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ABSTRACT
This study examines how the mind’s predictive mechanisms contribute to the perception of
cadential closure during music listening. Using the Information Dynamics of Music model (or
IDyOM) to simulate the formation of schematic expectations—a finite-context (or n-gram) model
that predicts the next event in a musical stimulus by acquiring knowledge through unsupervised
statistical learning of sequential structure—we predict the terminal melodic and harmonic events
from 245 exemplars of the five most common cadence categories from the classical style. Our
findings demonstrate that (1) terminal events from cadential contexts are more predictable than
those from non-cadential contexts; (2) models of cadential strength advanced in contemporary
cadence typologies reflect the formation of schematic expectations; and (3) a significant decrease in
predictability follows the terminal note and chord events of the cadential formula.
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1. Introduction

In the intellectual climate now prevalent, many scholars
view the brain as a ‘statistical sponge’ whose purpose
is to predict the future (Clark, 2013). While descend-
ing a staircase, for example, even slightly misjudging
the height or depth of each step could be fatal, so
the brain predicts future steps by building a mental
representation of the staircase, using incoming auditory,
visual, haptic and proprioceptive cues to minimise po-
tential prediction errors and update the representation
inmemory. Researchers sometimes call these representa-
tions schemata—‘active, developingpatterns’whoseunits
are serially organised, not simply as individual mem-
bers coming one after the other, but as a unitary mass
(Bartlett, 1932, p. 201). Over the course of exposure,
these schematic representations obtain greater specificity,
thereby increasing our ability to navigate complex sen-
sory environments and predict future outcomes.

Among music scholars, this view was first crystallised
by Meyer (1956, 1967), with the resurgence of associa-
tionist theories in the cognitive sciences—which placed
the brain’s predictive mechanisms at the forefront of
contemporary research in music psychology—following
soon thereafter. Krumhansl (1990) has suggested, for ex-
ample, that composers often exploit the brain’s potential
for prediction by organising events on themusical surface
to reflect the kinds of statistical regularities that listeners
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will learn and remember. The tonal cadence is a case in
point. As a recurrent temporal formula appearing at the
ends of phrases, themes and larger sections inmusic of the
common-practice period, the cadence provides perhaps
the clearest instance of phrase-level schematic organisa-
tion in the tonal system. To be sure, cadential formulæ
flourished in eighteenth-century compositional practice
by serving to ‘mark the breathing places in the music,
establish the tonality, and render coherent the formal
structure’, thereby cementing their position ‘throughout
the entire period of common harmonic practice’ (Piston,
1962, p. 108). As a consequence, Sears (2015, 2016) has
argued that cadences are learned and remembered as
closing schemata, whereby the initial events of the cadence
activate the corresponding schematic representation in
memory, allowing listeners to form expectations for the
most probable continuations in prospect. The subsequent
realisation of those expectations then serves to close off
both the cadence itself, and perhaps more importantly,
the longer phrase-structural process that subsumes it.

There is a good deal of support for the role played by
expectation and prediction in the perception of
closure (Huron, 2006; Margulis, 2003; Meyer, 1956;
Narmour, 1990), with scholars also sometimes
suggesting that listeners possess schematic representa-
tions for cadences and other recurrent closing patterns
(Eberlein, 1997; Eberlein & Fricke, 1992; Gjerdingen,
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30 D. R. W. SEARS ET AL.

1988;Meyer, 1967; Rosner &Narmour, 1992; Temperley,
2004). Yet currently very little experimental evidence
justifies the links between expectancy, prediction, and
the variety of cadences in tonal music or indeed, more
specifically, inmusic of the classical style (Haydn,Mozart,
and Beethoven), where the compositional significance of
cadential closure is paramount (Caplin, 2004; Hepokoski
& Darcy, 2006; Ratner, 1980; Rosen, 1972). This point is
somewhat surprising given that the tonal cadence is the
quintessential compositional device for suppressing ex-
pectations for further continuation (Margulis, 2003). The
harmonic progression and melodic contrapuntal motion
within the cadential formula elicit very definite expecta-
tions concerning the harmony, the melodic scale degree
and the metric position of the goal event. As Huron
puts it, ‘it is not simply the final note of the cadence
that is predictable; the final note is often approached
in a characteristic or formulaic manner. If cadences are
truly stereotypic, then this fact should be reflected in
measures of predictability’ (2006, p. 154). If Huron is
right, applying a probabilistic approach to the cadences
from a representative corpus should allow us to examine
these claims empirically.

This study applies and extends a probabilistic account
of expectancy formation called the Information Dynam-
ics of Music model (or IDyOM)—a finite-context (or n-
gram) model that predicts the next event in a
musical stimulus by acquiring knowledge through un-
supervised statistical learning of sequential structure—
to examine how the formation, fulfilment, and violation
of schematic expectations may contribute to the percep-
tion of cadential closure during music listening (Pearce,
2005). IDyOM is based on a class of Markov models
commonly used in statistical language modelling (Man-
ning & Schütze, 1999), the goal of which is to simulate
the learning mechanisms underlying human cognition.
Pearce explains,

It should be possible to design a statistical learning algo-
rithm ... with no initial knowledge of sequential depen-
dencies between melodic events which, given exposure
to a reasonable corpus of music, would exhibit similar
patterns of melodic expectation to those observed in
experiments with human subjects. (Pearce, 2005, p. 152)

Unlike language models, which typically deal with
unidimensional inputs, IDyOMgenerates predictions for
multidimensional melodic sequences using the multi-
ple viewpoints framework developed by Conklin (1988,
1990) and Conklin and Witten (1995), which is to say
that Pearce’s model generates predictions for viewpoints
like chromatic pitch by combining predictions from a
number of potential viewpoints using a set of simple
heuristics to minimise model uncertainty (Pearce, Con-
klin, & Wiggins, 2005). In the past decade, studies have

demonstrated the degree to which IDyOM can simu-
late the responses of listeners in tasks involving melodic
segmentation (Pearce, Müllensiefen, & Wiggins, 2010),
subjective ratings of predictive uncertainty (Hansen &
Pearce, 2014), subjective and psychophysiological emo-
tional responses to expectancy violations (Egermann,
Pearce, Wiggins, & McAdams, 2013), and behavioural
(Omigie, Pearce, & Stewart, 2012; Pearce & Wiggins,
2006; Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya,
2010), electrophysiological (Omigie, Pearce,Williamson,
& Stewart, 2013), and neural measures of melodic pitch
expectations (Pearce, Ruiz, et al., 2010). And yet, the
majority of these studies were limited to the simulation of
melodic pitch expectations, so this investigation develops
new representation schemes that also permit the prob-
abilistic modelling of harmonic sequences in complex
polyphonic textures.

To consider how IDyOM might simulate schematic
expectations in cadential contexts, this study adopts a
corpus-analytic approach, using the many methods of
statistical inference developed in the experimental sci-
ences to examine a few hypotheses about cadential ex-
pectancies. To that end, Section 2 provides a brief sum-
mary and discussion of the cadence concept, as well as
the typology on which this study is based (Caplin, 1998,
2004), and then offers three hypotheses designed to ex-
amine the link between prediction and cadential clo-
sure. Next, Section 3 introduces the multiple viewpoints
framework employed by IDyOM, and Section 4 describes
the methods for estimating the conditional probability
function for individual melodic or harmonic viewpoints
using maximum likelihood (ML) estimation and the
prediction-by-partial-match (PPM) algorithm. We then
present in Section 5 the corpus of expositions and the
annotated cadence collection from Haydn’s string quar-
tets anddescribe Pearce’s procedure for improvingmodel
performance by combining viewpoint models into a sin-
gle composite prediction for each melodic or harmonic
event in the sequence. Finally, Section 6 presents the
results of the computational experiments, and
Section 7 concludes by discussing limitations of the
modelling approach and considering avenues for future
research.

2. The classical cadence

Like many of the concepts in circulation in music
scholarship (e.g. tonality, harmony, phrase, meter), the
cadence concept has been extremely resistant to defini-
tion. To sort through the profusion of terms associated
with cadence, Blombach (1987) surveyed definitions in
eighty-one textbooks distributed around amedian publi-
cation date of 1970. Her findings suggest that the cadence
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is most frequently characterised as a time span, which
consists of a conventionalised harmonic progression, and
in some instances, a ‘falling’ melody. In over half of the
textbooks surveyed, these harmonic and melodic for-
mulæ are also classified into a compendium of cadence
types, with the degree of finality associated with each
type sometimes leading to comparisonswith punctuation
in language. However, many of these definitions also
conceptualise the cadence as a ‘point of arrival’ (Ratner,
1980), or time point, which marks the conclusion of an
ongoing phrase-structural process, and which is often
characterised as a moment of rest, quiescence, relaxation
or repose. Thus a cadence is simultaneously understood
as time-span and time-point, the former relating to its
most representative (or recurrent) features (cadence as
formula), the latter to the presumed boundary it precedes
and engenders (cadence as ending) (Caplin, 2004).

The compendium of cadences and other conventional
closing patterns associated with the classical period is
enormous, but contemporary scholars typically cite only
a few, which may be classified according to two fun-
damental types: those cadences for which the goal of
the progression is tonic harmony (e.g. perfect authentic,
imperfect authentic, deceptive, etc.), and those cadences
for which the goal of the progression is dominant har-
mony (e.g. half cadences). Table 1 provides the harmonic
and melodic characteristics for five of the most common
cadence categories from Caplin’s typology (1998, 2004).
The perfect authentic cadence (PAC), which features a
harmonic progression from a root-position dominant to
a root-position tonic, as well as the arrival of the melody
on 1̂, serves as the quintessential closing pattern not only
for the high classical period (Gjerdingen, 2007), but for
repertories spanningmuch of the history ofWesternmu-
sic. The imperfect authentic cadence (IAC) is a melodic
variant of the PAC category that replaces 1̂ with 3̂ (or,
more rarely, 5̂) in the melody, and like the PAC category,
typically appears at the conclusion of phrases, themes, or
larger sections.

The next two categories represent cadential devia-
tions, in that they initially promise a perfect authentic
cadence, yet fundamentally deviate from the pattern’s
terminal events, thus failing to achieve authentic caden-
tial closure at the expected moment Caplin calls caden-
tial arrival (1998, p. 43). The deceptive cadence (DC)
leaves harmonic closure somewhat open by closing with
a non-tonic harmony, usually vi, but the melodic line
resolves to a stable scale degree like 1̂ or 3̂, thereby pro-
viding a provisional sense of ending for the ongoing
thematic process. The evaded cadence is characterised by
a sudden interruption in the projected resolution of the
cadential process. For example, instead of resolving to 1̂,
the melody often leaps up to some other scale degree like

Table 1. The cadential types and categories, along with the
harmonic and melodic characteristics and the count for each
category in the cadence collection. Categories marked with an
asterisk are cadential deviations.

Types Categories Essential characteristics N

I

Perfect Authentic (PAC) V – I 122
1̂

Imperfect Authentic (IAC) V – I 9
3̂ or 5̂

Deceptive (DC)* V – ?, Typically vi 19
1̂ or 3̂

Evaded (EV)* V – ? 11
?, Typically 5̂

V Half (HC) ? – V 84
5̂, 7̂, or 2̂

5̂, thereby replacing the expected ending with material
that clearly initiates the subsequent process. Thus, the
evaded cadence projects no sense of ending whatsoever,
as the events at the expected moment of cadential arrival,
which should group backward by ending the preceding
thematic process, instead group forward by initiating
the subsequent process. Finally, the half cadence (HC)
remains categorically distinct from both the authentic
cadence categories and the cadential deviations, since
its ultimate harmonic goal is dominant (and not tonic)
harmony. TheHC category also tends to be definedmore
flexibly than the other categories in that the terminal
harmonymay support any chordmember in the soprano
(i.e. 2̂, 5̂, or 7̂).

This study examines three claims about the link be-
tween prediction and cadential closure. First, if cadences
serve as the most predictable, probabilistic, specifically
envisaged formulæ in all of tonal music (Huron, 2006;
Meyer, 1956), we would expect terminal events from
cadential contexts to bemore predictable than those from
non-cadential contexts even if both contexts share
similar or even identical terminal events (e.g. tonic har-
mony in root position, 1̂ in the melody, etc.). Thus, Ex-
periment 1 examines the hypothesis that cadences are
more predictable than their non-cadential counterparts
by comparing the probability estimates obtained from
IDyOM for the terminal events from the PAC and HC
categories—the two most prominent categories in tonal
music—with those fromnon-cadential contexts that share
identical terminal events.

Second, applications of cadence typologies like the
one employed here often note the correspondence be-
tween cadential strength (or finality) on the one hand
and expectedness (or predictability) on the other.Dunsby
has noted, for example, that in Schoenberg’s view, the
experience of closure for a given cadential formula is only
satisfying to the extent that it fulfils a stylistic
expectation (1980, p. 125). This would suggest that the
strength and specificity of our schematic expectations
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32 D. R. W. SEARS ET AL.

formed in prospect and their subsequent realisation in
retrospect contributes to the perception of cadential
strength, where themost expected (i.e. probable) endings
are also the most complete or closed. Sears (2015) points
out that models of cadential strength advanced in con-
temporary cadence typologies typically fall into two cate-
gories: those that compare every cadence category to the
perfect authentic cadence (Latham, 2009; Schmalfeldt,
1992), called the 1-schema model; and those that distin-
guish the PAC, IAC andHC categories from the cadential
deviations because the former categories allow listeners
to generate expectations as to how they might end, called
the Prospective (orGenuine) Schemasmodel (Sears, 2015,
2016). In the 1-schemamodel, the half cadence represents
the weakest cadential category; it is marked not by a de-
viation in the melodic and harmonic context at cadential
arrival (such as the deceptive or evaded cadences), but
rather by the absence of that content, resulting in the fol-
lowing ordering of the cadence categories based on their
perceived strength, PAC→IAC→DC→EV→HC. In the
Prospective Schemas model, however, the half cadence is
a distinct closing schema that allows listeners to generate
expectations for its terminal events, and so represents a
stronger ending than the aforementioned cadential de-
viations, resulting in the ordering, PAC→IAC→HC→
DC→EV (for further details, see Sears, 2015). Experi-
ment 2 directly compares these two models of cadential
strength.

Third, a number of studies have supported the role
played by predictive mechanisms in the segmentation
of temporal experience (Brent, 1999; Cohen, Adams, &
Heeringa, 2007; Elman, 1990; Kurby & Zacks, 2008;
Pearce, Müllensiefen, et al., 2010; Peebles, 2011). In event
segmentation theory (EST), for example, perceivers form
working memory representations of ‘what is happen-
ing now,’ called event models, and discontinuities in the
stimulus elicit prediction errors that force the percep-
tual system to update the model and segment activity
into discrete time spans, called events (Kurby & Zacks,
2008). In the context of music, such discontinuities can
take many forms: sudden changes in melody, harmony,
texture, surface activity, rhythmic duration, dynamics,
timbre, pitch register, and so on. What is more, when
the many parameters effecting segmental grouping act
together to produce closure at a particular point in a
composition, cadential or otherwise, parametric congru-
ence obtains (Meyer, 1973). Thus, Experiment 3 examines
whether (1) the terminal event of a cadence, by serving
as a predictable point of closure, is the most expected
event in the surrounding sequence; and (2) the next event
in the sequence, which initiates the subsequent musical
process, is comparatively unexpected. Following EST,
the hypothesis here is that unexpected events engender

prediction errors that lead the perceptual system to seg-
ment the event stream into discrete chunks (Kurby &
Zacks, 2008). If the terminal events from genuine ca-
dential contexts are highly predictable, then prediction
errors for the comparatively unpredictable events that
follow should force listeners to segment the preceding
cadential material. For the cadential deviations, however,
prediction errors should occur at, rather than following,
the terminal events of the cadence.

3. Multiple viewpoints

Most natural languages consist of a finite alphabet of
discrete symbols (letters), combinations of which form
words, phrases, and so on. As a result, the mapping
between the individual letter or word encountered in a
printed text and its symbolic representation in a com-
puter database is essentially one-to-one. Music encoding
is considerably more complex. Notes, chords, phrases,
and the like are characterised by a number of differ-
ent features, and so regardless of the unit of meaning,
digital encodings of individual events must concurrently
represent multiple properties of the musical surface. To
that end, many symbolic formats employ some variant
of the multiple viewpoints framework first proposed by
Conklin (1988, 1990) and Conklin and Witten (1995),
and later extended and refined by Pearce (2005), Pearce
et al. (2005), and Pearce and Wiggins (2004).

Themultiple viewpoints framework accepts sequences
of musical events that typically correspond to individual
notes as notated in a score, but which may also include
composite events like chords. Each event e consists of a set
of basic attributes, and each attribute is associated with a
type, τ , which specifies the properties of that attribute.
The syntactic domain (or alphabet) of each type, [τ ],
denotes the set of all unique elements associated with
that type, and each element of the syntactic domain also
maps to a corresponding set of elements in the semantic
domain, [[τ ]]. Following Conklin, attribute types appear
here in typewriter font to distinguish them from ordi-
nary text. To represent a sequence of pitches as scale
degrees derived from the twelve-tone chromatic scale,
for example, the type chromatic scale degree (or csd)
would consist of the syntactic set, {0, 1, 2, . . . , 11}, and
the semantic set, {1̂,�1̂/�2̂, 2̂, . . . , 7̂}, where 0 represents 1̂,
7 represents 5̂, and so on (see Figure 1).

Within this representation language, Conklin and
Witten (1995) define several distinct classes of type, but
this study examines just three: basic, derived and linked.
Basic types are irreducible representations of the musi-
cal surface, which is to say that they cannot be derived
from any other type. Thus, an attribute representing the
sequenceof pitches from the twelve-tone chromatic scale—
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JOURNAL OF NEWMUSIC RESEARCH 33

Figure 1. Top: First violin part from Haydn’s String Quartet in E,
Op. 17/1, i, mm. 1–2. Bottom: Viewpoint representation.

hereafter referred to as chromatic pitch, or cpitch—
would serve as a basic type inConklin’s approach because
it cannot be derived froma sequence of pitch classes, scale
degrees, melodic intervals, or indeed, any other attribute.
What is more, basic types represent every event in the
corpus. For example, a sequence of melodic contours
would not constitute a basic type because either the first
or last events of the melody would receive no value.
Indeed, an interesting property of the set of n basic types
for any given corpus is that the Cartesian product of the
domains of those types determines the event space for the
corpus, denoted by ξ :

ξ = [τ1] × [τ2] × · · · × [τn]

Each event consists of an n-tuple in ξ—a set of values
corresponding to the set of basic types that determine
the event space. ξ therefore denotes the set of all repre-
sentable events in the corpus (Pearce, 2005).

As shouldnowbe clear from the examples given above,
derived types like pitch class, scale degree, and melodic
interval do not appear in the event space but are derived
from one or more of the basic types. Thus, for every type
in the encoded representation there exists a partial func-
tion, denoted by� , whichmaps sequences of events onto
elements of type τ . The term viewpoint therefore refers to
the function associated with its type, but for convenience
Conklin and Pearce refer to viewpoints by the types they
model.1 The function is partial because the outputmay be
undefined for certain events in the sequence (denoted by
⊥). Again, viewpoints for attributes like melodic contour
or melodic interval demonstrate this point, since either
the first or last element will receive no value (i.e. it will be
undefined).

Basic and derived types attempt to model the relations
within attributes, but they fail to represent the relations
between attributes. Prototypical utterances like cadences,
for example, are necessarily comprised of a cluster of
co-occurring features, so it is important to note that the
relations between those features could be just as signif-

1For basic types like cpitch, �τ is simply a projection function, thereby
returning as output the same values it receives as input (Pearce, 2005, p. 59).

icant as their presence (or absence) (Gjerdingen, 1991).
This is to say that the harmonic progression V–I pre-
sented in isolation does not provide sufficient grounds
for the identification of a perfect authentic cadence, but
the co-occurrence of that progression with 1̂ in the so-
prano, a six-four sonority preceding the root-position
dominant, or a trill above the dominant makes such an
interpretation farmore likely. Linked viewpoints attempt
to model correlations between these sorts of attributes by
calculating the cross-product of their constituent types.

4. Finite-context models

4.1. Maximum likelihood estimation

The goal of finite-context models like IDyOM is to de-
rive from a corpus of example sequences a model that
estimates the probability of event ei given a preceding
sequence of events e1 to ei−1, notated here as ei−1

1 . Thus,
the function p(ei|ei−1

1 ) assumes that the identity of each
event in the sequence depends only on the events that
precede it. In principle, the length of the context is limited
only by the length of the sequence ei−1

1 , but context
models typically stipulate a global order bound such that
the probability of the next event depends only on the
previous n − 1 events, or p(ei|ei−1

(i−n)+1). Following the
Markov assumption, the model described here is an (n−
1)th orderMarkovmodel, but researchers also sometimes
call it an n-gram model because the sequence ei(i−n)+1 is
an n-gram consisting of a context ei−1

(i−n)+1 and a single-
event prediction ei.

To estimate the conditional probability function
p(ei|ei−1

(i−n)+1) for each event in the test sequence, IDyOM
first acquires the frequency counts for a collection of such
sequences from a training set. When the trained model
is exposed to the test sequence, it then uses the frequency
counts to estimate the probability distribution governing
the identity of the next event in the sequence given the
n−1preceding events (Pearce, 2005). In this case, IDyOM
relies onmaximum likelihood (ML) estimation.

p(ei|ei−1
(i−n)+1) = c(ei|ei−1

(i−n)+1)∑
e∈A

c(e|ei−1
(i−n)+1)

(1)

The numerator terms represent the frequency count c
for the n-gram ei|ei−1

(i−n)+1, and the denominator terms
represent the sum of the frequency counts c associated
with all of the possible events e in the alphabetA following
the context ei−1

(i−n)+1.
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34 D. R. W. SEARS ET AL.

4.2. Performancemetrics

To evaluate model performance, the most commonmet-
rics derive from information-theoretic measures intro-
duced by Shannon (1948, 1951). Returning to Equation
1, if the probability of ei is given by the conditional
probability function p(ei|ei−1

(i−n)+1), information content
(IC) represents the minimum number of bits required to
encode ei in context (MacKay, 2003).

IC(ei|ei−1
(i−n)+1) = log2

1
p(ei|ei−1

(i−n)+1)
(2)

IC is inversely proportional to p and so represents the
degree of contextual unexpectedness or surprise associ-
ated with ei. Researchers often prefer to report IC over
p because it has a more convenient scale (p can become
vanishingly small), and since it also has a well-defined
interpretation in data compression theory (Pearce, Ruiz,
et al., 2010), we will prefer it in the analyses that fol-
low.

Whereas IC represents the degree of unexpectedness
associated with a particular event ei in the sequence,
Shannon entropy (H) represents the degree of contextual
uncertainty associated with the probability distribution
governing that outcome, where the probability estimates
are independent and sum to one.

H(ei−1
(i−n)+1) =

∑
e∈A

p(ei|ei−1
(i−n)+1)IC(ei|ei−1

(i−n)+1) (3)

H is computed by averaging the information content over
all e in A following the context ei−1

(i−n)+1. According to
Shannon’s equation, if the probability of a given outcome
is 1, the probabilities for all of the remaining outcomes
will be 0, andH = 0 (i.e. maximum certainty). If all of the
outcomes are equally likely, however,H will bemaximum
(i.e. maximum uncertainty). Thus, one can assume that
the best performing models will minimise uncertainty.

In practice, we rarely know the true probability distri-
butionof the stochastic process (Pearce&Wiggins, 2004),
so it is often necessary to evaluate model performance
using an alternativemeasure called cross entropy, denoted
by Hm.

Hm(pm, e
j
1) = −1

j

j∑
i=1

log2 pm(ei|ei−1
1 ) (4)

Whereas H represents the average information content
over all e in the alphabet A, Hm represents the aver-
age information content for the model probabilities es-
timated by pm over all e in the sequence ej1. That is,
cross entropy provides an estimate of how uncertain a
model is, on average, when predicting a given sequence

of events (Manning & Schütze, 1999; Pearce & Wiggins,
2004). As a consequence, Hm is often used to evaluate
the performance of context models for tasks like speech
recognition, machine translation, and spelling correction
because, as Brown and his co-authors put it, ‘models for
which the cross entropy is lower lead directly to better
performance’ (Brown, Della Pietra, Della Pietra, Lai, &
Mercer, 1992, p. 39).

4.3. Prediction by Partial Match

Because the number of potential patterns decreases dra-
matically as the value of n increases, high-order models
often suffer from the zero-frequency problem, in which
n-grams encountered in the test set do not appear in
the training set (Witten & Bell, 1991). To resolve this
issue, IDyOM applies a data compression scheme called
Prediction by PartialMatch (PPM), which adjusts theML
estimate for each event in the sequence by combining (or
smoothing) predictions generated at higher orders with
less sparsely estimated predictions from lower orders
(Cleary &Witten, 1984). Context models estimated with
the PPM scheme typically use a procedure called backoff
smoothing (or blending), which assigns some portion of
the probability mass from each distribution to an escape
probability using an escapemethod to accommodate pre-
dictions that do not appear in the training set. When
a given event does not appear in the n − 1 order dis-
tribution, PPM stores the escape probability and then
iteratively backs off to lower order distributions until it
predicts the event or reaches the zeroth-order distribu-
tion, at which point it transmits the probability estimate
for a uniform distribution over A (i.e. where every event
in the alphabet is equally likely). PPM then multiplies
these probability estimates together to obtain the final
(smoothed) estimate.

Unfortunately there is no sound theoretical basis for
choosing the appropriate escape method (Witten & Bell,
1991), but two recent studies have demonstrated the po-
tential of Moffat’s (1990) method C to minimise model
uncertainty in melodic and harmonic prediction tasks
(Hedges & Wiggins, 2016; Pearce & Wiggins, 2004), so
we employ that method here.

γ (ei−1
(i−n)+1) = t(ei−1

(i−n)+1)∑
e∈A

c(e|ei−1
(i−n)+1) + t(ei−1

(i−n)+1)
(5)

Escape method C represents the escape count t as the
number of distinct symbols that follow the
context ei−1

(i−n)+1. To calculate the escape probability for
events that do not appear in the training set, γ represents
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the ratio of the escape count t to the sum of the frequency
counts c and t for the context ei−1

(i−n)+1. The appeal of
this escape method is that it assigns greater weighting to
higher-order predictions (which are more specific to the
context) over lower order predictions (which are more
general) in the final probability estimate (Bunton, 1996;
Pearce, 2005). Thus, Equation 1 can be revised in the
following way:

α(ei|ei−1
(i−n)+1) = c(ei|ei−1

(i−n)+1)∑
e∈A

c(e|ei−1
(i−n)+1) + t(ei−1

(i−n)+1)
(6)

The PPM scheme just described remains the canoni-
cal method in many context models (Cleary & Teahan,
1997), but Bunton (1997) has since provided a variant
smoothing technique called mixtures that generally im-
proves model performance, but which, following Chen
and Goodman (1999), we refer to as interpolated smooth-
ing (Pearce & Wiggins, 2004). The central idea behind
interpolated smoothing is to compute a weighted combi-
nation of higher order and lower order models for every
event in the sequence—regardless of whether that event
features n-grams with non-zero counts—under the as-
sumption that the addition of lower order models might
generate more accurate probability estimates.2

Formally, interpolated smoothing estimates the prob-
ability function p(ei|ei−1

(i−n)+1) by recursively computing a
weighted combination of the (n− 1)th order distribution
with the (n−2)th order distribution (Pearce, 2005; Pearce
&Wiggins, 2004).

p(ei|ei−1
(i−n)+1)

=
{

α(ei|ei−1
(i−n)+1) + γ (ei−1

(i−n)+1)p(e
i−1
(i−n)+2) if e

i−1
(i−n)+2 �= ε

1
|A|+1−t(ε) otherwise

(7)

In the context of interpolated smoothing, it can be helpful
to think of γ as a weighting function, with α serving as
the weighted ML estimate. Unlike the backoff smooth-
ing procedure, which terminates at the first non-zero
prediction, interpolated smoothing recursively adjusts
the probability estimate for each order—regardless of
whether the corresponding n-gram features a non-zero
count—and then terminateswith the probability estimate
for ε, which represents a uniform distribution over |A|+
1 − t(ε) events (i.e. where every event in the alphabet is
equally likely). Also note here that in the PPM scheme,

2Context models like the one just described also often use a technique
called exclusion, which improves the final probability estimate by reclaiming a
portion of the probabilitymass in lower ordermodels that is otherwise wasted
on redundant predictions (i.e. the counts for events that were predicted in the
higher-order distributions do not need to be included in the calculation of the
lower order distributions).

the alphabet A increases by one event to accommodate
the escape count t but decreases by the number of events
in A that never appear in the corpus.3

4.4. Variable orders

The optimal order for context models depends on the
nature of the corpus, which in the absence of a priori
knowledge can only be determined empirically (2004, p.
2). To resolve this issue, IDyOM employs an extension
to PPM called PPM* (Cleary & Teahan, 1997), which
includes contexts of variable length and thus ‘eliminates
the need to impose an arbitrary order bound’ (Pearce &
Wiggins, 2004, p. 6). In the PPM* scheme, the context
length is allowed to vary for each event in the sequence,
with the maximum context length selected using simple
heuristics to minimise model uncertainty. Specifically,
PPM* exploits the fact that the observed frequency of
novel events is much lower than expected for contexts
that feature exactly one prediction, called deterministic
contexts. As a result, the entropy of the distributions
estimated at or below deterministic contexts tends to be
lower than in non-deterministic contexts. Thus, PPM*
selects the shortest deterministic context to serve as the
global order bound for each event in the sequence. If such
a context does not exist, PPM* then selects the longest
matching context.

5. Methods

5.1. The corpus

The corpus consists of symbolic representations of 50
sonata-form expositions selected from Haydn’s string
quartets (1771–1803). Table 2 presents the reference in-
formation, keys, time signatures and tempo markings
for each movement. The corpus spans much of Haydn’s
mature compositional style (Opp. 17–76), with the ma-
jority of the expositions selected from first movements
(28) or finales (11), and with the remainder appearing in
innermovements (ii: 8; iii: 3). Allmovementswere down-
loaded from the KernScores database in MIDI format.4

To ensure that each instrumental part would qualify as
monophonic—apre-requisite for the analytical techniques
that follow—all trills, extended string techniques, and
other ornaments were removed. For events presenting
extended string techniques (e.g. double or triple stops),
note events in each part were retained that preserved
the voice leading both within and between instrumental
parts. Table 3 provides a few descriptives concerning the
number of note and chord events in each movement.

3For a worked example of the PPM* method, see Sears (2016).
4http://kern.ccarh.org/.
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Table 2. Reference information (Opus number, work, movement, measures), keys (case denotes mode), time signatures and tempo
markings for the exposition sections in the corpus.

Excerpt Key Time signature Tempo marking

Op. 17, No. 1, i, mm. 1–43 E 4/4 Moderato
Op. 17, No. 2, i, mm. 1–38 F 4/4 Moderato
Op. 17, No. 3, iv, mm. 1–26 E� 4/4 Allegro molto
Op. 17, No. 4, i, mm. 1–53 c 4/4 Moderato
Op. 17, No. 5, i, mm. 1–33 G 4/4 Moderato
Op. 17, No. 6, i, mm. 1–73 D 6/8 Presto
Op. 20, No. 1, iv, mm. 1–55 E� 2/4 Presto
Op. 20, No. 3, i, mm. 1–94 g 2/4 Allegro con spirito
Op. 20, No. 3, iii, mm. 1–43 G 3/4 Poco Adagio
Op. 20, No. 3, iv, mm. 1–42 g 4/4 Allegro molto
Op. 20, No. 4, i, mm. 1–112 D 3/4 Allegro di molto
Op. 20, No. 4, iv, mm. 1–49 D 4/4 Presto scherzando
Op. 20, No. 5, i, mm. 1–48 f 4/4 Allegro moderato
Op. 20, No. 6, ii, mm. 1–27 E cut Adagio
Op. 33, No. 1, i, mm. 1–37 b 4/4 Allegro moderato
Op. 33, No. 1, iii, mm. 1–40 D 6/8 Andante
Op. 33, No. 2, i, mm. 1–32 E� 4/4 Allegro moderato
Op. 33, No. 3, iii, mm. 1–29 F 3/4 Adagio
Op. 33, No. 4, i, mm. 1–31 B� 4/4 Allegro moderato
Op. 33, No. 5, i, mm. 1–95 G 2/4 Vivace assai
Op. 33, No. 5, ii, mm. 1–30 g 4/4 Largo
Op. 50, No. 1, i, mm. 1–60 B� cut Allegro
Op. 50, No. 1, iv, mm. 1–75 B� 2/4 Vivace
Op. 50, No. 2, i, mm. 1–106 C 3/4 Vivace
Op. 50, No. 2, iv, mm. 1–86 C 2/4 Vivace assai
Op. 50, No. 3, iv, mm. 1–74 E� 2/4 Presto
Op. 50, No. 4, i, mm. 1–64 f� 3/4 Allegro spirituoso
Op. 50, No. 5, i, mm. 1–65 F 2/4 Allegro moderato
Op. 50, No. 5, iv, mm. 1–54 F 6/8 Vivace
Op. 50, No. 6, i, mm. 1–54 D 4/4 Allegro
Op. 50, No. 6, ii, mm. 1–25 d 6/8 Poco Adagio
Op. 54, No. 1, i, mm. 1–47 G 4/4 Allegro con brio
Op. 54, No. 1, ii, mm. 1–54 C 6/8 Allegretto
Op. 54, No. 2, i, mm. 1–87 C 4/4 Vivace
Op. 54, No. 3, i, mm. 1–58 E cut Allegro
Op. 54, No. 3, iv, mm. 1–82 E 2/4 Presto
Op. 55, No. 1, ii, mm. 1–36 D 2/4 Adagio cantabile
Op. 55, No. 2, ii, mm. 1–76 f cut Allegro
Op. 55, No. 3, i, mm. 1–75 B� 3/4 Vivace assai
Op. 64, No. 3, i, mm. 1–69 B� 3/4 Vivace assai
Op. 64, No. 3, iv, mm. 1–79 B� 2/4 Allegro con spirito
Op. 64, No. 4, i, mm. 1–38 G 4/4 Allegro con brio
Op. 64, No. 4, iv, mm. 1–66 G 6/8 Presto
Op. 64, No. 6, i, mm. 1–45 E� 4/4 Allegretto
Op. 71, No. 1, i, mm. 1–69 B� 4/4 Allegro
Op. 74, No. 1, i, mm. 1–54 C 4/4 Allegro moderato
Op. 74, No. 1, ii, mm. 1–57 G 3/8 Andantino grazioso
Op. 76, No. 2, i, mm. 1–56 d 4/4 Allegro
Op. 76, No. 4, i, mm. 1–68 B� 4/4 Allegro con spirito
Op. 76, No. 5, ii, mm. 1–33 F� cut Largo. Cantabile e mesto

Table 3. Descriptive statistics for the corpus.

Instrumental part N M (SD) Range

Note events
Violin 1 14, 506 290 (78) 133−442
Violin 2 10, 653 213 (70) 69−409
Viola 9156 183 (63) 79−381
Cello 8463 169 (60) 64−326

Chord events
Expansiona 20, 290 406 (100) 189−620

aTo identify chord events in polyphonic textures, full expansion duplicates
overlapping note events at every unique onset time (Conklin, 2002).

To examine model predictions for the cadences in
the corpus, we classified exemplars of the five cadence

categories that achieve (or at least promise) cadential
arrival inCaplin’s cadence typology—PAC, IAC,HC,DC
and EV (see Table 1). The corpus contains 270 cadences,
but 15 cadences were excluded because either the ca-
dential bass or soprano does not appear in the cello and
first violin parts, respectively. Additionally, another 10
cadences were excluded because they imply more than
one category (i.e. PAC–EV or DC–EV). Thus, for the
analyses that follow, the cadence collection consists of
245 cadences.

Shown in the right-most column of Table 1, the per-
fect authentic cadence and the half cadence represent
the most prevalent categories, followed by the caden-
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tial deviations: the deceptive and evaded categories. The
imperfect authentic cadence is the least common cat-
egory, which perhaps reflects the late-century stylistic
preference for perfect authentic cadential closure at the
ends of themes and larger sections. This distribution also
largely replicates previous findings forMozart’s keyboard
sonatas (Rohrmeier & Neuwirth, 2011), so it is possible
that this distribution may characterise the classical style
in general.

5.2. Viewpoint selection

To select the appropriate viewpoints for the prediction
of cadences in Haydn’s string quartets, we have adopted
Gjerdingen’s schema-theoretic approach (2007), which
represents the ‘core’ events of the cadence by the scale
degrees and melodic contours of the outer voices (i.e.
the two-voice framework), a coefficient representing the
strength of the metric position (strong, weak), and a
sonority, presentedusingfiguredbass notation.Given the
importance of melodic intervals in studies of recognition
memory for melodies (Dowling, 1981) wemight also add
this attribute toGjerdingen’s list.However, for themajor-
ity of the encoded cadences from the cadence collection,
the terminal events at the moment of cadential arrival
appear in strongmetric positions, and fewof the cadences
feature unexpected durations or inter-onset intervals at
the cadential arrival, sowehave excluded viewpointmod-
els for rhythmic or metric attributes from the present
investigation, concentrating instead on those viewpoints
representing pitch-based (melodic or harmonic) expec-
tations. What is more, IDyOM was designed to com-
bine melodic predictions from two or more viewpoints
by mapping the probability distributions over their re-
spective alphabets back into distributions over a single
basic viewpoint, such as the pitches of the twelve-tone
chromatic scale (i.e. cpitch). Thus, for the purposes
of model comparison it will also be useful to include
cpitch as a baseline melodic model in the analyses that
follow.

5.2.1. Note events
Four viewpoints were initially selected to represent note
events in the outer parts: chromatic pitch (cpitch),
melodic pitch interval (melint), melodic contour
(contour), and chromatic scale degree (csd). As de-
scribed previously, cpitch represents pitches as inte-
gers from 0–127 (in the MIDI representation, C4 is 60),
and serves as the baseline model for the other melodic
viewpoint models examined in this study. To derive se-
quences of melodic intervals, melint computes the nu-
merical difference between adjacent events in cpitch,
where ascending intervals are positive and descending

intervals are negative. The viewpoint contour then
reduces the information present in melint, with all
ascending intervals receiving a value of 1, all descending
intervals a value of−1, and all lateral motion a value of 0.
Finally, to relate cpitch to a referential tonic pitch class
for every event in the corpus, we manually annotated the
key, mode, modulations and pivot boundaries for each
movement and then included the analysis in a separate
text file to accompany the MIDI representation, both of
which appear in the Supplementary materials for each
movement in the corpus. Thus, every note event was as-
sociated with the viewpoints key and mode. The vector
of keys assumes values in the set {0, 1, 2, …, 11 }, where
0 represents the key of C, 1 represents C� or D�, and
so on. Passages in the major and minor modes receive
values of 0 and 1, respectively. The viewpoint csd then
maps cpitch to key and reduces the resulting vector
of chromatic scale degreesmodulo 12 such that 0 denotes
the tonic scale degree, 7 the dominant scale degree, and
so on. By way of example, Figure 1 presents the viewpoint
representation for the first violin part from the opening
two measures of the first movement of Haydn’s String
Quartet in E, Op. 17/1.

As mentioned previously, IDyOM is capable of indi-
vidually predicting any one of these viewpoints using the
PPM* scheme, but it can also combine viewpoint models
for note-event predictions of the same basic viewpoint
(i.e. cpitch) using a weighted multiplicative combina-
tion scheme that assigns greater weights to viewpoints
whose predictions are associated with lower entropy at
that point in the sequence (Pearce et al., 2005). To de-
termine the combined probability distribution for each
event in the test sequence, IDyOM then computes the
product of the weighted probability estimates from each
viewpoint model for each possible value of the predicted
viewpoint.

Furthermore, IDyOM can automate the viewpoint se-
lection process using a hill-climbing procedure called
forward stepwise selection, which picks the combination
of viewpoints that yields the richest structural repre-
sentations of the musical surface and minimises model
uncertainty. Given an empty set of viewpoints, the step-
wise selection algorithm iteratively selects the viewpoint
model additions or deletions that yield the most im-
provement in cross entropy, terminating when no ad-
dition or deletion yields an improvement (Pearce, 2005;
Potter, Wiggins, & Pearce, 2007). To derive the optimal
viewpoint system for the representation of melodic
expectations, we employed stepwise selection for the fol-
lowing viewpoints: cpitch, melint, csd, and
contour. In this case, IDyOMbegins with the above set
of viewpoint models, but also includes the linked view-
points derived from that set (i.e. cpitch ⊗ melint,
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cpitch⊗csd,cpitch⊗contour,melint⊗csd,
melint⊗ contour, csd⊗ contour), resulting in a
pool of ten individual viewpoint models from which to
derive the optimal combination of viewpoints.

Viewpoint selection derived the same combination of
viewpoint models for the first violin and the cello. For
this corpus, melint was the best performing viewpoint
model in the first step, receiving a cross entropy estimate
of 3.006 in the first violin and 2.798 in the cello. In
the second step, the combination of melint with the
linked viewpoint csd ⊗ cpitch decreased the cross
entropy estimate to 2.765 in the first violin and 2.556
in the cello. Including any of the remaining viewpoints
did not improve model performance, so the stepwise
selection procedure terminated with this combination of
viewpoints. In Section 6, we refer to this viewpointmodel
as selection. What is more, the contour model
received a much higher cross entropy estimate than the
other viewpoint models, so we elected to exclude it in the
experiments reported here. Thus, the final melodic view-
point models selected for the present study are cpitch,
melint, csd, and selection.

5.2.2. Chord events
To accommodate chord events, we have extended the
multiple viewpoints framework by performing a full ex-
pansion of the symbolic encoding, which duplicates over-
lapping note events across the instrumental parts at ev-
ery unique onset time (Conklin, 2002). This represen-
tation yielded two harmonic viewpoints: vertical interval
class combination (vintcc) and chromatic scale-degree
combination (csdc). The viewpoint vintcc produces
a sequence of chords that have analogues in figured-
bass nomenclature by modelling the vertical intervals in
semitones modulo 12 between the lowest instrumental
part and the upper parts from cpitch. Unfortunately,
however, the syntactic domain of vintcc is rather large;
the domain of each vertical interval class between any
two instrumental parts is {0, 1, 2, . . . , 11,⊥}, yielding 13
possible classes, so the number of combinatorial possi-
bilities for combinations containing two, three, or four
instrumental parts is 133 − 1, or 2196 combinations.

To reduce the syntactic domain while retaining those
chord combinations that approximate figured bass sym-
bols, Quinn (2010) assumed that the precise location
and repeated appearance of a given interval in the in-
strumental texture are inconsequential to the identity of
the combination. Adopting that approach here, we have
excluded note events in the upper parts that double the
lowest instrumental part at the unison or octave, allowed
permutations between vertical intervals, and excluded in-
terval repetitions. As a consequence, the first two criteria
reduce the major triads 〈4, 7, 0〉 and 〈7, 4, 0〉 to 〈4, 7,⊥〉,

while the third criterion reduces the chords 〈4, 4, 10〉
and 〈4, 10, 10〉 to 〈4, 10,⊥〉. This procedure dramatically
reduces the potential domain of vintcc from 2196 to
232 unique vertical interval class combinations, though
the corpus only contained 190 of the 232 possible com-
binations, reducing the domain yet further.

To relate each combination to an underlying tonic, the
viewpoint csdc represents vertical sonorities as com-
binations of chromatic scale degrees that are intended
to approximate Roman numerals. The viewpoint csdc
includes the chromatic scale degrees derived from csd
as combinations of two, three or four instrumental parts.
Here, the number of possibilities increases exponentially
to 134 − 131, or 28, 548 combinations, since the cello
part is now encoded explicitly in combinations
containing all four parts. Rather than treating permutable
combinations as equivalent (e.g. 〈0, 4, 7,⊥〉 and
〈4, 7, 0,⊥〉), as was done for vintcc, it will also be
useful to retain the chromatic scale degree in the lowest
instrumental part in csdc and only permit permuta-
tions in the upper parts. Excluding voice doublings and
permitting permutations in the upper parts reduces the
potential domain of csdc to 2784, though in the corpus
the domain reduced yet further to 688 distinct combina-
tions.

Finally, a composite viewpoint was also created to
represent those viewpoint models characterising pitch-
based (i.e. melodic and harmonic) expectations more
generally. To simulate the cognitive mechanisms under-
lying melodic segmentation, Pearce, Müllensiefen, et al.
(2010) found it beneficial to combine viewpoint predic-
tions for basic attributes like chromatic pitch, inter-onset
interval, and offset-to-onset interval by multiplying the
component probabilities to reach an overall probability
for each note in the sequence as the joint probability of
the individual basic attributes being predicted. Following
their approach, the viewpoint model composite rep-
resents the product of the selection viewpoint model
from the first violin (to represent melodic expectations)
and the csdc viewpoint model (to represent harmonic
expectations) for each unique onset time for which a note
and chord event appear in the corpus. In this case, csdc
was preferred to vintcc in the composite model
because the former viewpoint explicitly encodes the chro-
matic scale-degree successions in the lowest instrumental
part along with the relevant scale degrees from the upper
parts.

5.3. Long-term vs. short-term

To improve model performance, IDyOM separately
estimates and then combines two subordinate models
trained on different subsets of the corpus for each view-
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point: a long-termmodel (LTM), which is trained on the
entire corpus to simulate long-term, schematic knowl-
edge; and a short-term model (STM), which is initially
empty for each individual composition and then is trained
incrementally to simulate short-term, dynamic knowl-
edge (Pearce &Wiggins, 2012). As a result, the long-term
model reflects inter-opus statistics from a large corpus
of compositions, whereas the short-term model only re-
flects intra-opus statistics, some of which may be specific
to that composition (Conklin & Witten, 1995; Pearce
& Wiggins, 2004). Like the STM, the LTM may also
be slightly improved by incrementally training on the
composition being predicted, called LTM+.However, the
STM only discards statistics when it reaches the end of
the composition, so it far surpasses the supposed upper
limits for short-term andworkingmemory of around 10–
12 s (Snyder, 2000), sometimes by several minutes. What
is more, the STM should be irrelevant for the present
purposes, since cadences exemplify the kinds of inter-
opus patterns that listeners are likely to store in long-
term memory. Thus, we have elected to omit the STM in
the analyses that follow and only present the probability
estimates from LTM+.

5.4. Performance evaluation

Context models like IDyOM depend on a training set
and a test set, but in this case the corpus will need to
serve as both. To accommodate small corpora like this
one, IDyOMemploys a resampling approach called k-fold
cross-validation (Dietterich, 1998), using cross entropy as
ameasure of performance (Conklin&Witten, 1995). The
corpus is divided into k disjoint subsets containing the
same number of compositions, and the LTM+ is trained
k times on k− 1 subsets, each time leaving out a different
subset for testing. IDyOM then computes an average of
the k cross entropy values as a measure of the model’s
performance. Following Pearce and Wiggins (2004), we
use 10-fold cross validation for the models that follow.

6. Computational experiments

6.1. Experiment 1

Theperfect authentic andhalf cadence categories account
for 206 of the 245 cadences from the collection, so it
seems reasonable that listeners with sufficient exposure
to music of the classical style will form schematic expec-
tations for the terminal events of exemplars from these
two categories. What is more, if cadences are the most
predictable formulæ in all of tonal music, we should
expect to find lower IC estimates for the terminal events
from the aforementioned cadence categories compared

to those from non-cadential closing contexts even if they
both share similar or even identical terminal events. Thus,
Experiment 1 examines the hypothesis that cadences are
more predictable than their non-cadential counterparts.

6.1.1. Analysis
To compare the PAC and HC categories against non-
cadential contexts exhibiting varying degrees of closure
or stability, each of the viewpoints estimated by IDyOM
was analysed for the terminal note events from the first vi-
olin and cello—represented by the viewpoints cpitch,
melint, csd, and selection—and the terminal
chord events from the entire texture—represented by the
viewpoints vintcc, csdc, and composite—using a
one-way analysis of variance (ANOVA)with a three-level
between-groups factor called closure. To examine the IC
estimates for the first (tonic) type, tonic closure consists
of three levels:PAC, which consists of the IC estimates for
the terminal events from the 122 exemplars of the PAC
category; tonic, which consists of an equal-sized sample
of events selected randomly from the corpus that appear
in strong metric positions (i.e. appearing at the tactus
level; see Sears, 2016) and feature tonic harmony in root
position and any scale degree in the soprano; and non-
tonic, which again consists of an equal-sized sample of
events selected randomly from the corpus that appear
in strong metric positions, but that feature any other
harmony and any other scale degree in the soprano.

To examine the IC estimates for the second (domi-
nant) type, dominant closure was designed in much the
sameway.HC consists of the IC estimates for the terminal
events from the 84 exemplars of the HC category, while
the other two levels consist of equal-sized samples of
non-cadential events selected at random. Events from
dominant appear in strong metric positions and feature
dominant harmony in root positionwith any scale degree
in the soprano, while events from other appear in strong
metric positions but exclude events featuring tonic or
dominant harmonies in root position. The assumption
behind this additional exclusion criterion is that tonic
events in root position are potentially more predictable
than root-position dominants in half-cadential contexts
(an assumption examined in greater detail in Experiment
2), so it was necessary here to provide a condition that
allows us to compare the IC estimates for the terminal
events in half-cadential contexts against those featur-
ing other, presumably less stable harmonies and scale
degrees.

For every between-groups factor examined in the
experiments reported here, Levene’s equality of variances
revealed significant differences between groups for nearly
every viewpointmodel. Thus, we employ an alternative to
Fisher’s F ratio that is generally robust to heteroscedastic
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data, called the Welch F ratio (Welch, 1951). To deter-
mine the effect size both for theWelch F ratio and for the
planned comparisons described shortly, we use Cohen’s
(2008) recent notation of a common effect size measure
called estimated ω2.

To address more specific hypotheses about the po-
tential differences in the IC estimates for the terminal
events from cadential and non-cadential contexts, each
model also includes twoplanned comparisons that do not
assume equal variances: the first to determine whether
the IC estimates from the corresponding cadence cate-
gory differ significantly from the two non-cadential levels
(Cadences vs. Non-Cadences), and the second to deter-
mine whether the IC estimates from the correspond-
ing cadence category differ significantly from the second
(tonic or dominant) level of closure (PAC vs Tonic or
HC vs. Dominant). Unfortunately, these additional tests
increase the risk of committing aType I error, sowe apply
Bonferroni correction to the planned comparisons.

6.1.2. Results
The top bar plots in Figure 2 display the mean IC esti-
mates for the terminal note event in the first violin (left)
and cello (right) for each level of tonic closure. Table 4
presents the omnibus statistics andplanned comparisons.
Beginning with the first violin, one-way ANOVAs of
the IC estimates revealed a main effect for the view-
points melint, csd, and the optimised combination
selection, but the baseline viewpoint, cpitch, was
not significant. Mean IC estimates also increased signifi-
cantly from PAC to the non-cadential levels of tonic clo-
sure for melint, csd, and selection. Although this
trend also emerged for the second planned comparison
betweenPAC and tonic, only themelintmodel revealed
a significant effect. Thus, the viewpoint models for the
first violin demonstrated that terminal note events from
cadential contexts are more predictable than those from
non-cadential contexts.

For the cello, one-wayANOVAs revealed amain effect
of tonic closure for every viewpoint, but the direction of
the effect was reversed. Mean IC estimates decreased in
everymodel fromPAC to the non-cadential levels of tonic
closure, as well as from PAC to tonic. Thus, contrary to
our predictions, the terminal events in the cello from ca-
dential contexts were actually less predictable than those
from non-cadential contexts.

The bottom-left bar plot in Figure 2 displays the mean
IC estimates for the terminal chord event—represented
by vintcc and csdc—for each level of the between-
groups factor. One-way ANOVAs again revealed a main
effect of tonic closure for vintcc and csdc, with the
mean IC estimates increasing from PAC to the non-
cadential levels of tonic closure. The second planned com-

parison comparing PAC to tonic was not significant for
either viewpoint model, however. Thus, for both models
the terminal chord events from cadential contexts were
morepredictable than those fromnon-cadential contexts.

To represent the predictability of the harmony and
melody in a single IC estimate for each note/chord event,
we created a composite viewpoint that reflects the
joint probability of csdc and selectionvl1. The
bottom-right line plot in Figure 2 displays the mean IC
estimates for the terminal composite event for each
level of tonic closure. In this case, the one-way ANOVA
revealed a significant main effect, with the mean IC es-
timates increasing from PAC to the non-cadential lev-
els of closure, and the increase from PAC to tonic was
marginally significant. As a result, composite demon-
strated an ascending staircase for the levels of tonic clo-
sure, withPAC receiving the lowest IC estimates and non-
tonic receiving the highest IC estimates.

The top bar plots in Figure 3 display the mean IC
estimates for the terminal note event in the first violin
(left) and cello (right) for each level of dominant closure.
Table 5 presents the omnibus statistics and planned com-
parisons. For the first violin, one-way ANOVAs revealed
a main effect for every viewpoint model. As expected,
the mean IC estimates also increased significantly from
HC to the non-cadential levels of dominant closure for
everymodel. The increase fromHC to dominant was also
significant for cpitch,melint, and selection, but
not for csd.

For the cello, the mean IC estimates demonstrated a
significant effect of dominant closure for csd, but the
other viewpoint models were not significant. For csd,
themean IC estimates increased significantly fromHC to
the non-cadential levels. A similar trend also emerged for
the second planned comparison between HC and domi-
nant, but the effect was not significant. For the viewpoint
models representing harmonic progressions, the mean
IC estimates revealed main effects of dominant closure
for vintcc and csdc, suggesting that the terminal
note and chord events represented in the cello and the
entire multi-voiced texture are more predictable in half-
cadential contexts than in non-cadential contexts. The
first planned comparison comparing HC with the two
non-cadential levels was not significant for these view-
point models, however. Finally, the composite view-
point demonstrated a significant main effect of dominant
closure, with the mean IC estimates increasing signifi-
cantly fromHC to the non-cadential levels, but not from
HC to dominant.

6.1.3. Discussion
Both between-groups factors demonstrated significantly
lower mean IC estimates for the terminal events from
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Figure 2. Top: Bar plots of themean information content (IC) estimated for the terminal note event in the first violin (left) and cello (right)
for each level of tonic closure. Viewpoints include cpitch, melint, csd, and an optimised combination called selection, which
representsmelint and the linked viewpointcsd⊗cpitch. Bottom left: Bar plot of themean IC estimated for the terminalvintcc
and csdc for each level of tonic closure. Bottom right: Line plot of the mean IC estimated for the combination called composite,
which represents the joint probability of selectionvl1 and csdc. Whiskers represent±1 standard error.

Table 4. Analysis of variance and planned comparisons predicting the information content estimates from all viewpoint models with
tonic closure.

Omnibus Comparisons

PAC vs. Non-Cadence PAC vs. Tonic

Viewpoint df Welch F est. ω2 p df t r p df t r p

Note events
Violin 1
cpitch 241.99 1.56 .003 NS 241.58 −1.43 .09 NS 241.99 0.73 .05 NS
melint 238.65 5.80 .03 .003 289.44 −3.38 .19 .002 239.31 −2.47 .16 .029
csd 238.43 7.83 .04 <.001 292.69 −3.19 .18 .003 238.25 −1.23 .08 .220
selection 237.80 8.11 .04 <.001 297.25 −3.64 .21 <.001 237.52 −1.91 .12 NS

Cello
cpitch 239.77 29.42 .13 <.001 286.12 7.46 .40 <.001 236.13 7.21 .42 <.001
melint 229.78 41.29 .18 <.001 342.08 9.04 .44 <.001 208.37 7.81 .48 <.001
csd 233.81 17.76 .08 <.001 319.18 4.31 .23 <.001 231.65 5.95 .36 <.001
selection 231.83 35.32 .16 <.001 333.12 7.90 .40 <.001 218.98 8.01 .48 <.001

Chord events
vintcc 232.01 26.32 .12 <.001 311.30 −5.53 .30 <.001 238.84 0.96 .06 NS
csd 237.59 9.96 .05 <.001 296.92 −3.81 .22 <.001 238.39 −1.67 .11 NS
composite 238.02 13.61 .06 <.001 281.84 −4.59 .26 <.001 241.89 −2.24 .14 .052

Note: NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.

cadential contexts compared to those fromnon-cadential
contexts. The factor tonic closure elicited significant ef-
fects for viewpoints representing both voices of the two-
voice framework, with greater effect sizes appearing for
viewpoint models characterising harmonic progressions
(vintcc, csdc, and composite). For viewpoint
models representing the cello explicitly, however, the ter-
minal events from perfect authentic cadential
contexts were actually less predictable than those from
non-cadential tonic contexts. This finding may reflect
limitations of the modelling approach (see Section 7),
but since the leap in the bass by descending fifth (or

ascending fourth) in perfect authentic cadential contexts
occurs less frequently than motion by smaller intervals
in any other context (e.g. by unison, m2, or M2) (Sears,
2016), it may also be that cadential bass lines are sim-
ply less predictable than their stepwise, non-cadential
counterparts when considered in isolation. For the view-
points that explicitly model the interaction between the
bass and the upper voices, however (e.g. vintcc, csdc,
or composite), IDyOM produced considerably
lower IC estimates for cadential successions like 5̂-1̂
than for non-cadential successions like 1̂-1̂, 2̂-1̂,
or 7̂-1̂.
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42 D. R. W. SEARS ET AL.

Figure 3. Top: Bar plots of themean information content (IC) estimated for the terminal note event in the first violin (left) and cello (right)
for each level of dominant closure. Viewpoints include cpitch, melint, csd, and an optimised combination called selection,
which represents melint and the linked viewpoint csd ⊗ cpitch. Bottom left: Bar plot of the mean IC estimated for the terminal
vintcc and csdc for each level of dominant closure. Bottom right: Line plot of the mean IC estimated for the combination called
composite, which represents the joint probability of selectionvl1 and csdc. Whiskers represent±1 standard error.

Table 5. Analysis of variance and planned comparisons predicting the information content estimates from all viewpoint models with
dominant closure.

Omnibus Comparisons

HC vs. Non-Cadence HC vs. Dominant

Viewpoint df Welch F est. ω2 p df t r p df t r p

Note events
Violin 1
cpitch 164.25 4.82 .02 .009 191.26 −3.11 .22 .004 165.44 −2.55 .19 .024
melint 159.52 5.89 .03 .003 227.92 −3.42 .22 .002 146.00 −2.99 .24 .007
csd 162.09 8.14 .04 <.001 202.06 −3.80 .26 <.001 165.50 −2.16 .17 NS
selection 162.39 9.38 .04 <.001 209.13 −4.26 .28 <.001 161.61 −2.91 .22 .008

Cello
cpitch 162.93 0.78 ≈ 0 NS 209.18 1.24 .08 NS 157.94 0.94 .06 NS
melint 164.37 1.15 ≈ 0 NS 195.71 1.46 .09 NS 163.31 0.97 .06 NS
csd 161.11 6.19 .03 .003 216.02 −3.36 .22 .002 159.74 −1.97 .25 NS
selection 162.88 1.37 .002 NS 207.10 −1.59 .10 NS 161.31 2.45 .16 NS

Chord events
vintcc 160.56 16.66 .08 <.001 216.71 −1.42 .09 NS 160.57 2.45 .16 NS
csd 164.84 4.00 .02 .020 187.47 −1.86 .12 NS 165.37 0.36 .02 NS
composite 162.93 8.04 .04 <.001 203.00 −3.56 .24 <.001 163.99 −1.74 .13 NS

Note: NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.

For dominant closure, significant effectswere generally
limited to the viewpoint models for csd in the outer
parts, but the effects weremore pronounced for thecsdc
and composite models. In each case, the terminal
events from cadential contexts were more predictable
than those from non-cadential contexts. Nevertheless,
half-cadential contexts generally failed to elicit lower
mean IC estimates compared to non-cadential
root-position dominants. Thus, according to IDyOM,
the terminal events from the HC level are no more (or
less) predictable than any other instance of root-position
dominant harmony selected at random from the corpus.

Given our earlier assumptions about schematic ex-
pectations for dominant events, these results should not
be surprising. Nevertheless, it remains unclear whether
terminal events from half cadences receive higher IC
estimates on average due to limitations of the modelling
approach, because the preceding context fails to stimulate
strong expectations for any particular continuation, or
because the actual continuation is unexpected (Pearce,
Müllensiefen, et al., 2010, pp. 1374–1375). And yet, by
only considering the potential differences between ca-
dential and non-cadential contexts, the previous analysis
failed to directly compare the cadence categories from
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Caplin’s typology. We might hypothesise, for example,
that the strength and specificity of our schematic expecta-
tions formed in prospect and their subsequent realisation
in retrospect contributes to the perception of cadential
strength, where the most expected (i.e. probable) endings
are also the most complete or closed. From this point
of view, the probabilities estimated by IDyOM might
correspond with models of cadential strength advanced
in contemporary cadence typologies.

6.2. Experiment 2

Recall that the cadence collection consists of exemplars
from five categories in Caplin’s typology: PAC, IAC, HC,
DC, and EV. Sears (2015) recently classified models that
estimate the closural strength of these categories into two
general types: those that relate every cadential category
to one essential prototype, called the 1-Schema model
(Latham, 2009; Schmalfeldt, 1992); and those that dis-
tinguish the categories according to whether they allow
listeners to form expectations as to how they might end,
called the Prospective Schemas model (Sears, 2015) (see
Section 2). Experiment 2 directly compares these two
models of cadential strength.

6.2.1. Analysis
Tocompare themean IC estimates for the terminal events
from each cadence category, each of the viewpoints was
again analysed for the terminal note events from the first
violin and cello and the terminal chord events from the
entire texture using a one-way ANOVA with a five-level
between-groups factor called cadence category (PAC, IAC,
HC, DC, and EV). To examine the potential differences
in the IC estimates for the terminal events from each
cadence category, eachmodel includes two planned com-
parisons that do not assume equal variances, with a Bon-
ferroni correction applied to the obtained statistics. In the
first comparison, each level of cadence categorywas coded
to represent twomodels of cadential strength: Prospective
Schemas (PAC→IAC→HC→DC→EV ) and 1-Schema
(PAC→IAC→DC→EV→HC). Polynomial contrasts
with linear and quadratic terms were then included to
estimate the goodness-of-fit for each model. In what fol-
lows, we report the contrast whose linear or quadratic
trend accounts for the greatest proportion of variance in
the outcome variable. The second comparison examines
the hypothesis that the genuine cadence categories in
Caplin’s typology elicit lower IC estimates on average
than the cadential deviations (Genuine vs. Deviations).

6.2.2. Results
Figure 4 displays line plots of the mean IC estimates for
the terminal note event in the first violin (left) and cello

(right) for each level of cadence category. Table 6 presents
the omnibus statistics and planned comparisons. For the
first violin, the mean IC estimates revealed a main effect
for the viewpoints cpitch, csd, and selection, but
not for melint. Moreover, the best-fitting polynomial
contrast revealed a positive (increasing) linear trend in
the Prospective Schemas model (i.e. from the PAC to the
EV categories) for every viewpoint model. The genuine
cadence categories also received lowermean IC estimates
than the cadential deviations in every model.

For the cello, the IC estimates also revealed a main
effect of cadence category for every viewpoint model, and
the Prospective Schemas model again produced the best
fit, with polynomial contrasts revealing positive quadratic
trends for cpitch and melint, but positive linear
trends for csd and selection. The quadratic trend
exhibited in the cpitch and melint models for the
cello probably reflects the statistical preference for
smallermelodic intervals in the corpus, resulting in lower
mean IC estimates for categories that feature stepwise
motion in the bass (HCandDC), and higher estimates for
categories featuring large leaps (PAC, IAC, and EV). This
trendwasnot demonstrated in thecsd andselection
viewpoint models, however, as the DC category received
higher IC estimates relative to the other categories in
these models, thereby resulting in positive linear trends.
Presumably, the HC category received the lowest IC es-
timates on average because scale-degree successions like
4̂–5̂ aremore common than successions like 5̂–1̂. And yet
successions like 5̂–6̂ are also evidently less common than
5̂–1̂, hence the higher IC estimates for the DC category
and the increasing linear trend, PAC→IAC→DC→EV.
Finally, as expected, the genuine cadence categories re-
ceived lower mean IC estimates than the cadential devia-
tions in every model.

The left line plot in Figure 5 displays the mean IC
estimates for the terminal chord event—represented by
vintcc and csdc—for each level of cadence category.
As before, the IC estimates revealed a main effect for
vintcc and csdc, and the best-fitting polynomial con-
trast revealed a positive linear trend in the Prospective
Schemas model for both models. The genuine cadence
categories also received lower mean IC estimates than
the cadential deviations for vintcc and csdc.

It is also noteworthy that the terminal events from
the EV category generally received lower IC estimates
than those from the DC category. Recall that evaded
cadences are typically characterised not by a deviation in
the harmonic progression (though such a deviation may
take place), but rather by a sudden interruption in the
projected resolution of the melody. In this collection, 10
of the 11 evaded cadences feature tonic harmony either
in root position or in first inversion at the moment of
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44 D. R. W. SEARS ET AL.

Figure 4. Line plots of the mean IC estimated for the terminal note event in the first violin (left) and cello (right) for each cadence
category. Viewpoints includecpitch,melint,csd, and an optimised combination calledselection, which representsmelint
and the linked viewpoint csd⊗ cpitch. Whiskers represent±1 standard error.

Table 6. Analysis of variance and planned comparisons predicting the information content estimates from all viewpoint models with
cadence categories.

Omnibus Comparisons

Prospective Schemas Genuine vs. Deviations

Viewpoint df Welch F est. ω2 p Trend df t r p df t r p

Note events
Violin 1
cpitch 32.42 3.19 .03 .026 Linear 13.47 3.40 .68 .013 17.19 −3.64 .66 .006
melint 31.57 2.34 .02 NS Linear 12.13 3.00 .65 .032 14.14 −2.94 .62 .033
csd 29.95 3.02 .03 .033 Linear 18.99 3.43 .62 .008 30.51 −3.17 .50 .009
selection 29.80 3.77 .04 .013 Linear 16.38 3.85 .69 .004 26.03 −3.66 .58 .003

Cello
cpitch 31.18 8.86 .11 <.001 Quadratic 25.39 4.38 .66 <.001 27.62 −2.59 .44 .045
melint 30.72 6.81 .09 <.001 Quadratic 14.04 4.11 .74 .003 15.93 −2.93 .59 .030
csd 31.25 13.99 .18 <.001 Linear 14.83 4.09 .73 .003 24.39 −5.18 .72 .003
selection 30.66 14.99 .19 <.001 Linear 13.41 3.83 .72 .003 19.91 −4.95 .74 .003

Chord events
vintcc 29.94 6.68 .08 .001 Linear 16.96 3.56 .65 .007 28.01 −3.92 .60 .001
csd 31.90 7.02 .09 <.001 Linear 27.04 4.14 .62 <.001 39.39 −3.84 .52 .001
composite 30.91 7.21 .09 <.001 Linear 19.23 4.81 .74 <.001 31.87 −4.58 .63 .003

Note: NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.

cadential arrival. Given how often this harmony appears
in the corpus, it is therefore not too surprising that the
mean IC estimates decreased from the DC to the EV
category.

The right line plot in Figure 5 displays the mean IC
estimates for the terminalcomposite event for cadence
category. In this case, the best-fitting polynomial con-
trast revealed a positive linear trend for the Prospective
Schemas model. Thus, the model PAC→IAC→HC→
DC→EV accounted for roughly 55% of the variance in
the mean IC estimates for composite, which repre-
sents the largest effect demonstrated across all of the poly-
nomial contrasts from every viewpoint model. Finally,
the genuine cadence categories again received lower
mean IC estimates than the cadential deviations.

6.2.3. Discussion
The mean IC estimates from IDyOM provide strong ev-
idence in support of the Prospective Schemas model of
cadential strength. Polynomial contrasts revealed signif-

icant positive linear trends for the viewpoints vintcc,
csdc, composite, csdvc, and selectionvc, as well
as significant positive quadratic trends for cpitchvc,
melintvc, and all of the viewpoints for the first violin.
Furthermore, the claim that the genuine cadence cate-
gories elicit the strongest and most specific schematic
expectations appears to be well supported by the ex-
perimental results from the second planned comparison,
which revealed that the terminal events from the genuine
cadence categories produced the lowest IC estimates on
average for the viewpointmodels from the first violin and
across the entire texture, whereas the cadential deviations
generally received the highest IC estimates on average.

Taken together, the reported findings support the role
for expectancy in models of cadential strength, with the
most complete or closed cadences also serving as themost
expected. What is more, the results obtained here repli-
cate the pattern of results reported by Sears, Caplin, and
McAdams (2014). In that study, participants indicated
how complete they found the end of each of a series
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JOURNAL OF NEWMUSIC RESEARCH 45

Figure 5. Left: Line plot of the mean IC estimated for the terminal vintcc and csdc for each cadence category. Right: Line plot of
the mean IC estimated for the combination called composite, which represents the product of selectionvl1 and csdc. Whiskers
represent±1 standard error.

of cadential excerpts from Mozart’s keyboard sonatas.
The genuine cadence categories and the cadential devia-
tions received the highest and lowest completion ratings,
respectively, which in light of the present findings sug-
gests that the perceived strength of the cadential
ending corresponds with the strength of the schematic
expectations it generates in prospect. But recall that the
perception of closure also depends on the cessation of
expectations following the terminal events of the cadence.
That is, the strength of the potential boundary between
two sequential events results in part from the increase
in information content (or decrease in probability) from
the first to the second event (i.e. the last event of one
group to the first event of the following group). The pre-
ceding analyses examined terminal events from cadential
and non-cadential contexts in isolation, so Experiment
3 considers the role played by schematic expectations in
boundary perception and event segmentation by exam-
ining the time course of IC estimates surrounding the
terminal events of the cadence.

6.3. Experiment 3

Experiment 3 examines two claims about the relation-
ship between expectancy and boundary perception: (1)
that the terminal event of a group is the most expected
(i.e. predictable) event in the surrounding sequence; and
(2) that the next event in the sequence is comparatively
unexpected (i.e. unpredictable). Again, the hypothesis
here is that unexpected events engender prediction errors
that lead the perceptual system to segment the event
stream into discrete chunks (Kurby & Zacks, 2008). The
terminal events from the PAC, IAC and HC categories
should behighly predictable, andprediction errors for the
comparatively unpredictable events that follow should
force listeners to segment the preceding cadential ma-
terial. For the cadential deviations, however, prediction
errors should occur at, rather than following, the terminal
events of the cadence.

6.3.1. Analysis
In addition to the between-groups factor of cadence cat-
egory, Experiment 3 includes a between-groups factor of
time that consists of three levels: et , which represents the
terminal event of the group, and et−1 and et+1, which rep-
resent the immediately surrounding events. With more
complex designs like this one, the number of significance
tests can become prohibitively large, sowe have restricted
the investigation to the four viewpoints that serve as
reasonable approximations of the two-voice framework
characterising the classical cadence: selectionvl1 and
selectionvc to represent the soprano and bass, re-
spectively, and vintcc and csdc to each represent the
entire texture. Experiment 3 analyses these viewpoints
using a 5 × 3 two-way ANOVA with between-groups
factors of cadence category (PAC, IAC,HC, DC, and EV),
and time (et−1, et , et+1).

By moving from one to two between-groups factors,
the number of omnibus statistics and planned compar-
isons necessarily increases, and since Levene’s test also
revealed heteroscedastic groups for all four of the 5 × 3
viewpoint ANOVAs, the risk of committing a Type I
error is considerably greater here than in the previous
experiments. In this case, the two hypotheses mentioned
above concern the interaction between cadence category
and time: namely, whether the IC estimates for each
cadence category increase or decrease significantly from
one event to the next. Thus, the following analysis ignores
the main effects and concentrates only on the interaction
term of the two-way ANOVA. If the interaction is sig-
nificant, we report simple main effects, which represent
one-way ANOVAs with time as a factor for each level of
cadence category. Finally, to examine the potential dif-
ferences in the IC estimates for the levels of time for each
cadence category, each simple main effect included two
planned comparisons with Bonferroni correction that do
not assume equal variances: (1) whether the IC estimate
for et is lower on average than the surrounding events,
et−1 and et+1 (et vs. Surrounding); and (2) whether the IC

D
ow

nl
oa

de
d 

by
 [

14
4.

17
2.

18
9.

13
9]

 a
t 0

8:
06

 0
3 

Ja
nu

ar
y 

20
18
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Figure 6. Time course of the mean IC estimated for the
events surrounding the terminal note event in the first violin
(top) and cello (bottom) for each cadence category using the
viewpoint selection, which represents melint and the
linked viewpointcsd⊗cpitch. The statistical analysis pertains
to event numbers −1, 0 (or Terminus), and 1. Whiskers represent
±1 standard error.

estimate for et+1 is higher on average than the estimate
for et (et vs. et+1).

6.3.2. Results
Figure 6 displays line plots of the mean IC estimates for
the note events over time in the first violin (top) and
cello (bottom) for each level of cadence category. Table 7
presents the omnibus statistics for the simplemain effects
and planned comparisons. To gain a more global picture
of the IC time course, the line plots present the mean
IC estimates for the seven-event sequence surrounding
the terminal event of each cadence category, but the
ANOVAmodels only consider the three events,−1, 0 (or
Terminus), and 1. For the first violin, a two-way ANOVA
of themean IC estimates revealed a significant interaction
between cadence category and time, F(8, 718) = 3.88,
p < .001, est. ω2 = .03. The mean IC estimates for
each level of cadence category revealed simplemain effects
for PAC and HC, but the remaining categories were not
significant.

Despite the non-significant simple main effects for the
IAC, DC, and EV categories, simple planned compar-
isons revealed significant trends over time for every ca-
dence category.As expected, the terminal event in thefirst
violin received lower IC estimates on average than the
immediately surrounding events for the genuine cadence
categories and the DC category, though the latter trend
was marginal. Thus, for cadences featuring melodies that
resolve to presumably stable scale degrees like 1̂ or 3̂, the
terminal event of the group is also the most predictable
event in the sequence.

For the PAC, IAC, HC, and DC categories, the mean
ICestimates increased significantly from et to et+1, thereby
supporting the view that the strength of the perceptual
boundarydependson the increase in information content
following the terminal event of the cadence. And yet since
the EV category replaces the expected terminal event in
the melody with material that clearly initiates the sub-
sequent process—often by leaping up to an unexpected
scale degree like 5̂—one might therefore predict that a
significant increase in information content should occur
at (and not following) the expected terminal event of
the group. This is exactly what we observe, with the
expected terminal events from the EV category receiving
the highest mean IC estimate in the sequence (see Table
7). Thus, the pattern of results from selectionvl1 is
entirely consistent with the two main hypotheses: (1)
the terminal event of a group is the most predictable
event in the sequence, and (2) the next event is compara-
tively unpredictable. Here, the mean IC estimates for the
first violin increased significantly following the predicted
boundary for every cadence category in the collection.

For the cello, a two-way ANOVA of the mean IC esti-
mates revealed a significant interaction between cadence
category and time, F(8, 717) = 13.02, p < .001, est.ω2 =
.12. Excepting IAC, the mean IC estimates also revealed
simple main effects for every level of cadence category. As
expected, the terminal event in the cello received lower IC
estimates on average than the immediately surrounding
events for the HC category, but the trend was reversed
for the PAC, DC and EV categories, and the trend for the
IAC category was not significant.

For the HC category at least, the terminal event was
also the most predictable event in the sequence. Further-
more, the significant increase in information content in
the cello at the expected terminal event in the DC and EV
categories is consistent with the behaviour of cadential
deviations. For the former category, the bass typically
resolves deceptively to scale degrees like 6̂, thereby vi-
olating expectations for 1̂, whereas the latter category
evades the expected resolution by leaping to other scale
degrees to support harmonies like I6. The significant
increase in information content for the terminal event of
the PAC category is somewhatmore surprising, however.
Recall from Experiment 2 that the mean IC estimates
for the terminal events from each cadence category in
the cello demonstrated a positive quadratic trend, with
the HC category receiving the lowest IC estimates (see
Figure 4). In that case, we suggested that small melodic
intervals appearmore abundantly in the corpus than large
intervals, resulting in higher IC estimates for categories
featuring large leaps (PAC, IAC and EV). From this point
of view, it seems reasonable that the mean IC estimates
for the cello would increase at et for categories featuring
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Table 7. Analysis of variance and planned comparisons predicting the information content estimates from selectionvl1,
selectionvc, and vintcc over time for each cadence category.

Omnibus Comparisons

et vs. Surrounding et vs. et+1

Viewpoint df Welch F est. ω2 p df t r p df t r p

Note events
selectionvl1
PAC 236.76 67.63 .35 <.001 298.45 −9.88 .50 <.001 223.50 11.64 .61 <.001
IAC 14.95 3.89 .02 NS 18.48 −2.79 .54 .024 12.53 2.78 .54 .032
HC 162.48 32.34 .20 <.001 209.41 −6.92 .43 <.001 160.95 8.02 .53 <.001
DC 35.86 2.84 .01 NS 36.92 −2.10 .33 .085 35.62 2.41 .55 .043
EV 18.67 5.22 .03 NS 14.87 2.54 .55 .043 19.23 −1.58 .34 NS

selectionvc
PAC 227.67 42.14 .25 <.001 322.14 3.18 .17 .003 180.58 1.65 .12 NS
IAC 14.20 3.38 .02 NS 21.98 1.98 .39 NS 10.57 0.71 .21 NS
HC 161.48 15.57 .11 <.001 213.66 −5.44 .35 <.001 151.11 3.76 .29 <.001
DC 35.50 8.93 .06 .004 43.02 2.98 .41 .010 33.15 0.97 .17 NS
EV 19.87 8.29 .06 .012 17.49 4.06 .70 .002 19.22 −3.19 .59 .009

Chord events
vintcc
PAC 235.55 9.74 .07 <.001 313.01 −3.63 .20 .001 220.21 4.42 .29 <.001
IAC 15.21 6.48 .04 .046 22.58 −3.49 .59 .004 13.71 2.09 .49 NS
HC 161.39 8.26 .06 .002 216.80 −4.07 .27 <.001 157.62 3.25 .25 .003
DC 34.73 2.05 .01 NS 38.02 1.14 .18 NS 34.51 0.05 .01 NS
EV 19.91 0.18 ≈0 NS 18.50 0.25 .06 NS 19.98 0.04 .01 NS

Note: NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.

large leaps or unexpected scale-degree continuations, as
is the case with the PAC, IAC, DC and EV categories.

Given this pattern of results for the cello, it should also
come as little surprise that HC was the only category to
demonstrate a significant increase in information con-
tent following the terminal event of the cadence. To be
sure, the IC estimates for the cello did not significantly
increase at et+1 for the PAC and IAC categories, thereby
undermining the hypothesis that for the genuine cadence
categories at least, the perceived boundary follows the
terminal events of the cadence. When the results from
the first violin and the cello are considered together, HC
was also the only category for which the IC estimates
from selectionvl1 and selectionvc decreased at
et and then increased at et+1. If the PAC and IAC cat-
egories also generate strong and specific melodic and
harmonic expectations for the terminal events of the ca-
dence, the viewpoint models representing both voices of
the two-voice framework should demonstrate congruent
behaviour.

Figure 7 displays line plots of the mean IC estimates
for vintcc (top) and csdc (bottom) over time for each
level of cadence category. Two-wayANOVAs of themean
IC estimates revealed a significant interaction between
cadence category and time for both viewpoint models
(vintcc, F(8, 719) = 3.13, p = .002, est. ω2 = .03;
csdc, F(8, 704) = 2.99, p = .003, est. ω2 = .03).
Simple main effects and planned comparisons were not
significant for csdc, however, so it will not be reported

here. Forvintcc, themean ICestimates revealed simple
main effects for the genuine cadence categories, but not
for the cadential deviations. As expected, the terminal
chord event received lower IC estimates on average com-
pared to the surrounding events for the genuine cadence
categories. Although the trend was reversed for the ca-
dential deviations, with themean IC estimates increasing
from et−1 to et , the difference was not significant for
either category. Finally, the mean IC estimates increased
significantly from et to et+1 for PAC and HC, but this
trend was marginal for IAC.

6.3.3. Discussion
The viewpoint model for vintcc demonstrated a simi-
lar trend to that found in selectionvl1 for the genuine
cadence categories, with the mean IC estimates decreas-
ing from et−1 to et , and then increasing from et to et+1.
These two viewpointmodels also displayed congruent be-
haviour for the EV category, with bothmodels increasing
from et−1 to et , suggesting that the perceptual bound-
ary precedes (rather than follows) the expected terminal
event in evaded cadences. For the DC category, para-
metric noncongruence obtained, with the mean IC esti-
mates at et decreasing in selectionvl1 but increasing
in vintcc. Thus, across the levels of cadence category
and time, the selectionvl1 and vintcc viewpoint
models supported our initial hypotheses: (1) the terminal
event of a group is the most expected (i.e. predictable)
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Figure 7. Time course of the mean IC estimated for the events
surrounding the terminal chord event for vintcc (top) and
csdc (bottom) for each cadence category. The statistical analysis
pertains to event numbers −1, 0 (or Terminus), and 1. Whiskers
represent±1 standard error.

event in the sequence; and (2) the next event is compar-
atively unexpected (i.e. unpredictable).

7. Conclusions

This study examined three claims about the relationship
between expectancy and cadential closure: (1) terminal
events from cadential contexts are more predictable than
those from non-cadential contexts; (2) models of ca-
dential strength advanced in cadence typologies like the
one employed here reflect the formation, violation, and
fulfilment of schematic expectations; and (3) a significant
decrease in predictability follows the terminal note and
chord events of the cadential process. To that end, we
created a corpus of Haydn string quartets to serve as a
proxy for the musical experiences of listeners situated in
the classical style, selected a number of viewpoints to rep-
resent suitable (i.e. cognitively plausible) representations
of the musical surface, and then employed IDyOM—
an n-gram model that predicts the next note or chord
event in a musical stimulus through unsupervised learn-
ing of sequential structure—to simulate the formation of
schematic expectations during music listening.

The findings from Experiment 1 indicate that the ter-
minal note and chord events from perfect authentic ca-
dences aremorepredictable than (1)non-cadential events
featuring tonic harmony in root position and supporting
any scale degree in the soprano, and (2) non-cadential
events featuring any other harmony and any other scale
degree in the soprano. For half cadences, significant ef-
fects were limited to the chord models (vintcc, csdc,
and composite) and the csd viewpoint model, but
the terminal events from half-cadential contexts were

still more predictable than those fromnon-cadential con-
texts. Experiment 2 provided strong evidence in support
of the Prospective Schemas model of cadential strength
(PAC→IAC→HC→DC→EV), with the genuine
cadence categories (PAC, IAC, HC) and cadential devi-
ations (DC, EV) in Caplin’s typology eliciting the lowest
and highest IC estimates on average, respectively. Finally,
the results from Experiment 3 indicated that unexpected
events—like those directly following the terminal note
and chord events from genuine cadences—engender pre-
diction errors that presumably lead the perceptual system
to segment the event stream immediately following the
cadential process.

Taken together, the reported findings support the role
of expectancy in models of cadential closure, with the
most complete or closed cadences also serving as themost
expected or probable. Nevertheless, future studies will
need to address a number of limitations in the current
investigation. First, the rather meager sample size for
three of the five cadence categories in the collection—
as well as the corpus more generally—casts some doubt
upon the generalisability of the reported findings. That
the estimates from IDyOM correspond so well with the-
oretical predictions suggests that these findings may be
robust to issues of sample size, but future studies should
look to expand the collection considerably, as well as to
consider how the relationship between expectancy and
cadential closure varies for other genres and style periods.

Second, we selected individual viewpoints if existing
theoretical or experimental evidence justified their in-
clusion, such as melint and csd in melodic contexts
(Dowling, 1981; Krumhansl, 1990), and vintcc and
csdc in harmonic contexts (Gjerdingen, 2007). Yet in a
few instances,cpitch—whichwasonly included among
the melodic viewpoints to serve as a baseline for model
comparison—produced similar results (see Experiment
2). One reason for this finding is that many of the view-
points characterising melodic organisation in Haydn’s
string quartets systematically covary such that statisti-
cal regularities governing the more cognitively plausible
viewpoints (e.g. melint and csd) also appear in the
less plausible ones (cpitch), albeit more weakly. In a
melody composed in the key of C-major, for example,
B� presumably functions as the leading tone, not be-
cause the twelve-tone chromatic universe regularly fea-
tures this two-note sequence regardless of the particular
tonal context, but because C� typically follows B� in the
key of C-major, forming one of the many statistical as-
sociations characterising the tonal system. Nevertheless,
the tendency for small melodic intervals and the preva-
lence of certain keys in tonal music—wherein B� is more
likely to progress to C� than to, say, A�—ensures that
IDyOM will learn statistical regularities in basic view-
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points like cpitch that are correlated to those found in
other melodic viewpoints like melint or csd.

What is more, rather than assume that listeners expect
specific intervals in a melodic sequence, as is IDyOM’s
approach using melint, existing models of melodic
expectation typically theorise that listeners expect smaller
melodic intervals regardless of the preceding context, a
principle known as pitch proximity (e.g. Cuddy &
Lunney, 1995; Margulis, 2005; Narmour, 1990;
Schellenberg, 1997). Yet in this study, we only assume
that listeners form expectations on the basis of statistical
regularities among melodic intervals in a sequence. Vos
and Troost (1989) have demonstrated, for example, that
small intervals are far more common than large intervals
inWestern tonalmusic, so it should not be surprising that
IDyOMproduces higher probability estimates for smaller
intervals, just as do proximity-based models. The differ-
ence in these two approaches is thus theoretical, rather
than empirical, in that IDyOM bases its predictions on a
theory of implicit statistical learning, whereas proximity-
based models also sometimes base their assumptions on
other (sensory or psychoacoustic) mechanisms. It is cer-
tainly possible that these mechanisms influence the pref-
erence for smaller over larger intervals in Western tonal
music—or indeed, the formation of expectations during
music listening more generally—but we do not examine
this assumption here.

Perhapsmore importantly, the cross entropy estimates
for themelodicmodels in this study indicate that IDyOM
was more certain about its predictions for more cogni-
tively plausible viewpoints like melint and csd than
for less plausible ones like cpitch, thereby reinforcing
the view that representations of the musical surface are
‘cognitively plausible’ to the degree that they minimise
prediction errors for future events (Pearce & Wiggins,
2012). Indeed, if prediction is the ‘primary function’ of
the brain (Hawkins & Blakeslee, 2004, p. 89), and lis-
teners learn to compress information during process-
ing by only retaining representations of the musical sur-
face thatminimise uncertainty (Pearce &Wiggins, 2012),
it therefore seems reasonable to include cpitch and
melint among a potentially large number of candi-
date viewpoints in the initial model configuration and
allow IDyOM to select the viewpoint (or combination of
viewpoints) that minimises uncertainty empirically (i.e.
in an unsupervised manner). Furthermore, in this case
IDyOM benefited from human annotations of tonal in-
formation in csd, but future studies could employ view-
points like theGeneralChordType (GCT) representation
(Cambouropoulos, 2015), which automatically produces
Roman numeral-like encodings of complex polyphonic
corpora.

Third, IDyOM’s modelling architecture could be fur-
ther improved to more closely resemble the mechanisms
by which listeners form expectations for future events.
A number of studies in the language modelling liter-
ature have demonstrated the utility of non-contiguous
n-grams for the discovery and classification of
recurrent patterns (i.e. collocations) (Guthrie, Allison,
Liu,Guthrie,&Wilks, 2006;Huang,Beeferman,&Huang,
1999; Simons, Ney, & Martin, 1997), but the present
investigation was limited to contiguous n-grams. Creel,
Newport, and Aslin (2004) have shown, for example,
that listeners can learn non-contiguous statistical reg-
ularities in melodic sequences if the intervening events
are segregated in terms of pitch height or timbre. What
is more, Gjerdingen (2014) has suggested that for stim-
uli demonstrating hierarchical structure, non-contiguous
events often serve as focal points in the syntax. This prob-
lem is particularly acute for corpus studies of tonal har-
mony, where the musical surface contains considerable
repetition, and many of the vertical sonorities from the
notated score do not represent triads or seventh chords,
thereby obscuring themost recurrent patterns. IDyOM is
presently capable of including non-contiguous n-grams
using threaded viewpoints, which sample events from
a base viewpoint like cpitch according to some test
viewpoint that represents positions in the sequence, such
as metric downbeats or phrase boundaries. Pearce (2005)
has shown that these viewpoints improve model perfor-
mance in melodic prediction tasks, so it is possible that
theymay also improvemodel predictions for the terminal
events from cadential contexts.

Finally, the present approach depended entirely on
simulation. If the brain is a ‘prediction machine’ that
generates expectations about future events by forming
associations between co-occurring attributes within the
external environment, as somehave suggested (Bar, 2007;
Clark, 2013), then behavioural and neural manifesta-
tions of expectancy formation, violation, and fulfilment
should correspond in some way with the model simu-
lations reported in this study. In this case, the model
estimates generated by IDyOM support the view that
cadences and other recurrent closing patterns serve as
the most predictable, probabilistic, specifically envisaged
formulæ in all of tonalmusic (Huron, 2006;Meyer, 1956).
To demonstrate further that the schematic expectations
formed by listeners for cadences and other recurrent
temporal patterns amount to these sorts of probabilistic
inferences requires an entirely different approach, one in
which the listener, rather than the music, represents the
primary object of study.
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