

ACE: A GENERAL-PURPOSE CLASSIFICATION
ENSEMBLE OPTIMIZATION FRAMEWORK

Cory McKay Daniel McEnnis Rebecca Fiebrink Ichiro Fujinaga
Music Technology
Faculty of Music

McGill University
cory.mckay@
mail.mcgill.ca

Music Technology
Faculty of Music

McGill University
daniel.mcennis@

mail.mcgill.ca

Music Technology
Faculty of Music

McGill University
rfiebrink@acm.org

Music Technology
Faculty of Music

McGill University
ich@music.mcgill.ca

ABSTRACT

This paper describes ACE, a framework for automati-
cally finding effective classification methodologies for
arbitrary supervised classification problems. ACE per-
forms experiments with both individual classifiers and
classifier ensembles in order to find the approaches best
suited to particular problems. A special emphasis is
placed on classifier ensembles, as they can be powerful
tools, yet are currently rarely used in MIR research. In
addition to evaluating various classification methodolo-
gies in terms of success rates, ACE also allows users to
specify constraints on training and classification times.

The input to ACE is an arbitrary taxonomy accompa-
nied by training feature vectors and their model classifi-
cations. ACE then outputs comparisons of the effective-
ness of different classification methodologies, including
information relating to feature weightings, dimensional-
ity reduction and classifier combination techniques. The
user may then select any of these configurations, after
which s/he will be presented with trained classifiers that
can be used to classify new feature vectors.

Although designed to be used easily with any existing
feature extraction system, ACE is also packaged with
MIDI and audio feature extraction sub-systems. In addi-
tion, plans are underway to make use of distributed com-
puting in order to decrease processing times.

1. INTRODUCTION

Pattern recognition and automatic classification tech-
niques are currently used for a wide variety of tasks in
music research. Genre and composer classification, simi-
larity-based music recommendation and intelligent inter-
active accompaniment are just a few of the areas where
these techniques can be used.

Unfortunately, the variety and technical sophistication
of the pattern recognition techniques available can make
it difficult to choose the best approach to apply to a par-
ticular problem. Furthermore, there are not currently any
freely available, easy-to-use and standardized pattern
recognition systems intended to address the particular
needs of music researchers. This requires researchers to
spend time either adapting existing systems to their
needs or implementing systems themselves. A standard-
ized and usable system that experimentally finds the best
classification approach for a given problem could help
in terms of both increasing classification accuracy and
saving researchers significant amounts of development
time. The ACE (Autonomous Classification Engine)

framework presented here is intended to address these
issues. ACE includes implementations of a wide variety
of pattern recognition techniques and provides interfaces
intended specifically for the needs of music researchers.
These interfaces include a powerful GUI, a command-
line interface and Java classes that can be accessed by
individual researchers’ software. This allows ACE to be
used for a variety of purposes by users with different
levels of technical expertise.

The most powerful aspect of ACE is that it experi-
mentally compares the performance of different classifi-
cation algorithms on individual users’ data sets in the
context of the particular taxonomies and features that
they are using. Data is also generated on the relative
effectiveness of different methods of combining the
classifiers into ensembles.

ACE also experimentally compares the effectiveness
of a variety of dimensionality reduction techniques op-
erating in conjunction with the different classification
techniques. This is essential, as the performance of any
classification system is inherently limited by the quality
of the features on which it bases its decisions.

ACE analyzes the effectiveness of different ap-
proaches in terms of classification accuracy, training
time and classification time. This allows users to ex-
perimentally determine the best set of techniques to use
for their particular priorities. In addition, ACE is cur-
rently being modified to allow users to specify limits on
how long the system has to arrive at a solution, with the
result that ACE will initially pursue the most promising
approaches, based on past experiments with similar data,
and output the best approaches that it has found in the
given time.

ACE may also be used directly as a classifier. Once
users have selected the classifier(s) that they wish to use,
whether through ACE optimization or using pre-existing
knowledge, they need only provide ACE with a taxon-
omy, training feature vectors and ground truth. ACE
then trains itself and presents users with trained classi-
fier(s) that may be used to classify new feature vectors.

An important advantage of ACE is that it is open-
source and free. ACE is implemented in Java, which
means that the framework is portable and can be used on
essentially any operating systems without any installa-
tion concerns related to compilation and linking.

ACE’s portability is an important advantage for users
with custom feature extraction systems, as it means that
ACE can be easily installed and used on whatever plat-
forms user’s existing systems already use. ACE also
addresses the needs of users without pre-existing feature

extraction systems, as it is packaged with both audio and
MIDI default feature extractors.

ACE has been designed with a modular and extensi-
ble design philosophy. It is a simple and well-
documented matter for users to add implementations of
new classifiers, ensemble combination techniques, fea-
tures or feature weighting techniques to ACE.

It should be noted that ACE can in fact be used for
arbitrary classification optimization tasks. Although the
interface and feature selection sub-systems are designed
with the specific needs of music researchers in mind,
there is nothing about the underlying implementation of
ACE that limits it to musical applications.

2. RELATED RESEARCH

There has been a great deal of material published on
machine learning, pattern recognition and classification.
The books of Alpaydin [1], Duda, Hart and Stork [4]
and Russell and Norvig [12] provide particularly good
complementary overviews. Kuncheva’s book [7] pro-
vides a general reference on classifier ensembles.

Despite the continuing improvement of individual
classifiers, it has been argued that approaches using fea-
ture selection and classifier ensembles are still the most
effective [6]. These theoretical arguments are supported
by numerous experiments showing the improvements in
classification accuracy brought about by using classifier
ensembles (e.g. [9]). This evidence has motivated the
inclusion of classifiers ensembles in ACE, something
currently rare in the MIR field.

A previously published system that applies such an
experimental approach to music classification is the
EDS developed by Sony CSL [10]. Although Sony's
system is certainly powerful, and does offer the advan-
tages of dynamically constructing features and of allow-
ing the use of specifiable heuristics, ACE is a more gen-
eral and open system. Sony's approach focuses on ge-
netic searches, whereas ACE experiments with a wider
range of feature weighting algorithms. ACE also utilizes
a wider range of classifiers including classifier ensem-
bles. ACE also has the important advantage of being
open source, and is available to the public for use and
development, whereas Sony’s EDS is proprietary. In
addition, Sony's system has been designed with the par-
ticular needs of similarity and recommendation in mind,
whereas ACE has been designed to be applicable to ar-
bitrary classification tasks, including symbolic as well as
audio classification.

3. CLASSIFIERS

ACE makes use of the Weka Java-based data mining
package [14]. Weka has the advantages of full Java
portability and of a licence allowing free open-source
distribution. The inclusion of Weka compatibility means
that all classification methodologies available in Weka
can be used and compared by ACE, and that classifiers
currently absent from Weka can be developed in the
Weka framework and added to ACE as it matures.

Bayesian classifiers, nearest neighbour classifiers,
neural networks, support vector machines and induction
trees are just a few examples of the classifiers used by
ACE. A variety of selection and fusion techniques are
used to combine classifiers, including bagging and
boosting approaches. Round-robin and hierarchical clas-
sification are explored in addition to flat classification
where appropriate. In addition to experimenting with
different classifiers, ACE also experiments with a vari-
ety of parameters for each classifier type.

4. FEATURES AND DIMENSIONALITY
REDUCTION

ACE includes a variety of dimensionality reduction and
feature weighting techniques. The evaluation of several
techniques iteratively, such as binary feature selection
followed by feature weighting, is also incorporated into
ACE. Techniques used include principle component
analysis, genetic algorithms, tree searches and forward-
backward algorithms.

As discussed in Section 1, an important aspect of
ACE is that users may use it easily with existing feature
extraction systems. In order to facilitate communication
with such systems, a simple but flexible XML file for-
mat has been developed for ACE. Alternatively, feature
extractors may write their features to the commonly used
Weka ARFF format, which is also understood by ACE.

Musical applications often require the analysis of
multiple possibly overlapping frames belonging to a
single piece of music. Furthermore, individual features
may be multi-dimensional in a single frame. ACE and its
XML file format have therefore been implemented so
that they can easily deal with framed and/or non-framed
feature vectors of arbitrary dimensions. Each features
may be extracted for each frame or only once per re-
cording. ACE also makes it possible to either classify
frames individually or to classify a recording as a whole,
as one may wish to base classifications on a methodol-
ogy more complex than just a vote of individual frame
classifications.

5. FEATURE EXTRACTION SUB-SYSTEMS

As stated above, ACE is designed to work with arbitrary
existing feature extraction systems. However, default
MIDI and audio feature extraction sub-systems are also
included with ACE. This is to accommodate those who
do not have easy access to feature selection systems and
who wish to have the convenience of simply installing
ACE and not worrying about implementing or installing
any other software.

The MIDI sub-system is based on the feature extrac-
tor used by the Bodhidharma genre classification system
[8]. This is the most extensive MIDI feature extractor
available, to the best of the authors’ knowledge.

The audio sub-system has been implemented in Java
based on widely available algorithms included in sys-
tems such as MARSYAS [13]. This sub-system has been
designed to minimize the effort required to add new fea-

tures and, in particular, to provide a simple mechanism
for adding features that use previously extracted features
in their calculations.

6. USING ACE

The first way to use ACE is through an easy-to-use and
well-documented GUI, currently under development,
that allows users to build taxonomies, label and manage
training and testing instances, manage features, control
classifier settings, carry out comparisons of classifica-
tion methodologies, train and use classifiers and view
results of experiments and classifications. This GUI is
based in part on the Bodhidharma GUI [8].

The second way of using ACE is through a simple
command-line interface. This interface is useful for us-
ers who already have the appropriate configuration files
set up and would like a quick and easy method of per-
forming tasks such as batch processing.

The final way of using ACE is for users to directly
access the ACE Java classes from their own software.
ACE is entirely open source, and it is distributed with
good quality Javadocs and a manual describing the class
structure and software implementation. This is useful for
users who wish to integrate ACE’s functionality directly
into their own systems. ACE has been designed to be
easily extensible, and users are free to add to it or
change it.

The central purpose of ACE is to find a good classifi-
cation methodology for any given problem. There can
often be tradeoffs between different techniques in terms
of success rates versus processing times. ACE makes it
possible to meet the individual needs of particular users
by allowing one to set constraints on training and/or
testing times so that the best approach can be found
within particular time limitations.

ACE includes four simple but flexible XML file for-
mats that are used to store settings and to communicate
with external software:

• Taxonomy: Specifies the classes that instances can

belong to. Hierarchical structuring of classes is per-
mitted. Allowances are made for modifications to the
standard hierarchical structure, including the possi-
bilities of having given instances belong to multiple
classes or of allowing one class to be descended
from multiple parent classes.

• Feature Key: Specifies the names and descriptions of
the features that classifiers can use for a particular
problem. This makes it easy to use arbitrary features
extracted from arbitrary feature extraction systems.

• Feature Vectors: Specifies the particular feature vec-
tor values for sets of instances. This file format al-
lows sequences of possibly overlapping feature vec-
tors for frames of a particular instance as well as
global feature vectors for each instance. More details
are provided in Section 4.

• Classifications: Stores either model classifications or
classification results. Functionality is included to al-

low different, possibly overlapping, segments of a
single recording to belong to different classes. A
given instance is permitted to belong to multiple
classes simultaneously.

This file architecture deviates from the standard ap-

proach of using a single file to store both feature vectors
and model classifications as well as, sometimes, the tax-
onomy of candidate classes. There are several reasons
for this deviation.

 Firstly, this enables a large set of features to be ex-
tracted once and then stored in a single file that can be
used for multiple purposes. For example, features could
be extracted from a large collection of recordings and
stored in a single file that could be used to classify the
recordings based on genre, composer and geographical
point of origin, three tasks that require entirely different
taxonomies.

Furthermore, one does not need to reprocess the
model classifications if the features used change. For
example, one could classify a given corpus of audio re-
cordings and then later perform the same task on sym-
bolic recordings of the same corpus using the same
Classifications file.

The separation into multiple files makes it possible to
distribute one type of XML file for arbitrary purposes to
others without needing to impose one’s own choices for
the other three XML files. ACE also makes allowances
for more general, flexible and sophisticated taxonomies
and feature structures than most systems, and the separa-
tion into multiple files makes it easier to conceptualize
sophisticated arrangements.

7. USING DISTRIBUTED COMPUTING

Many classification techniques are computationally in-
tensive, especially when many features are used or there
are large training sets. This is particularly problematic in
a system involving multiple classifiers. Functionality is
therefore currently being built into ACE to allow it to
run on a number of computers in parallel. This will re-
sult in a reduction in runtime via known efficient and
effective parallel implementations for tasks such as
training and feature weighting/selection [14, 11]. Addi-
tionally, approaching some tasks in parallel, such as
“coarse-grained” genetic algorithm optimizations, may
affect the quality as well as the speed of the result [2].

Two Java-based distributed computing systems are
currently being considered for use, namely Grid Weka
[5] and M2K/D2K [3]. Grid Weka has the advantage of
being built directly on the Weka toolkit. D2K is a well-
established and powerful environment, but M2K itself is
currently only in alpha release.

8. CURRENT APPLICATIONS

Several music-related classification problems are being
used to test ACE, including genre classification, track
segmentation of LPs, beat-box sound recognition and

snare drum timbre recognition. The data from the UCI
Machine Learning Repository and Weka test sets are
also being used to assess the capabilities of ACE.

9. CONCLUSIONS

ACE allows researchers to experimentally determine
good classifiers, classifier combination methodologies
and dimensionality reduction and feature weighting ap-
proaches for their specific classification needs, in terms
of classification success rates, training times and classi-
fication times. ACE also provides music researchers
with an easy-to-install and use, portable and extensible
software package that supplies them with a powerful
palette of classification techniques that they can use out-
of-the-box. Users have the option of using either the
bundled MIDI and audio feature extractors or their own
customized feature extractor. Further information on
ACE, including source code, will be made available on
the ACE web site.

10. FUTURE RESEARCH

An expansion of ACE to allow the use of unsupervised
and reinforcement learning is planned for the near fu-
ture. Another priority is to include functionality for con-
structing sophisticated blackboard systems. A related
goal is to make it possible to integrate knowledge
sources based on heuristics into ACE.

Once the distributed aspect of the system is complete,
a server-based sub-system will be designed that contains
a coordination system and a database. Although not nec-
essary for using ACE, users may choose to dedicate a
computer to this server, allowing ACE to run perpetu-
ally. The server will keep a record of performances of all
ACE operations run on a particular user’s cluster and
generate statistics for self-evaluation and improvement.
The server, and possibly other computers in the cluster,
will make use of any idle time to attempt to improve
solutions to previously encountered but currently inac-
tive problems.

Over time, gradual additions will be made to the ACE
library of classifiers, dimensionality reducers and classi-
fier combination techniques. The bundled feature extrac-
tors will also be expanded as time goes on.

It is hoped to eventually integrate ACE into the M2K
framework.

11. ACKNOWLEDGEMENTS

The generous financial support of the Social Sciences
and Humanities Research Council of Canada and the
Centre for Interdisciplinary Research in Music, Media and
Technology(CIRMMT) has helped to make this research
possible.

12. REFERENCES

[1] Alpaydin, E. 2004. Introduction to machine
learning. Cambridge, MA: MIT Press.

[2] Cantú-Paz, E. 2000. Efficient and accurate
parallel genetic algorithms. Boston: Kluwer
Academic Publishers.

[3] Downie, J. S. 2004. International music
information retrieval systems evaluation
laboratory (IMIRSEL): Introducing D2K and
M2K. Demo Handout at the 2004 International
Conference on Music Information Retrieval.

[4] Duda, R., P. Hart, and D. Stork. 2001. Pattern
classification. New York: Wiley.

[5] Khoussainov, R., X. Zuo, and N. Kushmerick.
2004. Grid-enabled Weka: A toolkit for
machine learning on the grid. ERCIM News 59.

[6] Kittler, J. 2000. A framework for classifier
fusion: Is it still needed? Proceedings of the
Joint IAPR International Workshops on
Advances in Pattern Recognition. 45–56.

[7] Kuncheva, L. 2004. Combining pattern
classifiers: Methods and algorithms. New
York: Wiley.

[8] McKay, C. 2004. Automatic genre
classification of MIDI recordings. M.A. Thesis.
McGill University, Canada.

[9] Minaei-Bidgoli, B., G. Kortemeyer, and W.
Punch. 2004. Optimizing classification
ensembles via a genetic algorithm for a web-
based educational system. Proceedings of the
International Workshop on Syntactical and
Structural Pattern Recognition and Statistical
Pattern Recognition. 397–406.

[10] Pachet, F., and Z. Aymeric. 2004. Automatic
extraction of music descriptors from acoustic
signals. Proceedings of the International
Conference on Music Information Retrieval.
353–6.

[11] Punch, W., E. Goodman, M. Pei, L. Chia-Shun,
P. Hovland, and R. Enbody. 1993. Further
research on feature selection and classification
using genetic algorithms. Proceedings of the
International Conference on Genetic
Algorithms. 557–64.

[12] Russell, S., and P. Norvig. 2002. Artificial
intelligence: A modern approach. Upper
Saddle River, NJ: Prentice Hall.

[13] Tzanetakis, G., and P. Cook. 1999.
MARSYAS: A framework for audio analysis.
Organized Sound 4 (3): 169–75.

[14] Witten, I., and E. Frank. 2000. Data mining:
Practical machine learning tools and
techniques with Java implementations. San
Francisco: Morgan Kaufmann Publishers.

