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Abstract 

This paper presents a study of automatic music classification and similarity analy-
sis. Important theoretical issues are presented and several experiments are per-
formed. The jAudio feature extraction software and the ACE classification frame-
work are used to perform these experiments, which include percussion timbre rec-
ognition, genre classification, speech/music classification and taxonomical evalua-
tion. 

1  Introduction 

Musical classification and similarity analysis are research topics that have been receiving increas-
ing attention in the music information retrieval community, as well as from machine learning re-
searchers in general. This development parallels a growing theoretical interest in music categoriza-
tion and overarching theoretical frameworks among musicologists, particularly those researching 
popular music. 

It is unfortunate that there has of yet been relatively little communication between these two 
groups, as there is important potential for collaboration. Researchers with computer science back-
grounds can perform revealing large-scale empirical studies using data mining and pattern recogni-
tion techniques, while musicologists can contribute their deep understanding of music and the so-
ciological issues surrounding it to interpret these results. One of the goals of this paper is to high-
light certain research that has been done in both the machine learning and musicological domains 
so that researchers from both communities will have a starting point for future collaboration.  

1 .1  The  in t er sec t io n  o f  c la ss i f i ca t io n  a nd  s i mi la r i t y  a na ly s i s  

Although there is certainly a distinction between music classification and “pure” similarity, these 
fields are highly related, and there are many areas in which they overlap. The essential difference is 
that, in the case of classification, one has a pre-existing taxonomy upon which recordings are to be 
classified. The study of similarity, in contrast, attempts to derive some measurement of similarity 
between pieces of music without reference to an external structure. In both cases, however, one is 
interested in how one a given recording is related to other recordings. Both classification and simi-
larity also involve the same essential approach of finding appropriate features and supplying these 
to some pattern recognition algorithm. 

One can draw rough parallels between classification and supervised learning and between similarity 
analysis and unsupervised learning. Although there certainly are exceptions to this division, it does 
hold in general, as unsupervised learning may be unlikely to cluster recordings into the particular 



 

classes that one would like for taxonomies of any sophistication, and supervised learning requires 
pre-set labellings that may be inappropriate for pure similarity analysis. 

1 .2  P ra c t i ca l  a pp l i ca t io ns  

There are numerous practical applications for both music classification and similarity analysis in-
cluding, to name just a few: 

• Genre classification: Useful for automatically organizing large databases. 
• Composer identification: Good for identifying music whose authorship is disputed. This 

is particularly relevant to early music manuscripts. 
• Performer or song identification: Useful for automatically indexing unlabelled personal 

collections or for circumvent copyright protection efforts by detecting false entries on 
peer-to-peer networks. Can also be used to identify soloists in old recordings with incom-
plete liner notes. 

• Mood or listening scenario classification: Can be used for automatic play-list generation. 
• Recommendation systems: Can help listeners find unknown music that they might be in-

terested in. 
• Hit prediction: Can attempt to predict the commercial success of recordings in order to ef-

ficiently allocate financial resources.  

1 .3  Theo re t i ca l  in t eres t  

Many of the applications discussed in Section 1.2 are of theoretical interest as well. For example, 
musical genre is currently poorly understood. Musicologists do not have a general understanding of 
how genres are created, how they are agreed upon and disseminated, how they are defined, how 
they are perceived and identified, how they change or how they are interrelate. The writings of 
Franco Fabbri (1982) and of David Brackett (1995) are of particular interest in understanding musi-
cological issues relating to genre. Experimental research involving both supervised learning and 
clustering could provide valuable data to musicologists. 

Machine learning based research can also help musicologists understand how the musics of differ-
ent cultures, geographical regions and historical periods have influenced each other. The output of 
feature selection algorithms can also provide valuable insights on what factors are most important 
to consider when thinking of different types of music. The clusters output by unsupervised learning 
algorithms can also be of theoretical interest, as they can present musicologists with new ap-
proaches to grouping music.  

2  General  theoretical  i ssues  to  consider 

The study of pure similarity is both a highly interesting and highly problematic area. Although it is 
on the surface a simple matter to ask whether two pieces of music are similar, more serious con-
templation reveals the many questions that must be considered. How do we quantify similarity? 
Should we also consider dissimilarity? What features do we base judgments of similarity on? 
Should we stress cultural or content-based aspects? How do we evaluate similarity analysis systems 
once they have been implemented? Is there some ground truth, and if so, how do we find it? How 
does one deal with recordings or musicians that bridge multiple styles? 

Although most humans can make intuitive judgments of musical similarity, ranking similarity is a 
much more difficult task, as is agreeing upon some basis on which similarity judgements can be 
made. Even listeners from the same culture and with similar backgrounds may use very different 
considerations.  

Even if one is to restrict oneself to the realm of pre-set categories, matters are still far from simple. 
Different individuals may use entirely different genre categories, for example, or classify individual 
recordings entirely differently. 



 

Any serious study of music classification should consider psychological research on how humans 
perform classifications, as the ultimate goal is to produce software that agrees with humans. Elea-
nor Rosch, for example, has argued that people tend to think of categories as having some typical, 
or prototypical, members, and other less typical members (Rosch 1975). A robin, for example, can 
be considered to be a better example of a bird than an ostrich, or a chair a better example of furni-
ture than a magazine rack. This is obviously highly relevant to the study of musical similarity.  

There are many other such insights and ideas. George Lakoff (1987) has published a seminal over-
view relating to human labelling and classification in general. A number of important insights on 
constructing taxonomies for the particular purpose of automatic music classification have been pre-
sented by Pachet and Cazaly (2000) and by Aucouturier and Pachet (2003). 

3  Issues  relating to  features  

Any classification algorithm is only as good as the features that it is provided with. It can reasona-
bly be argued that the choice of features is perhaps the most important aspect of most applied pat-
tern recognition. This is particularly problematic in the case of music, as most humans do not think 
or communicate about music in ways that are easily communicable to a computer. Furthermore, 
knowledgeable consideration of features can require knowledge of diverse fields, including signal 
processing, musicology, music theory and text-mining. 

Before proceeding to discuss features in more detail, it is important to emphasize that content-based 
features can be approached in terms of both audio and symbolic data. Due to current limitations in 
automated transcription, it is currently difficult to extract reliable high-level musical information 
from audio recordings. Although audio can be synthesized from symbolic recordings, it will cer-
tainly not contain much of the useful information that one would find in an original audio re-
cording.  

It hoped that, as automatic transcription technology improves, one will be able to extract both high-
level and low-level features from audio. As it is now, unfortunately, there is a general division be-
tween audio and symbolic research, and relatively little research at all using features based on cul-
tural meta-data. This is unfortunate, as it is probable that research combining the three types of fea-
tures could be very fruitful. 

3 .1  F ea t ures  der iv ed  f ro m sy mbo l i c  reco rd ing s  

The high-level features that can be extracted from symbolic recordings can be extremely effective, 
since that they can make use of useful musical abstractions. Some of the best automatic genre clas-
sification success rates to date have been achieved using MIDI recordings (McKay and Fujinaga 
2004). 

Unfortunately, most theoretical musical research has focused on specific types of music, and there 
is a relative paucity of research on features that could be used for music in general. Furthermore, 
much of the existing research has focused on sophisticated theoretical models that are subjective 
and difficult to compute automatically. 

There have been, fortunately, a few exceptions. The Cantometrics project quantitatively compared 
the musics of a variety of cultures (Lomax 1968). Philip Tagg (1982) and David Cope (1991) have 
published a number of ideas that have general applicability. Arden and Huron (2001) have studied 
correlations between particular musical features and different geographical regions. McKay and 
Fujinaga (2005) have found that features based on instrumentation can be particularly powerful 
with respect to automatic music classification. 

3 .2  F ea t ures  der iv ed  f ro m a udio  reco rd ing s  

Features derived from audio features tend to consist of signal processing based quantities that have 
little intuitive musical meaning to humans. More high-level information can be derived from them 
in some cases, however. It is important to note that the degree of accuracy needed for automatic 
transcription is not necessarily required for features intended for classification. Individual incorrect 



 

notes, for example, can be averaged out through the construction of intermediate data structures 
such as beat histograms or pitch histograms. 

Many of the features that have been used for music classification were originally developed for 
speech processing. Scheirer and Slaney (1997) and Cary, Parris and Lloyd-Thomas (1999) have 
published useful sets of features with respect to speech/music discrimination. Tzanetakis and Cook 
(2002) have used many of these features and expanded upon them with the particular needs of mu-
sic in mind. Researchers in musical instrument identification have also made some important con-
tributions (Eronen 2001; Essed, Richard & David 2004). Further relevant research has been pub-
lished by Park (2000), McKinney and Breebaart (2003), Pope, Holm and Kouznetsov (2004) and 
West and Cox (2004). 

3 .3  Cul t ura l  f ea t ures  

Although most research to date has focused on content-based classification, cultural features have 
the potential to extremely useful as well. Data mining techniques can be used to extract information 
from the web and other sources to form correlations between particular songs, performers, genre 
categories, etc. Textual analysis of song lyrics could also prove to be fruitful. Whitman and 
Smaragdis (2002) and Aucouturier and Pachet (2003) have proposed some important initial steps 
towards utilizing such cultural information. 

Despite the relative paucity of research on cultural features, they are commonly used commercially, 
albeit in an unsophisticated way. Most on-line music retailers collect statistics on the purchases of 
individual customers and correlate them with the purchases of others in order to recommend music. 

Although this can be effective in many cases, it has three important weaknesses. Firstly, individuals 
often buy presents for others, thereby introducing potentially significant noise into the system. Sec-
ondly, this approach tends to average out the preferences of people with atypical tastes. Thirdly, 
this approach tends to overlook relatively poorly known music, as there are fewer purchasers of it. 
Even if popularity weighting is introduced to compensate for this, there is still a much greater error 
associated with such recordings due to small sample sets. This is problematic, as the most impor-
tant function of a music recommendation system is to recommend music that users are unlikely to 
have heard of previously. There is clearly much potential to cultural features, but also much to be 
done beyond this naïve approach. 

4  Previous research on audio classi f ication and similarity  

The experiments discussed later in this paper concentrate on audio classification and analysis, so 
the remainder of this paper will deal solely with research on audio work. McKay (2004) includes a 
review of an overview of research on classifying of symbolic recordings. 

Scheirer and Slaney (1997) have published some of the most influential early modern research on 
sound classification. Tzanetakis and Cook (2002) are responsible for bringing serious pattern rec-
ognition techniques to the forefront of the music information retrieval community through their 
research on genre classification. These results were later improved by Li and Tzanetakis (2003). 
There have been too many recent publications on audio classification to cite comprehensively here, 
but McKay (2004) may be consulted for a detailed summary of automatic genre classification re-
search up to 2004. Much of this research has essentially consisted of straight forwardly applying a 
variety of basic machine learning techniques to the types of features proposed in the papers dis-
cussed in Section 3.2. 

There has been somewhat less research with regards to musical similarity, probably because of the 
difficulty in evaluating such systems. There has been significant commercial interest in this area, 
however (Cuidado, Goombah, Comparisonics, Polyphonic HMI, etc.), and there is certainly schol-
arly interest as well, as discussed in Section 1.3. 

Foote (1997) performed some of the earliest research in this area, although he used his results to 
perform classifications rather than studding pure similarity. He performed classifications by gener-
ating templates and then measuring distances of test instances from them. 



 

Ellis et al. (2002) and Berenzweig et al. (2003) have published excellent work on attempting to 
come to terms with the issue of ground truth and musical similarity. They have proposed assessing 
the opinions of “average listeners” and using the results to train classifiers. They have based their 
research on a variety of sources, including peer-to-peer statistics, an on-line survey and expert 
opinion. Their system produces a similarity matrix that compares the similarity of all possible pairs 
of artists, an approach that has since been adopted by many others. 

Aucouturier and Pachet (2002) have made the important contribution of using meta-data to con-
strain similarity results. For example, one could ask a software system to filter similarity results so 
that only recordings by a certain artist, in a certain language, belonging to a certain genre, etc. are 
returned. Aucouturier and Pachet propose further browsing tools for refining searches in a later 
paper (2004). 

Rauber et al. (2002) have proposed using psycho-acoustic models to create a hierarchical organiza-
tion of music archives based on perceived similarity. This imposition of structure on similarity re-
sults is another important way of making them more manageable. 

Pampalk (2004) has constructed a MatLab toolbox for measuring audio similarity. This includes an 
update on the visual Islands of Music interface that he has constructed in order to help humans 
make sense of similarity measurements. 

5  Implementation 

The experiments presented in Section 6 were performed using the jAudio feature extractor and the 
ACE classification framework (McKay et al. 2005). This software is implemented entirely in Java, 
and makes use of the Tritonus alternative Java Sound implementation and the Weka data-mining 
class library (Witten and Frank 2000). Additional functionality was added to this software during 
the course of this project. 

jAudio and ACE have both been developed to make automatic music classification more accessible 
and effective. They have been designed to bring powerful general digital signal processing and ma-
chine learning algorithms to the music information retrieval community while emphasizing the par-
ticular needs of music researchers. Special effort has been exerted to make the software portable 
and, most importantly, easily extensible. The software has significant functionality outside of the 
scope of this project, and only the directly relevant aspects of it are presented here. 

5 .1  F ea t ure  ext ra c t io n  w ith  j Audio  

The jAudio software extracts features from audio recordings and saves them in ACE XML files, 
which may also be converted to Weka ARFF format. A variety of pre-processing techniques may be 
performed, and features may be saved for individual windows or for recordings as a whole. In the 
particular experiments described here, all recordings were downsampled to 16 kHz, stereo channels 
were merged into mono and features were extracted for each non-overlapping window of 512 sam-
ples. Although a variety of other features are extractable by jAudio, the features used for the ex-
periments described in Section 6 consisted of the overall average and standard deviations over all 
windows of the following features: 

• Beat Sum: The sum of all bins in a beat histogram. This is a measure of the importance of 
regular beats in a signal. 

• Compactness: A measure of the noisiness of a recording. Found by comparing the compo-
nents of a window’s magnitude spectrum with the magnitude spectrum of its neighbouring 
windows. 

• Fraction Of Low Energy Frames: The fraction of the last 100 windows that had an RMS 
less than the mean RMS of the last 100 windows. This can indicate how much of a signal 
section is quiet relative to the rest of the signal section. 

• Root Mean Square (RMS): A measure of the power of a signal. 
• Root Mean Square Derivative: The window to window change in RMS.  
• Spectral Centroid: The centre of mass of the power spectrum. 



 

• Spectral Flux: A measure of the amount of spectral change in a signal. Found by calculat-
ing the frame to frame change in magnitude spectrum. 

• Spectral Rolloff Point: The fraction of bins in the power spectrum at which 85% of the 
power is at lower frequencies. This is a measure the right-skewedness of the power spec-
trum. 

• Spectral Variability: The standard deviation of the magnitude spectrum. A measure of 
how varied the magnitude spectrum of a signal is. 

• Strength Of Strongest Beat: How strong the strongest beat in the beat histogram is com-
pared to other potential beats. 

• Strongest Beat: The strongest beat in a signal, in beats per minute, found by finding the 
highest bin in the beat histogram. 

• Strongest Frequency: An estimate of the strongest frequency component of a signal, in 
Hz. This was found three different ways: via the spectral centroid, via taking the power 
spectrum bin with the highest power and via zero-crossings. 

• Strongest Frequency Variability: The standard deviation of the frequency of the power 
spectrum bin with the highest power over the last 100 windows. 

• Zero Crossings: The number of times the waveform changes sign in a window. A possible 
indicator of fundamental frequency and of noisiness. 

• Zero Crossings Derivative: The absolute value of the window to window change in zero 
crossings.  

5 .2  P a t t ern  reco g n i t io n  w it h  ACE 

The ACE software automatically experiments with a variety of machine learning techniques in or-
der to find ones well suited to a particular problem. All evaluations were done using 10-fold cross-
validation. 

The machine learning techniques used by ACE include k-NN (unweighted, weighted by distance 
and weighted by similarity), a naïve Bayesian classifier, feedforward neural networks, support vec-
tor machines and a C4.5 decision tree. Experiments are also performed in combining classifiers 
using bagging and AdaBoost. ACE also experiments with various feature dimensionality reduction 
techniques. These currently consist of principal component analysis and genetic algorithms.  

6  Experiments ,  resul ts  and conclusions 

The first test of the ACE system was to run it on several of the UCI benchmark datasets (Blake and 
Merz 1998). This was done in order to evaluate the effectiveness of the machine learning algo-
rithms themselves. The results are shown on Table 1, and are compared with other recently pub-
lished results (Kotsiantis and Pintelas 2004) on the same datasets. These results are very encourag-
ing, as ACE performed better than the reference on all data sets but one. 

 

Table 1: Comparative results on UCI datasets 

DATA SET CLASSES SUCCESS RATE 
(Kotsiantis 2004) 

SUCCESS RATE 
(ACE) 

autos 7 81.8% 86.3% 

diabetes 2 76.6% 78.0% 

ionosphere 2 90.7% 94.3% 

iris 3 95.6% 97.3% 

labor 2 93.4% 93.0% 

vote 2 96.1% 97.0% 

 



 

Once the efficacy of ACE had been demonstrated, it was appropriate to turn to data sets specific to 
music. Three types of tasks were used to test ACE, namely percussive sound identification, genre 
classification and speech/music discrimination. The first two types of tasks are highly useful but 
difficult types of music classification that have been receiving significant research attention re-
cently, and the third task is included to see if the system could perform well on a relatively easy 
task. 

Two different experiments were performed involving percussive sound identification. This is a par-
ticularly difficult type of classification, as percussive sounds generally consist of unstable tran-
sients. The first experiment involved snare drum stroke classification. The data set compiled by 
Tindale et al. (2004) was used for this experiment, and it involved 58 features and 7 classes (centre, 
half centre, halfway, halfedge, edge, rimshot and brush). The second experiment involved as of yet 
unpublished beatboxing data collected by Elliot Sinyor consisting of five classes (kick, open, 
closed, k-snare and p-snare). Tindale et al.’s features were used for the snare stroke classification 
and jAudio was used to extract the features from the beatboxing data. 

Two genre classification experiments were also performed. The first involved the data set collected 
by Tzanetakis and Cook (2002), which consists of 10 genres (blues, classical, country, disco, hip 
hop, jazz, metal, pop, reggae and rock). The second experiment involved an as of yet unpublished 
data set collected by Douglas Eck and his students. This data set consisted of 6 genres (classical, 
country, electronic, jazz (bebop), rap and rock). Finally, a speech/music discrimination was per-
formed on the Scheirer and Slaney (1997) data set. jAudio was used to collect features for all of 
three of these data sets. 

Table 2 shows the results of all four of these experiments, including previously published results by 
others, where appropriate. 

 

Table 2: Results on music-related experiments 

EXPERIMENT PREVIOUS 
RESEARCH 

SUCCESS RATE 
(PREVIOUS) 

SUCCESS RATE 
(ACE) 

Snare drum stroke Tindale et al. 2004 95% 96% 

Beatboxing -- -- 96% 

Tzanetakis genre Li & Tzanetakis 2003 71% 62% 

Eck genre -- -- 73% 

Speech/music Scheirer & Slaney 1997 94% 98% 

 

The speech/music discrimination results were very good, and both of the percussion recognition 
experiments resulted in high success rates. Unfortunately, the genre classification results were 
somewhat disappointing. However, upon consideration, these results are perhaps not surprising. 
Existing genre research involved a fine-tuned set of specialized pre-processing, feature extraction 
and classification methodologies with the particular needs of genre classification in mind. ACE, in 
contrast, is a general system. 

Even though ACE does automatically experiment with a variety of feature selection techniques and 
classifiers, the possible palette from which the it has to choose is still limited. The relatively poor 
performance of ACE on genre classification was probably due to the fact that no high-level features 
were used, other than a few basic statistics derived from beat histograms. Genre classification, 
unlike the other experiments performed here, is probably particularly well segmented by such high-
level features, and Li and Tzanetakis made use of a variety of rhythmic and pitched based features 
that probably had a significant effect on their success rate. This presents a strong argument for in-
corporating such features into jAudio in the future. 

A final experiment was performed where k-means clustering was applied to the Tzanetakis data set. 
This was done in order to illustrate just one example of how similarity measurements can be used 



 

musicologically. The approach used here was entirely different from that of the papers described in 
Section 4, where attempts were made to judge the similarity of different artists or songs. Although 
this type of research is certainly important both practically and theoretically, it was decided to take 
the original approach here of studying genre categories themselves. 

K-means clustering is a simple but effective way of clustering instances into similar groups of vary-
ing sizes around strong centres of mass in feature space. K was set to 10 here in order to match the 
number of model genre classes in the data set. The clustering results are shown in Table 3. 

An examination of Table 3 shows some interesting patterns. The instances belonging to classical, 
country, disco, metal and rock were all each assigned in their entirety to a single cluster, and almost 
all reggae classes were assigned to the same cluster. This likely indicates a strong grouping of these 
classes, and reaffirms the appropriateness of the labels that were used. A number of blues and jazz 
recordings were grouped into the same cluster as country and, similarly, a number of blues and jazz 
recordings were grouped into the same cluster as rock. This is reasonable, given the similarity that 
many humans would probably agree exists between these types of music (with the probable excep-
tion of jazz and country). This could indicate that it might be more reasonable to assign multiple 
classes to some instances rather than enforcing only a single class membership. 

More interestingly, many jazz recordings were placed in the same cluster as the classical re-
cordings. Although these two genres are generally very different musically, they are the only two 
“art” genres in the experiment. Perhaps the clustering is recognizing a certain sophistication in the 
timbre or the dynamics of these genres as opposed to the others. 

Both hip hop and pop were each split among two different clusters. This may be an indication that 
it would be useful to split them both into sub-genres. Blues, in contrast, was spread throughout the 
clusters, perhaps an unsurprising result given its overlap with many other genres. 

Although all of these observations are essentially speculation, this is a good illustration of how 
even a rudimentary clustering algorithm applied to a rudimentary taxonomy can reveal very inter-
esting insights into the appropriateness of the taxonomy as well as ideas on how it might be modi-
fied. There is room for much more research in this area, including varying the number of clusters or 
experimenting with different clustering algorithms and taxonomies. 

 

Table 3: Unsupervised k-means clustering of the Tzanetakis data set. 
Rows correspond to model categories and columns correspond to clusters. 

 1 2 3 4 5 6 7 8 9 10 

Blues 16 39 1 27 3 5 3 6  16 

Classical          110 

Country  112         

Disco     102      

Hip Hop   49    57    

Jazz  36  9 1 2 2 4  51 

Metal      101     

Pop 64        55  

Reggae   1     112 3  

Rock    111       

 



 

7  Conclusions 

This paper discussed a number pf important theoretical issues relating to automatic music classifi-
cation and similarity analysis. Several experiments were performed in order to demonstrate how 
these theoretical ideas can be applied.  

The jAudio and ACE system were found to able to deal effectively with a variety of classification 
tasks with no manual tweaking or user configuration at all. There is still certainly room for general 
improvement, however, particularly with regards to the addition of more features and a greater va-
riety of feature selection techniques. Features based on relatively high-level information extracted 
from audio are particularly promising, and could help ACE to perform well on specialized tasks. In 
addition, brief experimentation with clustering demonstrated the potential of unsupervised learning 
when applied to musicological research. 

It is hoped that the results and background presented in this paper will help to frame and encourage 
future collaborative research in musicology and pattern recognition. 
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