
OMAMBI
Symbolic control of spatialization with OpenMusic

Documentation & Tutorials

Marlon Schumacher, December 2008, Draft Version

2 OMAMBI

Table of Contents
1. Introduction...4
2. Requirements, Installation & Setup ..5
3. Architecture...6

3.1. Principles of ambisonics ...6
3.2. Artificial Distance Cues ..6
3.3. Implementation ...7

4. Control Structure...8
4.1 Matrix Representations..8
4.2 Levels of control ..8
4.3 Implementation..10

4.3.1 High-Level .. 10
4.3.2 Mid-Level ... 11
4.3.3 Low-Level... 12
4.3.3 Continuous Control... 12

5. Ambisonic Decoder ..12
5.1 Components ...13
5.2 Quickstart...15

6. Tutorials ..15
6.1. Basic..15

6.1.1 Tutorial 1: spatial-risset-bell ... 16
6.1.2 Tutorial 2: additive-spatial-spread .. 16
6.1.3 Tutorial 3: fog-stochastic .. 17
6.1.4 Tutorial 4: smpl-basic ... 18
6.1.5 Tutorial 5: smpl-granular .. 18
6.1.6 Tutorial 6: distance-cues ... 19
6.1.7 Tutorial 7: smpl-bpc.. 20
6.1.8 Tutorial 8: smpl-spatial-dafx... 21
6.1.9a Tutorial 9a: smpl-chordseq.. 22
6.1.9b Tutorial 9b: smpl-segmentation .. 22

6.2. Advanced ..23
6.2.1 Tutorial 1: continuous-bpc-trajectory ... 23
6.2.2 Tutorial 2: granular-board-trajectory .. 24
6.2.3 Tutorial 3: granular-time-space-stretching ... 24
6.2.4 Tutorial 4: continuous-risset-bell .. 25
6.2.5 Tutorial 5: parsing-fun-fineberg ... 26

7. Building OMambi classes ...27
7.1 Csound orchestras and code snippets ..27
7.2 Merging synthesizers & ambisonic encoders ..27

8. Future Developments ..34

OMAMBI 3

9. Appendix...34
9.1 Coordinate systems..34
9.2 List of matrix inlets & descriptions for discrete control..............................35

9.2.1 Ambiench (high-evel control)... 35
9.2.2 Ambiencm (mid-level control) ... 36
9.2.2 Ambiencl (low-level control).. 36

9.3 List of matrix inlets & descriptions for continuous control.........................36
9.3.1 Ambiench (high-level control).. 36
9.3.2 Ambiencm (mid-level control) ... 37
9.3.3 Ambiencl (low-level control).. 38

9.4 Overview of implemented OMambi-classes ...39

4 OMAMBI

1. Introduction

OMambi is a library for symbolic control of spatialization with OpenMusic. It is implemented as
a set of omChroma classes for higher order ambisonics providing control of spatialization from
different levels of abstraction.

Although care has been taken to keep the tutorials as simple as possible, this documentation
presupposes a certain degree of familiarity with Csound, OpenMusic and omChroma; Please
refer to the respective documentations for detailed instructions on the use of the above software.
It is recommended to be familiar with the basic concepts of the omChroma system such as the
matrix, typed slots and keywords. The tutorials are intended as an introduction to the concepts
for controlling spatialization in an environment for computer assisted composition like
OpenMusic without trying to be exhaustive in terms of control possibilities or suggesting any
particular control paradigm.

Ambisonic Classes have been implemented for three types of synthesis, namely additive, fog
(formantic granular waveform) and sample-based, please see the Appendix for an overview of
available classes. OMambi can be user-extended as described in chapter 7 of this documentation.

For ambisonic decoding and interactive setting of parameters an external Max/MSP1-application
is provided, based on extended and custom built high-level modules complying with the
jamoma2 framework.

Informations on the structure of this text:

Chapter 2 provides instructions for installation of this software. If you are already familiar with
how to install and configure OpenMusic/omChroma, Csound and Max/MSP you can skip this
part.

Chapter 3 is a very brief introduction into the underlying principles of higher-order-ambisonics
and describes the dsp-architecture of OMambi.

Chapter 4 describes the general concepts behind the control structures of OMambi.

Chapter 5 is a concise documentation of the Max/MSP-based application for ambisonic
decoding.

Chapter 6 contains Tutorials subdivided into two parts. The Basic tutorials present different
methods for controlling spatialization with discrete source-positions. Concepts of spectral vs.
granular spatialization are introduced. The Advanced tutorials address the continuous control of
spatialization parameters, drawing of Trajectories, Time/Space-manipulation and the parsing-
fun.

Chapter 7 provides instructions on how to extend the library with new classes.

Chapter 8 discusses future developments and perspectives.

1 http://www.cycling74.com/products/max5
2 http://jamoma.org/

OMAMBI 5

2. Requirements, Installation & Setup

Requirements:

This software has been tested with OpenMusic6.04, omChroma4.0 and Csound5.09. The
Multiplayer is a standalone application. You can find OpenMusic/omChroma here1, Csound is
available here2, OMambi can be downloaded from here3.

Instructions:

Mount OMambi.dmg and copy the contents into a folder anywhere on your harddrive. After
launching OpenMusic you will be asked for a workspace: just point to the above folder.

Of course it is also possible to use the OMambi-classes with another workspace:

Copy the folder “/user/OMambi” from the OMambi-workspace into the directory “/user” inside
the workspace you would like to use. Start OpenMusic with your desired workspace and select
“Windows/Library” from OpenMusic’s menubar. In the opened window expand the trunk “user”
by clicking on the arrow left of it. Now double-click on the lower half of the red trunk called
“omambi” to load the classes as shown in the figure below. You can instantiate a class by
dragging it onto a patch or typing its name into an empty box in a OpenMusic patch.

Setup:

Before starting to work with OMambi it is recommended to check OpenMusic’s Preferences for
“Audio Settings” and “External Sound Processing”. Please refer to the omChroma
documentation for detailed instructions on how to set the preferences. OMambi will work with
the default settings4.

1 http://recherche.ircam.fr/equipes/repmus/OpenMusic/
2 http://www.csounds.com/
3 http://www.music.mcgill.ca/~marlon/software/OMambi/OMambi1.0.dmg
4 NB: By default omChroma renders soundfiles at 96kHz/24Bit resolution. Accordingly, the B-format files (16channels)
generated by OMambi can become quite large (one second of audio corresponds roughly to 4.6MB)

6 OMAMBI

3. Architecture

OMambi uses the ambisonic approach for spatialization. Although a detailed description of
ambisonics is beyond the scope of this documentation the most relevant principles with regards
to their control with OMambi shall be briefly described here, a comprehensive list of references
can be found here1.

3.1. Principles of ambisonics

Ambisonics originated as a spatial sound recording technique using a special microphone
described by M.Gerzon and Cooper in the early 1970s with the goal of storing spatial sound
information with a few audio channels. The spatial information of the recorded or synthesized
sound is encoded together with the sound itself in a specific number of channels, the B-Format,
which is independent of the final speaker setup. With higher order ambisonics (HOA), a 2-
dimensional (planar) or 3-dimensional (periphonic) soundfield can be reproduced with varying
accuracy determined by the available number of speakers for reproduction as well as the order of
the encoded signal: the higher the order, the more accurate the spatialization, 0th-order equals full
monophony (omnidirectional). A great advantage of ambisonics is that the encoding and
decoding process are independent of each other, which allows to store an “abstract” description
of a soundfield in a portable B-Format file. The self-compatibility of ambisonics2 makes it an
ideal choice for spatial compositions ought to be reproduced with different loudspeaker setups in
different listening spaces. Another benefit is that the spatial information is stored as an audio-
signal, which is open to manipulation using digital signal processing techniques as with any
other signal (e.g. soundfield-effects). The underlying equations used for HOA are based on
several simplifications, one of them is that virtual sound sources and loudspeakers emit plane
waves. Accordingly, the B-Format itself doesn’t contain any distance-information, auditory cues
to create the perception of source distance need to be added to the signal before the encoding
process as described in section 3.2.

3.2. Artificial Distance Cues

OMambi implements a series of dsp-units to provide for perceptual cues supporting the
impression of distance of a sound source: A second-order butterworth lowpass filter is used to
simulate the effect of air-absorption, that is loss of high-frequency energy of a soundwave
travelling through air. The filtered signal is processed by a gain-unit to account for the
attenuation of the signal as a function of distance, i.e. with increasing distance the sound source
becomes more silent. Depending on the speed of sound and the distance of a sound source from
the listener, i.e. the length of the propagation path, the time-of-flight varies accordingly. For
moving sound sources this causes a pitch-shifting-effect, known as the doppler-effect. A variable

1 http://www.york.ac.uk/inst/mustech/3d_audio/ambrefs.htm
2 Higher orders can be decoded to lower order reproduction systems and vice versa

OMAMBI 7

B-Format Soundfile

(16 channels)

Ambisonic

Decoder

Decoding Parameters

M Speakers

add-1

fog-1

omChroma

 Synthesizer Output
Distance Cues

a
ir-a

b
s
o
rp

tio
n
, a

tte
n
u
a
tio

n
, d

o
p
p
le

r

Ambisonic

Encoder

Directional Cues

. . .

. . .

Csound (offline) Max/MSP (realtime)

smp-1

time delay is implemented to simulate this effect before the signal is finally encoded into B-
Format. Most commonly parameters of the above units are controlled as functions of distance,
however, as we shall see in chapter 4 all distance-cues can be controlled arbitrarily.

3.3. Implementation

OMambi is implemented following a general dsp-architecture shown in the figure below. Red
arrows represent audio signals. The encoding and decoding process is performed independently
by two dedicated applications.

On the left we see the Csound orchestra subdivided into 3 processing-modules. The leftmost
module represents an existing synthesizer of the omChroma system, which is the sound source.
The monophonic output of the synthesizer is first processed by dsp-units to account for distance
cues (described in section 3.2) before it is encoded into 3rd-order periphonic Bformat1, and stored
to disk as a 16-channel audio file. This is an offline-process controlled from within OpenMusic.

The decoding of this B-format file is carried out by a MaxMSP-based application in realtime.
This allows for interactive tweaking of decoding parameters as described in chapter 5. The B-
format file can theoretically be decoded to an arbitrary number of speakers2, however in the
current implementation it is limited to a maximum of 32.

NB: Some classes have been implemented, which allow combine en- and decoding within the
Csound orchestra for common speaker-layouts, like e.g. quadrophonic, 5.1 and stereo (stereo-
files can be played back directly within OpenMusic). These classes are not used in the tutorials
but can be found in the folder “/classes” in the OMambi workspace. Templates for building new
classes for ambisonic en- and decoding within the Csound-orchestra are provided, please see
Chapter 7 for instructions on how to build new OMambi-classes.

1 For encoding into B-Format the Csound opcode “Bformenc1” by Richard Furse, Bruce Wiggins and Fons Adriaensen is used.
2 as long as larger than (order*2)+1 in 2D, or (order+1)^2 in 3D

8 OMAMBI

4. Control Structure

4.1 Matrix Representations

OMambi uses a matricial representation of control data –the omChroma matrix- and higher-level
structures for the creation and manipulation of such matrices. An instance of an omChroma
matrix represents a musical “event”. An event can be for example a single call of an instance of a
dsp-program, a sequence or group of instances, or groups of sequences of instances, and so on
and so forth. In other words, the semantics of an event can be arbitrarily defined1. Please note
that a matrix may as well contain other matrices as cells, see e.g. class array-of-array in
omChroma. Another important feature is that time is treated as a synthesis parameter which can
be represented and controlled within the matrix as any other parameter2. As we shall see later
this control-model provides a very powerful, efficient and ergonomic way of generating and
controlling large data-sets. Due to the dynamic allocation of instances of a dsp-patch all
parameters can be specified for each sound source/instance separately3. This contrasts to many
spatialization systems in which certain settings are globally applied to the spatial sound renderer.
Please refer to the omChroma documentation for more informations on the omChroma matrix.

4.2 Levels of control

Similar to the issue of controlling sound synthesis processes, spatialization algorithms can be
controlled from different levels of abstraction. For example, similar to the perception of the pitch
of a sound with a complex partial structure, spatial audition is a multidimensional phenomenon
which depends on various perceptual cues. Generally speaking, spatial sound renderers try to
fool the human auditory system by providing perceptual cues giving the impression that a virtual
or phantom sound source is located at some real point in space (where it isn’t).

Analogous to the synthesis of a harmonic sound which can be controlled from different levels of
abstraction (for example by using a wavetable containing a complex waveform, versus a fixed
bank of sine-oscillators, versus the multiple instantiation of a single sine-oscillator) perceptual
cues that constitute the human spatial audition can be controlled in similar ways.

The musical use of spatialization is manifold; creative applications often manipulate perceptual
cues in a way that does not correspond to the simulation of a physical sound source in physical
space, e.g. by exaggerating certain perceptual cues and/or not employing other ones at all –as is
for example often the case for doppler-effects. For this reason, and to provide a maximum of
flexibility, OMambi allows the control of perceptual cues from different levels of abstraction.
The figure below shows a diagram of OMambi’s control structure with the three implemented
levels which represent a continuum from efficiency to flexibiliy.

1 This might be regarded analogouts to a note (as the smallest possible entity), a temporal sequence of notes (a melody), a group
of notes (a chord), a chord-sequence, etc..
2 It is worth mentioning here that global time can also be dynamically controlled via csound-“t-statements”.
3 i.e. each sound source represents a ‘clone’ of the whole spatialization system

OMAMBI 9

B-Format
Soundfile

sound
synthesis

filter
module

vtdelay
module

gain
module

ambisonic encoder

sound synthesis
parameters

Distance Cues Directional Cues

low level

level temporal

azimuth elevation order

distance

air-

function

atten-

function

doppler-

function

timbral

fcutoff amplitude delaytime azimuth elevation order

spatialization
parameters

mid level

high levelazimuth elevation order

distance

doppler-

factor

atten-

factor

hfcut-

factor

= audio-signal

= control-data

The black rectangle at the bottom represents the dsp-patch implemented in Csound (the Csound-
orchestra). The (continuous) blue boxes represent control parameters. The dashed blue boxes
represent parameters to tweak the functions controlling low-level parameters. For each sound
synthesis module there are three OMambi-classes, corresponding to the different control-levels
shown in the figure.

The control sturcture of the sound-synthesis module is left untouched (blue arrow on the left), i.e.
the slots for the OMambi classes are the same as for the original omChroma class, please refer to
the omChroma documentation for descriptions of the sound synthesizers. In order to control
spatialization parameters from different levels, three control structures are available. Ambisonics
is by its theory (assuming plane waves) a 2-dimensional spatialization system encoding the
position of a sound source on a sphere, without any information on the sound source’s distance.
While directional cues1 are controlled the same way for all 3 control-levels, the low-level
parameters for controlling cues for distance-perception, i.e. the air-absorption filter, the gain-unit
and the variable time delay can be controlled differently:

The classes for High-Level control are the most efficient in terms of dsp: The Csound-orchestra
employs a set of built-in functions to calculate low-level parameters as a function of distance.

1 Directional cues represent the 2-dimensional information of azimuth & elevation angle, plus the order of encoding

10 OMAMBI

The behaviour of these internal functions can be tweaked via coefficients. However, there is no
access to modify the mapping or editing the underlying equations.

For Mid-Level control the relationship between sound source distance and low-level parameters
is also hard-wired into the Csound-orchestra. In this case, however, distance is used as an index
for table-lookup of low-level parameters controlling the distance-cues of the signal before
encoding. The lookup tables are provided in OpenMusic either locally via BPFs connected to the
corresponding inlets, or globally as cs-tables to the function „synthesize“ -as is always the case
for slots of type „cs-table“ in omChroma.

The Low-Level class allows the control of all low-level parameters directly. The equivalent
functions to generate low-level parameters as used in the high-level Csound-orchestra can be
found in the folder „/miscellaneous“ in the OMambi workspace. This implementation is the most
flexible.

4.3 Implementation

4.3.1 High-Level

The inlets/keywords1 of the matrix to control the position of a sound source in spherical
coordinates are called „azimuth“, „elevation“ and „distanz“2. To control the level g of a sound
source as a function of distance d two different functions are provided, for inverse-proportional
and exponential decrease, respectively. The desired function can be selected via the inlet „atten-
mode“, where „1“ corresponds to the inverse-proportional function and all other numbers to the
exponential. The respective coefficients for tweaking the functions can be provided via the inlet
„atten-factor“. See below for the implemented equations.

a) Inverse proportional decrease:

gi= (di + (1-ci))−q

c being the distance from the center/sweetspot to the speakers and q being the attenuation
coefficient. By tweaking q the attenuation can be boosted or softened.

b) exponential decrease:

gi = 10 –k/20 * (di-ci)

c being the distance from the center/sweetspot and k being the attenuation coefficient. As with
the inverse proportional decrease by changing k the attenuation is boosted or softened.

The theory of ambisonics asumes no physical distance between the microphones recording the
periphonic soundfield. However, in real-life scenarios, there is always a distance between the

1 These keywords correspond to the slots of the class. See omChroma1.0 Documentation.
2 Since the English word “distance” is reserved for a compiled OM-function, the German equivalent “distanz” is used.

OMAMBI 11

speakers used for reproduction. The speakers’ membranes “represent” the counterpart of the
microphone capsules used for recording the soundfield. The zone within the speaker-circle is
referred to as the “center-zone”, the radius is referred to as the “center-size”. Theoretically
speaking, a virtual sound source’s position cannot be within this center-zone. However, for
musical applications this is often a desideratum. Accordingly, the approach taken in OMambi
decreases the encoding order within this center-zone linearly, reaching complete monophony at
the very center. In order to compensate for the increase in loudness caused by the sound source’s
presence on all speakers, and in order to avoid high amplifications for distances smaller than 1,
within the center-size a different attenuation law is applied:

gi = (di * (1/ci))-q *(1-k) + k

c being the center-size, q being the attenuation coefficient and k being the maximum attenuation
at the center in decibel. The attenuation coefficient q can be controlled via the inlet “center-
curve”, the maximum attenuation at the center k via the inlet “center-atten”.

To control the cutoff-frequency fc of a 2nd-order butterworth filter as function of distance d to
simulate the effect of air-absorption two functions are provided, air-absorption-val and air-
absorption-icst, respectively. The desired function can be selected via the inlet „air-mode“,
where „1“ corresponds to the air-absorption-val and all other numbers to air-absorption-icst.
The respective coefficients for tweaking the functions can be provided via the inlet „hfcut-
factor“. See below for the implemented equations.

a) air-absorption-val

fc(d)=-0.1668d3+18.919d2-785.71d+15849

d being the distance from the center and fc being the cutoff-frequency in Hz.

b) air-absorption-icst

fc(d) = 22050 - d*k

d being the distance from the center, k being the air-absorption coefficient and fc being the
cutoff-frequency in Hz. By tweaking k the effect of air-absorption can be softened or boosted.

The ambisonic encoding order can be controlled via the inlet “order” as a floating point number
between 0 (=complete monophony) and 3.

4.3.2 Mid-Level

As with the high-level approach, there are three inlets to control the position of a sound source in
spherical coordinates, again called „azimuth“, „elevation“ and „distanz“. However, this
implementation uses a table lookup internally to control low-level parameters as a function of
distance. Three lookup functions are implemented in the Csound-orchestra which use tables for
lookup which are provided via the inlets „air-function“, „atten-function“ and „order-function“.
The parameter „distanz“ is used as an index for table-lookup. For internal rescaling of lookup-
indices the minimum and maximum value used for „distanz“ must be provided explicitely via the
inlets „lookupmin“ and „lookupmax“. The ranges of the respective lookup-tables can be

12 OMAMBI

provided via the inlets „airfmax“, „attenfmax“ and „orderfmax“. This can be done automatically
in OpenMusic using the abstraction get-list-ranges which can be found in the folder /abstractions
in the OMambi workspace. The “order-function” is relative to the maximum order given as a
floating-point value via the inlet “order”.

4.3.3 Low-Level

For the low-level implementation the two-dimensional position of a sound source on a sphere is
controlled via the inlets “azimuth” and “elevation”. The low-level parameters to control
perceptual distance-cues are not implicitely calculated as a function of distance, but can be
controlled explicitely. The inlet “hf-cutoff” controls the cutoff-frequency of the lowpass filter
which can be used to simulate the effect of air-absorption. The inlet “attenuation” can be used to
control the gain-factor (internally clipped to a range between 0 and 1) which can be used to
account for distance-attenuation of a sound source. The inlets “1st-order-gain”, “2nd-order-gain”
and “3rd-order-gain” provide explicit control of linear gains of the respective components of the
resulting B-Format-files. Abstractions providing the equivalent functions as used by the high-
level implementation internally can be found in the folder “/miscellaneous” in the OMambi
workspace.

4.3.3 Continuous Control

For the classes allowing the continuous control of spatialization parameters, all parameters1 are
controlled via BPFs, i.e. the class’ slots are of type cs-table. These BPFs are internally translated
into GEN07-functions (breakpoint-functions using linear interpolation) serving as wavetables for
high-precision oscillators within the Csound-orchestra. For each of the envelopes the duration, as
well as the minimum and maximum value can be provided2. The duration for one cycle of these
envelopes can be set arbitrarily, e.g. for oscillations at audio-rate. Note, that this will most likely
result in audible amplitude-modulations. If not specified, the envelope’s durations default to the
duration of the azimuth-envelope, which defaults to the instance’s duration.

5. Ambisonic Decoder

The Decoding of the B-Format files is carried out by an external Max/MSP3 based application,
called “Multiplayer”. This application consists of a series of modified and custom-built dsp-
modules complying with the Jamoma4 framework. The figure below shows 3 different windows

1 Besides the selection of air-absorption and attenuation-functions for high-level control
2 These parameters can be controlled either explicitely or implicitely using an abstraction to lookup the values from the BPFs.
3 http://www.cycling74.com
4 http://www.jamoma.org

OMAMBI 13

2

3

10.0

100

j k

1

4

5

6

7

8

a

b c

d

e f

g

h

i

of the application. Green squares identify modules, red-circles identify additional parameters not
found in the original modules1.

5.1 Components

The following jamoma-modules are used within the application (in serial order):

1) jmod.ms.sur.multi.input~.mxt
2) jmod.sur.ambi.adjust~.mxt
3) jmod.sur.ambi.decode~.mxt
4) jmod.multigain~.mxt
5) jmod.ms.sur.speaker.setup.mxt
6) jmod.sur.output~.mxt
7) jmod.control.mxt

The p.storage1 object is used for easy & flexible preset management and storage in xml-file-
format.

1 Due to the use of externals which haven’t been ported to Max5 yet, the application is based on Max/MSP 4.6.3

14 OMAMBI

Detailed description of the above software is beyond the scope of this document, please refer to
the respective documentations on http://jamoma.org . The extended functionalities features used
in the multiplayer.app are described here. Please note, that as with all jamoma-modules changes
of parameters that cause the rebuilding of the dsp-chain (e.g. scripting auf dsp-objects) take
effect only next time audio is switched on.

jmod.ms.sur.multi.input~.mxt

This module has been provided with the additional functionality of routing the multichannel-
signal to two different outputs. Additionally, a “filewatch” feature has been implemented.

Checking the box next to “Bformat” (a) in the figure) routes the signal to the ambisonic decoder.
When unchecked, the multichannel signal is routed directly to the jmod.multigain~ module
without any processing, which is useful for auditing regular multichannel files.

Clicking on “open decoder interface” (b) opens an additional window (shown on the top right of
the picture), containing modules for ambisonic decoding (jmod.sur.ambi.adjust~ and
jmod.sur.ambi.decode~) the functionality of these modules has not been changed, i.e. they are
the same as in the original jamoma-distribution and are documented there. jmod.sur.ambi.adjust~
uses a the Max/MSP external “ambidecode~”, a single-band 3rd-order ambisonic encoder,
documentation can be found here2.

Checking the box next to “filewatch” (c) activates the filewatch feature: Whenever the currently
loaded file is changed by an external application (this is a common case, e.g. when working on a
synthesis-process in OMambi and rendering a file with the same name), the application
automatically re-loads this file.

jmod.multigain~.mxt

The jmod.multigain~ module has been implemented for easy visual monitoring and adjustment
of levels (linear gains) of individual channels of a multichannel audio stream. Use the number
box (d). If the audio stream contains more channels than the set number, the higher channel
numbers are ignored. The graphical/numeric slider (e) can be used to control the volume of all
channels simultaneously (in decibels), i.e. controlling the master volume.

jmod.ms.sur.speaker.setup.mxt

In order to provide an intuitive way for setting and tweaking of speaker positions, the original
jmod.sur.speaker.setup has been extended with a graphical user-interface. Additionally, the
functionality of the jamoma module jmod.speaker.delay~ has been integrated into the module,
i.e. time-delays to compensate for differing speaker distances are automatically applied without
the need of additional user-interaction.

Further, it is now possible to automatically generate circular speaker setups in the horizontal
plane following the convention starting with the first speaker left of the front-middle, and
enumerating clockwise. Coordinate systems are described in the Appendix of this document. The
number of speakers is set using the number box next to “circular distribution” (marked (g) in the

1 http://www.pelado.co.uk/2006/05/23/pstorage/
2 http://www.icst.net/downloads/

OMAMBI 15

figure). The radius of the circle of speakers can be set via the number box next to “center-
distance” (marked (h) in the figure). Please note that speaker-numbers exceeding the number of
voices will be ignored.

Clicking on “open graphical interface” opens an additional window showing a bird’s eye
perspective on the listening space. This interface uses the Max/MSP external “ambimonitor” for
Max/MSP4.6.3, which can be found in the same software distribution as the external for
ambisonic decoding mentioned above. Please refer to the same ressource for documentation. The
interface is fully integrated into the module’s namespace. The distance-units (blue circles) are
normalized to meters. The “radius” parameter (j) sets the viewing radius for “zooming” in and
out. The “size” parameters (k) resizes the whole window (in screen pixels).

5.2 Quickstart

A general remark: For ease of use the number of channels of all modules subsequent to
jmod.sur.ambi.decode~ are automatically adjusted to the number set for “voices”. If wished this
can be overridden using controls of the respective modules.

1. Dragn’drop a Bformat file from MacOS’ finder onto the time-display of the Multichannel-
player and use the controls for playback as described in the jamoma documentation of the
module jmod.input~.

2. Check the box next to “Bformat” (a) to route the signal from the Multichannel player to the
decoder and –if desired- check the box next to “filewatch” (c) to activate the filewatch-feature.
Click on “open decoder interface” (b) to open the window containing UI-elements for tweaking
decoder settings, common presets are provided with the application (e.g. coefficients for in-phase
decoding in different orders).

3. Choose one of the presets for decoding from the jmod.sur.ambi.decode~’s preset-menu or set
the parameters manually. Set the number of desired output-channels for “voices” in module. Use
the module jmod.ms.sur.speaker.setup.mxt to configure your speaker setup via the parameters
“circular distribution” (g) and “center-distance” (h) and/or tweak them manually using the
graphical interface (f). As with all jamoma-modules settings can be stored as module-specific
presets. Using the p.storage object (8) multiple settings of the entire application can be stored
and later saved conveniently in an xml-file.

6. Tutorials
6.1. Basic

The purpose of the basic tutorials is to give an introduction into basic methods of controlling
spatialization with OMambi. Classes for discrete control of spatialization parameters are
presented and basic concepts of spectral vs. granular spatialization are introduced. For sake of
clarity (and since there currently is no 3D-editor in OM) only 2D- (planar) spatialization is used.

16 OMAMBI

A note before starting:
OMambi renders periphonic 3rd-order B-Format files (16 audio channels), which are displayed
properly in OM’s sound-object. For playback/decoding of these files however, an external
application is needed –e.g. the “multiplayer” which is described in chapter 5. The rendered
soundfiles can be found in the directory set in OM’s Preferences in “/Default Folders/Output
Files”. By default the directory is “/out-files”, a sub-directory of your workspace.

6.1.1 Tutorial 1: spatial-risset-bell

Open the patch “1-spatial-risset-bell”. This first tutorial is a simple introductory patch using an
adaption of the original omChroma tutorial “cs_tut03” for additive synthesis of a bell-like sound
taken from the Csound catalog. This is a simple example for spatial additive synthesis using the
class add-1ambiencl-1, which is an ambisonic version of the omChroma class add-1: Each
partial is assigned a distinct panning position via a OpenMusic’s breakpoint-function (BPF).
Note, that the panning positions are not a function of frequency since the BPF is sampled across
the number-of-rows of the matrix1, but a function of the frequency’s index in the list-of-
frequencies. Since the frequencies are sorted in an ascending fashion the BPF can be regarded as
a 2D-plot representing frequency on the X-axis and azimuth angle on the Y-axis, similar to a
“spatial envelope” as shown in the figure below. After evaluating the sound object at the bottom
of the patch it should look like the right figure below. Note that –although displayed properly-
the file can’t be played back using the sound-object. Instead, use the multiplayer application for
playback as described in chapter 5.

6.1.2 Tutorial 2: additive-spatial-spread

This tutorial allows for selecting a gong-like partial structure from a database via the argument to
the abstraction “gong” at the top of the patch. The abstraction “clusters” generates micro-clusters

1 this is the typical behaviour of the omChroma-matrix for a slot of type number

OMAMBI 17

around each partial the number of partials for each cluster, as well as the frequency devitation
can be set arbitrarily as shown in the left figure below. The azimuth-angle of each partial is given
by a random-function. In addition to the control of panning-positions, this tutorial demonstrates
an approach for controlling the spatial spread (or “sourcewidth”) of sound sources by controlling
the gain of components of the respective ambisonic order on a scale from 0 to 100%: At 0th
order, or a spatial spread of 100% the sound-source is omnidirectional1, whereas 0% corresponds
to the highest possible accuracy of the system, that is 3rd order in OMambi. The right figure
below shows how a relative BPF is used to control the ambisonic order as a function of “spatial
spread” (one-to-many mapping) which is embedded in the subpatcher “sourcewidth->order”.
Please note that this control structure is independent of the number of partials, as e.g. for spatial
additive synthesis using thousands of partials.

6.1.3 Tutorial 3: fog-stochastic

Tutorial 3 demonstrates the use of various algorithmic (stochastic) functions to generate the
control-data for a spatial fog-synthesizer2: the class fog-1ambiencl-1. Here the azimuth-angle of
each grain is controlled via a random-walk with a maximum step size of 45. degrees. The matrix
object below shows a nice visualization of the various stochastic functions used to control the
class’ parameters, the lowest row is the random walk. Also note, that the source soundfile used
for fog-synthesis can be provided using the leftmost outlet of OM’s sound object, however, must
be converted into a global cs-table which is written into the csound score which is read by the
Csound-orchestra.

1 Please note that this has an increase in overall amplitude as a side effect, since more loudspeakers are contributing.
2 “fog” stands for “forme d’onde granulaire”, an extended type of formantic waveform synthesis using arbitrary soundfiles
instead of sinusoids.

18 OMAMBI

6.1.4 Tutorial 4: smpl-basic

This tutorial is a basic example for sample-based spatialization, i.e. panning of a sound file using
the class smpl-1ambiencl-1 which is controlled exclusively with absolute BPFs: Please note that
in contrast to Tutorial 1 the BPF used to control azimuth is an absolute BPF which is not rescaled
and contains values from 0 to 360 (representing azimuth-angle in degrees). Thus the Y-axis
represents a clockwise circle starting in front of the listener. The soundfile can be provided using
an absolute or relative path, or by connecting the leftmost outlet of the sound-object with the slot
called “filename”.

6.1.5 Tutorial 5: smpl-granular

In this tutorial we’ll see how OMambi seamlessly integrates with OpenMusic’s audio-processing
functionalities such as SuperVP and OMsounds. An audiofile (a drumloop) is analyzed for
transients using OM-SuperVP to generate markers. Alternatively, markers can be loaded from an
SDIF-file. By retrieving the marker-positions from the sound-objects rightmost outlet, entry-
delays, skips (offsets within the soundfile) and durations are calculated. For each of the audio
segments (audio between two successive markers) a random panning-position (azimuth between
-180 and 180 degrees) is calculated, resulting in a rhythmic spatial distribution of drumsounds.
This patch can be regarded as a simple example for “granular spatialization”1. Please note that an
additional marker should be added at the end of the analyzed sound file in order to calculate the
duration of the last segment as shown in the figure below.

1 The term “granular spatialization” is used to describe a technique in which the spatial position of each grain is controlled
independently.

OMAMBI 19

6.1.6 Tutorial 6: distance-cues

Up to this tutorial OMambi was used merely for one-dimensional panning purposes. For
rendering of sound source positions with different distances, additional perceptual cues need to
be provided. This tutorial presents three classes for the control of distance-cues from different
levels of abstractions as described in chapter 4. In this tutorial all three classes produce exactly
the same results. The audio material used for this tutorial is a transient-rich cymbal sound.

The high-level class calculates low-level parameters to control distance-cues internally as a
function of distance. Two functions for distance-attenuation, as well as for air-absorption can be
selected. The behaviour of these functions can be tweaked via two respective coefficients.
Chapter 4 gives detailed descriptions of this class’ control-structure, see the appendix for a list
and a description of the matrix’ inlets.

The mid-level class also uses internal functions to generate low-level parameters as a function of
distance, thus analogous to the high-level class this relationship is hard-wired into the
instrument. However, the behaviour of these functions can be arbitrarily defined: External
function-tables -that is BPFs in OpenMusic- are used to lookup the respective low-level
parameters as a function of distance. This provides an additional level of flexibility. Please refer
to section 6.3.2 for instructions on the generation of BPFs from user-defined functions.

The low-level class provides access to all underlying low-level parameters for controlling
distance-cues explicitely. In this tutorial user-defined functions (the abstractions “attenuation-

20 OMAMBI

exponential” and “air-absorption”1) are employed to generate control-data for low-level
parameters as a function of distance. Please refer to section 6.3.1 for more information on
distance-functions. This is both the least efficient and the most flexible solution.

Due to the dynamic allocation of instances all parameters can be changed for each sound source
separately independently of the control-level. The figure below shows the 2 BPFs generated from
the two functions used for the low-level class for distances from 0 – 50 meters. Note, that for the
mid-level implementation the maximum distance is automatically calculated using OM’s
compiled function “list-max” .

6.1.7 Tutorial 7: smpl-bpc

This Tutorial shows a graphical, 2-dimensional representation of sound source positions in
cartesian coordinates using a BPC-factory2. Each breakpoint in the BPC corresponds to a
position in the horizontal (X/Y) Plane. The conversion utility “bpc2ad” is used to convert the
representation in cartesian x/y coordinates into polar azimuth/distance coordinates3. The sound
material is the same as in Tutorial 6. In addition, this tutorial shows yet another example for the
control of distance-cues using a low-level class: Lookup-tables (instances of BPFs) are used
within the OpenMusic patch for control of the low-level parameters of a low-level class. This is
equivalent to the method in the mid-level class. Please note that time delays must be accounted
for as positive offsets for entry-delays (the abstraction “distance-delay”). The figure below
shows a manually vs. an algorithmically created BPC and the abstractions used for table-lookup
in OM.

1 These are exactly the same functions as implemented in the csound-orchestras/OMambi-classes for high-level control.
2 OpenMusic’s breakpoint-curve editor
3 The folder “/abstractions” in the OMambi-workspace contains various utilities for the control of spatialization, like conversions,
mappings, etc.

OMAMBI 21

6.1.8 Tutorial 8: smpl-spatial-dafx

This Tutorial shows a very simple example of using data derived form a soundfile (a Kalimba
phrase) via audio-analysis to control spatialization parameters. This can be regarded a spatial
digital audio effect. As in the tutorials 6 and 7 a soundfile is segmented using OMSuperVP for
transient-detection. Additionally, the function f0-estimate is used to extract the fundamental
frequency of the soundfile which is visualized in a BPF, the X-axis representing time (in
seconds), the Y-Axis representing frequency (in Hz). The marker-positions (from the rightmost
outlet of the sound-object) are used to look up the fundamental frequency for each audio-
segment which is mapped to azimuth angles in the range of -135 (backleft) to 135 (backright)
degrees. Thus, the panning position of each audio segment is a function of its fundamental
frequency. A BPC is used to visualize the sound source positions in a bird’s eye view.

22 OMAMBI

6.1.9a Tutorial 9a: smpl-chordseq

Since OpenMusic is a CAC-environment using symbolic representations of musical objects in
common music notation it makes sense to use these representations for the control of
spatialization. The following 2 tutorials are examples for the use of a chord-seq -a symbolic
representation of a musical score- as a control structure for granular spatialization. The sound
material is the same as in the previous tutorial. For each note in the chord-seq audio segments are
successively “picked” from the source soundfile. This tutorial nicely demonstrates the benefit of
a feature of the omChroma-matrix which re-iterates a list from the beginning in a loop, if the
list’s elements are less then the matrix’s components. This is the case for the lists provided at the
inlets “skip” and “duration”. Each segment is transposed as a function of the corresponding
note’s pitch. The paning positions (azimuth-angles) of each audio segment are determined as a
function of pitch-classes with 1/8 tone resolution (i.e. there are 48 pitch-classes in an octave).
This results in a conversion of the pitch-pattern in the chord-seq to a spatial pattern.
Additionally, the segment’s durations are compressed/stretched according to the respective
transposition-factor, which creates temporal variations and overlapping sounds, giving a very
lively, natural feel to the spatialized sound pattern. The two figures below show the chord-seq
(the pitch pattern) and the resulting spatial pattern.

6.1.9b Tutorial 9b: smpl-segmentation

This tutorial presents a different method for controlling azimuth-angles as a function of pitch
using absolute frequencies (in Hz). In addition, a random-walk is employed to control the sound
source distances, resulting in a much more complex spatial pattern which is shown in the figure
below. The orientation of the pattern can be controlled by tweaking the arguments of the om-
scale object. Further, in this tutorial different patterns for picking audio segments from the
source soundfile can be selected.

OMAMBI 23

6.2. Advanced

The advanced tutorials present more sophisticated applications using continuous control of
spatialization parameters. Drawing of Trajectories, Time/Space-Stretching and the concept of the
parsing-fun are presented.

6.2.1 Tutorial 1: continuous-bpc-trajectory

This tutorial introduces the control of sound source positions using BPCs to describe a
continuous trajectory, in a certain perspective analogous to a “spatial glissando”: A manually
drawn BPC is smoothed out using the function get-spline-object via spline interpolation to
remove the edges1. The resulting smoothed BPC represents the trajectory of a sound source in
cartesian coordinates on the horizontal plane. The abstraction “xyz->aed” converts this
representation from cartesian coordinates into polar coordinates2. The BPC’s X/Y coordinates
are converted into 2 BPFs, the values for azimuth and distance are represented on the respective
Y-axes, the X-axes are a relative representation of the total duration of the sound file, i.e. the
BPFs are relative azimuth/distance envelopes over the duration of the instance which is given by
the soundfile. Since the two-dimensional BPC doesn’t contain any temporal information, the list
of Y-coordinates in the BPFs is assigned to equidistant values on the X-axis, i.e the x-deltas are
constant. Accordingly, the speed of the sound source travelling along the trajectory is
proportional to the euclidean distance between two successive breakpoints in the original BPC,
or inversely expressed the time of travel between two points is a constant determined by the
duration of the soundfile divided by the number of breakpoints. Note, that this is an arbitrary
choice. For example, by extracting coefficients via the eucledean distance between two points in
the BPC and applying these coefficients to the x-coordinates of the BPFs when converting, a

1 Depending on the desired smoothness this function can be tweaked using the parameters (“resolution” and “degree”).
2 Note that since there is no elevation-data in the BPC, a value of “0” is repeated for as many breakpoints as the trajectory
contains. This is carried out by the abstraction “repeater”.

24 OMAMBI

steady travel speed along the trajectory could be achieved. The figure below shows the 2 BPFs
obtained from the smoothed BPC.

6.2.2 Tutorial 2: granular-board-trajectory

This tutorial introduces a different concept for the control of a sound source travelling along a
trajectory: A granular representation using many discrete positions, in a certain perspective
analogous to a “spatial arpeggio”. Additionally, a new interface object is presented to draw the
trajectory: the Board object. Please note that this tutorial uses the class smpl-1ambiench-1 which
doesn’t provide for continuous control of spatialization parameters. The subpatcher “e-dels”
generates a list of entry-delays with a stepsize of 50ms until the source soundfile’s total duration
is reached. The duration of each grain corresponds to the deltas between two successive entry-
delays. A windowing-function is obtained by adding 25ms to the duration of each grain within
the grain is faded-out using a sigmoid function which overlaps with the subsequent grain which
has a 25ms sigmoid-fade-in. Analogous to the BPC in the previous tutorial the Board represents
the sound source’s spatial trajectory in the horizontal (x/y) plane. It is rescaled and converted
into a BPC and then resampled into a sequence of discrete positions at a rate determined by the
soundfile’s duration divided by the grainsize.

6.2.3 Tutorial 3: granular-time-space-stretching

This tutorials shows a simple approach to manipulate the spatio-temporal morphology of a
trajectory via granular time-stretching of either the sound-file, or the trajectory (temporal and
spatial). In contrast to the 2-dimensional data contained in a BPC, the Board object represents
time (the “speed” of drawing-motions) on a normalized scale (0-1) as a third dimension. This
temporal structure is rescaled to the duration of the soundfile within the subpatcher “sound-dur”.
Analogous to the previous tutorial the Board is converted to BPFs. The difference here is,
however, that the X-values of the azimuth/ distance envelopes are not equidistant but given by
the temporal structure of the trajectory in the Board object. By increasing or decreasing the
number of samples taken from the trajectory, the incremental step (“spatial samplerate”) is
changed since the trajectory is always sampled from beginning till end. Since the e-dels of the
grains aren’t affected this results in a temporal stretch of the spatial trajectory. Note that the

OMAMBI 25

omChroma-matrix ignores elements exceeding the number-of-components and repeats a list from
the beginning in case its elements are less than components. This control-paradigm is analogous
to the continuous control of sound source positions with OMambi using BPFs. The soundfile, as
well as the trajectory’s temporal and spatial structure can be stretched independently of each
other as shown in the figure below.

6.2.4 Tutorial 4: continuous-risset-bell

This tutorial is an adaptation of the Basic Tutorial 1 in section 6.1.1. Relative BPFs are employed
to control a sound’s spectro-spatial morphology, that is the temporal evolution of partials in
space. Amplitude-envelopes, frequency-envelopes, azimuth-envelopes and distance-envelopes of
the sound’s partials are controlled via 4 main BPFs. The abstraction “perturb-bpf->bpf-lib”
generates a perturbated variation of the original BPF for each partial. The first and last Y-values,
however, remain unchanged (since otherwise in some cases clicks might occur, e.g. when used
for example for amplitude-envelopes). The loop get-splines is used to smooth the BPFs. Note
that the relative BPFs are re-scaled to the default ranges set for the respective parameters in the
class definition. For each evaluation of the patch a slightly different spectro-spatial morphology
of the bell-sound is obtained, yet every unique realization belongs to the same “familiy” sounds.
The figure below shows 4 BPF-libs obtained from the same evaluation of the patch for
amplitude-envelopes, frequency-envelopes, azimuth-envelopes & distance-envelopes (left-to-
right order).

26 OMAMBI

6.2.5 Tutorial 5: parsing-fun-fineberg

This tutorial is an adaptation of the original omChroma tutorial cs2_tut07 to demonstrate the use
of a parsing-fun for the control of spatialization parameters in a similar fashion as in the original
tutorial partial frequencies are controlled. Please refer to the omChroma tutorial for a general
description of the concept of the “parsing-fun”. As in the omChroma example the basic material
is a chord-seq used in an ensemble piece of Joshua Fineberg. A new chord-seq is generated by
time-stretching and transposing the original chord-seq. For each of the chords in this new chord-
seq one matrix is generated inside the abstraction “cs-ambi-events-list”. Each chord is assigned a
random position in 2D-space with an azimuth-angle between -180 and 180 degrees and a
distance between 0.5 and 5 meters. Also the encoding order is given as a random number
between 0.5 and 3, which translates into perceived “spatial spread”. For each note within this
chord an azimuth-value with a slight deviation (max 20%) from the chord’s main position is
calculated. The abstraction “my-parsing-subcomponent” generates a micro-cluster of other
partials around each note’s frequencies, with random e-dels between 0 and 0.25 seconds. The
frequential deviation is determined by a BPF which is sampled over the number of matrices (or
in this case: chords). The BPF’s range is given by the “min stonatura” and “max stonatura”
parameters at the top-level of the patch. In a similar fashion for each of the cluster’s frequencies
a new spatial position is computed, the BPFs ranges, that is the max. spatial scatter of the
cluster’s-partials is given by “max azimuth deviation” and “max distance deviation” at the top-
level of the patch. Again, for each evaluation of the patch a different sound will be obtained. The
figure below shows the loop “make spatial event” containing the matrix inside the abstraction
“cs-ambi-events-list”.

OMAMBI 27

7. Building OMambi classes

7.1 Csound-orchestras and code-snippets

The Csound source code used within the OMambi-classes can be found in the folder
“/resources/sourcecode/OMambi” in the OMambi workspace. The subfolders “/additive”,
“/granular” and “/sample-based” contain the respective Csound code. When combining
synthesizers with ambisonic encoders large parts of the code are redundant and can be re-used.
Thus, it is very economic to work with code-snippets which can be copied and pasted using a
text editor. The subfolder “/Template” contains the code-snippets which were used to implement
the default OMambi classes. These code-snippets can be used to create new classes as described
in the following section.

7.2 Merging synthesizers & ambisonic encoders

This chapter describes how to build your own OMambi classes in 5 steps. Please note that in
future releases of OMambi an object-oriented approach will be taken in which spatial
synthesizers are created automatically via multiple inheritance from sound synthesis- and
spatialization-superclasses, respectively. See Chapter 8 on Future Developments.

1. Choose the omChroma synthesizer you would like to use as a sound source for ambisonic
spatialization. You can basically use any given synthesizer as long as its output monophonic
(otherwise it needs to be modified slightly). Lets choose the omChroma-class buzz-1 for sake of
clarity. You can find the Csound sourcecode of the omChroma classes in ”/userlibrary/chroma-
classes/sources/classes/basic/mono” within the folder containing your OpenMusic application,
by default this is “/Applications/OM6.x.x”. Open the csound code with a text-editor. The Csound
code should look somewhat like this:

;===
; BUZZ-1.ORC
; DYNAMIC SPECTRUM OSCILLATOR (FROM ACCCI, 43_21_1.ORC) / MONO
; AMPLITUDE ENVELOPE WITH POSCIL
;===

; Timbre: Various controlled noise spectra
; Synthesis: (g)buzz
; POSCILI envelopes
; Coded: jpg 8/92, modified ms 9/02, 8/08

; NB: NEW STRUCTURE FOR THE AMPLITUDES FROM AUGUST 2008!
; Positive value > 0.0 : linear amplitude (>0.0-1000.0)
; 0.0 or negative value : amplitude in dB (0 = maximum value)

; The apparently arbitrary amplitude range (0-1000, rather than 0-1)
; avoids Lisp printing small values with exponential notation

; Replaced oscili with poscil (precise oscillator), ms 8/08
; Default SR = 96000, recommended precision: 24 bits
;---

; p1 = instrument number

28 OMAMBI

; p2 = action time [sec]
; p3 = duration [sec]
; p4 = maximum amplitude [linear, >0.0-1000.0 or dB, <= 0.0]
; p5 = fundamental frequency [Hz]
; p6 = amplitude envelope [GEN]
; p7 = lowest harmonic present in the buzz [int]
; p8 = % of maximum possible harmonic present [0-1]
; p9 = multiplier in the series of amp coeff for the buzz [0-1]
; p10 = envelope for the multiplier [GEN]
;---
; COMPULSORY GEN FUNCTIONS
; f5 large cosine
;___

; CLASS: BUZZ-1

; GLOBAL KEYWORDS (default values within parentheses):
; NUMROWS : amount of rows (components) in the event (1)
; ACTION-TIME : start time of the whole event [sec] (0.0)
; USER-FUN : user-defined parsing function (nil)

; LOCAL KEYWORDS:
; E-DELS : entry delays [sec] (0.0)
; DURS : duration [sec] (1.0)
; AMP : amplitude [lin, >0.0-1000.0 or dB <- 0.0] (-6.0)
; F0 : fundamental frequency [Hz] (220.0)
; AENV : function number for the amplitude envelope [GEN] (triangle)
; BZL : lowest harmonic present in the buzz [integer] (1)
; BZH : % of maximum possible harmonic present [0-1] (1)
; BZM : multiplier in the series of amp coeff [0-1] (0.95)
; BZMENV : function number for the buzz envelope [GEN] (triangle)
;***

sr = 96000
kr = 96000
ksmps = 1
nchnls = 1

;0dbfs = 32767 ; 16 bits
0dbfs = 8388697 ; 24 bits

instr 1; ***
idur = p3
idurosc = 1/p3
iamp = (p4 > 0.0 ? (p4*0.001*0dbfs) : (ampdbfs (p4)))
ifq = p5
iaenv = p6
inn = sr/2/ifq ; total possible number of harmonics present
inn = int (inn * p8) ; % of possible total
ilh = p7 ; lowest harmonic present
ifn = 5 ; stored cosine function
ibzmul = p9 ; multiplier
ibzmenv = p10 ; envelope for the multiplier

 kenv poscil iamp, idurosc, iaenv ; amp envelope
 kratio poscil ibzmul, idurosc, ibzmenv ; kratio envelope

 asrc gbuzz kenv,ifq,inn,ilh,kratio,ifn
 out asrc

endin

2. Some minor modifications must be made before we can use this Csound orchestra to create an
OMambi class from it. Two lines of code must be changed now (marked in red in the code
above):

OMAMBI 29

a) Look for the last line of code before the word “endin”, usually the last line but one (or
search for the word “out” with a search function, make sure that it is not a comment).

 out asrc

Replace the word “out” with this string “asound =” and delete the word “endin”, such that the
last line of the code looks like this:

 asound = asrc

 b) Look for a line of code that looks like this:

 nchnls = 1

 It must be changed to this:

 nchnls = 16

You can save this file now as a synthesizer-Template for future use, e.g. in the folder
“/resources/sourcecode/OMambi/Templates/synthesis”

3. Now open the folder “/resources/sourcecode/OMambi/Templates/ambisonics/encoding” in the
OMambi workspace. Select the code-snippet you would like to use according to the preferred
control-level. Lets’ choose “Ambisonics(discrete-LL)” for sake of clarity. Open it in a text-
editor. It should look somewhat like this:

; Ambisonics ***

 asound = asound + 0.000001 * 0.000001 ; avoid underflows

 ; Assign Variables for spatialization---------------------
 ; sourceposition
 iazimuth = p10 ;azimuth (degrees)
 ielevation = p11 ;elevation (degrees)
 ; Filter cutoff frequency
 icutoff = p12 ;cutoff freq (Hz)
 ; attenuation
 iatten = p13 ;linear gain factor
 ; order-gains
 iordg1 = p14 ;linear gain factor
 iordg2 = p15 ;linear gain factor
 iordg3 = p16 ;linear gain factor

 ; Distance-Cues ---
 ; Air Absorption
 icutoffl limit icutoff, 0, 22048
 asound_lp butterlp asound, icutoff

 ; Distance Rolloff
 iattenl limit iatten, 0, 1
 asound_lp_at = asound_lp * iattenl

 ; Ambisonic Panning / Generate B-Format ********************
 aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq bformenc1
asound_lp_at, iazimuth, ielevation

 ; write audio out (apply order gains)
 outx aw, ax * iordg1, ay * iordg1, az * iordg1, ar * iordg2, as * iordg2, at
* iordg2, au * iordg2, av * iordg2, ak * iordg3, al * iordg3, am * iordg3, an *
iordg3, ao * iordg3, ap * iordg3, aq * iordg3

endin

30 OMAMBI

4. Copy the entire text and paste it below the last line of the synthesis orchestra opened before.
The resulting code should look like this:

;===
; BUZZ-1.ORC
; DYNAMIC SPECTRUM OSCILLATOR (FROM ACCCI, 43_21_1.ORC) / MONO
; AMPLITUDE ENVELOPE WITH POSCIL
;===

; Timbre: Various controlled noise spectra
; Synthesis: (g)buzz
; POSCILI envelopes
; Coded: jpg 8/92, modified ms 9/02, 8/08

; NB: NEW STRUCTURE FOR THE AMPLITUDES FROM AUGUST 2008!
; Positive value > 0.0 : linear amplitude (>0.0-1000.0)
; 0.0 or negative value : amplitude in dB (0 = maximum value)

; The apparently arbitrary amplitude range (0-1000, rather than 0-1)
; avoids Lisp printing small values with exponential notation

; Replaced oscili with poscil (precise oscillator), ms 8/08
; Default SR = 96000, recommended precision: 24 bits
;---

; p1 = instrument number
; p2 = action time [sec]
; p3 = duration [sec]
; p4 = maximum amplitude [linear, >0.0-1000.0 or dB, <= 0.0]
; p5 = fundamental frequency [Hz]
; p6 = amplitude envelope [GEN]
; p7 = lowest harmonic present in the buzz [int]
; p8 = % of maximum possible harmonic present [0-1]
; p9 = multiplier in the series of amp coeff for the buzz [0-1]
; p10 = envelope for the multiplier [GEN]
;---
; COMPULSORY GEN FUNCTIONS
; f5 large cosine
;___

; CLASS: BUZZ-1

; GLOBAL KEYWORDS (default values within parentheses):
; NUMROWS : amount of rows (components) in the event (1)
; ACTION-TIME : start time of the whole event [sec] (0.0)
; USER-FUN : user-defined parsing function (nil)

; LOCAL KEYWORDS:
; E-DELS : entry delays [sec] (0.0)
; DURS : duration [sec] (1.0)
; AMP : amplitude [lin, >0.0-1000.0 or dB <- 0.0] (-6.0)
; F0 : fundamental frequency [Hz] (220.0)
; AENV : function number for the amplitude envelope [GEN] (triangle)
; BZL : lowest harmonic present in the buzz [integer] (1)
; BZH : % of maximum possible harmonic present [0-1] (1)
; BZM : multiplier in the series of amp coeff [0-1] (0.95)
; BZMENV : function number for the buzz envelope [GEN] (triangle)
;***

sr = 96000
kr = 96000
ksmps = 1
nchnls = 16

;0dbfs = 32767 ; 16 bits

OMAMBI 31

0dbfs = 8388697 ; 24 bits

instr 1; ***
idur = p3
idurosc = 1/p3
iamp = (p4 > 0.0 ? (p4*0.001*0dbfs) : (ampdbfs (p4)))
ifq = p5
iaenv = p6
inn = sr/2/ifq ; total possible number of harmonics present
inn = int (inn * p8) ; % of possible total
ilh = p7 ; lowest harmonic present
ifn = 5 ; stored cosine function
ibzmul = p9 ; multiplier
ibzmenv = p10 ; envelope for the multiplier

 kenv poscil iamp, idurosc, iaenv ; amp envelope
 kratio poscil ibzmul, idurosc, ibzmenv ; kratio envelope

 asrc gbuzz kenv,ifq,inn,ilh,kratio,ifn
 asound = asrc

; Ambisonics ***

 asound = asound + 0.000001 * 0.000001 ; avoid underflows

 ; Assign Variables for spatialization---------------------
 ; sourceposition
 iazimuth = p10 ;azimuth (degrees)
 ielevation = p11 ;elevation (degrees)
 ; Filter cutoff frequency
 icutoff = p12 ;cutoff freq (Hz)
 ; attenuation
 iatten = p13 ;linear gain factor
 ; order-gains
 iordg1 = p14 ;linear gain factor
 iordg2 = p15 ;linear gain factor
 iordg3 = p16 ;linear gain factor

 ; Distance-Cues ---
 ; Air Absorption
 icutoffl limit icutoff, 0, 22048
 asound_lp butterlp asound, icutoff

 ; Distance Rolloff
 iattenl limit iatten, 0, 1
 asound_lp_at = asound_lp * iattenl

 ; Ambisonic Panning / Generate B-Format ********************
 aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq bformenc1
asound_lp_at, iazimuth, ielevation

 ; write audio out (apply order gains)
 outx aw, ax * iordg1, ay * iordg1, az * iordg1, ar * iordg2, as * iordg2, at
* iordg2, au * iordg2, av * iordg2, ak * iordg3, al * iordg3, am * iordg3, an *
iordg3, ao * iordg3, ap * iordg3, aq * iordg3

endin

5. Now you must look for the p-field with the highest number in the sound synthesis part of the
code (which is “p10” in this example) and enumerate the p-fields of the ambisonics part in
ascending order starting from this number +1 (10+1). After doing this the Csound code should
look like this:

32 OMAMBI

;===
; BUZZ-1.ORC
; DYNAMIC SPECTRUM OSCILLATOR (FROM ACCCI, 43_21_1.ORC) / MONO
; AMPLITUDE ENVELOPE WITH POSCIL
;===

; Timbre: Various controlled noise spectra
; Synthesis: (g)buzz
; POSCILI envelopes
; Coded: jpg 8/92, modified ms 9/02, 8/08

; NB: NEW STRUCTURE FOR THE AMPLITUDES FROM AUGUST 2008!
; Positive value > 0.0 : linear amplitude (>0.0-1000.0)
; 0.0 or negative value : amplitude in dB (0 = maximum value)

; The apparently arbitrary amplitude range (0-1000, rather than 0-1)
; avoids Lisp printing small values with exponential notation

; Replaced oscili with poscil (precise oscillator), ms 8/08
; Default SR = 96000, recommended precision: 24 bits
;---

; p1 = instrument number
; p2 = action time [sec]
; p3 = duration [sec]
; p4 = maximum amplitude [linear, >0.0-1000.0 or dB, <= 0.0]
; p5 = fundamental frequency [Hz]
; p6 = amplitude envelope [GEN]
; p7 = lowest harmonic present in the buzz [int]
; p8 = % of maximum possible harmonic present [0-1]
; p9 = multiplier in the series of amp coeff for the buzz [0-1]
; p10 = envelope for the multiplier [GEN]
;---
; COMPULSORY GEN FUNCTIONS
; f5 large cosine
;___

; CLASS: BUZZ-1

; GLOBAL KEYWORDS (default values within parentheses):
; NUMROWS : amount of rows (components) in the event (1)
; ACTION-TIME : start time of the whole event [sec] (0.0)
; USER-FUN : user-defined parsing function (nil)

; LOCAL KEYWORDS:
; E-DELS : entry delays [sec] (0.0)
; DURS : duration [sec] (1.0)
; AMP : amplitude [lin, >0.0-1000.0 or dB <- 0.0] (-6.0)
; F0 : fundamental frequency [Hz] (220.0)
; AENV : function number for the amplitude envelope [GEN] (triangle)
; BZL : lowest harmonic present in the buzz [integer] (1)
; BZH : % of maximum possible harmonic present [0-1] (1)
; BZM : multiplier in the series of amp coeff [0-1] (0.95)
; BZMENV : function number for the buzz envelope [GEN] (triangle)
;***

sr = 96000
kr = 96000
ksmps = 16
nchnls = 1

;0dbfs = 32767 ; 16 bits
0dbfs = 8388697 ; 24 bits

instr 1; ***
idur = p3
idurosc = 1/p3
iamp = (p4 > 0.0 ? (p4*0.001*0dbfs) : (ampdbfs (p4)))

OMAMBI 33

ifq = p5
iaenv = p6
inn = sr/2/ifq ; total possible number of harmonics present
inn = int (inn * p8) ; % of possible total
ilh = p7 ; lowest harmonic present
ifn = 5 ; stored cosine function
ibzmul = p9 ; multiplier
ibzmenv = p10 ; envelope for the multiplier

 kenv poscil iamp, idurosc, iaenv ; amp envelope
 kratio poscil ibzmul, idurosc, ibzmenv ; kratio envelope

 asrc gbuzz kenv,ifq,inn,ilh,kratio,ifn
 asound = asrc

; Ambisonics ***

 asound = asound + 0.000001 * 0.000001 ; avoid underflows

 ; Assign Variables for spatialization---------------------
 ; sourceposition
 iazimuth = p11 ;azimuth (degrees)
 ielevation = p12 ;elevation (degrees)
 ; Filter cutoff frequency
 icutoff = p13 ;cutoff freq (Hz)
 ; attenuation
 iatten = p14 ;linear gain factor
 ; order-gains
 iordg1 = p15 ;linear gain factor
 iordg2 = p16 ;linear gain factor
 iordg3 = p17 ;linear gain factor

 ; Distance-Cues ---
 ; Air Absorption
 icutoffl limit icutoff, 0, 22048
 asound_lp butterlp asound, icutoff

 ; Distance Rolloff
 iattenl limit iatten, 0, 1
 asound_lp_at = asound_lp * iattenl

 ; Ambisonic Panning / Generate B-Format ********************
 aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq bformenc1
asound_lp_at, iazimuth, ielevation

 ; write audio out (apply order gains)
 outx aw, ax * iordg1, ay * iordg1, az * iordg1, ar * iordg2, as * iordg2, at
* iordg2, au * iordg2, av * iordg2, ak * iordg3, al * iordg3, am * iordg3, an *
iordg3, ao * iordg3, ap * iordg3, aq * iordg3

endin

Your Csound-orchestra is now ready to build an Omambi class from it! If you wish you can add
comments to describe the p-fields. The procedure is the same for all the templates. You can save
the file to disk with an arbitrary file name, however you should preferrably use the suggested
naming convention to keep an overview of omChroma/OMambi classes. To build an OMambi
class from the Csound-orchestra you can either manually write a class in LISP or use the box
“get-instrument” in OpenMusic as described thoroughly in the documentation of omChroma.

34 OMAMBI

8. Future Developments

Increasing the order of the ambisonic encoding improves the spatial resolution of the Bformat
file. However, with increasing order the number of audio channels needed for the Bformat file
raises exponentially. Instead of a brute force increase of the encoding order, the quality of spatial
sound renderer should be improved by other means: E.g. via a room-model to account for early
reflections/reverberation, or a Bformat convolution reverb. It is also planned to implement
source-directivity (periphonic). Further implementing distinct classes for 2-dimensional and 3-
dimensional encoding would avoid wasting audio channels for Bformat components which are
not used.

When combining sound synthesizers with ambisonic encoders (6 possible encoders for each
sound synthesizer) the number of possible combinations explodes (Z6n)1 and the programming of
each combination soon becomes intractable even for a small number of classes. It is planned to
switch to an object-oriented approach for automatic creation of spatial sound synthesizers via
multiple inheritance from sound synthesis- and spatialization-superclasses, respectively. In this
process the csound-code used for sound synthesis classes in omChroma and for ambisonic
spatialization in OMambi will be merged by a LISP-function which defines a new spatial sound
synthesis class. This operation currently needs to be done manually, as described in Chapter 7.

The Max/MSP external used for decoding of the Bformat files will be extended to allow for
decoding up to 5th order. Further, arbitrary re-mapping of Bformat-components to decoder-inputs
is planned to allow the decoding of Bformat files with arbitrary arrangements of components. In
order to avoid switching between two applications, a protocol is currently being established to
control the decoding application from within OpenMusic. The ambisonic decoder will be
extended to allow for decoding up to 5th order.

9. Appendix

9.1 Coordinate systems

OMambi uses a head-centered2, right-handed spherical coordinate system based on navigation/
topology conventions, in compliance with SpatDIF, the "Spatial Sound Description Interchange
Format". For further information on SpatDIF see www.SpatDIF.org. Tools for conversion
between spherical and cartesian systems are provided in the folder /miscellaneous.

1 see e.g. the Appendix for a tree-diagram of currently implemented classes based on 3 sound synthesizers.
2 The system’s reference point is the sweetspot at the center of the loudspeakers, and source positions are given relative to this
posirion, where the listener is supposed to be.

OMAMBI 35

9.2 List of matrix inlets & descriptions for discrete control

9.2.1 Ambiench (high-evel control)

INLET DESCRIPTION TYPE
azimuth Azimuth-angle in degrees Number
elevation Elevation-angle in degrees Number
distanz Distance in meters Number
hfcut-factor Coefficient for air-absorption-function Number
atten-factor Coefficient for attenuation-function Number
center-size Size of center-zone Number
center-curve Coefficient for center-attenuation-function Number
center-atten Attenuation at center (in decibel) Number

36 OMAMBI

airabs-mode Air-absorption-function Number
atten-mode Attenuation-function Number
order Encoding Order Number

9.2.2 Ambiencm (mid-level control)

INLET DESCRIPTION TYPE
azimuth Azimuth-angle in degrees Number
elevation Elevation-angle in degrees Number
distanz Distance in meters Number
air-function Table used for lookup of cutoff-freq of lowpass-filter Cs-table
airf-max Maximum value of table used for air-function Number
atten-function Table used for lookup of linear gain-factor Cs-table
attenf-max Maximum value of table used for air-function (0-1) Number
order-function Table used for lookup of encoding-order Cs-table
orderfmax Maximum value of table used for encoding-order Number
order Encoding-order (0-3) Number
lookupmin Min. distance (index for lookup-tables) Number
lookupmax Max. distance (index for lookup-tables) Number

9.2.2 Ambiencl (low-level control)

INLET DESCRIPTION TYPE
azimuth Azimuth-angle in degrees Number
elevation Elevation-angle in degrees Number
hf-cutoff Cutoff-Frequency of 2nd-order-lowpass filter Number
attenuation Linear gain-factor (0-1) Number
1st-order-gain Linear gain-factor for 1st-order-components Number
2nd-order-gain Linear gain-factor for 2nd-order-components Number
3rd-order-gain Linear gain-factor for 3rd-order-components Number

9.3 List of matrix inlets & descriptions for continuous control

9.3.1 Ambiench (high-level control)

INLET DESCRIPTION TYPE
azimin Minimum value of azi-envelope Number
azimax Maximum value of azi-envelope Number
azidur Duration of azi-envelope (in seconds) Number
azi-envelope Table/BPF used as envelope for azimuth (in degrees) Cs-table

OMAMBI 37

elemin Minimum value of ele-envelope Number
elemax Maximum value of ele-envelope Number
eledur Duration of ele-envelope (in seconds) Number
ele-envelope Table/BPF used as envelope for elevation (in degrees) Cs-table
distmin Minimum value of dist-envelope Number
distmax Maximum value of dist-envelope Number
distdur Duration of dist-envelope (in seconds) Number
dist-envelope Table/BPF used as envelope for distanz (in meters) Cs-table
hfcutfmin Minimum value of hfcutf-envelope Number
hfcutfmax Maximum value of hfcutf-envelope Number
hfcutfdur Duration of hfctuf-envelope (in seconds) Number
hfcutf-envelope Table/BPF used as envelope for coefficient for air-

absorption function
Cs-table

attenfmin Minimum value of attenf-envelope Number
attenfmax Maximum value of attenf-envelope Number
attenfdur Duration of attenf-envelope (in seconds) Number
attenf-envelope Table/BPF used as envelope for coefficient for

attenuation factor
Cs-table

dopplerfmin Minimum value of dopplerf-envelope Number
dopplerfmax Maximum value of dopplerf-envelope Number
dopperfdur Duration of dopperf-envelope (in seconds) Number
dopplerf-envelope Table/BPF used as envelope for coefficient for

dopplerfunction
Cs-table

ordmin Minimum value of ord-envelope Number
ordmax Maximum value of ord-envelope Number
orddur Duration of ord-envelope (in seconds) Number
ord-envelope Table/BPF used as envelope for encoding order Cs-table
center-size size of center-zone Number
center-curve Coefficient for center-attenuation-function Number
center-atten Attenuation at center (in decibel) Number
airabs-mode Air-absorption-function Number
atten-mode Attenuation-function Number

9.3.2 Ambiencm (mid-level control)

INLET DESCRIPTION TYPE
azimin Minimum value of azi-envelope Number
azimax Maximum value of azi-envelope Number
azidur Duration of azi-envelope (in seconds) Number
azi-envelope Table/BPF used as envelope for azimuth (in degrees) Cs-table
elemin Minimum value of ele-envelope Number
elemax Maximum value of ele-envelope Number
eledur Duration of ele-envelope (in seconds) Number
ele-envelope Table/BPF used as envelope for elevation (in degrees) Cs-table
distmin Minimum value of dist-envelope Number
distmax Maximum value of dist-envelope Number

38 OMAMBI

distdur Duration of dist-envelope (in seconds) Number
dist-envelope Table/BPF used as envelope for distanz (in meters) Cs-table
ordmin Minimum value of ord-envelope Number
ordmax Maximum value of ord-envelope Number
orddur Duration of ord-envelope (in seconds) Number
ord-envelope Table/BPF used as envelope for encoding order Cs-table
air-function Table used for lookup of cutoff-freq of lowpass-filter Cs-table
airf-max Maximum value of table used for air-function Number
atten-function Table used for lookup of linear gain-factor Cs-table
attenf-max Maximum value of table used for air-function (0-1) Number
doppler-function Table used for lookup of time-delay Cs-table
dopplerfmax Maximum value of table used for time-delay (in ms) Number
order-function Table used for lookup of encoding-order Cs-table
orderfmax Maximum value of table used for encoding order (0-3) Number
lookupmin Min. distance (index for lookup-tables) Number
lookupmax Max. distance (index for lookup-tables) Number

9.3.3 Ambiencl (low-level control)

INLET DESCRIPTION TYPE
azimin Minimum value of azi-envelope Number
azimax Maximum value of azi-envelope Number
azidur Duration of azi-envelope (in seconds) Number
azi-envelope Table/BPF used as envelope for azimuth (in degrees) Cs-table
elemin Minimum value of ele-envelope Number
elemax Maximum value of ele-envelope Number
eledur Duration of ele-envelope (in seconds) Number
ele-envelope Table/BPF used as envelope for elevation (in degrees) Cs-table
hfcutmin Minimum value of hfcut-envelope Number
hfcutmax Maximum value of hfcut-envelope Number
hfcutdur Duration of hfcut-envelope (in seconds) Number
hfcut-envelope Table/BPF used as envelope for cutoff-frequency of 2nd-

order lowpass filter
Cs-table

attenmin Minimum value of atten-envelope Number
attenmax Maximum value of atten-envelope Number
attendur Duration of atten-envelope (in seconds) Number
atten-envelope Table/BPF used as envelope for linear gain-factor Cs-table
dopplermin Minimum value of doppler-envelope Number
dopplermax Maximum value of doppler-envelope Number
dopplerdur Duration of doppler-envelope (in seconds) Number
doppler-envelope Table/BPF used as envelope for time-delay Cs-table
ordermin Minimum value of order-envelope Number
ordermax Maximum value of order-envelope Number
orderdur Duration of order-envelope (0-3) Number
order-envelope Table/BPF used as envelope for encoding order Cs-table

OMAMBI 39

9.4 Overview of implemented OMambi-classes

The tree-diagram below shows the currently implemented OMambi-classes which are named
following the scheme <name-of-omChroma-synthesizer><OMambi-class>”-1”

