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ABSTRACT

The Ffowcs Williams-Hawkings (FW-H) acoustic analogy
is applied to investigate the sound generation of a single-
reed instrument. An FW-H formulation is derived using
the one-dimensional Green’s function for an infinitely long
pipe, which estimates the outgoing acoustic pressure at an
observer placed inside the instrument via a surface integral
of hydrodynamic variables in the mouthpiece-reed system.
The FW-H estimation is based on a two-dimensional com-
putational aeroacoustic model developed with the lattice
Boltzmann (LB) method, which computes the integrands
in the FW-H formulation. The FW-H acoustic analogy
is validated by comparing the estimated pressure at the
observer to that simulated by the LB model and a good
agreement is found. The outgoing pressure at the observer
is further decomposed into contributions from monopole
and dipole sources, which correspond to different terms in
the FW-H formulation. The monopole sources come from
the modulated jet flow entering the mouthpiece and the
displacement flow induced by the moving reed, whereas
dipole sources are produced by the unsteady force exerted
on the fluid by the solid walls. Results show that dipole
sources, particularly those associated to the long inclined
mouthpiece baffle, dominate the observed pressure at the
studied playing frequency of 230 Hz.

1. INTRODUCTION

The sound generation of a single-reed instrument is a mul-
tiphysics problem that involves acoustics, fluid dynamics
and solid vibrations. When a player plays the instrument,
the air flows from the lungs toward the instrument, causing
the pressure to build up in the player’s mouth. The mouth
pressure drives the air to flow through the reed aperture at
the tip of the mouthpiece into the instrument. In the mean-
time, the mouth pressure forces the reed to move toward
the mouthpiece, and the moving reed in turn modulates the
airflow going through the reed channel. The moving reed
also creates airflow, and the so-called reed-induced flow
disturbs the air in the acoustic resonator together with the
pressure-driven flow. The air disturbance travels back and
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forth in the resonator, and the reflected energy is fed into
the mouthpiece-reed system to support the reed oscillation.

The scientific study of single-reed instrument sound gen-
eration can be traced back to the 1860s when Helmholtz [1]
theoretically investigated the interaction between the reed
and the pipe. More recent researchers, such as Backus [2],
Benade [3], Nederveen [4], and Worman [5], contributed
to the development of a more general mathematical frame-
work for single-reed instrument sound generation. Such
a model assumes a localized interaction between the reed,
flow, and pipe, which implies that

• the distributed reed vibration is simplified as a
single-degree-of-freedom oscillator,

• the distributed airflow and its interaction with the
reed is localized at the tip of the reed, and

• the interaction between the resonator and the gen-
erator (mouthpiece-reed system) is localized at the
entry of the resonator.

This model serves as the basis of sound synthesizers [6]
and nonlinear dynamical system studies [7], and it has been
widely applied to explore the instrument’s sound properties
and oscillation.

In addition to this simplified model, the computational
fluid dynamics (CFD) and computational aeroacoustic
(CAA) models have been applied to investigate the fluid-
structure-acoustic interaction in a distributed physical
space. These models have shed light on several aspects
of sound generation, such as the quasistationary assump-
tion of the fluid model and its dependence on the mouth-
piece geometry [8, 9], the effects of the lip on the sound
generation [10, 11], and the influences of the mouthpiece
geometry on the sound [9,12]. However, in terms of sound
generation, there has been more discussion of aerodynam-
ics than aeroacoustics, and an efficient way to connect the
near-field fluid dynamics in the mouthpiece-reed system to
the far-field radiated sound characteristics has yet to be es-
tablished.

This paper aims at a better understanding of the sound
generation and a more in-depth characterization of the
sound sources of the single-reed instrument. A two-
dimensional (2D) computational aeroacoustic model is
built for the single-reed instrument using the lattice Boltz-
mann (LB) method, and the Ffowcs Williams and Hawk-
ings (FW-H) acoustic analogy is employed to estimate the
acoustic pressure in the pipe using LB simulation results in
the mouthpiece. The FW-H analogy helps decompose the
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sound source into distributed monopole and dipole con-
tributions, which are attributed to different sound gener-
ation mechanisms and different parts of the mouthpiece-
reed system. This work is very much inspired by the re-
search in human phonation [13,14], which made use of the
Ffowcs Williams-Hawkings acoustic analogy to character-
ize the human phonation sound generation mechanisms. A
similar analysis routine is used here in studying the same
problem but for a single-reed instrument.

2. COMPUTATIONAL AEROACOUSTIC
MODELING OF THE SINGLE-REED

INSTRUMENT

2.1 Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is an alternative
to traditional Navier-Stokes solvers for solving computa-
tional fluid dynamics problems. It is based on the lattice
Boltzmann equation (LBE), which is obtained by discretiz-
ing the mesoscopic-scale Boltzmann equation in physical
space, velocity space and time. The LBE is given as

fi(x+ ei�t, t+�t) = fi(x, t) + ⌦i(x, t), (1)

where fi is the particle distribution function, ei is the dis-
crete velocity, �t is the lattice-unit time step that usually
equals 1, and ⌦(x, t) is the collision operator that models
the redistribution of the particle population after collisions
between particles. The D2Q9 model is used in this paper,
which discretizes the velocity space into nine directions
for a two-dimensional space. The lattice sound speed is
defined as cs = 1/

p
3, the weight coefficients wi are set as

wi =

8
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(3)

The collision is modeled with recursive regularized BGK
(rrBGK) [15], which is known to provide greater numeri-
cal accuracy and a more stable simulation for high Mach
number and high Reynolds number flow by filtering out
non-hydrodynamic components in the solution.

Palabos [16], an open-source LBM-based computational
fluid dynamics framework, is used for the numerical simu-
lation.

2.2 Mouthpiece Model

The schematic of the simulation setup is shown in Fig-
ure 1. The pressure source is placed at the inlet of the
computational domain using the absorbing boundary con-
dition (ABC) proposed by Kam et al. [17]. The immersed
boundary method (IBM) [18] is used to model the walls
of the mouthpiece and reed, as well as their interaction

with the surrounding fluid. The IBM is only applied to
the complex geometry of the mouthpiece before the throat
(the junction between the chamber and the cylindrical parts
of the mouthpiece), whereas the Zou-He boundary condi-
tion [19] is applied to the rest of the solid walls, including
the walls in the cylindrical bore and mouth cavity. The im-
mersed boundary (IB) nodes and Zou-He boundaries are
represented by dotted and solid lines in Figure 1, respec-
tively.

The mouthpiece geometry was derived from a CT (com-
puted tomography) scan of a Meyer® 5M alto saxophone
mouthpiece with a tip opening of 1.8 mm. The length
of the cylindrical part of the mouthpiece, known as the
mouthpiece bore, is 1 cm with a diameter of 1.5 cm. A
2D pipe with the same diameter and a length of 30 cm is
attached to the mouthpiece. The characteristic-based time-
domain impedance boundary condition (C-TDIBC) [20] is
applied to the end of the pipe, where an unflanged cylindri-
cal pipe radiation impedance Zrad is employed to represent
the radiation domain. The applied radiation impedance is
derived from a s-domain polynomial approximation of the
radiation coefficients [21], which is transformed to the z-
domain using the bilinear transform.

The sound speed is set to 343m/s. The kinetic viscos-
ity is set to 1.51e

�4
m

2
/s, which is an order of magni-

tude larger than that of the air to guarantee a stable simula-
tion. The grid size and time step are �x ⇡ 9.53e

�5 m and
�t ⇡ 1.60e

�7 s, correspondingly, which guarantees a 360
point-per-wavelength at 10 kHz.

2.3 Reed Model

The one-dimensional (1D) distributed reed model pro-
posed by Avanzini et al. [22] is used in the present study,
and the mouthpiece-reed-lip interaction is illustrated in
Figure 2. The reed is modeled in a separate coordinate
(xreed, yreed) in the LB domain, as illustrated in Figure 1,
and the subscripts are omitted for simplicity in this section.

The reed is modeled as a clamped bar with its transverse
oscillation amplitude y governed by the following Euler-
Bernoulli equation:
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�
= F (x, t), (4)

where ⇢r is the reed density, Y is the Young’s modulus,
and ⌘ is the magnitude of the internal viscoelastic losses.
I(x) = S(x)

2
(x) represents the moment of inertia about

the longitudinal axis with (x) representing the radius of
gyration of the cross-section S(x) = wb(x), where w and
b(x) represent the width and thickness of the reed.

The force applied on the reed F (x, t) = Flay(x, t) +

Flip(x, t)+Ffluid(x, t) is composed of the contact force due
to the collision between the reed and the lay, the lip force
distributed over a contact area of the reed with the lip, and
the aerodynamic force from the surrounding fluid.

The contact force Flay comprises the elastic force Fel and
dissipative force Fdis, which are defined correspondingly
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Figure 1. The schematic view of the computational domain.
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Figure 2. The schematic view of the mouthpiece-reed-lip
interaction.

as
Fdis(x, t) = ⇢rS(x)ẏ(x, t)/�t, (5)

and

Fel(x, t) =

(
�Klay�ylay(x, t) �ylay > 0,

0 otherwise,
(6)

where �ylay(x, t) = y(x, t) � ylay(x), and the profile of
the lay is fit by a fourth-order polynomial, as

ylay(x) =

(P4
n=0 ln(x� L0)

n
, x > L0,

0, x <= L0.
(7)

The lip provides both elastic and damping forces, where
Flip = �klip�ylip, with �ylip = ylip �y(x, t)+ b(x) repre-
senting the compression of the lip. The damping effect is
included by modifying the damping coefficient �B , where

�B =

(
�air + �lip, x 2 (xlip � Llip, xlip),

�air otherwise.
(8)

The time discretization of Equation (4) is consistent with
that of the LB simulation. The spatial discretization relies
on the discretized immersed boundary nodes of the reed.
The distance between nodes is set to 0.45�x, where �x is
the LB grid size. The IB nodes located at the top of the reed
are evenly distributed along the y-axis, and the bottom IB
reed nodes are placed based on the thickness function b(x).
The reed model has an equal number of IB nodes on the top
and bottom, and the Ffluid is calculated by subtracting the
IB force exerted on the top reed nodes from corresponding
ones on the bottom. The IBM is used to update the IB force
in the LB simulation at each time step.

3. FFOWCS WILLIAMS-HAWKINGS ACOUSTIC
ANALOGY

The acoustic analogy was proposed by Lighthill who re-
formulated the Navier-Stokes equation into an inhomoge-

neous wave equation [23]. The nonlinear terms are moved
to the righthand side (RHS) of the equation and are con-
sidered as the sound source. Ffowcs Williams and Hawk-
ings extended Lighthill’s acoustic analogy by introducing
moving boundaries [24], resulting in the FW-H equation,
written as
✓
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(9)
where H is the Heaviside function, c1 is the speed of the
sound in the quiescent flow and

Tij = ⇢vivj + [p
0 � ⇢

0
c
2
1]�ij � ⌧ij ,

Fi = � (⇢vi(vj � v̄j) + pij)
@H

@xj
,

Q = (⇢vj � ⇢
0
v̄j)

@H

@xj
,

and ⌧ij is the viscous shear stress, vj and v̄j represent the
velocities of the flow and solid wall, respectively.

The three source terms on the RHS correspond, respec-
tively, to

• the quadrupole sound source @
2
(HTij)

�
@xi@xj

due to the distributed Lighthill stress tensor Tij in
the volume,

• the dipole sound source @Fi/@xi generated by
– the compressive stress pij applied to the fluid

by the surface, and
– the momentum flux ⇢vi(vj � v̄j) through the

surface, and
• the monopole sound source @Q/@t contributed by

the mass flux ⇢vj � ⇢
0
v̄j across the surface.

The solution to the FW-H equation is obtained by con-
volving the sound source, i.e. the RHS of Equation (9),
with the Green’s function G(x, t|y, ⌧), and the result is
stated in the following form after a series of simplifica-
tions [25]:
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@⌧
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0
v̄j)nj ] dS(y)d⌧.

(10)
The integral surface S and integral volume V for the FW-

H formulation in a single-reed instrument are illustrated in
Figure 3. The integral surface is composed of the inlet Sin,
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Figure 3. The integral surface of FW-H acoustic analogy with the normals of the surface n pointing into the fluid.

outlet Sout, and solid walls Sw = S
upper
mp +S

lower
mp +Sr+Sbore

that include the upper Supper
mp and lower Slower

mp parts of the
mouthpiece, the bore Sbore, as well as the reed top surface
Sr. The normal n of the integral surface is pointing into
the mouthpiece. The integral volume includes only the area
inside the instrument and excludes the mouth cavity and
radiation domain. In addition, the area in the reed channel
(the space between the mouthpiece tip rail and the reed)
is not included in the integral volume, and the inlet Sin is
placed at the end of the mouthpiece reed channel. This is
made to eliminate the potential for an unclear definition of
the integral surface in the reed channel during the beating
of the reed with the mouthpiece.

In the present study, the observer is placed 8 mm away
from the mouthpiece throat in the cylindrical bore. It is
worth mentioning that in contrast to external flow appli-
cations, the observer in single-reed instruments cannot be
placed in an acoustic far field due to the presence of stand-
ing waves inside the instrument. Therefore, the observer
has to be placed in the acoustic near field, which is one of
the primary differences between the present FW-H appli-
cation in single-reed instruments and previous research in
human phonation, where the vocal tract was replaced with
an infinite pipe without acoustic feedback.

The one-dimensional Green’s function for an infinite pipe
is used to solve the FW-H equation

G(x1, t|y1, ⌧) =
c1
2S

H (t� ⌧ � |x1 � y1|/c) , (11)

where S is the cross-section area at the observer.
Based on the integral domain specified in Figure 3, the

FW-H formulation is shown as follows:
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2S

Z
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[(⇢v1v1 + p11)� ⇢c1v1]t⇤dS(y),

(12)
where t

⇤
= t� |x� y|/c is the retarded time.

In this formulation, the first term corresponds to the
quadrupole sound source, which arises due to the Lighthill
stress tensor in the control volume. The second term rep-
resents the dipole sound source contributed by the force

exerted on the fluid by the solid walls, while the third
term accounts for the monopole sound source produced by
the induced displacement flow of the moving reed. The-
oretically, the fourth and fifth terms are combinations of
the dipole contribution by ⇢v1v1 + p11 and the monopole
contribution by ⇢v1. However, these terms can also be
treated as equivalent monopoles produced by the mass flux
across the inlet and outlet surfaces ⇢v1M1 + ⇢v

±
1 , where

M1 = v1/c1 is the Mach number in x1-direction, and
v
±
1 = p11/⇢c± v1 represents the incoming acoustic veloc-

ities. It should be noted that both Sout and Sin are defined
perpendicular to the x1-axis, so that their normal vectors
nj are correspondingly replaced with (�1, 0) and (1, 0)

during the derivation.
The above formulation can be further simplified by omit-

ting the quadrupole term, since its magnitude is typically
two orders lower than that of the dipole [13]. Addition-
ally, the dipole contribution from the bore Sbore is zero,
owing to the wall’s parallel orientation with respect to the
x1-axis. Consequently, the second to fourth sound source
terms are all located upstream of the observer so that they
only contribute to the left-going pressure p

+
(x1, t) at the

observer’s position. On the other hand, the fifth term repre-
sents the only sound source located downstream of the ob-
server and contributes exclusively to the right-going pres-
sure p

�
(x1, t).

Given that the present study focuses on sound generation
within the mouthpiece, the final FW-H formulation, which
evaluates the left-going pressure at the observer using only
upstream surface integral, is as follows:

p
+
(x1, t) =

1

2S

Z

Sw0

[p1jnj ]t⇤dS(y)

+
c1
2S

Z

Sr

[⇢1v̄jnj ]t⇤dS(y)

+
1

2S

Z

Sin

[(⇢v1v1 + p11) + ⇢c1v1]t⇤dS(y),

(13)
where the total wall surface area is defined as Sw0 =

S
upper
mp + S

lower
mp + Sr. The three different terms are referred

to as the dipole, reed monopole, and inlet monopole, re-
spectively, in later discussions.

4. RESULTS AND DISCUSSION

The reed and lip parameters are set so that the instrument
can play near its first resonant frequency. The mouth pres-
sure increases from 0 to 6000 Pa in 5 ms and remains
steady for 45 ms until the end of the simulation.
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The LB simulated outgoing pressure at the observer is
calculated as (p̃+⇢cṽ)/2, where p̃ and ṽ represent spatially
averaged pressure and velocity over the cross-section area
at the observer, respectively. Equation (13) is used to com-
pute the FW-H estimation, with the integrands calculated
using the LB simulated values on the integral surface.

Figure 4 displays the time-domain comparison between
the LB simulated pressure and the FW-H estimation, which
shows a good agreement in both the transient and steady-
state signals. The spectra of the steady-state signal are
calculated using the “period synchronized sampling” tech-
nique [26], and are compared in Figure 5. It also shows a
good overall agreement with the largest deviation less than
3 dB.
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Figure 4. The time-domain comparison between the LB
simulated outgoing pressure at the observer and the esti-
mated one using the FW-H formulation.

One of the main benefits of using the FW-H acoustic anal-
ogy is its ability to decompose the sound into contributions
from various sound generation mechanisms. The equiva-
lent sound level Leq is used to measure the strength of dif-
ferent sound sources:

Leq = 10 log
1

T

Z
p(t)

2

p
2
0

dt, (14)

where p is the sound pressure signal, p0 = 20µPa is the
reference pressure, and T is the period of the signal.

The sound sources are decomposed into the dipole, reed
monopole, and inlet monopole, corresponding to the first
to third terms in Equation (13), respectively. Their time-
domain signals are compared in Figure 6, and the Leq of
steady-state signals are 181.2 dB, 153.9 dB, and 164.8 dB,
correspondingly. It is clear that the dipole sources, which
are generated by the unsteady-force exerted by the solid
walls to the fluid, contribute the most to the outgoing pres-
sure at the observer. This seems paradoxical because one
may assume the modulated jet flow through the reed chan-
nel to be the main source in single-reed instrument sound
generation. Such a contrary finding mainly comes from
the fact that the fluctuating force that contributes to the
dipole in FW-H with the 1D Green’s function for an in-
finite pipe is not only composed of the fluctuation in rota-
tional fluid fields such as the vortices, but also the acoustic
fluctuation, which is essentially the acoustic response of
the mouthpiece solid walls’ to the incoming wave from the

resonator. In other words, the dipole contributed by the
1

2S

Z

Sw0

[p1jnj ]t⇤dS(y) not only accounts for the sound

source due to the presence of solid walls in the fluid, but
also for the interaction of reflected sound from the res-
onator with the solid walls [27], which is related to the
role of the mouthpiece as an acoustic resonator [28]. The
dipole-dominant feature can also be attributed to the choice
of the Green’s function. If a one-dimensional Green’s
function for a semi-infinite pipe terminated at the inlet is
chosen, a quadrupole source will emerge from the dipole
sources and their image dipoles placed on the other side of
the closed end. Because quadrupoles are known to be ra-
diationally inefficient, they might contribute less than the
monopole sources. In addition, a new monopole sound
source will arise from the outlet, which generates an im-
age monopole that represents the reflection of the incoming
acoustic wave by the closed end.

Because a closed reed channel cancels the Sin, and there-
fore the inlet’s contribution to the sound at the observer, the
inlet monopole contributes almost exclusively to the posi-
tive pressure signal. The waveform of the reed monopole is
similar to that of the inlet monopole because they are both
dependent on reed displacement. The reed monopole con-
tribution, on the other hand, is delayed, which is mainly
attributed to the 90-degree lag in phase between the reed
velocity and reed displacement, which are correspondingly
reflected in the monopole terms of the reed and inlet. Fur-
thermore, the amplitude of the reed monopole is about 10
dB lower than that of the inlet monopole. However, the rel-
ative strength of the reed monopole to the inlet monopole
should be frequency-dependent. Further investigation is
necessary to fully assess their relationship.

The dipole sound source is further decomposed into con-
tributions by different walls, and the upper mouthpiece is
discovered to be the strongest dipole, as indicated in Fig-
ure 7. This is primarily attributed to the long inclined baffle
connecting the end of the reed channel to the mouthpiece
throat. The dipole contributions from the reed and lower
mouthpiece are comparable in amplitude but out of phase,
whereas the reed dipole is roughly in phase with the upper
mouthpiece dipole. This is because the upper mouthpiece
and reed are oriented in the positive direction of x1, while
the ramped wall of the lower mouthpiece is facing in the
opposite direction, resulting in a different sign of the axial
normal vectors n1 when computing the dipole contribu-
tion, and hence a 180

� phase difference. The distribution
on solid walls of the compressive stress (p1jnj) root-mean-
square values is presented in Figure 8, which helps better
illustrate the natures of different dipole contributions.

5. CONCLUSIONS

A 2D computational aeroacoustic model was built using
the lattice Boltzmann method to investigate the single-reed
instrument sound generation. The Ffowcs Williams and
Hawkings acoustic analogy is employed to analyze the
sound generation mechanisms. It helps decompose the out-
going pressure at the observer in the pipe into contribu-
tions by different monopoles and dipoles distributed in the
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Figure 5. The comparison of the outgoing pressure spectra between the LB simulation and FW-H estimation (top), and the
amplitude deviations in dB of harmonics below 12 kHz (bottom).
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Figure 6. The comparison between different contributions
to the outgoing pressure at the observer.
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Figure 7. The comparison of dipole sound sources con-
tributed by different solid walls.

mouthpiece-reed system. The LB simulation results are
used to calculate the strength of different sound sources,
and the dipole sources, especially the one distributed along
the mouthpiece baffle, are the dominant sound sources at
the playing frequency considered (around 230 Hz). The
FW-H acoustic analogy has been shown to be an effective
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Figure 8. (a) The distribution of (p1jnj)rms along the solid
walls, and (b) the mouthpiece geometry.

technique for studying the sound generation of the single-
reed instrument. It not only provides additional insights
of the sound generation characteristics of the instrument,
but also builds a direct correlation between the mouthpiece
geometry and the sound, which is useful in mouthpiece de-
sign.

The main limitation of the present study is the 2D na-
ture of the computational aeroacoustic model, which lacks
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the ability to reproduce some of the phenomena found in
a real single-reed instrument, such as turbulence and the
side slits of the mouthpiece-reed system. However, the
present study can be easily extended to a 3D computational
aeroacoustic model and use the same FW-H formulation
to characterize the sound generation. It is worthwhile to
compare the results of a 3D model with those found in this
paper, particularly inlet monopole contributions, which are
expected to be larger in a 3D model due to the contribution
from side slits.

In addition, the dipole-dominant characteristic is partially
due to the choice of Green’s function. It would be benefi-
cial to derive a FW-H formulation using the low frequency
Green’s function for a 1D semi-infinitely long pipe termi-
nated at the inlet. This will allow for comparison with
the findings presented in this paper, thereby providing fur-
ther insights into single-reed instrument sound generation
mechanisms.

More simulations at different playing frequencies can
be studied in the future to characterize the frequency-
dependency of different sound sources. Furthermore, it
may be interesting to investigate how much the fluid field
inside the mouthpiece influences the dipole strength by
comparing the present aeroacoustic model with a linear
acoustic mouthpiece model, such as the transfer matrix
mouthpiece model [28] or transmission line mouthpiece
model [29].
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