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ABSTRACT

This paper presents an overview of physical modelling
techniques that have been used to model classical gui-
tars. Areas that still need improvement are discussed.
The introduction provides a brief discussion of the mo-
tivations for using physical modelling.

INTRODUCTION

Physical modelling synthesis uses mathematical models
of physical instruments to synthesize their sound. Al-
though accurate models of the often complex mechani-
cal and acoustic behaviour of instruments can be diffi-
cult to construct and expensive to process, this ap-
proach does offer a number of important benefits that
other synthesis techniques do not.

Perhaps the most important of these benefits is the abil-
ity to represent musical events through parameters
based on physical configurations and gestures. This
allows a level of control that is natural and easy for a
musician to learn. Parameterized data can also be eas-
ily edited to correct mistakes or introduce desired
changes after a recording of performance parameters.
Altering the parameters of an instrument itself can also
have very interesting effects. It becomes possible to
change an instrumental setting to see, for example, how
a classical guitar performance might have sounded on a
steel guitar. A more adventurous approach would be to
simulate types of instruments that would be physically
difficult or impossible to construct or play.

The ability to parameterize performance gestures also
enables musical data to be stored in a potentially more
compact form than raw audio data. When combined
with good physical modelling systems, sufficiently
complete parameters could make it possible to generate
sound that could be perceptively indistinguishable from
the audio information that was produced during the
original performance.

One approach to collecting parameters for physical
modelling is to design original musical controllers that
provide as much, or perhaps more, control as the in-
strument being modeled. Recent research has also
made it possible to collect increasingly sophisticated
control information from audio signals of acoustic in-
struments. Traube and Smith (2000), for example, have
developed techniques for recovering plucking points
and the fingering points from audio recordings of
acoustic guitar music. Tolonen and Valimaki (1997)
have shown that it is possible to extract the physical
parameters of plucked string instruments from their
audio signals. The increasing availability of parameters
increases the utility of physical modelling systems. One
caveat, however: recovering parameters from audio
signals is much more difficult when polyphonic music
is considered.

The modelling of classical guitars is an area where
some success has been obtained. The behaviour of
plucked strings is relatively well understood, although
only moderate headway has been made in modelling
the behaviour of the resonator.

Some of the most important performance parameters
that characterize guitar performances are plucking po-
sition, plucking velocity, direction of plucking relative
to the strings, duration of pluck, material used for
plucking, fingering position, magnitude of fingering
force, direction of fingering force, material used for
fingering and velocity with which a string is pressed
and released. Some of the most important parameters
regarding the instrument include length of the strings,
tension of the strings, mass per unit length of the
strings, rigidity of the strings, rigidity of the nut, elas-
ticity of the bridge, fret position, fret material and cou-
pling between the strings, bridge and body of the gui-
tar. The exact behaviour of the body of the guitar is not
fully understood, although parameters such as size,
shape and material can be used to grossly model it. The
acoustics of the room as well as air pressure and hu-
midity must also be considered. The large number of
parameters makes it clear that some assumptions and
simplifications are necessary in order to model guitars,
at least initially.



From a higher-level perspective, a physical model
should be able to accommodate certain common tech-
niques. Plucking position is a particularly important
parameter in controlling timbre, as is plucking material
(e.g. nails, pick, flesh of fingers). The use of different
fingerings for the same notes and chords is also well
known to have an important effect on timbre. Muting
and the excitation of natural harmonics are also impor-
tant techniques. Although less attention has been paid
to them in the literature, left-hand techniques such as
bends, different types of vibrato, hammer-ons, pick-
offs, trills, slides (both with fingers and with slides)
and tapping are also an essential part of performance
technique.

It becomes clear from all of this that there is great deal
to consider if one wishes to accurately model an acous-
tic guitar. This paper will present an overview of the
work that has been done to date on plucked string
modelling in general and guitar modelling in particular,
and will point out areas that still need improvement.

BASIC KARPLUS-STRONG SYNTHESIS

Karplus-Strong synthesis offers a simple and efficient
method for generating signals that sound similar to
plucked strings. Although it was first arrived at by ac-
cident rather than through an intentional attempt to
model the physical properties of plucked strings, it has
since been shown to have a physical basis (see below).

In its simplest form, the Karplus-Strong algorithm in-
volves the use of a re-circulating delay line with a filter
placed in the feedback loop (see Figure 1). Sending a
stream of n random samples into the system initiates a
note. The random samples then circulate through the
feedback loop. Since there is a fixed pattern of length
n, this results in a periodic signal, even though the
samples themselves are random. The resulting signal
therefore has a frequency of R / n, where R is the sam-
pling rate.
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Figure 1: Basic implementation of the Karplus-Strong algo-
rithm. The box labelled z? delays all input by p samples and
the box labelled A(n) is a digital filter (Moore, 1990).

If the filter is a low-pass filter, then the higher fre-
quency components will become increasingly attenu-
ated as the samples continue to cycle through the sys-
tem. If the gain of the filter is less than one at the fun-
damental frequency, the result will be a signal that is
initially harmonically rich, but then decays to a signal
close to a simple sinusoid. This behaviour is very simi-
lar to that of a plucked string. A filter with the follow-
ing impulse response and transfer function could be
used to accomplish this (Moore 1990):
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Changing the delay time can be used as a simple tech-
nique for altering the pitch of the tone. Of course, it is
also necessary to be able to control note duration. A
loss factor p can be introduced into the filter to shorten
note durations:

y(n) = pw 3)

A stretch factor S can also be incorporated so that high
frequencies are attenuated to a lesser degree if a note
needs to be lengthened. A filter that incorporates
lengthening as well as shortening of notes has the fol-
lowing impulse response and frequency dependant
gain:

y(n) = p[(1-$)x(n) + Sx(n—1)] @)
G(f)= p\/(l — S)2 +8%+ 28(1-S)cos(2af / R) 5)
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Figure 2: Implementation of an ideal, linear, lossy and dispersive digital waveguide (Smith, 1993).

Unfortunately, this results in a frequency dependant
phase:
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S will affect the pitch and the upper harmonics will be
slightly sharpened or flattened relative to the funda-
mental. Introducing an all-pass filter into the delay line
can ameliorate this problem. The phase delay of this
new filter can be altered to compensate for unwanted
phase delay effects from the first filter.

It would be possible to control loudness simply by mul-
tiplying the output of this system by a gain. A more
realistic string sound can be achieved, however, by
using the fact that softly plucked notes generally con-
tain less high-frequency energy than notes that are
strongly plucked. Applying a low-pass filter to the in-
put set of random samples could thus simulate a softly
plucked note.

Finally, to avoid clicks and to make the beginning and
ending of notes sound more realistic, an amplitude en-
velope could be applied to each note. Alternatively, the
loss factor could be increased with time to make the
note die off.

Although the Karplus-Strong approach is efficient and
does provide realistic sounding plucked string tones, it
does not, at first glance, appear to model any physical
processes except in a very high-level sense. If this were
true, then incorporating the effects of performance ges-
tures such as plucking position or plucking material
would involve somewhat artificial filtering techniques.
It would be more useful to use techniques that truly

attempt to model the physical processes of guitars, as
this would perhaps make it more natural to incorporate
control parameters.

It has been shown (Jaffe & Smith, 1983; Smith, 1993),
however, that a waveguide implementation such as that
shown in Figure 2 is in fact equivalent to a Karplus-
Strong implementation of the type shown in Figure 1.
Since this waveguide model is based directly on the
simulation of physical processes, this means that the
Karplus-Strong algorithm is more useful than it first
appeared. In order to understand this, and to eventually
consider superior systems to that shown in Figure 2, let
us examine some of the physics behind string vibra-
tions.

A SIMPLE STRING MODEL

The classic equation for an ideal string is:
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where u is the mass per unit length of the string and F

is the string tension. A traveling wave solution, known

as the D’Alembert solution, is (Cuzzucoli &
Lombardo, 1999):

0=y, (x—ct)+y (x+ct) ®)

where y.(x-ct) and y.(x+ct) are waves traveling in op-
posite directions with velocity c¢. These waves are set
by the initial conditions of the system. The nut and
bridge of the guitar can be approximated as ideal re-



flectors, with the result that y(0,¢) = y(L,t) = 0, where L
is the length of the string.

Equation 8 can be implemented on a computer using a
data structure that consists of two arrays, one for each
traveling wave. The displacement of any point on the
string can be found be shifting the contents of one array
left and the other right at the sampling rate, and finding
the sum of the elements with corresponding indices.

Of course, this is only a very rough approximation.
Aside from errors due to the finite resolution of spatial
and temporal sampling, the following five physical
characteristics of real systems are ignored (based on
Cuzzucoli and Lobardo, 1999):

e  Damping due to internal friction in the string and air
resistance

e Loss of further energy due to interactions with the reso-
nator

e  Sympathetic vibrations excited by other strings or ex-
ternal sound sources

e Non-rigid terminations at the nut and bridge

e Dispersion due to finite elasticity of the string

REFINEMENTS TO THE SIMPLE STRING
MODEL

The movement of a simple damped string is given by:
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where r(w) is the damping coefficient that increases
with frequency. For small displacements of the string, a

solution to this partial differential equation is (Cuzzu-
coli & Lombardo, 1999):

—rx —rx

y(x,t) = ezi’“"y+ (x—ct)+ eT’”y_ (x+ct) (10)

This shows how amplitude decreases exponentially
with time. It should also be noted that the time constant
decreases with frequency:

() =—— (11)
r

Smith (1992) has suggested the possibility of simulat-
ing a damped string with non-rigid terminations by
applying a proper load to a termination. For example, if

the nut is considered to be at x=0, the vertical compo-
nent of the string tension is, for small angles (Cuzzu-
coli & Lombardo, 1999):

Fiy-F% (12)
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where F, is the component of the tension parallel to the
string at the nut.

Knowing that the equation for F(z) in equation 12 is the
same as the definition of the mechanical impedance, Z,,
of the applied load, the following equation is arrived at
giving the wave reflected from the nut:
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where R, = F,/ c is the string’s characteristic resis-
tance. This equation can be modeled with a digital fil-
ter with transfer function H(z):

Y (2)= H(2)Y_(2) (14)

In order to more accurately simulate a guitar string, a
filter must be chosen that ensures that amplitude de-
creases with time, that higher partials decay faster than
lower partials and that dispersion is avoided by ensur-
ing that the phase relation between the components of
signal is constant’ (Cuzzucoli & Lombardo, 1999). A
second order symmetrical finite impulse response filter
with the following transfer function can fulfill these
requirements:

H(z)=a,+a,z" +a,z” (15)

This filter has a constant delay of one sampling period.
The values for the parameters in equation 15 can be
determined by setting frequency-magnitude points.
Cuzzucoli and Lobardo (1999) have suggested empiri-
cally determining different values for the gain at zero
frequency and the cutoff frequency for each of the
notes on each of the six strings to arrive at a natural
sounding synthesis. Although this approach can pro-
duce a realistic sound, it is of limited utility in this
form. Its reliance on empirical data rather than an ana-
lytical solution makes it inappropriate for situations
where pitch can vary continuously, such as when a

! Although dispersion is present in heavy strings used by
some instruments, such as pianos, guitar strings are flexible
enough that it can be neglected.



string is bent or a slide is used. In cases such as these,
it is necessary to interpolate to arrive at an appropriate
pitch, which can result in unrealistic timbres. Further-
more, this approach does not directly encapsulate pa-
rameters such as plucking position or plucking mate-
rial.

Before going on to discuss how this approach can be
improved to include more sophisticated performance
parameters, it is appropriate to mention a few tech-
niques that can improve general performance. First of
all, the quality of the sound could be further improved
by considering the horizontal and vertical motion of the
string independently (Jaffe and Smith, 1983). If the two
models are slightly mistuned, a slight beating will re-
sult that will make the sound more natural and less syn-
thetic. Another advantage of this two-models-per-string
approach is that it allows strings to be coupled in a way
that avoids feedback (Karjalainen, Valimaki and
Tolonen, 1998). A matrix of coupling coefficients can
be used to determine the proportion of the signal from
each string that is sent to the other strings to simulate
sympathetic vibrations.

INCORPORATING FURTHER PARAMETERS

As discussed earlier, plucking position can have a sig-
nificant effect on the timbre of a note. For example,
notes plucked close to the bridge tend to have richer
high-frequency components then notes plucked closer
to the centre of the string. Furthermore, plucking at a
spot that corresponds to an anti-node of some harmon-
ics of a string will emphasize those harmonics. Simi-
larly, placing a finger at a potential node will also af-
fect the spectrum.

An ideal string with length / and fixed ends can be de-
scribed as a sum of modes (Traube & Smith, 2000):

D (4, sinw,t+ B, cosw,)sin(k, x) (16)
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The amplitude of the nth mode is thus

C,=+A4 +B; (19)

If the plucking action is idealized as a deformation of
the string into a triangle with its summit at the point
(p,h), where p is the distance from the end of the string
and / is the height of deformation (amplitude), and if
the string is considered to have no initial velocity, then
the amplitude of the nth mode can expressed as:

2h
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where R =p /1.

A rudimentary approach to incorporating plucking po-
sition into synthesis would be to use additive synthesis
to add the appropriate modes together. Of course, this
ignores issues such as plucking material and duration
of the pluck, and assumes a number of unrealistic con-
ditions.

Karjalainen, Valimaki and Tolonen (1998) have sug-
gested a fairly simple approach to simulating picking
position. They argue that an adjustable comb filter
could be used to simulate the plucking position. The
delay would correspond to the time needed for the ex-
citation to travel to the nut and back. This would result
in a series of zeroes in the transfer function at frequen-
cies f,, = m /tp, where tp is the delay of the comb filter
and m is a non-negative integer. They also suggest us-
ing a low-pass filter with a cutoff frequency below the
lowest fundamental frequency to be synthesized to ap-
proximate the output of energy at the bridge.

Cuzzucoli and Lombardo (1999) have suggested a
more sophisticated, but still somewhat simplified
method for modelling the parameters of a performer’s
touch. A plucker can be defined as a physical body
with a mass M,, a stiffness K, and a damping coeffi-
cient R, The following equation can then be used to
relate the force acting on the string, F(?), to the external
force applied by the plucker:2

02 0
F(t)=F0(t)—<Md+uA)aT§’—Rda—f—Kdy @1

If the string is plucked at some plucking point, x, four
traveling waves will result: the wave traveling towards
the bridge, the wave traveling towards the nut and the

% This equation assumes linear compression and a simple
fluid damping coefficient.



two waves resulting from the reflections of these
waves. The resulting string displacement will be:

y(x,8) = f(x—ct)+ g(x+ct)+ h(x +ct) for x<x,
y(x,8)= f(x—ct)+ g(x+ct) + h(x —ct) Tor x >x;, (22)

y(x,.0)= f(x, —ct)+g(x, +ct) +h(x,,t) Tor x=x;

The functions f(x,t) and g(x,t) are related to the imped-
ances of the terminations and the excitation wave h(x,t)
is related to F(t), the force applied at x,.

Equation 21 can be represented in the discrete domain
using the following equation, at the sampling time m
and at the plucking point:

F(m) = Fu(m)A/I(/TityA[y(np,m +1)+ y(np,mfl)72y(np,m)] (23)

R
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This leads, after some math, to the excitation values at
the plucking point:

h(m +1)c, = h(m —1)c, + [h(m) + w(m)]e, +
w(m —1c; + w(im +1)c, + Fyc;

24

where w(n,m) = f(nm) + g(nm). Cuzzucoli and
Lombardo went on to experimentally determine plausi-
ble values for certain performer actions and types of
pluckers. Emphasis was put on considering not only the
magnitude of the plucking force, but its duration and
evolution with time as well. They found that the
plucker’s parameters had little effect on the sound
when the force increased linearly with time during
plucking, but that the parameters did have an influence
if the pluck was a quick steady motion. This is because
it did not matter how the string came to its final
displacement in the first case. In addition, higher
partials tended to prevail when the string was released
rapidly, whereas they were somewhat suppressed when
the string was released gradually. The properties of the
plucking material related to friction have an effect here
as well as the speed at which the string is released. All
of these properties can be modeled by altering the
equation for F(t).

The muting of strings is another important aspect that
must be considered. Touching a string without exerting
any appreciable force can mute a string. The effect on a
string that is already sounding can be simulated by ap-
propriately modifying the damping coefficient. In the
case of plucking a muted string, the properties of the
nut terminator need to be replaced by the properties of
the damping finger. If a string that is already in motion

is plucked, the plucking motion will damp the previous
excitation. Equation 24 can be modified to reflect
damping (Cuzzucoli and Lombardo, 1999):

h(m +1) = h(m) + ——[w(m —1) —w(m +1)] (25)
1+a

where

_RT

= 26
azyA (26)

and R is the damping coefficient.

THE RESONATOR

The bridge of a guitar transfers some of the energy
from the vibrating strings to the body of the guitar. The
body then vibrates itself and, in turn, transfers energy
to the surrounding air as sound. Each guitar body has
its own set of modes. It is very difficult to fully deal
with the oscillatory behaviour of a guitar over the en-
tire audio range, as the interaction between the resonant
peaks of the strings and of the guitar body are difficult
to model, particularly at higher frequencies (Cuzzucoli
& Lombardo, 1999).

One approach to modelling the behaviour of the body
is to use filters. Unfortunately, this can be very compu-
tationally intensive. Not only are there large number of
resonances from 100 Hz up, but the temporal envelope
of the body’s response can be very complex (Kar-
jalainen, Valimaki & Janosy, 1993). In order to solve
this problem, Karjalainen, Valimaki and Janosy suggest
the use of a chain of linear sub-systems:

y(n) = e(en) *s(n) * b(n) 27)

where e(n) is the excitation source (i.e. a plucked
string), s(n) is the impulse response of the string and
b(n) is the impulse response of the body. Note that * is
the convolution operator. The impulse response of the
body can be pre-measured or pre-computed and stored
in wavetable that can be accessed for each excitation
event. This simplifies the amount of calculation that
needs to be performed.

A simplified model of the guitar represents the resona-
tor as a simple enclosure with a hole in it, which is to
say a Helmholtz resonator. The motion of the strings
excite the plate resonances of the guitar, which in turn
excites the air within the guitar body as well as the ex-
ternal air. This results in an external force, due to air



pressure, on the front and back plates of the guitar. In
addition, there is a feedback relation due to sympa-
thetic vibrations set up in the strings of the guitar. The
acoustics of the room also play a role. All of this makes
the guitar resonator very difficult to model beyond the
first few modes of vibration. This makes simulations of
the resonator with filters very difficult. Even if a great
deal of computational power is available, it will not be
helpful if parameters for the filters are not always
available. Although it has been suggested that the
higher frequency content could be simulated with
noise, this is a low fidelity approach.

One practical solution to this problem (Karjalainen,
Valimaki and Janosy, 1993; Karjalainen, Valimaki and
Tolonen, 1998) is to simulate the behaviour of the
resonator by appropriately modifying the excitation
signal. Since the convolution operator is commutative,
equation 27 can be modified to:

y(n) =b(n)*e(n)*s(n) (28)

A recording of an actual guitar note could then be used
as the excitation source, since it would include the be-
haviour of the guitar body. Unfortunately, this ap-
proach limits the available parametric control, since the
exciter is a pre-recorded signal. Karjalainen and Smith
(1996) have suggested techniques for combining this
approach with a body filter approach to achieve more
control while still achieving efficient synthesis. While
this could be useful in the short term, it does not truly
model the physics behind guitar bodies. This approach
is therefore not very useful if one desires to be able to
model an arbitrary body including, perhaps, bodies that
might be impossible or difficult to build. It is clear that,
while some progress has been made, there is still a
need for significant improvements before a system can
be said to truly model guitar bodies in a realistic, flexi-
ble and easily controllable way.

CURRENT STATE OF THE ART

Laurson et al. (2001) have produced the most recent
published system. Their basic system is based on com-
muted waveguide synthesis and is composed of a feed-
back loop that contains a delay line and two digital
filters. They chose to use an FIR filter instead of an all-
pass filter to compensate for fractional delay because
they found it produced better glissando and cleaner
vibrato. Two such basic systems were used for each
guitar string, since the x and y dimensions were mod-
elled separately.

Plucking point was simulated using a comb-filter and a
recording of an actual guitar signal was used as the
excitation signal. A database of excitation signals in-

dexed based on fret position and string was used. The
horizontal dimension of each string was coupled with
that of the other strings in order to simulate sympa-
thetic vibrations. Finally, a database of special effects,
such as scraping of the string or knocking on the guitar
body, was available to be added to the output signal.
Rules were also implemented to generate envelopes for
performer parameters.

Although this system did not offer anything entirely
new in terms of pure synthesis, it did combine a num-
ber of ideas into a functioning and practical system that
was reportedly successful. However, it did not accu-
rately model many of the performance gestures dis-
cussed in the introduction. Furthermore, because it
relies on a database of pre-recorded information rather
than true mathematical modelling, this system is some-
what limited. Nonetheless, this system can likely be
considered the state of the art in terms of realistic
sounding synthesis.

CONCLUSIONS

A number of successful techniques have been devised
and implemented to simulate realistic sounding simple
plucked strings. Some initial work has also been done
on simulating plucking parameters as well as muting of
strings and sympathetic vibration. Although plucking
position can be modelled fairly well, the effects of dif-
ferent plucking materials and picking direction have
only been considered on a fairly rudimentary level. The
physical parameters of the strings, nut and bridge have
also been modelled in a more or less idealized manner.
There is also a great deal of work that needs to be done
before guitar resonators and their interactions with the
strings and the surrounding environment can be simu-
lated efficiently and effectively.

Aside from some early rudimentary work (Jaffe and
Smith, 1983), very little has been done to effectively
simulate left-hand techniques such as bends, hammer-
ons, pull-offs, trills, fret tapping and slides. Further-
more, the reliance on recorded excitation signals limits
the generality of systems and does not take into ac-
count excitation from the left hand (e.g. hammer-ons)
as opposed to the right hand. It also makes it difficult
to deal with situations where a guitar is played with a
slide, since string length is varied continuously and it is
not possible to record excitation signals for all possible
slide positions.

So, although the groundwork has certainly been laid for
guitar synthesis, there is still much to be done before a
synthesizer is arrived at that can realistically synthesize
the full range of common performance gestures. The



work that has been done, however, shows that it is cer-
tainly possible to arrive at a reasonably high quality
synthesis using simplifications. This sets a baseline that
can be expanded upon in future research.
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