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1. Introduction 
 

OMambi is a library for symbolic control of spatialization with OpenMusic. It is implemented as 
a set of omChroma classes for higher order ambisonics providing control of spatialization from 
different levels of abstraction.  

Although care has been taken to keep the tutorials as simple as possible, this documentation 
presupposes a certain degree of familiarity with Csound, OpenMusic  and omChroma; Please 
refer to the respective documentations for detailed instructions on the use of the above software. 
It is recommended to be familiar with the basic concepts of the omChroma system such as the 
matrix, typed slots and keywords. The tutorials are intended as an introduction to the concepts 
for controlling spatialization in an environment for computer assisted composition like 
OpenMusic without trying to be exhaustive in terms of control possibilities or suggesting any 
particular control paradigm.  

Ambisonic Classes have been implemented for three types of synthesis, namely additive, fog 
(formantic granular waveform) and sample-based, please see the Appendix for an overview of 
available classes. OMambi can be user-extended as described in chapter 7 of this documentation. 

For ambisonic decoding and interactive setting of parameters an external Max/MSP1-application 
is provided, based on extended and custom built high-level modules complying with the 
jamoma2 framework.  

Informations on the structure of this text: 

Chapter 2 provides instructions for installation of this software. If you are already familiar with 
how to install and configure OpenMusic/omChroma, Csound and Max/MSP you can skip this 
part. 

Chapter 3 is a very brief introduction into the underlying principles of higher-order-ambisonics 
and describes the dsp-architecture of OMambi.  

Chapter 4 describes the general concepts behind the control structures of OMambi. 

Chapter 5 is a concise documentation of the Max/MSP-based application for ambisonic 
decoding. 

Chapter 6 contains Tutorials subdivided into two parts. The Basic tutorials present different 
methods for controlling spatialization with discrete source-positions. Concepts of spectral vs. 
granular spatialization are introduced. The Advanced tutorials address the continuous control of 
spatialization parameters, drawing of Trajectories, Time/Space-manipulation and the parsing-
fun.  

Chapter 7 provides instructions on how to extend the library with new classes. 

Chapter 8 discusses future developments and perspectives. 

                                                        
1 http://www.cycling74.com/products/max5 
2 http://jamoma.org/ 
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2. Requirements, Installation & Setup 
 
Requirements: 

This software has been tested with OpenMusic6.04, omChroma4.0 and Csound5.09. The 
Multiplayer is a standalone application. You can find OpenMusic/omChroma here1, Csound is 
available here2, OMambi can be downloaded from here3.  

Instructions: 

Mount OMambi.dmg and copy the contents into a folder anywhere on your harddrive. After 
launching OpenMusic you will be asked for a workspace: just point to the above folder.  

Of course it is also possible to use the OMambi-classes with another workspace:  

Copy the folder “/user/OMambi” from the OMambi-workspace into the directory “/user” inside 
the workspace you would like to use. Start OpenMusic with your desired workspace and select 
“Windows/Library” from OpenMusic’s menubar. In the opened window expand the trunk “user” 
by clicking on the arrow left of it. Now double-click on the lower half of the red trunk called 
“omambi” to load the classes as shown in the figure below. You can instantiate a class by 
dragging it onto a patch or typing its name into an empty box in a OpenMusic patch. 

 

 

 

 

 

 

 

 

Setup: 

Before starting to work with OMambi it is recommended to check OpenMusic’s Preferences for 
“Audio Settings” and “External Sound Processing”. Please refer to the omChroma 
documentation for detailed instructions on how to set the preferences. OMambi will work with 
the default settings4.  

 

                                                        
1 http://recherche.ircam.fr/equipes/repmus/OpenMusic/ 
2 http://www.csounds.com/ 
3 http://www.music.mcgill.ca/~marlon/software/OMambi/OMambi1.0.dmg 
4 NB: By default omChroma renders soundfiles at 96kHz/24Bit resolution. Accordingly, the B-format files (16channels) 
generated by OMambi can become quite large (one second of audio corresponds roughly to 4.6MB) 
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3. Architecture 
 

OMambi uses the ambisonic approach for spatialization. Although a detailed description of 
ambisonics is beyond the scope of this documentation the most relevant principles with regards 
to their control with OMambi shall be briefly described here, a comprehensive list of references 
can be found here1. 

 

3.1.   Principles of ambisonics 
 

Ambisonics originated as a spatial sound recording technique using a special microphone 
described by M.Gerzon and Cooper in the early 1970s with the goal of storing spatial sound 
information with a few audio channels. The spatial information of the recorded or synthesized 
sound is encoded together with the sound itself in a specific number of channels, the B-Format, 
which is independent of the final speaker setup.  With higher order ambisonics (HOA), a 2-
dimensional (planar) or 3-dimensional (periphonic) soundfield can be reproduced with varying 
accuracy determined by the available number of speakers for reproduction as well as the order of 
the encoded signal: the higher the order, the more accurate the spatialization, 0th-order equals full 
monophony (omnidirectional). A great advantage of ambisonics is that the encoding and 
decoding process are independent of each other, which allows to store an “abstract” description 
of a soundfield in a portable B-Format file. The self-compatibility of ambisonics2 makes it an 
ideal choice for spatial compositions ought to be reproduced with different loudspeaker setups in 
different listening spaces. Another benefit is that the spatial information is stored as an audio-
signal, which is open to manipulation using digital signal processing techniques as with any 
other signal (e.g. soundfield-effects). The underlying equations used for HOA are based on 
several simplifications, one of them is that virtual sound sources and loudspeakers emit plane 
waves. Accordingly, the B-Format itself doesn’t contain any distance-information, auditory cues 
to create the perception of source distance need to be added to the signal before the encoding 
process as described in section 3.2.  

 

3.2.   Artificial Distance Cues 
 

OMambi implements a series of dsp-units to provide for perceptual cues supporting the 
impression of distance of a sound source: A second-order butterworth lowpass filter is used to 
simulate the effect of air-absorption, that is loss of high-frequency energy of a soundwave 
travelling through air. The filtered signal is processed by a gain-unit to account for the 
attenuation of the signal as a function of distance, i.e. with increasing distance the sound source 
becomes more silent. Depending on the speed of sound and the distance of a sound source from 
the listener, i.e. the length of the propagation path, the time-of-flight varies accordingly. For 
moving sound sources this causes a pitch-shifting-effect, known as the doppler-effect. A variable 

                                                        
1 http://www.york.ac.uk/inst/mustech/3d_audio/ambrefs.htm 
2 Higher orders can be decoded to lower order reproduction systems and vice versa 
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time delay is implemented to simulate this effect before the signal is finally encoded into B-
Format. Most commonly parameters of the above units are controlled as functions of distance, 
however, as we shall see in chapter 4 all distance-cues can be controlled arbitrarily. 

 

3.3.   Implementation 
 

OMambi is implemented following a general dsp-architecture shown in the figure below. Red 
arrows represent audio signals. The encoding and decoding process is performed independently 
by two dedicated applications.  

On the left we see the Csound orchestra subdivided into 3 processing-modules. The leftmost 
module represents an existing synthesizer of the omChroma system, which is the sound source. 
The monophonic output of the synthesizer is first processed by dsp-units to account for distance 
cues (described in section 3.2) before it is encoded into 3rd-order periphonic Bformat1, and stored 
to disk as a 16-channel audio file. This is an offline-process controlled from within OpenMusic. 

The decoding of this B-format file is carried out by a MaxMSP-based application in realtime. 
This allows for interactive tweaking of decoding parameters as described in chapter 5. The B-
format file can theoretically be decoded to an arbitrary number of speakers2, however in the 
current implementation it is limited to a maximum of 32. 

NB: Some classes have been implemented, which allow combine en- and decoding within the 
Csound orchestra for common speaker-layouts, like e.g. quadrophonic, 5.1 and stereo (stereo-
files can be played back directly within OpenMusic). These classes are not used in the tutorials 
but can be found in the folder “/classes” in the OMambi workspace. Templates for building new 
classes for ambisonic en- and decoding within the Csound-orchestra are provided, please see 
Chapter 7 for instructions on how to build new OMambi-classes. 

 

 

 

 

 

 

 

 

 

 
                                                        
1 For encoding into B-Format the Csound opcode “Bformenc1” by Richard Furse, Bruce Wiggins and Fons Adriaensen is used. 
2 as long as larger than (order*2)+1 in 2D, or (order+1)^2 in 3D 
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4. Control Structure 
 

4.1 Matrix Representations 
 

OMambi uses a matricial representation of control data –the omChroma matrix- and higher-level 
structures for the creation and manipulation of such matrices. An instance of an omChroma 
matrix represents a musical “event”. An event can be for example a single call of an instance of a 
dsp-program, a sequence or group of instances, or groups of sequences of instances, and so on 
and so forth. In other words, the semantics of an event can be arbitrarily defined1. Please note 
that a matrix may as well contain other matrices as cells, see e.g. class array-of-array in 
omChroma. Another important feature is that time is treated as a synthesis parameter which can 
be represented and controlled within the matrix as any other parameter2. As we shall see later 
this control-model provides a very powerful, efficient and ergonomic way of generating and 
controlling large data-sets. Due to the dynamic allocation of instances of a dsp-patch all 
parameters can be specified for each sound source/instance separately3. This contrasts to many 
spatialization systems in which certain settings are globally applied to the spatial sound renderer. 
Please refer to the omChroma documentation for more informations on the omChroma matrix. 

 

4.2 Levels of control 
 

Similar to the issue of controlling sound synthesis processes, spatialization algorithms can be 
controlled from different levels of abstraction. For example, similar to the perception of the pitch 
of a sound with a complex partial structure, spatial audition is a multidimensional phenomenon 
which depends on various perceptual cues. Generally speaking, spatial sound renderers try to 
fool the human auditory system by providing perceptual cues giving the impression that a virtual 
or phantom sound source is located at some real point in space (where it isn’t). 

Analogous to the synthesis of a harmonic sound which can be controlled from different levels of 
abstraction (for example by using a wavetable containing a complex waveform, versus a fixed 
bank of sine-oscillators, versus the multiple instantiation of a single sine-oscillator) perceptual 
cues that constitute the human spatial audition can be controlled in similar ways.  

The musical use of spatialization is manifold; creative applications often manipulate perceptual 
cues in a way that does not correspond to the simulation of a physical sound source in physical 
space, e.g. by exaggerating certain perceptual cues and/or not employing other ones at all –as is 
for example often the case for doppler-effects. For this reason, and to provide a maximum of 
flexibility, OMambi allows the control of perceptual cues from different levels of abstraction. 
The figure below shows a diagram of OMambi’s control structure with the three implemented 
levels which represent a continuum from efficiency to flexibiliy.  

                                                        
1 This might be regarded analogouts to a note (as the smallest possible entity), a temporal sequence of notes (a melody), a group 
of notes (a chord), a chord-sequence, etc.. 
2 It is worth mentioning here that global time can also be dynamically controlled via csound-“t-statements”. 
3 i.e. each sound source represents a ‘clone’ of the whole spatialization system 
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The black rectangle at the bottom represents the dsp-patch implemented in Csound (the Csound- 
orchestra). The (continuous) blue boxes represent control parameters. The dashed blue boxes 
represent parameters to tweak the functions controlling low-level parameters. For each sound 
synthesis module there are three OMambi-classes, corresponding to the different control-levels 
shown in the figure.  

The control sturcture of the sound-synthesis module is left untouched (blue arrow on the left), i.e. 
the slots for the OMambi classes are the same as for the original omChroma class, please refer to 
the omChroma documentation for descriptions of the sound synthesizers. In order to control 
spatialization parameters from different levels, three control structures are available. Ambisonics 
is by its theory (assuming plane waves) a 2-dimensional spatialization system encoding the 
position of a sound source on a sphere, without any information on the sound source’s distance. 
While directional cues1 are controlled the same way for all 3 control-levels, the low-level 
parameters for controlling cues for distance-perception, i.e. the air-absorption filter, the gain-unit 
and the variable time delay can be controlled differently:  

The classes for High-Level control are the most efficient in terms of dsp: The Csound-orchestra 
employs a set of built-in functions to calculate low-level parameters as a function of distance. 

                                                        
1 Directional cues represent the 2-dimensional information of azimuth & elevation angle, plus the order of encoding  
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The behaviour of these internal functions can be tweaked via coefficients. However, there is no 
access to modify the mapping or editing the underlying equations. 

For Mid-Level control the relationship between sound source distance and low-level parameters 
is also hard-wired into the Csound-orchestra. In this case, however, distance is used as an index 
for table-lookup of low-level parameters controlling the distance-cues of the signal before 
encoding. The lookup tables are provided in OpenMusic either locally via BPFs connected to the 
corresponding inlets, or globally as cs-tables to the function „synthesize“ -as is always the case 
for slots of type „cs-table“ in omChroma.  

The Low-Level class allows the control of all low-level parameters directly. The equivalent 
functions to generate low-level parameters as used in the high-level Csound-orchestra can be 
found in the folder „/miscellaneous“ in the OMambi workspace. This implementation is the most 
flexible. 

 

 

4.3 Implementation 
 

4.3.1 High-Level 
 

The inlets/keywords1 of the matrix to control the position of a sound source in spherical 
coordinates are called „azimuth“, „elevation“ and „distanz“2. To control the level g of a sound 
source as a function of distance d two different functions are provided, for inverse-proportional 
and exponential decrease, respectively. The desired function can be selected via the inlet „atten-
mode“, where „1“ corresponds to the inverse-proportional function and all other numbers to the 
exponential. The respective coefficients for tweaking the functions can be provided via the inlet 
„atten-factor“. See below for the implemented equations. 

a) Inverse proportional decrease: 

gi= (di + (1-ci))−q  

c being the distance from the center/sweetspot to the speakers and q being the attenuation 
coefficient. By tweaking q the attenuation can be boosted or softened. 

b) exponential decrease: 

gi = 10 –k/20 * (di-ci) 

c being the distance from the center/sweetspot and k being the attenuation coefficient. As with 
the inverse proportional decrease by changing k the attenuation is boosted or softened. 

The theory of ambisonics asumes no physical distance between the microphones recording the 
periphonic soundfield. However, in real-life scenarios, there is always a distance between the 
                                                        
1 These keywords correspond to the slots of the class. See omChroma1.0 Documentation. 
2 Since the English word “distance” is reserved for a compiled OM-function, the German equivalent “distanz” is used.  
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speakers used for reproduction. The speakers’ membranes “represent” the counterpart of the 
microphone capsules used for recording the soundfield. The zone within the speaker-circle is 
referred to as the “center-zone”, the radius is referred to as the “center-size”. Theoretically 
speaking, a virtual sound source’s position cannot be within this center-zone. However, for 
musical applications this is often a desideratum. Accordingly, the approach taken in OMambi 
decreases the encoding order within this center-zone linearly, reaching complete monophony at 
the very center. In order to compensate for the increase in loudness caused by the sound source’s 
presence on all speakers, and in order to avoid high amplifications for distances smaller than 1, 
within the center-size a different attenuation law is applied:  

gi = (di * (1/ci))-q *(1-k) + k 

c being the center-size, q being the attenuation coefficient and k being the maximum attenuation 
at the center in decibel. The attenuation coefficient q can be controlled via the inlet “center-
curve”, the maximum attenuation at the center k via  the inlet “center-atten”.  

To control the cutoff-frequency fc of a 2nd-order butterworth filter as function of distance d to 
simulate the effect of air-absorption two functions are provided, air-absorption-val and air-
absorption-icst, respectively. The desired function can be selected via the inlet „air-mode“, 
where „1“ corresponds to the air-absorption-val and all other numbers to air-absorption-icst. 
The respective coefficients for tweaking the functions can be provided via the inlet „hfcut-
factor“. See below for the implemented equations. 

a) air-absorption-val 

fc(d)=-0.1668d3+18.919d2-785.71d+15849  

d being the distance from the center and fc being the cutoff-frequency in Hz. 

b) air-absorption-icst 

fc(d) = 22050 - d*k 

d being the distance from the center, k  being the air-absorption coefficient and fc being the 
cutoff-frequency in Hz. By tweaking k the effect of air-absorption can be softened or boosted. 

The ambisonic encoding order can be controlled via the inlet “order” as a floating point number 
between 0 (=complete monophony) and 3. 

 

4.3.2 Mid-Level 
 

As with the high-level approach, there are three inlets to control the position of a sound source in 
spherical coordinates, again called „azimuth“, „elevation“ and „distanz“. However, this 
implementation uses a table lookup internally  to control low-level parameters as a function of 
distance. Three lookup functions are implemented in the Csound-orchestra which use tables for 
lookup which are provided via the inlets „air-function“, „atten-function“ and „order-function“. 
The parameter „distanz“ is used as an index for table-lookup. For internal rescaling of lookup-
indices the minimum and maximum value used for „distanz“ must be provided explicitely via the 
inlets „lookupmin“ and „lookupmax“. The ranges of the respective lookup-tables can be 
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provided via the inlets „airfmax“, „attenfmax“ and „orderfmax“. This can be done automatically 
in OpenMusic using the abstraction get-list-ranges which can be found in the folder /abstractions 
in the OMambi workspace. The “order-function” is relative to the maximum order given as a 
floating-point value via the inlet “order”. 

 

4.3.3 Low-Level 
 

For the low-level implementation the two-dimensional position of a sound source on a sphere is 
controlled via the inlets “azimuth” and “elevation”. The low-level parameters to control 
perceptual distance-cues are not implicitely calculated as a function of distance, but can be 
controlled explicitely. The inlet “hf-cutoff” controls the cutoff-frequency of the lowpass filter 
which can be used to simulate the effect of air-absorption. The inlet “attenuation” can be used to 
control the gain-factor (internally clipped to a range between 0 and 1) which can be used to 
account for distance-attenuation of a sound source. The inlets “1st-order-gain”, “2nd-order-gain” 
and “3rd-order-gain” provide explicit control of linear gains of the respective components of the 
resulting B-Format-files. Abstractions providing the equivalent functions as used by the high-
level implementation internally can be found in the folder “/miscellaneous” in the OMambi 
workspace. 

 

4.3.3 Continuous Control 
 

For the classes allowing the continuous control of spatialization parameters, all parameters1 are 
controlled via BPFs, i.e. the class’ slots are of type cs-table. These BPFs are internally translated 
into GEN07-functions (breakpoint-functions using linear interpolation) serving as wavetables for 
high-precision oscillators within the Csound-orchestra. For each of the envelopes the duration, as 
well as the minimum and maximum value can be provided2. The duration for one cycle of these 
envelopes can be set arbitrarily, e.g. for oscillations at audio-rate. Note, that this will most likely 
result in audible amplitude-modulations. If not specified, the envelope’s durations default to the 
duration of the azimuth-envelope, which defaults to the instance’s duration. 

5. Ambisonic Decoder  
 

The Decoding of the B-Format files is carried out by an external Max/MSP3 based application, 
called “Multiplayer”. This application consists of a series of modified and custom-built dsp-
modules complying with the Jamoma4 framework. The figure below shows 3 different windows 

                                                        
1 Besides the selection of air-absorption and attenuation-functions for high-level control 
2 These parameters can be controlled either explicitely or implicitely using an abstraction to lookup the values from the BPFs.  
3 http://www.cycling74.com 
4 http://www.jamoma.org 
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5.1 Components 
 

The following jamoma-modules are used within the application (in serial order): 

1) jmod.ms.sur.multi.input~.mxt 
2) jmod.sur.ambi.adjust~.mxt 
3) jmod.sur.ambi.decode~.mxt  
4) jmod.multigain~.mxt 
5) jmod.ms.sur.speaker.setup.mxt 
6) jmod.sur.output~.mxt 
7) jmod.control.mxt 
 
The p.storage1 object is used for easy & flexible preset management and storage in xml-file-
format. 
                                                        
1 Due to the use of externals which haven’t been ported to Max5 yet, the application is based on Max/MSP 4.6.3 
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Detailed description of the above software is beyond the scope of this document, please refer to 
the respective documentations on http://jamoma.org . The extended functionalities features used 
in the multiplayer.app are described here. Please note, that as with all jamoma-modules changes 
of parameters that cause the rebuilding of the dsp-chain (e.g. scripting auf dsp-objects) take 
effect only next time audio is switched on. 

jmod.ms.sur.multi.input~.mxt 

This module has been provided with the additional functionality of routing the multichannel- 
signal to two different outputs. Additionally, a “filewatch” feature has been implemented.  

Checking the box next to “Bformat” (a) in the figure) routes the signal to the ambisonic decoder. 
When unchecked, the multichannel signal is routed directly to the jmod.multigain~ module 
without any processing, which is useful for auditing regular multichannel files.   

Clicking on “open decoder interface” (b) opens an additional window (shown on the top right of 
the picture), containing modules for ambisonic decoding (jmod.sur.ambi.adjust~ and 
jmod.sur.ambi.decode~) the functionality of these modules has not been changed, i.e. they are 
the same as in the original jamoma-distribution and are documented there. jmod.sur.ambi.adjust~ 
uses a the Max/MSP external “ambidecode~”, a single-band 3rd-order ambisonic encoder, 
documentation can be found here2. 

Checking the box next to “filewatch” (c) activates the filewatch feature: Whenever the currently 
loaded file is changed by an external application (this is a common case, e.g. when working on a 
synthesis-process in OMambi and rendering a file with the same name), the application 
automatically re-loads this file. 

jmod.multigain~.mxt 

The jmod.multigain~ module has been implemented for easy visual monitoring and adjustment 
of levels (linear gains) of individual channels of a multichannel audio stream. Use the number 
box (d). If the audio stream contains more channels than the set number, the higher channel 
numbers are ignored. The graphical/numeric slider (e) can be used to control the volume of all 
channels simultaneously (in decibels), i.e. controlling the master volume. 

jmod.ms.sur.speaker.setup.mxt 

In order to provide an intuitive way for setting and tweaking of speaker positions, the original  
jmod.sur.speaker.setup has been extended with a graphical user-interface. Additionally, the 
functionality of the jamoma module jmod.speaker.delay~ has been integrated into the module, 
i.e. time-delays to compensate for differing speaker distances are automatically applied without 
the need of additional user-interaction.  

Further, it is now possible to automatically generate circular speaker setups in the horizontal 
plane following the convention starting with the first speaker left of the front-middle, and 
enumerating clockwise. Coordinate systems are described in the Appendix of this document. The 
number of speakers is set using the number box next to “circular distribution” (marked (g) in the 

                                                        
1 http://www.pelado.co.uk/2006/05/23/pstorage/ 
2 http://www.icst.net/downloads/ 
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figure). The radius of the circle of speakers can be set via the number box next to “center-
distance” (marked (h) in the figure). Please note that speaker-numbers exceeding the number of 
voices will be ignored. 

Clicking on “open graphical interface” opens an additional window showing a bird’s eye 
perspective on the listening space. This interface uses the Max/MSP external “ambimonitor” for 
Max/MSP4.6.3, which can be found in the same software distribution as the external for 
ambisonic decoding mentioned above. Please refer to the same ressource for documentation. The 
interface is fully integrated into the module’s namespace. The distance-units (blue circles) are 
normalized to meters. The “radius” parameter (j) sets the viewing radius for “zooming” in and 
out. The “size” parameters (k) resizes the whole window (in screen pixels). 

 

5.2 Quickstart 
 

A general remark: For ease of use the number of channels of all modules subsequent to 
jmod.sur.ambi.decode~ are automatically adjusted to the number set for “voices”. If wished this 
can be overridden using controls of the respective modules.   

1. Dragn’drop a Bformat file from MacOS’ finder onto the time-display of the Multichannel-
player and use the controls for playback as described in the jamoma documentation of the 
module jmod.input~. 

2. Check the box next to “Bformat” (a) to route the signal from the Multichannel player to the 
decoder and –if desired- check the box next to “filewatch” (c) to activate the filewatch-feature. 
Click on “open decoder interface” (b) to open the window containing UI-elements for tweaking 
decoder settings, common presets are provided with the application (e.g. coefficients for in-phase 
decoding in different orders).  

3. Choose one of the presets for decoding from the jmod.sur.ambi.decode~’s preset-menu or set 
the parameters manually. Set the number of desired output-channels for “voices” in module. Use 
the module jmod.ms.sur.speaker.setup.mxt to configure your speaker setup via the parameters 
“circular distribution” (g) and “center-distance” (h) and/or tweak them manually using the 
graphical interface (f). As with all jamoma-modules settings can be stored as module-specific 
presets. Using the p.storage object (8) multiple settings of the entire application can be stored 
and later saved conveniently in an xml-file.  

 

6. Tutorials 
6.1.   Basic 
  
The purpose of the basic tutorials is to give an introduction into basic methods of controlling 
spatialization with OMambi. Classes for discrete control of spatialization parameters are 
presented and basic concepts of spectral vs. granular spatialization are introduced. For sake of 
clarity (and since there currently is no 3D-editor in OM) only 2D- (planar) spatialization is used.  
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A note before starting: 
OMambi renders periphonic 3rd-order B-Format files (16 audio channels), which are displayed 
properly in OM’s sound-object. For playback/decoding of these files however, an external 
application is needed –e.g. the “multiplayer” which is described in chapter 5. The rendered 
soundfiles can be found in the directory set in OM’s Preferences in “/Default Folders/Output 
Files”. By default the directory is “/out-files”, a sub-directory of your workspace.  
 
 

6.1.1 Tutorial 1: spatial-risset-bell 
 
Open the patch “1-spatial-risset-bell”. This first tutorial is a simple introductory patch using an 
adaption of the original omChroma tutorial “cs_tut03” for additive synthesis of a bell-like sound 
taken from the Csound catalog. This is a simple example for spatial additive synthesis using the 
class add-1ambiencl-1, which is an ambisonic version of the omChroma class add-1: Each 
partial is assigned a distinct panning position via a OpenMusic’s breakpoint-function (BPF). 
Note, that the panning positions are not a function of frequency since the BPF is sampled across 
the number-of-rows of the matrix1, but a function of the frequency’s index in the list-of-
frequencies. Since the frequencies are sorted in an ascending fashion the BPF can be regarded as 
a 2D-plot representing frequency on the X-axis and azimuth angle on the Y-axis, similar to a 
“spatial envelope” as shown in the figure below. After evaluating the sound object at the bottom 
of the patch it should look like the right figure below. Note that –although displayed properly- 
the file can’t be played back using the sound-object. Instead, use the multiplayer application for 
playback as described in chapter 5.  
 
 

 

 

 

 

 

 

 

 

6.1.2 Tutorial 2: additive-spatial-spread 
 
This tutorial allows for selecting a gong-like partial structure from a database via the argument to 
the abstraction “gong” at the top of the patch. The abstraction “clusters” generates micro-clusters 

                                                        
1 this is the typical behaviour of the omChroma-matrix for a slot of type number 
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around each partial the number of partials for each cluster, as well as the frequency devitation 
can be set arbitrarily as shown in the left figure below. The azimuth-angle of each partial is given 
by a random-function. In addition to the control of panning-positions, this tutorial demonstrates 
an approach for controlling the spatial spread (or “sourcewidth”) of sound sources by controlling 
the gain of components of the respective ambisonic order on a scale from 0 to 100%: At 0th 
order, or a spatial spread of 100% the sound-source is omnidirectional1, whereas 0% corresponds 
to the highest possible accuracy of the system, that is 3rd order in OMambi. The right figure 
below shows how a relative BPF is used to control the ambisonic order as a function of “spatial 
spread” (one-to-many mapping) which is embedded in the subpatcher “sourcewidth->order”. 
Please note that this control structure is independent of the number of partials, as e.g. for spatial 
additive synthesis using thousands of partials. 
 
 
 

 

 

 

 

 

 

 

6.1.3 Tutorial 3: fog-stochastic 
 
Tutorial 3 demonstrates the use of various algorithmic (stochastic) functions to generate the 
control-data for a spatial fog-synthesizer2: the class fog-1ambiencl-1. Here the azimuth-angle of 
each grain is controlled via a random-walk with a maximum step size of 45. degrees. The matrix 
object below shows a nice visualization of the various stochastic functions used to control the 
class’ parameters, the lowest row is the random walk. Also note, that the source soundfile used 
for fog-synthesis can be provided using the leftmost outlet of OM’s sound object, however, must 
be converted into a global cs-table which is written into the csound score which is read by the 
Csound-orchestra. 
 
 
 
 
 
 
 
                                                        
1 Please note that this has an increase in overall amplitude as a side effect, since more loudspeakers are contributing. 
2 “fog” stands for “forme d’onde granulaire”, an extended type of formantic waveform synthesis using arbitrary soundfiles 
instead of sinusoids. 
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6.1.4 Tutorial 4: smpl-basic 
 
This tutorial is a basic example for sample-based spatialization, i.e. panning of a sound file using 
the class smpl-1ambiencl-1 which is controlled exclusively with absolute BPFs: Please note that 
in contrast to Tutorial 1 the BPF used to control azimuth is an absolute BPF which is not rescaled 
and contains values from 0 to 360 (representing azimuth-angle in degrees). Thus the Y-axis 
represents a clockwise circle starting in front of the listener. The soundfile can be provided using 
an absolute or relative path, or by connecting the leftmost outlet of the sound-object with the slot 
called “filename”.  

 

 

 

 

 

 

 

 

 

 

 

6.1.5 Tutorial 5: smpl-granular 
 
In this tutorial we’ll see how OMambi seamlessly integrates with OpenMusic’s audio-processing 
functionalities such as SuperVP and OMsounds. An audiofile (a drumloop) is analyzed for 
transients using OM-SuperVP to generate markers. Alternatively, markers can be loaded from an 
SDIF-file. By retrieving the marker-positions from the sound-objects rightmost outlet, entry-
delays, skips (offsets within the soundfile) and durations are calculated. For each of the audio 
segments (audio between two successive markers) a random panning-position (azimuth between 
-180 and 180 degrees) is calculated, resulting in a rhythmic spatial distribution of drumsounds. 
This patch can be regarded as a simple example for “granular spatialization”1. Please note that an 
additional marker should be added at the end of the analyzed sound file in order to calculate the 
duration of the last segment as shown in the figure below. 
 

 

 
                                                        
1 The term “granular spatialization” is used to describe a technique in which the spatial position of each grain is controlled 
independently. 
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6.1.6 Tutorial 6: distance-cues 
 
Up to this tutorial OMambi was used merely for one-dimensional panning purposes. For 
rendering of sound source positions with different distances, additional perceptual cues need to 
be provided. This tutorial presents three classes for the control of distance-cues from different 
levels of abstractions as described in chapter 4. In this tutorial all three classes produce exactly 
the same results.  The audio material used for this tutorial is a transient-rich cymbal sound. 

The high-level class calculates low-level parameters to control distance-cues internally as a 
function of distance. Two functions for distance-attenuation, as well as for air-absorption can be 
selected. The behaviour of these functions can be tweaked via two respective coefficients. 
Chapter 4 gives detailed descriptions of this class’ control-structure, see the appendix for a list 
and a description of the matrix’ inlets. 

The mid-level class also uses internal functions to generate low-level parameters as a function of 
distance, thus analogous to the high-level class this relationship is hard-wired into the 
instrument. However, the behaviour of these functions can be arbitrarily defined: External 
function-tables -that is BPFs in OpenMusic- are used to lookup the respective low-level 
parameters as a function of distance. This provides an additional level of flexibility. Please refer 
to section 6.3.2 for instructions on the generation of BPFs from user-defined functions.  

The low-level class provides access to all underlying low-level parameters for controlling 
distance-cues explicitely. In this tutorial user-defined functions (the abstractions “attenuation-
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exponential” and “air-absorption”1) are employed to generate control-data for low-level 
parameters as a function of distance. Please refer to section 6.3.1 for more information on 
distance-functions. This is both the least efficient and the most flexible solution.  

Due to the dynamic allocation of instances all parameters can be changed for each sound source 
separately independently of the control-level. The figure below shows the 2 BPFs generated from 
the two functions used for the low-level class for distances from 0 – 50 meters. Note, that for the 
mid-level implementation the maximum distance is automatically calculated using OM’s 
compiled function “list-max” .   

 

 

 

 

 

 

 

 

 

 

 

6.1.7 Tutorial 7: smpl-bpc 
 

This Tutorial shows a graphical, 2-dimensional representation of sound source positions in 
cartesian coordinates using a BPC-factory2. Each breakpoint in the BPC corresponds to a 
position in the horizontal (X/Y) Plane. The conversion utility “bpc2ad” is used to convert the 
representation in cartesian x/y coordinates into polar azimuth/distance coordinates3. The sound 
material is the same as in Tutorial 6. In addition, this tutorial shows yet another example for the 
control of distance-cues using a low-level class: Lookup-tables (instances of BPFs) are used 
within the OpenMusic patch for control of the low-level parameters of a low-level class. This is 
equivalent to the method in the mid-level class. Please note that time delays must be accounted 
for as positive offsets for entry-delays (the abstraction “distance-delay”). The figure below 
shows a manually vs. an algorithmically created BPC and the abstractions used for table-lookup 
in OM. 

 

                                                        
1 These are exactly the same functions as implemented in the csound-orchestras/OMambi-classes for high-level control. 
2 OpenMusic’s breakpoint-curve editor 
3 The folder “/abstractions” in the OMambi-workspace contains various utilities for the control of spatialization, like conversions, 
mappings, etc. 
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6.1.8 Tutorial 8: smpl-spatial-dafx 
 
This Tutorial shows a very simple example of using data derived form a soundfile (a Kalimba 
phrase) via audio-analysis to control spatialization parameters. This can be regarded a spatial 
digital audio effect. As in the tutorials 6 and 7 a soundfile is segmented using OMSuperVP for 
transient-detection. Additionally, the function f0-estimate is used to extract the fundamental 
frequency of the soundfile which is visualized in a BPF, the X-axis representing time (in 
seconds), the Y-Axis representing frequency (in Hz). The marker-positions (from the rightmost 
outlet of the sound-object) are used to look up the fundamental frequency for each audio-
segment which is mapped to azimuth angles in the range of -135 (backleft) to 135 (backright) 
degrees. Thus, the panning position of each audio segment is a function of its fundamental 
frequency. A BPC is used to visualize the sound source positions in a bird’s eye view. 
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6.1.9a Tutorial 9a: smpl-chordseq 
 
Since OpenMusic is a CAC-environment using symbolic representations of musical objects in 
common music notation it makes sense to use these representations for the control of 
spatialization. The following 2 tutorials are examples for the use of a chord-seq -a symbolic 
representation of a musical score- as a control structure for granular spatialization.  The sound 
material is the same as in the previous tutorial. For each note in the chord-seq audio segments are 
successively “picked” from the source soundfile. This tutorial nicely demonstrates the benefit of 
a feature of the omChroma-matrix which re-iterates a list from the beginning in a loop, if the 
list’s elements are less then the matrix’s components. This is the case for the lists provided at the 
inlets “skip” and “duration”. Each segment is transposed as a function of the corresponding 
note’s pitch. The paning positions (azimuth-angles) of each audio segment are determined as a 
function of pitch-classes with 1/8 tone resolution (i.e. there are 48 pitch-classes in an octave). 
This results in a conversion of the pitch-pattern in the chord-seq to a spatial pattern. 
Additionally, the segment’s durations are compressed/stretched according to the respective 
transposition-factor, which creates temporal variations and overlapping sounds, giving a very 
lively, natural feel to the spatialized sound pattern. The two figures below show the chord-seq 
(the pitch pattern) and the resulting spatial pattern. 

 

 

 

 

 
 
 
 
 
 

6.1.9b Tutorial 9b: smpl-segmentation 
 
This tutorial presents a different method for controlling azimuth-angles as a function of pitch 
using absolute frequencies (in Hz). In addition, a random-walk is employed to control the sound 
source distances, resulting in a much more complex spatial pattern which is shown in the figure 
below. The orientation of the pattern can be controlled by tweaking the arguments of the om-
scale object. Further, in this tutorial different patterns for picking audio segments from the 
source soundfile can be selected. 
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6.2.   Advanced  
 

The advanced tutorials present more sophisticated applications using continuous control of 
spatialization parameters. Drawing of Trajectories, Time/Space-Stretching and the concept of the 
parsing-fun are presented.     
 

6.2.1 Tutorial 1: continuous-bpc-trajectory 
 

This tutorial introduces the control of sound source positions using BPCs to describe a 
continuous trajectory, in a certain perspective analogous to a “spatial glissando”: A manually 
drawn BPC is smoothed out using the function get-spline-object via spline interpolation to 
remove the edges1. The resulting smoothed BPC represents the trajectory of a sound source in 
cartesian coordinates on the horizontal plane. The abstraction “xyz->aed” converts this 
representation from cartesian coordinates into polar coordinates2. The BPC’s X/Y coordinates 
are converted into 2 BPFs, the values for azimuth and distance are represented on the respective 
Y-axes, the X-axes are a relative representation of the total duration of the sound file, i.e. the 
BPFs are relative azimuth/distance envelopes over the duration of the instance which is given by 
the soundfile. Since the two-dimensional BPC doesn’t contain any temporal information, the list 
of Y-coordinates in the BPFs is assigned to equidistant values on the X-axis, i.e the x-deltas are 
constant. Accordingly, the speed of the sound source travelling along the trajectory is 
proportional to the euclidean distance between two successive breakpoints in the original BPC, 
or inversely expressed the time of travel between two points is a constant determined by the 
duration of the soundfile divided by the number of breakpoints. Note, that this is an arbitrary 
choice. For example, by extracting coefficients via the eucledean distance between two points in 
the BPC and applying these coefficients to the x-coordinates of the BPFs when converting, a 
                                                        
1 Depending on the desired smoothness this function can be tweaked using the parameters (“resolution” and “degree”). 
2 Note that since there is no elevation-data in the BPC, a value of “0” is repeated for as many breakpoints as the trajectory 
contains. This is carried out by the abstraction “repeater”. 
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steady travel speed along the trajectory could be achieved. The figure below shows the 2 BPFs 
obtained from the smoothed BPC.  

 

 

 

 

 

 

 

 

6.2.2 Tutorial 2: granular-board-trajectory 
 

This tutorial introduces a different concept for the control of a sound source travelling along a 
trajectory: A granular representation using many discrete positions, in a certain perspective 
analogous to a “spatial arpeggio”. Additionally, a new interface object is presented to draw the 
trajectory: the Board object. Please note that this tutorial uses the class smpl-1ambiench-1 which 
doesn’t provide for continuous control of spatialization parameters. The subpatcher “e-dels” 
generates a list of entry-delays with a stepsize of 50ms until the source soundfile’s total duration 
is reached. The duration of each grain corresponds to the deltas between two successive entry-
delays. A windowing-function is obtained by adding 25ms to the duration of each grain within 
the grain is faded-out using a sigmoid function which overlaps with the subsequent grain which 
has a 25ms sigmoid-fade-in. Analogous to the BPC in the previous tutorial the Board represents 
the sound source’s spatial trajectory in the horizontal (x/y) plane. It is rescaled and converted 
into a BPC and then resampled into a sequence of discrete positions at a rate determined by the 
soundfile’s duration divided by the grainsize. 

 

6.2.3 Tutorial 3: granular-time-space-stretching 
 

This tutorials shows a simple approach to manipulate the spatio-temporal morphology of a 
trajectory via granular time-stretching of either the sound-file, or the trajectory (temporal and 
spatial). In contrast to the 2-dimensional data contained in a BPC, the Board object represents 
time (the “speed” of drawing-motions) on a normalized scale (0-1) as a third dimension. This 
temporal structure is rescaled to the duration of the soundfile within the subpatcher “sound-dur”. 
Analogous to the previous tutorial the Board is converted to BPFs. The difference here is, 
however, that the X-values of the azimuth/ distance envelopes are not equidistant but given by 
the temporal structure of the trajectory in the Board object. By increasing or decreasing the 
number of samples taken from the trajectory, the incremental step (“spatial samplerate”) is 
changed since the trajectory is always sampled from beginning till end. Since the e-dels of the 
grains aren’t affected this results in a temporal stretch of the spatial trajectory. Note that the 
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omChroma-matrix ignores elements exceeding the number-of-components and repeats a list from 
the beginning in case its elements are less than components. This control-paradigm is analogous 
to the continuous control of sound source positions with OMambi using BPFs. The soundfile, as 
well as the trajectory’s temporal and spatial structure can be stretched independently of each 
other as shown in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

6.2.4 Tutorial 4: continuous-risset-bell 
 
This tutorial is an adaptation of the Basic Tutorial 1 in section 6.1.1. Relative BPFs are employed 
to control a sound’s spectro-spatial morphology, that is the temporal evolution of partials in 
space. Amplitude-envelopes, frequency-envelopes, azimuth-envelopes and distance-envelopes of 
the sound’s partials are controlled via 4 main BPFs. The abstraction “perturb-bpf->bpf-lib” 
generates a perturbated variation of the original BPF for each partial. The first and last Y-values, 
however, remain unchanged (since otherwise in some cases clicks might occur, e.g. when used 
for example for amplitude-envelopes). The loop get-splines is used to smooth the BPFs. Note 
that the relative BPFs are re-scaled to the default ranges set for the respective parameters in the 
class definition. For each evaluation of the patch a slightly different spectro-spatial morphology 
of the bell-sound is obtained, yet every unique realization belongs to the same “familiy” sounds. 
The figure below shows 4 BPF-libs obtained from the same evaluation of the patch for 
amplitude-envelopes, frequency-envelopes, azimuth-envelopes & distance-envelopes (left-to-
right order).  
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6.2.5 Tutorial 5: parsing-fun-fineberg 
 

This tutorial is an adaptation of the original omChroma tutorial cs2_tut07 to demonstrate the use 
of a parsing-fun for the control of spatialization parameters in a similar fashion as in the original 
tutorial partial frequencies are controlled. Please refer to the omChroma tutorial for a general 
description of the concept of the “parsing-fun”. As in the omChroma example the basic material 
is a chord-seq used in an ensemble piece of Joshua Fineberg. A new chord-seq is generated by 
time-stretching and transposing the original chord-seq. For each of the chords in this new chord-
seq one matrix is generated inside the abstraction “cs-ambi-events-list”. Each chord is assigned a 
random position in 2D-space with an azimuth-angle between -180 and 180 degrees and a 
distance between 0.5 and 5 meters. Also the encoding order is given as a random number 
between 0.5 and 3, which translates into perceived “spatial spread”. For each note within this 
chord an azimuth-value with a slight deviation (max 20%) from the chord’s main position is 
calculated. The abstraction “my-parsing-subcomponent” generates a micro-cluster of other 
partials around each note’s frequencies, with random e-dels between 0 and 0.25 seconds. The 
frequential deviation is determined by a BPF which is sampled over the number of matrices (or 
in this case: chords). The BPF’s range is given by the “min stonatura” and “max stonatura” 
parameters at the top-level of the patch. In a similar fashion for each of the cluster’s frequencies 
a new spatial position is computed, the BPFs ranges, that is the max. spatial scatter of the 
cluster’s-partials is given by  “max azimuth deviation” and “max distance deviation” at the top-
level of the patch. Again, for each evaluation of the patch a different sound will be obtained. The 
figure below shows the loop “make spatial event” containing the matrix inside the abstraction 
“cs-ambi-events-list”.  
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7. Building OMambi classes 
 

7.1 Csound-orchestras and code-snippets 
 

The Csound source code used within the OMambi-classes can be found in the folder 
“/resources/sourcecode/OMambi” in the OMambi workspace. The subfolders “/additive”, 
“/granular” and “/sample-based” contain the respective Csound code. When combining 
synthesizers with ambisonic encoders large parts of the code are redundant and can be re-used. 
Thus, it is very economic to work with code-snippets which can be copied and pasted using a 
text editor. The subfolder “/Template” contains the code-snippets which were used to implement 
the default OMambi classes. These code-snippets can be used to create new classes as described 
in the following section.  

7.2 Merging synthesizers & ambisonic encoders 
   

This chapter describes how to build your own OMambi classes in 5 steps. Please note that in 
future releases of OMambi an object-oriented approach will be taken in which spatial 
synthesizers are created automatically via multiple inheritance from sound synthesis- and 
spatialization-superclasses, respectively. See Chapter 8 on Future Developments.  

1. Choose the omChroma synthesizer you would like to use as a sound source for ambisonic 
spatialization. You can basically use any given synthesizer as long as its output monophonic 
(otherwise it needs to be modified slightly). Lets choose the omChroma-class buzz-1 for sake of 
clarity. You can find the Csound sourcecode of the omChroma classes in ”/userlibrary/chroma-
classes/sources/classes/basic/mono” within the folder containing your OpenMusic application, 
by default this is “/Applications/OM6.x.x”. Open the csound code with a text-editor. The Csound 
code should look somewhat  like this: 

 

;============================================================================= 
;   BUZZ-1.ORC 
; DYNAMIC SPECTRUM OSCILLATOR (FROM ACCCI, 43_21_1.ORC) / MONO 
; AMPLITUDE ENVELOPE WITH POSCIL 
;============================================================================= 
 
; Timbre:    Various controlled noise spectra 
; Synthesis: (g)buzz 
;            POSCILI envelopes 
; Coded:     jpg 8/92, modified ms 9/02, 8/08 
 
; NB: NEW STRUCTURE FOR THE AMPLITUDES FROM AUGUST 2008! 
;    Positive value > 0.0  : linear amplitude (>0.0-1000.0) 
;    0.0 or negative value : amplitude in dB (0 = maximum value) 
 
; The apparently arbitrary amplitude range (0-1000, rather than 0-1) 
;         avoids Lisp printing small values with exponential notation 
 
; Replaced oscili with poscil (precise oscillator), ms 8/08 
; Default SR = 96000, recommended precision: 24 bits 
;----------------------------------------------------------------------------- 
 
; p1 = instrument number 
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; p2 = action time [sec] 
; p3 = duration [sec] 
; p4 = maximum amplitude [linear, >0.0-1000.0 or dB, <= 0.0] 
; p5 = fundamental frequency [Hz] 
; p6 = amplitude envelope [GEN] 
; p7 = lowest harmonic present in the buzz [int] 
; p8 = % of maximum possible harmonic present [0-1] 
; p9 = multiplier in the series of amp coeff for the buzz [0-1] 
; p10 = envelope for the multiplier [GEN] 
;----------------------------------------------------------------------------- 
; COMPULSORY GEN FUNCTIONS 
; f5 large cosine 
;_____________________________________________________________________________ 
 
; CLASS: BUZZ-1 
 
;  GLOBAL KEYWORDS (default values within parentheses): 
; NUMROWS  : amount of rows (components) in the event (1) 
; ACTION-TIME : start time of the whole event [sec] (0.0) 
; USER-FUN : user-defined parsing function (nil) 
 
;  LOCAL KEYWORDS: 
;   E-DELS : entry delays [sec] (0.0) 
; DURS : duration [sec] (1.0) 
; AMP : amplitude [lin, >0.0-1000.0 or dB <- 0.0] (-6.0) 
; F0 : fundamental frequency [Hz] (220.0) 
; AENV : function number for the amplitude envelope [GEN] (triangle) 
; BZL : lowest harmonic present in the buzz [integer] (1) 
; BZH : % of maximum possible harmonic present [0-1] (1) 
; BZM : multiplier in the series of amp coeff [0-1] (0.95) 
; BZMENV : function number for the buzz envelope [GEN] (triangle) 
;***************************************************************************** 
 
sr = 96000 
kr = 96000 
ksmps = 1 
nchnls = 1 
 
;0dbfs = 32767  ; 16 bits 
0dbfs = 8388697 ; 24 bits 
 
instr 1; ***************************************************************** 
idur  = p3 
idurosc = 1/p3 
iamp   = (p4 > 0.0 ? (p4*0.001*0dbfs) : (ampdbfs (p4))) 
ifq  = p5 
iaenv  = p6 
inn  = sr/2/ifq  ; total possible number of harmonics present 
inn  = int (inn * p8) ; % of possible total 
ilh  = p7   ; lowest harmonic present 
ifn  = 5   ; stored cosine function 
ibzmul = p9   ; multiplier 
ibzmenv = p10   ; envelope for the multiplier 
 
   kenv  poscil iamp, idurosc, iaenv  ; amp envelope 
   kratio poscil ibzmul, idurosc, ibzmenv ; kratio envelope 
 
   asrc    gbuzz   kenv,ifq,inn,ilh,kratio,ifn 
           out     asrc 
 
endin 

  

2. Some minor modifications must be made before we can use this Csound orchestra to create an 
OMambi class from it. Two lines of code must be changed now (marked in red in the code 
above):  
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a) Look for the last line of code before the word “endin”, usually the last line but one (or 
search for the word “out” with a search function, make sure that it is not a comment).  

  out     asrc 
 

Replace the word “out” with this string “asound =” and delete the word “endin”, such that the 
last line of the code looks like this: 

  asound = asrc 
 

 b) Look for a line of code that looks like this: 

 nchnls = 1 
 

 It must be changed to this: 

 nchnls = 16 
 

You can save this file now as a synthesizer-Template for future use, e.g. in the folder 
“/resources/sourcecode/OMambi/Templates/synthesis” 

3. Now open the folder “/resources/sourcecode/OMambi/Templates/ambisonics/encoding” in the 
OMambi workspace. Select the code-snippet you would like to use according to the preferred 
control-level. Lets’ choose “Ambisonics(discrete-LL)” for sake of clarity. Open it in a text-
editor. It should look somewhat like this:  

; Ambisonics ************************************************************* 
   
  asound = asound + 0.000001 * 0.000001     ; avoid underflows 
 
  ; Assign Variables for spatialization--------------------- 
  ; sourceposition   
         iazimuth = p10    ;azimuth (degrees) 
         ielevation = p11   ;elevation (degrees) 
         ; Filter cutoff frequency 
  icutoff = p12    ;cutoff freq (Hz) 
  ; attenuation 
  iatten = p13    ;linear gain factor 
  ; order-gains 
  iordg1 = p14    ;linear gain factor 
  iordg2 = p15    ;linear gain factor 
  iordg3 = p16    ;linear gain factor 
 
  ; Distance-Cues ------------------------------------------- 
  ; Air Absorption 
  icutoffl limit icutoff, 0, 22048 
    asound_lp butterlp asound, icutoff 
         
         ; Distance Rolloff 
         iattenl limit iatten, 0, 1 
         asound_lp_at = asound_lp * iattenl 
         
         ; Ambisonic Panning / Generate B-Format ******************** 
         aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq bformenc1 
asound_lp_at, iazimuth, ielevation         
 
  ; write audio out (apply order gains) 
         outx aw, ax * iordg1, ay * iordg1, az * iordg1, ar * iordg2, as * iordg2, at 
* iordg2, au * iordg2, av * iordg2, ak * iordg3, al * iordg3, am * iordg3, an * 
iordg3, ao * iordg3, ap * iordg3, aq * iordg3    
 
endin 
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4. Copy the entire text and paste it below the last line of the synthesis orchestra opened before. 
The resulting code should look like this:  

 

;============================================================================= 
;   BUZZ-1.ORC 
; DYNAMIC SPECTRUM OSCILLATOR (FROM ACCCI, 43_21_1.ORC) / MONO 
; AMPLITUDE ENVELOPE WITH POSCIL 
;============================================================================= 
 
; Timbre:    Various controlled noise spectra 
; Synthesis: (g)buzz 
;            POSCILI envelopes 
; Coded:     jpg 8/92, modified ms 9/02, 8/08 
 
; NB: NEW STRUCTURE FOR THE AMPLITUDES FROM AUGUST 2008! 
;    Positive value > 0.0  : linear amplitude (>0.0-1000.0) 
;    0.0 or negative value : amplitude in dB (0 = maximum value) 
 
; The apparently arbitrary amplitude range (0-1000, rather than 0-1) 
;         avoids Lisp printing small values with exponential notation 
 
; Replaced oscili with poscil (precise oscillator), ms 8/08 
; Default SR = 96000, recommended precision: 24 bits 
;----------------------------------------------------------------------------- 
 
; p1 = instrument number 
; p2 = action time [sec] 
; p3 = duration [sec] 
; p4 = maximum amplitude [linear, >0.0-1000.0 or dB, <= 0.0] 
; p5 = fundamental frequency [Hz] 
; p6 = amplitude envelope [GEN] 
; p7 = lowest harmonic present in the buzz [int] 
; p8 = % of maximum possible harmonic present [0-1] 
; p9 = multiplier in the series of amp coeff for the buzz [0-1] 
; p10 = envelope for the multiplier [GEN] 
;----------------------------------------------------------------------------- 
; COMPULSORY GEN FUNCTIONS 
; f5 large cosine 
;_____________________________________________________________________________ 
 
; CLASS: BUZZ-1 
 
;  GLOBAL KEYWORDS (default values within parentheses): 
; NUMROWS  : amount of rows (components) in the event (1) 
; ACTION-TIME : start time of the whole event [sec] (0.0) 
; USER-FUN : user-defined parsing function (nil) 
 
;  LOCAL KEYWORDS: 
;   E-DELS : entry delays [sec] (0.0) 
; DURS : duration [sec] (1.0) 
; AMP : amplitude [lin, >0.0-1000.0 or dB <- 0.0] (-6.0) 
; F0 : fundamental frequency [Hz] (220.0) 
; AENV : function number for the amplitude envelope [GEN] (triangle) 
; BZL : lowest harmonic present in the buzz [integer] (1) 
; BZH : % of maximum possible harmonic present [0-1] (1) 
; BZM : multiplier in the series of amp coeff [0-1] (0.95) 
; BZMENV : function number for the buzz envelope [GEN] (triangle) 
;***************************************************************************** 
 
sr = 96000 
kr = 96000 
ksmps = 1 
nchnls = 16 
 
;0dbfs = 32767  ; 16 bits 
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0dbfs = 8388697 ; 24 bits 
 
instr 1; ***************************************************************** 
idur  = p3 
idurosc  = 1/p3 
iamp   = (p4 > 0.0 ? (p4*0.001*0dbfs) : (ampdbfs (p4))) 
ifq  = p5 
iaenv  = p6 
inn  = sr/2/ifq  ; total possible number of harmonics present 
inn  = int (inn * p8) ; % of possible total 
ilh  = p7   ; lowest harmonic present 
ifn  = 5   ; stored cosine function 
ibzmul  = p9   ; multiplier 
ibzmenv  = p10   ; envelope for the multiplier 
 
   kenv  poscil iamp, idurosc, iaenv  ; amp envelope 
   kratio poscil ibzmul, idurosc, ibzmenv ; kratio envelope 
 
   asrc    gbuzz   kenv,ifq,inn,ilh,kratio,ifn 
   asound = asrc 
 
; Ambisonics ************************************************************* 
   
  asound = asound + 0.000001 * 0.000001     ; avoid underflows 
 
  ; Assign Variables for spatialization--------------------- 
  ; sourceposition   
         iazimuth = p10    ;azimuth (degrees) 
         ielevation = p11   ;elevation (degrees) 
         ; Filter cutoff frequency 
  icutoff = p12    ;cutoff freq (Hz) 
  ; attenuation 
  iatten = p13    ;linear gain factor 
  ; order-gains 
  iordg1 = p14    ;linear gain factor 
  iordg2 = p15    ;linear gain factor 
  iordg3 = p16    ;linear gain factor 
 
  ; Distance-Cues ------------------------------------------- 
  ; Air Absorption 
  icutoffl limit icutoff, 0, 22048 
    asound_lp butterlp asound, icutoff 
         
         ; Distance Rolloff 
         iattenl limit iatten, 0, 1 
         asound_lp_at = asound_lp * iattenl 
         
         ; Ambisonic Panning / Generate B-Format ******************** 
         aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq bformenc1 
asound_lp_at, iazimuth, ielevation         
 
  ; write audio out (apply order gains) 
         outx aw, ax * iordg1, ay * iordg1, az * iordg1, ar * iordg2, as * iordg2, at 
* iordg2, au * iordg2, av * iordg2, ak * iordg3, al * iordg3, am * iordg3, an * 
iordg3, ao * iordg3, ap * iordg3, aq * iordg3    
 
endin 
 

5. Now you must look for the p-field with the highest number in the sound synthesis part of the 
code (which is “p10” in this example) and enumerate the p-fields of the ambisonics part in 
ascending order starting from this number +1 (10+1). After doing this the Csound code should 
look like this:  
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;============================================================================= 
;   BUZZ-1.ORC 
; DYNAMIC SPECTRUM OSCILLATOR (FROM ACCCI, 43_21_1.ORC) / MONO 
; AMPLITUDE ENVELOPE WITH POSCIL 
;============================================================================= 
 
; Timbre:    Various controlled noise spectra 
; Synthesis: (g)buzz 
;            POSCILI envelopes 
; Coded:     jpg 8/92, modified ms 9/02, 8/08 
 
; NB: NEW STRUCTURE FOR THE AMPLITUDES FROM AUGUST 2008! 
;    Positive value > 0.0  : linear amplitude (>0.0-1000.0) 
;    0.0 or negative value : amplitude in dB (0 = maximum value) 
 
; The apparently arbitrary amplitude range (0-1000, rather than 0-1) 
;         avoids Lisp printing small values with exponential notation 
 
; Replaced oscili with poscil (precise oscillator), ms 8/08 
; Default SR = 96000, recommended precision: 24 bits 
;----------------------------------------------------------------------------- 
 
; p1 = instrument number 
; p2 = action time [sec] 
; p3 = duration [sec] 
; p4 = maximum amplitude [linear, >0.0-1000.0 or dB, <= 0.0] 
; p5 = fundamental frequency [Hz] 
; p6 = amplitude envelope [GEN] 
; p7 = lowest harmonic present in the buzz [int] 
; p8 = % of maximum possible harmonic present [0-1] 
; p9 = multiplier in the series of amp coeff for the buzz [0-1] 
; p10 = envelope for the multiplier [GEN] 
;----------------------------------------------------------------------------- 
; COMPULSORY GEN FUNCTIONS 
; f5 large cosine 
;_____________________________________________________________________________ 
 
; CLASS: BUZZ-1 
 
;  GLOBAL KEYWORDS (default values within parentheses): 
; NUMROWS  : amount of rows (components) in the event (1) 
; ACTION-TIME : start time of the whole event [sec] (0.0) 
; USER-FUN : user-defined parsing function (nil) 
 
;  LOCAL KEYWORDS: 
;   E-DELS : entry delays [sec] (0.0) 
; DURS : duration [sec] (1.0) 
; AMP : amplitude [lin, >0.0-1000.0 or dB <- 0.0] (-6.0) 
; F0 : fundamental frequency [Hz] (220.0) 
; AENV : function number for the amplitude envelope [GEN] (triangle) 
; BZL : lowest harmonic present in the buzz [integer] (1) 
; BZH : % of maximum possible harmonic present [0-1] (1) 
; BZM : multiplier in the series of amp coeff [0-1] (0.95) 
; BZMENV : function number for the buzz envelope [GEN] (triangle) 
;***************************************************************************** 
 
sr = 96000 
kr = 96000 
ksmps = 16 
nchnls = 1 
 
;0dbfs = 32767  ; 16 bits 
0dbfs = 8388697 ; 24 bits 
 
instr 1; ***************************************************************** 
idur  = p3 
idurosc  = 1/p3 
iamp   = (p4 > 0.0 ? (p4*0.001*0dbfs) : (ampdbfs (p4))) 
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ifq  = p5 
iaenv  = p6 
inn  = sr/2/ifq  ; total possible number of harmonics present 
inn  = int (inn * p8) ; % of possible total 
ilh  = p7   ; lowest harmonic present 
ifn  = 5   ; stored cosine function 
ibzmul  = p9   ; multiplier 
ibzmenv  = p10   ; envelope for the multiplier 
 
   kenv  poscil iamp, idurosc, iaenv  ; amp envelope 
   kratio poscil ibzmul, idurosc, ibzmenv ; kratio envelope 
 
   asrc    gbuzz   kenv,ifq,inn,ilh,kratio,ifn 
   asound = asrc 
 
; Ambisonics ************************************************************* 
   
  asound = asound + 0.000001 * 0.000001     ; avoid underflows 
 
  ; Assign Variables for spatialization--------------------- 
  ; sourceposition   
         iazimuth = p11    ;azimuth (degrees) 
         ielevation = p12   ;elevation (degrees) 
         ; Filter cutoff frequency 
  icutoff = p13    ;cutoff freq (Hz) 
  ; attenuation 
  iatten = p14    ;linear gain factor 
  ; order-gains 
  iordg1 = p15    ;linear gain factor 
  iordg2 = p16    ;linear gain factor 
  iordg3 = p17    ;linear gain factor 
 
  ; Distance-Cues ------------------------------------------- 
  ; Air Absorption 
  icutoffl limit icutoff, 0, 22048 
    asound_lp butterlp asound, icutoff 
         
         ; Distance Rolloff 
         iattenl limit iatten, 0, 1 
         asound_lp_at = asound_lp * iattenl 
         
         ; Ambisonic Panning / Generate B-Format ******************** 
         aw, ax, ay, az, ar, as, at, au, av, ak, al, am, an, ao, ap, aq bformenc1 
asound_lp_at, iazimuth, ielevation         
 
  ; write audio out (apply order gains) 
         outx aw, ax * iordg1, ay * iordg1, az * iordg1, ar * iordg2, as * iordg2, at 
* iordg2, au * iordg2, av * iordg2, ak * iordg3, al * iordg3, am * iordg3, an * 
iordg3, ao * iordg3, ap * iordg3, aq * iordg3    
 
endin 
 

Your Csound-orchestra is now ready to build an Omambi class from it! If you wish you can add 
comments to describe the p-fields. The procedure is the same for all the templates. You can save 
the file to disk with an arbitrary file name, however you should preferrably use the suggested 
naming convention to keep an overview of omChroma/OMambi classes. To build an OMambi 
class from the Csound-orchestra you can either manually write a class in LISP or use the box 
“get-instrument” in OpenMusic as described thoroughly in the documentation of omChroma. 
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8. Future Developments 
 

Increasing the order of the ambisonic encoding improves the spatial resolution of the Bformat 
file. However, with increasing order the number of audio channels needed for the Bformat file 
raises exponentially. Instead of a brute force increase of the encoding order, the quality of spatial 
sound renderer should be improved by other means: E.g. via a room-model to account for early 
reflections/reverberation, or a Bformat convolution reverb. It is also planned to implement 
source-directivity (periphonic). Further implementing distinct classes for 2-dimensional and 3-
dimensional encoding would avoid wasting audio channels for Bformat components which are 
not used. 

When combining sound synthesizers with ambisonic encoders (6 possible encoders for each 
sound synthesizer) the number of possible combinations explodes (Z6n)1 and the programming of 
each combination soon becomes intractable even for a small number of classes.  It is planned to 
switch to an object-oriented approach for automatic creation of spatial sound synthesizers via 
multiple inheritance from sound synthesis- and spatialization-superclasses, respectively. In this 
process the csound-code used for sound synthesis classes in omChroma and for ambisonic 
spatialization in OMambi will be merged by a LISP-function which defines a new spatial sound 
synthesis class. This operation currently needs to be done manually, as described in Chapter 7. 

The Max/MSP external used for decoding of the Bformat files will be extended to allow for 
decoding up to 5th order. Further, arbitrary re-mapping of Bformat-components to decoder-inputs 
is planned to allow the decoding of Bformat files with arbitrary arrangements of components. In 
order to avoid switching between two applications, a protocol is currently being established to 
control the decoding application from within OpenMusic. The ambisonic decoder will be 
extended to allow for decoding up to 5th order. 

 

9. Appendix 
 

9.1 Coordinate systems 
 

OMambi uses a head-centered2, right-handed spherical coordinate system based on navigation/ 
topology conventions, in compliance with SpatDIF, the "Spatial Sound Description Interchange 
Format". For further information on SpatDIF see www.SpatDIF.org. Tools for conversion 
between spherical and cartesian systems are provided in the folder /miscellaneous.  

 

 

                                                        
1 see e.g. the Appendix for a tree-diagram of currently implemented classes based on 3 sound synthesizers.  
2 The system’s reference point is the sweetspot at the center of the loudspeakers, and source positions are given relative to this 
posirion, where the listener is supposed to be.  
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9.2 List of matrix inlets & descriptions for discrete control 
 

9.2.1 Ambiench (high-evel control) 
 

INLET DESCRIPTION TYPE 
azimuth Azimuth-angle in degrees Number 
elevation Elevation-angle in degrees Number 
distanz Distance in meters Number 
hfcut-factor Coefficient for air-absorption-function Number 
atten-factor Coefficient for attenuation-function Number 
center-size Size of center-zone Number 
center-curve Coefficient for center-attenuation-function Number 
center-atten Attenuation at center (in decibel) Number 
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airabs-mode Air-absorption-function Number 
atten-mode Attenuation-function Number 
order Encoding Order Number 
 

9.2.2 Ambiencm (mid-level control) 
 

INLET DESCRIPTION TYPE 
azimuth Azimuth-angle in degrees  Number 
elevation Elevation-angle in degrees  Number 
distanz Distance in meters  Number 
air-function Table used for lookup of cutoff-freq of lowpass-filter  Cs-table 
airf-max Maximum value of table used for air-function  Number 
atten-function Table used for lookup of linear gain-factor  Cs-table 
attenf-max Maximum value of table used for air-function (0-1)  Number 
order-function Table used for lookup of encoding-order  Cs-table 
orderfmax Maximum value of table used for encoding-order  Number 
order Encoding-order (0-3)  Number 
lookupmin Min. distance (index for lookup-tables)  Number 
lookupmax Max. distance (index for lookup-tables)  Number 
 

9.2.2 Ambiencl (low-level control) 
 

INLET DESCRIPTION TYPE 
azimuth  Azimuth-angle in degrees  Number 
elevation  Elevation-angle in degrees  Number 
hf-cutoff  Cutoff-Frequency of 2nd-order-lowpass filter  Number 
attenuation  Linear gain-factor (0-1)  Number 
1st-order-gain  Linear gain-factor for 1st-order-components   Number 
2nd-order-gain  Linear gain-factor for 2nd-order-components   Number 
3rd-order-gain  Linear gain-factor for 3rd-order-components   Number 
  

 

9.3 List of matrix inlets & descriptions for continuous control 
 

9.3.1 Ambiench (high-level control) 
 

INLET DESCRIPTION TYPE 
azimin Minimum value of azi-envelope Number 
azimax Maximum value of azi-envelope Number 
azidur Duration of azi-envelope (in seconds) Number 
azi-envelope Table/BPF used as envelope for azimuth (in degrees) Cs-table 
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elemin Minimum value of ele-envelope Number 
elemax Maximum value of ele-envelope Number 
eledur Duration of ele-envelope (in seconds) Number 
ele-envelope Table/BPF used as envelope for elevation (in degrees) Cs-table 
distmin Minimum value of dist-envelope Number 
distmax Maximum value of dist-envelope Number 
distdur Duration of dist-envelope (in seconds) Number 
dist-envelope Table/BPF used as envelope for distanz (in meters) Cs-table 
hfcutfmin Minimum value of hfcutf-envelope Number 
hfcutfmax Maximum value of hfcutf-envelope Number 
hfcutfdur Duration of hfctuf-envelope (in seconds) Number 
hfcutf-envelope Table/BPF used as envelope for coefficient for air-

absorption function 
Cs-table 

attenfmin Minimum value of attenf-envelope Number 
attenfmax Maximum value of attenf-envelope Number 
attenfdur Duration of attenf-envelope (in seconds) Number 
attenf-envelope Table/BPF used as envelope for coefficient for 

attenuation factor 
Cs-table 

dopplerfmin Minimum value of dopplerf-envelope Number 
dopplerfmax Maximum value of dopplerf-envelope Number 
dopperfdur Duration of dopperf-envelope (in seconds) Number 
dopplerf-envelope Table/BPF used as envelope for coefficient for 

dopplerfunction 
Cs-table 

ordmin Minimum value of ord-envelope Number 
ordmax Maximum value of ord-envelope Number 
orddur Duration of ord-envelope (in seconds) Number 
ord-envelope Table/BPF used as envelope for encoding order Cs-table 
center-size size of center-zone Number 
center-curve Coefficient for center-attenuation-function Number 
center-atten Attenuation at center (in decibel) Number 
airabs-mode Air-absorption-function Number 
atten-mode Attenuation-function Number 
 

9.3.2 Ambiencm (mid-level control) 
 

INLET DESCRIPTION TYPE 
azimin Minimum value of azi-envelope Number 
azimax Maximum value of azi-envelope Number 
azidur Duration of azi-envelope (in seconds) Number 
azi-envelope Table/BPF used as envelope for azimuth (in degrees) Cs-table 
elemin Minimum value of ele-envelope Number 
elemax Maximum value of ele-envelope Number 
eledur Duration of ele-envelope (in seconds) Number 
ele-envelope Table/BPF used as envelope for elevation (in degrees) Cs-table 
distmin Minimum value of dist-envelope Number 
distmax Maximum value of dist-envelope Number 
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distdur Duration of dist-envelope (in seconds) Number 
dist-envelope Table/BPF used as envelope for distanz (in meters) Cs-table 
ordmin Minimum value of ord-envelope Number 
ordmax Maximum value of ord-envelope Number 
orddur Duration of ord-envelope (in seconds) Number 
ord-envelope Table/BPF used as envelope for encoding order Cs-table 
air-function Table used for lookup of cutoff-freq of lowpass-filter  Cs-table 
airf-max Maximum value of table used for air-function  Number 
atten-function Table used for lookup of linear gain-factor  Cs-table 
attenf-max Maximum value of table used for air-function (0-1)  Number 
doppler-function Table used for lookup of time-delay  Cs-table 
dopplerfmax Maximum value of table used for time-delay (in ms)  Number 
order-function Table used for lookup of encoding-order  Cs-table 
orderfmax Maximum value of table used for encoding order (0-3)  Number 
lookupmin Min. distance (index for lookup-tables)  Number 
lookupmax Max. distance (index for lookup-tables)  Number 
 

9.3.3 Ambiencl (low-level control) 
 

INLET DESCRIPTION TYPE 
azimin Minimum value of azi-envelope Number 
azimax Maximum value of azi-envelope Number 
azidur Duration of azi-envelope (in seconds) Number 
azi-envelope Table/BPF used as envelope for azimuth (in degrees) Cs-table 
elemin Minimum value of ele-envelope Number 
elemax Maximum value of ele-envelope Number 
eledur Duration of ele-envelope (in seconds) Number 
ele-envelope Table/BPF used as envelope for elevation (in degrees) Cs-table 
hfcutmin Minimum value of hfcut-envelope Number 
hfcutmax Maximum value of hfcut-envelope Number 
hfcutdur Duration of hfcut-envelope (in seconds) Number 
hfcut-envelope Table/BPF used as envelope for cutoff-frequency of 2nd-

order lowpass filter 
Cs-table 

attenmin Minimum value of atten-envelope Number 
attenmax Maximum value of atten-envelope Number 
attendur Duration of atten-envelope (in seconds) Number 
atten-envelope Table/BPF used as envelope for linear gain-factor Cs-table 
dopplermin Minimum value of doppler-envelope Number 
dopplermax Maximum value of doppler-envelope Number 
dopplerdur Duration of doppler-envelope (in seconds) Number 
doppler-envelope Table/BPF used as envelope for time-delay  Cs-table 
ordermin Minimum value of order-envelope Number 
ordermax Maximum value of order-envelope Number 
orderdur Duration of order-envelope (0-3) Number 
order-envelope Table/BPF used as envelope for encoding order Cs-table 
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9.4 Overview of implemented OMambi-classes 
  

The tree-diagram below shows the currently implemented OMambi-classes which are named 
following the scheme <name-of-omChroma-synthesizer><OMambi-class>”-1” 

 


