

7. ACE XML: File formats for expressing MIR data

7.1 Overview of MIR data mining file formats and ACE XML

Much of the cross-institutional efficiency of MIR research hinges on the ability of

researchers to share data effectively with one another. Information such as ground-truth

annotations, for example, can be very expensive to produce, and a great deal of repeated

effort is avoided if researchers are able to share such information efficiently. Similarly,

training and testing datasets themselves can be expensive to acquire, and since they

cannot typically be distributed directly because of legal limitations, the ability to share

representative feature values efficiently can be very valuable. The communication of

more abstract information, such as class-label ontologies or characteristics of features

themselves, can also be very useful.

Well-constructed, flexible and expressive standardized file formats are essential for

distributing all of these types of information efficiently and fully. Furthermore, in order to

encourage adoption as a standard, such file formats must be simple for both humans and

machines to understand, parse and write. The absence of such standardized formats can

pose an obstacle to the sharing of research information, with the result that each lab has a

greater tendency to generate its own in house data, which results in both wasteful

repeated effort and, in general, lower quality data.

Although there are a variety of widely used general-purpose data mining and

classification file formats in existence, none of them meet the very specific needs of MIR

research. The Weka ARFF format (Witten and Frank 2005), for example, is currently the

de facto standard in MIR research, but as is shown in Sections 7.3.2 and 7.4, it has severe

restrictions with respect to the requirements of realistic MIR research. Formats such as

ARFF impose serious limitations on the types of information that can be represented and,

accordingly, on the quality of research that can be performed based on this information.

To give just one example, most such formats, including ARFF, only allow instances to be

labelled with just one class label at a time, something that fundamentally limits the

sophistication and realism of research in areas such as genre classification.

Sections 7.2 and 7.3 respectively review existing file format technologies and the

particular formats that are currently the most prominent in MIR research. Section 7.4

2

presents a critical analysis of the limitations of existing formats, and introduces a

corresponding list of design priorities that can be used to guide the development of new

file formats designed specifically for use in music data mining and classification research.

The primary focus of this chapter is on the original ACE XML file formats. These

formats were designed based on the design priorities emphasized in Section 7.4, and are

intended for use in music data mining and classification research of any kind. Possible

applications of these formats include genre classification, artist classification, track

segmentation, pitch tracking, instrument identification and so on. The ACE XML formats

may be used equivalently well with respect to audio, symbolic and cultural data.

ACE XML has recently been chosen for use in the NEMA (Networked Environment

for Music Analysis) project,
1
 a large-scale multinational and multidisciplinary effort to

create a general music information processing infrastructure. NEMA is funded by the

Scholarly Communications program of the Andrew W. Mellon Foundation, and involves

research groups from McGill University, University of Illinois at Urbana-Champaign,

University of Southampton, University of Waikato and Goldsmiths and Queen Mary at

University of London.

ACE XML is the native format used by all jMIR components to communicate with

one other.
2
 The ACE project also includes a general API for parsing, writing and

processing ACE XML files so that ACE XML functionality can be easily incorporated

into other software as well. The ACE GUI prototype also includes functionality for

manually generating, displaying, editing and saving ACE XML files.

There are four primary types of ACE XML files, which may be used individually or

integrated together:

• Feature Value: These files express feature values extracted from specific

instances.

• Feature Description: These files express abstract information about features. To

give a few examples, this format can be used to express specific details about the

processes used to extract feature values that are expressed in Feature Value files,

1
 nema.lis.uiuc.edu

2
 jMIR components can also read and write ARFF for compatibility reasons, although it is recommended

that ACE XML be used instead.

3

to publish information about the features that can be extracted by a new feature

extraction application, to express updates to existing feature extraction algorithms,

and so on.

• Instance Label: These files express labelled annotations of specific instances.

This format can be used to notate ground-truth labels or the predicted labels output

by a classification system, for example.

• Class Ontology: These files express relationships between different classes. This

can be used to simply specify candidate class labels, or for more sophisticated

purposes such as expressing hierarchical taxonomical relationships between

classes that can be taken advantage of by specialized machine learning techniques.

There are two versions of ACE XML, namely ACE XML 1.1 and ACE XML 2.0.

Version 1.1 (McKay et al. 2005) is the stable version that is currently implemented in all

of the jMIR components, including the ACE API. For the purposes of this publication, 1.1

is the official version of ACE XML. Section 7.5 describes the four ACE XML 1.1

formats in general, and Sections 7.6 to 7.9 focus on each of them individually. The ACE

API is discussed in Section 7.10.

The newer ACE XML 2.0 is ultimately intended for candidacy as a standardized

format for MIR research in general, without any inherent links to jMIR. It builds upon the

ACE XML 1.1 formats to add even more expressivity and functionality. Prototypes for

the updated versions of each of the four main ACE XML formats are introduced in

Section 7.11. As discussed in Section 7.11.1, version 2.0 also includes the new ACE

XML Project file and ACE XML ZIP file types, which can be used to more conveniently

associate and potentially package different ACE XML files together. Additional potential

future improvements are also discussed in Section 7.13.

The ACE XML 2.0 formats are presented here for review and improvement by the

MIR community at large. The actual implementation of ACE XML 2.0 awaits

amendment and finalization of the formats based on community feedback, so the ACE

XML 1.1 formats, which are presently fully finalized and implemented, continue to serve

as the standard formats used by the jMIR components at the time of this publication.

4

A review of the original research contributions of this chapter is provided in Section

7.12. Section 7.14 also provides artificially generated samples of each of the ACE XML

1.1 and 2.0 formats in order to more clearly illustrate how the file formats can be used.

7.2 Background information

This section provides background information on the principal fundamental concepts

and technologies that are relevant to the representation of information related to automatic

music classification research. The contents of this section are presented in order to ensure

that the reader is familiar with the concepts that are necessary to fully appreciate and

compare the ACE XML file formats outlined later in this chapter with the existing

alternative formats.

7.2.1 ASCII and Unicode text files

The term text file refers to a simple kind of computer file that holds basic textual data.

Text files conform to simple standards for representing text, and are thus highly portable.

Most text files that are referred to as such are plain text formats, which is to say that they

do not include any provisions for formatting codes other than very simple markers such as

end of line, end of file and tab markers. The lack of formatting in plain text files is both an

advantage and a disadvantage, in that this generally results in smaller files, but also

results in less expressivity.

The primary advantage of text files is that they follow a simple standard that can be

parsed on essentially any computer running essentially any operating system.

Applications called text editors are typically used to read, write and edit text files,

although word processors and many other types of applications are compatible with text

files as well.

ASCII (American Standard Code for Information Interchange) is perhaps the most

common text file format. It is widely used enough to be considered platform independent,

and ASCII files are often given a .txt extension, although this extension is also sometimes

used for other types of text files as well. ASCII files use one byte to encode each

character, with one bit reserved as a parity bit to aid in the detection of data corruption.

This means that 128 characters may be represented in ASCII, 33 of which are mostly

obsolete control characters. The remaining 95 characters include the lower-case and

5

upper-case letters, numbers and punctuation marks associated mainly with English and

related European languages, as well as a few mathematical characters, accents and other

miscellaneous characters.

This ASCII limit of 95 printable characters is much too small to deal with all of the

characters that even an English speaker might wish to use, much less someone writing in

a language that uses a different alphabet. As a result, there are many other standards,

usually chosen based on the default locale setting on a user’s computer. An example is the

technically obsolete but still often used ISO 8859-1 encoding used for many European

languages.

Limiting the space needed to store a single character to a single byte was reasonable

in the past when data storage and transmission was expensive. Such rationing is no longer

as much of a priority, however, and as a result the much more expressive Unicode

standard is replacing ASCII as the preferred standard.

The multilingual full Unicode standard includes more than 100,000 characters, and

has proven to be very valuable in the internationalization of computer software. It has

been adopted by the XML standard, by Java and by the Micrsoft .NET framework, among

many others.

There are a variety of Unicode encodings in existence. One of the most common of

these is the variable-length UTF-8 encoding, which uses one byte for all ASCII characters

and up to three additional bytes for all other characters. UTF-8 has the significant

advantage of being backwards-compatible with ASCII.

UTF-16 is the most common alternative Unicode encoding. UTF-16 is also a variable-

length encoding, and it uses up to four bytes. UTF-16 can sometimes be more space-

efficient than UTF-8, but the reverse can also be true, depending on the particular

characters that need to be encoded. Both UTF-8 and UTF-16 may be used to encode any

Unicode character.

7.2.2 Escape characters and delimiter-separated values

Some applications make use of reserved combinations of characters to effectively add

additional characters or formatting instructions to text files that are not directly permitted

by their encodings. This is often done via the use of escape characters, such as a

backslash, that indicate that the following character is to be interpreted in a special way.

6

Although files that use this approach are of course still text files, they nonetheless lose

some portability and human-readability, as the software or individual parsing the files

must be aware of the rules governing these special codes in order to properly interpret

them.

It is often desirable to store data in text files in some structured way, such as in the

case of tables of values. One simple way of doing this is to use delimiters, which is to say

special characters that are reserved to separate values, such as a list of names. Commas,

tabs and end-of-line characters are three of the most commonly used delimiters. This

approach is useful as a quick and easy solution, but once again involves a loss of

portability, since it requires that parsing software be aware of the particular delimiters that

are being used.

There are a variety of standardized delimited text file formats. The comma-delimited

CSV standard is perhaps the best-known example.

7.2.3 XML

It is often desirable to be able to express textual data in structured ways that are more

sophisticated and general than is possible with simple delimited text files. XML

(eXtensible Markup Lanuage) files, which are encoded in UTF-8 by default, provide one

particularly flexible and convenient way of doing this.

XML is an example of a markup language, which is to say that it is an artificial

language that uses annotations to impose structure and formatting on text. HTML is

perhaps one of the most famous markup languages, due its role as the traditional format in

constructing web pages. An essential difference between XML and HTML is that XML

allows users to specify how data is to be structured, whereas HTML requires that data be

formatted in rigidly pre-defined ways.

XML attempts to strike a balance between permitting data to be represented in such a

way that it is conveniently structured for machine processing, and requiring that it be

stored in simple text files in ways that are relatively easily human readable. The ability

for humans to read XML files directly is augmented by functionality in many web

browsing or text editing applications to display data stored in an XML files in an easily

human-parsible way that is consistent with the structuring specified in the XML file,

7

while at the same time hiding the infrastructure that specifies this structuring. Specialized

software such as Altova XML Spy
3
 provides even greater functionality in this respect.

XML data essentially consists of two parts: one that specifies the structuring and

formatting that stored data must conform to, and the other storing this data using the

specified infrastructure. The XML specification permits a variety of ways of performing

this first task, the oldest, least powerful and simplest of which is known as a Document

Type Definition (DTD). A DTD typically consists of a separate file or header preceding

the actual data that is stored in an XML file. Alternative XML schemas allow added

expressivity over DTDs, but at the cost of increased complexity.

The formatting of the data stored in XML files must conform to the rules laid out in

the DTD or schema. There are many software packages and web services (e.g.,

validator.w3.org) that can be used to verify that this is the case for any given document.

This is referred to as checking whether an XML document is well-formed.

The majority of XML documents consist of clauses of information denoted using

elements. Each element has a start tag and an end tag as well as, often, some content

between the tags. The tags indicate the kind of information that the content expresses,

typically in the form of a field label, and the content indicates the value for the field.

For example, the element <authour_name>Alexander Solzhenitsyn</authour_name>

includes start and end name tags, indicating that the content of the tags is an authour’s

name, and the content itself specifies the name of the specific authour, Alexander

Solzhenitsyn in this case. Start and end tags of elements are always each contained within

< and > signs, and end tags always have the same name as their matching start tag, but

have a / sign added at their beginning.

Elements can be organized hierarchically, which is to say that the content of an

element can itself contain one or more other elements. The elements that may appear and

the rules governing their structuring are declared in the DTD or schema of each XML file.

Figure 7.1 provides an example of how elements can contain other elements.

3
 www.altova.com

8

Figure 7.1 Sample hierarchically organized XML elements. This could be used, for

example, to store a database of the books that one owns. The my_books element could

be used to hold multiple book elements, each of which refer to one separate book,

although only one is listed here. The book element contains a title element and an

authour_name element. The authour_name element itself contains two further elements.

One would expect there to be one book element for every book that is owned. The

names of these particular kinds of elements and the relationships between them must be

specified in a DTD header or other XML schema.

Elements may also contain attributes that provide further information. The rules

governing the nature of the attributes and which elements may contain particular

attributes are also specified in the DTD or other XML schema. Attributes are noted in the

start tag of each element by following the name of the tag with a space, the name of the

attribute, an equal sign and, finally, the value of the attribute enclosed within double

quotes. Figure 7.2 shows how attributes might be used in an expanded version of the data

shown in Figure 7.1.

<my_books>

<book>

 <title>Gulag Archipelago</title>

 <authour_name>

 <first_name>Alexander</first_name>

 <last_name>Solzhenitsyn</last_name>

 </authour_name>

</book>
</my_books>

9

Figure 7.2 A modified version of the book element from Figure 7.1. Two attributes are

added, namely a status attribute for the book tag and an alive tag for the authour_name

tag. The status attribute could be used to indicate whether the book is owned, read but

not owned or not read, for example, and the alive attribute would be used to indicate if

the authour is currently alive.

In most cases, information expressed in attributes could alternatively be expressed

using subordinate elements. For example, the alive attribute in Figure 7.2 could just have

easily been a child element of authour_name, just as last_name is. Although which

approach one uses is mostly a matter of style, a general rule of thumb is to use an attribute

if only restricted values are possible (e.g., yes or no) and to use an element if arbitrary

values are possible. To return to the example if Figure 7.2, an alternative architecture

might be to make status a child element, but leave alive as an attribute, as shown in

Figure 7.3.

Figure 7.3 Alternative architecture to that of Figure 7.2, where the status field is now a

field instead of an attribute.

As noted above, which elements are permitted and how they may be structured is

defined in a DTD header or other schema. A DTD is essentially a statement that consists

<my_books>

<book>

 <title>Gulag Archipelago</title>

 <authour_name alive="no">

 <first_name>Alexander</first_name>

 <last_name>Solzhenitsyn</last_name>

 </authour_name>

 <status>owned</status>

</book>
</my_books>

<my_books>

<book staus="owned">

 <title>Gulag Archipelago</title>

 <authour_name alive="no">

 <first_name>Alexander</first_name>

 <last_name>Solzhenitsyn</last_name>

 </authour_name>

</book>
</my_books>

10

of <!DOCTYPE fileype […]>, where filetype is a code that is chosen to identify the type

of XML file that the DTD is defining (e.g., my_books might be used to identify a file

format being used to store one’s book collection). The […] holds a separate declaration

for each element and attribute type that is permitted. Each element declaration is a

statement consisting of <!ELEMENT elementname (elementdeclarationtype)>. The

elementname variable specifies the text of the start tag of the element and the

elementdeclarationtype variable specifies which child elements are permitted, if any,

which attributes are permitted, if any, and what kind of content data (e.g., character data)

is permitted for the element. The order that the element declarations appear in the DTD

overall and in each individual element declaration type constrain the order that the tags

may be used in the document if it is to be well-formed. Figure 7.4 provides an example

of a sample DTD.

Figure 7.4 A possible DTD for the data formulation used in Figure 7.3. This could be

stored in an external file or could be included as a header in the same file that stores the

data about the book(s) themselves. Note that in this particular DTD there must be one or

more books (because of the + sign), the status element is optional for each authour

(because of the ? sign and the default value for the alive attribute is specified as yes.

The DTD also specifies how attributes are used, as can also be seen in Figure 7.4.

The <!ATTLIST elementname attributename1 CDATA "default1" attributename2 CDATA

default2 …> declaration provides a list of all possible attributes for the elementname

element, each of which is given the name attributename# and the default value of

default#, which will be used if a particular entry does not specify a value for the attribute.

The CDATA code simply means that the value for the attribute will be in the form of

normal text.

<!DOCTYPE my_books [

 <!ELEMENT my_books (book+)>

 <!ELEMENT book (title, authour_name, status?)>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT authour_name (first_name, last_name)>

 <!ATTLIST authour_name alive CDATA "yes">

 <!ELEMENT status (#PCDATA)>

 <!ELEMENT first_name (#PCDATA)>

 <!ELEMENT last_name (#PCDATA)>
]>

11

Note that the <!ATTLIST authour_name alive CDATA "yes"> declaration in Figure

7.4 does not constrain the possible choices that may be used in a well-formed file, so an

instance of the alive tag might be given reasonable values such as yes, no or unknown as

well as unreasonable values such as dafdasfd. This flexibility may be desirable in some

cases, but not in others. It is possible to constrain the valid values for an attribute, such as

in the following example: <!ATTLIST authour_name alive (yes | no | maybe) "yes">,

which requires that the attribute be assigned values of either yes, no, or maybe, with a

default of maybe if the attribute value is omitted for a particular element.

As an alternative to specifying default values for attributes, it is also possible to use

the #IMPLIED keyword in the attribute declaration to make the attribute optional for the

element, or the #REQUIRED keyword to require that a value for the attribute be specified

whenever the associated element appears. Alternatively, the #FIXED keyword followed

by a value in quotation marks may be used to specify that the attribute will always have

the given value. For example, an <!ATTLIST authour_name alive CDATA #IMPLIED>

statement in a DTD would make the alive attribute optional, and an <!ATTLIST

authour_name alive CDATA #REQUIRED> statement would require that it be specified

whenever the author_name element is used.

As is apparent from the discussion above and from Figure 7.4, there are also a

number of codes that may be used in DTD element declarations. These are explained in

Table 7.1.

12

Element Declaration Code Description

(#PCDATA) Character data

(#PCDATA)* Zero or more characters

(anelementname) One instance of an element

(anelementname?) Zero or one instances of an element

(anelementname*) Zero or more instances of an element

(anelementname+) One or more instances of an element

(anelementname1, anelementname2) One instance of one element and one
instance of another element

(anelementname1 | anelementname2) One instance of one element or one instance
of another element

Table 7.1 Some of the most common codes used in the element declaration codes of

DTDs. This data would go in the elementdeclarationtype section of an <!ELEMENT

elementname (elementdeclarationtype)> declaration. These codes can be combined so

that, for example, one might have an element declaration code of (#PCDATA,

anelement1, anelement2?, anelement3+).

There are many other options offered by XML DTDs, and still more that are made

available by alternative schemas. This sub-section only describes those parts of XML that

are specifically used in ACE XML, however. Whitehead, Freidman-Hill and Vander Veer

(2002) provide a much more detailed description of XML, with a particular emphasis on

using Java code to manipulate XML documents.

It is clear that XML allows simple, human-readable and extremely flexible document

formats to be constructed. Further adding to its appeal, there is a great deal of free, open-

source and well-documented code that is available for facilitating the structured parsing

of XML files. Apache Xerces
4
 is an example of such a parsing library that is available in

a variety of programming languages. Such XML parsers typically provide two types of

APIs for accessing XML data in convenient ways: SAX APIs allow the data to be

accessed in a sequentially structured way and DOM APIs allow the data to be accessed in

a hierarchically structured way.

When writing XML files, or manually parsing them, it is important to remember that

single-byte Unicode is the default encoding, and that corresponding codes must be used,

an issue which is especially important for special characters that do not have ASCII

equivalents. Fortunately, many programming languages include libraries for

4
 xerces.apache.org

13

automatically translating plain text data appropriately. Java, for example, includes the

java.net.URLEncoder and java.net.URLDecoder core classes, which can be used to

ensure that all text, including special characters, is appropriately encoded and decoded.

XML also includes its own special provisions for certain special characters. XML

parsers all automatically understand basic character substitutions for reserve characters

that have special meanings in XML, as specified in Table 7.2.

XML Code Corresponding Character

< <

> >

& &

" “

' ‘

Table 7.2 Default XML character substitutions for characters that have special meanings

in the XML specification.

Special characters can also be manually referred to using their decimal or x-prefixed

hexadecimal Unicode code point preceded by the &# characters and followed by a

semicolon. So, for example, the Euro symbol (€) can be referred to in an XML character

field as € or €. It is typically preferable to simply pre-process all strings

read from or written to an XML file by classes such as java.net.URLEncoder and

java.net.URLDecoder rather than performing such manual encodings, however.

7.2.4 RDF

RDF, or Resource Description Framework, refers to a family of W3C
5
 syntax

specifications for representing relationships between different entities, or resources. In

essence, RDF provides an abstract model for describing how anything can be related to

any other thing. The result is effectively a labelled directed multi-graph.

 RDF uses subject-predicate-object triples to make statements about the relationships

between resources. The subject denotes a resource and the predicate denotes

characteristics of the resource and its relationship with another resource, the object. For

example, the statement So What is a song that belongs to the genre of Modal Jazz is a

5
 W3C, or the World Wide Web Consortium, is the primary international standards organization overseeing

the World Wide Web.

14

triple specifying that the subject So What is related to the object Modal Jazz by the

predicate is a song that belongs to the genre.

Resources are often referred to using Uniform Resource Identifiers, or URIs, to make

them accessible via the Internet. Further information on individual resources can thus be

acquired by accessing the data stored at their respective URIs, a process called

dereferencing in RDF terminology. However, linking to resources using URIs is not an

obligatory requirement of RDF. Resources can in fact potentially be abstract entities that

do not actually exist anywhere on the Internet or elsewhere. In order for RDF producers

and consumers to be in agreement on the semantics of resource identifiers, it is often

useful to externally define certain controlled vocabularies, such as the Dublin Core
6

metadata set, which is partially mapped to a URI space for use in RDF.

A process called reification can be used to achieve further expressiveness using

triples, or to deduce measures of confidence about triples. This involves assigning a URI

to each triple so that it can itself be treated as a resource about which other triples can be

formulated.

There are a variety of specific formats, called serialization formats, that each provide

different syntaxes for representing RDF data models. XML is often used as one way to

provide a structured representation of RDF models, but there are also a variety of

alternative serialization formats as well, such as Notation 3.
7
 There are also several query

languages designed for use with RDF graphs, the most common of which is an SQL-like

language called SPARQL.
8

A mechanism for describing relationships between resources, such as that offered by

RDF, is an important component of the Semantic Web. This is because such a mechanism

allows software to automatically store, exchange and otherwise use machine-readable

information distributed on the Internet. This direct machine usability of RDF graphs is

considered to be one of the main goals and advantages of RDF.

The generality, simplicity and abstract nature of RDF are both its keys strengths and

its key weaknesses. Although these characteristics allow it to be used to describe a wide

range of information in flexible ways, it can also introduce computational disadvantages

6
 dublincore.org

7
 www.w3.org/DesignIssues/Notation3

8
 www.w3.org/TR/rdf-sparql-query/

15

and ambiguities. Similarly, the broad structural framework of RDF offers greater

flexibility and extensibility than a particular given XML schema might, for example, but

also does not incorporate the ability to quickly and easily define strict and sophisticated

structures when in might be useful to do so, as one can in unrestricted XML.

7.2.5 OWL

OWL,
9
 or the Web Ontology Language, is a family of languages for representing

ontologies, which is to say formal representations of sets of concepts within some defined

domain and the relationships between the concepts. Ontologies can be useful in the

Semantic Web, as well as in other domains like machine learning.
10

 OWL Full, one of the

variants of OWL, provides partial compatibility with RDF.

The data contained in an OWL ontology is represented as a set of individuals that are

related to one another via property assertions. OWL individuals can be collected into

sets, called classes, whose properties are constrained by sets of axioms. Semantics can be

inferred from explicitly defined axioms when appropriate.

7.2.6 Binary files and serialized objects

A binary file is a computer file consisting of 1’s and 0’s that may be used to encode

any type of data. Although computer text files are therefore technically binary files, the

term binary file is typically used to refer specifically to computer files that are not

encoded in plain text formats.

Storing data such as extracted features in binary form can have a number of

advantages over storing it in text files. For example, storing numbers even in a relatively

character-sparse format such as ASCII requires at least a full byte per digit, a much

greater amount of space than if the data were stored in binary. Parsing and processing

data stored as text can also carry greater processing overhead.

Storing data in text files can also have important advantages over binary storage,

however. One of the greatest advantages is that text files are human-readable, something

that can be very convenient during debugging or other situations where direct human

inspection of data is appropriate or convenient. Text files can also be parsed in an

9
 www.w3.org/TR/owl-features/

10
 Sections 9.1 and 9.2 discuss ontologies in the context of machine learning.

16

application and platform-independent way, while binary files are generally application-

specific, and therefore much less portable. Furthermore, standard text compression

techniques can be used to reduce text file sizes significantly.

Advantages such as these, combined with consistently cheaper storage, data

transmission and processing power, as well as the popularity of flexible text-based data

formatting protocols like XML have led to an increasing use of text as the preferred

choice for data storage. For example, binary file formats in Microsoft Office have

recently been replaced with compressed XML-based formats.

Many programming languages, including Java, include functionality for saving any

objects in memory to files as binary serialized objects. This can be highly convenient for

programmers, as there is no need to implement any specialized parsing or saving

functionality. As might be expected, the main disadvantage of serialized objects, aside

from the lack of human readability, is the common lack of portability once these objects

are written to disk. Even serialized objects from relatively portable languages such as

Java can sometimes fail to be properly read when accessed from newer releases of the

language than they were saved under. For example, serialized Java Swing objects are

often not portable across different versions of the Java Virtual Machine.

7.3 File formats used by existing MIR systems

Although most MIR research has traditionally used specialized in-house file formats

for storing information such as feature values and instance labels, most of which have

been either binary dumps or simple delimited text files, there has been an increasing push

in recent years to use more standardized file formats so that data can be shared between

different research groups. This section describes some of the best-known and most

general file formats in use by the MIR community. Both this section and Section 7.4

stress some of the strengths and weaknesses of these file formats.

7.3.1 Matlab binaries and Java serialized objects

MathWorks Matlab
11

 is a numerical computing environment and programming

language that is particularly popular among some MIR researchers because of the variety

11

 www.mathworks.com

17

of its associated stable and effective toolboxes implementing digital signal processing and

machine learning functionality. Matlab can easily save information such as extracted

features and learned models to binary .mat files, with the result that researchers that use

Matlab tend to favour the .mat file format.

Unfortunately, .mat binaries suffer from the same limitations as all binaries, as

discussed in Section 7.2.6. Although there are a variety of scripts written in different

languages for parsing Matlab binaries, the issue remains that Matlab is commercial

software that uses a proprietary file format that is subject to the design decisions of

MathWorks, which may not coincide with the needs of the MIR community.

Furthermore, .mat files are not directly human-readable, nor do they allow data to be as

easily structured in useful ways as some of the alternative file formats.

Any serialized Java object can be saved directly to disk and parsed by the Java Virtual

Machine. The ease with which this can be done has made the use of Java serialized

objects attractive to some researchers, just as has been the case with Matlab .mat files, but

once again, concerns about the portability, stability, structural expressivity and lack of

human-readability are serious concerns.

Nonetheless, one is sometimes forced to use serialized objects when dealing with

third-party software. An example of this is the saving of trained Weka models.
12

7.3.2 Weka ARFF

Weka (Witten and Frank 2005) is a well-known set of open-source machine learning

libraries implemented in Java. Weka includes several front ends, including graphical user

interfaces, as well as the core libraries and their associated APIs. The breadth and ease of

use of Weka have caused it to be adopted by many MIR research labs and, as a result, its

ARFF file format is likely the most commonly used format in the MIR community for

storing extracted feature values and providing them to machine learning algorithms. As

the closest thing to a standardized file format that there is in MIR, the ARFF format will

be given special attention here. More information on ARFF is available in Witten and

Frank’s book as well as on the Weka ARFF Sourceforge page.
13

12

 Although information on instances themselves can be saved using the text-based Weka ARFF format, as

discussed in Section 7.3.2.
13

 weka.wiki.sourceforge.net/ARFF

18

Throughout the description of the ARFF format that follows, several limitations of the

format may become evident to the reader in relation to the specific domain of MIR

research, something that is to be expected of any format as generally applicable as ARFF.

The focus of this particular section is on a purely objective description of the ARFF

specification, so these issues will not be discussed here explicitly. However, the

weaknesses of the ARFF format with respect to MIR are discussed in some detail in

Section 7.4.

ARFF files are basic text files that specify feature values and class labels associated

with individual instances. All ARFF files consist of a Header section that outlines the

available features and class names, followed by a Data section holding the feature values

and, potentially, class names for each instance. Comments may also be included on lines

starting with a percentage sign.

The first non-comment line of an ARFF file must begin with a single @relation

declaration of the form:

@RELATION <relation-name>

The <relation-name> is a string providing a name for the basic relationship or type of

information that the ARFF file represents. For example, in the case of an artist

identification task, it might be artist_classification or artist_identification. As with other

types of ARFF data, <relation-name> strings with spaces or percent signs in them must

be enclosed in quotation marks. Also, as with other ARFF keywords, @relation

statements are case insensitive.

The rest of the header consists of @attribute declarations of the form:

@ATTRIBUTE <attribute-name> <datatype>

<attribute-name> and <datatype> are strings specifying, respectively, the name of a

feature,
14

 in the form of a string, and the data type of this feature. If a feature value is

present in one or more instances then it must be declared in an @ATTRIBUTE statement

in the header. The following data types may be specified for a feature in @ATTRIBUTE

statements:

• numeric: Numeric data that may be an integer or a real number.

• integer: Integer-only numeric data.

14

 Weka refers to features as attributes.

19

• real: Numeric data that is in the form of real numbers.

• string: A string of text data. Strings containing spaces or percent signs must be

wrapped in quotation marks.

• <nominal-specification>: A string of text data that must, for the feature value of

any given instance, correspond to one of a set of eligible strings specified for the

feature in the @ATTRIBUTE declaration. Such declarations are in the form:

{<nominal_name_1>, <nominal_name_2>, <nominal_name_3>, ...}.

• date: A date, which may be formatted in a variety of ways. The default is yyyy-

MM-dd'T'HH:mm:ss.

• relational: A format implemented only in the most recent developer versions of

Weka that allows a simple hierarchical relationship to be specified for features so

that multi-instance classifiers can be used.

The final @ATTRIBUTE declaration in the header usually specifies the possible class

names that an instance may have. The <attribute-name> is specified class, and the

<datatype> must be a list of strings in the <nominal-specification> form.

The Data section of an ARFF file is specified once all features (and class names) have

been declared in the Header section. The Data section is begun by placing a single-line

@DATA statement after the last @ATTRIBUTE statement.

The feature values for each instance are then specified on a single line for each

instance. The feature values must each be separated by a comma, and the feature values

must be listed in the same order that the features were themselves declared in the Header

with @ATTRIBUTE statements. Unknown feature values may be denoted by using a

single question mark as a place holder. String and nominal feature values are case

sensitive, even though Weka keywords are not case sensitive.

Figure 7.5 provides a complete example of an example Weka file.

20

Figure 7.5 A complete sample Weka file. The first lines all begin with percentage signs,

which indicates that they are simply comments. The @RELATION statement indicates

the beginning of the feature declarations and specifies a name for the relationship

represented by the Weka file. Three features are specified using @ATTRIBUTE

statements, namely spectral centroid, duration and class. In practice, class is not really a

feature, but rather a nominal-specification of the candidate classes that instances can

have. This is how classes are always declared in Weka. The actual features are listed for

eight instances after the @DATA declaration, with the class name specified as the last

attribute for each instance. Note that the class name is not specified for the last instance,

since it is replaced by a question mark. This convention can be used for feature values

as well if they are unknown.

Weka also allows a slightly modified alternative to standard ARFF files called sparse

ARFF files. These are essentially the same as standard ARFF files, except that they do not

explicitly specify zero-value feature values,
15

 and feature values are linked with index

values associating them with particular features.

15

 Values are assumed to be zero if they are not specified.

% TITLE: Music, applause, speech, silence discriminator.

%

% This artificial data, intended for demonstration purposes,

% specifies possible feature values extracted from windows of

% audio that could be used for segmenting the audio into

% sections of music, applause, speech and silence.

%

% Since this is a simple demonstration, only the basic

% features of spectral centurion and the duration of the

% recording from which the window was extracted are specified.

@RELATION music_applause_speech_silence_discriminator

@ATTRIBUTE spectral_centroid NUMERIC

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE class {music, applause, speech, silence}

@DATA

0.0,250.0,silence

440.0,250.0,music

526.0,250.0,applause

0.0,372.5,applause

220.0,372.5,music

115.0,372.5,music

115.0,372.5,applause
854.6,960.3,?

21

As of Weka 3.5.8 (a developer version), weights can be associated with instances.

This is done by enclosing them in curly braces and appending the weight to the end of the

line, as in the following example corresponding to the first instance from Figure 7.5:

0.0,250.0,silence, {4}

A weight of 4 is assigned here to this particular instance.

As a final note on Weka data formats, it should be noted that ARFF files cannot be

used to represent trained models. Weka instead stores these as Java serialized objects.

7.3.3 SDIF

SDIF (Wright et al. 1999; Schwartz and Wright 2000), or the Sound Description

Interchange Format, is a standardized file format for describing sound that was jointly

developed by IRCAM and CNMAT. It is popular in the signal processing community.

SDIF files consist of a basic fixed framework, and also include an extensible set of

description types, including time-domain descriptions, frequency-domain models and

sinusoidal models. SDIF files make use of XML.

The primary purpose of the SDIF format is the storage of audio for use in signal

analysis and synthesis. The storage of feature values and other MIR-oriented data mining

information is not the primary emphasis of the SDIF format, although features can

certainly be represented as well. For example, one of the most fundamental structures of

the SDIF format is a series of frames, each consisting of a four-byte Frame Type ID, a

four-byte integer Frame Size and the frame data itself. Each frame must be a multiple of

64 bits. It is clear that this sort of structuring is not ideally suited for most MIR-oriented

tasks.

Although SDIF can be extended to store features for the purposes of MIR applications

(Burred et al. 2008), the emphasis is still on efficiently representing audio data, not on

representing features in ways that are as flexible and clear as would be desirable in an

ideal MIR-oriented format, nor on dealing with non-audio data such as symbolic or

cultural features. The SDIF format is also not as convenient as one would ideally like for

representing other MIR-relevant information such as sophisticated ontological class

structures.

So, while SDIF is one of the best formats available for use in the audio signal

processing research community, it is not as ideally suited for MIR. Although it is true that

22

SDIF can be adapted for MIR research, using SDIF to meet the ideal needs of an MIR

standardized file format, as described in Section 7.4, can be awkward.

7.3.4 Music Ontology

Music Ontology (Raimond et al. 2007; Raimond and Sandler 2008; Raimond 2009;

www.musicontology.com) is a framework designed for dealing with music-related data

on the Semantic Web, with the particular needs of MIR applications in mind. It is

designed to be very flexible, and takes advantage of RDF to facilitate connections

between resources and to make it possible to access further information about resources

by dereferencing them. Music Ontology is divided into three main areas that respectively

deal with editorial information (e.g., track names, musicians, record labels, etc.),

production workflow information (e.g., arrangements, compositions, etc.) and event

decompositions, (e.g., specifying that a particular musician played in a particular key at a

particular time).

Music Ontology makes use of several existing ontologies, including the Timeline,

Event and Functional Requirements for Bibliographic Records ontologies. The Timeline

ontology, which is based on OWL, is used for representing a variety of types of temporal

information, and can represent instances in time, intervals in time and references to

defined timelines.

The Event ontology is used to represent particular musical or other events that can be

localized in both time and space. Music Ontology Events can also have factors (e.g., a

musical instrument), agents (e.g., a performer playing the instrument) and products (e.g.,

the physical sound produced by the musician playing the instrument). Complex Events

can also be related to subordinate Sub-Events, such as a large Event consisting of an

ensemble of musicians playing music made up of Sub-Events each consisting of a

particular musician playing particular notes.

The Functional Requirements for Bibliographic Records ontology includes Works

(abstract artistic creations such as musical compositions), Manifestations (physical

embodiments of Works, such as CDs in general) and Items (an instance of a

Manifestation, such as a particular CD). Music Ontology also makes use of other existing

ontologies, such as the social networking-oriented FOAF (Friend Of A Friend) ontology

and its concepts of Persons and Groups.

23

Music Ontology is designed using an object-oriented approach that emphasizes

inheritance. For example, the Key ontology, Instrument taxonomy and Genre taxonomy

are all sub-classes of Events.

Of particular interest with relation to machine learning, Music Ontology includes an

Audio Features ontology
16

 intended for the expression of features extracted from audio

signals. Events are interpreted in this context to be regions of time corresponding to

particular features called FeatureEvents, and each FeatureEvent may have a number of

Feature factors that each represent a feature such as a musical key or a set of MFCCs.

A number of data resources have already been converted to Music Ontology,

including Musicbrainz musical metadata
17

 and data from the DBTune music

repositories.
18

 Music Ontology is also being used as the main representation format in the

large OMRAS2 project, and is used by high-quality MIR-oriented software such as Sonic

Visualiser (Cannam et al. 2006) and some of its associated Vamp plugins.
19

A number of advantages and disadvantages of Music Ontology relative to ACE XML

will become apparent to readers as the details of ACE XML are presented later in this

chapter. Overall, Music Ontology has both the relative strength and weakness that it is

very general, and is intended for MIR-oriented applications that are much wider in scope

than the music classification focus of ACE XML. This enables Music Ontology to

represent a much greater range of information more conveniently than can be done in

ACE XML, but does not have all of the structural advantages of the ACE XML formats

that make them particularly useful for music classification. XML in general tends to be

much better suited to representing well-structured data than RDF. Although the Audio

Features ontology subclass of Music Ontology does bring a greater focus on the music

classification domain, this ontology as it is described in

motools.sourceforge.net/doc/audio_features.html is not as flexible and convenient as

ACE XML with respect to feature values, instance labels, feature descriptions and class

interrelationships. Also, the Audio Features ontology is designed particularly with respect

to audio features, whereas ACE XML treats audio, symbolic and cultural features equally

16

 motools.sourceforge.net/doc/audio_features.html
17

 zitgist.com
18

 purl.org/dbtune/
19

 www.vamp-plugins.org

24

and equivalently. Finally, the Audio Features ontology is still in relatively preliminary

design stages as of the time of this writing.

Music Ontology has the advantage over ACE XML that it is explicitly designed to

facilitate the referencing of external resources. Although it is certainly possible to specify

URIs in ACE XML identifier fields, ACE XML does not have an explicit RDF

framework that makes it particularly convenient to do so. Furthermore, the RDF

framework makes it possible to use existing tools such as SPARQL to query Music

Ontology data.

The choice to use basic XML rather than RDF in ACE XML does carry a number of

advantages, however. For example, ACE XML files are typically much more human

readable than Music Ontology’s RDF files, which are more oriented towards machine

readability. ACE XML files are also simpler and more obviously structured, with fewer

varieties. This makes them very easy for users to learn and write code for. The majority of

researchers in the MIR community and many of its associated disciplines tend to, in

general, be much more familiar with XML than they are with RDF, with the consequence

that they will likely be more willing to adopt an XML-based standard.

Of course, file parsing and writing code libraries have already been implemented for

both ACE XML and Music Ontology, but the simple and clear structuring of ACE XML

makes it easier for MIR researchers to quickly inspect the simple and self-contained ACE

XML DTDs, learn them and write code for them, something that is essential for file

formats intended for adoption as standards. This is particularly true for key areas of MIR

research that are more oriented to the humanities than to technical applications. A related

advantage is that ACE XML only relies on simple XML parsing, and does not require the

installation of packages for parsing additional standards such as OWL, for example.

Also, although the implicit ease of linking disparate resources offered by RDF can

certainly be a strong advantage in many contexts, it can also be a disadvantage when

different linked documents are inconsistent or missing, which can often be an issue in

MIR, at least in its current state. RDF-based approaches by their nature tend to rely on the

accessibility of potentially widely distributed network resources. This can be a significant

disadvantage if one does not have network access at a particular moment, or if a remote

resource is removed, renamed or moved. If even one resource is eliminated it is possible

25

that one will not only lose access to it, but potentially to all of the resources that it refers

to as well. Self-contained XML files, on the other hand, do not carry this risk.

Furthermore, the ability to easily store information such as feature values and instance

labels locally if desired can be an important advantage when dealing with many gigabytes

of feature values. Limitations such as slow network connections and monthly bandwidth

caps can pose serious obstacles when dealing with widely distributed network ontologies,

but are less of a problem with file types that store the most essential information in a self-

contained way and that can be downloaded or uploaded when convenient, such as ACE

XML. Although RDF-based ontologies do certainly have additional important advantages

of their own, they are perhaps better suited to relatively small amounts of textual data

than to the very large feature associated with many typical MIR use cases and the even

larger datasets that are likely to arise in the future as MIR research scales up to include

larger quantities of music. ACE XML 2.0 files can also, of course, be made accessible on

networks and linked to external ontologies if desired, but the ability to easily use them

purely locally can be an important advantage.

ACE XML seeks to reach a compromise between the strong encouragement of

distributed linked files promoted by RDF and the more conventional approach of having

all data, including feature values and class labels, contained in a single file. ACE XML

does this by using four different file formats to express different types of information, and

makes it relatively easy to merge files of both the same and different types. The ability to

merge separate files when convenient into single self-contained units when needed for the

purposes of convenience and robustness is emphasized in the ACE 2.0 ZIP format

described in Section 7.11.1.

ACE XML provides a good compromise between the simplicity of ARFF and the

generality of Music Ontology and RDF as a whole. ACE XML is strongly and

consistently structured, with a special eye to flexibility, so that features and labels of any

kind can be specified in well-understood but extensible ways. Much more useful

information can be represented with ACE XML than is possible with ARFF, but a much

stronger structure is imposed on the data than in RDF, with the result that all of the data

that is typically used by music classification researchers or is likely to be used by them in

the foreseeable future can be represented in ways that can be clearly and consistently

26

parsed using simple and standardized software. Furthermore, this diverse information can

all be expressed in a fully self-contained way, without dependencies on distributed

resources that are potentially fragile in terms of both their accessibility and longevity.

With respect to ACE XML 2.0, users have the option of using only the basics of the

ACE XML specification if they wish. This means that the files are very simple and easy

to learn for new users and for those implementing new software that uses ACE XML.

ACE XML 2.0 also includes the ability to represent more sophisticated information if

needed, and special attention has been paid to providing handles that can be used to link

ACE XML 2.0 files to external resources in a variety of ways if this is a particular need,

including RDF resources, thereby providing accessibility to the benefits of the RDF

world.

In general, it can be said that Music Ontology is likely a preferable format for general

representation and for the linking of musical data on-line, and that ACE XML is likely a

preferable format in the specific domain of music classification, particularly with respect

to feature extraction and instance labeling. Music Ontology can certainly be used for such

purposes as well, however. In the long-term, it is certainly possible that RDF-based

approaches and the semantic web in general will be able to truly demonstrate and take

advantage of the power of their generality. This potential has yet to be reached, however,

despite efforts dating back well over a decade. In the meantime, more strongly structured

approaches such as ACE XML have significant practical advantages for use cases

associated with most MIR classification research, both academic and commercial.

7.3.5 RapidMiner

RapidMiner (Mierswa et al. 2006), which was formerly known as YALE (Yet Another

Machine Learning Environment), is an environment for performing machine learning and

data mining experiments. Such experiments can be defined using nestable operators,

which can be described in XML files.

Although the RapidMiner XML files can be very useful in embedding RapidMiner

functionality in other applications, or in communicating experimental setups to other

research groups, the particular emphasis is on communicating experimental

configurations rather than on communicating data itself. This is limiting for MIR

researchers who might wish to use their own algorithms developed under frameworks that

27

are not related to RapidMiner at all. Furthermore, RapidMiner is a general machine

learning environment that is not intended specifically for music, and as such has many of

the same weaknesses as Weka ARFF files when applied specifically to MIR-oriented

data, as described in Section 7.4.

7.3.6 M2K and MIREX

M2K (Downie et al. 2005), or Music-to-Knowledge, is a graphical feature extraction

and classification framework based on the D2K parallel data mining and machine

learning system. M2K has most famously been used as the primary framework for

carrying out the various MIREX
20

 comparisons of different algorithms. Unfortunately, at

least from the perspective of developing a standardized MIR file format, the individual

committees of participants organizing each of the MIREX tasks have generally tended to

choose a range of differing file formats for each task, rather than coordinating to all use

the same file formats for communicating information such as feature values, instance

labels and class ontologies. Most of the file formats that have been used have been either

simple Java serialized objects or delimited text files, and the more sophisticated data

structuring made possible by frameworks such as XML or RDF has not been taken

advantage of.

7.3.7 Marsyas

Marsyas (Tzanetakis and Cook 2000) is a set of software tools for analyzing and

processing audio. It was one of the first major open-source MIR systems, and has been

widely used for feature extraction, among other tasks. Although Marsyas does have a few

basic text file formats, such as the .mtl Marsyas Timeline files, the main emphasis in

Marsyas is on interoperability (Tzanetakis et al. 2008), with the result that Marsyas

promotes the use of existing formats like Weka ARFF files and Matlab files.

7.3.8 CLAM

CLAM (Amatrain, Arumi and Ramirez 2002) is another prominent set of signal

processing software tools which, among other things, can be used to extract audio

features. Although oriented more towards signal modification than specifically MIR,

20

 www.music-ir.org/mirex/2009/

28

features can be saved to either basic XML files or SDIF files. Although certainly useful

for the purposes for which CLAM is intended, these files are not sufficiently

sophisticated, expressive or flexible for the ideal needs of MIR, as specified below.

7.3.9 CrestMuseXML

CrestMuseXML (Kitahara 2008; www.crestmuse.jp/index-e.html) is an extensible

framework for describing music. CrestMuse XML is part of the CrestMuse project, which

emphasizes the integration of different XML formats. Although CrestMuse XML remains

to be widely experimented with by the international MIR community, it does hold

significant potential for integrating the benefits of different formats.

7.4 Limitations of existing formats and resultant design priorities

There are a number of important shortcomings that are each found in all or most of

the existing file formats that are currently used in MIR classification research. This

section discusses some of the most significant of these limitations. Taking these problems

into account, a number of design priorities are then proposed for consideration in the

implementation of any future file formats intended for MIR-oriented data mining

applications.

Since there is insufficient space here to provide a detailed analysis of all file formats

that have been used in MIR, a special focus will be placed on describing the most

important shortcomings of the Weka ARFF format (see Section 7.3.2) in particular, as it

appears to be the most commonly used format in MIR and also illustrates many of the

common shortcomings of other formats. Note that this is not in any way meant to

denigrate ARFF files, which are in fact so popular precisely because they are one of the

best general formats available. ARFF files are intended for general data mining research,

and as such certainly cannot be expected to meet the special application-specific needs of

MIR.

One serious limitation of ARFF files is that there is no convenient way to assign more

than one class to a given instance.
21

 This is not a serious shortcoming for most pattern

21

 There are, however, two possible workarounds. The is to break one multi-class problem into many binary

classification problems, so that there is a separate ARFF file for every class, with all instances classified as

either belonging or not belonging to each class. Alternatively, one could create a separate class for every

29

recognition tasks, which typically require classification into one and only one class.

However, there are many MIR research domains where the limitation of one class label

per instance is a very problematic limitation. For example, any genre classifier dealing

with even a moderate genre ontology would be unrealistic if it could not assign multiple

labels to individual pieces of music. Similarly, a performer classification system should

be able to assign multiple labels to pieces, particularly in the case of pieces with

prominent soloists or with musical groups whose members have also had prominent solo

careers (e.g., Cream songs should likely also be labeled with Eric Clapton, many of the

pieces on the Kind of Blue albums should be labeled with both Miles Davis and John

Coltrane, at the very least, etc.). Many MIR areas involve certain inherent ambiguities

relating to class labels, and the imposition of only one class membership at the

fundamental file format level is an unacceptable limitation for any realistic MIR

classification system.

A second problem with ARFF files is that they do not permit any logical grouping of

features. ARFF files treat each feature as an independent entity with no relation to any

other feature. In contrast to this, one often encounters multi-dimensional features in

music, and it can be useful to maintain logical relationships between the components of

such features. Power spectra, MFCCs, bins of a beat histogram and a binary list of

instruments present are just a few examples of music related multi-dimensional features.

Maintaining a logical relationship between the values of multi-dimensional features

allows one to perform classifications in particularly fruitful ways that take advantage of

their interrelatedness, particularly with respect to classifier ensembles. Training one

neural net on MFCCs, for example, and using another classifier for one-dimensional

features such as RMS or spectral centroid can prove much more fruitful than mixing the

MFCCs in with the other features. To give another example, it can also be useful for other

reasons to group features that are derived from one another, such as in the case of the

average value, average derivative and standard deviation of a particular feature.

A third problem is that ARFF files do not allow any labeling or structuring of

instances. Each instance is stored only as a collection of feature values and a class label,

possible combination of classes, with a resulting exponential increase in the total numbers of classes.

Unfortunately, both of these workarounds are inconvenient, and implicitly require classifier configurations

that are much less than ideal.

30

with no identifying metadata. In music, it is often appropriate to extract features over a

potentially overlapping time series of windows for each musical piece, something that

results in sets of related ordered sub-sections of individual pieces. This is absolutely

essential in applications such as automatic recording segmentation or structural analysis,

and is convenient in a wide variety of MIR-oriented tasks. Furthermore, some features

may be extracted for each window, some only for some windows and some only for each

recording as a whole. ARFF files provide no way of associating features extracted from a

window with the recording that the window comes from, nor do they provide any means

of identifying recordings or of storing time stamps associated with each window. This

means that this information must be stored, organized and processed by some external

software using some additional unspecified and non-standardized file format.

A fourth problem is that there is no way to provide any metadata about features in

ARFF files, other than unstructured information in comments. This can be a problem if

data is to be shared amongst different groups, who may wish to use it to train their own

systems, for example. In cases such as this, it is necessary to know details about the

features and the particular parameters with which they were extracted (e.g., the roll-off

point for the Spectral Roll-Off feature) if features are to be extracted from new instances

to be classified based on the features provided in the original dataset.

A fifth problem is that there is no way of imposing a structure on class labels in ARFF

files. One often encounters hierarchical or other ontological structures in music, such as

in the cases of genre categories or structural analyses. Weka treats each class as distinct

and independent. This means that there is no native way to use classification techniques

that make use of structured ontologies, such as hierarchical tree classifiers, for example.

This also means that there is no way to use weighted misclassification training strategies

that penalize misclassifications into dissimilar classes more severely than

misclassifications into similar classes.

The following list, based on the above analysis of ARFF files and on additional

general observations, outlines a set of (sometimes by necessity contradictory)

requirements that are proposed for consideration in the design of any new standardized

file formats intended for general MIR classification research:

31

• File formats should be as simple and easy to understand as possible. This makes it

easier for users to learn the formats and adopt them. It also decreases the

probability of unforeseen conflicts and inconsistencies.

• File formats should be as flexible and expressive as possible, within the constraint

of avoiding excessive complexity and redundancy.

• The data stored in the files should be easily human readable. This is important for

purposes of debugging and general utility. It is can also be useful for the purposes

of allowing humans to write files manually when the design of annotation

software would be inappropriate or unnecessarily time consuming.

• The data stored in the files should be easily machine readable. If a file format is

difficult to write parsers with or is parsed into inconvenient data structures then it

will be difficult to convince users to adopt it as a standard.

• The data should be stored as efficiently as possible, in order to avoid excessively

large files, within the constraint of maintaining human readability.

• Some widely accepted and well-known existing standard technology, such as

XML, should be used. This increases the likelihood that new file formats will be

themselves adopted as standards because they will be based on a proven

technology, because users are likely to be already be at least somewhat familiar

with the technology and because parsing libraries will already be available.

• File formats should rely on as few external technologies as possible. Each external

technology that is present increases the probability that a given programming

language used to develop a particular application may not include parsing libraries

for that technology, that a parsing library does not function under a given

operating system or that a component of the system will become obsolete in the

future.

• The fundamental types of information that need to be represented are: feature

values extracted from instances, class label annotations of instances, abstract

descriptions of features and their parameters, and ontological structuring of

candidate class labels.

32

• It should be possible to express features extracted from audio, symbolic and

cultural sources of information, and treat these features equivalently so that they

can easily be combined.

• It should be easy to reuse files, such as in the case of the same set of audio feature

values being used for both genre classification and artist identification. Similarly,

it could be convenient to reuse the same model classifications with different sets

of features. For example, one could classify a given corpus of audio recordings

and then later perform the same task on symbolic versions of the same corpus

using the same model classifications.

• It is useful to emphasize a clear separation between the feature extraction and

classification tasks. This is in contrast to formats such as Weka ARFF, which

combine feature values with class labels. A separation between these two types of

data is important because individual researchers may have reasons for using

particular feature extractors or particular classification systems. The file format

should therefore make it possible to use any feature extractor to communicate

features of any type to any classification system. This portability makes it possible

to process features generated by different feature extractors with the same

classification system, or to use a given set of extracted features with multiple

classification systems.

• It should be a simple matter to combine files of the same type, such as in the case

of features extracted during different feature extraction sessions.

• It should be a simple matter to package files expressing related types of

information (e.g., feature values extracted from particular instances and abstract

information about the features themselves) together when appropriate, but also to

separate them out when convenient. This helps to ensure data availability,

integrity and accessibility, as well as flexibility.

• It should be possible to use files to reference external sources of information, but

in such a way that doing so does not introduce dependencies on external

33

information that may no longer be available in the future or that changes

unexpectedly.

• It should be possible to assign an arbitrary number of class labels to each instance.

It should also be possible to express relative weightings for each of these labels.

• It should be possible to group the dimensions of multi-dimensional features and to

logically associate related features and their values in general with one another.

• It should be possible to assign identifying metadata to instances (e.g., recording

titles or time stamps) that will associate meaning and context for the instances so

that they can be identified, both internally and externally. In general, users should

be free to specify whatever metadata fields they wish, and the file format should

not limit them to specific fields. However, it may be useful to supply sample

templates of particular schemas.

• It should be possible to specify relationships between specific instances, in both

ordered and hierarchical ways. In the case of the former, this could be a time

series of analysis windows, for example. In the case of the latter, it could be a

hierarchical ranking of, from bottom to top, features extracted from individual

analysis windows of a recording, compared to features extracted for recordings as

a whole, compared to features extracted for a performer as a whole, etc. In any

case, it should be possible to express both feature values and class labels for both

overall instances and ordered sub-sections of them.

• For time-series data, it should be possible for analysis windows to overlap with

one another and for section labels to overlap with one another.

• For time-series data, it should be possible for analysis windows to have variable

sizes, rather than requiring them all to be the same size.

• It should be possible for feature values to be present for some instances and/or

sub-instances, but not others. For example, some features may be extracted for all

analysis windows, some only for some windows and some only for each recording

as a whole.

34

• Related to this, it should be possible to abstractly specify the appropriateness of

different features for different contexts. For example, some features might only be

appropriate to extract for a whole recording, not its analysis windows, or some

features might only be possible to extract once one or more windows have already

been calculated (e.g., spectral flux).

• It should be possible to specify general metadata about features, including

identifying feature names, descriptions and extraction parameters.

• It should be possible to specify relationships between different class labels, both

hierarchical and otherwise. This is important for the specification of class

ontologies that can be taken advantage of by machine learning strategies such as

hierarchical learning algorithms or weighted misclassification penalization during

training. It should also be possible to relatively weight the associations between

class labels.

7.5 Overview of the ACE XML file formats

This section provides an overview of the ACE XML 1.1 file formats and provides

motivations for some of the general design decisions behind them. In all cases, the

guidelines described in Section 7.4 guided the design of these file formats. The proposed

ACE XML 2.0 formats, as described in Section 7.11, go further still in meeting the

Section 7.4 guidelines.

Sections 7.6 to 7.9 provide more detailed individual descriptions of each of the four

ACE XML 1.1 formats, including their DTDs. There is also a sample full ACE XML 1.1

file for each of the four ACE XML file types provided in the Section 7.14 appendix. For

the sake of comparison, these sample files are constructed such that they express the same

base data as that described by the sample Weka ARFF file in Figure 7.5, but take

advantage of the increased expressivity offered by the ACE XML file formats.

ACE XML 1.1 is the current stable version of ACE XML, and is supported by all of

the jMIR software components. It is the first published version of ACE XML (McKay et

al. 2005), and is a minor update over the never published ACE 1.0 test prototype. Section

7.11 describes ACE 2.0, which is a proposed update of ACE that is not yet finalized or

implemented in software.

35

As implied by their name, ACE XML files are all XML-based. XML was chosen

because it is not only a standardized format for which parsers are widely available, but is

also an extremely flexible format. It is a verbose format, with the consequence that it is

less space efficient than formats such as ARFF, but this verbosity has the corresponding

advantage that it allows humans to read and write the files relatively easily.

It was decided to use XML DTDs rather than another XML schema to specify the

structures used by ACE XML files. Although other schemas can in general be more

expressive than DTDs, DTDs are nonetheless sufficiently expressive for the purposes of

ACE XML. They also have the significant advantages of being simpler and easier to

understand, thereby making the ACE XML formats more attractive to new users and

making the work of those implementing custom ACE XML parsers and writers easier.

This is a particular issue given the wide variety of alternative schemas that are available.

The average member of the MIR community is much less likely to be familiar with any

particular one of these schema languages, particularly in the cases of those specialized

schemas that provide enough increased expressivity to arguably have advantages over the

simple DTD approach. Furthermore, DTDs tend to be much simpler and straight-forward,

and are therefore much easier to learn for those users who might not know any XML at

all. The ACE XML DTDs are specified in each ACE XML file along with the file’s data,

which means that each ACE XML file is packaged with an explanation of its formatting.

As briefly discussed in Section 7.1, There are four different types of ACE XML files:

Feature Value files that express feature values extracted from instances, Feature

Description files that describe features abstractly, Instance Label files that allow labels to

be associated with instances and allow the specification of metadata about instances, and

Class Ontology files that specify relationships between different candidate class labels.

Each of these four XML file types may be used independently, or they may be

associated with one another and logically merged in software using unique identifying

keys, such as matching data_set_id fields found in both Feature Value and Instance Label

files, for example. Multiple files of the same type can also be merged using the ACE

software. To give just a few examples: two Feature Value files containing the same

features for different instances could be merged into one file, two different Feature Value

files containing different features for the same instances could be merged, an Instance

36

Label file containing only sub-section labels and an Instance Label file containing only

overall instance labels could be merged, etc.

It is not in any way necessary to provide all four ACE XML file types for any

application if this is not appropriate or needed. For example, if a classifier is already

trained and is to be used to classify unknown patterns, then there is certainly no need for

an input Instance Label file, although one may be output during processing to express the

predicted classes. The ACE software and its code libraries will automatically construct

implied data for missing file types in a way that is effortless and transparent to the user.

For example, if only a Feature Value file and an Instance Label file are specified, the

software will automatically construct a flat class ontology based on the labels present in

the Instance Label file and will also automatically generate feature descriptions based on

the characteristics of the features present in the Feature Value file (e.g., the

dimensionality of each of the features).

The decision to use four different file types rather than the more typical single file

type is unorthodox, and therefore requires some justification. As discussed in Section 7.4,

it is useful to incorporate a separation between feature values and instance labels. This is

important for data reusability, such as in a case where one might extract features once

from a large number of recordings, and then reuse this single resulting Feature Value file

for multiple purposes, such as classification of artist, composer, genre and geographical

point of origin. If there were only one ACE XML file type, then features would have to

be repeated for each of these applications, but with the multiple file type approach the

Feature Value file can remain unchanged, and be reused with a different Instance Label

file for each classification task. Similarly, one can imagine a case where the same model

classifications contained in one Instance Label file are used for separate sets of features

extracted from symbolic, cultural and audio data respectively contained in three different

Feature Value files.

Feature descriptions and class ontologies are each distributed in separate files as well

in order to emphasize their independence from particular instances. For example, a

Feature Description file could be published on its own to demonstrate general features

that can be extracted by a particular feature extraction application in general, or a Feature

Description file could be published on its own that contains specific extraction parameters

37

that were found to be effective for a particular research domain, or a Feature Description

file could be packaged with a Feature Value file containing feature values extracted for

particular instances, as appropriate. Similarly, class ontologies can be published in a way

that is independent of particular instances and features, or even of a particular data set.

Such file type separations emphasize the abstract nature of many types of data that are

useful in music classification, and allow them to be distributed and used either

independently or together, as appropriate, rather than artificially forcing links where they

may not always be appropriate.

The use of separate file formats also has advantages with respect to data longevity and

convenience when updating the data. For example, if new features become available after

a Feature Value file has been generated, it would only be necessary to update the Feature

Value and Feature Description files since the data stored in the other two file types could

be reused unmodified. Similarly, if a genre ontology changed over time, it would not be

necessary to update already existing Feature Value or Feature Description files.

Overall and most importantly, the separation of different types of data into four

different file types makes it possible to distribute and use one type of file for arbitrary

purposes without needing to impose one’s own choices with respect to the types of data

described by the other three file types. Also, the separation into multiple files types makes

it easier to conceptualize and represent sophisticated arrangements of information with a

divide and conquer approach.

jMIR includes several software tools for facilitating the use of the ACE XML file

formats in general, including use outside of the scope of the principal jMIR software

components themselves. Although ACE XML files may certainly be manually read,

created and edited with text editors or XML editors such as XML Spy, the best way to

perform such manual operations is to use the prototype ACE GUI, which displays data

from single or multiple ACE XML files in particularly convenient ways.

A separate Java application called jMIRUtilities is also included as part of jMIR for,

among other things, performing a number of functions that facilitate the general use of

ACE XML files. Aspects of jMIRUtilities include a simple GUI for batch annotating files

into an Instance Label file, functionality for generating Instance Label files based on

simple tab delimited text files, functionality for accessing data from iTunes XML files so

38

that it can then be imported into ACE XML files, and functionality for merging features

contained in separate ACE XML Feature Value files.

7.6 The ACE XML 1.1 Feature Value file format

ACE XML Feature Value files are used to express feature values that have been

extracted from instances and sub-sections of instances. Figure 7.6 specifies the DTD for

Feature Value files. A sample complete Feature Value file is shown in Code Sample 7.1

in the Section 7.14 appendix.

Figure 7.6 The XML DTD for ACE XML 1.1 Feature Value files. This DTD precisely

defines the information that may appear in Feature Value files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.1.

It can be seen from the Feature Value DTD that feature values can be expressed for

overall instances, called data_sets, that are each named using the data_set_id element.

Each data_set_id refers to a unique identifier, such as a file path or a URI. Each data_set

may or may not have sub-sections, which are each specified using the section element.

For example, a data_set might correspond to an audio recording and its sub-sections

might correspond to analysis windows of the recording, although there is nothing about

the Feature Value specification that requires this particular arrangement.

Each data_set sub-section must have start and stop stamps in order to indicate what

portion of the data_set that it corresponds to. These stamps may or may not overlap and

they may or may not be of equal sizes. This makes it possible to have, for example,

overlapping analysis windows of arbitrary and potentially varying sizes. There is nothing

<!ELEMENT feature_vector_file (comments,

 data_set+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT data_set (data_set_id,

 section*,

 feature*)>

<!ELEMENT data_set_id (#PCDATA)>

<!ELEMENT section (feature+)>

<!ATTLIST section start CDATA ""

 stop CDATA "">

<!ELEMENT feature (name, v+)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT v (#PCDATA)>

39

about the start and stop attributes that requires them to denote time, however, and they

could just as easily be used to denote a range of pixels in an image of album art, for

example.

Features may be expressed for either a data_set as a whole or for individual sub-

sections. In either case, the feature element is used to denote a new feature value or

feature vector, and the particular feature is named using a name element in each feature

clause.

Each data_set or section may have an arbitrary and potentially differing number of

features in an arbitrary and potentially differing order. This makes it possible to omit

features from some data sets or sub-sections if appropriate or if they are unavailable. Each

feature may also have an arbitrary and potentially varying number of values, each denoted

with a v element, in order to allow multi-dimensional features that may vary in

dimensionality based on context.
22

More information on instances described in a Feature Value files, such as class labels

or identifying metadata, may be accessed by linking instances in the Feature Value file to

instances in an ACE XML Instance Label file (see Section 7.8) by using data_set_id

values that match across the two files.

Similarly, more information on the features themselves (as opposed to their values)

can be specified by linking a Feature Value file to an ACE XML Feature Description file

(see Section 7.7) by using name values in feature clauses in the Feature Value file that

correspond to name values in feature clauses in the Feature Description file. However, it

is not necessary to include Feature Description files with Feature Value files, since

software such as ACE can automatically implicitly deduce information such as the

dimensionality of features or whether particular features are to be extracted for overall

instances or their sub-sections.

As a final note, it should be mentioned that a feature_vector_file tag is used in the

DTD specification rather than a feature_value_file tag. This is for the purpose of legacy

compatibility, since Feature Value files were called Feature Vector files in the deprecated

ACE XL 1.0 specification.

22

 The dimensionality of a given feature type may alternatively be fixed in a Feature Description file, if

desired.

40

7.7 The ACE XML 1.1 Feature Description file format

ACE XML Feature Description files are used to express abstract information about

features themselves. Feature Description files do not specify feature values or other

information related to specific instances, as this information is instead specified in

Feature Value files (see Section 7.6). Figure 7.7 specifies the DTD for Feature

Description files. A sample complete Feature Description file is shown in Code Sample

7.2 in the Section 7.14 appendix.

Feature Description files make it possible to specify information about features in a

general sense in a way that is independent from particular feature extractions. This makes

it possible to publish a self-contained Feature Description file describing the features that

a particular feature extraction application can extract, for example, or to publish a list of

features and associated parameters that were found to be useful for different research

application, such as instrument classification and pitch classification.

Figure 7.7 The XML DTD for ACE XML 1.1 Feature Description files. This DTD precisely

defines the information that may appear in Feature Description files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.2.

It can be seen from the Feature Description DTD that information on each feature is

expressed in a separate feature clause. Each such clause includes a name element

uniquely identifying the feature and an optional description element that can be used to

include textual metadata about the feature.

The is_sequential element for each feature specifies whether or not the feature can be

extracted from sub-sections of an instance. A value of true means that it can, and a value

 <!ELEMENT feature_key_file (comments,

 feature+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT feature (name,

 description?,

 is_sequential,

 parallel_dimensions)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT description (#PCDATA)>

 <!ELEMENT is_sequential (#PCDATA)>
 <!ELEMENT parallel_dimensions (#PCDATA)>

41

of false means that the feature can only be extracted from instances as a whole, not from

their sub-sections. So, for example, a feature such as Most Common Pitch might have an

is_sequential value of true for a MIDI file that is broken into analysis windows and the

most common pitch is calculated for each individual window, but a feature such as

Overall Key might have an is_sequential value of false because it would only be extracted

for the MIDI file as a whole.

The parallel_dimensions element specifies the vector size of extracted features. This

value will be 1 unless the feature is a multi-dimensional feature. So, for example, a multi-

dimensional Pitch Histogram feature with 128 pitch bins would have a

parallel_dimensions value of 128, but the one-dimensional Most Common Pitch feature

would only have a parallel_dimensions value of 1.

Feature Description files can be linked with Feature Value files if it is desirable to

describe the features used in a particular feature extraction run on a particular dataset. It

can often be helpful to do this, as there are often many variable implementation details

about features that are not apparent from examinations of actual feature values, so the

distribution of feature details with extracted feature values makes it much easier to extract

new feature values from new instances in ways that are compatible with earlier feature

extractions.

The linking of a Feature Description file and a Feature Value file can be achieved by

using name elements in feature clauses in the Feature Description file that correspond to

matching name elements in feature clauses in the Feature Value file.

As a final note, it should be mentioned that a feature_key_file tag is used in the DTD

specification rather than a feature_description_file tag. This is for the purpose of legacy

compatibility, since Feature Description files were called Feature Key files in the

deprecated ACE XL 1.0 specification.

7.8 The ACE XML 1.1 Instance Label file format

ACE XML Instance Label files are used to specify class labels and miscellaneous

metadata about instances and sub-sections of instances. A typical use of this file type

would be to express ground-truth model classifications or predicted classifications, but

there are certainly other possible uses as well. Figure 7.8 specifies the DTD for Instance

42

Label files. A sample complete Instance Label file is shown in Code Sample 7.3 in the

Section 7.14 appendix.

Figure 7.8 The XML DTD for ACE XML 1.1 Instance Label files. This DTD precisely

defines the information that may appear in Instance Label files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.3.

It can be seen from the Instance Label DTD that class labels can be expressed for

overall instances, called data_sets, that are each named using the data_set_id element.

Each data_set_id should refer to a unique identifier, such as a file path or a URI. Each

data_set may or may not have sub-sections, which are each specified using the section

element. For example, a data_set might correspond to an audio recording and its sub-

sections might correspond to analysis windows of this recording, although there is

nothing about the Instance Label specification that requires this particular arrangement.

Each data_set instance may have pieces of metadata associated with it via the

misc_info element. Each misc_info clause may be associated with an info_type attribute

that specifies the type of metadata (e.g., title, album, composer, etc. field names) that the

misc_info clause specifies.

The optional role element can be used to specify the purpose for which an instance is

to be used. Values such as training, testing and predicted are typically used for this field

<!ELEMENT classifications_file (comments,

 data_set+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT data_set (data_set_id,

 misc_info*,

 role?,

 classification)>

<!ELEMENT data_set_id (#PCDATA)>

<!ELEMENT misc_info (#PCDATA)>

<!ATTLIST misc_info info_type CDATA "">

<!ELEMENT role (#PCDATA)>

<!ELEMENT classification (section*,

 class*)>

<!ELEMENT section (start,

 stop,

 class+)>

<!ELEMENT class (#PCDATA)>

<!ELEMENT start (#PCDATA)>
<!ELEMENT stop (#PCDATA)>

43

to specify the role of the instance with respect to machine learning, but any string may be

provided here if desired. This can be useful for purposes such as specifying pre-

determined cross-validation folds, for example, and can be particularly useful for

bookkeeping when multiple Instance Label files are merged.

Class labels are assigned to overall instances and/or their sub-sections using the class

element. Multiple labels may be assigned to each instance or sub-section, or the label may

be left unspecified if a particular label is unknown.

Each sub-section of an instance must have start and stop stamps in order to indicate

the portion of the instance that it corresponds to. These stamps might often be used to

specify time intervals, although there is nothing requiring that they be related specifically

to time. The resultant sub-section intervals may or may not overlap and they may or may

not be of equal sizes.

This arrangement permits two partially overlapping regions, where each region is

labelled with a different class name, and the overlapping portion is associated with both

labels. Such an occasion might occur, for example, in the ground-truth for a

music/applause discriminator where the applause in a live performance begins before the

music ends. Such a situation could be expressed as either two sections with one label each

overlapping in time or as three non-overlapping consecutive sections where the outer

sections have one label each and the central section has two labels, whichever is more

convenient.

Information on specific feature values extracted from instances referred to in an

Instance Label file may be accessed by linking the Instance Label file to an ACE XML

Feature Value file (see Section 7.6) by using data_set_id values that match across the two

files. Similarly, more information on the class labels used to label instances in an Instance

Label file can be accessed by linking the Instance Label file to a Class Ontology file (see

Section 7.9) by using class values that match across the two files.

As a final note, it should be mentioned that a classifications_file tag is used in the

DTD specification rather than a instance_label_file tag. This is for the purpose of legacy

compatibility, since Instance Label files were called Classification files in the deprecated

ACE XL 1.0 specification.

44

7.9 The ACE XML 1.1 Class Ontology file format

ACE XML Class Ontology files are used to list candidate class labels for a particular

classification domain and to specify hierarchical structures that connect different classes.

As discussed in Section 7.11, the ACE XML 2.0 version of the Class Ontology format

extends the purview of Class Ontology files to general weighted ontologies, but the ACE

XML 1.1 version only permits extended tree-based taxonomical class structuring,
23

 which

at least is significantly more than the simple flat class structures used in the majority of

current MIR research.

Class Ontology files do not specify the class labels of any specific instances, as this

information is instead annotated in Instance Label files (see Section 7.8). Figure 7.9

specifies the DTD for Class Ontology files. A sample complete Class Ontology file is

shown in Code Sample 7.4 in the Section 7.14 appendix.

The ability to specify hierarchical class structuring has several important benefits.

From a musicological perspective, it provides a simple machine readable way of

specifying meaningful structuring of classes. From a machine learning perspective, it has

the dual advantages of enabling the use of potentially very powerful hierarchical

classification methodologies that take advantage of this structuring (e.g., McKay 2004) as

well as the use of learning schemes utilizing weighted penalization, such that

misclassifications during training into related classes are penalized less severely than

misclassifications into unrelated classes.

23

 The tree-based structuring permitted by Class Ontology files is referred to as “extended” because the

Class Ontology format and its associated ACE data structures allow the possibility of any given class being

descended from multiple parent classes, something that is not permitted in standard tree structures. This can

be implemented by specifying the same class name in multiple parent_class or sub_class clauses.

45

Figure 7.9 The XML DTD for ACE XML 1.1 Class Ontology files. This DTD precisely

defines the information that may appear in Class Ontology files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.4.

It can be seen from the Class Ontology DTD that flat class structures can be specified

simply by listing a set of parent_class clauses, each with a class_name element used to

specify the name of a class. This simple approach can be useful in communicating a list

of candidate class labels to an annotator, for example, or for combining a Class Ontology

file with a set of labelled instances contained in an Instance Label file in order to ensure

that it does not use any unexpected class labels.

The structural aspect of Class Ontology files become apparent when the sub_class

element is used to specify hierarchical structures of class labels under parent_class level

classes. Each parent_class clause may contain an arbitrary number of sub_classes, and

each sub_class may itself also contain an arbitrary number of sub_classes, with the result

that a hierarchical class tree of arbitrary depth can be built under each parent_class. Each

class with no descendants, be it in a parent_class or sub_class clause, can be referred to

as a leaf class, and can be used to label instances in Instance Label files.

A Class Ontology file can be linked to an Instance Label file for use during training,

or for other reasons, by using class_name values in the Class Ontology file that

correspond to the class values in the Instance Label file.

As a final note, it should be mentioned that a taxonomy_file tag is used in the DTD

specification rather than a class_ontology_file tag. This is for the purpose of legacy

compatibility, since Class Ontology files were called Taxonomy files in the deprecated

ACE XL 1.0 specification.

<!ELEMENT taxonomy_file (comments,

 parent_class+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT parent_class (class_name,

 sub_class*)>

<!ELEMENT class_name (#PCDATA)>

<!ELEMENT sub_class (class_name,
 sub_class*)>

46

7.10 Using ACE XML with new and existing non-jMIR software

A key factor in the effectiveness of any effort to encourage researchers to adopt new

standardised file formats is the ease with which they can parse and write to them in their

own existing and new software. The simplicity of Weka ARFF files and the ample data

structures and processing functionality offered by the Weka code base have certainly

contributed to its broad adoption, for example. Although all jMIR software components

are of course able to read and write all relevant ACE XML formats, this in itself is not

sufficient to encourage the use of ACE XML in other software platforms.

jMIR therefore includes open-source Java libraries in the ACE code package that

implement parsing and writing functionality for each of the ACE XML file types, as well

as convenient data structures and general processing methods for dealing with the data

that is parsed from files. This data can be used and manipulated directly within these

libraries, or it can be exported to individual developers’ own data structures. ACE’s

parsing and data structure libraries may be used entirely independently of the ACE meta-

learning software itself if desired.

Functionality has also been implemented to automatically convert data in ACE XML

data structures into Weka data structures, and vice versa, in order to take advantage of the

convenient and well-established functionality built into Weka. This also makes it possible

to use Weka data structures as intermediaries for conversion to yet other formats. jMIR

also includes utilities for directly translating back and forth between Weka ARFF and

ACE XML files, although data that fundamentally cannot be represented in ARFF files is

lost when doing so.

As discussed in Section 7.13, there are plans to implement ACE XML parsing and

processing functionality in other programming languages and to build custom modules

for other well-established MIR systems. For the moment, however, the Java

implementation of the ACE XML processing functionality makes these libraries as

accessible as libraries implemented in any single language can be. Java is platform

independent, and the only third-party software used by the ACE XML processing

libraries is the open-source Apache Xerces
24

 XML-parsing library and the Weka library
25

24

 xerces.apache.org/xerces-j/
25

 www.cs.waikato.ac.nz/ml/weka/

47

(and this only if Weka functionality is used), both of which are also implemented in Java.

This means that the ACE XML libraries can be easily accessed under any common

operating system, with the further advantage that many systems such as Matlab include

functionality for accessing Java externals. Furthermore, even if one is for some reason

unable to access the ACE XML code libraries, general XML parsers are available in

virtually all modern programming languages.

For the purpose of clarity, the overall structure of the Java classes used to parse and

process ACE XML files is briefly outlined here. This is only a basic overview, however,

and those wishing more details are referred to the ACE API and the well-documented

code itself, available at jmir.sourceforge.net.

An important point to note before proceeding to the architectural details of the ACE

XML Java classes is that the jMIR components themselves make use of the ACE classes

described below when dealing with ACE XML files. This means that any bug fixes or

updates to the ACE XML standard only need to be implemented once in these classes to

be automatically updated in all of the jMIR components as well.

The parsing code for all ACE XML file formats is contained in the ace.xmlparsers

Java package. Although changes to the ACE XML standard must be implemented here,

users in general should never need to reference these classes directly when incorporating

ACE XML functionality into their own code. This is because all of the parsing

functionality can be accessed more conveniently from the higher-level classes in the

ace.datatypes Java package. Having noted this, those users who do wish to have low-level

access to the parsed data may wish to examine the ParseClassificationsFileHandler,

ParseDataSetHandler, ParseFeatureDefinitionsHandler and ParseTaxonomyFileHandler

classes in the ace.xmlparsers package for parsing Instance Label, Feature Value, Feature

Description and Class Ontology ACE XML files respectively.

As noted above, the significant majority of users will prefer to use the ace.datatypes

classes, however, which represent the data parsed from ACE XML files at a higher level

and include access to file reading, automatic error and consistency checking, file writing,

file merging, data translation and data processing functionality, as well as access to the

basic data structures used to hold data once it is parsed from ACE XML files. A number

of methods are designed specifically with the intention of making relevant data available

48

in forms convenient to external software, and this data can often be simply imported over

to users’ own software in the form of simple and well-established data structures.

The overarching Java class in the ace.datatypes package is the DataBoard, which

provides access to information relating to any of the four ACE XML file types,

interpreted either independently or in conjunction with one another. The DataBoard also

provides direct access to the SegmentedClassification, DataSet, FeatureDefinition and

Taxonomy Java classes, each of which relates specifically to information stored in

Instance Label, Feature Value, Feature Description and Class Ontology ACE XML files,

respectively. The ace.datatypes package also contains other Java classes, but these relate

more to either ACE XML 2.0 functionality, such as ACE ZIP files (see Section 7.11.1),

or to ACE machine learning functionality that is not directly relevant to accessing data

stored in ACE XML files.

7.11 Current developments: Proposed update to ACE XML 2.0

The ACE XML 1.0 file formats were developed at the beginning of the jMIR project,

before any of the jMIR software components had themselves been completed. Minor

changes were introduced in version 1.1, the stable version described in the sections above,

but the file formats were frozen at this version after the publication of the first jMIR

component (McKay et al. 2005). This was necessary because ACE XML is intended for

use as a standard, which precludes the incorporation of changes that would render

existing software that uses the previous format obsolete.

Of course, certain areas of potential improvement became apparent as more jMIR

components were completed. The need for an update to the ACE XML specification also

became increasingly apparent as the use of ACE XML as a standardised format for use in

the inter-university NEMA
26

 project became probable, something that would necessitate a

number of changes for the sake of compatibility with other NEMA systems.

As a result, it was decided to design an overhauled version of ACE XML called ACE

XML 2.0, which is described in the following sub-sections. It should be stressed that the

specified ACE XML 2.0 formats are only proposals, and that the finalization and

implementation of these formats is beyond the scope of this document. Given that ACE

26

 nema.lis.uiuc.edu

49

XML 2.0 is proposed as a standardized set of file formats intended for general use, it is

appropriate to first publish proposed changes to the MIR research community for

potential modification before finalizing and implementing the changes. ACE XML 1.1 is

already implemented and established in all jMIR components and is still the “official”

jMIR format at the time of publication of this document.

Some of the changes proposed for ACE XML 2.0 are based on the changing needs of

the MIR community since ACE XML 1.1 was established. Others are simply for the sake

of improved clarity, simplicity and improved consistency across ACE XML formats. The

most fundamental changes, however, are based on the needs imposed by the NEMA

project. The NEMA researchers at Queen Mary, University of London are invested in the

Music Ontology format (see Section 7.3.4), and the NEMA researchers at the University

of Illinois at Urbana-Champaign are building the NEMA infrastructure using Meandre,
27

both of which require specific modifications to ACE XML for the sake of full

compatibility. For example, the addition of optional URI and other fields to the ACE

XML files makes it possible to add RDF handles to ACE XML files if it is necessary to

integrate them with file formats such as Music Ontology, while at the same time

maintaining the advantages of essentially self-contained structured XML files.

As a consequence of these diverse needs, many of the characteristics of ACE XML

2.0 are the result of compromises between the often competing priorities of different

researchers and research groups. The changes implemented in ACE XML 2.0 are

intended to meet both these specific needs as well as the original design philosophy of

ACE XML as much as possible. The main priority, however, has remained the

implementation of formats that are as flexible and general as possible within the specific

sphere of MIR classification research.

Many of the changes to ACE XML proposed in the sections below result from very

helpful conversations, criticisms and suggestions from other researchers. These include,

at McGill University, J. Ashley Burgoyne, Rebecca Fiebrink, Ichiro Fujinaga, Daniel

McEnnis and Jessica Thompson, among others. Jessica Thompson in particular deserves

special credit for her central role with respect to the ACE ZIP format, as well as for ideas

relating to ACE XML in general. And, of course, Ichiro Fujinaga’s input was essential

27

 seasr.org/meandre/

50

throughout the process, from beginning to end. Many other researchers outside McGill

University have also contributed very helpful insights, including, Mert Bay, Douglas Eck,

Andreas F. Ehmann, Ben Fields, Ian Knopke, Amit Kumar, Paul Lamere, Cyril Laurier,

Kevin Page, Yves Raimond, Allen Renear, Mark Sandler, David Tcheng, Karen Wickett

and, especially, J. Stephen Downie and Kris West.

It is important to stress that as much effort as possible needs to be made to keep ACE

XML 2.0 backwards compatible with ACE XML 1.1, especially in terms of the data

structures that the file formats support.

7.11.1 ACE XML 2.0 ZIP files and ACE XML 1.1 and 2.0 Project files

One of the first problems that became apparent with ACE XML was that large groups

of XML files associated with a particular research project could be unwieldy to deal with

collectively, and could potentially be confusing to new users. Since it is undesirable to

combine the four formats into a single format, for reasons discussed in Sections 7.4 and

7.5, it was necessary to find a solution that would allow the continued use of multiple

discrete files while at the same time simplifying the logistics related to using groups of

them together.

The first solution was to devise an ACE XML Project file format that could be used to

associate related files together for a given project. This format allows users of an

application such as ACE, for example, to simply specify a single Project file, and then

rely on the application to itself automatically open all of the files referred to by this

Project file, thus increasing user convenience significantly.

A prototype Project file format was developed under the ACE XML 1.1 framework

and implemented in the ACE Java package, but never finalized as a standard or

implemented in the other jMIR components. The DTD of this prototype ACE XML 1.1

Project file is shown in Figure 7.10, and a revised ACE XML 2.0 version is shown in

Figure 7.11. A sample ACE XML 1.1 Project file is shown in Code Sample 7.5 in

Section 7.14, and a sample ACE XML 2.0 Project file is shown in Code Sample 7.6.

51

Figure 7.10 The XML DTD for the prototype ACE XML 1.1 Project file format. This DTD

precisely defines the information that may appear in Project files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.5.

The feature_vectors_path, feature_definitions_path, model_classifications_path and

taxonomy_path elements allow references to be made to external ACE XML Feature

Value, Feature Description, Instance Label or Class Ontology files, respectively. Zero to

many files of each type may be referred to, except in the case of Class Ontology files, for

which only zero or one files may be referenced. Weka ARFF files can also be referred to

using the weka_arff_path element if ACE XML files are unavailable for a certain dataset.

Preference files (in as of yet unspecified formats) for the ACE meta-learning

application can also be specified using the gui_preferences_path and

classifier_settings_path elements. Trained classification models can be referenced via the

trained_classifiers_path element.

<!ELEMENT ace_project_file (comments,

 taxonomy_path,

 feature_definitions_path,

 feature_vectors_path,

 model_classifications_path,

 gui_preferences_path,

 classifier_settings_path,

 trained_classifiers_path,

 weka_arff_path)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT taxonomy_path (#PCDATA)>

<!ELEMENT feature_definitions_path (path*)>

<!ELEMENT feature_vectors_path (path*)>

<!ELEMENT model_classifications_path (path*)>

<!ELEMENT gui_preferences_path (#PCDATA)>

<!ELEMENT classifier_settings_path (#PCDATA)>

<!ELEMENT trained_classifiers_path (#PCDATA)>

<!ELEMENT weka_arff_path (#PCDATA)>
<!ELEMENT path (#PCDATA)>

52

Figure 7.11 The proposed ACE XML 2.0 update to the DTD of the Project file format.

See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this DTD is

shown in Code Sample 7.6.

As can be seen by a comparison of Figures 7.10 and 7.11, most of the changes are in

the specific terminology used in the element tags and in the order in which they appear.

These changes are proposed for purposes of clarity and consistency with other ACE XML

file formats. One of the few fundamental changes is the removal of the

ace_preferences_id and classifier_settings_id elements. This was done because it is in

general desirable to separate the ACE XML file formats from the ACE meta-learning

application or any other particular jMIR components. A new uri element is also added so

that references can be made to external resources of any type. This uri element includes

an optional predicate attribute in order to make it possible to specify RDF-like triples,

such that the contents of the uri clause indicate the object, the clause containing the uri

sub-clause is the subject, and the predicate attribute specifies the relationship between the

two.

Another change that has been considered but rejected, at least for the moment, is the

ability to list multiple Class Ontology files. The was not done since the merging of

different ontologies could lead to significant inconsistencies if not supervised carefully,

and it would probably be safer to require that such rare operations be performed

manually.

<!ELEMENT ace_xml_project_file_2_0 (comments?,

 feature_value_id,

 instance_label_id,

 class_ontology_id,

 feature_description_id,

 weka_arff_id?,

 trained_model_id?,

 uri?)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT feature_value_id (path*)>

<!ELEMENT instance_label_id (path*)>

<!ELEMENT class_ontology_id (#PCDATA)>

<!ELEMENT feature_description_id (path*)>

<!ELEMENT weka_arff_id (#PCDATA)>

<!ELEMENT trained_model_id (#PCDATA)>

<!ELEMENT uri (path*)>

<!ATTLIST uri predicate CDATA #IMPLIED>
<!ELEMENT path (#PCDATA)>

53

Although the Project file does make the use of multiple ACE XML files together

significantly more convenient, it is an imperfect solution. Users must still maintain the

individual files, and must be careful not to delete, rename or move them without making

appropriate changes in the Project file.

In order to fully address this problem, it was decided to devise an ACE XML ZIP file

format. This format is inspired by the Microsoft Office 2007 Open XML File Format,
28

which stores each Microsoft Office “document” as sets of XML files packaged into a

single ZIP file. Similarly, ACE XML ZIP files consist of sets of ACE XML (or other)

files that are packaged together into a single ZIP file.

This approach retains the advantages of maintaining separate files, as discussed in

Sections 7.4 and 7.5, since each ACE XML file stored in an ACE XML ZIP file remains

self-contained and can be easily extracted from the ZIP file and used on its own or with

other projects. At the same time, this approach enables multiple related ACE XML files

to be packaged into a single ZIP file, so no housekeeping of external files is required. ZIP

files in particular are an especially appropriate format because there are many free

applications and code libraries that can be used to access or store data in them.

Another significant advantage of using ZIP files is that they are compressed formats,

which means that they can dramatically reduce space and bandwidth requirements. This is

significant, as ACE XML files can be quite large, particularly in cases when many

windowed features are extracted from large collections of data. Compression rates as high

as 83% have been observed when compressing Feature Value files, although the amount

of compression depends on the particular data that is being compressed.

Open-source code for using ACE ZIP files has already been implemented by Jessica

Thompson. This code is integrated into the ACE code package, and can be accessed via

the ACE command line interface and general API. Work on incorporating this

functionality into the ACE GUI as well is also currently underway.

Each ACE XML ZIP file is associated with a single Project file, which is either

specified by the user when the ACE ZIP file is created, or auto-generated by the ACE ZIP

processing code when ACE XML files are added to an existing ACE ZIP file. So,

although an ACE ZIP file can hold many files of any type, each ACE ZIP file always has

28

 msdn.microsoft.com/en-us/library/aa338205.aspx

54

exactly one default ACE XML Project file contained within it and only one or zero Class

Ontology files specified by this Project file. In order for this to work properly, each ACE

ZIP file has a simple hidden file called project.sp automatically generated and added to it

that specifies the name of the default ACE XML Project file for the ZIP file. Users do not

ever interact directly with this file, however, or need to be aware of it.

An ACE XML ZIP file may be automatically generated from an ACE XML Project

file using the ACE ZIP processing software. This software automatically packages all

files referred to in the Project file, along with the Project file itself, into the ZIP file.

Then, when the ZIP file is later opened, the Project file is automatically decompressed

and parsed so that the files contained in the ZIP file can themselves be automatically

accessed, decompressed and properly interpreted by the ACE code. When the project and

other files contained in the ZIP file are decompressed into a new directory, the ACE zip-

processing software automatically updates the Project file to reflect their new file paths.

Alternatively, users may specify a list of files or simply a directory containing ACE

XML files. The ACE software will then automatically package the appropriate files into a

new ACE ZIP file, along with an ACE XML Project file that is auto-generated based on

the specified ACE XML files. If desired, the ACE API and command line can also be

used to add or extract individual or all files from ACE ZIP files.

ACE XML ZIP and Project file functionality will be incorporated into the jMIR

components other than ACE once the ACE XML 2.0 specification is finalized via

consultation with the NEMA researchers and the MIR community.

7.11.2 Proposed ACE XML 2.0 updates to Feature Value files

The DTD of the current ACE XML 1.1 Feature Value file format is shown in Figure

7.6, and the proposed updated DTD for the ACE XML 2.0 Feature Value format is shown

in Figure 7.12. A sample ACE XML 2.0 Feature Value file is shown in Code Sample 7.7

in the Section 7.14 appendix. The comments clause of this sample file provides

descriptive instructions on how to use the file format. The proposed changes to the ACE

55

XML 2.0 Feature Value format relative to the current ACE XML 1.1 version are as

follows:
29

• The feature_vector_file element is renamed to ace_xml_feature_value_file_2_0

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

• The data_set element is renamed to instance for the purposes of clarity and

generality.

• The data_set_id element is renamed to instance_id for the purposes of

consistency, clarity and generality.

• The feature element is renamed to f in order to reduce file size.

• The name element is renamed to id in order to reduce file size.

• The section element is renamed to s in order to reduce file size.

• The start and stop attributes are renamed b and e (abbreviations for beginning and

end) in order to reduce file size, and are now obligatory in s elements in order to

enforce proper file construction.

• Features that correspond to a precise time (or other) coordinate value in an

instance rather than intervals of time (or other) coordinates or instances as a whole

can be specified with the new precise_coord element and its associated coord

attribute.

• The new optional coord_units element can be used in each instance to specify the

units used for the coordinate indicators for both sub-sections of and precise

coordinates in instances.

• The new optional extractor element can be used to specify the name of the feature

extraction software used to extract each feature for an instance. A separate

extractor clause is used for each feature. The contents of an extractor clause

29

 Several of the tags in the ACE XML 2.0 Feature Value file have been abbreviated. Feature Vector files in

particular have a tendency to grow very long, especially when there are instances with many analysis

windows and when many features are extracted. So, although in general abbreviations have been avoided in

ACE XML for the sake of clarity, some abbreviations have been used in Feature Value files for those tags

that are likely to be repeated often in order to avoid exorbitant file sizes.

56

indicate the name of the feature extractor, and the obligatory fname attribute

indicates the name of the feature that is to be associated with this extractor. This

arrangement allows scenarios where different feature extractors are used to extract

the same feature for different instances, as well as scenarios where different

features are extracted by different feature extractors for the same instance.

• Feature values consisting of arrays with an arbitrary number of dimensions may

now be expressed, as compared to the ACE XML 1.1 limitation to only one-

dimensional vectors of feature vales. Sparse arrays, or arrays missing some

entries, are now supported as well, something that can be important for space

efficient and flexible data representation. ACE XML 2.0 currently supports four

alternative approaches to representing feature values and arrays, each with its own

relative strengths and weaknesses with respect to the number of dimensions that

can be represented, file size, ability to efficiently represent sparse data and human

readability:

o In the case of feature values consisting of only one value or feature vectors

consisting of only one dimension, a methodology similar to the one that

was used in ACE XML 1.1 (i.e. f clauses containing the v element) may be

used in ACE XML 2.0 as well.

o Arrays with any number of dimensions may be expressed using JSON

(JavaScript Object Notation)
30

 array notation. JSON is a well-established

and relatively human readable text-based data interchange format for

representing simple data structures. JSON arrays are expressed using

simple square bracket notation, enclosed in vj clauses in ACE XML 2.0.

So, for example, a feature vector of size three consisting of the numbers

one, two and three would be represented as <vj>[1,2,3]</vj>. JSON

arrays can be nested in order to represent arrays of arbitrary

dimensionality. So, for example, a table with two identical rows each

containing the values one, two and three would be represented as

<vj>[[1,2,3],[1,2,3]]<vj>. A similar approach could have been achieved

30

 json.org

57

by using nested XML elements, but the JSON representation is more

compact and more human readable for large arrays. There are also JSON

parsing libraries available in many languages that can parse such arrays

quickly, which offloads some of the work from that would otherwise need

to be performed by an ACE XML parser. A disadvantage of the JSON

approach, however, is that JSON is not ideally suited to efficiently

representing sparse arrays. Also, JSON is less human readable than some

of the alternative approaches. Ultimately, however, it is a compromise that

enables potentially very large arrays to be represented relatively compactly

while still being relatively readable, at least compared to binary data.

o Explicitly indexed arrays may be used as an alternative representation in

the case of feature values consisting of only one number, feature vectors

consisting of one dimension or feature arrays consisting of two to ten

dimensions. This approach involves specifying coordinates using the d0 to

d9 attributes in vd clauses, as an alternative to v clauses. If there is only

one coordinate (i.e., a feature vector), then only the d0 attribute would be

used, if there is a three-dimensional array then the d0, d1 and d2 attributes

would be used, and so on. This approach is moderately space efficient, can

represent sparse arrays and is easily human readable. There is a limitation

to only ten dimensions, but each of these may consist of vectors of any

size, and very few features used in MIR need arrays with more than ten

dimensions. Although it would be ideal to have such an approach for N

dimensions, it is not possible to specify an arbitrary number of dimension

attributes in an XML DTD schema. To give an example, the JSON feature

vector of [1,2,3] would be represented as <vd d0="0">1</vd><vd

d0="1">2</vd><vd d0="2">3</vd>, and the JSON array of

[[1,2,3],[1,2,3]] would be represented as <vd d0="0"

d1="0">1</vd><vd d0="0" d1="1">2</vd><vd d0="0"

d1="2">3</vd><vd d0="1" d1="0">1</vd><vd d0="1"

d1="1">2</vd><vd d0="1" d1="2">3</vd>.

58

o The final option permitted by ACE XML 2.0 is to represent arrays with

any number of dimensions using vs clauses. Each vs clause contains one d

element for each dimension, and this d element is used to specify the

coordinate value its corresponding dimension. Each vs clause also contains

a single v clause to specify the feature value for the array at the

corresponding coordinate. To give an example, the element of the JSON

feature array [[1,2,3],[4,5,6]] with a value of 6 would be represented as

<vs><d>1</d><d>2</d><v>6</v></vs>. This approach has the

advantage that it can be used to express arrays with any number of

dimensions and, unlike the JSON approach, can also efficiently represent

sparse arrays as well as represent data in a more human readable way. It is

significantly less compact than the JSON approach for complete arrays,

however, and the ACE XML encoder must ensure that the correct number

of d elements are present for each value and that they consistently appear

in the correct order.

• Data types may now optionally be explicitly specified for each feature via the

optional type attribute of the f (formerly feature) element. Types of int, double,

float, complex and string are permitted. Although this typing is not necessary for

the jMIR components, it is sometimes necessary for other applications, so it is

useful to incorporate it into the ACE XML formats so that it can be used when

needed. The type will typically be assumed to be double if it is not specified in

any given f clause, but this not an intrinsic assumption of the Feature Value

format. It is important to note that feature types may also be specified in an

associated Feature Description file, in which case the feature types in the Feature

Value file should either correspond to the types specified in the Feature

Description file or, for the sake of brevity, be omitted in the Feature Value file.

• The comments element is now optional.

• It is now possible to specify other files that are related to the Feature Value file

using the related_resources element. These can either be explicitly referenced

Feature Value, Feature Description, Instance Label, Class Ontology or Project

59

files, respectively referenced via feature_value_file, feature_description_file,

instance_label_file, class_ontology_file or project_file elements, or they can be

resources of arbitrary types referenced with uri elements. Note that references

referred to via a related_resources element are for informal informational

purposes only from the perspective of the jMIR components, and are not

substitutes for references in ACE XML Project (see Section 7.11.1).

• Optional uri elements (and their associated predicate attributes) may also be used

within any instance (instance), section (s), precise coordinate (precise_coord) or

feature (f) clauses. These are not intended for use by the jMIR components, but

may be used by other software to access external resources whenever appropriate.

60

Figure 7.12 The proposed ACE XML 2.0 update to the DTD of the Feature Value file

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this

DTD is shown in Code Sample 7.7.

<!ELEMENT ace_xml_feature_value_file_2_0 (comments?, related_resources?,

 instance+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT instance (instance_id,

 uri*,

 extractor*,

 coord_units?,

 s*,

 precise_coord*,

 f*)>

<!ELEMENT instance_id (#PCDATA)>

<!ELEMENT extractor (#PCDATA)>

<!ATTLIST extractor fname CDATA #REQUIRED>

<!ELEMENT coord_units (#PCDATA)>

<!ELEMENT s (uri*,

 f+)>

<!ATTLIST s b CDATA #REQUIRED

 e CDATA #REQUIRED>

<!ELEMENT precise_coord (uri*,

 f+)>

<!ATTLIST precise_coord coord CDATA #REQUIRED>

<!ELEMENT f (fid,

 uri*,

 (v+ | vd+ | vs+ | vj))>

<!ATTLIST f type (int | double | float | complex | string) #IMPLIED>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT v (#PCDATA)>

<!ELEMENT vd (#PCDATA)>

<!ATTLIST vd d0 CDATA #REQUIRED d1 CDATA #IMPLIED d2 CDATA #IMPLIED

 d3 CDATA #IMPLIED d4 CDATA #IMPLIED d5 CDATA #IMPLIED

 d6 CDATA #IMPLIED d7 CDATA #IMPLIED d8 CDATA #IMPLIED

 d9 CDATA #IMPLIED>

<!ELEMENT vs (d+,

 v)>

<!ELEMENT d (#PCDATA)>
<!ELEMENT vj (#PCDATA)>

61

7.11.3 Proposed ACE XML 2.0 updates to Feature Description files

The DTD of the current ACE XML 1.1 Feature Description file format is shown in

Figure 7.7, and the proposed updated DTD for the ACE XML 2.0 Feature Description

format is shown in Figure 7.13. A sample ACE XML 2.0 Feature Description file is also

shown in Code Sample 7.8 in the Section 7.14 appendix. The comments clause of this

sample file provides descriptive instructions on how to use the file format. The proposed

changes to the ACE XML 2.0 Feature Description format relative to the current ACE

XML 1.1 version are as follows:

• The feature_key_file element is renamed to ace_xml_feature_description_file_2_0

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

• The name element is renamed to fid to make it consistent with the Feature Value

format.

• The is_sequential element is replaced by the scope element. The old is_sequential

element could only be used to specify whether a feature could be extracted only

over a whole instance or only over sub-sections of an instance. The new scope

element makes it possible to specify that a feature may be extracted for an instance

as a whole, for sub-sections of an instance, from only a precise point in an

instance (e.g., a moment in time) or from any combination of these. This

information is expressed via the overall, sub_section and precise_coord attributes

respectively, which may each have values of either true or false. This information

must all be specified for all features. It is possible to enter comment data in the

scope clause, but this data will have no technical meaning.

• The parallel_dimensions element is replaced by the dimensionality element in

order to accommodate the new ability to represent feature value arrays of arbitrary

dimensionality in ACE XML 2.0 Feature Value files, as opposed to the ACE

XML 1.0 limitation to one-dimensional feature vectors. The old

parallel_dimensions element was only used to specify the size of feature vectors,

but the dimensionality element is used to specify the number of different

dimensions of the coordinate system for the feature (e.g., one for a feature vector,

two for a table structure, etc.) as well as the size of each of the dimensions. The

62

orthogonal_dimensions attribute indicates the former, and size clauses within the

dimensionality clause are used to indicate the size of each of these (e.g., one size

clause each for the number of rows and the number of columns in a table

structure). The dimensionality element may also be omitted if a particular feature

can have variable number of coordinate dimensions, and size clauses may be

omitted as well if they also vary.

• The optional data_type element and its type attribute are added in order to allow

the specification of the particular data type for a given feature. Specifically, the

permitted types are int, double, float, complex and string, and one of these must be

specified in the type tag. Although this typing is not necessary for the jMIR

components, it is sometimes necessary for other applications, so it is useful to

incorporate the option of using it into the ACE XML formats so that it can be used

when needed. The type will typically be assumed to be double if it is not specified

in any given feature clause, but this not an intrinsic assumption of the Feature

Description format. Although data types may be specified in Feature Value files, it

is preferable to do so in Feature Description files, which take priority. Note that

comments may be entered in the data_type clause itself, but they do not have any

technical meaning.

• It is now possible to specify feature parameters using the optional parameter

element and its associated parameter_id, description and value elements. This

could be used for specifying the roll-off point for the Spectral Roll-off feature, for

example. A separate parameter clause is used for each parameter of a feature, the

parameter_id element is used to identify the parameter uniquely, the description

element can be used to describe the parameter in general, and the value element

can be used to express numerical parameter values.

• Global parameters may also be specified for all features in the Feature Description

file using the global_parameter element. This is useful for specifying overall pre-

processing of audio files before features are extracted, for example, such as down

sampling or normalization. The mechanics of the global_parameter are the same

as those of the parameter element.

63

• A new optional related_feature clause may be used to specify other features that

are related to any given feature. This could be used, for example, to note that one

feature is an alternative implementation of another. The fid element in the related

feature clause should be used to specify the name of a feature specified in the fid

clause of another feature. The relation_id element can be used to specify a specific

externally defined type of relationship, and the explanation element can be used to

provide a qualitative description of the relationship.

• The comments element is now optional.

• It is now possible to specify other files that are related to the Feature Description

file using the related_resources element. This is implemented in a fashion

identical to that described for Feature Value files in Section 7.11.2.

• Optional uri elements (and their associated predicate attributes) may also be used

within any feature, dimensionality, parameter or related_feature clause. These are

not used by the jMIR components, but may be used by other software to access

external resources if appropriate.

64

Figure 7.13 The proposed ACE XML 2.0 update to the DTD of the Feature Description

file format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.8.

<!ELEMENT ace_xml_feature_description_file_2_0 (comments?,

 related_resources?,

 global_parameter*,

 feature+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT feature (fid,

 description?,

 related_feature*,

 uri*,

 scope,

 dimensionality?,

 data_type?,

 parameter*)>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT related_feature (fid,

 relation_id?,

 uri*,

 explanation?)>

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT scope (#PCDATA)>

<!ATTLIST scope overall (true|false) #REQUIRED

 sub_section (true|false) #REQUIRED

 precise_coord (true|false) #REQUIRED>

<!ELEMENT dimensionality (uri*,

 size*)>

<!ATTLIST dimensionality orthogonal_dimensions CDATA #REQUIRED>

<!ELEMENT size (#PCDATA)>

<!ELEMENT data_type (#PCDATA)>

<!ATTLIST data_type type (int | double | float | complex | string) #REQUIRED>

<!ELEMENT global_parameter (parameter_id,

 uri*,

 description?,

 value?)>

<!ELEMENT parameter (parameter_id,

 uri*,

 description?,

 value?)>

<!ELEMENT parameter_id (#PCDATA)>
<!ELEMENT value (#PCDATA)>

65

7.11.4 Proposed ACE XML 2.0 updates to Instance Label files

The DTD of the current ACE XML 1.1 Instance Label file format is shown in Figure

7.8, and the proposed updated DTD for the ACE XML 2.0 Instance Label format is

shown in Figure 7.14. A sample ACE XML 2.0 Instance Label file is also shown in Code

Sample 7.9 in the Section 7.14 appendix. The comments clause of this sample file

provides descriptive instructions on how to use the file format. The proposed changes to

the ACE XML 2.0 Instance Label format relative to the current ACE XML 1.1 version

are as follows:

• The classifications_file element is renamed to ace_xml_instance_label_file_2_0

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

• The data_set element is renamed to instance for the purposes of clarity and

generality.

• The data_set_id element is renamed to instance_id for the purposes of

consistency, clarity and generality.

• The info_type atribute is renamed to info_id for the purpose of consistency with

other element and attribute identifiers. Also, misc_info clauses now contain

info_id and info elements, and there are no longer any attributes for the misc_info

element. This is to enable the addition an arbitrary number of uri annotations to

misc_info clauses, as noted below.

• For similar reasons, class labels are now specified within a class_id element

contained in a class clause.

• The role element is now an optional attribute of the instance element instead of an

element itself. This makes it possible to explicitly constrain its possible values to

training, testing or predicted.

• A new optional related_instance clause may be used to specify other instances

that are related to any given instance. This could be used, for example, to note that

one recording is a cover of another. The instance_id element in the related

instance clause should be used to specify the name of an instance specified in the

instance_id clause of another feature. The relation_id element can be used to

66

specify a specific externally defined type of relationship, and the explanation

element can be used to provide a qualitative description of the relationship.

• The start and stop elements for denoting coordinate ranges within an instance are

replaced with the begin and end attributes of the section element. This change is in

order to maintain consistency with the b and e attributes of ACE XML 2.0 Feature

Value files.

• Class labels that correspond to a precise time (or other) coordinate rather than

intervals of time (or other) coordinates or instances as a whole can be specified

with the new precise_coord element and its associated coord attribute.

• The new optional coord_units element can be used in each instance to specify the

units used for the coordinate indicators for both sub-sections of and precise

coordinates in instances.

• The classification element is removed for the sake of improving file simplicity.

Section labelling and overall instance labelling now simply occur directly within

an instance clause rather than within a classification clause within an instance

clause.

• The class element has a new weight attribute that can be use to specify

proportional support for a class relative to other classes when more than one class

apply. So, for example, a given musical recording might be labelled with the Blues

genre with a specified weight of 2 as well as with the Jazz genre with a specified

weight of 1. Depending on context, this could be intended to mean either that the

recording is a member of both the Blues and Jazz genres, but the influence of the

former is twice that of the latter, or it could mean that a classifier is unsure

whether the piece is Blues or Jazz, but believes that the former label is twice as

likely as the latter. If the weight attribute is not specified for a class, it is assigned

a value of 1 by default. All weight values are proportional, so the absolute value of

a weight has no meaning other than its value relative to the weights of other class

labels with the same scope.

67

• The optional source_comment attribute may now be used with the class element.

This permits the specification of whether an instance was labeled by a machine,

human expert, survey, etc.

• The comments element is now optional.

• It is now possible to specify other files that are related to the Instance Label file

using the related_resources element. This is implemented in a fashion identical to

that described for Feature Value files in Section 7.11.2.

• Optional uri elements (and their associated predicate attributes) may be added to

any instance, related_instance, misc_info, section, precise_coord or class clause.

These are not used by the jMIR components, but may be used by other software to

access external resources when appropriate.

68

Figure 7.14 The proposed ACE XML 2.0 update to the DTD of the Instance Label file

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this

DTD is shown in Code Sample 7.9.

<!ELEMENT ace_xml_instance_label_file_2_0 (comments?,

 related_resources?,

 instance+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file *,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT instance (instance_id,

 misc_info*,

 related_instance*,

 uri*,

 coord_units?,

 section*,

 precise_coord*,

 class*)>

<!ATTLIST instance role (training | testing | predicted) #IMPLIED>

<!ELEMENT instance_id (#PCDATA)>

<!ELEMENT related_instance (instance_id,

 relation_id?,

 uri*,

 explanation?)>

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT misc_info (info_id,

 uri*,

 info)>

<!ELEMENT info_id (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT coord_units (#PCDATA)>

<!ELEMENT section (uri*,

 class+)>

<!ATTLIST section begin CDATA #REQUIRED

 end CDATA #REQUIRED>

<!ELEMENT precise_coord (uri*,

 class+)>

<!ATTLIST precise_coord coord CDATA #REQUIRED>

<!ELEMENT class (class_id,

 uri*)>

<!ATTLIST class weight CDATA "1">

<!ATTLIST class source_comment CDATA #IMPLIED>
<!ELEMENT class_id (#PCDATA)>

69

7.11.5 Proposed ACE XML 2.0 updates to Class Ontology files

The DTD of the current ACE XML 1.1 Class Ontology file format is shown in Figure

7.9, and the proposed updated DTD for the ACE XML 2.0 Class Ontology format is

shown in Figure 7.15. A sample ACE XML 2.0 Class Ontology file is also shown in

Code Sample 7.10 in the Section 7.14 appendix. The comments clause of this sample file

provides descriptive instructions on how to use the file format. The proposed changes to

the ACE XML 2.0 Class Ontology format relative to the current ACE XML 1.1 version

are as follows:

• The taxonomy_file element is renamed to ace_xml_class_ontology_file_2_0 for

the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

• The class_name element is renamed to class_id in order to make it consistent with

the naming conventions used in the other ACE XML 2.0 formats.

• The parent_classs element is removed because it made an implied hierarchical

organization of classes obligatory, which is not always appropriate. Information

about each class is now contained in a class clause, regardless of the presence or

absence of a hierarchical structure.

• Since it is sometimes useful to be able to specify hierarchical class structuring, the

optional sub_class element is repurposed so that it can be used to reference one or

more other classes that are hierarchical subordinates to the class whose clause

contains the sub_class element. Such sub-classes must now also be separately

declared in their own class clauses. Tree structures can be built by referring to

subordinate classes using sub_class clauses, then referring to further subordinate

classes at the next depth level of the tree in the sub_class clauses of these classes,

and so on.

• As an alternative to hierarchical class structuring, the ACE XML 2.0 Class

Ontology format now allows more general ontological relationships to be

specified between classes using the related_class element. A relationship specified

from one class to another with this element is unidirectional, unless the same

relationship is explicitly specified from the second class to the first class as well in

70

the second class’ declaration. The relation_id element may be used to specify the

meaning of the relationship using some externally defined keyword if desired.

• Weights may be assigned to both related_class and and sub_class elements using

the weght attribute, which defaults to 1 unless specified. Relating to this, the

global weights_relative attribute of the ace_xml_class_ontology_file_2_0 element

must be specified as either true or false. If it is true, then the weights for each class

will be normalized upon parsing, if not they will be interpreted as is.

• The explanation element can be used to provide qualitative explanations of any

class connections in the class ontology.

• The misc_info element may now be used to specify miscellaneous metadata about

each class. Each misc_info clause contains info_id and info elements to specify

some externally defined unique keyword for the metadata field and the metadata

itself, respectively.

• The comments element is now optional.

• It is now possible to specify other files that are related to the Class Ontology file

using the related_resources element. This is implemented in a fashion identical to

that described for Feature Value files in Section 7.11.2.

• Optional uri elements (and their associated predicate attributes) may also be used

within any class, related_class or sub_class clause. These are not used by the

jMIR components, but may be used by other software to access external resources

when appropriate.

71

Figure 7.15 The proposed ACE XML 2.0 update to the DTD of the Class Ontology file

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this

DTD is shown in Code Sample 7.10.

7.12 Summary of original contributions

This chapter provides a critical analysis and overview of existing file formats that are

used by MIR researchers for data mining and music classification. It also provides an

original and previously lacking set of design priorities for consideration when devising

new file formats in this domain.

<!ELEMENT ace_xml_class_ontology_file_2_0 (comments?,

 related_resources?,

 class+)>

<!ATTLIST ace_xml_class_ontology_file_2_0 weights_relative (true|false)

 #REQUIRED>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file *,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT class (class_id,

 misc_info*,

 uri*,

 related_class*,

 sub_class*)>

<!ELEMENT class_id (#PCDATA)>

<!ELEMENT misc_info (info_id,

 uri*,

 info)>

<!ELEMENT info_id (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT related_class (class_id,

 relation_id?,

 uri*,

 explanation?)>

<!ATTLIST related_class weight CDATA "1">

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT sub_class (class_id,

 relation_id?,

 uri*,

 explanation?)>
<!ATTLIST sub_class weight CDATA "1">

72

The four original ACE XML 1.1 file formats are presented as an implementation of

these design priorities. The jMIR components can all use these file formats to

communicate with each other, and a general API is provided as part of the ACE package

so that ACE XML functionality can be easily integrated into other software. General ACE

XML file processing utilities are also provided in the jMIRUtilities software.

Original prototypes for the four ACE XML 2.0 file formats are also presented to the

MIR research community for general discussion and comment. These formats expand

upon the ACE XML 1.1 by adding further expressive power and flexibility, and it is

hoped that the MIR community will collaborate to improve upon them and eventually

adopt them.

7.13 Future research

The clear priority for future research is to collect input from the MIR community on

changes and improvements to the ACE XML 2.0 formats.

One specific issue that needs to be addressed is that Feature Value files can end up

being very large, particularly when many features are extracted for small windows over

many instances. Although ACE ZIP packaging does address this issue to an extent, it in

turn introduces additional processing overhead when compressing and decompressing the

files. One solution would be to represent feature values, including arrays, in binary rather

than in text. Unfortunately, this would entirely undermine ACE XML’s design

philosophy of permitting human readability. Furthermore, there are many alternative

ways of representing values and arrays in binary, which could cause incompatibilities if

different users encode binary in different ways and then distribute the Feature Value files

to others. This could also pose problems with respect to data longevity. One final related

issue is that XML validation processing cannot be applied to binary representations,

thereby increasing the work that must be performed directly by ACE XML parsers. All of

this having been said, it is always desirable to avoid excessively large files, so this is

something that needs to be considered further.

The representation of feature values consisting of N-dimensional arrays is another

issue that needs to be considered further. All of the options supported by ACE XML 2.0

can require a significant amount of space to represent large N-dimensional arrays, so the

73

addition of a binary representation option to the specification might be useful in cases

where this could be a concern and where human readability is not a priority.

Another issue that would be appropriate to pursue would be the design of some

external file format for specifying a vocabulary that could be defined with respect to units

that are specified using the coord_units element. This would, for example, provide a way

to automatically make a recording annotated with times stamps based on milliseconds

compatible with another annotated based on samples (if the sampling rate is known, of

course).

It would also be useful to take advantage of existing metadata standards in general.

One sample approach might be to integrate Dublin Core RDF functionality into the ACE

XML formats.
31

Complex numbers also represent something that needs to be considered further. Under

the current implementation, complex numbers can be simply represented as feature

vectors of size 2. Unfortunately, this does not explicitly distinguish them from any other

feature vector of size 2. Ideally, one would like to have some way of typing complex

numbers in the same way that doubles or strings can be typed. Unfortunately, there is no

complex primitive type in XML, nor is there a complex primitive in many of the most

common programming languages, including Java. Furthermore, with respect to array

representation, JSON does not allow the explicit use of complex numbers in arrays,

beyond the current implicit practice of using general sub-arrays of size 2. This limitation

of JSON is in itself a strong argument, in particular, against using an explicit complex

number type. Furthermore, in most cases feature values are simply treated as features

during machine learning, so it is often not relevant if a complex feature value is explicitly

typed as such. Nevertheless, it could be important to more sophisticated learning

techniques to have an explicit complex data type, so further though needs to be put into

incorporating explicit complex typing into ACE XML Feature Value and Feature

Description files, in both Cartesian and polar forms.

Another issue to address is multilingual support. XML is generally Unicode-based, so

there is built-in support for many character sets, but testing of the ACE XML processing

software to date has focused on English and French data, a scope that needs to be

31

 dublincore.org/schemas/rdfs/ and dublincore.org/documents/dc-rdf/index.shtml

74

expanded to ensure that the file formats are ready for wide international use. Further

thought is needed in this area.

It would also be helpful to define specific standards for setting unique keys for the

ACE XML ID fields that are used to merge data stored in the four different file formats.

The onus is currently on the data encoder to ensure uniqueness, something that could

potentially result in missed correspondences and conflicts. One possible solution might be

to use something such as Music Brainz
32

 IDs as primary keys, for example, but solutions

like this tend to focus only on specific types of data, namely audio in this particular case.

Extracting Music Brainz IDs for something like MIDI files is not tenable. Further thought

is needed in this area as well.

There would also be advantages to writing versions of each of the ACE XML DTDs

using an alternative XML schema that would specify the same formats using an

alternative methodology. Such schemas would co-exist with the current DTDs, due to the

advantages of DTDs expressed in Section 7.5 with respect to accessibility to new ACE

XML users. The main advantage offered by the use of an alternative more expressive

schema format is the offloading of some of the file validation load from the ACE XML

parsers to the general XML parsing libraries, since constraints on what could validly be

contained in XML clauses could be more precisely defined.

Once the ACE XML 2.0 file formats are finalized, the next step will be to update the

ACE parsers, processing utilities and data structures. The ACE API is ready as is for the

porting of ACE XML 1.1 functionality to external software, but significant updates will

be necessary to make it ACE XML 2.0 ready.

The implementation of reading, writing and processing ports for specific existing

widely used MIR systems like Marsyas and CLAM and for general programming

environments like Matlab and C++ will likely do much to encourage the wide adoption of

the ACE XML formats by making them more easily accessible. Translation software will

also be needed to translate information stored in existing formats, including ACE XML

1.1, into ACE XML 2.0.

Another area for future research is the development of a standardized way of storing

lyrics for processing. Lyrics represent a potentially very rich source of information that is

32

 musicbrainz.org

75

currently underexploited in MIR, and it might be useful to develop a new ACE XML

format specifically designed for storing lyrics and making it easy to extract various kinds

of features from them.

It would also be helpful to develop a standardized file format for specifying queries

that could be applied to data stored in ACE XML files. There are many general possible

sources of inspiration, such as SQL, Z39.50
33

 and FRBR.
34

7.14 Sample file appendix

This section includes reproductions of complete ACE XML file samples for each of

the ACE XML 1.1 and ACE XML 2.0 file formats. The comments clause of each of these

files contains a description of how to use the file format in general. The first four of these

sample files is set up to express information corresponding to the Weka ARFF file

described in Figure 7.5, for the purpose of comparison between ACE XML 1.1 and Weka

ARFF. The ACE XML files after these first four are intended to illustrate proposed

changes to the ACE XML formats beyond the four basic stable ACE XML 1.1 formats.

<?xml version="1.0"?>

<!DOCTYPE feature_vector_file [

 <!ELEMENT feature_vector_file (comments, data_set+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT data_set (data_set_id, section*, feature*)>

 <!ELEMENT data_set_id (#PCDATA)>

 <!ELEMENT section (feature+)>

 <!ATTLIST section start CDATA "" stop CDATA "">

 <!ELEMENT feature (name, v+)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT v (#PCDATA)>

]>

<feature_vector_file>

 <comments>This is an example of an XML file that stores extracted features

 that are to be used for training, testing or classification. The data_set_id

 element identifies the unique identifier of an instance that a particular set

 of features correspond to, in this case a file path. The section element

 delineates different sections of a given data set that are to be classified

 independently or semi-independently, such as analysis windows. The start and

 stop tags indicate when a section begins and ends, typically in terms of time

 stamps. The feature element delineates the different (potentially multi-

 dimensional) features extracted from an instance or section of an instance.

 The name element identifies the unique name of a particular feature. The v

 element indicates the value for a particular dimension of a

 feature.</comments>

33

 www.loc.gov/z3950/agency/
34

 www.ifla.org/VII/s13/wgfrbr/index.htm

76

 <data_set>

 <data_set_id>C:\Recordings\Handel_4.wav</data_set_id>

 <section start="0" stop="99">

 <feature>

 <name>Spectral Centroid</name>

 <v>0.0</v>

 </feature>

 </section>

 <section start="100" stop="199">

 <feature>

 <name>Spectral Centroid</name>

 <v>440.0</v>

 </feature>

 </section>

 <section start="200" stop="283">

 <feature>

 <name>Spectral Centroid</name>

 <v>526.0</v>

 </feature>

 </section>

 <feature>

 <name>Duration</name>

 <v>250.0</v>

 </feature>

 </data_set>

 <data_set>

 <data_set_id>C:\Recordings\Handel_5.wav</data_set_id>

 <section start="0" stop="99">

 <feature>

 <name>Spectral Centroid</name>

 <v>0.0</v>

 </feature>

 </section>

 <section start="100" stop="199">

 <feature>

 <name>Spectral Centroid</name>

 <v>220.0</v>

 </feature>

 </section>

 <section start="200" stop="299">

 <feature>

 <name>Spectral Centroid</name>

 <v>115.0</v>

 </feature>

 </section>

 <section start="300" stop="342">

 <feature>

 <name>Spectral Centroid</name>

 <v>115.0</v>

 </feature>

 </section>

 <feature>

 <name>Duration</name>

 <v>372.5</v>

 </feature>

 </data_set>

 <data_set>

 <data_set_id>C:\Recordings\UnknownFile.wav</data_set_id>

 <section start="50" stop="99">

 <feature>

77

 <name>Spectral Centroid</name>

 <v>854.6</v>

 </feature>

 </section>

 <feature>

 <name>Duration</name>

 <v>960.3</v>

 </feature>

 </data_set>

</feature_vector_file>

Code Sample 7.1: A complete sample ACE XML 1.1 Feature Value file. This file starts

with the Feature Value DTD, includes explanatory comments and specifies features for

three windowed audio files. This file encodes the same feature values as those

expressed in the Weka ARFF file shown in Figure 7.5. Some of the most essential

differences between the two files are: the Feature Value file does not include class labels

(which are instead found in Instance Label file shown in Code Sample 7.3), analysis

windows are linked in the ACE XML file to the recording that they are extracted from and

are each associated with time stamps, and the Duration feature is only specified in the

ACE XML file for recordings as a whole, while the Spectral Centroid feature is only

expressed in analysis windows.

<?xml version="1.0"?>

<!DOCTYPE feature_key_file [

 <!ELEMENT feature_key_file (comments, feature+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT feature (name, description?, is_sequential, parallel_dimensions)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT description (#PCDATA)>

 <!ELEMENT is_sequential (#PCDATA)>

 <!ELEMENT parallel_dimensions (#PCDATA)>

]>

<feature_key_file>

 <comments>This is an example of an XML file that stores abstract data about

 features. The name element specifies the unique name of a feature. The

 optional description element can be used to include arbitrary descriptions or

 other metadata about features. The is_sequential element specifies whether or

 not the feature can be extracted from sub-sections of an instance. A value of

 true means that it can, and a value of false means that the feature can only

 be extracted from instances as a whole, not from their sub-sections. The

 parallel_dimensions element specifies the dimensionality of extracted vectors

 of the feature. This value will be 1 unless the feature is a multi-

 dimensional feature.</comments>

 <feature>

 <name>Spectral Centroid</name>

 <description>The spectral centre of mass of a signal window.</description>

 <is_sequential>true</is_sequential>

 <parallel_dimensions>1</parallel_dimensions>

 </feature>

78

 <feature>

 <name>Duration</name>

 <description>The duration in ms of a recording.</description>

 <is_sequential>false</is_sequential>

 <parallel_dimensions>1</parallel_dimensions>

 </feature>

</feature_key_file>

Code Sample 7.2: A complete sample ACE XML 1.1 Feature Description file. This file

starts with the Feature Description DTD, includes explanatory comments and specifies

the characteristics of two features, one of which is extracted from analysis windows of

records, and one of which is extracted from recordings as a whole. This file encodes

details about the features found in the Feature Value file shown in Code Sample 7.1.

<?xml version="1.0"?>

<!DOCTYPE classifications_file [

 <!ELEMENT classifications_file (comments, data_set+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT data_set (data_set_id, misc_info*, role?, classification)>

 <!ELEMENT data_set_id (#PCDATA)>

 <!ELEMENT misc_info (#PCDATA)>

 <!ATTLIST misc_info info_type CDATA "">

 <!ELEMENT role (#PCDATA)>

 <!ELEMENT classification (section*, class*)>

 <!ELEMENT section (start, stop, class+)>

 <!ELEMENT class (#PCDATA)>

 <!ELEMENT start (#PCDATA)>

 <!ELEMENT stop (#PCDATA)>

]>

<classifications_file>

 <comments>This is an example of an XML file that stores class labels for

 instances and/or their sub-sections. The data_set element is used to

 delineate the start of each new overall instance, such as a musical

 recording. The data_set_id element is used to specify a unique identifier

 for each instance, such as a file path or a URI. The optional misc_info

 element can be used to provide as much metadata as desired to accompany each

 instance, and allows the specification of an info_type attribute to identify

 the type of each piece of metadata. The optional role element can be used to

 specify whether a file is to be used for training or testing in a particular

 evaluation run. The classification element is used to indicate the section of

 each data_set clause devoted to specifying actual class labels. The section

 element is used to delineate the sub-sections of instances, and the start and

 stop elements specify the potentially overlapping portions of the instance

 that each sub-section corresponds to. The class element is used to specify

 class labels for either instances as a whole or individual sub-sections of

 instances. More than one class label may be specified per instance or per

 sub-section.</comments>

 <data_set>

 <data_set_id>C:\Recordings\Handel_4.wav</data_set_id>

 <misc_info info_type="Composer">Handel</misc_info>

 <role>training</role>

 <classification>

 <section>

 <start>0</start>

 <stop>89</stop>

79

 <class>Silence</class>

 </section>

 <section>

 <start>90</start>

 <stop>194</stop>

 <class>Music</class>

 </section>

 <section>

 <start>195</start>

 <stop>299</stop>

 <class>Applause</class>

 </section>

 </classification>

 </data_set>

 <data_set>

 <data_set_id>C:\Recordings\Handel_5.wav</data_set_id>

 <role>training</role>

 <classification>

 <section>

 <start>0</start>

 <stop>88</stop>

 <class>Applause</class>

 </section>

 <section>

 <start>89</start>

 <stop>110</stop>

 <class>Speech</class>

 </section>

 <section>

 <start>111</start>

 <stop>157</stop>

 <class>Silence</class>

 </section>

 <section>

 <start>158</start>

 <stop>280</stop>

 <class>Music</class>

 </section>

 <section>

 <start>281</start>

 <stop>322</stop>

 <class>Applause</class>

 </section>

 </classification>

 </data_set>

 <data_set>

 <data_set_id>C:\Recordings\UnknownFile.wav</data_set_id>

 <misc_info info_type="Note">Not manually classified yet</misc_info>

 <classification></classification>

 </data_set>

</classifications_file>

Code Sample 7.3: A complete sample ACE XML 1.1 Instance Label file. This file starts

with the Instance Label DTD, includes explanatory comments and specifies model class

labels for sections of three recordings. No model classes are specified for the recordings

as a whole, but this could certainly have been done within the Instance Label

specification if desired. This file encodes the same class labels as those expressed in

80

the Weka ARFF file shown in Figure 7.5. Some of the most essential differences

between this file and the ARFF file are: the Instance Label file does not include feature

values (which are instead found in Feature Value file shown in Code Sample 7.1), class

labels are explicitly associated with sub-sections that have precise time stamps rather

than with overall recordings but there is no way to make this distinction in an ARFF file,

identifying metadata is provided for each recording but there is no way to explicitly

identify instances in ARFF files other than using comments, and the role of each of the

instances for use as training or testing can be explicitly specified in the Instance Label

file.

<?xml version="1.0"?>

<!DOCTYPE taxonomy_file [

 <!ELEMENT taxonomy_file (comments, parent_class+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT parent_class (class_name, sub_class*)>

 <!ELEMENT class_name (#PCDATA)>

 <!ELEMENT sub_class (class_name, sub_class*)>

]>

<taxonomy_file>

 <comments>This is an example of an XML file that stores a hierarchical

 taxonomy of class labels. The parent_class element is used to define class

 labels at the highest level of the taxonomical tree. The optional sub_class

 element, which can be used recursively, is used to specify hierarchically

 subordinate classes of parent classes or of other sub-classes. If one wishes

 to use a flat taxonomy, then the sub-class element can simply not be used at

 all. The class_name element specifies the name of each class

 label.</comments>

 <parent_class>

 <class_name>Sound</class_name>

 <sub_class>

 <class_name>Speech</class_name>

 </sub_class>

 <sub_class>

 <class_name>Applause</class_name>

 </sub_class>

 <sub_class>

 <class_name>Music</class_name>

 </sub_class>

 </parent_class>

 <parent_class>

 <class_name>Silence</class_name>

 </parent_class>

</taxonomy_file>

81

Code Sample 7.4: A complete sample ACE XML 1.1 Class Ontology file. This file starts

with the Class Ontology DTD, includes explanatory comments and specifies the root

level classes (Sound and Silence) as well as three subordinate classes for the former

(Speech, Applause and Music). This results in a total of four candidate leaf classes

(Silence, Speech, Applause and Music). This file encodes details of the same class

labels that are used in the Instance Label file shown in Code Sample 7.3 as well as in

the Weka ARFF file shown in Figure 7.5. However, the ARFF format provides no way to

structure the candidate classes in any way, as Class Ontology files do.

<?xml version="1.0"?>

<!DOCTYPE ace_project_file [

 <!ELEMENT ace_project_file (comments, taxonomy_path,

 feature_definitions_path, feature_vectors_path,

 model_classifications_path, gui_preferences_path,

 classifier_settings_path,

 trained_classifiers_path, weka_arff_path)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT taxonomy_path (#PCDATA)>

 <!ELEMENT feature_definitions_path (path*)>

 <!ELEMENT feature_vectors_path (path*)>

 <!ELEMENT model_classifications_path (path*)>

 <!ELEMENT gui_preferences_path (#PCDATA)>

 <!ELEMENT classifier_settings_path (#PCDATA)>

 <!ELEMENT trained_classifiers_path (#PCDATA)>

 <!ELEMENT weka_arff_path (#PCDATA)>

 <!ELEMENT path (#PCDATA)>

]>

<ace_project_file>

 <comments>This is an example of an XML file that stores a list of ACE XML

 files that have been associated with each other for some form of processing

 together. The taxonomy_path element stores a reference (e.g. a file path or

 URI) to an ACE XML Class Ontology file. The feature_definitions_path element

 stores references to potentially multiple ACE XML Feature Description files.

 The feature_vectors_path element stores references to potentially multiple

 ACE XML Feature Value files. The model_classifications_path element stores

 references to potentially multiple ACE XML Instance Label files. The

 gui_preferences_path and classifier_settings_path elements store references

 to, respectively, ACE GUI preference and ACE machine learning settings in as

 of yet unspecified formats. The trained_classifiers_path element refers to a

 trained model stored as a Weka serialized object. Finally, the weka_arff_path

 element refers to a file in Weka ARFF format that may be combined with or

 used instead of ACE XML files.</comments>

 <taxonomy_path>/jMIR/TestFiles/ClassOntology.xml</taxonomy_path>

 <feature_definitions_path>

 <path>/jMIR/TestFiles/FeatureDescription.xml</path>

 </feature_definitions_path>

 <feature_vectors_path>

 <path>/jMIR/TestFiles/FeatureVector.xml</path>

 </feature_vectors_path>

 <model_classifications_path>

 <path>/jMIR/TestFiles/ModelInstanceLabels.xml</path>

 <path>/jMIR/TestFiles/PredictedInstanceLabels.xml</path>

 </model_classifications_path>

82

 <gui_preferences_path></gui_preferences_path>

 <classifier_settings_path></classifier_settings_path>

 <trained_classifiers_path></trained_classifiers_path>

 <weka_arff_path></weka_arff_path>

</ace_project_file>

Code Sample 7.5: A complete sample ACE XML 1.1 Project file. This file specifies a

Feature Value file, a Class Ontology file and a Feature Description file that are to be

used together. Two Instance Label files are also specified, one providing model class

labels and the other for noting predicted class labels based on the output of a pattern

recognition system. The other potential fields are left blank, as they are not applicable to

this particular project.

<?xml version="1.0"?>

<!DOCTYPE ace_xml_project_file_2_0 [

 <!ELEMENT ace_xml_project_file_2_0 (comments?, feature_value_id,

 instance_label_id, class_ontology_id,

 feature_description_id, weka_arff_id?,

 trained_model_id?, uri?)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT feature_value_id (path*)>

 <!ELEMENT instance_label_id (path*)>

 <!ELEMENT class_ontology_id (#PCDATA)>

 <!ELEMENT feature_description_id (path*)>

 <!ELEMENT weka_arff_id (#PCDATA)>

 <!ELEMENT trained_model_id (#PCDATA)>

 <!ELEMENT uri (path*)>

 <!ATTLIST uri predicate CDATA #IMPLIED>

 <!ELEMENT path (#PCDATA)>

]>

<ace_xml_project_file_2_0>

 <comments>

 This is an example of an ACE XML 2.0 Project file. Files of this type

 are used to store a list of ACE XML files and other resources that have

 been associated with one another for some form of processing together.

 The feature_value_id element is used to store references (e.g., file

 paths or URIs) to zero to many ACE XML Feature Value files. The

 instance_label_id element is used to store references to zero to many ACE

 XML Instance Label files. The class_ontology_id element is used to a store

 reference to zero or one ACE XML Class Ontology file. The

 feature_description_id element is used to store references to zero to many

 ACE XML Feature Description files. The optional weka_arff_id element can

 be used to refer to a file in Weka ARFF format that may be combined with

 or used instead of ACE XML files. The optional trained_classifiers_path

 element can be used to refer to a trained classification model.

 Finally, zero to many uri clauses may be used to refer to external

 resources. The optional predicate attribute may be used with uri tags to

 indicate the kind of relationship between the subject containing the uri

 clause and the object that it refers to.

 </comments>

 <feature_value_id>

 <path>./2_0_FeatureValue.xml</path>

 </feature_value_id>

 <instance_label_id>

83

 <path>./2_0_InstanceLabel.xml</path>

 </instance_label_id>

 <class_ontology_id>./ClassOntology.xml</class_ontology_id>

 <feature_description_id>

 <path>./2_0_FeatureDescription.xml</path>

 </feature_description_id>

 <uri>

 <path>http://jmir.sourceforge.net/</path>

 <path>http://sourceforge.net/projects/jmir</path>

 </uri>

</ace_xml_project_file_2_0>

Code Sample 7.6: A complete sample ACE XML 2.0 Project file. This file expresses

links to the ACE XML 2.0 sample files shown in Code Samples 7.7 to 7.10 as well as to

two jMIR SourceForge web sites.

<?xml version="1.0"?>

<!DOCTYPE ace_xml_feature_value_file_2_0 [

 <!ELEMENT ace_xml_feature_value_file_2_0 (comments?, related_resources?,

 instance+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT related_resources (feature_value_file*, feature_description_file*,

 instance_label_file*, class_ontology_file*,

 project_file*, uri*)>

 <!ELEMENT feature_value_file (#PCDATA)>

 <!ELEMENT feature_description_file (#PCDATA)>

 <!ELEMENT instance_label_file (#PCDATA)>

 <!ELEMENT class_ontology_file (#PCDATA)>

 <!ELEMENT project_file (#PCDATA)>

 <!ELEMENT uri (#PCDATA)>

 <!ATTLIST uri predicate CDATA #IMPLIED>

 <!ELEMENT instance (instance_id, uri*, extractor*, coord_units?,

 s*, precise_coord*, f*)>

 <!ELEMENT instance_id (#PCDATA)>

 <!ELEMENT extractor (#PCDATA)>

 <!ATTLIST extractor fname CDATA #REQUIRED>

 <!ELEMENT coord_units (#PCDATA)>

 <!ELEMENT s (uri*, f+)>

 <!ATTLIST s b CDATA #REQUIRED e CDATA #REQUIRED>

 <!ELEMENT precise_coord (uri*, f+)>

 <!ATTLIST precise_coord coord CDATA #REQUIRED>

 <!ELEMENT f (fid, uri*, (v+ | vd+ | vs+ | vj))>

 <!ATTLIST f type (int | double | float | complex | string) #IMPLIED>

 <!ELEMENT fid (#PCDATA)>

 <!ELEMENT v (#PCDATA)>

 <!ELEMENT vd (#PCDATA)>

 <!ATTLIST vd d0 CDATA #REQUIRED d1 CDATA #IMPLIED d2 CDATA #IMPLIED

 d3 CDATA #IMPLIED d4 CDATA #IMPLIED d5 CDATA #IMPLIED

 d6 CDATA #IMPLIED d7 CDATA #IMPLIED d8 CDATA #IMPLIED

 d9 CDATA #IMPLIED>

 <!ELEMENT vs (d+, v)>

 <!ELEMENT d (#PCDATA)>

 <!ELEMENT vj (#PCDATA)>

]>

<ace_xml_feature_value_file_2_0>

 <comments>

84

 This is an example of an ACE XML 2.0 Feature Value file. Files of this

 type are used to store feature values that have been extracted from

 instances. The optional comments and related_resources elements may be

 used to, respectively, informally note information about the file and

 provide links to related ACE XML files and other resources. In the latter

 case, it is generally preferable to use ACE XML Project files directly to

 associate files with one another instead.

 Each instance is stored in an instance clause and is uniquely

 identified using the instance_id element. This instance_id may be used to

 link each instance and its parts to appropriate class labels for the

 instance in an associated ACE XML Instance Label file. The feature

 extraction software used to extract each feature for an instance may be

 specified with the extractor element, where the contents specifies the

 software name and the fname attribute specifies the name of the feature.

 Features may be expressed for the instance as a whole (by entering them

 directly in the instance clause), for potentially overlapping sub-sections

 of the instance (by entering them in s clauses with b and e attributes

 noting the beginning and end of each section, typically but not

 necessarily in milliseconds) or for single points in the instance (by

 entering them in precise_coord clauses). In the cases of sub-sections

 and of points specified within instances, it is good practice to specify

 the units (e.g., seconds, ms, pixels, etc.) corresponding to the location

 markers. The optional coord_units element can be used to do this for each

 instance.

 The value(s) for each feature are entered in an f clause. Each feature

 is uniquely identified using the fid element, which may be used to

 associate the feature with a feature description in an associated ACE XML

 Feature Description file.

 Each feature may consist of a single value, 1-D vectors or arrays with

 an arbitrary number of dimensions. There are a number of alternative ways

 of specifying feature values. Any type of feature value from a single

 value to an N-dimensional array can be entered as a JSON array (i.e.,

 expressed using potentially nested square brackets) within a vj clause.

 Single value features or 1-D feature vectors may alternatively be

 represented using one or more v clauses. In the case of 1-D, to 10-D

 arrays, the additional alternative of specifying specific array

 coordinates with the d0 to d9 attributes is available using vd clauses,

 an option that permits sparse arrays.

 The final alternative for encoding arrays is offered by the vs element,

 which is more verbose but allows arrays with an arbitrary number of

 dimensions as well as sparse arrays. Each vs clause contains as many d

 elements as needed to specify array coordinates, followed by a single v

 element to specify the feature value. It is the responsibility of the ACE

 XML encoder to ensure that each vs clause has the same correct number of d

 elements and uses them in the same consistent order.

 It is possible to associate the values of particular features with

 particular data types using the type attribute, but in general it is

 preferable to omit this information in Feature Value files and specify it

 in ACE XML Feature Description files instead.

 The optional uri element may be used to associate individual instance,

 section, precise coordinate or feature clauses with external resources.

 The optional predicate attribute may be used with uri tags to indicate the

 kind of relationship between the subject containing the uri clause and the

 object that it refers to.

 The artificially generated data specified below includes three

 instances. The first shows how feature values can be expressed for

 overlapping sub-sections of an instance, unitary parts of an instance or

 for an instance as a whole. The second instance demonstrates how features

 of different dimensionalities can be expressed in different ways, namely

 single-value features, feature vectors, feature arrays and feature arrays

 of larger dimensionalities. The third and final instance demonstrates how

 features can be given specific data types.

 </comments>

85

 <related_resources>

<feature_description_file>./2_0_FeatureDescription.xml</feature_description_file

>

 <instance_label_file>./2_0_InstanceLabel.xml</instance_label_file>

 <project_file>./2_0_Project.xml</project_file>

 <uri>http://jmir.sourceforge.net/</uri>

 <uri>http://sourceforge.net/projects/jmir</uri>

 </related_resources>

 <instance>

 <instance_id>Sub-Section Example</instance_id>

 <coord_units>ms</coord_units>

 <s b="0" e="99">

 <f>

 <fid>Feature Calculated Over Analysis Windows</fid>

 <v>0.5</v>

 </f>

 </s>

 <s b="80" e="120">

 <f>

 <fid>Feature Calculated Over Analysis Windows</fid>

 <v>0.3</v>

 </f>

 </s>

 <s b="100" e="150">

 <f>

 <fid>Feature Calculated Over Analysis Windows</fid>

 <v>3.0</v>

 </f>

 </s>

 <precise_coord coord="100">

 <f>

 <fid>Instantaneous Feature</fid>

 <v>180.0</v>

 </f>

 </precise_coord>

 <precise_coord coord="104">

 <f>

 <fid>Instantaneous Feature</fid>

 <v>350.0</v>

 </f>

 </precise_coord>

 <f>

 <fid>Feature Calculated For An Instance As A Whole</fid>

 <v>1000.8</v>

 </f>

 </instance>

 <instance>

 <instance_id>Feature Dimensionality Example</instance_id>

 <f>

 <fid>Single Value Feature</fid>

 <v>1</v>

 </f>

 <f>

 <fid>1-D Feature Vector</fid>

 <v>1</v>

 <v>2</v>

86

 <v>3</v>

 </f>

 <f>

 <fid>Second 1-D Feature Vector</fid>

 <vd d0="0">1</vd>

 <vd d0="1">2</vd>

 </f>

 <f>

 <fid>2-D Table Feature</fid>

 <vd d0="0" d1="0">1</vd>

 <vd d0="0" d1="1">2</vd>

 <vd d0="0" d1="2">3</vd>

 <vd d0="1" d1="0">11</vd>

 <vd d0="1" d1="1">22</vd>

 <vd d0="1" d1="2">33</vd>

 </f>

 <f>

 <fid>Second 2-D Table Feature</fid>

 <vs>

 <d>0</d><d>0</d>

 <v>1</v>

 </vs>

 <vs>

 <d>0</d><d>1</d>

 <v>2</v>

 </vs>

 <vs>

 <d>0</d><d>2</d>

 <v>3</v>

 </vs>

 <vs>

 <d>1</d><d>0</d>

 <v>11</v>

 </vs>

 <vs>

 <d>1</d><d>1</d>

 <v>22</v>

 </vs>

 <vs>

 <d>1</d><d>2</d>

 <v>33</v>

 </vs>

 </f>

 <f>

 <fid>3-D Array Feature</fid>

<vj>[[[[1],[2],[3],[4]],[[11],[22],[33],[44]],[[111],[222],[333],[444]]],[[[4],[

5],[6],[7]],[[44],[55],[66],[77]],[[444],[555],[666],[777]]]]</vj>

 </f>

 </instance>

 <instance>

 <instance_id>Typed Data Feature Example</instance_id>

 <f>

 <fid>Untyped Feature</fid>

 <v>1</v>

 </f>

 <f type="int">

 <fid>Integer Feature</fid>

 <v>1</v>

 </f>

 <f type="double">

 <fid>Double Feature</fid>

 <v>1.0</v>

87

 </f>

 <f type="string">

 <fid>String Feature</fid>

 <v>one</v>

 </f>

 </instance>

</ace_xml_feature_value_file_2_0>

Code Sample 7.7: A complete sample ACE XML 2.0 Feature Value file. An explanation

of the file is provided in its comments clause. This file expresses artificially generated

feature values extracted from the same instances referred to by the Instance Label file

shown in Code Sample 7.9. The feature types correspond to those described by the

Feature Description file shown in Code Sample 7.8.

<?xml version="1.0"?>

<!DOCTYPE ace_xml_feature_description_file_2_0 [

 <!ELEMENT ace_xml_feature_description_file_2_0 (comments?,

related_resources?,

 global_parameter*, feature+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT related_resources (feature_value_file*, feature_description_file*,

 instance_label_file*, class_ontology_file*,

 project_file*, uri*)>

 <!ELEMENT feature_value_file (#PCDATA)>

 <!ELEMENT feature_description_file (#PCDATA)>

 <!ELEMENT instance_label_file (#PCDATA)>

 <!ELEMENT class_ontology_file (#PCDATA)>

 <!ELEMENT project_file (#PCDATA)>

 <!ELEMENT uri (#PCDATA)>

 <!ATTLIST uri predicate CDATA #IMPLIED>

 <!ELEMENT feature (fid, description?, related_feature*, uri*, scope,

 dimensionality?, data_type?, parameter*)>

 <!ELEMENT fid (#PCDATA)>

 <!ELEMENT description (#PCDATA)>

 <!ELEMENT related_feature (fid, relation_id?, uri*, explanation?)>

 <!ELEMENT relation_id (#PCDATA)>

 <!ELEMENT explanation (#PCDATA)>

 <!ELEMENT scope (#PCDATA)>

 <!ATTLIST scope overall (true|false) #REQUIRED

 sub_section (true|false) #REQUIRED

 precise_coord (true|false) #REQUIRED>

 <!ELEMENT dimensionality (uri*, size*)>

 <!ATTLIST dimensionality orthogonal_dimensions CDATA #REQUIRED>

 <!ELEMENT size (#PCDATA)>

 <!ELEMENT data_type (#PCDATA)>

 <!ATTLIST data_type type (int | double | float | complex | string) #REQUIRED>

 <!ELEMENT global_parameter (parameter_id, uri*, description?, value?)>

 <!ELEMENT parameter (parameter_id, uri*, description?, value?)>

 <!ELEMENT parameter_id (#PCDATA)>

 <!ELEMENT value (#PCDATA)>

]>

<ace_xml_feature_description_file_2_0>

 <comments>

 This is an example of an ACE XML 2.0 Feature Description file. Files of

 this type are used to store overall information about features in an

 abstract sense, not actual feature values.

88

 The optional comments and related_resources elements may be used to,

 respectively, informally note information about the file and provide links

 to related ACE XML files and other resources. In the latter case, it is

 generally preferable to use ACE XML Project files directly to associate

 files with one another instead.

 Each feature is stored in a feature clause and is uniquely identified

 using the fid element. This fid may be used to form associations with ACE

 XML Feature Value files that contain values extracted for these features

 in relation to particular instances. The description element may be used

 to provide qualitative information about each feature.

 Features may each be appropriate to extract for an instance as a whole,

 for sub-sections of an instance and/or for precise points in an instance

 (e.g., a moment in time). This information can be specified using the

 scope element.

 Although this information may be omitted if it varies, the

 orthogonal_dimensions attribute of the dimensionality element can be used

 to specify the number of different dimensions of the coordinate system for

 a feature (e.g., one for a feature vector, two for a table structure,

 etc.) and the size element can be used to indicate the size of each of

 these dimensions (e.g., number or rows and number of columns in a table

 structure).

 The option is provided to associate the values of particular features

 with particular data types using the type attribute of the data_type

 element. This information may be specified in ACE XML Feature Value files

 as well, but Feature Description files take precedence in the case of

 contradictions.

 Specific parameters may be associated with individual features, such as

 the roll-off point for the Spectral Roll-off feature, for example. A

 parameter clause should be used for each such parameter of a feature, the

 parameter_id element is used to identify the parameter uniquely, the

 description element can be used to describe the parameter in general, and

 the value element can be used to express numerical parameter values.

 Global feature parameters may also be specified that apply to all

 features in the Feature Description file using the global_parameter

 element. This is useful for specifying overall pre-processing of audio

 files to be applied before all features are extracted, for example, such

 as downsampling or normalization. The global_parameter element works with

 the same mechanics as the parameter element.

 An optional related_feature clause may be used to specify other

 features that are related to any given feature. This could be used, for

 example, to note that one feature is an alternative implementation of

 another. The fid element in the related feature clause should be used to

 specify the name of a feature specified in the fid clause of another

 feature. The relation_id element can be used to specify a specific

 externally defined type of relationship, and the explanation element can

 be used to provide a qualitative description of the relationship.

 The optional uri element may be used to associate individual features,

 feature dimensionalities, feature parameters and feature relations with

 external resources. The optional predicate attribute may be used with uri

 tags to indicate the kind of relationship between the subject containing

 the uri clause and the object that it refers to.

 The artificially generated data specified below includes 14 features.

 These features demonstrate a variety of ways that features can be

 configured. The features explained here are the same used in the

 artificial feature values expressed in the 2_0_FeatureValue.xml ACE XML

 Feature Value file.

 </comments>

 <related_resources>

 <feature_value_file>./2_0_FeatureValue.xml</feature_value_file>

 <project_file>./2_0_Project.xml</project_file>

 <uri>http://jmir.sourceforge.net/</uri>

 <uri>http://sourceforge.net/projects/jmir</uri>

89

 </related_resources>

 <feature>

 <fid>Feature Calculated Over Analysis Windows</fid>

 <description>An artificial feature.</description>

 <scope overall="false" sub_section="true" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="double"></data_type>

 </feature>

 <feature>

 <fid>Instantaneous Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="false" sub_section="false" precise_coord="true"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="double"></data_type>

 </feature>

 <feature>

 <fid>Feature Calculated For An Instance As A Whole.</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="double"></data_type>

 </feature>

 <feature>

 <fid>Single Value Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

 <fid>1-D Feature Vector</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>3</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

 <fid>Second 1-D Feature Vector</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>2</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

90

 <fid>2-D Table Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="2">

 <size>2</size>

 <size>3</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

 <fid>Second 2-D Table Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="2">

 <size>2</size>

 <size>3</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

 <fid>3-D Array Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="3">

 <size>2</size>

 <size>3</size>

 <size>4</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

 <fid>Untyped Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 </feature>

 <feature>

 <fid>Integer Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="int"></data_type>

 </feature>

 <feature>

 <fid>Double Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="double"></data_type>

 </feature>

 <feature>

91

 <fid>String Feature</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="false" precise_coord="false"></scope>

 <dimensionality orthogonal_dimensions="1">

 <size>1</size>

 </dimensionality>

 <data_type type="string"></data_type>

 </feature>

 <feature>

 <fid>Feature With Parameters</fid>

 <description>An artificial feature.</description>

 <scope overall="true" sub_section="true" precise_coord="false"></scope>

 <parameter>

 <parameter_id>Some Parameter</parameter_id>

 <description>Some parameter for this feature.</description>

 <value>27</value>

 </parameter>

 </feature>

</ace_xml_feature_description_file_2_0>

Code Sample 7.8: A complete sample ACE XML 2.0 Feature Description file. An

explanation of the file is provided in its comments clause. This file expresses abstract

information about features. The first twelve of these features correspond to the feature

values expressed in the Feature Value file shown in Code Sample 7.7.

<?xml version="1.0"?>

<!DOCTYPE ace_xml_instance_label_file_2_0 [

 <!ELEMENT ace_xml_instance_label_file_2_0 (comments?, related_resources?,

 instance+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT related_resources (feature_value_file*, feature_description_file*,

 instance_label_file*, class_ontology_file*,

 project_file*, uri*)>

 <!ELEMENT feature_value_file (#PCDATA)>

 <!ELEMENT feature_description_file (#PCDATA)>

 <!ELEMENT instance_label_file (#PCDATA)>

 <!ELEMENT class_ontology_file (#PCDATA)>

 <!ELEMENT project_file (#PCDATA)>

 <!ELEMENT uri (#PCDATA)>

 <!ATTLIST uri predicate CDATA #IMPLIED>

 <!ELEMENT instance (instance_id, misc_info*, related_instance*, uri*,

 coord_units?, section*, precise_coord*, class*)>

 <!ATTLIST instance role (training | testing | predicted) #IMPLIED>

 <!ELEMENT instance_id (#PCDATA)>

 <!ELEMENT related_instance (instance_id, relation_id?, uri*, explanation?)>

 <!ELEMENT relation_id (#PCDATA)>

 <!ELEMENT explanation (#PCDATA)>

 <!ELEMENT misc_info (info_id, uri*, info)>

 <!ELEMENT info_id (#PCDATA)>

 <!ELEMENT info (#PCDATA)>

 <!ELEMENT coord_units (#PCDATA)>

 <!ELEMENT section (uri*, class+)>

 <!ATTLIST section begin CDATA #REQUIRED end CDATA #REQUIRED>

 <!ELEMENT precise_coord (uri*, class+)>

 <!ATTLIST precise_coord coord CDATA #REQUIRED>

 <!ELEMENT class (class_id, uri*)>

 <!ATTLIST class weight CDATA "1">

 <!ATTLIST class source_comment CDATA #IMPLIED>

92

 <!ELEMENT class_id (#PCDATA)>

]>

<ace_xml_instance_label_file_2_0>

 <comments>

 This is an example of an ACE XML 2.0 Instance Label file. Files of this

 type are used to annotate class labels of instances. This can be used to

 specify ground-truth data used for training and evaluation, or it could

 specify predicted class labels output by a classification system, for

 example.

 The optional comments and related_resources elements may be used to,

 respectively, informally note information about the file and provide links

 to related ACE XML files and other resources. In the latter case, it is

 generally preferable to use ACE XML Project files directly to associate

 files with one another instead.

 Each instance is stored in an instance clause and is uniquely

 identified using the instance_id element. This instance_id may be used to

 link each instance and its parts to appropriate feature values for the

 instance in an associated ACE XML Feature Value file.

 The optional new related_instance element may be used within an

 instance clause to specify a relationship of any kind between the instance

 and any other instance, referred to using its instance_id. For example, it

 might be noted that one musical recording is a cover of another musical

 recording. The relation_id element can be used to specify a specific

 externally defined type of relationship, and the explanation element can

 be used to provide a qualitative description of the relationship.

 Similarly, the misc_info element may be used to specify any kind of

 metadata about an instance. The metadata field name is specified using

 the info_id element, and the metadata itself is put in an info clause.

 Each instance may be given a functional purpose using the role

 attribute, which can be used to specify whether the instance is to be used

 for training ground truth, for testing and evaluation or is labelled with

 class labels predicted by an external system.

 Class labels may be expressed for the instance as a whole (by entering

 them directly in the instance clause), for potentially overlapping sub-

 Sections of the instance (by entering them in section clauses with begin

 and end attributes noting the beginning and end of each section, typically

 but not necessarily in milliseconds) or for single points in the instance

 (by entering them in precise_coord clauses). In the cases of sub-sections

 and of ponts specified within instances, it is good practice to specify

 the units (e.g., seconds, ms, pixels, etc.) corresponding to the location

 markers. The optional coord_units element can be used to do this for each

 instance.

 Each class label is specified using the class_id element in a class

 clause. This class_id can be used to link to information about classes

 stored in an ACE XML Class Ontology file. The source_comment attribute

 can be used to specify how the labels were arrived at for a given

 instance (e.g. labeled by hand, classified automatically, etc.).

 Weighted class support may also be specified using the weight

 attribute. Weights specified here are assumed to be proportional, and

 should be normalized during parsing. Weights of 1 are assigned by default

 if no weight is explicitly specified.

 The optional uri element may be used to associate individual instance,

 section, precise coordinate or feature clauses with external resources.

 The optional predicate attribute may be used with uri tags to indicate the

 kind of relationship between the subject containing the uri clause and the

 object that it refers to.

 The artificial instance labels specified below correspond to the same

 instances for which artificial features are provided in the

 2_0_FeatureValue.xml ACE XML Feature Value file. Also, the artificial

 class labels used below match the candidate labels specified in the

 2_0_ClassOntology.xml ACE XML Class Ontology file. misc_info clauses are

93

 used below to explain each of the instances, and related_instance clauses

 are used to demonstrate the relationship between two of the instances.

 </comments>

 <related_resources>

 <feature_value_file>./2_0_FeatureValue.xml</feature_value_file>

 <class_ontology_file>./2_0_ClassOntology.xml</class_ontology_file>

 <project_file>./2_0_Project.xml</project_file>

 <uri>http://jmir.sourceforge.net/</uri>

 <uri>http://sourceforge.net/projects/jmir</uri>

 </related_resources>

 <instance>

 <instance_id>Sub-Section Example</instance_id>

 <misc_info>

 <info_id>Explanatory note</info_id>

 <info>

 The data below labels this instance as belonging to two different

 classes. The portion from 0 to 50 ms belongs only to Class Label 1

 and the portion from 50 ms to 150 ms belongs only to Class Label 2.

 Although this information could be fully expressed in only two of

 the section clauses below, additional redundant clauses are added

 below to demonstrate how precise coordinate and overall class

 annotations can be used. It also demonstrates how multi-class

 membership can be used, and how weighted class membership can be

 used. For example, the overall class labels for the instance include

 both of the classes because overall both classes are present, and

 Class Label 2 is given twice the weight because it covers twice the

 time interval of Class Label 1 in the instance overall. Again, this

 is for illustration only, and typically only the annotation shown

 for the Sub-Section Example Efficient instance would be used.

 </info>

 </misc_info>

 <related_instance>

 <instance_id>Sub-Section Example Efficient</instance_id>

 <relation_id>Copy</relation_id>

 </related_instance>

 <coord_units>ms</coord_units>

 <section begin="0" end="50">

 <class>

 <class_id>Class Label 1</class_id>

 </class>

 </section>

 <section begin="30" end="70">

 <class>

 <class_id>Class Label 1</class_id>

 </class>

 <class>

 <class_id>Class Label 2</class_id>

 </class>

 </section>

 <section begin="40" end="80">

 <class weight="1">

 <class_id>Class Label 1</class_id>

 </class>

 <class weight="3">

 <class_id>Class Label 2</class_id>

 </class>

 </section>

94

 <section begin="51" end="150">

 <class>

 <class_id>Class Label 2</class_id>

 </class>

 </section>

 <precise_coord coord="75">

 <class>

 <class_id>Class Label 2</class_id>

 </class>

 </precise_coord>

 <class weight="1">

 <class_id>Class Label 1</class_id>

 </class>

 <class weight="2">

 <class_id>Class Label 2</class_id>

 </class>

 </instance>

 <instance>

 <instance_id>Sub-Section Example Efficient</instance_id>

 <misc_info>

 <info_id>Explanatory note</info_id>

 <info>

 A more efficient representation of the same information shown in the

 Sub-Section Example.

 </info>

 </misc_info>

 <related_instance>

 <instance_id>Sub-Section Example</instance_id>

 <relation_id>Copy</relation_id>

 </related_instance>

 <coord_units>ms</coord_units>

 <section begin="0" end="50">

 <class>

 <class_id>Class Label 1</class_id>

 </class>

 </section>

 <section begin="51" end="150">

 <class>

 <class_id>Class Label 2</class_id>

 </class>

 </section>

 </instance>

 <instance>

 <instance_id>Feature Dimensionality Example</instance_id>

 <misc_info>

 <info_id>Explanatory note</info_id>

 <info>

 Unlike the Sub-Section Example instance, this instance is not

 broken into sections. It still has multiple class labels, however,

 but in this case they overlap, instead of having a discrete

 sequential relationship as in the Sub-Section Example. In this

 case, no weights are specified, so it is assumed that the instance

 belongs to all three classes equally. Of course, weighted class

 memberships could have been specified if appropriate.

95

 </info>

 </misc_info>

 <class>

 <class_id>Shared Class Label 1</class_id>

 </class>

 <class>

 <class_id>Shared Class Label 2</class_id>

 </class>

 <class>

 <class_id>Shared Class Label 3</class_id>

 </class>

 </instance>

 <instance>

 <instance_id>Typed Data Feature Example</instance_id>

 <misc_info>

 <info_id>Explanatory note</info_id>

 <info>

 This instance belongs to only one class.

 </info>

 </misc_info>

 <class>

 <class_id>Class Label 1</class_id>

 </class>

 </instance>

</ace_xml_instance_label_file_2_0>

Code Sample 7.9: A complete sample ACE XML 2.0 Instance Label file. An explanation

of the file is provided in its comments clause. This file specifies class labels for particular

instances. The instances shown here correspond to the instances for which feature

values are expressed in the Feature Value file shown in Code Sample 7.7. Similarly, the

candidate classes correspond to those shown in the ACE XML Class Ontology file

outlined in Code Sample 7.10.

<?xml version="1.0"?>

<!DOCTYPE ace_xml_class_ontology_file_2_0 [

 <!ELEMENT ace_xml_class_ontology_file_2_0 (comments?, related_resources?,

 class+)>

 <!ATTLIST ace_xml_class_ontology_file_2_0 weights_relative (true|false)

 #REQUIRED>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT related_resources (feature_value_file*, feature_description_file*,

 instance_label_file*, class_ontology_file*,

 project_file*, uri*)>

 <!ELEMENT feature_value_file (#PCDATA)>

 <!ELEMENT feature_description_file (#PCDATA)>

 <!ELEMENT instance_label_file (#PCDATA)>

 <!ELEMENT class_ontology_file (#PCDATA)>

 <!ELEMENT project_file (#PCDATA)>

 <!ELEMENT uri (#PCDATA)>

 <!ATTLIST uri predicate CDATA #IMPLIED>

 <!ELEMENT class (class_id, misc_info*, uri*, related_class*, sub_class*)>

 <!ELEMENT class_id (#PCDATA)>

 <!ELEMENT misc_info (info_id, uri*, info)>

96

 <!ELEMENT info_id (#PCDATA)>

 <!ELEMENT info (#PCDATA)>

 <!ELEMENT related_class (class_id, relation_id?, uri*, explanation?)>

 <!ATTLIST related_class weight CDATA "1">

 <!ELEMENT relation_id (#PCDATA)>

 <!ELEMENT explanation (#PCDATA)>

 <!ELEMENT sub_class (class_id, relation_id?, uri*, explanation?)>

 <!ATTLIST sub_class weight CDATA "1">

]>

<ace_xml_class_ontology_file_2_0 weights_relative="true">

 <comments>

 This is an example of an ACE XML 2.0 Class Ontology file. Files of this

 type are used to store candidate class labels as well as information about

 the abstract relationships between classes.

 The optional comments and related_resources elements may be used to,

 respectively, informally note information about the file and provide links

 to related ACE XML files and other resources. In the latter case, it is

 generally preferable to use ACE XML Project files directly to associate

 files with one another instead.

 Each class is declared in a class element clause. Each is uniquely

 identified with the class_id element, which may be used to form

 connections with labelled instances stored in ACE XML Instance Label

 files.

 Metadata of any kind about each class can be stored using the misc_info

 element. The metadata field name is specified using the info_id element,

 and the metadata itself is put in an info clause.

 Two types of relationships may be specified between classes. The first

 type consists of general ontological relationships that can link any class

 with any other class unidirectionally. This is done using the

 related_class element. Bidirectional links can be formed by declaring the

 opposite class in each of the two class' related_class clauses.

 The second type of relationship is hierarchical. The sub_class element

 can be used to declare subordinate classes of any given class. Although

 subordinate classes can certainly have other classes subordinate to them

 in turn, there is no need to indicate parent classes in any way, as this

 information is implied.

 It is also possible to weight any related_class or sub_class connection

 using the weight attribute of both of these elements. Weights can be

 either absolute or relative (which means the weights for each class'

 connections are normalized on parsing), as defined by the global

 weights_relative attribute, which must be either true or false. If weight

 attributes are omitted then weights of 1 are assumed.

 Aside from the class_id of classes that are linked to, both the

 related_class and sub_class elements can also include qualitative

 explanations of each connection and a relation_id that corresponds to some

 externally defined keyword.

 The optional uri element may be used to associate individual instance,

 section, precise coordinate or feature clauses with external resources.

 The optional predicate attribute may be used with uri tags to indicate the

 kind of relationship between the subject containing the uri clause and the

 object that it refers to.

 The artificial class labels specified below correspond to the same

 labels that are used in the 2_0_InstanceLabel XML ACE XML Instance Label

 file. misc_info clauses are used below to illustrate how class

 relationships can be defined.

 </comments>

 <related_resources>

 <instance_label_file>./2_0_InstanceLabel.xml</instance_label_file>

 <project_file>./2_0_Project.xml</project_file>

 <uri>http://jmir.sourceforge.net/</uri>

97

 <uri>http://sourceforge.net/projects/jmir</uri>

 </related_resources>

 <class>

 <class_id>Exclusive Classes</class_id>

 <misc_info>

 <info_id>Explanation of taxonomical role</info_id>

 <info>

 This is a parent class of artificial classes that cannot apply

 to the same instance at the same time.

 A general ontological (non-hierarchical) connection is made to

 the Overlapping Classes class as well for the purpose of

 demonstration.

 </info>

 </misc_info>

 <related_class>

 <class_id>Overlapping Classes</class_id>

 <relation_id>Opposing parent nodes</relation_id>

 </related_class>

 <sub_class>

 <class_id>Class Label 1</class_id>

 </sub_class>

 <sub_class>

 <class_id>Class Label 2</class_id>

 </sub_class>

 </class>

 <class>

 <class_id>Overlapping Classes</class_id>

 <misc_info>

 <info_id>Explanation of taxonomical role</info_id>

 <info>

 This is a parent class of artificial classes that can apply to

 the same instance at the same time.

 A general ontological (non-hierarchical) connection is made to

 the Exclusive Classes class as well for the purpose of

 demonstration.

 </info>

 </misc_info>

 <related_class>

 <class_id>Exclusive Classes</class_id>

 <relation_id>Opposing parent nodes</relation_id>

 </related_class>

 <sub_class>

 <class_id>Shared Class Label 1</class_id>

 </sub_class>

 <sub_class>

 <class_id>Shared Class Label 2</class_id>

 </sub_class>

 <sub_class>

 <class_id>Shared Class Label 3</class_id>

 </sub_class>

 </class>

 <class>

 <class_id>Class Label 1</class_id>

98

 <misc_info>

 <info_id>Explanation of taxonomical role</info_id>

 <info>

 This class is a hierarchical descendant of the Exclusive Classes

 class. Note that hierarchical relationships are only specified in

 the parent class' statement, and no corresponding statement is

 necessary here.

 </info>

 </misc_info>

 </class>

 <class>

 <class_id>Class Label 2</class_id>

 <misc_info>

 <info_id>Explanation of ontological connections</info_id>

 <info>

 This class demonstrates how weighted ontological connections can

 be made to any other class, regardless of hierarchical sub-class

 structures. Note how the connection to Shared Class Label 1 is

 bidirectional, but the connection to Shared Class Label 2 is

 unidirectional. The connection to Shared Class Label 1 is also

 given a weight 3 times that of the connection to Shared Class

 Label 2, and this is a relative weighting because of the global

 ace_xml_class_ontology_file_2_0 weights_relative attribute

 setting above.

 </info>

 </misc_info>

 <related_class weight="3">

 <class_id>Shared Class Label 1</class_id>

 <relation_id>Ontological Connection</relation_id>

 </related_class>

 <related_class weight="1">

 <class_id>Shared Class Label 2</class_id>

 <relation_id>Ontological Connection</relation_id>

 </related_class>

 </class>

 <class>

 <class_id>Shared Class Label 1</class_id>

 <related_class>

 <class_id>Class Label 2</class_id>

 <relation_id>Ontological Connection</relation_id>

 </related_class>

 </class>

 <class>

 <class_id>Shared Class Label 2</class_id>

 </class>

 <class>

 <class_id>Shared Class Label 3</class_id>

 </class>

</ace_xml_class_ontology_file_2_0>

Code Sample 7.10: A complete sample ACE XML 2.0 Class Ontology file. An

explanation of the file is provided in its comments clause. This file specifies candidate

99

class labels and relationships between them. The classes labels used here correspond

to those used to label instances in the Instance Label file shown in Code Sample 7.9.

7.15 Chapter bibliography

Amatrain, X., P. Arumi, and M. Ramirez. 2002 CLAM: Yet another library for audio and

music processing? Proceedings of the ACM Conference on Object Oriented

Programming, Systems, and Applications. 22–3.

Burred J. J., C. E. Cella, G. Peeters, A. Röbel, and D. Schwarz. 2008. Using the SDIF

Sound Description Interchange Format for audio features. Proceedings of the

International Conference on Music Information Retrieval. 427–32.

Cannam, C., C. Landone, M. Sandler, and J. P. Bello. 2006. The Sonic Visualiser: A

visualization platform for semantic descriptors from musical signals. Proceedings of

the International Conference on Music Information Retrieval. 324–7.

Downie, J. S., K. West, A. Ehmann, and E. Vincent. 2005. The 2005 Music Information

Retrieval Evaluation eXchange (MIREX 2005): Preliminary overview. Proceedings

of the International Conference on Music Information Retrieval. 320–3.

Kitahara, T. 2008. A unified and extensible framework for developing music information

processing systems. Unpublished manuscript.

McKay, C. 2004. Automatic genre classification of MIDI recordings. M.A. Thesis. McGill

University, Canada.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: A framework

for optimizing music classification. Proceedings of the International Conference on

Music Information Retrieval. 42–9.

Mierswa, I., M. Wurst, R. Klinkenberg, M. Scholzn, and T. Euler. 2006. YALE: Rapid

prototyping for complex data mining tasks. Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 935–40.

Raimond, Y. 2009. A distributed music information system. Doctoral Dissertation.

Queen Mary, University of London, U.K.

Raimond, Y., S. Adbdallah, M. Sandler, and F. Giasson. 2007. The Music Ontology.

Proceedings of the International Conference on Music Information Retrieval. 417–22.

Raimond, Y., and M. Sandler. 2008. A web of musical information. Proceedings of the

International Conference on Music Information Retrieval. 263–28.

100

Schwarz, D., and M. Wright. 2000. Extensions and applications of the SDIF Sound

Description Interchange Format. Proceedings of the International Computer Music

Conference. 481–4.

Tzanetakis, G., and P. Cook. 2000. Marsyas: A framework for audio analysis. Organized

Sound 4 (3): 169–75.

Tzanetakis, G., L. G. Martins, L. F. Teixeira, C. Castillo, R. Jones, and M. Lagrange.

2008. Interoperability and the Marsyas 0.2 runtime. Proceedings of the International

Computer Music Conference.

Whitehead, P., E. Friedman-Hill, and E. Vander Veer. 2002. Java and XML: Your visual

blueprint for creating Java-enhanced Web programs. Mississauga, Canada: Wiley

Publishing Inc.

Witten, I. H., and E. Frank. 2005. Data mining: Practical machine learning tools and

techniques. New York: Morgan Kaufman.

Wright, M., A. Chaudhary, A. Freed, S. Khoury, and D. Wessel. 1999. Audio applications

of the Sound Description Interchange Format standard. Proceedings of the Audio

Engineering Society Convention. 276–9.

CrestMuse Project. Retrieved December 30, 2008, from http://www.crestmuse.jp/index-

e.html.

Dublin Core Metadata Initiative. Retrieved February 16, 2009, from http://dublincore.org.

JSON. Retrieved January 15, 2009, from http://json.org/.

Meandre. Retrieved January 7, 2009, from http://seasr.org/meandre/.

Music Ontology Specification. Retrieved December 30, 2008, from

http://www.musicontology.com.

SDIF Sound Description Interchange Format. Retrieved December 30, 2008, from

http://sdif.sourceforge.net.

Weka >> ARFF. Retrieved December 30, 2008, from

http://weka.wiki.sourceforge.net/ARFF.

