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ABSTRACT 

This paper describes ACE, a framework for automati-
cally finding effective classification methodologies for 
arbitrary supervised classification problems. ACE per-
forms experiments with both individual classifiers and 
classifier ensembles in order to find the approaches best 
suited to particular problems. A special emphasis is 
placed on classifier ensembles, as they can be powerful 
tools, yet are currently rarely used in MIR research. In 
addition to evaluating various classification methodolo-
gies in terms of success rates, ACE also allows users to 
specify constraints on training and classification times. 

The input to ACE is an arbitrary taxonomy accompa-
nied by training feature vectors and their model classifi-
cations. ACE then outputs comparisons of the effective-
ness of different classification methodologies, including 
information relating to feature weightings, dimensional-
ity reduction and classifier combination techniques. The 
user may then select any of these configurations, after 
which s/he will be presented with trained classifiers that 
can be used to classify new feature vectors. 

Although designed to be used easily with any existing 
feature extraction system, ACE is also packaged with 
MIDI and audio feature extraction sub-systems. In addi-
tion, plans are underway to make use of distributed com-
puting in order to decrease processing times. 

1. INTRODUCTION 

Pattern recognition and automatic classification tech-
niques are currently used for a wide variety of tasks in 
music research. Genre and composer classification, simi-
larity-based music recommendation and intelligent inter-
active accompaniment are just a few of the areas where 
these techniques can be used. 

Unfortunately, the variety and technical sophistication 
of the pattern recognition techniques available can make 
it difficult to choose the best approach to apply to a par-
ticular problem. Furthermore, there are not currently any 
freely available, easy-to-use and standardized pattern 
recognition systems intended to address the particular 
needs of music researchers. This requires researchers to 
spend time either adapting existing systems to their 
needs or implementing systems themselves. A standard-
ized and usable system that experimentally finds the best 
classification approach for a given problem could help 
in terms of both increasing classification accuracy and 
saving researchers significant amounts of development 
time. The ACE (Autonomous Classification Engine) 

framework presented here is intended to address these 
issues. ACE includes implementations of a wide variety 
of pattern recognition techniques and provides interfaces 
intended specifically for the needs of music researchers. 
These interfaces include a powerful GUI, a command-
line interface and Java classes that can be accessed by 
individual researchers’ software. This allows ACE to be 
used for a variety of purposes by users with different 
levels of technical expertise. 

The most powerful aspect of ACE is that it experi-
mentally compares the performance of different classifi-
cation algorithms on individual users’ data sets in the 
context of the particular taxonomies and features that 
they are using. Data is also generated on the relative 
effectiveness of different methods of combining the 
classifiers into ensembles. 

ACE also experimentally compares the effectiveness 
of a variety of dimensionality reduction techniques op-
erating in conjunction with the different classification 
techniques. This is essential, as the performance of any 
classification system is inherently limited by the quality 
of the features on which it bases its decisions. 

ACE analyzes the effectiveness of different ap-
proaches in terms of classification accuracy, training 
time and classification time. This allows users to ex-
perimentally determine the best set of techniques to use 
for their particular priorities. In addition, ACE is cur-
rently being modified to allow users to specify limits on 
how long the system has to arrive at a solution, with the 
result that ACE will initially pursue the most promising 
approaches, based on past experiments with similar data, 
and output the best approaches that it has found in the 
given time.  

ACE may also be used directly as a classifier. Once 
users have selected the classifier(s) that they wish to use, 
whether through ACE optimization or using pre-existing 
knowledge, they need only provide ACE with a taxon-
omy, training feature vectors and ground truth. ACE 
then trains itself and presents users with trained classi-
fier(s) that may be used to classify new feature vectors. 

An important advantage of ACE is that it is open-
source and free. ACE is implemented in Java, which 
means that the framework is portable and can be used on 
essentially any operating systems without any installa-
tion concerns related to compilation and linking. 

ACE’s portability is an important advantage for users 
with custom feature extraction systems, as it means that 
ACE can be easily installed and used on whatever plat-
forms user’s existing systems already use. ACE also 
addresses the needs of users without pre-existing feature 



  
 
extraction systems, as it is packaged with both audio and 
MIDI default feature extractors.  

ACE has been designed with a modular and extensi-
ble design philosophy. It is a simple and well-
documented matter for users to add implementations of 
new classifiers, ensemble combination techniques, fea-
tures or feature weighting techniques to ACE. 

It should be noted that ACE can in fact be used for 
arbitrary classification optimization tasks. Although the 
interface and feature selection sub-systems are designed 
with the specific needs of music researchers in mind, 
there is nothing about the underlying implementation of 
ACE that limits it to musical applications. 

2. RELATED RESEARCH 

There has been a great deal of material published on 
machine learning, pattern recognition and classification. 
The books of Alpaydin [1], Duda, Hart and Stork [4] 
and Russell and Norvig [12] provide particularly good 
complementary overviews. Kuncheva’s book [7] pro-
vides a general reference on classifier ensembles. 

Despite the continuing improvement of individual 
classifiers, it has been argued that approaches using fea-
ture selection and classifier ensembles are still the most 
effective [6]. These theoretical arguments are supported 
by numerous experiments showing the improvements in 
classification accuracy brought about by using classifier 
ensembles (e.g. [9]). This evidence has motivated the 
inclusion of classifiers ensembles in ACE, something 
currently rare in the MIR field. 

A previously published system that applies such an 
experimental approach to music classification is the 
EDS developed by Sony CSL [10]. Although Sony's 
system is certainly powerful, and does offer the advan-
tages of dynamically constructing features and of allow-
ing the use of specifiable heuristics, ACE is a more gen-
eral and open system. Sony's approach focuses on ge-
netic searches, whereas ACE experiments with a wider 
range of feature weighting algorithms. ACE also utilizes 
a wider range of classifiers including classifier ensem-
bles. ACE also has the important advantage of being 
open source, and is available to the public for use and 
development, whereas Sony’s EDS is proprietary. In 
addition, Sony's system has been designed with the par-
ticular needs of similarity and recommendation in mind, 
whereas ACE has been designed to be applicable to ar-
bitrary classification tasks, including symbolic as well as 
audio classification. 

3. CLASSIFIERS 

ACE makes use of the Weka Java-based data mining 
package [14]. Weka has the advantages of full Java 
portability and of a licence allowing free open-source 
distribution. The inclusion of Weka compatibility means 
that all classification methodologies available in Weka 
can be used and compared by ACE, and that classifiers 
currently absent from Weka can be developed in the 
Weka framework and added to ACE as it matures. 

Bayesian classifiers, nearest neighbour classifiers, 
neural networks, support vector machines and induction 
trees are just a few examples of the classifiers used by 
ACE. A variety of selection and fusion techniques are 
used to combine classifiers, including bagging and 
boosting approaches. Round-robin and hierarchical clas-
sification are explored in addition to flat classification 
where appropriate. In addition to experimenting with 
different classifiers, ACE also experiments with a vari-
ety of parameters for each classifier type. 

4. FEATURES AND DIMENSIONALITY 
REDUCTION 

ACE includes a variety of dimensionality reduction and 
feature weighting techniques. The evaluation of several 
techniques iteratively, such as binary feature selection 
followed by feature weighting, is also incorporated into 
ACE. Techniques used include principle component 
analysis, genetic algorithms, tree searches and forward-
backward algorithms. 

As discussed in Section 1, an important aspect of 
ACE is that users may use it easily with existing feature 
extraction systems. In order to facilitate communication 
with such systems, a simple but flexible XML file for-
mat has been developed for ACE. Alternatively, feature 
extractors may write their features to the commonly used 
Weka ARFF format, which is also understood by ACE. 

Musical applications often require the analysis of 
multiple possibly overlapping frames belonging to a 
single piece of music. Furthermore, individual features 
may be multi-dimensional in a single frame. ACE and its 
XML file format have therefore been implemented so 
that they can easily deal with framed and/or non-framed 
feature vectors of arbitrary dimensions. Each features 
may be extracted for each frame or only once per re-
cording. ACE also makes it possible to either classify 
frames individually or to classify a recording as a whole, 
as one may wish to base classifications on a methodol-
ogy more complex than just a vote of individual frame 
classifications. 

5. FEATURE EXTRACTION SUB-SYSTEMS 

As stated above, ACE is designed to work with arbitrary 
existing feature extraction systems. However, default 
MIDI and audio feature extraction sub-systems are also 
included with ACE. This is to accommodate those who 
do not have easy access to feature selection systems and 
who wish to have the convenience of simply installing 
ACE and not worrying about implementing or installing 
any other software.  

The MIDI sub-system is based on the feature extrac-
tor used by the Bodhidharma genre classification system 
[8]. This is the most extensive MIDI feature extractor 
available, to the best of the authors’ knowledge. 

The audio sub-system has been implemented in Java 
based on widely available algorithms included in sys-
tems such as MARSYAS [13]. This sub-system has been 
designed to minimize the effort required to add new fea-



  
 
tures and, in particular, to provide a simple mechanism 
for adding features that use previously extracted features 
in their calculations.   

6. USING ACE 

The first way to use ACE is through an easy-to-use and 
well-documented GUI, currently under development, 
that allows users to build taxonomies, label and manage 
training and testing instances, manage features, control 
classifier settings, carry out comparisons of classifica-
tion methodologies, train and use classifiers and view 
results of experiments and classifications. This GUI is 
based in part on the Bodhidharma GUI [8]. 

The second way of using ACE is through a simple 
command-line interface. This interface is useful for us-
ers who already have the appropriate configuration files 
set up and would like a quick and easy method of per-
forming tasks such as batch processing. 

The final way of using ACE is for users to directly 
access the ACE Java classes from their own software. 
ACE is entirely open source, and it is distributed with 
good quality Javadocs and a manual describing the class 
structure and software implementation. This is useful for 
users who wish to integrate ACE’s functionality directly 
into their own systems. ACE has been designed to be 
easily extensible, and users are free to add to it or 
change it. 

The central purpose of ACE is to find a good classifi-
cation methodology for any given problem. There can 
often be tradeoffs between different techniques in terms 
of success rates versus processing times. ACE makes it 
possible to meet the individual needs of particular users 
by allowing one to set constraints on training and/or 
testing times so that the best approach can be found 
within particular time limitations. 

ACE includes four simple but flexible XML file for-
mats that are used to store settings and to communicate 
with external software: 

 
• Taxonomy: Specifies the classes that instances can 

belong to. Hierarchical structuring of classes is per-
mitted. Allowances are made for modifications to the 
standard hierarchical structure, including the possi-
bilities of having given instances belong to multiple 
classes or of allowing one class to be descended 
from multiple parent classes.  

• Feature Key: Specifies the names and descriptions of 
the features that classifiers can use for a particular 
problem. This makes it easy to use arbitrary features 
extracted from arbitrary feature extraction systems. 

• Feature Vectors: Specifies the particular feature vec-
tor values for sets of instances. This file format al-
lows sequences of possibly overlapping feature vec-
tors for frames of a particular instance as well as 
global feature vectors for each instance. More details 
are provided in Section 4.  

• Classifications: Stores either model classifications or 
classification results. Functionality is included to al-

low different, possibly overlapping, segments of a 
single recording to belong to different classes. A 
given instance is permitted to belong to multiple 
classes simultaneously. 

 
This file architecture deviates from the standard ap-

proach of using a single file to store both feature vectors 
and model classifications as well as, sometimes, the tax-
onomy of candidate classes. There are several reasons 
for this deviation. 

 Firstly, this enables a large set of features to be ex-
tracted once and then stored in a single file that can be 
used for multiple purposes. For example, features could 
be extracted from a large collection of recordings and 
stored in a single file that could be used to classify the 
recordings based on genre, composer and geographical 
point of origin, three tasks that require entirely different 
taxonomies. 

Furthermore, one does not need to reprocess the 
model classifications if the features used change. For 
example, one could classify a given corpus of audio re-
cordings and then later perform the same task on sym-
bolic recordings of the same corpus using the same 
Classifications file. 

The separation into multiple files makes it possible to 
distribute one type of XML file for arbitrary purposes to 
others without needing to impose one’s own choices for 
the other three XML files. ACE also makes allowances 
for more general, flexible and sophisticated taxonomies 
and feature structures than most systems, and the separa-
tion into multiple files makes it easier to conceptualize 
sophisticated arrangements.  

7. USING DISTRIBUTED COMPUTING 

Many classification techniques are computationally in-
tensive, especially when many features are used or there 
are large training sets. This is particularly problematic in 
a system involving multiple classifiers. Functionality is 
therefore currently being built into ACE to allow it to 
run on a number of computers in parallel. This will re-
sult in a reduction in runtime via known efficient and 
effective parallel implementations for tasks such as 
training and feature weighting/selection [14, 11]. Addi-
tionally, approaching some tasks in parallel, such as 
“coarse-grained” genetic algorithm optimizations, may 
affect the quality as well as the speed of the result [2]. 

Two Java-based distributed computing systems are 
currently being considered for use, namely Grid Weka 
[5] and M2K/D2K [3]. Grid Weka has the advantage of 
being built directly on the Weka toolkit. D2K is a well-
established and powerful environment, but M2K itself is 
currently only in alpha release.  

8. CURRENT APPLICATIONS 

Several music-related classification problems are being 
used to test ACE, including genre classification, track 
segmentation of LPs, beat-box sound recognition and 



  
 
snare drum timbre recognition. The data from the UCI 
Machine Learning Repository and Weka test sets are 
also being used to assess the capabilities of ACE. 

9. CONCLUSIONS 

ACE allows researchers to experimentally determine 
good classifiers, classifier combination methodologies 
and dimensionality reduction and feature weighting ap-
proaches for their specific classification needs, in terms 
of classification success rates, training times and classi-
fication times. ACE also provides music researchers 
with an easy-to-install and use, portable and extensible 
software package that supplies them with a powerful 
palette of classification techniques that they can use out-
of-the-box. Users have the option of using either the 
bundled MIDI and audio feature extractors or their own 
customized feature extractor. Further information on 
ACE, including source code, will be made available on 
the ACE web site. 

10. FUTURE RESEARCH 

An expansion of ACE to allow the use of unsupervised 
and reinforcement learning is planned for the near fu-
ture. Another priority is to include functionality for con-
structing sophisticated blackboard systems. A related 
goal is to make it possible to integrate knowledge 
sources based on heuristics into ACE.  

Once the distributed aspect of the system is complete, 
a server-based sub-system will be designed that contains 
a coordination system and a database. Although not nec-
essary for using ACE, users may choose to dedicate a 
computer to this server, allowing ACE to run perpetu-
ally. The server will keep a record of performances of all 
ACE operations run on a particular user’s cluster and 
generate statistics for self-evaluation and improvement. 
The server, and possibly other computers in the cluster, 
will make use of any idle time to attempt to improve 
solutions to previously encountered but currently inac-
tive problems. 

Over time, gradual additions will be made to the ACE 
library of classifiers, dimensionality reducers and classi-
fier combination techniques. The bundled feature extrac-
tors will also be expanded as time goes on. 

It is hoped to eventually integrate ACE into the M2K 
framework. 
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