ACE: A General-Purpose Classification Optimization Framework

Cory McKay, Daniel McEnnis, Rebecca Fiebrink and Ichiro Fujinaga Music Technology Area, McGill University

Introduction

- Automatic music classification has many academic and commercial applications
- Many classification methodologies are available
 Each has different strengths and weaknesses
- ACE experiments with a variety of approaches

 Finds those appropriate for each classification problem
- ACE can then act as a basic classifier

Advantages of ACE

- Designed to meet particular needs of music researchers
 - Can assign multiple classes to individual recordings
 - Deals naturally with windowed and segmented music
 - o Allows structured hierarchical taxonomies
 - o Allows multi-dimensional features
- Uses and evaluates many algorithms
 - Includes classifier ensembles
 - Evaluates speed as well as accuracy
- Can be easily ported to arbitrary feature extractors
 - Also bundled with audio and MIDI feature extractors
- Easy-to-use interface
 - $\circ\,$ Includes on-line help
- Open source and easily extensible

Overview of ACE

Potential users

- General users
 - Musicologists, theorists, librarians, psychologists, etc.
 - No knowledge of underlying machine learning needed
 - Simple graphical interface
 - See Applications of automated classification section below
- Users knowledgeable in pattern recognition
 - Can evaluate new classifiers and features
 - Provides a baseline for new algorithms
 - Good development environment
 - Implemented in Java
 - Integrated with Weka

Input to ACE

- Feature vectors (Weka ARFF or ACE XML)
- Model classifications for training and testing (optional)
- Taxonomy (optional)

Output from ACE

- Comparison of different classifiers
- Feature effectiveness measurements
- Trained classifiers

Graphical representation of ACE

Importance of music classification

Overview of music classification

- Many ways to classify music
 - Genre, composer, performer, mood, emotional content, geographical or temporal origin, listening scenarios, etc.
- Classification often difficult for both humans and computers
 - Rarely have precise, clear and consistent guidelines delineating the characteristics of categories

Advantages of computer classification

- Fast and consistent
- Can analyze music in novel and non-intuitive ways that might not occur to humans
- Avoids human preconceptions that could contaminate results

Applications of automated classification

- Sorting of large music databases
 - $\circ\,$ Human classification is slow and expensive
 - Also applicable to personal collections
- Music recommendation systems
- Interactive accompaniment systems
- Automated transcription
- Detection of pirated recordings
- Composer identification of anonymous pieces
- Studies of relative feature and taxonomy appropriateness
- Research into how humans perceive musical similarity and form musical groupings

Introduction to automatic music classification

Feature extraction

- Features are characteristics that can be used to distinguish between different types of music
- Feature extraction is the process of extracting features from music
- Features serve as the input to classifiers
 - Good features are essential to classification

Types of recordings

- Audio recordings are reproductions of actual sound

 MP3, .wav, .aiff
- Symbolic recordings consist of high-level musical instructions rather than actual audio samples
 MIDI, Humdrum

Classifiers

- Classifiers are software modules that attempt to distinguish between different categories or classes
- Classifiers may be implemented using:
 - Expert systems: use pre-programmed heuristics
 - Machine learning: uses pattern recognition algorithms to "learn" to identify classes
- Meta-learning: system finds good classifiers to use for a particular problem
 - \circ This is what ACE does

Existing classification systems

Music-oriented systems

- Usually implemented with particular tasks in mind
 - \circ Not extensible to general music classification tasks
 - o Utilize limited techniques
 - Difficult to use
- Need for standardized systems
 - Avoids reimplementation
 - Well tested and reliable code
 - o Better interfaces and more usable software
 - Facilitates methodology comparisons
- Important steps in this direction:
 - o M2K (Downie 2004)
 - Marsyas (Tzanetakis & Cook 1999)
- Often lack powerful techniques found in general systems

General systems

- Commonly used frameworks:
 - o Weka (Witten & Frank 2005)
 - PRTools (van der Heijden et al. 2004)
- A few use meta-learning:
 - Metal (www.metal-kdd.org)
 - AST (Lindner and Studer 1999)
- Often require proprietary software, are not open source or have licences limiting commercial application
- Not designed to meet the particular needs of music

Specialized needs of music classification

Qualities music classification systems should have

- Be able to assign multiple classes to single recordings

 A song could belong to multiple genres, for example
- Allow overall classification of recordings as well as of individual sub-sections
 - Audio often windowed
 - o Essential to segmentation problems
- Maintain logical grouping of multi-dimensional features
 - Musical features often consist of vectors
 - e.g. MFCC's
 - Provides classification opportunities
- Maintain recording meta-data
 - Title, performer, composer, date, etc.
- Take advantage of hierarchically structured taxonomies

 Provides classification opportunities

ACE meets these needs

- Integrated into machine learning engine
- Integrated into graphical interface
- New standardized XML file formats proposed
 - Existing standards (e.g. Weka's ARFF) insufficient
 - Flexible and human readable
 - Designed to allow reuse of files for different projects

ACE's classification methodology

Implementation

- Uses meta-learning to find approaches well suited to particular problems
- Built on the Weka library

 Easy to add new classifiers

Classifiers used

- Base classifiers include:
 - \circ Induction trees
 - Naive Bayes
 - Nearest neighbour
 - Neural networks
 - Support vector machines
- Classifier parameters are varied
 - Neural network architecture
 - Value of k in k-NN classifier
 - o etc.
- Classifier ensembles utilized
 - Multiple experts may perform better than one
 - Bagging, boosting, etc.
 - Known to be powerful tools
 - Rarely applied to music to date
- Dimensionality reduction also used
 - Principal component analysis
 - Feature selection using genetic algorithms
 - Exhaustive search

Feature extraction

Overview

- ACE usable with arbitrary feature extractors • Reads Weka ARFF and ACE XML files
- Bundled with two powerful and extensible feature extractors
 - o jAudio: for use with audio recordings
 - McEnnis et al. 2005
 - o jSymbolic: for use with MIDI recordings
 - Based on Bodhidharma (McKay 2004)

Interfaces of jAudio and jSymbolic

👙 jSymbolic Feature Extr	actor					_ 🗆 🛛	
RECORDINGS:			FEATURES:				
Name	Path		Save	Feat	ure	Dimensions	
BuddvGuv-MarvHadALitttleL	C1Bodhidharma\MIDI_Files\BuddvGuv-MarvHa	-	~	String Ensemi	ole Fraction	1 -	
buleriaA mid	C1Bodhidharma\MIDI Files\buleriaA.mid		<u> </u>	String Keyboa	rd Fraction	1	
Bulls On Parade.mid	C:\Bodhidharma\MIDI Files\Bulls On Parade		<u> </u>	Strongest Rhy	thmic Pulse	1	
bux_cfug.mid	C:\Bodhidharma\MIDI_Files\bux_cfug.mid		<u>v</u>	Strong Tonal C	Centres	1	
Bye ByeG.mid	C:\Bodhidharma\MIDI Files\Bye ByeG.mid		~	Triple Meter		1	
byebyeblues_clifford.mid	C:Bodhidharma\MIDI_Files\byebyeblues_cliffo.		~	Variability of N	ote Duration	1	
C_U_When_U_Get_There	C:\Bodhidharma\MIDI_Files\C_U_When_U_Ge.		×	Variability of N	ote Prevale	1	
can t turn you loose.mid	C:\Bodhidharma\MIDI_Files\can_t_turn_you_lo.		<u> </u>	variability of N	ote Prevale	1	
cant help falling in love.mid	C:\Bodhidharma\MIDI_Files\cant help falling in .		~	Variability of N	umber of I	1	
cap07.mid	C:\Bodhidharma\MIDI_Files\cap07.mid		V	variability of T	me Betwe		
caprichodehuelvaser.mid	C:\Bodhidharma\MIDI_Files\caprichodehuelva		V	variation of Dy	namics		
carly_simon_nobody_does	C \Bodhidharma\MIDI_Files\carly_simon_nobo.		~	Variation of Dy	namics in	1	
CARNAVAL.mid	C:\Bodhidharma\MIDI_Files\CARNAVAL.mid	Н	~	Vibrato Prevalence		1	
cascades_(c)simonetto.mid	C1Bodhidharma\MIDI_Files\cascades_(c)simo.		V	Violin Fraction	0		
cc_rider.mid	C1Bodhidharma\MIDI_Files\cc_rider.mid			Voice Equality	- Dynamics		
celebrate.mid	C:\Bodhidharma\MIDI_Files\celebrate.mid		<u> </u>	Voice Equality	- Melouic L		
celine_dion_all_by_myself	C:\Bodhidharma\MIDI_Files\celine_dion_all_by.			Voice Equality	- Note Dur		
CHAIN_GANG.mid	C:\Bodhidharma\MIDI_Files\CHAIN_GANG.mid			Voice Equality	Pango		
chameleon.mid	C:\Bodhidharma\MIDI_Files\chameleon.mid		V	Voice Senaration		1	
Changes.mid	C1Bodhidharma\MIDI_Files\Changes.mid			Windshinds Fraction		1	
chanlace.mid	C:\Bodhidharma\MIDI_Files\chanlace.mid			Rasic Pitch Histogram		120	
chega.mid	C:\Bodhidharma\MIDI_Files\chega.mid	- 1		Reat Histogram	m	161	
cherokee.mid	C:\Bodhidharma\MIDI_Files\cherokee.mid	- 11		Eiffhe Pitch His	togram	12	
chestnuts.mid	C1Bodhidharma1MIDI_Files1chestnuts.mid			Initial Time Signature		2	
chicken mid	C1BodhidharmalMIDL Eilestchicken mid	-		initial finte ois	inature	2	
Add Recordings	Validate Recordings		Do Not Use Windows		🗌 Save Feat	ures For Each Window	
	Store Sequence				Save For 1	Overall Recordings	
Delete Recordings			Window Length (seconds):		10		
			Window Overlap (fraction)	:			
Play Sequence	Stop Playback	Stop Playback		Feature Values Save Path:		feature_values_1 xml	
		Feature Definitions Save Path:		feature_definitions_1 xml			
View File Info.					E	xtract Features	

Interfaces

Command line interface

• Batch processing

Java API

• Open source and well documented

Graphical interface

- Includes an on-line manual
- Can build taxonomies, label and manage recordings, manage features, control classifier settings, carry out comparisons of classification methodologies and train and use classifiers

Experimental evaluation

Musical experiments

- Repeated Tindale's drum recognition experiment (2004)
 - ACE achieved 96.3% success compared to Tindale's best rate of 94.9% (error rate reduction of 27.5%)
- Achieved 95.6% success with a 5-class beatbox recognition experiment (Sinyor et al. 2005)

General experiments

- Applied ACE to six UCI datasets
- Compared results with a successful recently published algorithm (Kotsiantis and Pintelas 2004)
- ACE performed better in most cases

 ACE limited to only one minute per learning scheme
- Different classifiers performed better with different datasets
 - \circ No classifier always better than others
 - Supports ACE's experimental approach
 - Effectiveness of AdaBoost (chosen 4 times out of 10) shows utility of classifier ensembles

Data Set	ACE's Selected Classifier	Kotsiantis Success Rate	ACE Success Rate
autos	AdaBoost	81.7%	86.3%
diabetes	Naïve Bayes	76.6%	78.0%
ionosph ere	AdaBoost	90.7%	94.3%
iris	FF Neural Net	95.6%	97.3%
labor	k-NN	93.4%	93.0%
vote	Decision Tree	96.2%	96.3%

Project status

Timeline

- Currently in alpha release
- Full release: January 2006
 - $\circ\,$ Will include finalization of GUI

Long-term goals

- Use distributed computing to decrease processing times
 - $\circ\,$ M2K/D2K or Grid Weka
 - Will use idle time to improve inactive projects
- Have ACE keep track of past experiments
 - Use data to guide strategies in future projects
- Automatic formation of taxonomies using clustering
- Incorporate blackboard systems
 - Will include the possibility of using expert systems
- Post-processing modules

Contact information

- Web site: coltrane.music.mcgill.ca/ACE
- E-mail: cory.mckay@mail.mcgill.ca

Centre for Interdisciplinary Research in Music Media and Technology

Social Sciences and Humanities Research Council of Canada

Fonds de recherche sur la société et la culture Ouébec 🎄 🎄