements,
the cello rested on its extended endpin. In order to lower
the characteristic frequencies of the modes of the holding
structure, sandbags were conveniently placed at different
locations on the chemistry stands. Rubber bands were used
to damp the strings on both sides of the bridge. Figure 3
shows a detail of th measurement setup.

Measurements of force and velocity were performed using
a calibrated PCB Piezotronics 086E80 miniature impact
hammer and a Polytec LDV-100 Laser Doppler Vibrometer
(LDV), both connected to a National Instruments USB-4431
signal acquisition board. The location and orientation of
the impact and the LDV beam are illustrated in Figure 2.
Both the hammer and the LDV were carefully oriented so
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Figure 3. Detail of the violin measurement setup.

that impacts and measurements were as perpendicular as
possible to the surface of the edge of the bridge while not in-
terfering with each other. Time-domain signals of force and
perpendicular velocity were collected, delay-compensated,
and stored before computing the admittance by deconvolu-
tion. For each of the three admittance matrix entries Yhh,
Yvv, and Yhv, several measurements were collected and
averaged in order to use coherence as a means for selecting
the most consistent set.

Plots in Figure 4 show the frequency responses of admit-
tance measurements Yhh, Yvv, and Yhv performed on the
violin, viola, and cello. From the responses, it is possible
to make a few observations. In the region going from 100
Hz to 1 kHz approx., the characteristic modes of violin-
family instruments (as extensively studied in the literature
[1]) clearly appear at expected frequencies, showing mod-
erately low overlap. Well below 100 Hz, prominent peaks
appear in all measurements. Attending to the literature and
previous works on normal mode analysis and identifica-
tion [1], no normal modes are expected to appear at such
low frequencies, leaving us with the convincing possibility
that these peaks must correspond to modes of the holding
structure. This was confirmed after numerous measurement
trials in which the configuration of the holding structure and
its position in the room were altered. Above 1 kHz, higher
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Figure 4. Admittance measurements and observed coher-
ences. From top to bottom: coherence, magnitude, and
phase of violin, viola and cello. In each plot: Yhh(f)
(black), Yvv(f) (dark gray), and Yhv(f) (light gray) as
measured at a sampling frequency of 22.05 kHz.

mode overlap leads to a broad peak (the so-called bridge
hill), particularly prominent in the Yhh measurements. It
can also be observed that in the Yvv responses, a second
broad peak appears at a higher frequency region. Regarding
phase, measurements corresponding to diagonal terms Yhh
and Yvv present a response lying between −π/2 and π/2
(corresponding to positive-real functions), as opposed to
off-diagonal terms Yhv .

3. MODELING STRATEGY

Departing from admittance measurements in digital form
and theM -th order modal decomposition described in Equa-
tion (1), our problem can be posed as the minimization

minimize
ω,B,R

ε(Y, Ŷ)

subject to C,
(2)
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where ω = {ω1, · · · , ωM} are the modal natural frequen-
cies, B = {B1, · · · , BM} are the modal bandwidths, R =

{R1, · · · ,RM} are the gain matrices, ε(Y, Ŷ) is the er-
ror between the measured admittance matrix Y and the
admittance model Ŷ, and C is a set of constraints. This
problem, for which analytical solution is not available, can
be solved by means of gradient descent methods that make
use of local (quadratic) approximations of the error function
ε(Y, Ŷ). Given the way our fitting problem is posed, five
main issues need to be taken into consideration:
– Design parameters. From observation of each diagonal
entry Yhh and Yvv of the measured admittance matrices (see
Section 2), and by contrasting with relevant literature on
modal analysis of violin family instruments [1], we make
two assumptions. First, at low frequencies (approximately
between 100 Hz and 1 kHz) modes of interest present rela-
tively low overlap and can be identified and modeled indi-
vidually. Second, at higher frequencies (above 1 kHz) high
mode overlap leads to a broad peak (bridge hill) that can
modeled by a single, highly-damped resonance. This leaves
us with three design parameters: frequencies ωmin and ωmax,
and number of low-frequency modes M . Between frequen-
cies ωmin and ωmax, M modes are identified and modeled
individually, while above ωmax the bridge hill is modeled by
a single mode. When studying the two-dimensional case,
we found that using two high-frequency modes provides a
better basis for modeling the bridge hill (see Section 2 and
Section 5.1).
– Initial estimation. Because the minimization problem,
Equation (2) is not convex, it is very important to choose a
starting point that is close enough to the global minimum.
Therefore, it is crucial to carry out an initial estimation of
mode parameters prior to optimization. The method, to
be described in Section 4.1, is based on peak (resonance)
picking from the magnitude spectrum, and a graphical esti-
mation of each mode frequency and bandwidth.
– Constraint definition. Defining constraints on the param-
eters of the problem is motivated by two reasons: feasibility
and convergence. First, a number of feasibility constraints
are needed to obtain a realizable solution. Second, in order
to ensure that the optimization algorithm will not jump into
regions of the parameter space where it can get stuck in lo-
cal minima, additional constraints need to be defined so that
candidate solutions stay within the region of convergence.
– Error computation. Since there is no analytical expres-
sion for the gradient of this error minimization, it needs to
be estimated from computing the error in different direc-
tions around a point in the parameter space. Therefore, we
need to choose a convenient method for computing ε(Y, Ŷ)
at any point in the parameter space.
– Estimation of gains. Once the M modal frequencies and
bandwidths are optimized, it is necessary to perform an
estimation of matrices R of Equation (2) to complete the
model of Equation (1).

4. ONE-DIMENSIONAL MODELING

The one-dimensional procedure presented here can be used
both for Yhh and Yvv. First, once design parameters M ,
fmin, and fmax have been set, individual mode resonances

are identified from the magnitude spectrum through a peak
picking iterative procedure. Then, an initial estimation of
mode parameters (frequencies and bandwidths) is obtained
via the half-power method. In a final step, mode parameters
are tuned via numerical optimization.

4.1 Initial estimation

4.1.1 Peak selection

Peak selection in the low-frequency region is carried out
through an automatic procedure that iteratively rates and
sorts spectral peaks by attending to a salience descriptor.
The high-frequency bridge hill resonance center frequency
is selected via smoothing the magnitude spectrum.

4.1.2 Estimation of frequencies and bandwidths

For estimating modal frequencies, three magnitude samples
(respectively corresponding to the corresponding maximum
and its adjacent samples) are used to perform parabolic
interpolation. For estimating bandwidths, the half-power
rule [2] is applied using a linear approximation.

4.2 Error computation

For optimization routines to successfully approximate error
derivatives, it is necessary to supply a procedure to evaluate
the error function as a function of the model parameters,
namely a vector x. In our case, parameters are (see Equa-
tion 2) mode frequencies ω and bandwidths B. Thus x
is constructed by concatenating elements in sets ω and B,
leading to x = [ω B]T . We work with frequency-domain
representations of the admittance measurement Y and ad-
mittance model Ŷ . At the k-th iteration, parameter vector is
x|k, and evaluating ε(Y, Ŷ |k) implies: (i) retrieving mode
frequencies and bandwidths from x|k, (ii) estimating gains
as outlined in Section 4.4, (iii) constructing a synthetic
admittance Ŷ |k with computed gains, and (iv) computing
error ε(Y, Ŷ |k).
Let vector y = [y1, . . . , yn, . . . , yN ]T contain N samples
of Y (ω), taken in 0 ≤ ω < π. Analogously, let ŷ|k =
[ŷ1|k, . . . , ŷn|k, . . . , ŷN |k]T contain N samples of Ŷ (ω)|k,
constructed from parameter vector x|k. We compute the
error ε(Y, Ŷ |k) as

ε(Y, Ŷ |k) =
N∑

n=1

∣∣∣log |yn||ŷn|k|

∣∣∣, (3)

which can be interpreted as subtracting magnitudes when
expressed in the logarithmic scale.

4.3 Constraint definition

Apart from providing a reliable initial point x|0 (see Section
4.1), we need to define a set of constraints to be respected
during the search:
– Mode sequence order. A first important constraint to be
respected during the search is the sequence order of modes
(in ascending characteristic frequency) as they were initially
estimated (see Section 4.1).
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Figure 5. Synthetic admittance Ŷhh modeling example.
Magnitude (top) and phase (bottom). Dashed curves: admit-
tance measurement; solid gray curves: M = 7, fmin = 50
Hz, fmax = 1300 Hz; solid black curves: M = 15,
fmin = 50 Hz, fmax = 1700 Hz.

– Low-frequency region. All of the M low-frequency
modes must lie in the frequency region prescribed by design
parameters ωmin and ωmax.
– Bridge hill frequency region. Analogous to the previous
constraint, the characteristic frequency of the bridge hill
resonance must be within the limits set by additional design
parameters ωb

min and ωb
max.

– Positive bandwidth. Bandwidths must be positive.
– Distance from initial estimation. Assuming the initial
estimation x|0 is close enough to the final solution, one can
bound the search space around x|0.

All constraints are linear in parameters x, and Equation
(2) can be efficiently solved via sequential quadratic pro-
gramming by means of Matlab’s Optimization Toolbox [8].

4.4 Estimation of gains

At any k-th iteration of the optimization procedure, modal
gains can be obtained via solving a constrained linear pro-
jection problem. By evaluating the individual frequency
responses of the M + 1 resonators as constructed from
parameters in vector x|k, modal gains are found via solv-
ing the one-dimensional version of Equation (1) in the fre-
quency domain while imposing a nonnegative constratin
on the gain vector. Results for a violin admittance Yhh are
shown in Figure 5.

5. TWO-DIMENSIONAL MODELING

The procedure for the two-dimensional case is based on
the fitting procedure for the one-dimensional case. A main
assumption is made: the modes of the full system Y can
be estimated by only attending to diagonal measurements
Yhh and Yvv. First, diagonal entries Yhh and Yvv of mea-
surement matrix Y are used separately to obtain two sets of
modal frequencies and bandwidths (Section 4). In a second
step, the two sets of modes are merged into a common mode
structure, which will be used as the basis for the model Ŷ.
After merging, mode parameters are re-optimized by simul-
taneously minimizing an error between (diagonal) measure-

ments Yhh and Yvv , and their respective model counterparts
Ŷhh and Ŷvv, the latter two constructed from the common
mode structure under optimization. Finally, we use semidef-
inite programming to estimate gain matrices R for the full
matrix model Ŷ by using all three measurements Yhh, Yvv ,
and Yhv .

5.1 Initial estimation

Providing an initial estimation of mode frequencies and
bandwidths consists of two main steps: independent tuning
of a one-dimensional model for each entry in the diagonal
of matrix Y, and merging of mode estimations.

5.1.1 Diagonal entries

First, by means of the procedure outlined in Section 4, we
carry out two one-dimensional fittings respectively corre-
sponding to self-admittance (diagonal) measurements Yhh
and Yvv. Design parameters are shared by both cases, ex-
cept for the fact that two broad resonances are used for the
high frequency region (see Section 2), meaning that two re-
gions (ωb

hh,min, ω
b
hh,max) and (ωb

vv,min, ω
b
vv,max) are defined

after observation of measurements.

5.1.2 Mode merging

Since many of the modes of the system get excited both
in the horizontal and vertical directions (see Figure 4), the
same mode may be estimated from both measurements.
Joining the two sets of M + 1 modes independently ob-
tained from the two one-dimensional fits leads to a set of
2(M + 1) mode candidates, from which pairs of numer-
ically close mode estimations (i.e., corresponding to the
same mode of the system) may appear. We merge the 2M
mode estimations in (ωmin, ωmin) into a set of M ′ modes
(with M ′ ≤ 2M ). First, we perform clustering on mode
frequencies. Then, from each of the M ′ clusters, we keep
the mode estimation presenting a natural frequency that
is closest to the cluster centroid. From now on, the total
number of modes, including the two bridge hill modes, will
be referred to as M .

5.2 Error computation

Because optimization is carried out from measurements Yhh
and Yvv simultaneously, we compute the diagonal model-
ing error ε′ at iteration k as the sum of one-dimensional
modeling errors when obtained through the common set of
parameters (frequencies and bandwidths) x|k.

5.3 Constraint definition

Once initial mode estimates have been merged, constraints
are defined analogously to the one-dimensional case. The
only remarkable difference is the use of two broad reso-
nances to represent the bridge hill.

5.4 Estimation of gains

We perform gain estimation by working with a frequency-
domain expression of Equation (1) as described next. From
a two-dimensional admittance measurement (symmetric)
matrix Y, let yhh, yhv , and yvv be complex-valued column
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vectors each containing N frequency-domain samples of
its corresponding entry in Y, leading to a 2N × 2 matrix
of the form

Y =

[
yhh yhv

yhv yvv

]
. (4)

Now, we proceed with rewriting the right-side of Equation
(1) in matrix form as constructed from linear combinations
of frequency-domain samples of the individual modal re-
sponses Hm(ω). First, we define a N ×M matrix H as

H = [h1, . . .hm . . .hM ], (5)

where each hm is a complex column vector containing
N samples of Hm(ω). With matrix H, we construct a
2N × 2M block-diagonal matrix B defined as

B =

[
H 0
0 H

]
, (6)

which can be interpreted as a two-dimensional modal basis.
The next step is to set up a 2M × 2M block-symmetric
matrix R as

R =

[
Rhh Rhv

Rhv Rvv

]
, (7)

where Rhh, Rhv , and Rvv are M ×M diagonal, real matri-
ces. In them-th entry of the diagonal of matrix Rhh appears
the gain from entry (1, 1) of the individual gain matrix Rm

in Equation (1). Analogously, matrix Rhv will contain gains
from theM entries (1, 2), and Rvv from entries (2, 2). Now,
with modal basis B and gain matrix R, it is possible to write
an expression for model Ŷ as

Ŷ = BRS, (8)

where S is a 2M × 2 matrix of ones which acts as the
summation of Equation (1). It is important to note that
R � 0 ⇔ Rm � 0 ∀m ∈ {1, . . . ,M}, implying that the
model Ŷ will be passive if matrix R is positive semidefinite.
Now we are ready to express the modal gain estimation
problem as an error minimization problem that includes a
positive semidefinite constraint on matrix R. If expressing
the model approximation error ε(Y, Ŷ) as

ε(Y, Ŷ) = ‖(Ŷ −Y)‖ = ‖(BRS−Y)‖, (9)

where ‖·‖ represents a suitable matrix norm, the problem
can be written as

minimize
R

‖(BRS−Y)‖

subject to R � 0,
(10)

which is a matrix norm minimization problem with a pos-
itive semidefinite constraint. This convex problem can be
solved via semidefinite programming by means of CVX, a
package for specifying and solving convex programs [9].
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Figure 6. Violin synthetic admittance matrix Ŷ modeling
example. Top to bottom, magnitude and phase plots of
Ŷhh(f), Ŷvv(f), and Ŷhv(f). M = 18, fmin = 8 Hz,
fmax = 1300 Hz.

6. RESULTS AND DISCUSSION

Modeling examples for violin, viola, and cello are respec-
tively shown in Figure 6, 7, and 8. In all three cases, with
respective model orders between M = 18 and M = 27,
high accuracy (including phase matching) can be observed
between 100 Hz and 6 KHz, where measurement coherence
was acceptable. In particular for the cello, the interaction
between modes of the measurement apparatus and lower-
frequency modes of the instrument made measuring and
modeling a more difficult task. In general, both accuracy
and convergence times are improved if carrying out the
estimation on a warped frequency axis [3, 10]. Moreover,
truncation of spectral domain samples above 6 kHz was
needed in order to avoid artifacts caused by measurement
limitations.

It is very important to include the lower frequency re-
gion (i.e., between 5 Hz and 100 Hz) in the fitting process
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Figure 7. Viola synthetic admittance matrix Ŷ modeling
example. Top to bottom, magnitude and phase plots of
Ŷhh(f), Ŷvv(f), and Ŷhv(f). M = 22, fmin = 8 Hz,
fmax = 1300 Hz.

by setting design parameter ωmin close to dc. This allows
the modes of the measurement apparatus (prominent peaks
below 100 Hz) to also be modeled, leading to a more con-
sistent overall estimation that accounts for the interaction
of such modes with the real modes of the instrument. Once
the estimation is finished, those modes and their respective
gain matrices can be discarded from Equation (1).

Regarding implementation, an elegant re-formulation of
second-order sections proposed in [11] and later applied
in [6] allows to maintain the parallel structure, leading to
a straightforward realization as a reflectance. Our results
from applying such re-formulation have been used to con-
struct lumped terminations where four two-dimensional
digital waveguides are coupled without the need for paral-
lel adaptors (as in wave digital filters—see [6]). Example
sounds, including one-pole filters to simulate string losses,
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Figure 8. Cello synthetic admittance matrix Ŷ modeling
example. Top to bottom, magnitude and phase plots of
Ŷhh(f), Ŷvv(f), and Ŷhv(f). M = 27, fmin = 8 Hz,
fmax = 900 Hz.

are available online 1 . The application of these models to
bowed-string simulation with two-dimensional transverse
string motion is imminent.

A potential improvement to the fitting method goes around
embedding the semidefinite programming step as part of
an outer loop in which mode parameters are estimated,
although it would imply a higher computational cost. By
increasing the model order and redefining design parameters
it would be possible to represent the bridge hill region more
accurately; yet, a perceptual evaluation might be needed to
confirm improvements. Further tests might encourage the
construction of statistical admittance models, where modal
frequencies, bandwidths, and amplitudes follow empirically
inferred distributions. An extension of the framework to
include radiation measurements is currently under study.

1 http://ccrma.stanford.edu/˜esteban/adm/smac13
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