
jAudio: Additions and Improvements
Daniel McEnnis, Cory McKay, and Ichiro Fujinaga

Music Technology Area, McGill University, 555 Sherbrooke West, Montreal, Quebec
{daniel.mcennis,cory.mckay}@mcgill.ca, ich@music.mcgill.ca

Abstract
jAudio is an application designed to extract features for
use in a variety of MIR tasks. It eliminates the need for re-
implementing existing feature extraction algorithms and
provides a framework that greatly facilitates the
development and deployment of new features. Three
classes of features are presented and explained—features,
metafeatures, and aggregators. A detailed description of
jAudio’s dependency resolution algorithm is also
discussed. Finally, ways in which jAudio can be embedded
in and integrated with new systems are discussed, along
with a description of jAudio’s ability to add new features
or aggregators, potentially at runtime.

Keywords: Java Audio Environment, Audio Feature
Extraction, Music Information Retrieval.

1. Introduction
Since the introduction of jAudio at ISMIR 2005 [1], it has
been incorporated as the feature extraction system for the
OMEN project [2], which embeds jAudio in a larger
framework that performs distributed feature extraction on a
distributed dataset. This involved the addition of various
new functionalities in jAudio. This paper describes the
most significant of these improvements. In addition,
jAudio’s feature dependency resolution mechanism, one of
its key aspects, is described in detail, as it was mentioned
only briefly in the original paper.

2. Related Work
A comparison of existing MIR-oriented feature extraction
systems is available in [1]. There have been two
particularly significant developments in feature extraction
since then that should be reviewed.

Marsyas has been updated so that it can be configured
using a scripting language that makes it relatively easy to
control which features are selected for extraction. It also
now supports distributed feature extraction [3]. However,
users are still required to manually resolve dependencies
between features, and adding new features to the system
requires recompilation.

Begrestra et. al. [4] have introduced a new class of
features that they refer to as “aggregate features.” These
take as input a sequence of vectors created by another
feature and generate either a single vector or as smaller
sequence of vectors.

While CLAM [5] has made many improvements in the
past year, its essential feature extraction components are
essentially unchanged from the previous year.

3. Features and Metafeatures
jAudio is able to extract many basic features [1]. These
features may be one-dimensional (e.g., RMS), or may
consist of multi-dimensional vectors (e.g., MFCC’s).

Metafeatures are feature templates that automatically
produce new features from existing features. These new
features function just like normal features—producing
output on a per-window basis. Metafeatures can also be
chained together. jAudio provides three basic metafeature
classes (Mean, Standard Deviation, and Derivative), which
are also combined to produce two more metafeatures
(Derivative of the Mean and Derivative of the Standard
Deviation). These five metafeatures can be used to provide
up to five additional features for each standard feature. An
example of this in practice: the feature Root Mean Square
(RMS) can be expanded from one to six features—RMS,
Derivative of RMS, Running Mean of RMS, Running
Standard Deviation of RMS, Derivative of the Running
Mean of RMS, and Derivative of the Standard Deviation of
RMS.

4. Aggregators
Aggregators are functions that collapse a sequence of
vectors into a single vector or into a smaller sequence of
vectors. This is similar to aggregate features introduced by
Begrestra et. al. [3]. Compared to metafeatures,
aggregators produce output only on a per-song basis, not
on a per-window basis. Previously, jAudio provided only
two fixed aggregators—Mean and Standard Deviation.
Both of these aggregators take as input a sequence of
vectors—the extracted windowed feature values over the
entire input file—and output a single vector in its place. In
essence, information on how a feature varies with time is
collapsed into a single feature vector for each input file in
its entirety. In the case of Standard Deviation, for example,
each dimension of the output vector is the standard
deviation of the values for that dimension in the input
vector. It is also possible to design aggregators that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2006 University of Victoria

encapsulate more sophisticated and detailed information on
how a feature varies from window to window.

Aggregators come in two varieties. The first is a
function that is applied to the output of every feature to be
saved. Mean and Standard Deviation are examples of this.
The other type is a targeted aggregator that is applied only
to one or more specific features. An example of this kind
of aggregator is the AreaMoments Aggregator that, for a
given order of input features, treats their combined
sequence of vectors as a two-dimensional image matrix
and calculates two-dimensional moments from this matrix.
This second type of aggregator is useful for acquiring
information about how a collection of features change
together over time, a potentially very meaningful type of
information that can not generally be accessed with
alternative feature extractors.

Users of jAudio can create their own aggregators of
either type. Currently, jAudio has three aggregators that
are applied to the output of every feature: Mean, Standard
Deviation, and MFCC. There are also two features that are
applied selectively: Multiple Feature Histogram and Area
Moments.

5. Dependency Resolution
While dependency resolution in jAudio has been briefly
mentioned previously [1], the algorithm used was not
described in any detail. Dependency resolution has two
distinct steps: determining which features to extract and
determining the order in which they should be extracted.

jAudio begins by making a list of all features whose
output is to be saved (A). Another list (B) will be built that
will eventually contain a list of all features to be extracted.
These two lists can differ, as a user may not wish to save a
given feature, but this feature may nonetheless need to be
extracted in order to calculate another feature that does in
fact need to be saved. An advantage of jAudio is that it
hides from users the details of such hidden features as well
as the order in which dependent features need to be
extracted. Users need only enter the features that they
actually want saved without considering any of these
implementation details.

Initially B is set to be identical to A. jAudio then loops
through each feature in B and adds each feature’s
dependencies to B if they are not already in B. The loop
terminates when jAudio completes an iteration without
adding any new features.

Once the features to be extracted have been identified,
jAudio orders these features to ensure that every feature is
calculated only after its dependencies have been
calculated. To accomplish this, jAudio creates an ordered
list of features to extract (C). It then cycles through all the
features in B. If all dependencies of a given feature are in

C, then it is added to C as well. This loop terminates once
all features in B have been added to C.

6. Adding Features
jAudio is designed so that it can be used either as a
standalone application or as class libraries that can be
embedded in other applications. Special emphasis has been
placed on making it easy to add new features and
aggregators to jAudio. In order to do so, one need only add
a reference to the new class to an XML configuration file.
There is no need to recompile jAudio after doing this.

In order to further accommodate adding features at
runtime, jAudio now includes a plugin folder that is
automatically searched for compiled Java classes specified
in the configuration file. The location of the plugin folder
is specified in the first line of the configuration file as a
URL. By using an URL instead of a path, it is possible to
use a web site or other remote location to acquire the class
files needed to construct features and aggregators. By
modifying the configuration file and adding corresponding
code to the plugin folder, it is possible to add new features
at runtime. In addition, features already located in the
classpath are found automatically.

7. Conclusions and Future Work
jAudio has continued to evolve over the past year, and new
capabilities have been added to make it a more complete
and easier to use feature extraction system. However, there
remains more work to be done. The most pressing concern
is that jAudio needs to be more efficient in its memory
usage in general. In addition, jAudio would benefit from
more features, especially higher-level features such as key
identification and beat detection.

References
[1] D. McEnnis, C. McKay, I. Fujinaga, and P. Depalle,

“jAudio: A feature extraction library,” in Proceedings of
the International Conference on Music Information
Retrieval, 2005, pp. 600–603.

[2] D. McEnnis, C. McKay, and I. Fujinaga, “Overview of
OMEN,” in Proceedings of the International Conference
on Music Information Retrieval, 2006 (in press).

[3] S. Bray and G. Tzanetakis. “Distributed audio feature
extraction for music,” in Proceedings of the International
Conference on Music Information Retrieval, 2005, pp. 434–
437.

[4] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kegl,
“Aggregate features and AdaBoost for music
classification,” in Machine Learning, 2006 (in press).

[5] X. Amatriain and A. Pau, “Developing cross-platform
audio and music applications with the CLAM framework,”
in Proceedings of the International Computer Music
Conference, 2005, pp. 403–410.

