

Automatic Genre Classification of MIDI Recordings

Cory McKay

Music Technology Area
Department of Theory

Faculty of Music
McGill University, Montreal

Submitted June 2004

�

�

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Arts

© Cory McKay 2004

 2

Acknowledgements
Many thanks to my advisor, Professor Ichiro Fujinaga, for his invaluable advice and
support during all stages of this thesis. I would also like to thank Professor David
Brackett and Professor William Caplin for their discussions and insights on the
musicological aspects of this thesis. Thanks also to the faculty, staff and students of the
McGill University Music Technology Area, who have provided an excellent environment
for discussion, research and learning. The generous financial support of the Fonds
Québécois de la recherche sur la société et la culture has also been greatly appreciated.
Finally, I am especially grateful for the unfailing and unconditional support and
encouragement of all kinds from Madeleine McKay, Erin McKay, Don McKay, Thérèse
d’Amour and Regan Toews.

 3

Abstract
A software system that automatically classifies MIDI files into hierarchically organized
taxonomies of musical genres is presented. This extensible software includes an easy to
use and flexible GUI. An extensive library of high-level musical features is compiled,
including many original features. A novel hybrid classification system is used that makes
use of hierarchical, flat and round robin classification. Both k-nearest neighbour and
neural network-based classifiers are used, and feature selection and weighting are
performed using genetic algorithms. A thorough review of previous research in automatic
genre classification is presented, along with an overview of automatic feature selection
and classification techniques. Also included is a discussion of the theoretical issues
relating to musical genre, including but not limited to what mechanisms humans use to
classify music by genre and how realistic genre taxonomies can be constructed.

Sommaire
Dans cette thèse, nous présentons un système logiciel classifiant automatiquement, et de
manière hiérarchique selon leur genre musical, des pièces de musique représentées sous
format MIDI. Ce système comprend une interface utilisateur graphique, souple et facile à
utiliser. Une collection entendue de caractéristiques musicales, dont plusieurs sont
nouvelles, a été compilée. Pour cela on utilise un système original de classification
hybride fondée sur des classification hiérarchiques, non-hiérarchique, ou de sélection en
tournoi. Les classificateurs de type K plus proches voisins et les réseaux de neurones sont
utilisés. Des algorithmes effectuent la sélection et attribuent une pondération à chaque
caractéristique. Une revue détaillée des recherches antérieures sur la classification
automatique des genres est présentée, incluant un examen technique des méthodes
automatiques générales de sélection et de classification de caractéristiques. On discute
également des questions théoriques concernant le genre de musique, incluant de manière
non limitative les mécanismes utilisés par les humains pour classifier la musique et
comment des taxonomies réalistes de genre peuvent être élaborées.

 4

Table of Contents

LIST OF FIGURES ... 6

LIST OF TABLES ... 6

1. INTRODUCTION.. 7

1.1 PROJECT OVERVIEW ... 7
1.2 IMPORTANCE OF PROJECT AND APPLICATIONS .. 8
1.3 DEFINING MUSICAL GENRE AND DISTINGUISHING IT FROM STYLE .. 9
1.4 RATIONALE FOR USING MIDI .. 10
1.5 RATIONALE FOR USING SUPERVISED MACHINE LEARNING .. 12

2. MUSICAL GENRE THEORY ... 15

2.1 INTRODUCTION TO MUSICAL GENRE THEORY .. 15
2.2 HOW HUMANS DEAL WITH GENRE.. 16
2.3 FINDING AN APPROPRIATE LABELLING SYSTEM .. 19
2.4 PARTICULARLY PROBLEMATIC CATEGORIES ... 22
2.5 INTERRELATIONS BETWEEN CATEGORIES .. 23
2.6 TOWARDS A SUCCESSFUL LARGE-SCALE TAXONOMY ... 25

3. TECHNICAL BACKGROUND INFORMATION .. 27

3.1 MIDI .. 27
3.2 FEATURE EXTRACTION AND EVALUATION... 31
3.3 CLASSIFICATION METHODS .. 38

4. PREVIOUS RESEARCH IN MUSIC CLASSIFICATION... 47

4.1 OVERVIEW ... 47
4.2 CLASSIFICATION OF AUDIO DATA .. 48
4.3 CLASSIFICATION OF SYMBOLIC DATA .. 53
4.4 MUSIC GENERATION BASED ON LEARNED STYLES... 54

5. FEATURE LIBRARY ... 55

5.1 OVERVIEW OF ISSUES RELATING TO CHOICE OF FEATURES ... 55
5.2 ETHNOMUSICOLOGICAL BACKGROUND RELATING TO FEATURES 58
5.3 GENERAL COMMENTS ON FEATURES IN THE FOLLOWING SECTIONS 62
5.4 FEATURES BASED ON INSTRUMENTATION ... 63
5.5 FEATURES BASED ON MUSICAL TEXTURE .. 65
5.6 FEATURES BASED ON RHYTHM .. 67
5.7 FEATURES BASED ON DYNAMICS ... 72
5.8 FEATURES BASED ON PITCH STATISTICS .. 72
5.9 FEATURES BASED ON MELODY... 75
5.10 FEATURES BASED ON CHORDS ... 76

6. IMPLEMENTATION OF CLASSIFICATION SYSTEM .. 79

6.1 SELECTION OF MODEL GENRE TAXONOMY .. 79
6.2 SELECTION OF TRAINING AND TESTING DATA ... 83
6.3 FEATURE EXTRACTION AND SELECTION .. 85
6.4 IMPLEMENTATION OF CLASSIFIERS .. 87
6.5 COORDINATION OF CLASSIFIERS .. 90

 5

6.6 SYNOPSIS OF CLASSIFICATION ARCHITECTURE.. 94
6.7 JAVA AND XML ... 95
6.8 SOFTWARE AND ITS INTERFACE ... 96

7. EXPERIMENTS, RESULTS AND DISCUSSION ... 101

7.1 EXPERIMENTAL METHODOLOGY.. 101
7.2 DETAILS OF EXPERIMENTS AND THEIR RESULTS.. 102
7.3 NUMBER OF FEATURES... 106
7.4 FEATURE AND CLASSIFIER SELECTION METHODOLOGY... 107
7.5 CLASSIFIERS... 111
7.6 CLASSIFIER ENSEMBLE COORDINATION... 113
7.7 BENCHMARK CLASSIFICATION FOR 9 LEAF TAXONOMY .. 117
7.8 RELATIVE PERFORMANCE OF DIFFERENT FEATURES ... 120
7.9 EXPERIMENTS WITH THE 38 LEAF TAXONOMY .. 121

8. CONCLUSIONS AND FUTURE WORK ... 126

8.1 CONCLUSIONS AND SUMMARY OF EXPERIMENTAL RESULTS... 126
8.2 RESEARCH CONTRIBUTIONS OF THIS THESIS .. 131
8.3 FUTURE RESEARCH .. 132

9. BIBLIOGRAPHY .. 140

 6

List of Figures

Figure 1: Beat histogram for the Ramones’ Blitzkrieg Pop .. 69
Figure 2: Reduced classification taxonomy. ... 81
Figure 3: Full classification taxonomy.. 81
Figure 4: A single classifier ensemble with feature and classifier selection and weighting. 89
Figure 5: How a decision was arrived at as to which children of a parent category were to be

explored or, if they were leaves, selected as winning categories. ... 92
Figure 6: Component of interface used to edit and view taxonomies... 98
Figure 7: Component of interface used to edit and view feature settings. 98
Figure 8: Component of interface used to edit and view recordings. ... 99
Figure 9: Component of interface used to edit and view preferences... 99
Figure 10: Component of interface used to train and classify recordings as well as see training,

classification and feature selection results. ... 100
Figure 11: Effect of varying number of candidate features available to feature selection system

... 107
Figure 12: Effect of different one-dimensional feature selection methodologies on the

classification of Taxonomy T-9. ... 108
Figure 13: Effect of different numbers of feature selection training generations. 108
Figure 14: Effect of different classifier selection methodologies on the classification of

Taxonomy T-9... 109
Figure 15: Effect of different numbers of classifier selection training generations.................... 109
Figure 16: Effect of different classification methodologies within a classifier ensemble on the

classification of Taxonomy T-9. ... 112
Figure 17: Effect of maximum number of neural network training epochs on success rates. 112
Figure 18: Effect of different classifier ensemble coordination methodologies on the

classification of Taxonomy T-9. ... 114
Figure 19: Effect of different classifier ensemble coordination methodologies on over select rates

with Taxonomy T-9... 116
Figure 20: Effect of different classifier ensemble coordination methodologies on training times

with Taxonomy T-9... 116
Figure 21: Performance of benchmark classifier for Taxonomy T-9 (Experiment Z)................ 118
Figure 22: Success rates for Experiment Z with Taxonomy T-9 .. 119
Figure 23: Effect of classifier ensemble coordination and feature selection techniques on success

rates for Taxonomy T-38... 122
Figure 24: Effect of classifier ensemble coordination and feature selection techniques on training

times for Taxonomy T-38. .. 122

List of Tables

Table 1: Summary of existing musical genre classification systems. ... 49
Table 2: Classifier configurations for experiments involving Taxonomy T-9............................ 104
Table 3: Classifier configurations for experiments involving Taxonomy T-38.......................... 104
Table 4: Classification results for experiments involving Taxonomy T-9.................................. 105
Table 5: Classification results for experiments involving Taxonomy T-38................................ 105
Table 6: Taxonomy T-9 confusion matrix for Experiment Z.. 119

 7

1. Introduction

1.1 Project overview
The primary goal of this project was the production of an effective and easy to use

software system that could automatically classify MIDI recordings by genre after having
been programmed with a given genre hierarchy and trained on sample recordings. Before
this could be accomplished, of course, there were a number of intermediate tasks to
complete, each with varying degrees of research value of their own.

The first task was to study and consider musical genre from theoretical and
psychological perspectives in order to achieve a broader understanding of the issues
involved. This was useful in gaining insights on how to implement the classification
taxonomy and in understanding what kinds of assumptions might be reasonable to make
and what kinds should be avoided. The results of this study are presented in Chapter 2.

The next step was to review recent research in musical genre classification in order to
incorporate previous work into this project and to see how it could be built upon. This
information is presented in Chapter 4. It was also important to build a solid technical
background by reviewing pertinent information relating to MIDI, feature selection
techniques and classification techniques. These topics are covered in Chapter 3.

The next task was the compilation of a library of features, or pieces of information
that can be extracted from music and used to describe or classify it. Features relating to
instrumentation, texture, dynamics, rhythm, melodic gestures and harmonic content can
all be used by humans to make distinctions between genres. Features based on these
parameters were considered along with features that might not be obvious to humans, but
could be useful to a computer. In order to complete the feature library, a literature search
of publications on music theory, musicology, data mining and music technology was
performed in order to find existing features. These features were then combined with a
large number of original features in order to complete the library. All of this is presented
in Chapter 5.

A model genre hierarchy was then constructed and a large set of MIDI files were
collected in order to train and test the system. Although the large number of genres in
existence made it impossible to consider every possible genre, efforts were made to
incorporate as many different ones as possible, including genres from classical, jazz and
popular music. Each feature from the feature library was then extracted and stored for
each MIDI file. A variety of classification methodologies, based on statistical pattern
recognition and machine learning, were then applied to this data and a system was built
for coordinating the classifiers and improving their collective performance. Feature

 8

selection was performed using genetic algorithms. The details of how all of this was done
are presented in Chapter 6, along with a brief outline of the advantages of the design
structure of the software and its easy to use interface.

Finally, a number of classification tests were performed in order to evaluate the
system and judge its performance along a number of dimensions. Chapter 7 explains the
tests and presents the results. Chapter 8 summarizes the results, compares the system’s
performance to that of existing systems, discusses the meaning of the results, outlines the
original research contributions of this thesis and presents some areas for future research.

1.2 Importance of project and applications
Genre is used by music retailers, music libraries and people in general as a primary

means of organizing music. Anyone who has attempted to search through the discount
bins at a music store will have experienced the frustration of searching through music that
is not sorted by genre. There is no doubt that genre is one of the most important means
available of classifying and organizing music. Listeners use genres to find music that
they’re looking for or to get a rough idea of whether they’re likely to like a piece of music
before hearing it. Industry, in contrast, uses genre as a key way of defining and targeting
different markets. The importance of genre in the mind of listeners is exemplified by
research showing that the style in which a piece is performed can influence listeners’
liking for the piece more than the piece itself (North & Hargreaves 1997).

Unfortunately, consistent musical genre identification is a difficult task, both for
humans and for computers. There is often no generally accepted agreement on what the
precise characteristics are of a particular genre and there is often not even a clear
consensus on precisely which genre categories should be used and how different
categories are related to one another. The problems of determining which musical
features to consider for classification and determining how to classify feature sets into
particular genres make the automatic classification of music a difficult and interesting
problem.

The need for an effective automatic means of classifying music is becoming
increasingly pressing as the number of recordings available continues to increase at a
rapid rate. It is estimated that 2000 CDs a month are released in Western countries alone
(Pachet & Cazaly 2000). Software capable of performing automatic classifications would
be particularly useful to the administrators of the rapidly growing networked music
archives, as their success is very much linked to the ease with which users can search for
types of music on their sites. These sites currently rely on manual genre classifications, a
methodology that is slow and unwieldy. An additional problem with manual classification
is that different people classify genres differently, leading to many inconsistencies, even
within a single database of recordings.

 9

Research into automatic genre classification has the side benefit that it can potentially
contribute to the theoretical understanding of how humans construct musical genres and
the mechanisms they use to classify music. The mechanisms used in human genre
classification are poorly understood, and constructing an automatic classifier to perform
this task could produce valuable insights.

The types of features developed for a classification system could be adapted for other
types of analyses by musicologists and music theorists. Taken in conjunction with genre
classification results, the features could also provide valuable insights into the particular
attributes of different genres and what characteristics are important in different cases.

The feature extraction and supervised learning classification techniques developed for
a genre classifier have the important benefit of being adaptable to a variety of other
content-based musical analysis and classification tasks. Systems could be constructed
that, to give just a few examples, compare or classify pieces based on compositional or
performance style, group music based on geographical / cultural origin or historical
period, search for unknown music that a user might like based on examples of what he or
she is known to like already, sort music based on perception of mood, or classify music
based on when a user might want to listen to it (e.g. while driving, while eating dinner,
etc.). Music librarians and database administrators could use these systems to classify
recordings along whatever lines they wished. Individual users could use such systems to
sort their music collections automatically as they grow and automatically generate play
lists with certain themes. It would also be possible for them to upload their own
classification parameters to search on-line databases equipped with the same
classification software.

1.3 Defining musical genre and distinguishing it from style
 Writers often fail to clearly define the differences between musical genre and style.
This is understandable, to a certain extent, as there are definite similarities between the
terms, but it is nonetheless important to distinguish between them if one is to undertake a
detailed study of genre.
 Franco Fabbri defines musical genre as “a kind of music, as it is acknowledged by a
community for any reason or purpose or criteria, i.e., a set of musical events whose
course is governed by rules (of any kind) accepted by a community” (Fabbri 1999).
Fabbri continues on to define musical style as: “a recurring arrangement of features in
musical events which is typical of an individual (composer, performer), a group of
musicians, a genre, a place, a period of time” (Fabbri 1999). Musical genre can thus be
considered to be somewhat broader and more subjective than style from a content-based
perspective, which makes genre classification both more difficult and more interesting
than style classification.

 10

 A possible clarification that may be made between genre and style is to say that a
style is related to individuals or groups of people involved in music production and that
genre is related to groups of music and the audiences that identify with these groups. It
might therefore be said that a composer’s style will remain evident even if she or he
writes in different genres. In general terms, the word “genre” can be taken to refer to
music that is, by general social agreement, grouped together.
 It should be mentioned that the distinctions made above are for the purpose of clarity
in this thesis, and that they do not reflect universal agreement in the music community.
Moore (2001), for example, has a point of view that is not entirely consistent with Fabri’s.
Although much of the music technology literature on classification tends to use the words
“genre” and “style” interchangeably, the term “genre” will be used exclusively here, in
the sense defined above, unless the work of an authour who used the term “style” is being
discussed.

1.4 Rationale for using MIDI
Musical data is generally stored digitally as either audio data (e.g. wav, aiff or MP3)

or symbolic data (e.g. MIDI, GUIDO, MusicXML or Humdrum). Audio data represents
actual sound signals by encoding analog waves as digital samples. Symbolic data, in
contrast, stores musical events and parameters themselves rather than actual waves.
Symbolic data is therefore referred to as a “high-level” representation and audio data as a
“low-level” representation. In general, symbolic representations store high-level musical
information such as individual note pitches and durations.

Audio data and symbolic data each have their respective strengths and weaknesses. It
was decided to use a symbolic format, namely MIDI, rather than audio data for this thesis.
A brief discussion of the rationale for this decision is included in this section, as it may be
a somewhat controversial decision to some.

Before doing so, however, it is appropriate to define two terms for the purpose of
clarity, as there is some debate as to exactly what they mean. Throughout this text,
references are made to “high-level features” and “low-level features.” For the purposes of
this thesis, high-level features refer to pieces of information that are based on musical
abstractions and low-level features refer to signal-processing characteristics derived
directly from signals that do not have explicit musical meaning. For example, tempo,
meter and key are all high-level features. Number of zero crossings and spectral
frequency ratios are examples of low-level features. Although both high-level and low-
level features can be extracted from low-level (audio) recordings, a much wider range of
high-level features can be extracted with a much greater accuracy from high-level
(symbolic) recordings.

 11

There is no doubt that there are a number of good reasons for using audio data rather
than symbolic data for performing genre classifications. Most obviously, audio data is
what people actually listen to in general, so an audio classification system has more
apparent practical use than a MIDI classification system. Furthermore, MIDI files fail to
store certain information that could be useful for performing genre classifications. For
example, MIDI files store references to standardized General MIDI synthesizer patches
rather than actual sounds (see Chapter 3 for more details on MIDI), with the result that
significant amounts of potentially very important timbral information are unavailable.
The ability to extract features related to information such as quality of singing voice,
lyrics, phrasing and expression can be eliminated or become severely hampered. This is
potentially a very serious problem, as there is some evidence that timbral features may be
more significant than rhythmic or pitch-based features (Tzanetakis & Cook 2002). An
additional problem is that MIDI was devised primarily with Western musical models in
mind, which limits its usefulness beyond this paradigm. A limitation of symbolic
representations is that any information not encapsulated in the representation is lost.
Although MIDI does allow pitch mico-intervals and arbitrary rhythms, there are still
some limitations in this respect, such as the limited patches specified in General MIDI.

It is likely for these reasons that most genre classification systems to date have
focused almost exclusively on audio data (see Chapter 4). It is recognized here that audio
classification is certainly a more important goal from a practical perspective than
symbolic data classification. Unfortunately, success with audio classification has not yet
attained a level that is commercially viable. Any possible improvements to these audio
systems should therefore be considered. The current limitations of polyphonic
transcription systems make it very difficult or impossible to extract accurate features
based on high-level musical knowledge, such as precise note timing, voice and pitch, an
important limitation considering that these features could very likely improve success
rates significantly. Since these features are readily available in symbolic data, it was
decided to study symbolic data in this project in order to complement and build on the
work that has already been done with audio data. Although audio genre classification is of
course very useful, there exists a large body of transcribed music, and it would seem
foolish to ignore this information by only considering audio data.

This research is intended, in part, to show the usefulness of high-level features, with
the hopes that they could eventually be integrated into an audio classification system
when transcription systems become more effective or file formats that package audio data
with meta-data transcriptions come into common use. High-level features have the
additional advantage that they have musicological meaning, and can thus be used for
theoretical studies as well as more applied applications.

 12

As an additional note, the loss of timbral data beyond instrumentation may not be as
significant as it may seem at first. A recent study of the relationship between timbre
features and genre indicated that there may be a poor correlation between the two
(Aucouturier & Pachet 2003). It is, of course, true that timbre certainly does play at least
some roll in how humans perform classifications, particular in regards to vocal quality,
but this is still an indication that the importance of timbre may have been overemphasized
in past research. The fact that timbre-based features played a sometimes overwhelming
role in many of the existing classification systems may have impaired their performance.

MIDI data also makes it easier to extract features relating to entire recordings, both
because of the symbolic nature of the data and because of the speed with which it can be
processed. In contrast, it is often necessary to derive features from segments of audio data
rather than entire recordings.

An additional benefit of using symbolic data is that it makes it possible to classify
music for which scores are available but audio recordings are not. Classification based on
high-level features is particularly ideal for music for which no audio recordings exist, as
new performances could introduce biases. Advances in optical music recognition
technology could make it a simple matter to produce MIDI files that could be classified
by scanning in scores.

MIDI was chosen as the particular symbolic format to use in this thesis because it is
the most prevalent format and it is relatively easy to find diverse MIDI files for training
and testing. In addition, it is relatively easy to translate other symbolic representations
into MIDI if one wishes to classify recordings in other formats.

1.5 Rationale for using supervised machine learning
There are three main classification paradigms that could have been used in this thesis:

• Expert Systems: These systems use pre-defined rules to process features and
arrive at classifications.

• Supervised Learning: Theses systems attempt to formulate their own
classification rules by using machine learning techniques to train on model
examples. Previously unseen examples can then be classified into one of the
model categories using the rules generated during training.

• Unsupervised Learning: These systems cluster the data that they are fed based
on similarities that they perceive themselves rather than model categories.

 Expert systems are a tempting choice because known rules and characteristics of
genres can be implemented directly. A great deal of potentially useful work has been
done analyzing and generating theoretical frameworks in regards to classical music, for
example. Given this body of research, it might well be feasible to construct a rules-based

 13

expert system to classify these kinds of music. There are, however, many other kinds of
music for which this theoretical background does not exist. Many types of Western folk
music, a great deal of non-Western music and Western popular music do not, in general,
have the body of analytical literature that would be necessary to build an expert system.
 There have, of course, been some efforts to generate general theoretical frameworks
for popular and/or non-Western music, such as in the work of Middleton (1990).
Unfortunately, these studies have not been precise or exhaustive enough to be applicable
to the task at hand, and it is a matter of debate as to whether it is even possible to generate
a framework that could be broad enough to encompass every possible genre of music.
Although there are broad rules and guidelines that can be informally expressed about
particular genres (e.g. delta blues music often has a swing rhythm, is likely to follow the
12-bar blues form, will often be limited to guitar and voice and will likely make use of the
pentatonic scale), it would be very difficult to design an expert system that could process
rules that are often ill-defined and inconsistent across genres. A further problem is that
new popular and folk genres are constantly appearing and existing ones often change.
Keeping a rules-based system up to date would be a very difficult task.
 So, although expert systems could potentially be applied to well-defined and
unchanging types of music, such as pre-twentieth century classical music, any effort to
perform classifications across a wider range of genres with rules-based systems is likely
doomed to failure. Anyone trying to implement an expert system with applicability to a
reasonable variety of genres would quickly get bogged down in inconsistencies and
details, and would have to make judgment calls that would bias and date the system.
 Systems that rely on pattern recognition and learning techniques, in contrast, hold a
great deal of potential. Such systems could analyze musical examples and attempt to learn
and recognize patterns and characteristics of genres in much the same way that humans
do, although the precise mechanisms would differ. A side benefit of such systems is that
they may recognize patterns that have not as of yet occurred to human researchers. These
patterns could then be incorporated into theoretical research.

This leaves the options of supervised and unsupervised learning. It was decided that
unsupervised learning would be inappropriate for this project, since the categories
produced might not be meaningful to humans. Although this would avoid the problems
related to defining a set genre hierarchy (see Chapter 2) and the categories produced
might well be more accurate than human genre categories in terms of “objective”
similarity, a genre classification system that uses its own genre categories would be
useless for humans who want to use genres that are meaningful and familiar to them.
Systems that use unsupervised learning to measure the similarity of recordings certainly
do have their uses, but they are not well-suited to the specific problem of genre
classification.

 14

Supervised learning is therefore the best option, despite the fact that the need for a
manually classified and therefore biased model training set is a drawback. Systems of this
type form their own rules without needing to interact with humans, meaning that the lack
of clear genre definitions is not a problem. These systems can also easily be retrained to
reflect changes in the genres being classified. Furthermore, these systems are able to
consider and form relations between large groups of features, a task that is difficult to
encode into an expert system.

 15

2. Musical Genre Theory

2.1 Introduction to musical genre theory
Although a great deal of thought has been put into the notion of genre by those

working in the field of literary theory (the collections of works edited by Duff (2000) and
Grant (2003) are excellent resources on literary genre and film genre respectively), there
has been relatively little research done specifically on musical genre. What work has been
done leans towards either lists of binary features that tend to be too inflexible for the
purposes of an evolving genre structure or discussions centered around the socio-cultural
aspects of genres that are of limited utility to content-based classification.

This topic is so large and there is so much research remaining to be done that a
theoretical study of musical genre could easily fill several doctoral dissertations.
Although this is somewhat beyond the scope of this thesis, an overview of the issues
involved is presented here, as it is important that one be aware of the theoretical aspects
of musical genre in order to properly consider their practical implications. This chapter
discusses this important background relating to genre and genre classification. The details
of the actual genre categories that were implemented in this project can be found in
Section 6.1.

Genre categories allow humans to group music along lines of perceived similarity. It
is commonly held to be true by cognitive psychologists that categorization in general
allows us to comes to terms with information by grouping it in meaningful ways that can
increase our understanding of it. Although musical genre is sometimes referred to as
being primarily a marketing tool or an artificial labelling system used by academics, one
should not lose sight of its deeper significance.

There are a number of important issues to consider relating to genre. How genres are
created, how they are agreed upon and disseminated, how they are defined, how they are
perceived and identified, how they change, how they are interrelated and how we make
use of them are all important areas of research.

Answering these questions is not an easy task. It can be difficult to find clear,
consistent and objective definitions of genres, and genres are rarely organized in a
consistent or rational manner. The differences between genres are vague at times, rules
distinguishing genres are often ambiguous or inconsistent, classification judgments are
subjective and genres can change with time. The categories that come to be are a result of
complex interactions of cultural factors, marketing strategies, historical conventions,
choices made by music librarians, critics and retailers and the interactions of groups of
musicians and composers.

 16

2.2 How humans deal with genre
Very little psychological experimental research has been done on the mechanisms that

humans use to define and identify musical genres. This makes it somewhat difficult to
build a content-based system that can be said to be reliably modeled on the classification
techniques used by humans. There is, however, some research that has been done on
genre in general that can be used to supplement what research on musical genre there is.

Research by cognitive psychologist Eleanor Rosch has indicated that people tend to
think of categories as having some typical, or prototypical, members, and other less
typical members. For example, a robin can be considered to be a better example of a bird
than an ostrich, or a chair a better example of furniture than a magazine rack (Rosch
1975; Taylor 1989). This certainly seems consistent with the way that some recordings
seem typical of a musical genre, yet others seem less so, while still leaving little doubt as
to their membership in that particular genre. Marie-Laure Ryan puts these ideas into the
context of genre in general:

This approach invites us to think of genres as clubs imposing a certain number of conditions for
membership, but tolerating as quasi-members those individuals who can fulfill only some of the
requirements, and who do not seem to fit into any other club. As these quasi-members become
more numerous, the conditions for admission may be modified, so that they, too, will become
full members. Once admitted to the club, however, a member remains a member, even if he
cannot satisfy the new rules of admission. (Ryan 1981, 118)

This highlights some of the problematic inconsistencies in genres from a content-
based perspective. It might further be added that quasi-members have membership due to
similarities with the prototypical genres, although they might otherwise be dissimilar to
each other. It might also be said that some members can belong to more than one genre
and that the accumulation of enough quasi-members with a close similarity to each other
may lead to the creation of a new genre or sub-genre. As stated by Simon Frith, “genres
‘fail’ when their rules and rituals come to seem silly and restrictive; new genres are born
as the transgressions become systematic” (Frith 1996, 94).

Research has shown that individuals are more familiar with sub-genres within a
musical genre that they like than within genres that they do not (Hargreaves & North
1999). Even well-trained musicians may have significantly less knowledge and
understanding of genres that they are not proficient in than even casual listeners who are
interested in those genres. Furthermore, the features that different individuals use to
identify genres can vary based on the genres that they are familiar with. All of this
implies that few, if any, humans can be relied upon to classify arbitrary genres reliably
and using consistent mechanisms. A computer system that can become familiar with a
much larger range of music than most humans would be willing or able to may well be

 17

able to perform genre classifications in general better than humans, even though
individual humans may still perform better in their own limited domains.

Turning now to the features that humans use to perform classifications, one might
imagine that high-level musical structure and form play an important role, given that this
is the area on which much of the theoretical literature has concentrated. This does not
appear to be the case, however. Research by Perrott and Gjerdingen (1999) found that
humans with little to moderate musical training are able to make genre classifications
agreeing with those of record companies 71.7% of the time (among a total of 10 genres),
based on only 300 milliseconds of audio. This is far too little time to perceive musical
form or structure. This suggests that large-scale structural elements of music are in fact
not needed by humans in order to make genre classifications and that there must therefore
be a sufficient number of features available in very short segments of sound to
successfully perform classifications. This does not mean that one should ignore musical
form and structure, as these are likely useful as well, but it does mean that they are not
strictly necessary. This is important if one wishes to build an audio classification system,
as it takes much less computational time to process short segments of sound than to
process long segments.

Another study found that, when asked to list the characteristics of a number of
different genres, a test group consisting of Turkish undergraduates used the following
terms most frequently: lively, exuberant, dynamic, exciting, entertaining, rhythmic,
meaningful, pleasant, high quality, boring, irritating, simple, lasting, monotonous,
harmonious, sentimental, restful, peaceful and soothing (Tekman & Horascsu 2002). It
appears that even a relatively sophisticated sample tends to prefer words having to do
with personal preferences and mood rather than direct musical descriptors. Although the
descriptors that they used may well have been influenced by more detailed musical
features, consciously or unconsciously, this research does appear to indicate that how
individuals classify music is strongly related to the emotive meaning that is perceived.

The authour has been unable to find any other experimental research beyond these
studies relating to musical genre, unfortunately. Given the lack of experimental evidence,
one may only speculate on further ways that humans identify genre. It would be valuable
for future psychological experiments to be carried out to investigate this speculation.

It seems intuitively likely that different individuals use different methods for
distinguishing between genres, based on such factors as musical training and the genres
that one is the most familiar with. Songwriters, musicians, critics, teachers, promoters and
listeners in general can all be seen to describe music in different ways, and may perceive
and think about it differently as well. The same individual may also use different
techniques when identifying different types of music.

 18

There are two likely mechanisms that we use for performing classifications of music.
The first is to compare features that we perceive, such as rhythmic patterns or the
particular instruments being played, with our existing knowledge, conscious or
unconscious, of the characteristics of different genres. The second is to perform
classifications by measuring the similarity of unknown pieces with pieces that are known
to belong to certain categories. Although these two approaches are related, the inherent
processes at work are somewhat different, and those with musical training are probably
more likely to use the first approach more. The importance of the second approach is
demonstrated by the apparent fact that, when asked to describe a piece of music, many
people will do so by linking it to other pieces of music that are in some ways similar. This
seems to indicate that exemplar-based classification is an important tool used by humans
to group music into genres and identify them.

It would seem reasonable to say that lyrics play a particularly important role for many
people in identifying genres, as everyday experience seems to indicate that they are the
most memorable aspect of recordings to many people with limited musical training.
Content (e.g. love, political messages, etc.), rhyming scheme, vocabulary, use of clichéd
phrases and use of characteristic slang all likely provide useful indications of genre. Style
of singing and voice quality are also likely quite important, as these do seem to vary
significantly from genre to genre.

It is probable that many people use features beyond those that can be derived from the
actual musical content of a recording or a performance. Genre is very much linked to the
social, economic and cultural background of both musicians and listeners. Both of these
groups tend to identify with and associate themselves with certain genres, with the result
that their behaviour is influenced by their preferences. Or, viewed from a different
perspective, many people have strong identifications with social and/or cultural groups
that are associated with certain musical genres. In either case, it appears that there is often
a correlation between musical genre preferences and appearance and behaviour. One need
only see a photo or watch an interview with a musician, without ever having heard his or
her music, to be almost certain whether the musician plays rap, heavy metal or classical
music, for example.

The style of album art, web pages and music videos are all features that humans can
use to identify genre. Similarly, a performer’s appearance and actions on stage (facial
expressions, ritual gestures, types of dancing, etc.) provide clues towards genre, as do an
audience’s demographics, dress and behaviour (clapping, shouting, sitting quietly,
dancing, etc.). The fine distinction between some sub-genres may well be related to such
sociological features more than musical content. Although the current study is only
concerned with content-based features, future research that uses data mining techniques to
gather these other types of features to supplement content-based features could be highly

 19

useful. There has been some initial research in this direction (Whitman & Smaragdis
2002) that has had very encouraging results.

For further information about some of the issues raised here, one may wish to consult
the work of Franco Fabbri, who is responsible for writing some of the most widely
referenced work regarding musical genres from a musicological perspective. Fabbri
discusses the links between genre and social, economic and cultural factors and how
genres come into being in one of his early papers (Fabbri 1981). Fabbri continues this
discussion in a slightly later paper (Fabbri 1982). He also presents a discussion of the
issues related to musical categories, how the mind processes them and their importance in
general in a more recent paper (Fabbri 1999).

Chapter 4 of a Frith’s book (1996) is also informative, and contains an excellent
discussion of the types of socio-cultural factors that can affect how genre distinctions are
formulated and what their meaning is. Toynbee (2000) provides an interesting discussion
of how genres inform musicians and of the influences of identifications with different
communities as well as of the music industry.

David Brackett has also done some very interesting work on musical genre, including
a discussion of how the ways in which particular genres are constructed and grouped can
vary in various charts, radio formats and media-fan groups, and of issues relating to
recordings crossing over from one set of groupings to another (Brackett 2002). Brackett
has also written a good resource for those trying to deal with the task of characterizing
genres (Brackett 1995).

2.3 Finding an appropriate labelling system
In order to train an automatic classification system using supervised learning it is first

necessary to have a set of genre categories that the training examples can be partitioned
into. The mechanisms in which humans label entities or concepts in general is in itself an
interesting area of inquiry. Lakoff’s book (1987) is an often cited source on this topic.

The lack of a commonly accepted set of clearly defined genres makes it tempting to
simply devise one’s own artificial labels for the purposes of making an automatic
classification system. These labels could be designed using reasonable, independent and
consistent categories, a logical structure and objective similarity measures. One could
even use unsupervised learning techniques to help accomplish this. The genre labels in
common use are often haphazard, inconsistent and illogical, and someone designing an
automatic classifier would certainly like to have a system that does not suffer from these
problems.

This would, of course, be a mistake. One must use the labels that are meaningful to
real people in order for the labels to be useful to them, which is to say that genre
categories must be consistent with how a person with moderate musical knowledge would

 20

perform categorizations. Furthermore, genre labels are constantly being created, forgotten
and modified by musicians, retailers, music executives, DJs, VJs, critics and audiences as
musics develop, so a static, ideal system is not sustainable. Genre is not defined using
strictly objective and unchanging qualities, but is rather the result of dynamic cultural
processes. One must therefore be careful to avoid thinking of genres in terms of
immutable snapshots, as both their membership and their definitions change with time.

The genre labels attached to a particular recordings can change, even though the
recording itself, of course, remains static. What might now be called “rock ‘n roll,” for
example, was once classified as “novelty,” and the Bob Marley recordings that we
recognise as “reggae” today were once classified as “folk music.” The changes in genre
definitions that can also occur as well are illustrated by the differences between what was
considered “rock” music in every decade from the 1950’s to now. In order to have true
practical usefulness, a system of labels should be used that is entirely up to date, as it
should coincide with the terms used by real people.

Historical types of music should also be included in a full taxonomy, of course, and it
should not be forgotten that even these can change with time. Of course, it can be argued
that historical genres tend to be more static and codified than current genres, with the
result that they these genres are easier to label and describe, and that membership is fairly
set. There is, for example, a large amount of literature on Baroque music theory and
practice, and there is not any significant quantity of new Baroque-style pieces being
composed that might cause this genre to mutate. Although this point does have some
validity, historical genres can nonetheless still evolve to some degree, as can be
demonstrated by a comparison of how Baroque music was performed by early 20th
century musicians and by more recent ensembles using period instruments.

Syncretic music, which is to say music that combines characteristics of multiple
genres, presents a further problem. Although syncretic music can sometimes lead to the
creation of new sub-genres, there is at least a transitional stage where such music does not
definitively fit into one genre rather than another. This creates a definite difficulty to one
wishing to design a clear labelling system with discrete categories.

Considering the quantity and diversity of people that would need to be convinced to
use an artificial labelling system and considering the rate at which genre taxonomies
change, it is clear that any attempt to impose a given set of labels on the public is doomed
to failure. The Canadian Content radio genre categories used by the Canadian government
are an example of such a failure. These categories are generally inadequate and were
obsolete before they were even brought into being. More information on the Canadian
Content radio genres can be found in Frith’s book (1996).

Another approach to finding an appropriate labelling structure is to look at the
categories used by music sales charts such as Billboard, or by awards shows such as the

 21

Grammies. Unfortunately, there are also a number of problems with this approach. Charts
such as those used by Billboard often only reflect the current trends in music to the
exclusion of older genres. A proper system should include old genres as well as new.
Furthermore, these categories tend to reflect the labelling system that the music industry
would ideally like to see for commercial reasons, not the one which is actually used by
the public. Charts and award categories therefore often have labels based on marketing
schemes more than common perceptions, and do not even offer the advantages of being
consistent or well thought out from a taxonomical perspective. There are a number of
interesting publications, such as that by Negus (1999), that offer a further analysis of the
effects of business interests on musical genres and their development.

Specialty shows on radio or television do offer a somewhat better source of labels, as
they often reflect categories that attract listeners interested in specific genres, both new
and old. They do still suffer from the influence of commercial biases, however, as the
content of shows tend to be influenced at least as much by the interests of advertisers
relating to age, income and political demographics as by the musical preferences of
listeners. Although university radio stations do not suffer from this problem in the same
way, they are often limited in scope and by the variable expertise and knowledge of their
DJs.

Retailers, particularly on the internet, may perhaps be the best source of labels. They
use categories that are likely the closest to those used by most people, as their main goal
is to use a taxonomy that makes it easy for customers to find music that they are looking
for. Although retailers can sometimes be a little slow to respond to changes in genre, they
nonetheless do respond faster than some of the alternatives discussed above, as
responding to new genres and keeping existing genres up to date allows them to draw
potential buyers into areas that contain other music that they may wish to buy, therefore
increasing sales.

Although one might argue that it would be preferable to base labels on the views of
concert goers, clubbers, musicians, DJs, VJs, music reporters and others who are on the
front lines of genre development, doing so would be disadvantageous in that genres at this
stage of development may be unstable. Additionally, favouring the genre labels used by
specialists may result in some confusion for non-specialists. Waiting for retailers to
recognize a genre and thus make it “official” is perhaps a good compromise in that one
keeps somewhat abreast of new developments, while at the same time avoiding excessive
specialization and excess overhead in terms of data collection and training.

The problem of inconsistency remains, unfortunately, even with the taxonomies used
by retailers. Not only do record companies, distributors and retailers use different
labelling systems, but the categories and classification judgements between different
retailers can also be inconsistent. This is, unfortunately, an unavoidable problem, as there

 22

are no widely accepted labelling standards or classification criteria. Employees of
different organizations may not only classify the same recording differently, but may also
make selections from entirely different genre taxonomies or emphasize different
identifying features. One must simply accept that it is impossible to find a perfect
taxonomy, and one must make do with what is available. One therefore has little choice
but to adopt one of the imperfect labelling systems that are in use, and those used by
retailers appear to be the best choice from a practical perspective.

2.4 Particularly problematic categories
One of the greatest problems with designing a content-based automatic classification

system is dealing with genres that are only distinguishable based on patterns of social use
and context rather than musical content. The different musics of the Nariño, for example,
are almost identical in terms of content, but are considered to belong to entirely different
genres based on the social context in which they are performed (Broere 1983). Although
this is an extreme example, it is not unique, and socio-cultural features external to actual
musical content play an important role in many genre categories.

There are a number of common Western categories that group together music that is
dissimilar from a content-based perspective. “Top 40” music, “woman’s music” and
“indie music” are all examples of categories into which music from entirely unrelated
(from a content-based perspective) genres can be grouped together.

“World music” is also a problematic category to deal with, as it groups together many
sub-genres that are wholly dissimilar in terms of content. Even if one includes socio-
cultural features, many of the sub-genres found in record stores often only have socio-
cultural commonality from the uninformed perspective of Western music industry
workers. Even the criterion of coming from a non-Western country is not decisive, as
there are types of Western folk music that are labelled as world music and there are types
of music originating from non-Western countries that are played in Western styles and
therefore do not fall under the world music umbrella. For example, the music of a
Nigerian cellist playing Bach should be classified under Baroque, not under a Nigerian
sub-genre of world music.

One possible solution to these problems would be to consider the language that is
being sung in as an important feature. This would require either language recognition
software or appropriate meta-data, neither of which are easily and consistently available.
A second possibility would be to only perform classification of sub-genres, and to obtain
the unrealistically broad parent genres by implication. The disadvantage of this is that one
loses the potentially improved classification accuracy that could potentially be obtained
by classifying at multiple levels in a genre tree at once, and using a weighted average or
some other form of co-ordination to obtain a final result. A final possibility would be to

 23

consider the demographics of the listeners and musicians as features. Although the
extraction of such features is beyond the scope of this paper, it may well be the only
apparent way to deal with categories that are objectively dissimilar but commonly used.

2.5 Interrelations between categories
An important part of constructing a genre taxonomy is determining how different

categories are interrelated. This is, unfortunately, a far from trivial problem. Attempts to
this point to implement an automatic classification system have sidestepped these issues
by limiting their testing to only a few simple genres. Although this is acceptable in the
early stages of development, the problem of taxonomical structures needs to be carefully
considered if one wishes to construct a system that is scalable to real-world applications.

This problem is discussed in a paper by Pachet and Cazaly (2000). The authours
observe that retailers tend to use a four-level hierarchy: global music categories (e.g.
classical, jazz, rock), sub-categories (e.g. operas, Dixieland, heavy metal), artists and
albums. Although this taxonomy is effective when navigating a physical record store, the
authours argue that this taxonomy is inappropriate from the viewpoint of establishing a
major musical database, since different levels represent different dimensions. In other
words, a genre like “classical” is fundamentally different from the name of an artist.

Pachet and Cazaly continue on to note that internet companies, such as Amazon.com,
tend to build tree-like classification systems, with broad categories near the root level and
specialized categories at the leaves. The authours argue that, although this is not in itself
necessarily a bad approach, there are some problems with it. To begin with, the level that
a category appears at in the hierarchy can vary from taxonomy to taxonomy. Reggae, for
example, is sometimes treated as root-level genre and is sometimes considered a sub-
genre of world music.

A further problem is that there is a lack of consistency in the type of relation between
a parent and a child. Sometimes it is genealogical (e.g. rock -> hard rock), sometimes it is
geographical (e.g. Africa -> Algeria), sometimes it is based on historical periods (e.g.
Baroque -> Baroque Opera), etc. Although these inconsistencies are not significant for
people manually browsing through catalogues, they could be problematic for automatic
classification systems that are attempting to define genres using content-based features, as
different musics from the same country or same historical period can be very different
musically.

Julie E. Cumming has adapted Ludwig Wittgenstein’s ideas about the “family
resemblance” between genres to music (Cumming 1999), and uses this theoretical basis
as justification for favouring an exclusively genealogical organization of categories. She
argues that, since lists of simple and well-defined binary features are insufficient to
distinguish between sometimes amorphous genres, it would be wise to consider genres in

 24

terms of the similarities that they share with the features of genre families that they have
descended from.

An additional problem to consider is that different tracks in an album or even different
albums by an artist could belong to different genres. Many musicians, such as Neil Young
and Miles Davis, write music in different genres throughout their careers. It seems clear
that attempting to classify by musicians rather than individual recordings is problematic.

Pachet and Cazaly argue that it therefore seems apparent that, ignoring potential
problems related to size, it would be preferable to base taxonomies on individual
recordings, rather than on artists or albums. In a later paper, however, Aucouturier and
Pachet (2003) argue that one should in fact use taxonomies based on artist rather than
title, as taxonomies based on title involve many more entries and result in categories that
are overly narrow and have contrived boundaries.

Pachet and Cazaly argue that it is necessary to build an entirely new taxonomy to
meet the needs of any large scale musical database. They emphasize the goals of
producing a taxonomy that is objective, consistent, independent from other metadata
descriptors and that supports searches by similarity. They suggest the use of a tree-based
system organized based on genealogical relationships, where only leaves would contain
musical examples. Each node would contain its parent genre and the differences between
its own genre and that of its parent.

The concerns with existing taxonomies expressed by Pachet and Cazaly are certainly
valid, but their proposed solution unfortunately has some problems of its own. To begin
with, defining an objective classification system is much easier said than done, and
getting universal agreement on a standardized taxonomy is most probably an impossible
task. Furthermore, their system does not deal with the reality that a single recording can
sometimes reasonably be said to belong to more than one genre, nor does it deal with the
potential problem of multiple genealogical parents that can compromise the tree structure.

It seems apparent that some modifications are needed to Pachet and Cazaly’s system,
but some sort of hierarchal tree-based taxonomy nonetheless appears to be a convenient
and realistic genre structure. Franco Fabbri (1982) suggests that, when faced with
describing a genre to a person who is unfamiliar with it, most individuals do so by
defining the genre as an intersection of other similar genres with labels known to both
parties, by using a broader label under which the genre in question might fall or by
explaining the genre using familiar terms such as definitions and emotive meanings. The
former two methodologies are certainly consistent with a hierarchal structure with visible
parents and siblings.

A further issue to consider is the variable degree to which different genres branch out
into sub-genres. Considered from a hierarchal tree-based perspective, this variability
applies to both the depth and breadth of various branches. Some genres have many very

 25

specialized sub-genres, such as electronic dance music (e.g. techno, jungle, rave, etc.).
Others, such as pop-rock, tend to have fewer, broader and less specified sub-genres. For
the purposes of creating a genre hierarchy, one must accept these inconsistencies rather
than imposing unrealistically broad or narrow categories in order to avoid dissymmetry in
the genre structure.

2.6 Towards a successful large-scale taxonomy
Aucouturier and Pachet (2003) divide methods of genre classification into three

categories: manual, prescriptive and emergent. The manual approach involves humans
performing the classification task by hand, while the prescriptive and emergent
approaches involve automatic systems.

Aucouturier and Pachet define the prescriptive approach as an automatic process that
involves a two-step procedure: feature extraction followed by machine learning /
classification. The prescriptive approach assumes a pre-existing taxonomy that a system
can learn. Aucouturier and Pachet argue, reasonably enough, that prescriptive systems
tend to be based on contrived taxonomies and that a truly useful system would need to be
able to deal with much larger taxonomies than can successfully be modelled and kept up
to date. A further problem is that it can be difficult to find training samples that are
unambiguously representative enough to train a classifier properly.

Aucouturier and Pachet argue that the emergent approach as the best alternative.
Rather than using existing taxonomies, an emergent system attempts to emerge labels
according to some measure of similarity. The authors suggest using similarity
measurements based on audio signals as well as on cultural similarity gleaned from the
application of data mining techniques to text documents. They propose the use of
collaborative filtering to search for similarities in the taste profiles of different individuals
and of co-occurrence analysis on the play lists of radio programs and the track listings of
CD compilation albums.

The emergent approach is untested, however, and it is difficult to predict how
effective it would be in real life. Implementing the data mining techniques that would be
required would be quite a difficult task. Furthermore, there is no guarantee that the
recordings that get clustered together would be consistent with groupings that humans use
in reality or would find convenient to use, nor is there any obvious provision for defining
the types of genre structures and interrelations that humans find useful when browsing
through categories. Nonetheless, the emergent approach holds more promise than naïve
unsupervised learning, and is certainly worthy of investigation.

In any event, such a system is clearly beyond the scope of this thesis. The use of a
reasonable model taxonomy, while not ideal, is certainly effective enough for most
practical use and for the purposes of this thesis. A logical future development would be to

 26

merge the system developed here with modules that collect and consider non-content
based socio-cultural data. Whether it is prescriptive or emergent systems that end up
being more effective, the idea of automatically exploiting text documents to gather socio-
cultural data is an interesting one, and should certainly be explored in future research.

 27

3. Technical Background Information

3.1 MIDI
 MIDI is an encoding system that is used to represent, transfer and store musical
information. Instead of containing actual sound samples as audio encoding methods do,
MIDI files store instructions that can be sent to synthesizers. The quality of sound
produced when a MIDI file is played is therefore highly dependant on the synthesizer that
the MIDI instructions are sent to. In effect, MIDI recordings give one much the same
information that one would find in a musical score. MIDI, and other formats such as
KERN, MusicXML or GUIDO, are often called “symbolic” formats because of this.
Selfridge-Field (1997) provides a good overview of alternative symbolic formats to
MIDI.
 The MIDI standard is known to have a number of weaknesses and disadvantages.
There is a relatively low theoretical threshold on the amount of control information that
MIDI can encapsulate, for example. Furthermore, it can be difficult and time consuming
to properly record sophisticated synthesis instructions. In effect, a basic MIDI recording
of a human performance will almost always sound significantly worse than an audio
recording, partly because it is impossible to properly record the full range of control
parameters of many instruments and partly because of limitations in synthesizers.
 MIDI recordings do, however, have a number of advantages over audio recordings.
They are much more compact, which in turn makes them easier to store and much faster
to process and analyze. MIDI recordings are also easier to edit, as they store simple
instructions that are easy to view and change. This contrasts with audio recordings, where
it is not currently possible (with the exception of simple monophonic music) to even
correctly extract the actual notes being played.
 MIDI is therefore much more convenient than audio if one wishes to extract precise
high-level musical information. For the purposes of genre analysis, this is an important
advantage, as it is desirable to look for patterns relating to notes, rhythms, chords and
instrumentation, all of which are easy to extract from MIDI but currently difficult to
impossible to extract from audio. More information on the advantages and disadvantages
of MIDI in relation to genre classification can be found in Section 1.4.
 Only the portions of the MIDI specification that are relevant to the task of genre
classification are discussed in this section in any kind of detail. The aspects of MIDI that
are relevant to live performance but not to MIDI files, for example, are almost entirely
ignored here. There are many books on MIDI, such as that by Rothstein (1995), which
can be consulted for further information on MIDI. The complete specification is

 28

published by the MIDI Manufacturers Association (2001). The MIDI Manufacturers
Association web site also provides additional useful information.
 MIDI essentially consists of sequences of instructions called “MIDI messages.” Each
MIDI message corresponds to an event or change in a control parameter. MIDI messages
consist one or more bytes of data, which fall into two types: status bytes and data bytes.
The status byte is always the first byte of a MIDI message, always starts with a 1 bit and
specifies the type of MIDI message and the number of data bytes that will follow to
complete the message. Data bytes always start with a 1 bit, which means that each data
byte has 7 bits free to specify values, with a resultant range of between 0 and 127.
 MIDI allows the use of up to sixteen different “channels” on which different types of
messages can be sent. Each channel operates independently of the others for most
purposes. Channels are numbered from 1 to 16. There is no channel 0.
 There are two important classes of MIDI messages: “channel messages” and “system
messages.” The former influence the behaviour of only a single channel and the latter
affect the MIDI system as a whole. “Channel voice messages,” a type of channel
message, are the only type of messages that are relevant to this thesis. The four least
significant bits of the status byte of all channel voice messages indicate the channel
number (0000 is channel 1 and 1111 is channel 16). “Note On,” “Note Off,” “Channel
Pressure,” “Polyphonic Key Pressure,” “Program Change,” “Control Change” and “Pitch
Bend,” as discussed below, are all channel voice messages.
 A Note On messages instructs a synthesizer to begin playing a note. This note will
continue playing until a Note Off message is received corresponding to it. The four most
significant bits of the status byte of all Note On messages must be 1001 and, as with all
channel voice messages, the four least significant bits specify the channel on which the
note should be played. Note On messages have two data bytes. The first specifies pitch,
from 0 to 127, and the second specifies velocity, also from 0 to 127. Pitch is numbered in
semitone increments, with note 60 being designated as middle C (equal temperament
tuning is used by default), although synthesizers can be instructed to use alternate
arrangements and tunings. The velocity value specifies how hard a note is struck, which
most synthesizers map to initial volume.
 A Note Off message has an identical format to a Note On message, except that the
four most significant bits of the status byte are 1000. The pitch value specifies the pitch of
the note that is to be stopped on the given channel and the velocity value specifies how
quickly a note is released, which is generally mapped to the fashion in which the note dies
away. Many synthesizers do not implement Note Off velocities. A Note On message with
velocity 0 is equivalent to a Note Off message for the given channel and pitch.
 Channel Pressure messages specify the overall pressure for all notes being played on a
given channel. This can be mapped by synthesizers in a variety of ways. Aftertouch

 29

volume (loudness of a note while it is sounding) and vibrato are two common mappings.
The status byte of Channel Pressure messages has 1101 as its four most significant bits,
and there is one data byte that species the pressure (between 0 and 127).
 Polyphonic Key Pressure messages are similar to Channel Pressure messages, except
that they contain an additional byte (the one immediately following the status byte) that
specifies pitch, thus restricting the effect of the message to single notes rather than to all
notes on a channel. The most significant bits of the status byte are 1010.
 Program Change messages allow one to specify the instrumental timbre that is to be
used for all notes on the specified channel. The terms “program,” “patch” and “voice” are
often used in reference to the instrumental timbres specified by Program Change
messages. The most significant bits of the status byte are 1100 and there is a single data
byte specifying patch number, from 0 to 127.
 The particular 128 instrumental timbres and sound effects corresponding to particular
patch numbers are specified by the MIDI Program Table, which is part of an addendum to
the MIDI specification called General MIDI. All notes sent to a given channel will be
played using the patch specified by the most recent Program Change message sent to that
channel. There is one exception to this, however. All notes played on channel 10 are
considered to be percussion notes, and General MIDI specifies a separate Percussion Key
Map specifying 47 percussion timbres that are always used for notes sent to channel 10.
The timbre that is used for notes on channel 10 is specified by the pitch value of Note
Ons, not by Program Change messages. Rothstein (1995) gives the details of the MIDI
Program Table and the General MIDI Percussion Map.
 Control Change messages affect the sound of notes that are played on a specified
channel. Common parameters include volume and modulation. There are 121 MIDI
controllers, including some that are unspecified, although many synthesizers do not
implement most, or even any, of these. The four most significant bits of the status byte of
Control Change messages are 1011. The first data byte specifies the controller that is
being referred to, from 0 to 120. There is a second data byte that specifies the setting of
the controller, from 0 to 127.
 If a greater resolution is required, a second Control Change message can be sent to
supplement the first, resulting in a resolution of 16 384. Controllers 0 to 31 represent the
most significant byte in this case, and controllers 32 to 63 represent the least significant
byte. Two Control Change messages can thus cause a single change to be implemented
with much greater resolution than a single Control Change message.
 Control Change messages are generally intended for use when performing with
continuous controllers. They are only standardized to a limited extent, and many
synthesizers do not implement them. They are thus of limited applicability to this project,
which analyzes MIDI files in the context of scores rather than performance nuances.

 30

Control Change messages are often absent in MIDI files, and the lack of standardization
could cause a good deal of noise. They are therefore only considered in a very limited
capacity in this thesis. Rothstein (1995) gives the details of particular Control Change
messages.
 Pitch Bend messages allow microtonal synthesis. The four most significant bits of the
status byte of such messages are 1110. There are two data bytes, the first of which
specifies the least significant byte of the Pitch Bend and the second of which specifies the
most significant byte. Maximum downward bend corresponds to data byte values of 0
followed by 0, centre pitch (no bend) corresponds to values of 0 followed by 64 and
maximum upward bend corresponds to values of 127 followed by 127. General MIDI
specifies that the default Pitch Bend range is plus or minus two semitones. This can be
altered on synthesizers, however, so one must be careful to ensure that the Pitch Bend
range that is actually played corresponds to what is desired.
 MIDI timing is controlled by a clock which emits “ticks” at regular intervals. Clock
rates are usually related to note durations in terms of parts per quarter note (ppqn). A
greater ppqn corresponds to a greater rhythmic resolution, which allows one to have push
or lag the beat or to represent complex tuplets with a greater precision. The most
commonly used resolution is 24 ppqn, which allows sufficient resolution to permit 64th
note triplets. At 24 ppqn, a half note corresponds to 48 ticks, a quarter note to 24 ticks, an
eighth note to 12 clicks, at sixteenth note to 6 clicks, etc. It should be noted that the actual
speed of playback of quarter notes is controlled by tempo change meta-events (see
below).
 The alternative to ppqn resolution is the SMPTE time code (Society of Motion Picture
and Television Engineers 1994), which is divided into hours, minutes, seconds and
frames. This is very useful when synchronizing MIDI to media such as film or video.
There are variations of SMPTE for different frame rates. The 30 frames per second rate is
the one most commonly used by MIDI.
 MIDI messages are often used in real-time performances as a communications
protocol. It is, however, often convenient to store MIDI data in files to be accessed later,
and it is this form of MIDI data that is of interest in this thesis. Although sequencers can
use a variety of proprietary formats for storing data, there are three standard MIDI file
formats, numbered 0, 1 and 2 (MIDI Manufacturers Association 2001). The main
difference between these standard formats is the manner in which they deal with “tracks,”
which can be used by sequencers to segment different voices. Format 0 files consist of a
single multi-channel track, Format 1 files have multiple tracks that all have same meters
and tempos (the first track contains the tempo map that is used for all tracks) and Format
2 files have multiple tracks, each with their own tempos and meters. Format 1 files are the
most commonly used, and Format 2 files are very rarely used.

 31

 All standard MIDI files consist of groups of data called “chunks,” each of which
consist of a four-character identifier, a thirty-two bit value indicating the length in bytes
of the chunk and the chunk data itself. There are two types of chunks: header chunks and
track chunks.
 The header chunk is found at the beginning of the file and includes the type of file
format (0, 1 or 2), number of tracks and the division. The division value can mean one of
two things, depending on whether it specifies the use of either quarter-note timing
resolution or SMPTE. In the former case, it specifies the timing resolution of a quarter
note. In the latter case, it specifies the SMPTE frame rate and the number of ticks per
SMPTE frame.
 Track chunks, in turn, contain all of the information and MIDI messages specific to
individual tracks. The time between MIDI events is specified using delta times, which
specify the amount of time that has elapsed between the current event and the previous
event on the same track. This is done because it requires less space than simply listing the
absolute number of MIDI ticks that pass before an event occurs.
 MIDI messages and their associated delta times are called “track events.” Track
events can involve both MIDI events and “meta-events.” Meta-events provide the ability
to include information such as lyrics, key signatures, time signatures, tempo changes and
track names in files.
 Key signature meta-events include two pieces of information: sf and mi. sf indicates
the number of flats (negative numbers) or sharps (positive numbers). For example, C
major and A minor are represented by 0 (no sharps or flats), 3 represents 3 sharps and -2
represents 2 flats. mi indicates whether the piece is major (0) or minor (1).
 Time signature meta-events contain four pieces of information: nn, dd, cc and bb. nn
and dd are the numerator and denominator of the time signature respectively. cc is the
number of MIDI ticks in a metronome click and bb is the number of 32nd notes in a MIDI
quarter note. It should be noted that dd is given as a power of 2, so a dd of 3 corresponds
to 2^3 = 8. Thus, a time signature of 5/8 corresponds to nn = 5 and dd = 3.
 Tempo change meta-events consist of three data bytes specifying tempo in
microseconds per MIDI quarter note. The default tempo is 120 beats per minute if no
tempo is specified.

3.2 Feature extraction and evaluation
 Musical feature extraction involves processing a recording with the aim of generating
numerical representations of what are, hopefully, traits of the recording that are
characteristic of the category or categories that it should be classified as belonging to.
These features can then be grouped together into feature vectors that serve as the input to
classification systems.

 32

 Deciding upon appropriate features can be a difficult task, as it is often unclear which
features will be useful ahead of time. Furthermore, it is not always easy to extract the kind
of features that one would ideally like. Although one can make limited assumptions as to
the types of features that might work well based on one’s experience and knowledge,
there is often at least some amount of guesswork involved in the choice of features in
cases such as genre classification, where a diverse and sometimes ambiguous range of
factors are involved in category differentiation.
 Although there are a wide variety of classification techniques available, their
effectiveness is ultimately limited by the quality, consistency and distinguishing power of
the features that they are provided with. No classification system can perform its job
effectively if the features that it is given do not segment a population into different
groups.
 Intuitively, one might think that a solution to poor classification performance would
be to increase the number of features. Although this is true up to a point, experimental
evidence has shown that too many features can actually cause classification performance
to degrade. In fact, the “curse of dimensionality” states that, in general, the need for
additional training samples grows exponentially with the dimensionality of the feature
space (Duda, Hart & Stork 2001, 169-170). More features can also necessitate greater
training times. It is therefore necessary to carefully select the features that one is to use, in
order to have enough features to be able to effectively discriminate between categories
while at the same time not overwhelming the classifier.
 From one perspective, redundancy should be avoided when choosing features in order
to decrease the total number of features. However, it could also be argued that slightly
different representations of similar information may prove more or less successful at
distinguishing between particular genres. One should therefore not reject features out of
hand simply because of some overlap with other features.
 To further complicate matters, having only a few specialized features available for a
particular type of classification can be problematic if new categories are added to the
classification taxonomy later for which the previously used set of features are
inappropriate. It is therefore useful for one to have a large and diverse set of features on
hand that can be taken advantage of if new developments in a classification problem
make them necessary.
 It is clear that it is imperative to have an effective way of evaluating features so that
the best ones can be chosen in the context of particular taxonomies and classification
problems. This process is known as feature selection. There is also a related procedure,
known as feature weighting, where different features are given varying degrees of
influence in classifications. The choice of features that will work best ultimately depends
on the classification methodology being used, the taxonomy that classifications are based

 33

on and the size and diversity of the training and testing sample sets. The best that one can
do in terms of feature evaluation and selection is to start out with a wide selection of
candidate features and use feature selection methods to choose ones that work well
together for the problem at hand.
 Fortunately, there are a range of effective feature selection techniques available.
Although few of them can guarantee optimal feature selection even for the training set, to
say nothing of the overall population of samples being classified, they often can
significantly improve classification results compared to the case where classification is
performed without feature selection.
 There is a class of dimensionality reduction techniques that operate by statistically
analyzing a feature space without needing to perform actual test classifications to evaluate
classification performance with test features subsets. This can be an important time saver,
as training some classifiers can be computationally intensive. Principle component
analysis (PCA) and factor analysis are two commonly utilized techniques of this type.
They operate by projecting multi-dimensional data into a lower-dimensional subspace by
forming linear combinations of new features in a way that preserves the variance of the
original features.
 A drawback of these techniques is that an emphasis is placed on those features that
have the greatest variability in general, which may not necessarily coincide with the
particular variability that one needs when dealing with a particular taxonomy. For the
purpose of classification, one is interested in features for which the difference in category
means is large relative to the standard deviations of each of these means. Dimensionality
reduction techniques such as PCA and factor analysis simply select those features for
which the standard deviations are large, and do not consider the particular categories that
samples belong to in a particular taxonomy.
 Although, there are a variety of multiple discriminant analysis techniques that can be
used to perform dimensionality reduction with the particular needs of classification in
mind, there is a further problem with all of these dimensionality reduction techniques that
must be considered. A by-product of all of these processes is that one ends up with a new
set of features that cannot be mapped back to individual features in the original feature
space. Although this is not necessarily problematic if one is only concerned with
classification performance, it is a significant drawback if one wishes to glean information
about how well particular features perform relative to one another or in regards to
different kinds of classifications.
 Another approach to feature selection involves actually performing classifications of
the training samples with different subsets of the features available and seeing which
combinations perform best. Those features that do not perform well can be eliminated

 34

from consideration when the final classifier is trained, or can be given lower weightings
by the classifier.
 Experimental techniques of this type have the advantage that they give one insights
into which of the original features are useful in particular types of classifications and
which are not. The disadvantage is that these techniques can be quite computationally
intensive, particularly if there are many candidate features or if the classification
techniques being used to test the performance of different feature subsets are themselves
computationally expensive.
 A naïve approach would be to simply statistically measure how well each feature
individually segments the training data into the appropriate groups and then choose the
highest performers. One problem with this approach is that it does not necessarily ensure
that features will be chosen that will be effective for classifying samples into every
needed category. A feature might perform very well at correctly classify samples
belonging to two particular categories, for example, but consistently misclassify samples
belonging to a third category.
 Although this problem could be solved by incorporating a system that increases the
ranking of features that help to distinguish between categories for which no other
effective features have been found, there is another important problem that must be
considered. Several separate features that have little discriminating power when
considered individually, and which might therefore be rejected by this naïve feature
evaluation approach, could in fact be very useful when considered together. A feature
evaluation system must therefore consider the discriminating power of features operating
collectively as well as individually.
 Ideally, one would like to exhaustively test every possible subset of candidate
features. This would ensure that the features selected would be optimal for the training
samples. Of course, this does not necessarily guarantee that they will be optimal for the
overall population, so overfitting can be a problem, but then no feature selection method
of any kind can guarantee that results based on training samples will generalize well to
the population as a whole.
 Exhaustive examination of all possible combinations of features is certainly attainable
in some cases, but in others limitations on computing power and the demands of the task
make it practical only to test a fraction of all possible feature combinations. This is
particularly true when dealing with large feature sets, a great number of training samples
and computationally intensive classifiers. Although techniques such as branch and bound
searching can be used to improve the speed of exhaustive examinations, there can still be
many cases where exhaustive examinations are intractable. Fortunately, there are a
variety of techniques available that allow one to find a good, although not necessary
optimal, feature subset without needing to test all possible combinations.

 35

 One simple approach is to limit the number of selected features to some maximum
number n, and then exhaustively test the performance of all feature subsets of size n or
less. This has a good likelihood of performing well, as the curse of dimensionality implies
that one would not want to use all that many features in any case. A variation of this
technique is to choose the best m feature subsets selected this way and implement a
separate classifier for each. Final classification results could be arrived at by combining
the results of these classifiers using a coordination system (see Section 6.5 for more
information on the coordination of classifiers). These approaches can significantly cut
down on computational demands relative to exhaustive searches, but they can still be
computationally intensive if n is high or there are many features.
 Forward selection and backward selection are two common feature selection
techniques that allow one to further reduce computational demands. Forward selection
operates by starting with the empty set and adding features one by one until some
maximum number of features are selected. This process begins by first considering all
possible feature subsets consisting of one feature only, and choosing the best one. Next,
all possible feature subsets consisting of this feature and one other feature are considered,
and the best performer is chosen. Features are thus added iteratively one by one to the
previously selected features until the maximum number of features are attained.
Backward selection, in contrast, starts with the full set of features, and iteratively removes
features one by one.
 A problem with these two techniques is that there is no way to remove (or restore) a
feature once it has been added (or taken away). This problem, called nesting, can be
significant, since a feature that performs well early on in the feature selection process
may actually not be one of the best features to choose. A technique called forward “plus l
take away r” overcomes nesting by first applying forward selection l times and then
applying backward selection r times. A variation of this technique, called sequential
floating selection, dynamically assigns the values of l and r, instead of fixing them (Pudil
et. al 1994).
 An alternative way to select features experimentally is to use a class of techniques
called genetic algorithms (GA’s). GA’s can be used for a wide variety of purposes, and
are often used for optimization problems where exhaustive searches are not practical.
Siedlecki and Sklansky (1989) pioneered the use of genetic algorithms for feature
selection, and they have been used successfully in the past with respect to music
classification (Fujinaga 1996). Recent research has found that GA’s are particularly
effective “in situations where the search space is uncharacterized (mathematically), not
fully understood, or/and highly dimensional,” all of which certainly apply to the task of
genre classification (Hussein, Ward & Kharma 2001). There is also some evidence that,

 36

in general, GA’s perform feature selection better but slower than greedy search
algorithms (Vafaie & Imam 1994).
 GA’s are inspired by the biological process of evolution. They make use of data
structures called “chromosomes” that iteratively “breed” in order to evolve a hopefully
good solution to a problem. Each chromosome consists of a bit string that encodes the
solution to the problem that the GA is being used to solve. This bit string is effectively the
DNA of a chromosome, and is combined with the bit strings of other chromosomes when
breeding occurs. Each bit string has a fitness associated with it, which indicates how well
its bit string solves the problem at hand.
 In the case of feature selection, each bit in the bit string could represent a feature, with
a value of 1 implying that the feature is to be used and a value of 0 implying that it is not
to be used. Alternatively, bit strings could be segmented into multi-bit words, each of
which encodes a numerical value that represents the weighting of a feature.
 A GA begins with a population of many chromosomes whose initial bit strings are
randomly generated. Reproduction, and hence the evolution of a solution, occurs through
a process called crossover. Some fraction of the chromosomes, based on a GA parameter
called the crossover rate, is selected for reproduction, with the remaining chromosomes
being eliminated. One way of selecting the chromosomes that will reproduce, called the
roulette method, assigns a probability of selection for reproduction to each chromosome
based directly on its fitness. An alternative, called rank selection, ranks the chromosomes
based on fitness and then bases the probability of selection for crossover on this ranking.
This latter approach prevents one or a few chromosomes with very high relative fitnesses
from dominating early on, as this could lead to a local minimum in error space that is far
from the global minimum.
 In general, the actual process of crossover involves taking two of the chromosomes
selected for breeding and breaking the bit string of each one into two or more parts at
randomly selected locations. The resulting child is generated with a bit string constructed
from the pieces of the bit strings of its parents. An alternative approach involves going
through the bit strings of the parents one bit at a time and copying the bits to the child
when the values for the parents correspond and randomly selecting a bit’s value when the
corresponding bit of the two parents differs. Each parent chromosome can reproduce
multiple times, either polygamously or monogamously.
 There are several additional features that are sometimes incorporated into GA’s as
well. “Mutation” involves assigning a probability (usually very small) to every bit of
every child’s bit string that the bit will be flipped. Elitism involves automatically cloning
the chromosome with the highest fitness from one generation to the next. Villages or
islands involve segregating the chromosomes into different groups that evolve
independently for the most part, but occasionally exchange a few chromosomes.

 37

 A simplified version of genetic algorithms, known as random mutation hill climbing,
is also occasionally used. This involves eliminating the crossover step, and having the
population improve through mutation only.
 Genetic algorithms have been shown to find good solutions to many problems,
although not necessary the optimal ones. Their success is highly dependant on the
goodness of the fitness function that is used. In the case of feature selection, this fitness
function is related to how well the selected feature subsets perform in classifying the
training set.
 GA’s can be computationally expensive, particularly if fitness evaluation is
expensive, since fitness must be calculated for each chromosome at each generation. This
makes them suitable for classification techniques that require little or no training time,
such as nearest-neighbour classifiers (see Section 3.3), but less appropriate for classifiers
that are computationally expensive to train.
 It should be noted that simple statistical techniques could be combined with any of the
methods listed above in order to offer some additional increases to performance. For
example, one could consider features one by one, and measure the standard deviations of
the central means of each feature for each classification category. A high standard
deviation would indicate a good discerning power for a feature. The standard deviation of
a feature’s values within each category could also be considered, as a large variation
would indicate that the feature would likely not coherently cluster samples in the given
category, and would perform poorly if one’s goal is to find all samples belonging to that
category, for example. Cross-correlations and covariances could also be calculated in
order to see how similarly different features change across categories in order to eliminate
redundant features.
 Although this approach certainly has limitations that would hamper it usefulness if it
was used alone, as discussed earlier in this section, it could nonetheless provide some
basic information that could be used by an expert feature selection system, for example,
that also makes use of some of the more sophisticated techniques discussed earlier in this
section, such as GA’s.
 There are a number of lesser used feature selection techniques that have not been
discussed here. Jain and Zongker (1997) have written a good overview of experimental
feature selection methods as well as an empirical study of their relative performance.
Kirby (2001) offers a good resource for those looking for more specialized techniques
than those discussed here. The books of Duda, Hart and Stork (2001), Fukunaga (1972)
and James (1985) provide good references on feature selection in general. Sakawa’s book
(2002) is an excellent resource for more information on genetic algorithms in general, and
Hallinan (2001) provides an excellent literature review and practical guide to the use of
genetic algorithms for feature selection.

 38

3.3 Classification methods
 There are a variety of methods available for automatically classifying information
based on features. For reasons discussed in Section 1.5, only supervised learning
techniques are considered here. Which classification technique is appropriate to use in a
given situation depends on the type of population that is being classified, the amount of
knowledge one has about the statistical properties of the population, the taxonomy that is
being used to organize the population, the types of features that are being used, the
computational power available and the amount of training and classification times that are
considered acceptable.
 There is not enough space here to cover the full range of classification techniques
available in any amount of detail. This section therefore limits detailed descriptions to
those classifiers which are actually used in this thesis, namely k-nearest neighbour and
feedforward neural network-based classifiers. Before describing the details of these
methods, however, other techniques are briefly mentioned in order to make it possible to
explain why they were not used, and to make it clear under what circumstances it would
be appropriate to use them. Those looking for further details should consult Duda, Hart
and Stork’s (2001) or Jain et al.’s review of classifiers (1999). The books of Russell and
Norvig’s (2002) and Mitchell (1997) are also excellent references for those looking for
information on machine learning. Briscoe and Caelli (1996) cover a variety of existing
machine learning systems that have been implemented, although some of these have
become somewhat dated.
 Rowe (2001) is a good resource for those wishing to apply artificial intelligence
techniques to musical tasks. Although this book touches on the actual techniques in less
detail and much less rigorously than some of the other resources discussed in this section,
it is a very good introduction to artificial intelligence from a musical perspective and
provides some good ideas relating to how music can be conceptualized and represented in
ways that computers can deal with effectively.
 In the ideal case, one would have full knowledge of the probability structure
underlying the population that one is classifying. This means that the statistical
distribution of the population’s features would be known. If this is the case, then one can
use the optimal Bayes classifier. If, rather than knowledge of the distribution based on
parameter vectors one has knowledge of the causal relationships among component
variables, it is then possible to use Bayesian belief networks.
 It is unusual that one has this amount of knowledge about the properties of a
population, unfortunately. Even if one does not know the particular parameters of a
population’s distribution, however, knowledge of the general form of the distribution
makes it possible to use techniques such as maximum-likelihood estimation and Bayesian
parameter estimation in order to estimate them. One such technique, hidden Markov

 39

models, is of particular interest if one wishes to perform classifications that take into
account the temporal order of events. Rabiner in particular has written two good tutorials
on hidden Markov models (Rabiner & Juang 1986; Rabiner 1989).
 There are also classification techniques available if one has no prior knowledge of the
underlying probability structure of a population, and is forced to rely only on information
gleaned from training samples. This class of techniques is known as nonparametric
techniques, and include the nearest-neighbour algorithm and potential functions. There
are also nonparametric methods for transforming the feature space with the goal of being
able to employ parametric metrics after the transformation. These include analysis
methods such as the Fisher linear discriminant. There is also a related class of
classification techniques that involve neural networks, a set of techniques inspired by,
although not accurately simulating, the processes utilized by the neurons of human and
animal brains.
 Another class of techniques use functions to map the features of a problem to a higher
dimensional space, where appropriate category boundaries can be found. Support Vector
Machines (SVM’s) are a well-known example of this type of classifiers.
 Finally, there is a class of classification techniques that are based on learning logical
rules rather than using statistical methods. These nonmetric methods include tree-based
algorithms and syntactic-based methods involving grammars. These techniques require
the use of nominal data, which is to say features with discrete values that do not involve
any natural notion of similarity or ordering. In practical application, continuous features
can be divided into discrete categories (e.g. small or big), although the dividing point is
usually somewhat arbitrary, and these techniques are better suited to features where no
such arbitrary dividing point is necessary (e.g. has a tail or does not have a tail).
 In the particular case of musical genre classification as dealt with in this thesis, no a
priori knowledge is available regarding the distribution of the feature values of the
population, so it would be inappropriate to make the unfounded assumptions that would
be necessary to use techniques that rely upon such knowledge.
 Nonmetric methods are certainly attractive, as they not only perform classifications,
but also provide information about how the classifications were arrived at. Part of the
goal of this thesis is to develop and use a wide library of candidate features for
classification, however, where values are often continuous and dividing points are not
necessarily obvious. This limits the applicability of nonmetric methods, with their
requirement for nominal data, to the task at hand. Future research using specialized
features and nonmetric classifiers could certainly be of interest, however.
 Nonparametric techniques stand out as the best choice for situations such as automatic
musical genre classification of the type studied here, where one must rely solely on
training samples in order to learn the information necessary to perform classifications. Of

 40

the nonparametric techniques available, k-nearest neighbour and neural network-based
classifiers are two of the most commonly used, and have repeatedly been found to
perform well for a variety of classification tasks. They therefore deserve special attention.
 The k-nearest neighbour (KNN) classification technique is one of the simplest and
most commonly used nonparametric methods. Training operates simply by storing the
coordinates of each training sample in the multi-dimensional feature space. Test samples
can then be classified by examining their surroundings in feature space and finding the
labels of the nearest k training points. In other words, a cell is grown in feature space
around a test point until the k nearest training points are captured. If a test point happens
to fall in a region of high training point density, the cell will be relatively small, and if the
test point falls in a region of low density, then the cell will be large, but will rapidly stop
expanding when it enters a region in feature space of high density.
 The probability that a test point belongs to a given category can be estimated by the
number of training points captured divided by k. This is useful, since it allows one to
obtain a score for potentially more than one category when classifications are performed,
which is beneficial if an ensemble of classifiers is being used or if samples can belong to
multiple categories.
 The choice of k is important, as a k that is too large can include more points than there
are training points of the appropriate category, thus inappropriately including points of
other classes even if the training points are well clustered. A k that is too small, on the
other hand, can make the classifier too sensitive to noisy training points. Rather than
using an arbitrary constant for k, it is usually a function of n, the number of training
samples, most commonly the square root of n. In practice, however, it might be wise to
also make it a function of the number of training samples in each category, otherwise
categories with too few training samples could be overlooked by the classifier as the
captured area expands beyond their neighbourhood in order to capture k training points.
 There are a variety of distance measures that can be used to calculate which points are
closest to a test point. Euclidean distance is often used, although it is sometimes
appropriate to use alternatives such as Manhattan distance, Tanimoto distance or tangent
distance. It is often wise to pre-process features in order to ensure that they have roughly
the same range of values, otherwise features with large values will potentially
inappropriately dominate distance measurements over features with small values.
 An important advantage of KNN classifiers is that they require a negligible amount of
training time, since all that they must do is memorize the coordinates of the training
samples. Classifying a test point can be somewhat computationally expensive using a
naïve implementation of KNN, however, particularly if a large number of features (d)
and, more importantly, training samples (n) are used. Using big-O notation, the naïve

 41

implementation actually has O(dn2) complexity. A variety of alternative computationally
efficient KNN implementations are discussed in Duda, Hart and Stork (2001).
 A variation of the basic KNN classifier involves assigning weights to the different
features, so that some play a more important role in distance measurements. This is tied to
feature selection weighting methods. Although this can improve classification accuracy, it
has the disadvantage that some method must be used to train the weightings, such as
genetic algorithms, that will likely require additional training time.
 Despite their advantages in training speed, KNN classifiers are limited in the ways in
which they can model relationships between features. Classifications are based entirely on
distances, and no considerations of conditional relationships can be made. For example, if
one is attempting to classify musical recordings based on the fraction of all notes played
by each instrument, the presence of an electric guitar would automatically eliminate all
traditionally performed pre-20th century classical music categories from contention. A
classifier capable of building conditional relationships between features, such as a human,
could then consider other features with the assumption that the recording is not classical
music in mind. KNN classifiers, in contrast, are incapable of deducing such sophisticated
relationships, and can only consider features as a whole. The extensive use of a flute in a
recording also containing a small amount of electric guitar, for instance, might cause a
KNN classifier to conclude that the recording is a classical flute sonata, rather than the
correct classification of, for example, progressive rock.
 Neural networks (NN’s) provide a means of performing classifications that can
encapsulate more sophisticated relationships than KNN classifiers. Although there are
many varieties of NN’s used for many types of tasks including but not limited to
classification, the emphasis is placed here on multilayer feedforward NN’s, which are the
type most often used for supervised learning for the purpose of classification. There has
been a significant amount of research showing the applicability of NN’s to musical
problems, such as that by Stevens and Latimer (1997), to cite just one example.
 NN’s are inspired by and loosely modelled on biological processes in the human
brain. Neural networks are composed of units (inspired by human neurons) that are
connected by links, each with an associated weight. Learning in NN’s takes place by
iteratively modifying the values of the weights.
 Units in feedforward NN’s are organized into layers. The input layer is composed of
units where patterns of numbers are fed into the network. For classification purposes,
each unit in the input layer is normally given values corresponding to a single feature.
There is also an output layer, whose units provide the output of the network in response to
the patterns placed on the input units. One approach to using networks for classification
tasks involves having one output unit for each possible classification category. There may

 42

also be one or more hidden layers, whose units and weights are used for processing and
learning by the network, and which are treated as the inside of a black box.
 Each unit in a feedforward NN has a link to every unit in the previous layer (if any)
and to every unit in the subsequent layer (if any). Each unit also has a current “activation
level,” which is the value propagated down the links leading to the subsequent layer (or to
the output sensors).
 The activation level of a unit is calculated by adding the values on all of the links
coming into the unit from units in the previous layer (or input sensors) and processing the
sum through an “activation function.” The values on each link are calculated by
multiplying the value placed on it by the link’s weight. Some feedforward NN’s also
include a “bias unit” for each hidden or output unit that outputs a constant value through a
link
 The activation function is generally a function with a range of 0 to 1 that, generally
speaking, maps input sums over 0 to 1 and input values under 0 to 0. This function must
be continuous, as its derivative is taken during training. A commonly used such function
is the sigmoid function:

 (1)

 So, to put it more formally, the net input into an input unit is simply the input value
placed on it. The net input into a hidden or output unit j is given by:

 (2)

where wb is the weight of the bias link, b is the bias constant (0 if no bias units are used),
each i corresponds to a unit in the preceding layer, n is the number of units in the
preceding layer, wij is the weight on the link from unit i to unit j, and oi is the output of
unit i. The output of a unit j with net input netj and a sigmoidal activation function is:

 (3)

 Feedforward NN’s are trained by putting training patterns on their inputs and
observing how the output of the network differs from the model output. Weights are then
adjusted in order to make the output closer to the model through a process called gradient
decent. The process of first adjusting the weights leading into the output nodes and then
successively adjusting the weights in each earlier layer is known as “backpropagation.”
 The training modifications to the weights leading into an output unit k are adjusted by
first calculating �k, the error signal:

xe
xsigmoid −+

=
1

1
)(

�
=

+=
ni

iijbj owbwnet
,1

)(jj netsigmoido =

 43

 (4)

where tk is the target or model activation value for the unit k, ok is the actual activation
value, netk is the net input into k, and f' is the derivative of the activation function. For the
sigmoid activation function:

 (5)

 The weights leading into output unit k from each unit j in the preceding layer, wjk, are
adjusted as follows from iteration t to iteration t+1:

 (6)

where

 (7)

and � and � are NN parameters known as the learning rate and the momentum
respectively. The momentum term is sometimes omitted. These parameters are often set
to between 0 and 1, and control how quickly a NN converges towards a stable solution
and how likely it is to get stuck in a poor local minimum in error space far from the
global minimum. The learning rate controls how large the adjustments to the weights are
each iteration (i.e. how large the steps are in error space towards a solution) and the
momentum stops the network from oscillating wildly in error space from iteration to
iteration by taking into account the previous adjustment to each weight. Increasing the
learning rate can cause a network to converge faster, but a value that is too high may also
cause the network to jump around so much that it does not converge. Increasing the
momentum also usually increases the speed of convergence, but can cause poor
performance if it is set too high. It should be noted that the initial value of the weights is
randomly determined, and the range of initial values that are permitted here can also have
an effect on how a network converges.
 The error rate for a hidden unit, j, behind units k in a subsequent layer is given by:

 (8)

The weight change formula for the weights of the input links to a hidden unit is the same
as that for an output unit (equation 7).
 There are a variety of ways of going about the training process, all of which usually
produce similar results. One can simply feed the training samples into the network one by
one, and adjust the weights after each sample. This can be done as above or, if one is

)(')(kkKk netfot −=δ

)1()(' kkk oonetf −=

)()()1(twotwtw jkjkjkjk ∆++=+ αηδ

)1()()(−−=∆ twtwtw jkjkjk

�=
k

kjkjj wnetf δδ)('

 44

inclined to be more mathematically orthodox, one can only actually implement the weight
adjustments after all of the adjustments have been calculated for a particular training
sample. Alternatively, one can choose to not actually implement the weight changes until
all of the training samples have been run through the network once, after which all of the
weight changes are implemented collectively. In practice, either approach works well, but
it is generally a good idea to randomly order the training samples if the former approach
is used, to avoid receiving many similar patterns consecutively, which could be conducive
to falling into a poor local minimum in error space.
 In any event, the entire training set usually needs to be input to the network during
training many times before the network converges to a solution. Each time the entire
training set is processed once and the weights updated is called an epoch or a training
iteration. An indication of convergence can be measured by observing the rate of change
from epoch to epoch of the sum of squares error, E:

 (9)

between the model output activation values and the actual values. Convergence can
generally be said to have occurred when this error stops changing significantly from
epoch to epoch, although it is not unknown for a network to seemingly converge for a
large number of epochs before suddenly changing dramatically.
 Like any non-optimal system, neural networks carry the danger of converging to a
local minimum in error space that corresponds to a significantly worse solution than the
optimal solution. This is in general unavoidable, since the optimal solution is likely
unknown and its calculation likely intractable if one is resorting to a non-optimal system
such as neural networks. This makes it difficult to know whether a particular solution is a
poor local minimum or not. Some experimentation with the NN parameters for a
particular problem can help to reduce the likelihood of converging to a particularly poor
solution.
 There is some disagreement in the literature as to the appropriate number of hidden
layers to use and how many hidden units should be used in all. de Villiers and Barnard
(1992) do offer some convincing arguments that more than one hidden layer can actually
degrade performance rather than improve it. There have been a number of formulas
proposed as to the ideal number of hidden units to use. For example, Wanas et al. (1998)
claim that the best performance, in terms of both performance and computation time,
occurs when the number of hidden nodes is equal to log(n), where n represents the
number of training samples. There is no real consensus on this matter in the literature, and
the optimal number of hidden nodes likely depends on the particularities of each
individual problem. A good experimental approach is to test performance by gradually

� −=
k

kk otE 2)(
2
1

 45

adding hidden units one by one until the performance fails to improve by a certain
amount. There are many variations of this approach, including Ash’s pioneering work
(1989). Another approach is to use techniques such as genetic algorithms to optimize
network architecture. In any case, it is true in general that increasing the number of
hidden units increases the complexity of the function that can be modelled, but also
increases the training time and, potentially, the probability that the network will not
converge.
 The initial weightings of the networks can also have an important effect on what
solution a network converges. One simple approach is to randomly determine the initial
weightings of the network within some range, and experiment until an effective range is
found. Maclin and Shavlik (1995) have suggested the alternative of using competitive
learning to find an initialization that maximizes the number of attainable local minima
that the network can converge to.
 Feedforward NN’s with no hidden layer (called “perceptrons”) initially caused a great
deal of excitement because of their ability to simulate relations. There was some
disappointment when it was found that there are certain functions which they cannot
simulate, such as XOR logical relations. Fortunately, it was later found that feedforward
NN’s with one or more hidden layers can in fact overcome this problem, and can indeed
be used to model complex relations. This means that NN’s can be used in cases where
one wishes to model more sophisticated relationships between features than classification
techniques such as KNN are capable of doing. Unfortunately, the disadvantage of neural
networks is that they can take a significant amount of time to train.
 Abdi and Valentin (1999) provide an excellent introduction to the inner workings of
NN’s, and include some revealing worked examples. Bengio (1996) provides some useful
practical guidelines regarding working with NN’s. Gallant (1993) is also a good resource,
and includes very interesting sections on combining neural networks with expert systems
and some ideas on how rules can be extracted from trained neural networks. Adeli and
Hung (1995) provide useful background information on both neural networks and genetic
algorithms, and some ideas on how the two techniques can be used together. Fausett
(1994) is also a good general reference on neural networks.
 Those interested in how different machine learning techniques can be combined to
improve performance of practical systems may wish to consult the book edited by
Michalski, Bratko and Kubat (1999). The book edited by Kandel and Bunke (2002)
includes further information in this vein. The book edited by Jagannathan, Dodhiawala
and Baum (1989) contains a good deal of information on blackboard systems that could
also be useful in this respect.
 Before moving on, it is appropriate to briefly discuss the division of one’s sample
examples into training and testing groups in order to evaluate the performance of any

 46

supervised classifier. It can happen that an inexperienced researcher working with
classifiers will observe that a classifier perfectly classifies his or her training examples,
and then conclude that the classifier works very well. Unfortunately, this conclusion may
not necessarily be correct. Classifiers can learn to classify a training group perfectly, yet
fail to make the generalizations necessary to accurately classify the population as a whole.
This effect is known as overfitting. Successful classification of the training group is not
therefore necessarily indicative of a successful classifier. In order to realistically test a
classifier’s performance, one must reserve a set of testing samples that the classifier does
not have any contact with during training. The measured performance of the classifier
must then be based on how well the classifier classifies these test samples after training,
as this provides a much better indication of how well the classifier is likely to perform on
the population in general.
 Care must be taken when selecting the training and testing samples not only that
representative samples are taken from all categories in the classification taxonomy, but
that all sub-groups, if any, within each category are present as well. Although the exact
ratio of training to testing samples can vary, 10% to 20% of the available samples are
typically reserved for testing. Generally speaking, a greater number of total available
samples usually corresponds to a smaller percentage of samples reserved for testing, as
fewer samples are needed to achieve statistical significance.

 47

4. Previous Research in Music Classification

4.1 Overview
 The majority of research on genre classification to date has been on the classification
of audio data rather than symbolic data. Although the features extracted from audio data
are usually very different from those extracted from symbolic data, most other aspects of
the two types of classification are very similar. It is also important to note that the
intersection of the features that can be extracted from audio and symbolic data is
increasing as automatic transcription techniques improve. It is therefore useful to examine
research on audio classification for ideas that can be adapted to symbolic data
classification and to create a basis for future expansion of this research into the audio
realm. Section 4.2 discusses previous research on the classification of audio data, and
Section 4.3 covers research involving symbolic data.
 It should be noted that a number of papers on systems that perform classifications
based on performer and/or composer styles have also been included here. It is useful to
examine these systems as well as genre classifiers, as both types of systems often use
similar features and classification techniques.
 A selection of papers on systems that use unsupervised learning techniques to perform
classifications have been included here as well. Although unsupervised learning is not as
appropriate for genre classification as supervised learning, as discussed in Section 1.5,
there has been a significant amount of research using these systems, and it is important to
be aware of it. The popularity of unsupervised learning in research up to this point may be
due to the fact that most systems have used only a limited number of very distinct
categories. It is probable that unsupervised systems would form categories that coincide
with human genre categories when dealing with such taxonomies. More realistic
taxonomies, with large numbers of categories that include overlap and potentially
objectively irrational distinctions from a content-based perspective, would be highly
unlikely to match the categories formed by unsupervised classifiers, however. So,
although unsupervised classifiers have performed well to date in regards to genre
classification, it is very improbable that these types of systems would scale well to
realistic genre taxonomies.
 This does not mean that research involving unsupervised learning is not worth
pursuing, however. Classification using unsupervised learning is in a very real sense
equivalent to similarity measurements, an area of research with important applications
outside of the scope of genre classification. The kind of similarity groupings produced by
unsupervised learning could, for example, produce a means of navigating music databases
that could potentially be more useful than genre categories for certain applications, such

 48

as if one is simply looking for new types of music that are similar to one’s existing
preferences in a way that is not limited by the peculiarities of genre taxonomies.
 There has also been some research into automatically generating music of given
styles, which is in a sense the inverse of the classification problem. Although some such
systems operate using a rules based approach, others dynamically analyze music and
attempt to generate music that is similar to it. The analysis portion of systems of the latter
type could operate similarly to classification systems, and are therefore worth mentioning
here. Two of the most salient papers on the subject are discussed in Section 4.4.
 It should be noted that this chapter only briefly covers the topics and results of each of
the publications that are presented. Those aspects of certain publications that were used
directly in this thesis are discussed in more detain in Chapters 5 and 6.
 Overall, success rates of between 50% and 92% have been achieved in previous
studies when classifying between three to ten categories using only musical content-based
features. As one would expect, success rates have in general been inversely proportional
to the number of categories. These success rates are promising, especially considering
that most humans would themselves likely be unable to achieve rates beyond 80% or
90%. A large variety of features and classification techniques have been used, leading one
to think that there may be a number of different but valid solutions to genre classification.
 Table 1 summarizes the results of studies where musical genre classification success
rates were reported. More details on these studies are available in Sections 4.2 and 4.3.
One should keep in mind that the variety of taxonomies and recordings used makes it
difficult to compare success rates directly in order to conclusively judge one system as
better than another.
 Unfortunately, no results have been published to date, to the best of the author’s
knowledge, of the application of a classification system to a realistic taxonomy with large
numbers of categories. It is one of the goals of this paper to fill this gap.

4.2 Classification of audio data
 George Tzanetakis has performed the most widely cited research on automatic genre
classification to date. His first major paper on the subject (Tzanetakis, Essl & Cook 2001)
presented two real-time GUI-based systems that performed musical genre classification of
audio signals. The first, GenreGram, developed for real-time radio broadcasts, displayed
cylinders representing each genre that moved up and down based on the confidence at any
given moment that a recording belonged to a particular genre. The second GUI,
GenreSpace, provided a 3-D representation of genre space and mapped each recording to
a point based on its three most distinguishing features. GenreSpace was meant to be used
for representing large collections of recordings. Classifications were made based on a

 49

Type Researchers Date Techniques Genres Recordings Success
Symbolic Chai & Vercoe 2001 HMM 3 491 63%
Symbolic Ponce de Leon &

Inesta
2002 Self-organising

maps
2 77%

Symbolic Shan & Kuo 2003 Associative
classification

2 84%

Metadata
& Audio

Whitman &
Smaragdis

2002 Neural network 5 300 100%

Audio Burred & Lerch 2003 GMM 13 850 60%
Audio Deshpande, Nam &

Singh
2001 k-NN 3 157 75%

Audio Grimaldi, Kokaram &
Cunningham

2003 Binary k-NN 5 202 73%

Audio Jiang et al. 2002 GMM 5 1500 91%
Audio Karpov 2001 HMM 3 252 90%
Audio Kosina 2002 k-NN 3 189 88%
Audio Lambrou et al. 1998 4 distance based

classifiers
3 12 90%

Audio Li & Tzanetakis 2003 Linear
discriminant
analysis

10 1000 71%

Audio Li, Ogihara & Li 2003 SVM 10 1000 79%
Audio Matityaho & Furst 1995 Neural network 2 8 100%
Audio McKinney &

Breebaart
2003 Gaussian

framework
7 188 74%

Audio Pye 2000 GMM 6 175 92%
Audio Solatu et al. 1998 ETM-NN 4 360 86%
Audio Tzanetakis & Cook 2002 GMM & k-NN 10 1000 61%
Audio Tzanetakis, Essl &

Cook
2001 Gaussian

classifier
6 300 62%

Audio Xu et al. 2003 SVM 4 100 93%

Table 1: Summary of existing musical genre classification systems.

tree-based genre hierarchy containing both music and speech. A 62% success rate was
achieved in classifying between six genres.
 The ideas presented in this paper were further developed in a second paper
(Tzanetakis & Cook 2002), where a fully functional system was described in detail. The
authors proposed using features relating to timbral texture, rhythmic content and pitch
content to classify pieces. The system was able to correctly distinguish between audio
recordings of ten genres 61% of the time. Results of music/speech and sub-genre
classifications were also presented. A variety of statistical classifiers were used. A
refinement of this work was published by Li and Tzanetakis (2003) and Li, Ogihara and
Li (2003), where classification results of between 70% to 80% were achieved through the
use of linear discriminant analysis and Daubechies wavelet coefficients.
 A further paper (Tzanetakis, Ermolinksyi & Cook 2002) argued that pitch-based
features could be used to enhance content-based analysis of music. As a demonstration, a
genre classification system was built to distinguish between five genres. A success rate of

 50

50% was achieved with the use of only four pitch-based features and no rhythm or timbre
related features. A k-NN classifier was used in this system.
 Tzanetakis’ dissertation (2002) presented a number of approaches and techniques for
extracting information from audio recordings, including techniques related to genre
classification. Tzanetakis reviewed and brought together research that he had previously
published.
 Another detailed description of a genre classification system can be found in Karin
Kosina’s thesis (2002). This system used KNN classification to achieve a success rate of
88% when classifying audio data into one of three genre categories. This thesis provides a
good overview of background information in the field of genre classification.
 Grimaldi, Kokaram and Cunningham (2003) described a system that used a discrete
wavelet transform to extract time and frequency features, for a total of sixty-four time
features and seventy-nine frequency features. Instead of using a single classifier to
classify all genres, Grimaldi et al. used an ensemble of binary k-NN classifiers, each
trained on only a single pair of genres. The final classification was arrived at through a
majority vote of the classifiers. Tests achieved a success rate of 73.3% with the binary
classifier ensemble, as compared to only 63.6% when a single classifier was used for all
of the genres. Tests were performed using a total of five genre categories.
 Xu et al. (2003) proposed using a two-level classification system, where a broad
classification was first made, followed by a finer classification based on the results of the
first classification. The authors implemented such a system by having the first stage
classify audio data into either rock/jazz or pop/classical and then having the second stage
decide between either rock and jazz or pop and classical, depending on the output of the
first stage. Different sets of features were used for each of the above three classifiers. This
is an approach that would fit in well with a hierarchical taxonomy. A success rate of 93%
was obtained using support vector machines. Further tests of the system using nearest
neighbour, Gaussian mixture model and hidden Markov model methods resulted in
significantly lower success rates.
 Burred and Lerch (2003) compared the performance of basic flat and hierarchical
classification techniques on 13 musical and 4 non-musical genres, and achieved success
rates of approximately 60% using both techniques. A three component Gaussian mixture
model was used to perform classifications based on 18 features.
 Pye (2000) compared a Gaussian mixture modelling classifier and a tree-based vector
quantization classifier for the purposes of audio classification, and achieved an accuracy
of 92% with the former when classifying between Blues, Easy Listening, Classical,
Opera, Dance (Techno) and Indie Rock music.
 Lambrou et al. (1998) achieved success rates of 90% or above when classifying
between categories of rock, piano and jazz. A comparative analysis was made between

 51

different wavelet analysis techniques, with the best results achieved with the adaptive
splitting wavelet transform. Four different distance-based classifiers were used.
 Matityaho and Furst (1995) used a large feed-forward neural network and spectral
components to perform classifications. The authors achieved a 100% success rate when
classifying 2.8 second segments of audio. Although this is impressive, particularly
considering the limited feature set, the system only considered Classical music and
Popular music, so testing with more categories would be required to truly test the system.
 Deshpande, Nam and Singh (2001) built a system that used a variety of classifiers to
separate audio recordings into Rock, Classical and Jazz categories. The best three-way
results were obtained by the k-nearest neighbour classifier, with an accuracy of 75%.
 McKinney and Breebaart (2003) published a study comparing four different audio
feature sets in terms of their ability to classify music as Jazz, Folk, Electronica, R&B,
Rock, Reggae and Vocal. Success rates of between 61% and 74% were achieved,
depending on the feature sets used, with auditory filterbank temporal envelope-based
features outperforming low-level signal parameters, Mel Cepstral Coefficients (MFCC)
and psychoacoustic features. Classification was performed using a standard Gaussian
framework.
 Karpov (2001) used hidden Markov models and spectral features to classify
recordings into four categories (Celtic, Western Classical, Techno/Trance and Rock).
Success rates of over 90% were achieved with three-way classifications. Karpov offered
the interesting suggestion that hidden Markov models could be used in future research to
initially classify music into broadly different categories and other classifiers, such as
neural networks, could then make finer classifications.
 Soltau et al. (1998) proposed a method that they called Explicit Time Modeling with
Neural Networks (ETM-NN) that could be applied to musical genre classification. This
method is based on finding an effective way of using neural networks to deal with
features based on temporal structures. They used their system to classify audio data as
Rock, Pop, Techno or Classical. They argued that their ETM-NN system provides a
superior alternative to the hidden Markov models that have often been used to perform
classifications using temporal data. They fed the same features into both an ETM-NN and
HMM, and achieved success rates of 86.1% and 79.2% respectively.
 Jiang et al. (2002) presented an “octave-based spectral contrast” feature that
represents relative spectral distribution in order to improve classification of audio data. A
success rate of 90.8% was achieved for classifying full recordings into Baroque,
Romantic, Pop, Jazz or Rock categories. The classification was performed using a
Gaussian mixture model.
 Jennings et al. (2003) developed a new method to quantify the behaviour of the
“loudness fluctuations” of an audio signal. Although no classification success rates were

 52

reported, correlations were found between loudness fluctuations and high art music,
popular music and dance music. Although the results found by the authours are not
exceptionally impressive in themselves, the signal processing techniques that were used
do hold some potential.
 Crump (2002) devised a system that classified audio recordings based on composer’s
style. The system used neural networks, and was successful in distinguishing between
Bach and Mozart recordings 73% of the time using only one second long segments of
music.
 Frühwirth and Rauber (2001) used a self-organizing map to organize a collection of
audio files according to their genres and sound characteristics. Melodic information was
included in the feature vectors that were used. Classification was performed by first
clustering segments of recordings based on similarity and then clustering recordings
based on their segments. A further discussion of the uses of self-organizing maps for
organizing music has been written by Rauber and Frühwirth (2001).
 Pampalk, Rauber and Merkl (2002) constructed a system that analyzed audio data and
presented it to users using a visual interface that made the relationships of different genre
categories to each other intuitively apparent. A self-organizing map was used to cluster
recordings based on genres. More details of this system are available in an earlier
publication of Pampalk (2001).
 In an effort to expand on the use of self-organizing maps, Rauber, Pampalk and Merkl
(2002) used a growing hierarchical self-organizing map to create a hierarchical
organization of music based on similarity of audio recordings. This is a promising
approach, as the incorporation of a hierarchy into the similarity structure has the potential
to create a structure that is easier for humans to navigate than categories on the same
level. The features that were used incorporated ideas from psychoacoustic models,
including loudness and rhythm perception.
 Whitman and Smaragdis (2002) have taken the important step of combining audio
content-based features with cultural features in order to classify music. They used what
they called “community metadata” that was derived from text data that was mined from
the web. Classification was done using a time-delay neural network in order to
incorporate a short-term memory into the system. Although cultural and audio data both
performed relatively poorly when classifying recordings independently between Heavy
Metal, Contemporary Country, Hardcore Rap, “Intelligent Dance Music” and R&B, the
authors claimed a success rate of 100% when features of both types were combined. This
is very encouraging, and certainly provides justification for further research involving
more categories.

 53

4.3 Classification of symbolic data
 One of the earliest works on the topic of automatic genre classification was published
by Gabura (1965). This paper only deals explicitly with classical music, unfortunately,
which limits its applicability. Despite this and its age, however, this paper nonetheless
offers some interesting ideas that appear to have been overlooked in many later
publications, particularly in regards to the use of relatively sophisticated statistics and
theoretical models to derive features.
 Shan and Kuo (2003) published one of the few papers dealing directly with genre
classification of MIDI recordings. They extracted features based exclusively on melodies
and chords, and obtained success rates between 64% and 84% for two-way
classifications. Recordings all belonged to one of four categories (Enya, Beatles, Chinese
folk and Japanese folk), with 38 to 55 files used for each category. This research is
particularly valuable in terms of the ways in which melodic and chordal features were
extracted, and it would have been interesting to see how well the system would have
performed with a greater variety of features and a larger number of categories.
 Chai and Vercoe (2001) used hidden Markov models to classify monophonic
melodies belonging to one of three different types of Western folk music (Austrian,
German and Irish). They were able to achieve 63% accuracy in three-way classifications
that used only melodic features. Interestingly, they found that the number of hidden states
had only a relatively minor effect on success rates and that simple Markov models
outperformed more complex models.
 Ponce de Leon and Inesta (2002) produced a system that extracted and segmented
monophonic jazz and classical MIDI tracks in order to extract melodic, harmonic and
rhythmic features. The system then used these features to form distinguishable categories
using self-organising maps. About 77% of the pieces were classified correctly as
belonging to a group that corresponded roughly to jazz or a group that corresponded
roughly to classical music.
 Lartillot et al. (2001) discussed two alternative methods of unsupervised learning,
namely an improved incremental parsing method and prediction suffix trees, for the
purposes of classifying recordings based on musical style. This was done using analyses
of musical sequences in terms of rhythm, melodic contour and polyphonic relationships.
 Dannenberg, Thom and Watson (1997) described a real-time system to classify
performance styles. Improvisations were classified as “lyrical,” “frantic,” “syncopated,”
“pointillistic,” “blues,” “quote,” “high” and “low.” The system was trained with MIDI
recordings of trumpet performances. The following features were extracted from the
MIDI data: averages and standard deviations of MIDI key number, duration, duty factor
(the ratio of duration to inter-onset interval), pitch (differs from key number in that Pitch
Bend information is included) and volume, as well as counts of notes, Pitch Bend

 54

messages and volume change messages. Bayesian, linear and neural network based
classification schemes were used, with an optimum successful classification rate of 90.0%
achieved among the eight style classes with the Bayesian classifier.

4.4 Music generation based on learned styles
 Laine and Kuuskankare (1994) used genetic algorithms to generate melodies in
different styles. In order to do this, they represented melodic segments with mathematical
functions. This causes one to think that the inverse process, namely fitting melodies to
functions, could be useful in detecting melodic characteristics and patterns for
classification purposes.
 Pachet (2002) proposed an interactive system capable of generating music in real-time
in a style consistent with that being performed by humans or other systems. A Markov
model was used to account for rhythm, beat, harmony and imprecision. Trees of
sequences were used to learn musical patterns.
 There are a number of other software systems that have been devised to generate
music in a particular style or styles. The work of David Cope (1991a and 1991b) is
particularly well known. Many of these systems have only limited relevance to this thesis,
however, primarily because they use pre-written rules-based techniques rather than
dynamic pattern recognition techniques. The generative technologies used in these
systems are therefore not easily adaptable to musical analysis and supervised
classification. A later publication by Cope (1996) does describe some very interesting
automated analysis techniques that are more relevant to genre classification, but these still
emphasize factors that are primarily relevant to Western art music.

 55

5. Feature Library

5.1 Overview of issues relating to choice of features
 People often claim that they “don’t know what to listen to” when they are first
exposed to an unfamiliar genre of music. This shows how difficult genre recognition can
be in terms of feature extraction and how listening methodologies that apply to one genre
may be of little value when applied to another. It is useful to consider as wide a range of
features as possible in order to characterize as full a spectrum of music as possible. It was
therefore decided to devise a large library of features relating to a number of different
aspects of music as part of this thesis. Although it was known that not all of these features
would ultimately be used, for reasons discussed in Section 3.2, this approach had the dual
benefits of causing there to be a greater probability of finding features with feature
selection techniques that have good discerning power that might not have been initially
obvious as good candidates and of creating a resource that could be of use in future
studies for a variety of purposes.
 It is obvious that even people with little musical knowledge can make at least some
genre classifications. It could therefore be argued that genre classification systems should
pay special attention to features that are meaningful to the average, musically untrained
listener, to the detriment of more technical or sophisticated musical properties. It is
maintained here, however, that the ultimate goal of a classification system is to produce a
correct classification, and whatever readily available features help to do this should be
used, whether or not they are perceptible to the average human. The fact that high-level
musical knowledge, such as precise perception and understanding of timing, pitch and
voice information, is not necessary to distinguish between genres does not mean that it
might not help. In addition, machine learning and pattern recognition systems operate
using significantly different mechanisms than their human analogs, so there is no reason
to assume that the types of percepts suited for one are necessarily suited to the other.
Since high-level musical information is readily available from symbolic formats such as
MIDI, it might as well be taken advantage of. High-level musical knowledge is, by
definition, musical, and is therefore likely to be of use in distinguishing between genres.
As shown in Chapter 4, existing genre classification systems have only had limited
success to date without high-level musical features, and one of the goals of this thesis is
to demonstrate the usefulness of such features
 There is, of course, a great deal of existing literature on theoretical analyses of music
that could be used to generate features. The books of Cook (1987) and LaRue (1992), to
give just two of many possible examples, provide complementary surveys of analytical
methods. Ideally, one would like to have a grand unified analytical process that could be

 56

applied to music in any genre and used to generate features. Unfortunately, there is no
generally accepted process of this sort. However, even though no single analysis system
is complete, and most are only applicable to a limited number of genres, several systems
could nonetheless be used in a complementary or parallel way. For example, Schenkerian
analysis could be used to analyze harmony if other features indicate a significant degree
of tonality in a recording, complimented perhaps by a set theory analysis to deal with
non-tonal music. To extend the example, techniques such as those of Grosvenor Cooper
and Leonard Meyer (1960) could also be used to analyze rhythm and melody and the
techniques of Rudolph Reti (1951) could be used to gain insights by looking at motivic
patterns. Semiotic analysis (Tarasti 2002) could also potentially be useful, although
somewhat difficult to implement automatically from a content-based perspective. The
multi-purpose analysis systems developed by researchers such as David Temperley
(2001) in general could also be taken advantage of. Although these types of analyses are
intrinsically different in many ways, they could each be used to generate individual
features that could prove to be complementary.
 There are, unfortunately, a number of disadvantages with using this approach of
combining sophisticated analytical systems. To begin with, many of these techniques
require a certain amount of intuitive subjective judgement, as the analytical rules are
sometimes vague or ambiguous. This is demonstrated by common occurrences of
inconsistencies between the analyses of the same piece by different people using the same
system. Another problem is that sophisticated theoretical analyses could be
computationally expensive, thus making their use inappropriate for rapidly expanding
musical databases or real-time classification. In addition, most analysis techniques have
been designed primarily from the perspective of Western art music, which limits their
applicability to popular and non-Western musics. This last problem, however, may be less
crippling than it seems, as analyses could potentially still be generated that are internally
consistent, even if the meaning of the analyses themselves, from the perspective of their
theoretical background, are not relevant to certain genres. Future experimentation is
necessary to further investigate this.
 In any event, a generally accepted software system capable of performing a wide
range of sophisticated theoretical analyses has yet to be implemented, and this is well
beyond the scope of this thesis. One must therefore make do with taking simple and
incomplete concepts from different analytical systems, of necessity somewhat
haphazardly, and combining them with intuitively derived characteristics in order to
arrive at suitable features. This is not as serious a limitation as it might seem, as features
that are used for classification purposes need not be consistent or meaningful in any
overarching theoretical sense. All that matters for the purposes of classification is that
each feature helps to distinguish between genres.

 57

 In any case, most humans are certainly unable to perform sophisticated theoretical
analyses, but are nonetheless able to perform genre classifications. It is therefore clear
that such analyses are not strictly necessary in order to implement a successful automatic
classification system. Furthermore, a study of how well children of different ages can
judge the similarities of music belonging to different styles found that there was almost
no difference between the success rates of eleven-year olds compared to college
sophomores, despite the fact that, unlike the sophomores, the eleven-year olds displayed
almost no knowledge of musical theory or stylistic conventions (Gardner 1973). Of
course, this does not necessarily mean that features based on sophisticated analytical
systems might not be useful to an automated classification system, but it does appear that
they are not necessary, which is fortunate given the difficulty that would be involved in
extracting them.
 Once it is accepted that features need not be chosen in some unified theoretical sense,
one is tempted to program characteristics of particular genres into the system (e.g. swing
rhythm, characteristic drum and bass rhythms, etc.) and have the computer base features
on whether or not such characteristics are present in recordings. The disadvantage of this,
however, is that it becomes necessary to base features on the particular genres that are
being considered. Although this may be appropriate and effective for some specialized
applications,1 such an approach would be unable to adapt easily to changes in a
classification taxonomy. It would be very undesirable to have a system that is dependant
not only on people laboriously programming features specific to particular genres, but
having to reprogram them all every time the classification taxonomy changes. This would
be a particularly arduous task when one considers the difficulties in defining genres
discussed in Chapter 2. Such a system would in essence be a type of expert system which,
as discussed in Section 1.5, is undesirable for the purposes of musical genre classification.
One must therefore use features that are meaningful in the context of a large variety of
genres.
 It was decided to pay special attention to simple features that well-trained humans are
suspected to use in genre determinations. Such humans are currently the most skilled
genre classifiers, so the features that they use are the most likely to be useful. This does
not mean that other features were ignored, however, as there may be other important
characteristics of music that humans are not consciously aware of, but which do delineate
differences between genres.

1 Those interested in such a system may wish to consult work such as that by Nettl (1990) and Manuel
(1998) for an overview of the types of features that are characteristic of different types of non-classical
music. The body of work on classical music is too large to cite specifically.

 58

5.2 Ethnomusicological background relating to features
 Once the issues discussed in Section 5.1 were considered, it was decided to research
the work of musicologists and ethnomusicologists in order to search for features that
might be of use. Ethnomusicologists have done significant research into comparing the
musics of different cultures and, although this has often been done with anthropological
interests in mind, this work is in some cases adaptable to the purposes of this thesis. Such
research tends to focus on experimental observation rather than on attempting to derive
theoretical meaning from music. It is for this reason that ethnomusicological research
tends to be less likely to be intrinsically tied to specific types of music or limiting
assumptions than more theoretical analytical approaches.
 Perhaps the most extensive work in this vein was performed by Alan Lomax and his
colleagues in the Cantometrics project (Lomax 1968). This project compared several
thousand songs from hundreds of different cultural groups using thirty-seven features.
These features were extracted by hand from audio recordings and, unfortunately, many of
them are not extractable from MIDI recordings. These features are still discussed here,
however, as they could be of significant use in future systems designed to work with
audio recordings, particularly non-Western recordings. Also, a number of the
Cantometrics features helped to inspire some of the features that were in fact used in this
thesis. Below are the thirty-seven features proposed in the Cantometrics project:

1. Leader chorus: the importance of the lead singer relative to the chorus
2. Relation of orchestra to vocal part: importance and independence of the orchestra

relative to the vocal part
3. Relation within orchestra: relative independence of the different parts of the

orchestra
4. Choral musical organization: texture of the choral singing
5. Choral tonal integration: degree to which the chorus blends singing together to

create perception of unity and resonance
6. Choral rhythmic organization: degree of rhythmic co-ordination of the chorus
7. Orchestral musical organization: texture of the orchestra
8. Orchestral tonal concert: degree to which the orchestra blends together to create

perception of sonority
9. Orchestral rhythmic concert: degree of rhythmic co-ordination of the orchestra
10. Text part: whether singers tend to use words or other sounds. Also measures

amount of repetition of text.
11. Vocal rhythm: complexity of meter used by singers
12. Vocal rhythmic organization: degree to which singers use polyrhythms
13. Orchestral rhythm: complexity of meter used by orchestra

 59

14. Orchestral rhythmic organization: degree to which orchestra uses polyrhythms
15. Melodic shape: melodic contour of most characteristic phrases
16. Melodic form: complexity of form
17. Phrase length: temporal length of phrases
18. Number of phrases: average number of phrases occurring before full repeats
19. Position of final tone: position of the final pitch relative to the range of the song
20. Range of melody: pitch interval between the lowest and highest notes of the song
21. Average interval size: average melodic interval
22. Type of vocal polyphony: type of polyphony present, ranging from a drone to

counterpoint
23. Embellishment: amount of embellishment used by the singer(s)
24. Tempo: speed of song from slow to very fast
25. Volume: loudness of song
26. Vocal rhythm: amount of rubato in the voice part
27. Orchestral rhythm: amount of rubato in the orchestral part
28. Glissando: degree to which voice(s) slide to and from notes
29. Melisma: number of pitches sung per syllable
30. Tremolo: amount of undulation on held notes
31. Glottal effect: amount of glottal activity present
32. Vocal register: whether singers are singing near the bottom, middle or top of their

ranges
33. Vocal width and tension: degree to which voice sounds thin or rich
34. Nasalization: how nasal the singing sounds
35. Raspy: amount of raspiness in singing
36. Accent: strength of attack of sung tones
37. Consonants: precision of enunciation in singing

 There would be a number of difficulties in incorporating these features into even an
audio automatic classification system. Many of the features, such as “nasality,” are
difficult to measure objectively or even extract at all automatically. Furthermore, many of
the features are related to vocal lines, so segmentation would be necessary to separate the
many lines that may be recorded in a single audio channel. Nonetheless, Lomax did find a
good correlation between these features and cultural patterns, and they intuitively seem as
if they might perform well, so the work necessary to extract these features may well be
worth the effort in future research.
 Feature 15 above refers to melodic contour. This is one area in which some significant
research has been done, and is worth looking at in more detail. Charles Adams in
particular has found that examining melodic contour can allow one to differentiate

 60

between different musics (Adams 1976). Adams based his analyses on only the initial
note (I), highest note (H), lowest note (L) and final note (F) of melodies.
 There are, unfortunately, some complications in applying Adams’ approach to MIDI
recordings. To begin with, isolating the melodies of a piece can be difficult when dealing
with music with multiple voices, as the melodies can involve notes contained in only one
or in many voices. In the case of polyphonic music, one must deal with simultaneous
melodies. One possible solution would be to simply assume that the most significant
melody is in the highest line, and only this line, which is often but certainly not always
the case. Alternatively, one could potentially implement some sort of melody detection
system. An example of the last approach would be to assume that the melody is in the line
that wins based on a weighted average of loudness and quantity of notes, with perhaps a
bias given to the highest line.
 An additional problem is that there can be repetitions of melodies or multiple
independent melodies that occur sequentially. A melody/phrase segmentation system
would be necessary to truly extract melodic contour features in the sense that they were
intended, something which is beyond the scope of this thesis.
 Fortunately, it is possible to extract at least some melodic contour features without
critical problems caused by the lack of a melody segmentation system. Section 5.9
contains, among other things, a number of features inspired by Adams’ work.
 A number of writers have proposed a number of broad areas that could be useful to
concentrate on for the purposes of musical classification. Nettl (1990) has proposed the
following broad features as having significance to many different cultures:

1. Sound and singing style
2. Form
3. Polyphony (texture)
4. Rhythm and tempo
5. Melody and scale.

 Julie E. Cumming has suggested a number of features in relation to motets (Cumming
1999). With the understanding that “voices” can be adapted to mean voices or
instruments, a number of these features have a good deal of general applicability:

1. Texture
2. Number of voices
3. Voice ranges
4. Melodic behaviour (leaps, steps)
5. Relative speed of voices

 61

6. Coordination of phrases between voices
7. Use of rests
8. Length
9. Complexity
10. Tone

 Philip Tagg has proposed the following “checklist of parameters of musical
expression” that could be adapted to generate features for both symbolic and audio
systems:

1. Aspects of time: duration of analysis object and relation of this to any other
simultaneous forms of communication; duration of sections within the analysis
object; pulse, tempo, meter, periodicity; rhythmic texture motifs.

2. Melodic aspects: register; pitch range; (melodic) motifs; tonal vocabulary;
contour; timbre.

3. Orchestration aspects: type and number of voices, instruments, parts; technical
aspects of performance; timbre; phrasing; accentuation.

4. Aspects of tonality and texture: tonal centre and type of tonality (if any);
harmonic idiom; harmonic rhythm; type of harmonic change; chordal alteration;
relationship between voices, parts, instruments; compositional texture and
method.

5. Dynamic aspects: levels of sound strength; accentuation; audibility of parts.
6. Acoustical aspects: characteristics of (re-)performance ‘venue’; degree of

reverberation; distance between sound source and listener; simultaneous
‘extraneous’ sound.

7. Electromusical and mechanical aspects: panning, filtering, compressing, phasing,
distortion, delay, mixing, etc.; muting, pizzicato, tongue flutter, etc.

(Tagg 1982, 45-46).

 Although this checklist was designed with theoretical analysis of Western music in
mind, the ideas nonetheless have a more general applicability, as long as they are taken in
conjunction with other features. Another useful list of parameters has been suggested by
David Cope (1991b), although this list also emphasizes parameters specific to Western art
music.
 There are also a number of software systems that have been developed for problems
other than genre classification but nonetheless contain a number of useful features.
Aarden and Huron (2001), for example, have performed an interesting study where
corresponding characteristics of European folk songs were studied in terms of spatial

 62

location. A potentially useful catalogue of 60 high-level features was used, although these
were limited to monophonic melodies. To give another example, Towsey et al. (2001)
developed a system for compositional purposes that uses 21 high-level melodic features
that have application beyond the aesthetic fitness judgements that they were used for in
this study.

5.3 General comments on features in the following sections
 The feature library that was actually devised for this thesis was created in the context
of all of the research discussed in Sections 5.1 and 5.2 as well as the work that has
previously been done in automatic genre analysis (see Chapter 4). The following seven
sections provide details about these features. Although some of the features were based
on features used in previous research, many of them are original, particularly in the
context of computer-based analysis for the purposes of classification.
 The ideology that accompanies any person’s knowledge about music can cause them
to give inappropriate weight to some characteristics of music, and ignore others. One will
notice a bias towards Western tonal music in examining the features discussed in Sections
5.4 to 5.10. This is due partly to the training of the authour, partly to the dominance of
Western genres in the taxonomy that was used and partly to the limitations of MIDI, or
any other musical representation based on Western music. Nonetheless, efforts were
made to include features that might not be obvious to one accustomed only to Western
music. The library of features used in this thesis should be seen as a work in progress that
can continually be expanded and refined as more types of music are considered and as
music changes.
 One will notice, upon examining the features listed in Sections 5.4 to 5.10, that there
is a certain degree of redundancy in some of the features, in the sense that one feature
sometimes emphasizes an aspect of another feature. This was done in order to ensure that
features were available relating to both overviews of certain aspects of recordings as well
as to more focused aspects that could be particularly salient. The feature library in the
following sections is intended as a catalogue of features, some of which will be
appropriate for certain tasks and some which will be appropriate for others. This
catalogue was designed to give the feature selection and weighting algorithms as wide a
range of features as possible to choose from and to provide a resource for future research.
The redundancy in the features was purposely included for these reasons, and it is
understood that no one classification system should be fed all of the features without
some kind of feature selection process, as this would likely overwhelm it. Rather, this
catalogue is intended to serve as a palette from which different classifiers can select
different features according to their needs.

 63

 Efforts were made to design features that could be extracted from any symbolic
musical representation, not just MIDI. So, with this in mind, as many as possible of the
features proposed in Sections 5.4 to 5.10 were designed so that they could be easily
adapted to music stored in any symbolic format, as long as pitch, rhythmic timing,
dynamics, instrumentation and voice segregation are known reliably and exactly. Since
MIDI was used for this thesis, however, the features described below use MIDI
terminology so that the definitions could be more precise. Section 3.1 can be consulted by
those needing more information on MIDI and the terminology related to it.
 Unfortunately, there can be many different ways of encoding MIDI data. MIDI
recordings can be produced by writing out music on a notation program or by performing
actual real-time recordings, each of which can produce significantly differences in
recordings of the same music. An authour’s recording style and the particular sequencer
he or she uses can also play a role. Care was therefore taken, when possible, to use
features that were not sensitive to differences in the encoding style. Although this
problem could have been avoided by only considering MIDI data from a single source,
this was not done here, partly because there is no known source with a sufficiently diverse
range of music, and partly because it was the goal of this system is to have a system
capable of classifying recordings from arbitrary sources.
 A number of intermediate representations of the MIDI recordings, including
histogram-based representations, were constructed in order to derive some of the features
proposed below. The most interesting of these representations are discussed in the
following sections.
 One will notice that there are a few “magic numbers” in the descriptions of some of
the features. The origin of these constants is based on intuition and informal experimental
experience.
 Given their number, it was not possible to implement all of the features described in
Sections 5.5 to 5.10. This was not a serious limitation, as the 111 features that were
implemented represented a much greater number of features than have been used by most
other symbolic music classification systems. The particular choice of which features to
omit in the current implementation was based on a combination of the author’s judgement
of how useful each feature would be and how time-consuming it would be to implement,
an important concern given the size and scope of the software. All of the features except
for T-11, T-14, T-16, T-17, T-18, T-19, R-16, R-26, R-27, R-28, R-29, P-26, M-16, M-20
and C-1 to C-28 were implemented.

5.4 Features based on instrumentation
 This class of features capitalizes on the fact that the General MIDI (level 1)
specification allows recordings to make use of 128 pitched-instrument patches and a

 64

further 47 percussion instruments in the Percussion Key Map. Although these instruments
are insufficient for the full range of international music, they are, in general, diverse
enough for the genres covered in this thesis.
 The use of MIDI patches can be, in some cases, somewhat sensitive to encoding
inconsistencies between different MIDI authours. In a few fortunately rare cases authours
fail to specify patch numbers, with the result that all notes are played using a piano patch
by default. Another problem is the occasional inconsistency in the choice of patches that
are used for sung lines. Despite these occasional problems, however, features based on
instrumentation can be highly characteristic of genres, and the use of features belonging
to other classes can helped to counteract inconsistencies in authours’ uses of patches.
 The instrumentation related features that were implemented are as follows:

I-1 Pitched Instruments Present: A features array with one entry for each of the 128
General MIDI Instruments. Each entry was set to 1 if at least one note was
played using that patch and to 0 if the patch was not used.

I-2 Unpitched Instruments Present: A features array with one entry for each of the
47 MIDI Percussion Key Map instruments. Each entry was set to 1 if at least
one note was played using that patch and to 0 if the patch was not used.

I-3 Note Prevalence of Pitched Instruments: A features array with one entry for
each of the 128 General MIDI Instruments. Each entry was set to the number of
notes played using the corresponding MIDI patch divided by the total number of
Note Ons in the piece.

I-4 Note Prevalence of Unpitched Instruments: A features array with one entry for
each of the 47 MIDI Percussion Key Map instruments. Each entry was set to the
number of notes played using the corresponding MIDI patch divided by the total
number of Note Ons in the piece.

I-5 Time Prevalence of Pitched Instruments: A features array with one entry for
each of the 128 General MIDI Instruments. Each entry was set to the total time
in seconds during which a given instrument was sounding notes divided by the
total length in seconds of the piece.

I-6 Variability of Note Prevalence of Pitched Instruments: Standard deviation of
the fraction of notes played by each General MIDI instrument that is used to
play at least one note.

I-7 Variability of Note Prevalence of Unpitched Instruments: Standard deviation
of the fraction of notes played by each MIDI Percussion Key Map instrument
that is used to play at least one note.

I-8 Number of Pitched Instruments: Total number of General MIDI patches that
were used to play at least one note.

 65

I-9 Number of Unpitched Instruments: Total number of MIDI Percussion Key Map
patches that were used to play at least one note.

I-10 Percussion Prevalence: Total number of Note Ons belonging to percussion
patches divided by total number of Note Ons in the recording.

I-11 String Keyboard Fraction: Fraction of Note Ons belonging to string keyboard
patches (General MIDI patches 1 to 8).

I-12 Acoustic Guitar Fraction: Fraction of Note Ons belonging to acoustic guitar
patches (General MIDI patches 25 and 26).

I-13 Electric Guitar Fraction: Fraction of Note Ons belonging to electric guitar
patches (General MIDI patches 27 to 32).

I-14 Violin Fraction: Fraction of Note Ons belonging to the violin patches (General
MIDI patches 41 or 111).

I-15 Saxophone Fraction: Fraction of Note Ons belonging to saxophone patches
(General MIDI patches 65 to 68).

I-16 Brass Fraction: Fraction of Note Ons belonging to brass patches (including
saxophones) (General MIDI patches 57 to 68).

I-17 Woodwinds Fraction: Fraction of Note Ons belonging to woodwind patches
(General MIDI patches 69 to 76).

I-18 Orchestral Strings Fraction: Fraction of Note Ons belonging to orchestral string
patches (General MIDI patches 41 to 47).

I-19 String Ensemble Fraction: Fraction of Note Ons belonging to orchestral string
ensemble patches (General MIDI patches 49 to 52).

I-20 Electric Instrument Fraction: Fraction of Note Ons belonging to electric (non-
“synth”) patches (General MIDI patches 5, 6, 17, 19, 27 to 32, 34 to 40).

5.5 Features based on musical texture
 This class of features takes advantage of the fact that MIDI notes can be assigned to
different channels and to different tracks, thus making it possible to segregate the notes
belonging to different voices. Although it would seem natural to use MIDI tracks to
distinguish between voices, since only a maximum of sixteen channels are available, this
was found to be an inappropriate approach. Using MIDI tracks would mean that it would
be impossible to extract texture-based features from all Type 0 MIDI files, since they
only allow a single track. Almost all MIDI files do use different channels for different
voices, however, and it is possible to take advantage of Program Change messages to
multiplex multiple voices onto a single channel in order to avoid being restricted to
sixteen voices. It was therefore decided to use MIDI channels in order to distinguish
between voices rather than tracks.

 66

 This approach is not perfect, as it is possible to use a single channel to hold multiple
voices even without regular program change messages. A piano could be used to play a
four-voice chorale, for example, with all notes occurring on one channel. This problem is
unavoidable, unfortunately, as it would be necessary to design a special analysis module
to automatically segregate voices in order to solve this problem, something which is
beyond the scope of this thesis. Fortunately, this problem does not occur often.
 The texture related features that were implemented are listed below:

T-1 Maximum Number of Independent Voices: Maximum number of different
channels in which notes have sounded simultaneously.

T-2 Average Number of Independent Voices: Average number of different channels
in which notes have sounded simultaneously. Rests are not included in this
calculation.

T-3 Variability of Number of Independent Voices: Standard deviation of number of
different channels in which notes have sounded simultaneously. Rests are not
included in this calculation.

T-4 Voice Equality – Number of Notes: Standard deviation of the total number of
Note Ons in each channel that contains at least one note.

T-5 Voice Equality – Note Duration: Standard deviation of the total duration of
notes in seconds in each channel that contains at least one note.

T-6 Voice Equality – Dynamics: Standard deviation of the average volume of notes
in each channel that contains at least one note.

T-7 Voice Equality – Melodic Leaps: Standard deviation of the average melodic leap
in MIDI pitches for each channel that contains at least one note.

T-8 Voice Equality – Range: Standard deviation of the differences between the
highest and lowest pitches in each channel that contains at least one note.

T-9 Importance of Loudest Voice: Difference between the average loudness of the
loudest channel and the average loudness of the other channels that contain at
least one note divided by 64.

T-10 Relative Range of Loudest Voice: Difference between the highest note and the
lowest note played in the channel with the highest average loudness divided by
the difference between the highest note and the lowest note in the piece.

T-11 Relative Range Isolation of Loudest Voice: Number of notes in the channel with
the highest average loudness that fall outside the range of any other channel
divided by the total number of notes in the channel with the highest average
loudness.

 67

T-12 Range of Highest Line: Difference between the highest note and the lowest note
played in the channel with the highest average pitch divided by the difference
between the highest note and the lowest note in the piece.

T-13 Relative Note Density of Highest Line: Number of Note Ons in the channel with
the highest average pitch divided by the average number of Note Ons in all
channels that contain at least one note.

T-14 Relative Note Durations of Lowest Line: Average duration of notes (in seconds)
in the channel with the lowest average pitch divided by the average duration of
notes in all channels that contain at least one note.

T-15 Melodic Intervals in Lowest Line: Average melodic interval in semitones of the
line with the lowest average pitch divided by the average melodic interval of all
lines that contain at least two notes.

T-16 Simultaneity: Average number of notes sounding simultaneously.
T-17 Variability Simultaneity: Standard deviation of number of notes sounding

simultaneously.
T-18 Voice Overlap: Number of notes played within the range of another voice divided

by total number of notes in the piece.
T-19 Parallel Motion: Fraction of all notes that move together within 10% of the

duration of the shorter note that both move up or both move down.
T-20 Voice Separation: Average separation in semi-tones between the average pitches

of consecutive channels (after sorting based on average pitch) that contain at
least one note divided by 6.

5.6 Features based on rhythm
 A number of scholars have expressed the view that rhythm plays a very important, or
even dominant, role in many types of music. Richard Middleton (2000), for example,
stresses the importance of rhythm in characterising music in a discussion of ways to
approach creating a widely applicable method of music analysis. It is unfortunate that
many music analysis techniques, with a few exceptions such as the work of Cooper and
Meyer (1960), tend to give rhythm less attention than it deserves. Special attention was
therefore given to this class of features in this thesis.
 One approach to acquiring rhythmic features would be to use beat-tracking systems.
Most existing beat-tracking systems provide only an estimate of the main beat and its
strength, however, with little further information. More varied and detailed information is
needed for the purposes of genre classification. The “beat histogram” approach used by
Brown (1993) and by George Tzanetakis and his colleagues in a number of papers
(Tzanetakis, Essl & Cook 2001; Tzanetakis & Cook 2002; Tzanetakis 2002) has been
shown to be a valuable resource in this respect. A slightly modified version of

 68

Tzanetakis’ histogram was used to derive a number of the rhythmic features listed in this
section.
 It is necessary to have some understanding of how autocorrelation works in order to
understand how beat histograms are constructed. Autocorrelation essentially involves
comparing a signal with versions of itself delayed by successive intervals. This technique
is used to find repeating patterns in signals. Autocorrelation gives the relative strength of
different periodicities within a signal. In terms of musical data, autocorrelation allows one
to find the relative strength of different rhythmic pulses.
 In the particular case of this thesis, rhythmic histograms were constructed by
considering sequences of MIDI events with MIDI ticks delineating the time domain. The
following autocorrelation function was applied to each sequence of MIDI Note On
messages:

�
−

=
−= 1

0
][][

1
][

N

n
lagnxnx

N
lagationautocorrel (10)

where n is the input sample index (in MIDI ticks), N is the total number of MIDI ticks, x
is the sequence of MIDI ticks and lag is the delay in MIDI ticks (0 ≤ lag < N). The value
of x[n] is proportional to the velocity of Note Ons. This ensures that beats are weighted
based on the strength with which notes are played. This autocorrelation function was
applied repeatedly to each MIDI sequence with different values of lag. These lag values
corresponded to both rhythmic periodicities as well as bin labels in beat histograms, and
the autocorrelation value provided the magnitude value for each bin.
 Once the histogram was completed with all reasonable values of lag, the histogram
was downsampled and transformed so that each bin corresponded a periodicity with units
of beats per minute. Finally, the histogram was normalized so that different pieces could
be compared. The end result was a histogram whose bins corresponded to rhythmic pulses
with units of beats per minute and whose bin frequencies indicated the relative strength of
each pulse. In effect, beat histograms portray the relative strength of different beats and
sub-beats within pieces.
 Figure 1 displays a sample beat histogram derived from a MIDI recording of the
Ramones’ Blitzkrieg Pop. The clear periodicities that are often multiples of each other is
typical of Punk music, as is the characteristic rhythmic looseness demonstrated by the
spread around each beat. Other types of music demonstrated very different patterns in
their beat histograms. Techno, for example, often had very clearly defined beats, without
the surrounding spread. Modern Classical music, to cite another example, often had much
less clearly defined beats.

 69

Figure 1: Beat histogram for the Ramones’ Blitzkrieg Pop.

 Although beat histograms have only limited utility as a features in and of themselves,
they are very useful in providing an intermediate data structure from which other features
can be extracted. The two highest peaks of the beat histograms tend to have particular
importance, as they are likely to represent the main beat of the music or one of its
multiples or factors.
 It is important to keep in mind that MIDI timing can be affected by both the number
of MIDI ticks that go by and tempo change meta-events that control the rate at which
MIDI ticks go by. Tempo change meta-events must therefore be monitored.
 MIDI allows one to think of timing in terms of both raw time and rhythmic note
values (i.e. half notes, quarter notes, etc.) by equating a certain number of ticks with a
quarter note (although live MIDI recordings are not always quantized). Although these
rhythmic note values, along with time signature and tempo change meta-events, can
potentially provide features with a high discriminating power, they are somewhat
sensitive to the MIDI encoding style of MIDI files’ authours and to the sequencers
they’ve used. This inconsistency is the reason that an emphasis is put on features derived
from rhythmic histograms in the rhythmic features listed in this section.
 The rhythmic features that were implemented are listed below:

R-1 Strongest Rhythmic Pulse: Bin label of the beat bin with the highest magnitude.

Beat Histogram for Blitzkrieg Pop

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

Beats per Minute

R
el

at
iv

e
Fr

eq
ue

nc
y

 70

R-2 Second Strongest Rhythmic Pulse: Bin label of the beat bin of the peak with the
second highest magnitude.

R-3 Harmonicity of Two Strongest Rhythmic Pulses: The bin label of the higher (in
terms of bin label) of the two beat bins of the peaks with the highest magnitude
divided by the bin label of the lower.

R-4 Strength of Strongest Rhythmic Pulse: Magnitude of the beat bin with the
highest magnitude.

R-5 Strength of Second Strongest Rhythmic Pulse: Magnitude of the beat bin of the
peak with the second highest magnitude.

R-6 Strength Ratio of Two Strongest Rhythmic Pulses: The magnitude of the
higher (in terms of magnitude) of the two beat bins corresponding to the peaks
with the highest magnitude divided by the magnitude of the lower.

R-7 Combined Strength of Two Strongest Rhythmic Pulses: The sum of the
frequencies of the two beat bins of the peaks with the highest frequencies.

R-8 Number of Strong Pulses: Number of beat peaks with normalized frequencies
over 0.1.

R-9 Number of Moderate Pulses: Number of beat peaks with normalized frequencies
over 0.01.

R-10 Number of Relatively Strong Pulses: Number of beat peaks with frequencies at
least 30% as high as the magnitude of the bin with the highest magnitude.

R-11 Rhythmic Looseness: Average width of beat histogram peaks (in beats per
minute). Width is measured for all peaks with frequencies at least 30% as high
as the highest peak, and is defined by the distance between the points on the
peak in question that are 30% of the height of the peak.

R-12 Polyrhythms: Number of beat peaks with frequencies at least 30% of the highest
magnitude whose bin labels are not integer multiples or factors (using only
multipliers of 1, 2, 3, 4, 6 and 8) (with an accepted error of +/- 3 bins) of the bin
label of the peak with the highest magnitude. This number is then divided by the
total number of beat bins with frequencies over 30% of the highest magnitude.

R-13 Rhythmic Variability: Standard deviation of the bin values (except the first 40
empty ones).

R-14 Beat Histogram: A feature array with entries corresponding to the magnitude
values of each of the bins of the beat histogram (except the first 40 empty ones).

R-15 Note Density: Average number of notes per second.
R-16 Note Density Variability: The recording is broken into 5 second long windows.

The note density is calculated for each. This feature is the standard deviation of
these note densities.

R-17 Average Note Duration: Average duration of notes in seconds.

 71

R-18 Variability of Note Duration: Standard deviation of note durations in seconds.
R-19 Maximum Note Duration: Duration of the longest note (in seconds).
R-20 Minimum Note Duration: Duration of the shortest note (in seconds).
R-21 Staccato Incidence: Number of notes with durations of less than a 10th of a

second divided by the total number of notes in the recording.
R-22 Average Time Between Attacks: Average time in seconds between Note On

events (irregardless of channel).
R-23 Variability of Time Between Attacks: Standard deviation of the times, in

seconds, between Note On events (irregardless of channel).
R-24 Average Time Between Attacks For Each Voice: Average of average time in

seconds between Note On events on individual channels that contain at least one
note.

R-25 Average Variability of Time Between Attacks For Each Voice: Average
standard deviation, in seconds, of time between Note On events on individual
channels that contain at least one note.

R-26 Incidence of Complete Rests: Total amount of time in seconds in which no notes
are sounding on any channel divided by the total length of the recording.

R-27 Maximum Complete Rest Duration: Maximum amount of time in seconds in
which no notes are sounding on any channel.

R-28 Average Rest Duration Per Each Voice: Average, in seconds, of the average
amounts of time in each channel in which no note is sounding (counting only
channels with at least one note) divided by the total duration of the recording.

R-29 Average Variability of Rest Durations Across Voices: Standard deviation, in
seconds, of the average amounts of time in each channel in which no note is
sounding (counting only channels with at least one note).

R-30 Initial Tempo: Tempo in beats per minute at the start of a recording.
R-31 Initial Time Signature: A feature array with two elements. The first is the

numerator of the first occurring time signature and the second is the
denominator of the first occurring time signature. Both are set to 0 if no time
signature is present.

R-32 Compound Or Simple Meter: Set to 1 if the initial meter is compound
(numerator of time signature is greater than or equal to 6 and is evenly divisible
by 3) and to 0 if it is simple (if the above condition is not fulfilled).

R-33 Triple Meter: Set to 1 if numerator of initial time signature is 3, set to 0
otherwise.

R-34 Quintuple Meter: Set to 1 if numerator of initial time signature is 5, set to 0
otherwise.

 72

R-35 Changes of Meter: Set to 1 if the time signature is changed one or more times
during the recording.

5.7 Features based on dynamics
 The term “loudness” is used in this thesis to refer to velocity values scaled by volume
channel messages:

note loudness = note velocity x (channel volume / 127) (11)

All features based on dynamics use relative measures rather than absolute measures (such
as average volume) because the default volume and velocity values set by sequencers can
vary, and many MIDI authours simply encode their files without varying these values.
 The features related to dynamics that were implemented are listed below:

D-1 Overall Dynamic Range: The maximum loudness minus the minimum loudness
value.

D-2 Variation of Dynamics: Standard deviation of loudness levels of all notes.
D-3 Variation of Dynamics In Each Voice: The average of the standard deviations of

loudness levels within each channel that contains at least one note.
D-4 Average Note To Note Dynamics Change: Average change of loudness from

one note to the next note in the same channel.

5.8 Features based on pitch statistics
 Statistics based on pitch can help to characterize genres in terms of degree of tonality,
types of scales used and pitch variety. The features in this section differ from those in
Sections 5.9 and 5.10 in that the latter take into account temporal locations of notes,
whereas these features only consider recordings as a whole. It should be mentioned that
all notes occurring on channel 10 were ignored for all of these features, as pitch values on
that channel correspond to percussion patches, not to pitches.
 Some features of this class were based on MIDI Pitch Bends. Although the use of
Pitch Bends is somewhat variable from authour to authour, and therefore not entirely
dependant on the music itself, features relating to Pitch Bend have the potential to be very
discriminating, so they were included here. Efforts were made to use features with as
limited sensitivity to non-musical factors as much as possible.
 Slightly modified versions of the three types of “pitch histograms” that were
implemented by George Tzanetakis and his colleagues (Tzanetakis & Cook 2002;
Tzanetakis, Ermolinskyi & Cook 2002; Tzanetakis 2002) were used as bases from which
pitch-based features could be derived. The first histogram, called the “basic pitch
histogram,” consisted of 128 bins, one for each MIDI pitch. The magnitude of each bin

 73

corresponded to the number of times that Note Ons occurred at that particular pitch. This
histogram gave insights into the range and spread of notes.
 The second histogram was called the “pitch class histogram,” and had one bin for
each of the twelve pitch classes. The magnitude of each bin corresponded to the number
of times Note Ons occurred in a recording for a particular pitch class. Enharmonic
equivalents were assigned the same pitch class number. This histogram gave insights into
the types of scales used and the amount of transposition that was present.
 Finally, the “fifths pitch histogram,” also with twelve bins, was generated by
reordering the bins of the pitch class histogram so that adjacent bins were separated by a
perfect fifth rather than a semi-tone. This was done using the following equation:

)12mod()7(αβ = (12)

where β is the fifths pitch histogram bin and α is the corresponding pitch class histogram
bin. The number seven is used because this is the number of semi-tones in a perfect fifth,
and the number twelve is used because there are twelve pitch classes in total. This
histogram was useful for measuring dominant tonic relationships and for looking at types
of transpositions.
 All three histograms were normalized after being generated so that histograms would
not be influenced by the lengths or note densities of recordings. The features based on
pitch statistics that were implemented are listed below:

P-1 Most Common Pitch Prevalence: Fraction of Note Ons corresponding to the
most common pitch.

P-2 Most Common Pitch Class Prevalence: Fraction of Note Ons corresponding to
the most common pitch class.

P-3 Relative Strength of Top Pitches: The magnitude of the 2nd most common pitch
divided by the magnitude of the most common pitch.

P-4 Relative Strength of Top Pitch Classes: The magnitude of the 2nd most common
pitch class divided by the magnitude of the most common pitch class.

P-5 Interval Between Strongest Pitches: Absolute value of the difference between
the pitches of the two most common MIDI pitches.

P-6 Interval Between Strongest Pitch Classes: Absolute value of the difference
between the pitches of the two most common pitch classes.

P-7 Number of Common Pitches: Number of pitches that account individually for at
least 9% of all notes.

P-8 Pitch Variety: Number of pitches used at least once.
P-9 Pitch Class Variety: Number of pitch classes used at least once.

 74

P-10 Range: Difference between highest and lowest pitches.
P-11 Most Common Pitch: Bin label of the most common pitch divided by the number

of possible pitches.
P-12 Primary Register: Average MIDI pitch.
P-13 Importance of Bass Register: Fraction of Note Ons between MIDI pitches 0 and

54.
P-14 Importance of Middle Register: Fraction of Note Ons between MIDI pitches 55

and 72.
P-15 Importance of High Register: Fraction of Note Ons between MIDI pitches 73

and 127.
P-16 Most Common Pitch Class: Bin label of the most common pitch class.
P-17 Dominant Spread: Largest number of consecutive pitch classes separated by

perfect 5ths that accounted for at least 9% each of the notes.
P-18 Strong Tonal Centres: Number of peaks in the fifths pitch histogram that each

account for at least 9% of all Note Ons.
P-19 Basic Pitch Histogram: A features array with bins corresponding to the values of

the basic pitch histogram.
P-20 Pitch Class Distribution: A feature array with 12 entries where the first holds the

magnitude of the bin of the pitch class histogram with the highest magnitude,
and the following entries holding the successive bins of the histogram, wrapping
around if necessary.

P-21 Fifths Pitch Histogram: A feature array with bins corresponding to the values of
the 5ths pitch class histogram.

P-22 Quality: Set to 0 if the key signature indicates that a recording is major, set to 1 if
it indicates that it is minor and set to 0 if key signature is unknown.

P-23 Glissando Prevalence: Number of Note Ons that have at least one MIDI Pitch
Bend associated with them divided by total number of pitched Note Ons.

P-24 Average Range of Glissandos: Average range of Pitch Bends, where range is
defined as the greatest value of the absolute difference between 64 and the
second data byte of all MIDI Pitch Bend messages falling between the Note On
and Note Off messages of any note.

P-25 Vibrato Prevalence: Number of notes for which Pitch Bend messages change
direction at least twice divided by total number of notes that have Pitch Bend
messages associated with them.

P-26 Prevalence of Micro-Tones: Number of Note Ons that are preceded by isolated
Pitch Bend messages as a fraction of total number of Note Ons.

 75

5.9 Features based on melody
 Although the pitch statistics discussed in Section 5.8 are both meaningful and useful,
they do not reflect any information relating to the order in which pitches are played.
Neglecting information about sequence would be very limiting, as melody is a very
important part of how many humans hear and think about music. Ideally, one would like
to collect information about all of the melodies in a recording and how they repeat,
change and interact with each other. The literature on melodic contour discussed in
Section 5.2 could prove useful as well. Unfortunately, all of this would require a phrase
segregation system that is beyond the scope of this thesis.
 What one can do fairly easily, however, is collect statistics about melodic motion and
intervals. In order to do this, the use of a “melodic interval histogram” is proposed here.
Each bin of such a histogram is labelled with a number indicating the number of semi-
tones separating sequentially adjacent notes in a given channel (independently of
direction of melodic motion). In the normalized implementation of this histogram used
here, the magnitude of each bin indicates the fraction of all melodic intervals that
correspond to the melodic interval of the given bin. All notes occurring in any given
channel were treated as a melody. Although this was not a perfect solution, especially for
instruments such as pianos that can play harmonies or multiple melodies simultaneously,
it was the only apparent cheaply available solution, and is entirely suitable in many cases.
A second intermediate data structures was used as well. This consisted of an array with
each indice corresponding to a MIDI channel and each entry consisting of a list of all
melodic intervals on the appropriate channel in the order that they occurred. The intervals
in the second data structure were negative for downward motion and positive for upwards
motion.
 The features based on melody that were implemented are listed below:

M-1 Melodic Interval Histogram: A features array with bins corresponding to the
values of the melodic interval histogram.

M-2 Average Melodic Interval: Average melodic interval.
M-3 Most Common Melodic Interval: Melodic interval with the highest magnitude.
M-4 Distance Between Most Common Melodic Intervals: Absolute value of the

difference between the most common melodic interval and the second most
common melodic interval.

M-5 Most Common Melodic Interval Prevalence: Fraction of melodic intervals that
belong to the most common interval.

M-6 Relative Strength of Most Common Intervals: Fraction of melodic intervals
that belong to the second most common interval divided by the fraction of
melodic intervals belonging to the most common interval.

 76

M-7 Number of Common Melodic Intervals: Number of melodic intervals that
represent at least 9% of all melodic intervals.

M-8 Amount of Arpeggiation: Fraction of horizontal intervals that are repeated notes,
minor thirds, major thirds, perfect fifths, minor sevenths, major sevenths,
octaves, minor tenths or major tenths.

M-9 Repeated Notes: Fraction of notes that are repeated melodically.
M-10 Chromatic Motion: Fraction of melodic intervals corresponding to a semi-tone.
M-11 Stepwise Motion: Fraction of melodic intervals that corresponded to a minor or

major third.
M-12 Melodic Thirds: Fraction of melodic intervals that are major or minor thirds.
M-13 Melodic Fifths: Fraction of melodic intervals that are perfect fifths.
M-14 Melodic Tritones: Fraction of melodic intervals that are tritones.
M-15 Melodic Octaves: Fraction of melodic intervals that are octaves.
M-16 Embellishment: Fraction of notes that are surrounded on both sides by Note

Ons the same channel that have durations at least 3 times as long as the central
note.

M-17 Direction of Motion: Fraction of melodic intervals that are rising rather than
falling.

M-18 Duration of Melodic Arcs: Average number of notes that separate melodic
peaks and troughs in any channel.

M-19 Size of Melodic Arcs: Average melodic interval separating the top note of
melodic peaks and the bottom note of melodic troughs.

M-20 Melodic Pitch Variety: Average number of notes that go by in a channel before
a note is repeated. Notes that do not recur after 16 notes are not counted.

5.10 Features based on chords
 This class of features is based on the intervals between notes that sound
simultaneously. Although it is certainly not assumed that any recording is tonal, a number
of features were used that are related to tonality. This was done simply because tonal
relationships do play an important role in many of the genres that were considered in this
thesis, and the degree and types of tonality present can be representative of genre. Some
of the techniques for chord analysis discussed by Rowe (2001) were taken advantage of
here.
 Two new types of histograms are proposed as an aid to deriving chordal features. The
first, called a “vertical interval histogram,” consists of bins labelled with different vertical
intervals. The magnitude of each bin is found by going through MIDI recordings tick by
tick and recording all vertical intervals (exhaustively between all notes sounding

 77

simultaneously) that are sounding at each tick. The magnitude of each bin is then set to
the appropriate sum and the bins are normalized.
 This histogram does not, however, give explict insights into what kinds of chords are
present at any given time. A “chord type histogram” is proposed in order to fill in this
gap. This histogram has bins labelled with types of chords (two pitch class chords, major
triad, minor triad, other triad, diminished, augmented, dominant seventh, major seventh,
minor seventh, other chord with four pitch classes and chord with more than four pitch
classes). All inversions were treated as equivalent and octave doubling was ignored. The
frequencies were counted in much the same way as in the vertical interval histogram, and
were normalized as well.
 Neither of these histograms provides any information about arpeggiation,
unfortunately, but some information related to this is collected in the melodic features. A
more sophisticated system in the future could integrate vertical statistics with arpeggios
and could collect information about inversions as well as chord transitions in order to
obtain details about chord progressions, whether they be tonal or not. This is, however,
beyond the scope of this thesis.
 The following features were implemented in order to collect information relating to
chords:

C-1 Vertical Intervals: A feature set consisting of the frequencies of each of the bins
in the vertical interval histogram described above.

C-2 Chord Types: A feature set consisting of the frequencies of each of the bins in
the chord typed histogram discussed above.

C-3 Most Common Vertical Interval: The bin label of the vertical interval histogram
bin with the highest magnitude.

C-4 Second Most Common Vertical Interval: The bin label of the vertical interval
histogram bin with the second highest magnitude.

C-5 Distance Between Two Most Common Vertical Intervals: The difference
between the bin labels of the two most common vertical intervals.

C-6 Prevalence of Most Common Vertical Interval: The fraction of vertical
intervals corresponding to the most common vertical interval.

C-7 Prevalence of Second Most Common Vertical Interval: The fraction of vertical
intervals corresponding to the second most common vertical interval.

C-8 Ratio of Prevalence of Two Most Common Vertical Intervals: The fraction of
vertical intervals corresponding to the second most common vertical interval
divided by the fraction of vertical intervals corresponding to the most common
vertical interval.

 78

C-9 Average Number of Simultaneous Pitch Classes: Average number of different
pitch classes sounding simultaneously.

C-10 Variability of Number of Simultaneous Pitch Classes: Standard deviation of
the number of different pitch classes sounding simultaneously.

C-11 Minor Major Ratio: Number of minor vertical intervals divided by number of
major vertical intervals.

C-12 Perfect Vertical Intervals: Fraction of all vertical intervals corresponding to
perfect intervals.

C-13 Unisons: Fraction of all vertical intervals corresponding to unisons.
C-14 Vertical Minor Seconds: Fraction of all vertical intervals corresponding to minor

seconds.
C-15 Vertical Thirds: Fraction of all vertical intervals corresponding to thirds.
C-16 Vertical Fifths: Fraction of all vertical intervals corresponding to fifths.
C-17 Vertical Tritones: Fraction of all vertical intervals corresponding to tritones.
C-18 Vertical Octaves: Fraction of all vertical intervals corresponding to octaves.
C-19 Vertical Dissonance Ratio: Total number of vertical 2nds, tritones, 7ths and 9ths

divided be total number of vertical unisons, 4ths, 5ths, 6ths, octaves and 10ths.
C-20 Partial Chords: Fraction of all vertical intervals involving only two pitch classes.
C-21 Minor Major Triad Ratio: Number of minor triads divided by number of major

triads.
C-22 Standard Triads: Fraction of all chords that are either major or minor triads.
C-23 Diminished and Augmented Triads: Fraction of all chords that are either

diminished or augmented triads.
C-24 Dominant Seventh Chords: Fraction of all chords that are dominant sevenths.
C-25 Seventh Chords: Fraction of all chords that are dominant seventh, major seventh

or minor seventh chords.
C-26 Complex Chords: Fraction of all chords that contain more that four pitch classes.
C-27 Non-Standard Chords: Fraction of all chords that are not two pitch class chords,

not major or minor triads and not seventh chords.
C-28 Chord Duration: The average duration of a chord in seconds.

 79

6. Implementation of classification system

6.1 Selection of model genre taxonomy
 This section discusses the model genre taxonomies that were used to train and test the
classification system. Chapter 2 can be consulted in order to read more about the
background that led to the implementation decisions presented here.
 It is important for a classification system to be able to classify recordings into
categories that are meaningful to the average, potentially musically illiterate person. At
the same time, however, it is also desirable that a system be able to make the kind of fine
classifications that are useful to music professionals. A hierarchal tree-based structure of
categories was chosen as the taxonomical structure to use for this system, as it fulfils
these dual requirements. Broad categories, such as Classical or Jazz, are found at the root
of the tree (topmost level of the tree), and categories become increasingly fine as one
progresses towards the leaves (i.e. nodes in the tree without children).
 The various branches of the tree were permitted to vary in terms of both depth and
breadth. This was necessary in order to accommodate the different degrees to which
different real-life genres are sometimes split into narrow sub-genres and sometimes
simply left as broad categories.
 It was decided to use a taxonomy based on individual recordings rather than artists as
a whole, despite the problems related to scalability discussed in Chapter 2. Using artists
would have involved too many contradictions that could confuse the classification
system. Many artists have produced music in a number of different genres, and it would
be inappropriate to attempt to force a genre recognition system to accept artificial
relations between such pieces. This is not to say that relations based on artist are not
meaningful, of course, since it would certainly be useful to build a system that could
search for features based on a composer’s style rather than genre, for example, but this is
beyond the scope of this thesis.
 The tree-based system used here had two important differences from the types of trees
traditionally used: a given recording could be associated with more than one leaf genre
and a sub-genre could be a direct descendant of more than one parent genre (e.g. Bossa
Nova is a descendant of both Jazz and World Beat in the implementation shown in Figure
3). These two modifications did complicate the organizational clarity offered by
traditional trees, but they were necessary to deal with the realties that the boundaries
between different genres are often vague, sub-genres are often the result of a complex
amalgamation of potentially disparate parent genres and many recordings do not fall
unambiguously into single genre categories.

 80

 This hierarchical organization allows users to look at whatever level of the hierarchy
is appropriate for their needs. Users can start at a root-level genre and descend to
increasingly deep levels of the tree if they wish to refine a search. Alternatively, they can
start at a leaf and travel up the tree if they wish to gain a broader perspective. Dividing
genres hierarchically is not only advantageous in the sense that it is useful to humans
performing searches, but it also makes it possible to compare how well the system
distinguishes between fairly dissimilar music from the parent genres compared to the
more similar sub-genres.
 This kind of structure does have the disadvantage that even small updates to the
taxonomy (which would be necessary in order to keep up-to-date with the constant
changes in the labels that people use in real life) would require re-training of the entire
classification system. This is not as much of a problem as one might think, however. One
needs simply update the hierarchy and the training examples, and the learning of the new
structure could be done automatically off-line with no further human intervention other
than some test validation at the end of the learning process. This updating process could
be done regularly as a matter of routine. The requirement of having to manually research
and implement changes in the hierarchy is certainly inconvenient, but this is still a great
improvement over the fully manual classification system that is currently in use. The use
of data mining techniques such as those discussed in Chapter 2 could potentially be used
to automate even these tasks in a future version of this software.
 As can be seen in Chapter 4, existing automatic classification systems have rarely
classified between more than 9 or 10 categories, and have frequently used fewer
categories. This is certainly a reasonable choice as an intermediate attainable goal in
developing genre classification systems. Taxonomies of this size are also realistic for
certain limited types of tasks, and the use of broad categories avoids the pitfalls related to
being forced to label training and testing recordings with narrower categories that tend to
be more subjective. Of course, one must have a diverse enough set of training samples to
represent all of the sub-types of broad genres if one wishes to perform realistic
classifications.
 In any case, it was decided to design an initial rough taxonomy (Figure 2) in order to
compare the performance of this system with existing studies. Although these
comparisons cannot be definitive, since different categories and different recordings have
been used in different studies, and most of the existing studies have analyzed audio
recordings rather than symbolic recordings, they can at least give some general idea of
relative performance. The taxonomy shown is Figure 2 was designed to include
categories with some similarity as well as categories that are significantly different.

 81

Jazz
 Bebop
 Jazz Soul
 Swing

Popular
 Rap
 Punk
 Country

Western Classical
 Baroque
 Modern Classical
 Romantic

Figure 2: Reduced classification taxonomy.

 Of course, the taxonomy shown in Figure 2 is not sophisticated or large enough to be
useful for general real-life purposes. It was therefore decided to develop a much larger
and better designed taxonomy in order to test the practical potential of the system
developed here. This expanded taxonomy is shown in Figure 3.

Country
 Bluegrass
 Contemporary
 Trad. Country

Jazz
 Bop
 Bebop
 Cool
 Fusion
 Bossa Nova
 Jazz Soul
 Smooth Jazz
 Ragtime
 Swing

Modern Pop
 Adult Contemp.
 Dance
 Dance Pop
 Pop Rap
 Techno
 Smooth Jazz

Rap
 Hardcore Rap
 Pop Rap

Rhythm and Blues
 Blues
 Blues Rock
 Chicago Blues
 Country Blues
 Soul Blues
 Funk
 Jazz Soul
 Rock and Roll
 Soul

Rock
 Classic Rock
 Blues Rock
 Hard Rock
 Psychedelic
 Modern Rock
 Alternative Rock
 Hard Rock
 Metal
 Punk

Western Classical
 Baroque
 Classical
 Early Music
 Medieval
 Renaissance
 Modern Classical
 Romantic

Western Folk
 Bluegrass
 Celtic
 Country Blues
 Flamenco

Worldbeat
 Latin
 Bossa Nova
 Salsa
 Tango
 Reggae

Figure 3: Full classification taxonomy.

 The desire to have a realistic taxonomy required significantly more thought than the
taxonomy shown in Figure 2. As discussed in Chapter 2, on-line retailers tend to offer the
most reliable and useful taxonomies. The expanded taxonomy developed here therefore
emphasized this source of information, but were also made use of an amalgamation of
information found in scholarly writings on popular music, popular music magazines,
music critic reviews, taxonomies used by music vendors, schedules of radio and video
specialty shows, fan web sites and the personal knowledge of the authour.

 82

 Particular use was made of the All Music Guide, an excellent on-line resource, and of
the Amazon.com on-line store. These sites are widely used by people with many different
musical backgrounds, so their systems are perhaps the best representations available of
the types of genres that people actually use. These two sites are also complimentary, in a
sense. The All Music Guide is quite informative and well researched, but does not
establish clear relationships between genres. Amazon.com, in contrast, has clearly
structured genre categories, but no informative explanations of what they mean.
 Given the limitations on the number and types of MIDI files that can and have been
encoded using MIDI and made available on-line, it was unfortunately only practical to
use a subset of the categories that would have ideally been included in the taxonomy. The
amount of time needed to manually find, download and classify recording also imposed
limitations on the number of categories that could be used here. This taxonomy is,
however, significantly larger, more specialized and more diverse than that used in any
other known automatic classification system to date, and it includes a range of categories
that is certainly sufficient for real-life, practical use.
 The taxonomy shown in Figure 3 is not always perfectly logical or consistent. This
was necessary in order to test the system realistically, as the types of genre structures that
humans actually use are often illogical and inconsistent. The taxonomy proposed here is
not presented as ideal, perfect or complete, but rather as a realistic taxonomy that is good
enough for testing and for practical use, yet is certainly open to refinement in the future.
This taxonomy encapsulates many of the difficulties, ambiguities and inconsistencies
found in any realistic taxonomy and is large and sophisticated enough that it provides a
significantly more difficult and realistic test bed than has been applied to any previous
automatic genre classification system known to the author.
 There are a total of 9 root level labels, 8 intermediate labels and 38 unique leaf labels
in the taxonomy shown in Figure 3, for a total of 55 unique labels (with duplicates only
counted once). Detailed explanations of these categories can, in most cases, be found by
referencing the All Music Guide.
 The software developed for this thesis has been designed to allow users to enter in
their own taxonomies if they wish by customizing labels, modifying the architecture of
the tree and controlling the selection and model classification of the training data if they
wish. This makes it possible for users with specialized interests to custom train the
software to be able to deal with the specific genres and sub-genres that interest them.
Since there is not, a universally accepted genre taxonomy to date, this approach allows
individual users to use taxonomies that fit their needs and perspectives. Furthermore, it
allows modification of the taxonomy as genres change or new genres are introduced.

 83

6.2 Selection of training and testing data
 One would ideally like to have a standardized test bed of recordings that could be
used to compare the performances of different classification systems. Unfortunately, no
such large scale, widely acceptable and affordable set of MIDI recordings exists, so it was
necessary to manually collect a custom recording library in order to train and test the
classification system developed in this thesis.
 The first step towards accomplishing this was the compilation of a catalogue of web
sites from which MIDI files could be downloaded. Although an emphasis was placed on
sites that focused on particular genres, they were insufficient in number to meet the
demands of this thesis, so a number of general purpose sites and MIDI search engines
were included as well.
 The sites in this directory were then surveyed manually and all files that sounded like
they might belong to the genre categories in the model taxonomy were downloaded. This
recording library was then supplemented by specific prototypical recordings that were
sought out if they had not already been found. This was done by constructing lists of ten
to twenty pieces that were typical of each genre according to the All Music Guide web site
and using MIDI search engines to find as many of these specific recordings as possible.
At this point, 30 to 45 MIDI recordings were available for each leaf genre. Deficits in any
individual genres were remedied by performing further searches for model recordings.
 It was decided to use a combination of both prototypical examples and generally
selected examples in this manner so as to attain a training set that would help to make it
clear to the pattern recognition system what is typical of particular genres while at the
same time including diverse enough examples to avoid overspecialization. Using only
prototypical examples would have the dangers of biasing the system towards the authour's
perception of genre categories and of making it unable to deal with recordings that are
somewhat atypical of genres that they nonetheless clearly belong to.
 It should be noted that, within each leaf category, MIDI files were taken from a
variety of sources whenever possible. This was done in order to even out any encoding
particularities, as recordings from a single source could have encoding characteristics that
the system could use to classify them, which would artificially inflate classification
performance.
 All of the downloaded files were then reviewed one by one by the authour, and
classified based on the author’s experience, the All Music Guide and the label of the piece
on the site that it was downloaded from, if available. Twenty-five pieces were then
selected from the available pool for each leaf genre. Single pieces were permitted to
belong to more than one genre, when appropriate. The particular twenty-five recordings
that were chosen were selected in order to fulfill three requirements: that all recordings
could reasonably be said to belong to the given leaf genre, that as full a range of sub-types

 84

within each leaf genre as possible were represented and that a few pieces at least
somewhat atypical of the genre were present. These requirements helped to ensure that
training would occur over a broad enough range that the classification system could
perform well in a real-world situation and that success rates were not artificially inflated
by using overly specialized training and testing examples.
 The particular ceiling of twenty-five recordings per leaf genre was selected because of
the time requirements involved in manually finding, downloading and classifying
recordings, particularly given the number of genres considered here. An additional
problem was that MIDI files are much harder to find in some genres than others. It was
decided to use an equal amount of recordings for all leaf genres, as failure to do this
might cause the pattern recognition to find local minima by ignoring genres with few
recordings. This had the consequence of causing the genres with the fewest easily
available MIDI files to set the ceiling on the number of recordings used per leaf genre.
 As a final step, a module was included in the software to report recordings that were
statistical outliers after feature extraction was completed for all recordings. This was done
in order to flag any recordings that may have been accidentally misclassified manually or
if a file was corrupted. Recordings were only reclassified or replaced if an obvious error
had been made during manual classification, however. Recordings that were outliers in
the feature space but nonetheless had been correctly classified based on information on
the web and elsewhere were therefore not altered or removed, as to do so would have
artificially inflated success rates.
 Space limitations prevent the inclusion of an appendix listing the MIDI files used and
statistics regarding their encoding in this document, unfortunately. Such a list can be
obtained from the author by writing to him at cory.mckay@mail.mcgill.ca, however.
 As a side note, many MIDI files contain meta-data indicating genre. This meta-data is
not universally present, however, and there is not any consistent set of genre labels or
classification standards that are used. Such meta-data is of very limited use without a
reliable standardized system, as its presence and quality depends entirely on the person or
people who made a particular file. Genre identifications stored in MIDI files were
therefore ignored and classifications were performed based solely on musical content.
 An automated system for finding and downloading files and/or access to a large
database of easily accessibly music would have greatly helped to increase the number of
recordings collected. Commercial or larger scale academic research in the future would
benefit from such systems, as twenty-five recordings per category is a relatively small
number given the number of categories, and a larger recording library would likely
improve performance and make it possible to use more genre categories. A committee-
based manual classification process would also be appropriate given the availability of
willing committee members.

 85

6.3 Feature extraction and selection
 The group of 111 features that was implemented (see Chapter 5) was large enough
that the features were not likely to perform well all together, particularly given the
training / testing library only consisted of 950 recordings (the “curse of dimensionality” is
explained in Section 3.2). Some kind of feature selection and/or weighting, as covered in
Section 3.2, was therefore necessary. It was decided not to use any of the dimensionality
reduction techniques that cause one to lose the separability of the original features, as
which features perform well in distinguishing between different genres has musicological
research interest. Exhaustive search strategies were also rejected, as the large number of
candidate features made them intractable. Although techniques such as sequential floating
selection could certainly have been used, it was decided to use genetic algorithms (GA’s)
instead, as they are particularly well suited to feature spaces such as that used here (see
Section 3.2). Genetic algorithms also have the advantage of allowing one to find feature
weightings as well as simple on/off feature selections.
 After some informal experimentation with different GA parameters, it was decided to
use a roulette crossover system with mutation and with elitism, but without villages. A
population of 125 chromosomes was used with a crossover rate of 0.4 and a mutation
probability of 0.02. Evolution was continued until the fitness of the best performing
chromosome in the population did not improve for 75 consecutive generations or a given
maximum was reached. In general, the choice of particular GA parameters is as much of
an art as a science. These values worked better than others that were tried, so they were
kept. Although more extensive and formal experimentation could have been performed, it
was decided that the research resources would be better spent elsewhere.
 Two types of feature selection were performed for each classifier: basic on/off feature
selection and feature weighting. Feature weighting was performed using 5 bit words for
each feature, with a resultant non-normalized weighting between 0 and 1 in 32
increments. Experiments were conducted to see the relative performance of no feature
selection at all, only on/off feature selection, only feature weighting and on/off feature
selection followed by weighting of the survivors. The results are described in Chapter 7.
 A close examination of the features described in Sections 5.4 to 5.10 will reveal that
there are two types of features present: those that consist of a single value (referred to
here as one-dimensional features) and those that consist of an array of values (referred to
here as multi-dimensional features). The reasons for this division into the two types of
features are explained in Section 6.4.
 As will be seen in Section 6.4, each of these two feature types was treated in a
separate way. All one-dimensional features were classified using a single k-nearest
neighbour (KNN) classifier, and each multi-dimensional feature was classified using its
own feedforward neural network (see Section 3.3 for a description of these classification

 86

techniques). This led to two stages of feature selection, each of which consisted of both
on/off selection and feature weighting.
 In the first stage, feature selection and/or weighting were applied to the collection of
all one-dimensional features. Since only the training recordings were accessible to the
system (using testing recordings at any stage of the training violates the validity of the
final testing), it was necessary to temporarily partition the training data into feature
selection training and testing groups. Genetic algorithms were then used to find the best
features and their associated weights using these two training recording sub-sets. The
fitness of each chromosome was evaluated by measuring how well a KNN classifier with
the selection or weightings of the bit string and trained on the feature selection training
group classified the feature selection test group. Once the features and their associated
weightings were evolved, a new KNN classifier was trained using these settings and all of
the feature values in the entire original training set.
 The second stage was just as much a classifier selection process as it was a feature
selection process. Which of the classifiers to use and their associated weightings in the
combined classification process (see Section 6.5) were found here using a similar genetic-
algorithm-based process as in the first stage. The classifiers considered consisted of the
KNN classifier trained in the first stage as well as the neural networks, which had each
been trained to classify a single multi-dimensional feature. The fitness of each
chromosome was determined by how well the classifier selections and weightings
associated with its bit string corresponded to the model classifications.
 So, to sum up, the one-dimensional features were first selected and/or weighted using
a single KNN classifier. This single KNN classifier was then combined with one neural
network-based classifier for each multi-dimensional feature, and selection/weighting was
performed again, but this time on this entire ensemble of classifiers.
 Some initial pre-processing was applied to all of the one-dimensional feature values
before selection and/or weighting. It was desirable to use scaling so that all feature values
would fall in roughly the same range of values so that all features would start off with
equal effective weightings. If this had not been done, then a feature with a range of values
between 0 and 1000, for example, would have had far more effect on the distances
calculated by a KNN classifier than a feature whose value varied between 0 and 0.1.
 Furthermore, it was desirable to moderate the effect of extreme feature values that fell
far out of the normal range of a feature. If a particular feature usually varies between 0
and 1, for example, but one recording has a value 1000 for that feature, it is likely that
this is due to some kind of noise. If left unmoderated, this extreme value could cause a
KNN classifier to misclassify the recording, even if all of its other features would lead to
a successful classification. An erroneous value such as this could also detrimentally
influence feature selection, if left uncorrected.

 87

 The first stage of this pre-processing consisted of finding the standard deviation and
mean of each feature across all testing recordings. The maximum for each feature was
then set to two standard deviations above the mean, and all values above this maximum
were reduced to the maximum value. A similar process was used to ensure that no values
were below two standard deviations less than the mean. The following equation was then
used to scale all feature values to fall between 0 and 1:

 (13)

where v2 is the scaled feature value, v1 is the original feature value, vmin is the value 2
standard deviations below the mean and vmax is the value 2 standard deviations above the
mean.

6.4 Implementation of classifiers
 As will be seen in Section 6.5, a hierarchical classification system was used that
divided the taxonomy into portions and classified each portion separately, before
combining the results to arrive at a final classification. Each portion of the taxonomy,
with its subset of all possible categories, was classified into one or more of its candidate
categories by a collection of classifiers referred to here as a “classifier ensemble.” At the
level of abstraction used in Section 6.5, each such ensemble can be seen as a black box
object that takes in the features of recordings and outputs scores, between 0 and 1, for
each candidate category. This section explains the contents of each of these black boxes.
 One will recall from Section 3.3 that nonparametric classifiers are the best type of
classifiers to use for tasks such as this sort of musical genre classification, where the
underlying statistical distributions of the population’s feature values are unknown, where
the data is not nominal and where there are multiple candidate categories. In particular, k-
nearest neighbour (KNN) and feedforward neural network (NN) classifiers were chosen
for use here, as they are often used and known to be effective.
 As discussed in Section 6.3, features were divided into two groups, namely one-
dimensional features and multi-dimensional features. The one-dimensional features each
consisted of single values that were self-contained and meaningful in themselves. The
multi-dimensional features, in contrast, each consisted of several values that were closely
related to one another. Although it is of course true that all features are potentially
interrelated, those sub-features grouped into multi-dimensional features were particularly
subject to this interdependence.
 As was seen in Section 3.3, KNN classifiers have the advantage of requiring a
negligible amount of computation to train, but have the disadvantage that they cannot
model complex logical relationships between features. NN’s, on the other hand, are

minmax

min1
2 vv

vv
v

−
−

=

 88

relatively slow to train, but can model sophisticated relationships after training. These
relative strengths and weaknesses correspond closely to the characteristics of the two
types of features, so it was decided to use a single KNN classifier to perform
classifications using all of the one-dimensional features and a separate NN for each multi-
dimensional feature. The use of a KNN classifier reduced training time, and the use of
NN’s made use of their more sophisticated classification ability where it was most
needed.
 Each KNN classifier calculated a score for each candidate category based on the
number of points captured that belonged to each category divided by k. The NN
classifiers calculated a score for each candidate category based on the value of each
output unit, each of which corresponded to a different candidate category.
 This collection of component classifiers, namely a single KNN classifier and one NN
classifier for each multi-dimensional feature, made up a single complete classifier
ensemble. Each of these component classifiers, when provided with the appropriate
features of a recording, output a score for each candidate category, and a final set of
scores for each category for the ensemble was found by calculating a weighted average of
the scores for each category for each component classifier. Which component classifiers
were actually used and how their relative weightings were found using genetic algorithms
is discussed in Section 6.3. A graphical depiction of a classifier ensemble is shown in
Figure 4.
 Now that the composition of each classifier ensemble is understood, it is appropriate
to delve into some of the details of how each component classifier was implemented. As
stated above, each KNN classifier was trained on all of the one-dimensional features, with
feature selection and/or weighting performed using genetic algorithms. The value of k
was set to the square root of the number of training samples. The relative weightings for
all features, including multi-dimensional features, could be found by combining these
weightings with those found during classifier weighting.
 Each NN took in a single multi-dimensional feature. Each dimension of the feature
was assigned to a single input unit. The sigmoid function was used as the activation
function. One output unit was created for each candidate category, and it was trained to a
target value of 0.8 if a training sample belonged to a given category and to 0.2 if it did
not. During classification, values on the output units were cut off so that no values could
not exceed 0.8 or fall below 0.2. Values read off the output units were automatically
scaled so that a value of 0.8 would correspond to a final output of 1 and a value of 0.2
would correspond to a final output of 0. All of this was done rather than simply training
units to values of 0 and 1 because the sigmoid function can have difficulty approaching
these output extremes.

 89

Figure 4: A single classifier ensemble with feature and classifier selection and weighting.

 A learning rate of 0.1 was used as well as a momentum of 0.1 in the NNs. Initial
weights were randomly set to values between 0.1 and 0.7, and bias units outputting
constant values of -1 were used. A single layer of hidden units was used, consisting of a
number of units equal to the square root of the sum of the number of input units and the
number of output units. These network parameters were found to work well during
informal experiments. As is the case with genetic algorithms, there are no reliable
commonly accepted techniques for choosing the ideal values for these parameters.

KNN

Neural
Net 1

All
Features

Multi-D
Features

One-D
Features

Neural
Net m

Multi-D
Feature 1

Multi-D
Feature m

Feature
Selection

Feature
Weighting

Classifier
Selection

Classifier
Weighting

…

Classifier
Coordinator

Score for
Category 1

Score for
Category n

…

Classifier
Ensemble

…

 90

Training was terminated when the absolute change in the sum of squares error across the
output units fell below 10-7 for 500 consecutive iterations or until a set maximum of
iterations was reached. The order of the training samples was randomized.
 So, in summary, each ensemble of classifiers took in the complete set of features and
output a non-normalized score for each candidate category from 0 to 1. Inside each
ensemble, a KNN classifier (with feature selection and weighing determined by genetic
algorithms) classified based on one-dimensional features and a separate NN classified
each multi-dimensional feature. The final scores for each category for an ensemble were
found by calculating a weighted average of the outputs of these component classifiers,
with the classifier selection and weightings determined with genetic algorithms.

6.5 Coordination of classifiers
 Since a hierarchical taxonomy was used in order to realistically model a way in which
humans organize genres, it was decided to take advantage of this organization in order to
improve classification performance by using a hierarchical classification technique. As
will be seen below, this involved training a number of separate classifier ensembles on
different parts of the taxonomy. Each of these classifier ensembles was of the type
described in Section 6.4, but can be seen as a black box at this level of abstraction that
outputs a certainty score for each candidate category.
 Classifying among many categories is in general a harder task than classifying among
fewer categories. Simply classifying a recording among all leaf categories (a flat
classification) could be a difficult task if there are many such categories. Classifying only
among root level categories, in contrast, is likely to be easier because there are fewer
candidate categories and what categories there are are likely to be more easily
distinguishable at such a broad level.
 Hierarchical classification operates by first performing a classification to choose one
or more root level categories, then classifying only among the children of those root
categories selected, and so on until only a leaf level category or categories remain. This
progression from initial coarse classifications to progressively finer classifications as one
proceeds down the tree has the advantage that only a small subset of all possible
categories must be considered at any one time, thus making the work of the classifiers
much easier.
 Another important advantage of this approach is that, if feature selection techniques
are used, as they are here, a specialized classifier can be trained for each parent node in
the taxonomy that uses specialized features to classify among its direct descendants. For
example, it would be reasonable for a classifier attempting to distinguish between
different types of Western classical music to base classifications partly on whether
parallel fifths are present. This feature would be less useful if one is attempting to

 91

distinguish between different types of blues music, for example, but a feature such as
whether a harmonica is present or not might be useful here, whereas it would not be for
classical music.
 This type of hierarchical classification has two important weaknesses, however. The
first is that training times are significantly increased because a separate classifier must be
trained for each parent node in the taxonomy. This is not as bad as one might imagine for
the implementation used in this thesis, fortunately, since each classifier only needs to be
trained on the subset of recordings belonging to its particular candidate categories, which
reduces training times. Also, the task of each classifier is simpler than it would be with a
larger number of categories, so it is likely to converge faster than a classifier attempting
to deal with a more complex task would. Finally, the use of KNN classifiers to deal with
most of the features significantly cut down on training times.
 The second weakness of basic hierarchical classification is that an erroneous
classification near the root of the tree will cause classification failure, since an incorrect
choice will lead to a path down the tree which cannot lead to a correct leaf category. This
is not necessarily a disadvantage when compared specifically to flat classification, since
the classifications made by such a classifier are much more likely to be incorrect than the
coarse classifications near the root of a hierarchical classifier, but it is still a problem that
should be dealt with.
 In order to improve results, three types of classification using three different classifier
ensembles or groups of ensembles were therefore performed at each level of the hierarchy
as a decent was made down the hierarchy:

• Parent classifier: a classification was made among the direct descendants of the
current node in the taxonomy (or the root categories, when a classification was
first begun).

• Flat leaf classifier: a classification was made among all possible leaf categories.
This was essentially a flat classification. The scores for leaves that were not
descendants of at least one of the categories considered by the current parent
classifier were discarded, and the scores for the remaining leaves were propagated
up the tree until they reached a category that was a direct descendant of the
current node, where they were averaged.

• Round-robin classifier: a separate classifier was trained for each pair of leaf
categories. This was another type of flat classifier. Only the pairs that consisted of
descendants of the categories considered by the current parent classifier were
used. The results were propagated up the tree, as was done with the leaf classifier.

 92

 The scores for each candidate category from each classifier ensemble were then
combined using a weighted sum, with the final result deciding which child or children
were considered during the next stage of the decent down the hierarchy. It should be
noted that the same leaf classifier and round-robin ensembles were used with every parent
classifier. Figure 5 displays this classifier process graphically:

Figure 5: How a decision was arrived at as to which children of a parent category were

to be explored or, if they were leaves, selected as winning categories.

 This classifier coordination technique is in a sense an expert system that makes use of
specialized classifiers (namely the parent classifiers) as well as the knowledge of more
general classifiers (the leaf classifier and round robin classifiers). This approach does
increase the amount of training time needed, particularly in the case of the round-robin
classifiers, but there is good potential for increasing performance. Grimaldi et al. (2003)
had some success with round robin classification, so it was decided to test their use,
despite the increases in training time.
 It was decided to use weightings of 0.6 for the parent classifier, 0.2 for the leaf
classifier and 0.2 for the combined results of all the appropriate round-robin classifiers.
These values worked well experimentally, and cut down on further training time that

Round-
Robin

Classifier
Ensembles

Parent
Classifier
Ensemble

Flat
Classifier
Ensemble

Threshold
Based Decision

System

Weighted Adder

Choice for
Category 1

Choice for
Category n

…

Features of a
Recording

Category Filter Category Filter

 93

techniques such as genetic algorithms would have required to calculate weightings. The
emphasis was put on the parent classifiers, as they used specialized features, and it was
therefore reasonable to expect them to perform better than the general-purpose leaf and
round-robin classifiers.
 Past results from applying hierarchical classification to musical genre have been
mixed. Xu et al. (2003) had good results, but Burred and Lerch (2003) found little
difference in success rates between flat and hierarchical classification methods. It was
therefore decided to compare flat and hierarchal classification experimentally. The results
are presented in Chapter 7. The particular hierarchal classification techniques used here
are of a novel and generally more sophisticated type than have previously been
investigated in relation to musical classification, and the use of many high-level features
and of feature selection to train specialized classifiers makes it reasonable to hope for
improved results from hierarchical classification methods here.
 Each classifier, regardless of which of the three types listed above it belonged to, was
an ensemble of classifiers of the type described in Section 6.4. A modular object-oriented
design was used here, so that the only visible differences from one instantiation of an
ensemble to another were the candidate categories and the training samples. The feature
selection and training for each ensemble can be seen as having happened inside the
ensemble black box, so that it simply output a score between 0 and 1 for each candidate
category.
 It was decided to allow classifications into more than one category, as many
recordings can indeed be said to belong to more than one genre. It was also decided to
allow the system to classify recordings as “unknown” if none of the scores were high
enough, as in practical situations such a result can act as a flag to request human
intervention, and is certainly better than simply outputting a wrong classification. Both of
these decisions complicated the task of the classifiers, but this was necessary in order for
the classifications to be realistic.
 The potential for membership with multiple categories made it possible for multiple
paths to be followed down the classification hierarchy. A result of “unknown” at any
point terminated the corresponding path. If no path reached a leaf category, then a
recording was classified as unknown. A recording was said to belong to all leaf categories
that were reached.
 It is now appropriate to explain how it was determined whether or not a given
recording was said to belong to a given category based on its classification scores. If
classification into exactly one category had been all that was needed, one could have
simply called the category with the highest score the winner. However, this was not the
case here, so a more sophisticated approach was needed.

 94

 All candidate categories whose scores met at least one of the following two conditions
were considered winners:

• Score was over 0.5.
• Score was at least 0.25 and was within 20% of the highest score.

These “magic numbers” were arrived at through informal experimentation, and intuitively
seem reasonable if one wants to make it possible to have a recording belong to multiple
categories but does not want to have false positives. If no categories met either of these
two conditions, then a recording was classified as unknown. Categories that did not meet
either of the above criteria but did have a score within 30% of the highest score and had a
minimum value of 0.2 were considered “secondary choices,” which were output simply in
order to see how close erroneous classifications were to being correct.
 The process described above was applied to any set of category scores when they
needed to be resolved into specific results rather than just scores, whether they came from
a single classifier inside an ensemble, from the outputs of an classification ensemble as a
whole or from the combined results of the three types of classifier ensembles (parent, leaf
and round-robin) described above.

6.6 Synopsis of classification architecture
 The system described in Sections 6.3 to 6.5 is somewhat complex. A brief summary
of the system described in these sections is therefore provided here for the purpose of
unifying the reader’s overall conception of the system.
 During training, a number of classifier ensembles are created based on the
hierarchical model taxonomy provided to the software by the user. Each of these
ensembles take in the full set of feature values of a recording as input and provide a score
for each candidate category as output.
 One leaf classifier ensemble is created that has all leaf categories as candidate
categories. In addition, one round-robin classifier ensemble is created for every possible
pair of leaf categories. Each round-robin ensemble has only its corresponding pair of
categories as candidate categories. Finally, one parent classifier ensemble is created for
each category that has child categories in the provided taxonomy. Each parent ensemble
has only its direct children as candidate categories.
 Each ensemble is trained using only the recordings belonging to at least one of its
candidate categories. Each ensemble consists of one KNN classifier for use with all one-
dimensional features and one NN for each multi-dimensional feature. The scores output
by the KNN and NN classifiers are averaged in order to arrive at the final scores output
by the ensemble. Feature selection is performed on the one-dimensional features during

 95

training, followed by feature weighting on the survivors of the selection. Classifier
selection and weighting is also performed on the scores output by the KNN and NN
classifiers, so that each classifier has a weight controlling the impact of its category
scores on the final score for each category output by the ensemble. All selection and
weighting is done using genetic algorithms.
 Actual classification is performed by descending down the hierarchical taxonomy one
level at a time. A weighted average of the results of the flat, round-robin and parent
classifier ensembles is found for each child of the parent category under consideration,
and only those child categories whose scores for a given recording are over a certain
threshold are considered for further expansion down the taxonomy tree. The leaf category
or categories, if any, that pass the threshold are considered to be the final classification(s)
of the recording.

6.7 Java and XML
 The software written for this thesis was implemented in Java and made use of XML.
These technologies are therefore reviewed briefly here.
 Java is an object-oriented programming language developed by Sun Microsystems.
Software developers write Java code using integrated development environments, or
sometimes just simple text editors. Java code can then be compiled into Java Bytecode,
which is a platform independent binary encoding that can be understood and run by
implementations of the Java Runtime written for different operating systems. This
effectively makes Java code platform independent, as Java Bytecode should be run
identically by all distributions of the Runtime. In actual fact, there can be some
inconsistencies, particularly relating to graphical user interfaces, but in general platform
independence is successful.
 Both the Java Development Kit and the Java Runtime are available free at
www.java.sun.com. An important advantage of Java is that the Development Kit is
distributed with a large standard class library, which includes sophisticated graphical user
interface components (Swing) as well as MIDI and audio file parsing classes.
 The combination of platform independence, the large standard class library and the
ease with which Java code can be written, maintained and extended made it ideal for this
project. Java also runs faster than code written in many other languages, making it
appropriate for processing intensive tasks such as those in this project. C and C++ do in
general run slightly faster than Java, but they lack many of the advantages of Java.
 Gosling and Arnold’s book (1996) offers an excellent introduction to the basics of
Java and how the philosophy behind object-oriented program can be fulfilled with it.
Horstmann and Cornell have written two books (2000 and 2001) that are good practical

 96

guides to Java. Those looking for information specifically about Swing should consult
Geary (1999) or Pantham (1999).
 The software developed in this project stores a wide variety of data and configuration
settings on disk using computer files. A technology called XML was used to do this.
XML is a general purpose markup language that enables developers to custom design
legible and robust formats for storing and transmitting data. There is a free and
particularly good XML parser implemented in Java named Xerces, which was used in this
thesis. Xerces is available at xml.apache.org/xerces-j/. Whitehead, Friedman-Hill and
Vander Veer (2002) provide a good guide to XML in general and to using XML with
Java.

6.8 Software and its interface
 A modular, object-oriented software engineering approach was used to design all
parts of the software, making it a simple matter to upgrade and expand the software in the
future. A new feature could be added, for example, simply by writing a new class that
implements the Feature abstract class and adding a simple reference to the new class in
the FeatureMaker class. Similarly, new types of classifiers could be added simply by
implementing the SupervisedClassifier abstract class and including references to the new
class in the ClassificationPanel class.
 Furthermore, the software was designed to perform classifications of any kind, not
limited in scope to classifications of MIDI files by genre. Someone wishing to classify
audio recordings, for example, would simply need to write an audio processing class and
a class for each feature. No other modifications to the code would be necessary, as the
implementation used makes no assumptions as to the type of data being processed.
 If a user is concerned only with MIDI data, then the system could be used as is to
perform supervised classifications of any kind simply by altering the taxonomy that is
used and the model training classifications. This could be done entirely through the GUI,
without and modifications at all to the code being necessary.
 This flexibility and extensibility of the software is an important strength of the
system. This makes the software well suited for those with some programming experience
who wish to quickly build a fully functional classification system but wish to specify
some key aspects to their particular needs.
 The software was also written with the needs of those people with no coding
experience or no inclination to write code themselves in mind. A highly flexible graphical
user interface was designed that enables users to perform all tasks and customize settings
within the interface itself without needing to directly modify any configuration files. The
software allows users to easily:

 97

• Custom design their own hierarchal or flat taxonomies (Figure 6).
• Control the settings for each feature and get precise descriptions of each feature

(Figure 7).
• View and edit the meta-data of the loaded recordings, extract features from

recordings and view feature values both before and after scaling (Figure 8).
• View and edit preferences relating to neural networks, genetic algorithms, whether

or not feature and classifier selection and/or weighting is performed, what
classifiers are included in classification ensembles, what types of classifier
ensemble coordination are performed, what thresholds are used to terminate
training and perform classifications, what information is reported in training,
classification and feature selection/weighting reports, etc. (Figure 9).

• Train and classify recordings. The user has the option of training on all
recordings, randomly reserving a certain percentage from each category for testing
or automatically performing cross-validation tests. Formatted reports are
generated giving a wide variety of statistics on training progress, feature selections
and weightings and classification results, either as a whole or for individual
classifiers or classifier ensembles (Figure 10).

• Save all if this information in configuration files that can be loaded and
automatically parsed either individually or in project groups.

• View graphical on-line help information explaining how to use the software.

 All code other than the Xerces XML parser and the SwingWorker class (available on
the Java Technology web site), including classifiers, was written by the authour. Copies
of the software and the source code may be acquired by contacting the authour at
cory.mckay@mail.mcgill.ca.

 98

Figure 6: Component of interface used to edit and view taxonomies.

Figure 7: Component of interface used to edit and view feature settings.

 99

Figure 8: Component of interface used to edit and view recordings.

Figure 9: Component of interface used to edit and view preferences.

 100

Figure 10: Component of interface used to train and classify recordings as well as see

training, classification and feature selection results.

 101

7. Experiments, Results and Discussion

7.1 Experimental methodology
 The experiments discussed in this chapter were all performed using the features
described in Chapter 5 and the taxonomies, library of recordings, feature selection
methodologies, classifiers, classifier ensemble coordination techniques, software and
interface described in Chapter 6.
 All tests were performed using 5-fold cross-validation, which means that each
experiment was performed five times, with each fold reserving different subsets of the
available recordings for testing. 80% of the recordings were used for training and 20% for
testing in each fold, with the membership of each of these groups determined randomly
on a leaf genre by leaf genre basis. This means that every fold reserved 20% of the
recordings belonging to each leaf genre for testing, and that each recording served as a
testing sample exactly once during all of the five folds and as a training sample exactly
four times. The results reported for each experiment in this chapter are all averages of the
results for each of the folds in the corresponding experiment.
 All training times reported in the following sections were dependant on the computer
used and factors such as temperature of the room where the tests were performed. Efforts
were made to keep conditions consistent across experiments, although some small
variations were unavoidable. All tests were performed on a Pentium 4 2.8 GHz based
machine with an 800 MHz front side bus, 1.5 GB of 400 MHz RAM and an 80 GB 7200
RPM hard drive with an 8 MB cache. The computer was running Windows XP Home,
with the network cable disconnected and no applications running other than the
classification system.
 Some initial informal experiments were performed to explore the effectiveness of
various basic classifier parameters, such as neural network learning rates and
momentums. These are omitted here for lack of space, but the settings that were used are
available in Chapter 6. More formal experiments were performed with regards to the use
of feature selection and weighting, classifier selection and weighting, training iterations
and classifier ensemble coordination methodology, however, as these parameters have
some research interest. These experiments and their results are presented in the following
sections.
 Experiments were performed using both of the taxonomies presented in Section 6.1.
The term “T-9” is used in this chapter to refer to the taxonomy shown in Figure 2 (with 9
leaf categories), and “T-38” is used to refer to the taxonomy shown in Figure 3 (with 38
leaf categories). Both figures are on page 81 As discussed in Section 6.1, T-9 was chosen
in order to provide a rough means of comparing this system’s performance to that of

 102

previous systems, as T-9 has a size and difficulty similar to that of the most difficult
taxonomies used in previous research. T-38, in contrast, is a much more sophisticated
taxonomy than has, to the best of the authour’s knowledge, been used to test any existing
automatic genre classification system. It is therefore included here to test the boundaries
of this classification system beyond the scope of testing in previous research.
 The majority of the experiments presented in this chapter focus on Taxonomy T-9,
partly because T-9 provides a basis for comparison with previous research, and partly
because T-38 requires much longer training times. Training time can increase
exponentially with the number of training samples, depending on the classification
configuration used. This made extensive experimentation with T-38 much more resource
expensive, an important issue when it is considered that five complete folds had to be
performed for each experiment.
 One would ideally have liked to exhaustively experiment with every possible
combination of configuration settings, but the wide range of possible configurations and
the training time needed for each experiment made this an unrealistic goal in the context
of this thesis. As a good second best option, experiments were performed so as to build
upon each other in an incremental fashion in order to attempt to find optimal or near-
optimal configurations.
 The results of cheaper experiments with a small taxonomy can, to a certain extent,
give indications of the best classification configuration to use for a larger taxonomy. One
must be cautious on this point, however, since it will not always necessarily be correct. A
flat leaf classification system, for example, might perform very well with a small
taxonomy, but be unable to deal with the complexity of a more sophisticated taxonomy.
 Sections 7.3 to 7.7 deal with T-9 exclusively, and Section 7.9 deals with T-38
exclusively. The experimental configurations and results of all experiments, for both
taxonomies, are available below in Section 7.2.

7.2 Details of experiments and their results
 The details of all of the experiments and their associated classifier configurations are
given in Table 2 and Table 3. The letter codes given in the first column of each of these
tables is used to identify each of the experiments through the remainder of this text. The
results of these experiments can be found in Table 4 and Table 5. The remaining sections
of this chapter analyze and compare the especially pertinent aspects of these experiments
in a variety of contexts.
 A variety of statistics were collected on the results of each experiment. The statistics
presented in Tables 4 and 5 are defined as follows:

 103

• Training Time: The amount of time, in minutes, needed to completely train a full
classification system for a given taxonomy using all of the assigned training
recordings. In other words, the time to complete one cross-validation fold.

• Success Rate: The percentage of recordings that were assigned the correct leaf
category(ies) by the classification system. Recordings belonging to multiple leaf
categories were only counted as partially correct if some categories were missed
by the classification system. The success rate was calculated by assigning each
recording a score corresponding to the number of correct leaf categories assigned
to it by the classifier divided by the number of model leaf categories that the
recording belonged to, and then averaging these fractions across all recordings and
multiplying the result by 100%.

• Secondary Success Rate: The percentage of those recordings where at least one
model leaf category was missed by the classifier, but where that category was
assigned as a secondary choice by the classifier.

• Over Select Rate: The percentage of recordings that were assigned at least one
extra (i.e. beyond the total number of model categories for the recording) leaf
category by the classification system that was not one of the model leaf categories
for the recording.

• Root Rate: The percentage of recordings that were correctly classified as
descendants of the correct root category(ies). The scores for recordings belonging
to descendants of multiple root categories were calculated in the same way as
described for the success rate above.

• Unknown Rate: The percentage of missed classifications that were classified as
unknown rather than being assigned an erroneous label or labels.

 A particular emphasis is put in the following sections on the overall success rate and
the training times. These statistics are in a sense the “bottom line,” since the ultimate goal
of a classification system is to maximize the number of correct classifications while
minimizing processing time. The other statistics are discussed in the following sections
when they are remarkable for a particular experiment.
 The uncertainties that accompany the values on Tables 4 and 5, as well as the error
bars for each of the figures in this chapter, are based on the standard error (standard
deviation divided by the square root of the number of trials) of measurements across all
folds for each experiment. The fact that there is some variation from fold to fold is not
surprising, as success rates are dependant on both the particular recordings randomly
selected to be used for training and for testing and on the non-deterministic training of
neural networks and genetic algorithms.

 104

Code Figures
Used In

Classifier Ensemble
Coordination

One-D
Features

Multi-D
Features

NN
Epochs

A 12, 13, 16 Hierarchal, Flat, RR All None --
B 12, 13, 16 Hierarchal, Flat, RR Selected (50) None --
C 12 Hierarchal, Flat, RR Weighted (50) None --

D 12 Hierarchal, Flat, RR Selected (50),
Weighted (50) None --

E 13 Hierarchal, Flat, RR Selected (25) None --
F 13 Hierarchal, Flat, RR Selected (90) None --
G 14, 15 Hierarchal, Flat, RR All All 1000
H 14 Hierarchal, Flat, RR All Selected (200) 1000
I 14, 15, 16, 17 Hierarchal, Flat, RR All Weighted (200) 1000

J 14 Hierarchal, Flat, RR All Selected (200),
Weighted (200) 1000

K 15 Hierarchal, Flat, RR All Weighted (100) 1000
L 15 Hierarchal, Flat, RR All Weighted (300) 1000
M 17 Hierarchal, Flat, RR All Weighted (200) 500
N 17 Hierarchal, Flat, RR All Weighted (200) 1500
O 16 Hierarchal, Flat, RR None Weighted (200) 1000
P 16, 18, 19, 20 Hierarchal, Flat, RR Selected (50) Weighted (200) 1000
Q 18 RR (many winners) Selected (50) Weighted (200) 1000
R 18 RR Selected (50) Weighted (200) 1000
S 18, 19, 20 Flat Selected (50) Weighted (200) 1000
T 18, 19, 20 Hierarchal Selected (50) Weighted (200) 1000
U 18, 19, 20 Flat, RR Selected (50) Weighted (200) 1000
V 18, 19, 20 Hierarchal, RR Selected (50) Weighted (200) 1000
W 18, 19, 20 Hierarchal, Flat Selected (50) Weighted (200) 1000
Z 21, 22 Hierarchal, Flat, RR Selected (100) Weighted (400) 2000

Table 2: Classifier configurations for experiments involving Taxonomy T-9. Code gives
the unique identifier of an experiment. Figures Used In gives the figures in which the
values from each experiment are displayed. Classifier Ensemble Coordination gives the
techniques that were used to combine the results of all classifier ensembles (hierarchal,
flat leaf and/or round robin). One-D Features gives which one-dimensional features were
used to perform classifications (none, all, those selected through feature selection and/or
with weightings). Multi-D Features gives which multi-dimensional features/classifiers
were used to perform classifications (none, all, those selected through classifier selection
and/or with weightings). NN Epochs gives the maximum number of epochs used to train
neural networks. Values in parentheses give the maximum number of genetic algorithm
generations used in the corresponding training.

Code Figures

Used In
Classifier Enemble

Coordination
One-D

Features
Multi-D

Features
NN

Epochs
AA Flat All None --
BB Hierarchal, Flat, RR All None --
CC 23, 24 Hierarchal, Flat All Weighted (105) 2000
DD 23, 24 Hierarchal, Flat Selected (35) Weighted (105) 2000
EE 23, 24 Hierarchal Selected (30) Weighted (150) 3000
FF 23, 24 Hierarchal All Weighted (150) 3000

Table 3: Classifier configurations for experiments involving Taxonomy T-38. Columns
have same meanings as in Table 2.

 105

Code Training
Time (min)

Success
Rate (%)

Secondary
Success
Rate (%)

Over
Select

 Rate (%)

Root
Rate (%)

Unknown
Rate (%)

A 0.0 ± 0.0 75 ± 3 6 ± 3 5 ± 3 96.9 ± 1.1 0 ± 0
B 27.9 ± 0.4 80 ± 2 10 ± 6 5 ± 1 95.1 ± 1.5 0 ± 0
C 50.9 ± 0.1 80 ± 3 7 ± 3 3 ± 1 96.9 ± 0.9 0 ± 0
D 63.0 ± 0.3 81 ± 2 9 ± 4 6 ± 2 96.4 ± 1.1 0 ± 0
E 14.0 ± 0.1 79 ± 3 11 ± 1 4 ± 1 97.1 ± 1.4 0 ± 0
F 43.9 ± 0.1 78 ± 3 4 ± 2 7 ± 1 94.7 ± 1.1 0 ± 0
G 19.1 ± 0.0 85 ± 3 7 ± 7 3 ± 1 98.7 ± 0.5 0 ± 0
H 24.6 ± 0.0 84 ± 2 20 ± 5 12 ± 2 97.8 ± 0.7 0 ± 0
I 25.9 ± 0.2 89 ± 2 18 ± 6 10 ± 1 98.9 ± 0.7 0 ± 0
J 29.3 ± 0.1 87 ± 3 20 ± 11 9 ± 1 96.4 ± 1.3 5 ± 3
K 25.9 ± 0.1 88 ± 1 19 ± 11 4 ± 1 97.8 ± 0.0 0 ± 0
L 26.4 ± 0.0 83 ± 1 17 ± 7 3 ± 2 96.9 ± 1.1 0 ± 0
M 16.2 ± 0.1 83 ± 2 14 ± 2 4 ± 1 97.8 ± 0.7 0 ± 0
N 36.9 ± 0.0 86 ± 2 28 ± 12 5 ± 1 96.9 ± 1.2 0 ± 0
O 26.4 ± 0.2 83 ± 2 9 ± 5 4 ± 1 96.9 ± 1.1 2 ± 3
P 53.3 ± 0.1 85 ± 3 9 ± 6 6 ± 1 97.8 ± 0.0 0 ± 0
Q 30.1 ± 0.1 100 ± 0 0 ± 0 96 ± 2 99.6 ± 0.4 0 ± 0
R 32.2 ± 0.5 85 ± 3 0 ± 0 NA 96.9 ± 0.9 0 ± 0
S 9.7 ± 0.0 86 ± 2 30 ± 5 14 ± 2 95.6 ± 1.4 15 ± 6
T 13.6 ± 0.0 90 ± 2 24 ± 8 21 ± 3 98.2 ± 0.8 0 ± 0
U 42.0 ± 0.6 84 ± 1 0 ± 0 0 ± 0 96.9 ± 0.9 0 ± 0
V 43.6 ± 0.1 83 ± 1 12 ± 7 3 ± 1 96.4 ± 1.1 0 ± 0
W 25.2 ± 0.4 89 ± 2 54 ± 14 19 ± 2 99.1 ± 0.5 0 ± 0
Z 89.5 ± 0.3 86 ± 3 13 ± 8 4 ± 3 95.6 ± 1.9 0 ± 0

Table 4: Classification results for experiments involving Taxonomy T-9. All values are
averages across all folds. Uncertainty values correspond to the standard error. See page
103 for the meaning of the columns.

Code Training
Time (min)

Success
Rate (%)

Secondary
Success
Rate (%)

Over
Select

Rate (%)

Root
Rate (%)

Unknown
Rate (%)

AA 0 ± 0 37 ± 2 10 ± 0 7 ± 1 70.7 ± 0.6 43 ± 7
BB 0 ± 0 43 ± 2 2 ± 1 4 ± 1 63.3 ± 0.1 37 ± 6
CC 99 ± 2 57 ± 5 13 ± 1 21 ± 1 74. 9± 0.1 32 ± 1
DD 331 ± 2 52 ± 0 15 ± 0 22 ± 1 71.5 ± 2.0 29 ± 6
EE 196 ± 4 56 ± 1 11 ± 1 31 ± 2 81.2 ± 0.9 5 ± 1
FF 80 ± 1 57 ± 1 13 ± 2 31 ± 1 80.6 ± 1.1 4 ± 1

Table 5: Classification results for experiments involving Taxonomy T-38. All values are
averages across all folds. Uncertainty values correspond to the standard error. See page
103 for the meaning of the columns.

 106

 It should be understood that these experiments were not intended to be rigorous and
conclusive scientific studies of which classification configurations are absolutely better in
general. This would have required many more trials than were performed here, with a
larger number of training and testing recordings. Rather, these experiments were intended
as rough examinations of how well different techniques worked in the context of
taxonomies of the particular types studied here. Similar experiments can and should be
performed in other research contexts in order to gain better insights on the performance of
the different classifier configurations in regards to the general problem of music
classification. The flexibility of allowing users to customize classifier configurations to
meet different user needs is an important advantage.

7.3 Number of features
 Before beginning a more detailed analysis the experiments described in Tables 2
through 5, it is appropriate to gain a baseline by first briefly reviewing some earlier
experimental results that have been submitted for publication elsewhere. These studies
used taxonomies almost identical to T-9 and used recordings drawn from the same pool as
here.
 The pilot study for this thesis (McKay 2004) used eight ensembles of neural networks
combined using simple weighting to perform genre classifications of MIDI files using 20
high-level musical features. Leaf genres were correctly classified 58% of the time and
parent genres were correctly classified 85% of the time.
 Although these results were acceptable for the purposes of that study, it was hoped to
improve these rates here. Three primary areas of improvement were identified: increasing
the number of recordings, improving the classification system and increasing the number
of features. All three approaches have been addressed in this thesis.
 In regards to the number of recordings, the library of recordings has been expanded
from 225 to 950, although this increase has had the effect of expanding the number of
categories rather than the number of recordings per category, for reasons made clear in
Sections 6.1 and 6.2. The classification system presented in this thesis has also greatly
increased in sophistication, as can be seen in Chapter 6. As for the number of features,
Chapter 5 makes it clear that many more are available now than were previously.
 According to the “curse of dimensionality” (discussed in Chapter 3), too many
features can make classifications harder. This is one of the reasons that feature selection
has been given such an emphasis in this thesis. A study (McKay & Fujinaga 2004) was
made on the effect of varying the number of candidate features from which the feature
selection system could choose while keeping other classifier parameters constant. The
particular features that were made available to the feature selection sub-system were
randomly selected for each trial. The results are shown in Figure 11.

 107

Figure 11: Effect of varying number of candidate features available to feature selection
system (McKay & Fujinaga 2004).

 Figure 11 makes it evident that a large number of candidate features paired with
feature selection greatly increased performance. Furthermore, this classification was done
using flat leaf classification only. The potential increases in performance could be even
greater with hierarchal or round robin classification, as these techniques take advantage of
the availability of specialized features suited to their particular candidate categories.

7.4 Feature and classifier selection methodology
 Once it had been established that a large number of candidate features was indeed
beneficial, the next step was to examine the relative performance of different selection
techniques. One will recall from Section 6.3 that four operations of this type were
performed, namely 1-D feature selection, 1-D feature weighting, classifier selection and
classifier weighting. Classifications were performed with various combinations of these
selection methods in order to find the ones that maximized performance while minimizing
training time.
 It can be seen from Figure 12 that some type of one-dimensional feature selection did
improve performance over no feature selection, but it is unclear which form of feature
selection was the best. Selection alone did require significantly less time than weighting
or selection and weighting, however (27.9 minutes versus 50.9 and 63.0 minutes
respectively), so this was therefore chosen as the best option for Taxonomy T-9.

Effect of Candidate Features

50

55

60

65

70

75

80

85

90

95

100

20 56 85 109

Number of Candidate Features

S
uc

ce
ss

 R
at

e
(%

)

Root Genres

Leaf Genres

 108

Figure 12: Effect of different one-dimensional feature selection methodologies on the
classification of Taxonomy T-9. Values are averages over all folds and error bars
correspond to standard error. Letter codes identify the experiment (see Table 2).

Figure 13: Effect of different numbers of feature selection training generations. The left
plot gives the average success rates of Experiments A, E, B and F. The right plot gives
the feature selection fitness of the best chromosome of a typical flat leaf classifier as it
evolved.

Best Chrom osom e Fitness for Feature Se lection

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Generations

F
it

n
es

s

Effect of One-Dimensional Feature Selection Techniques
on Classification Success Rates

75

80 80 81

65

70

75

80

85

90

95

100

A: All 1-D
Features

B: Feature
Selection

C: Feature
Weighting

D: Selection &
Weighting

Su
cc

es
s

R
at

e
(%

)

Effect of Feature Selection Training Generations
on Classification Success Rates

65

70

75

80

85

90

95

100

A: 0 E: 25 B: 50 F: 90

Generations

S
u

cc
es

s
R

at
e

(%
)

 109

Figure 14: Effect of different classifier selection methodologies on the classification of
Taxonomy T-9. Values are averages over all folds and error bars correspond to standard
error. Letter codes identify the experiments (see Table 2).

Figure 15: Effect of different numbers of classifier selection training generations. The left
plot gives the average success rates of Experiments G, K, I and L. The right plot gives
the fitness of the best chromosome of a typical round robin classifier as it evolved. Note
that training was automatically terminated after 75 consecutive generations with no
change.

Effect of Classifier Selection Techniques on Classification
Success Rates

87
89

8485

65

70

75

80

85

90

95

100

G: All Classif iers H: Classif ier
Selection

I: Classif ier
Weighting

J: Selection &
Weighting

S
u

cc
es

s
R

at
e

(%
)

Best Chrom osom e Fitness for Class ifie r Se lection

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 9 17 25 33 41 49 57 65 73

Generations

F
it

ne
ss

Effect of Class ifier Se lection Training Generations
on Classification Success Rates

65

70

75

80

85

90

95

100

G: 0 K: 100 I: 200 L: 300

Generations

S
u

cc
es

s
R

at
e

(%
)

 110

 Figure 13 appears to indicate that relatively few generations were needed for the
genetic algorithm to converge to a good solution. Of the trials performed, the best
chromosome was generally found in the first 20 or so generations, and additional
evolution usually caused no improvement. This rapid convergence is good, as feature
selection was a relatively time consuming process per iteration compared to classifier
selection and neural network training. Of course, it is certainly possible that a superior
chromosome could always appear after many generations of apparent stagnation, but
apparent asymptotic behaviour and acceptable success rates nonetheless seems to make it
fairly safe to say that the small potential for increased performance brought about by
extended evolution has too high a training time cost associated with it for Taxonomy T-9.
 The next step was to experiment with various classifier selection methodologies,
namely none, selection, weighting or selection and weighting. Since classifier selection
involved training one KNN classifier on all one-dimensional features and one neural
network classifier for each multi-dimensional feature, it was necessary to include neural
network training here.
 According to the results shown on Figure 14, there did not appear to be all that much
difference between the different methodologies, if one considers the error bars. Classifier
weighting alone did seem to perform slightly better than the alternatives, however, and it
was fairly inexpensive to use in terms of training time (25.9 minutes total training time as
opposed to 19.1 minutes for no classifier selection at all). As for training generations, the
classifier selection systems tended to converge very quickly in many cases, even on the
first or second generation, as can be seen on Figure 15. As a side note, the relatively low
performance of Experiment L was probably due to a particularly inopportune selection of
training versus test recordings rather than to the classifier selection.
 It was somewhat surprising that feature and classification selection did not have a
more significant effect, so a closer look was taken at the individual classifiers in order to
gain insights into why this was the case. It turns out that the round robin classifiers
virtually always achieved perfect classification success with the training samples even
with no selection, and that the hierarchal classifiers other than the root classifier did the
same almost as often. This means that a chromosome with a very sub-optimal selection or
weighting had perfect fitness, since it still resulted in a perfect classification of training
samples, so the genetic algorithm had no reason to evolve a better selection. However,
during testing, the round robin and hierarchal classifiers were exposed to recordings
belonging to categories other than their candidate categories, which they had not been
exposed to during training. Their behaviour was unpredictable in these cases. In essence,
the classifiers performed so well during training, that they were unable to evolve good
selections and weightings that would improve testing rates. This explains why feature
selection had a relatively small effect in these experiments, as those classifiers that would

 111

have benefited from it the most had perfect fitness already, as far as the genetic algorithm
was concerned, so no evolution and corresponding improvement took place for them.
 A potential solution to this problem would be to train the round robin and hierarchal
classifiers on recordings that do not belong to their candidate categories as well as those
that do. This would make the classifiers’ task more difficult initially by forcing them to
learn to reject more types of recordings, thereby hopefully getting non-perfect
classifications with poor feature sets during training, thereby causing the genetic
algorithm to evolve better feature sets. This approach would greatly increase training
times, however, which could be a critical problem with round robin classification, as this
requires a great many classifiers for large taxonomies.

7.5 Classifiers
 The next issue to examine was the relative performance of the k-nearest neighbour
(KNN) classifiers that were used to perform classifications based on one-dimensional
features and the neural network (NN) classifiers that were used to classify each multi-
dimensional feature. The KNN classifier had the advantage of requiring essentially no
training time (although feature selection could be expensive) and the NN classifiers had
the advantage of being able to model relatively sophisticated relationships between
features and categories.
 Figure 16 seems to indicate that the NN’s alone performed slightly better than a KNN
classifier alone, although the uncertainty associated with the measurements makes this
difficult to say with absolute certainty. Also, the KNN and NN classifiers use entirely
different features, so the results here are linked to both which classifiers were used and
which features they were given to base classifications on. In any case, it does seem
apparent from that the combination of a KNN classifier and NN’s operating in
conjunction do perform better than either type of classifier operating alone.
 One surprising result was that basic KNN classification performed better when
combined with NN’s than KNN with feature selection combined with NN’s. This result
should be treated with caution, as there was a relatively large error associated with
experiment P, but it still bears investigation.
 This result may also be due to the effect of round robin and hierarchal ensembles
immediately achieving perfect fitnesses with non-optimal feature selections during
training, as discussed in Section 7.4. This would make most of the classifiers unable to
benefit from feature selection. Indeed, it is even reasonable to suspect that, in
circumstances such as this, performance could be poorer with feature selection that
without, as perfect results during training could cause the system to settle on a selection
of features less good than even the entire feature set.

 112

Figure 16: Effect of different classification methodologies within a classifier ensemble on
the classification of Taxonomy T-9. Values are averages over all folds and error bars
correspond to standard error. Letter codes identify the experiments (see Table 2).

Figure 17: Effect of maximum number of neural network training epochs on success
rates. The left plot gives the average success rates as a function of number of epochs of
Experiments M, I and N. The right plot gives the sum of squares error of a typical Pitched
Instruments Present NN classifier in a flat leaf classification ensemble in Experiment N.

Effect of Classification Technique on Classification Success
Rates

85

75

80
83

89

65

70

75

80

85

90

95

100

A: Bas ic
KNN

B: KNN with
Feature

Selection

O: NNs I: Bas ic KNN
and NNs

P: KNN with
Feature

Selection,
NNs

S
uc

ce
ss

 R
at

e
(%

)

Effect of Neural Netw ork Epochs on Classification
Success Rates

65

70

75

80

85

90

95

100

M: 500 I: 1000 N: 1500

Epochs

S
u

cc
es

s
R

at
e

(%
)

Sum of Squares Error During Neural Ne tw ork
Training

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1
119 237 35

5
47

3
591 70

9
82

7
94

5
106

3
11

81
12

99
141

7

Epochs

S
um

 o
f S

qu
ar

es
 E

rr
o

r

 113

 Aside from this, it should be noted that Experiment P had a much lower over select
rate than Experiment I (6 % compared to 10%), which does give at least some support for
the use of feature selection. On the other hand, Experiment I only required 25.9 minutes
of training time, whereas experiment P needed 53.3 minutes. In any case, it appears that
either technique works well, and that it is better to combine KNN and NN’s in a classifier
ensemble than to limit oneself to only one classifier type. Although using a simple KNN
classifier with no feature selection (Experiment A) does have the advantage of requiring
essentially no training time, including NN’s in the experiment as well increased the
average success rate by 14%, a very significant amount, at a cost of only 25.9 minutes of
training time.
 Figure 17 explores the effects of varying the number of neural network training
epochs on success rates. Although the plot on the left shows that the best results were
achieved with 1000 epochs, there is enough uncertainty to make it possible that the
classifiers trained using 1500 epochs could in fact perform better or comparably. An
examination of the right plot shows that the network stopped rapidly converging after 600
or so epochs, but that small improvements were still being made right up to the 1500
epoch training termination point. This indicates that further improvements, although
probably relatively minor, could be achieved by further training. This is supported by the
significantly better secondary success rate and over select rate achieved in Experiment N
(1500 epochs) compared to Experiment I (1000 epochs), as can be seen in Table 4. There
is therefore reasonable reason to use larger numbers of training epochs, as long as training
time is not critical (Experiment N took 36.9 minutes to train, but Experiment I took only
25.9 minutes).

7.6 Classifier ensemble coordination
 All of the experiments discussed up to this point have used the full complement of
hierarchal, flat leaf and round robin classifier ensemble coordination techniques. It is now
appropriate to further examine the relative performance of these techniques while holding
other classifier parameters constant. Both KNN and NN classifiers were used for these
experiments, using feature selection and classifier weighting.
 Figure 18 reveals some interesting results. Initially, one might be very excited by the
100% success rate achieved by the round robin only classifier in experiment Q.
Unfortunately, this is accompanied with an average over select rate of 96%, which is
entirely unacceptable. An additional experiment (R) was performed to further investigate
this, where the round robin classifiers were only allowed to classify recordings into a
single category. The resultant average success rate was 85%, which is not bad, although
certainly less impressive than 100%.

 114

Figure 18: Effect of different classifier ensemble coordination methodologies on the
classification of Taxonomy T-9. Values are averages over all folds and error bars
correspond to standard error. Letter codes identify the experiments (see Table 2).

 The problem here was that each round robin classifier was trained only with
recordings belonging to its candidate categories, as is standard practice with round robin
classification. When faced with a recording belonging to neither of its two candidate
categories during test classification, a round robin classifier usually output a high score
for at least one of the candidates. This is not at all a problem if one only wishes to have
one winning category, since one can simply choose the category with the highest average
score, without worrying about how high the other scores are. If one can have a variable
number of correct classifications, however, then matters become more difficult, as one
cannot assume that just choosing one winner is sufficient. The differences between the
scores of all categories when the scores for all round robin classifiers for a recording were
averaged were fairly small, thus making it difficult to decide how many categories should
be chosen. Even though the highest score was often correct, which is why experiment R
had good results, this is not much help in cases where there can be multiple correct
categories or where one wishes to have the possibility of having labels of “unknown”
assigned to wrongly classified recordings rather than an incorrect label.
 It was therefore decided to set all scores but the highest from all round robin classifier
ensembles to 0 when round robin classification was used with other techniques. This was
done on all experiments presented in Tables 2 to 5 (except Q, of course). This had the
effect of boosting the score of one particular category for each recording, and thus

Effect of Classifier Ensemble Coorination Techniques on
Classification Success Rates

85
89

83
90

8685

100

84

65
70
75
80
85
90
95

100

Q: R
R (m

an
y w

inn
ers)

R: R
R (o

ne
 w

inn
er)

S: F
lat

T: H
ierar

ch
al

U: F
la t, R

R

V: H
ier

arc
ha

l, R
R

W
: H

ier
arch

al,
 F

lat

P: H
ier

arc
ha

l, F
la t, R

R

S
uc

ce
ss

 R
at

e
(%

)

 115

making it more likely to be chosen by the hierarchal and flat classifiers. This leads one to
suspect that this would have the overall effects of improving the number of classifications
where at least one category was correct and of bringing down the over select rate.
Unfortunately, this could also have the less desirable effects of lowering the number of
failed classifications that were assigned unknown labels rather than erroneous labels and
of causing the classification system to be more likely to miss one or more of the
categories of recordings with multiple correct classifications.
 So, round robin classification as implemented here is inappropriate for use by itself if
one wishes to have a variable number of categories assigned to each recording, and its use
in conjunction with other forms classifier ensemble coordination has both strengths and
weaknesses. One possible way of getting around the problem discussed above would be
to train round robin classifier ensembles on all training recordings, thus making them
accustomed to giving negative results as well as positive results. This, unfortunately has
the disadvantage of potentially drastically increasing training time, as a single round robin
classifier would thus require almost as much training time as a leaf classifier. This is
problematic for large taxonomies, as a taxonomy of n categories requires the following
number of round robin classifiers, which grows quickly:

 (14)

 Looking at all of the experiments in Figure 18, it can be seen that hierarchal
classification by itself and hierarchal classification combined with flat leaf classification
had the best average success rates. Unfortunately, these two experiments also had the
highest average over select rates, of 21% and 19% respectively, both significantly higher
than experiments U, V and P. In fact, an examination of Figure 19 shows that those
experiments that combined round robin classification (now only choosing one winning
category) with other techniques had significantly lower average over select rates than
experiments that did not include a round robin classifier. This confirms the suspicions
expressed above that the use of round robin classification along with other techniques
lowers the overall success rate (when dealing with a variable number of correct categories
per recording), but also decreases the over select rate.

)!2(2
!

2 −
=

n
n

Cn

 116

Figure 19: Effect of different classifier ensemble coordination methodologies on over
select rates with Taxonomy T-9. Values are averages over all folds and error bars
correspond to standard error. Letter codes identify the experiments (see Table 2).

Figure 20: Effect of different classifier ensemble coordination methodologies on training
times with Taxonomy T-9. Values are averages over all folds and error bars correspond
to standard error. Letter codes identify the experiments (see Table 2).

Effect of Classifier Ensemble Coorination Techniques on
Over Select Rates

6

3
0

21

14

19

0

5

10

15

20

25

S: Flat T: Hierarchal U: Flat, RR V: Hierarchal,
RR

W: Hierarchal,
Flat

P: Hierarchal,
Flat, RR

O
ve

r S
el

ec
t

R
at

e
(%

)

Effect of Classifier Ensemble Coorination Techniques on
Training Times

25.2

9.7
13.6

42.0
43.6

53.3

0

10

20

30

40

50

60

S: Flat T:
Hierarchal

U: Flat, RR V:
Hierarchal,

RR

W:
Hierarchal,

Flat

P:
Hierarchal,

Flat, RR

Tr
ai

ni
ng

 T
im

e
fo

r
O

ne
 F

ol
d

(m
in

ut
es

)

 117

 Which coordination method is the best to choose likely depends on one’s priorities. If
one is willing to tolerate classifications that may include some false positives in addition
to the correct category(ies), then simple hierarchal classification is probably the best
choice, since experiment T achieved a success rate of 90%, and required only 13.6
minutes of training time. This training time is very good in comparison to other
techniques, as can be seen in Figure 20. The fact that some extra categories will be found
may not be as critical as one thinks, as they will be likely to be similar to the correct
categories, as exhibited by the 98.2% root rate for experiment T (see Table 4). The use of
combined hierarchal and flat classification may also be appropriate if one does not mind
some false positives, since the success rate and over select rate were comparable for
Experiments T and W, but Experiment W had an excellent secondary success rate of
54%, far higher than any other experiment. However, experiment W also required almost
twice the training time of Experiment T.
 If one considers a high over select rate unacceptable and does not mind some
increased training time, then the combination of hierarchal, flat and round robin
classification is likely the best option. Experiment P achieved a very respectable success
rate of 85%, and had a relatively small over select rate of 6%. P did require an average of
53.3 minutes of training time, however, so flat classification combined with round robin
or hierarchal classification combined with round robin would be good choices for
someone trying to cut down a little on training time, as they also have reasonable success
rates and over select rates.
 As a final note, the exclusively flat leaf classification of experiment S obtained a 15%
unknown rate, which is at least 3 times as high as the unknown rate for any other
experiment with T-9. This seems to indicate that flat leaf only classification is an
appropriate choice if one is particularly concerned about incorrect classifications and
wishes to ensure that erroneous classifications are more likely to be marked as unknown
rather that given incorrect labels.

7.7 Benchmark classification for 9 leaf taxonomy
 Upon reviewing the above sections, it seems apparent that different classification
settings are better suited to different needs. It is desirable, however, to have a single
general purpose classifier to benchmark the system and present as a final overall result for
Taxonomy T-9. It was decided to choose the best overall configuration, and then train it
with a greater number of iterations than had been used previously in order to arrive at the
benchmark. This classifier configuration is described under Experiment Z in Table 2. This
particular configuration was chosen because it coincided with the classifier parameters
revealed in the previous experiments to give the near best success rate while at the same

 118

Figure 21: Performance of benchmark classifier for Taxonomy T-9 (Experiment Z).
Values are averages over all folds and error bars correspond to standard error.

time minimizing the over select rate and not requiring an excessive amount of training
thime. The results of this benchmark can be seen if Figure 21.
 These results were quite good. Even though earlier experiments achieved superior
success rates up to 90% (Experiment T), root rates up to 99.1% (Experiment W),
secondary success rates as high as 54% (Experiment W) and over select rates as low as
0% (Experiment U), the results for Experiment Z characterize the best overall
performance. The training time of 89.5 minutes for Experiment Z, although higher than
that of previous experiments because of the additional GA and NN iterations used, is
nonetheless more than small enough for practical purposes.
 The particular kinds of errors made during classification are shown on Table 6, the
confusion matrix for Experiment Z. Figure 22 shows the relative success rates for
recordings belonging to different categories in Experiment Z. The distributions of
classifications shown here are generally consistent with the distributions found in other
experiments.

Benchmark Performance for Taxonomy T-9
Experiment Z

4

13

95.6

86

0

10

20

30

40

50

60

70

80

90

100

Success Rate Root Rate Secondary
Success Rate

Over Select Rate

R
at

e
(%

)

 119

 Bebop Jazz

Soul
Swing Rap Punk Country Baroque Modern

Class.
Romantic

Bebop 80±6 16±7 0±0 0±0 0±0 2±2 0±0 2±2 0±0
J. Soul 14±4 67±6 0±0 12±9 0±0 10±4 0±0 4±4 0±0
Swing 6±6 3±2 100±0 0±0 0±0 0±0 0±0 0±0 0±0
Rap 0±0 2±2 0±0 80±9 0±0 0±0 0±0 0±0 0±0
Punk 0±0 2±2 0±0 0±0 100±0 0±0 0±0 0±0 0±0
Country 0±0 5±4 0±0 4±4 0±0 88±5 0±0 0±0 0±0
Baroque 0±0 0±0 0±0 4±4 0±0 0±0 92±5 2±2 0±0
M. Class. 0±0 0±0 0±0 0±0 0±0 0±0 0±0 70±9 16±12
Romantic 0±0 4±4 0±0 0±0 0±0 0±0 8±5 22±10 84±12

Table 6: Taxonomy T-9 confusion matrix for Experiment Z. The columns correspond to
the model classifications and the rows correspond to how the test recordings were
actually classified. Values are average percentages across all five folds of the
experiment. Percentages are normalized for each leaf category. The boxes identify
groups belonging to the same root categories.

Figure 22: Success rates for Experiment Z with Taxonomy T-9. Root Success Rate
gives how often a recording belonging to the given root category was assigned leaf
label(s) with the correct root ancestor(s), and Leaf Success Rate gives how often a
recording belonging to a given root category was assigned the correct leaf label(s).
Values are averages over all folds.

Relative Performance of Different Root Categories

0
10
20
30
40
50
60
70
80
90

100

Jazz Popular Western
Classical

S
uc

ce
ss

 R
at

e
(%

)

Root Success Rate

Leaf Success Rate

 120

 As can be seen in Table 6 and Figure 22, recordings that were assigned erroneous
labels were usually at least classified as belonging to leaf genres with the correct roots,
except in the case of Popular Music. Popular Music recordings were most often assigned
the correct leaf labels, however. As can be seen in Figure 22, Jazz, Classical and Popular
recordings were classified with fairly similar success.
 Swing and Punk recordings were unfailingly classified correctly. Jazz Soul and
Modern Classical performed the worst, with success rates of 67% and 70% respectively.
The performance of Modern Classical was not overly concerning, however, since 77% of
the misclassified Modern Classical Recordings were classified as Romantic, which can be
quite similar to Modern Classical in some cases. Although 19% of the Jazz Soul
recordings were classified as Bebop or Swing, which is not too worrying, 18% of Jazz
Soul recordings were classified as dissimilar categories. The relatively poor performance
of Jazz Soul is perhaps not surprising, however, as this genre does have much in common
with other jazz genres as well as some popular genres, so there it has a fairly high amount
of overlap with other categories that could confuse the classifiers. Aside from this,
however, performance was excellent overall with Experiment Z in particular and
Taxonomy T-9 in general

7.8 Relative performance of different features
 A detailed analysis of which features were most useful in different contexts is beyond
the scope of this thesis, but could be of great musicological interest, and is therefore
worth pursuing in the future. Automatically produced records were kept of the selections
and relative weightings assigned to each feature and classifier in all of the experiments
discussed in this chapter, and are available for future research. These may be of limited
utility with respect to Taxonomy T-9, however, since, as discussed earlier in this chapter,
the specialized round robin and hierarchal classifiers performed so well in training with
such a wide variety of feature sub-sets that the particular ones selected were probably not
near-optimal. The results for Taxonomy T-39 were slightly better in this respect,
however, as the categories there were more similar, thus making feature selection more
important and forcing the genetic algorithms to work harder to find good solutions. Future
experiments where round robin and hierarchal classifiers are trained on all recordings, not
just ones belonging to their candidate categories, could provide more musicologically
interesting feature selections and weightings for both taxonomies.
 In general, it can be seen from an informal examination of the feature selection and
weightings discussed in the above experiments that the classifiers made significant use of
features belonging to all of the feature classes. The instrumentation features were
particularly useful, however, as these features were assigned 42% of the weight in , for
example, experiment Z, even though they only comprised 18% of the candidate features.

 121

7.9 Experiments with the 38 leaf taxonomy
 Once it was established that the software developed here was able to perform very
well with the simplified T-9 taxonomy, it was then appropriate to test it on the more
difficult T-38. The experiments performed are described in detail in Table 3 (p. 104) and
the results are presented on Table 5 (p.105). Experiments AA and BB were the first ones
performed, as they required essentially no training time, since only simple KNN
classification was used with no feature selection or weighting. Success rates of 37% with
only flat classification and 43% with hierarchal, flat leaf and round robin classification
were achieved, which were less than ideal. Of course, this was not surprising given the
complexity of the taxonomy and the limited classification techniques used. It was
therefore necessary to use more sophisticated classification methodologies.
 Training time was much more of a concern here than with Taxonomy T-9, as the full
library of 950 recordings was used for training and testing, thus requiring greater time for
each training iteration, and the larger taxonomy also required a greater number of
hierarchal and round robin classifiers (18 and 703 respectively, as opposed to 4 and 36 for
T-9). Training time concerns were particularly significant, given that 5 complete folds
needed to be performed for each experiment. All of this meant that the level of
experimentation performed with Taxonomy T-9 was not feasible here, and that limitations
had to be placed on the techniques used in order to keep training times reasonable.
 Several experiments were performed with hierarchal and/or flat classification, with
and without feature selection. Although the differences in GA and NN iterations in these
trials limits the direct comparisons that can be made of these experiments, the differences
are not so great so as to prevent some rough conclusions from being drawn. The particular
classifier configurations chosen were based on the results of the experiments with T-9.
Although it is not valid to say that all of the results from these experiments necessarily
generalize to T-38, they did provide a good starting point.
 Round robin classification was rejected immediately, as the 703 round robin
classifiers took up to a matter of days to train. Furthermore, the use of round robin
classifiers caused classification times, which had previously been effectively negligible,
to become perceptible. In one test in Experiment BB it took almost 3 minutes to classify
the 190 testing recordings, something that is less than ideal in real world situations where
the system should be able to deal with multiple requests rapidly without causing users to
become impatient.
 Experiments CC, EE and FF all performed comparably with regard to success rate,
and Experiment DD performed somewhat worse, as can be seen on Figure 23. The
differences in training time were much more significant, however, as can be seen in
Figure 24. Experiment DD took a great deal of time to train, but training times for CC and
FF were comparatively small.

 122

Figure 23: Effect of classifier ensemble coordination and feature selection techniques on
success rates for Taxonomy T-38. Values are averages over all folds and error bars
correspond to standard error. Letter codes identify the experiments (see Table 3).

Figure 24: Effect of classifier ensemble coordination and feature selection techniques on
training times for Taxonomy T-38. Values are averages over all folds and error bars
correspond to standard error. Letter codes identify the experiments (see Table 3).

Success Rates with Different Classifier Ensemble
Coordination and Feature Selection Methodologies

57 52 56 57

0
10
20
30
40
50
60
70
80
90

100

CC: Hierarchal,
Flat Leaf , A ll 1-D

Features,
Weighted

Classif iers

DD: Hierarchal,
Flat Leaf ,

Selected 1-D
Features,
Weighted

Classif iers

EE: Hierarchal
Only, Selected 1-

D Features,
Weighted

Classif iers

FF: Hierarchal
Only, A ll 1-D

Features,
Weighted

Classif iers

S
uc

ce
ss

 R
at

e
(%

)

Training Times with Different Classifier Ensemble
Coordination and Feature Selection Methodologies

80

196

331

99

0

50

100

150

200

250

300

350

CC: Hierarchal,
Flat Leaf , A ll 1-D

Features,
Weighted

Classif iers

DD: Hierarchal,
Flat Leaf ,

Selected 1-D
Features,
Weighted

Classif iers

EE: Hierarchal
Only, Selected 1-

D Features,
Weighted

Classif iers

FF: Hierarchal
Only, A ll 1-D

Features,
Weighted

Classif iers

T
ra

in
in

g
 T

im
e

(m
in

)

 123

 These results seem to indicate that the configuration used in Experiment DD is a poor
choice. Beyond this, however, the other results are fairly similar in terms of average
success rates. A further examination of Table 5 indicates, however, that experiments CC
and DD performed much better than EE and FF in terms of their over select and unknown
rates, and worse in terms of their root rates.
 These overall results seem to make Experiment CC stand out as the best configuration
of those experimented with. Its success rate was as good as any of the configurations and
its training time was 99 minutes, a very small amount for such a large taxonomy.
Furthermore, its over select rate of 21% was better than the other three options, although
still uncomfortably high, and its unknown rate was the best of the group at 32%, a very
good value. Although the root rate of 74.9% was less than the values of 81.2% and 80.6%
for Experiments EE and FF respectively, this is a reasonable sacrifice to make in
exchange for the benefits discussed above.
 It is interesting to note that Experiment CC, with no one-dimensional feature
selection, performed better than Experiment DD, which did use feature selection but was
otherwise identical. One would expect hierarchal classifiers with feature selection to
perform better, not worse. An informal examination of the training records from
Experiments DD and EE, where feature selection was performed, helped to shed light on
the several causes of this.
 To begin with, the same problem occurred here with some hierarchal classifiers that
occurred with taxonomy T-9, namely that some of the hierarchal classifiers were able to
perfectly classify the training recordings belonging to their candidate categories with a
wide variety of feature sub-sets, and thus had perfect fitness during training and therefore
did not evolve an effective feature selection. During actual testing, these classifiers were
exposed to recordings that did not in fact belong to any of their candidate categories.
Ideally, in situations such as this, a good feature set would have been evolved which
would reject such recordings. However, since almost any feature set worked during
training, such an optimized feature set was not available, and the classifiers behaved
unpredictably when given recording belonging to categories that they had not been
exposed to during training.
 The solution to this problem, as discussed earlier, would be to train the hierarchal
classifiers with recordings of all types, not just ones that belong to their particular
candidate categories. This would, for example, turn an (effectively) two-category
classifier such as one with candidate categories of Bebop and Cool into a three-category
Bebop / Cool / neither classifier, thereby increasing the difficulty of the classification task
and hopefully forcing the evolution of a good feature selection. This would, however,
have the negative effect of greatly increasing training time.

 124

 Fortunately, this problem was not as prevalent here as it was with T-9. A number of
the hierarchal classifiers had fine enough distinctions between their candidate categories
that distinguishing between them was somewhat difficult. This meant that a random
feature subset was not sufficient to provide perfect fitness, so the GA’s were forced to
evolve better feature selections, which made the classifiers perform better during testing.
An additional problem, however, was that there were not enough generations of evolution
performed, as the fitness had often not yet converged once the maximum generations of
30 or 35 were reached. This low maximum on generations was imposed in order to cut
down training times, as feature selection was the most time consuming process during
training. Unfortunately, this may well have severely limited performance. This, combined
with the fact that some of the more general hierarchal classifiers still suffered from too
easy success during training and therefore led to incorrect classification paths down the
hierarchy, probably explains why the experiments shown in Figure 24 that did not use any
feature selection performed better than those that did.
 If one looks at the results for T-38 in the context of those for T-9, the T-38
performances seem quite mediocre at first. The success rate did not exceed 57% for any
of the experiments, and the over select rate was over 20% for all experiments that
achieved a success rate over 43%. However, respectable root rates between 71.5% and
81.2% were achieved (compared to a chance rate of 11%), along with decent secondary
success rates of 11% to 22% and impressive unknown rates of up to 32%. Furthermore,
results of this order were achieved with training times as low as 80 to 99 minutes, which
is very impressive for a taxonomy of this size.
 Even the success rates of 56% to 57% are not insignificant when it is considered that
the random chance of success is only a tiny 2.6% even if one is limiting oneself to one
correct classification per genre. The probability of randomly guessing the correct genres
when there could be more than one is significantly lower even than this. Furthermore, to
put these results in context, Tzanetakis, Essl and Cooks’ groundbreaking and often cited
automatic genre classification research (2001) of only three years ago achieved a success
rate of 62% with only 6 genres, a far easier task than dealing with 38 genres. Since no
one, to the best of the authour’s knowledge, has attempted to work with a taxonomy of
anywhere near the size or difficulty of T-38, the fact that success rates of 56% to 57%
were achieved is actually somewhat encouraging, and leads one to hope that future
research could well significantly improve these results.
 If one is willing to accept training times that span one or more weeks, even the system
used here could potentially achieve significantly improved success rates without any
modifications. Simply increasing the number of NN epochs and GA generations and/or
population could cause gains. In addition, training the hierarchal classifiers on all training
recordings could potentially greatly increase performance. The inclusion of round robin

 125

classifiers, also trained using all recordings, could also significantly improve results,
although this would cause training times to increase by a factor of 37 in the case of T-38.
 So, the results for T-38, although not suitable for practical applications, are
nonetheless quite encouraging from a research perspective, and hold a great deal of
potential. The first future step towards exploring this would be to perform tests that
require weeks of training time, something outside of the timeframe of this thesis, but not
at all unreasonable, when it is considered that humans take years to learn the knowledge
necessary to distinguish between genres, and even then they don’t always perform very
well. There are also numerous other techniques and approaches that could improve results
in the future, as discussed in Section 8.3.

 126

8. Conclusions and Future Work

8.1 Conclusions and summary of experimental results
 Overall, the results of this study were quite encouraging, both from a purely
performance based perspective as well as from a theoretical perspective. The benchmark
experiment with the 9 category taxonomy was, on average, able to correctly classify
recordings 86±3% of the time by leaf genre, and found the correct root genre 95.6±1.9%
of the time. Even in those cases where a misclassification occurred, the correct category
was given by the system as a secondary choice an average of 13±8% of them time. In
addition, those errors that were made tended to be reasonable (e.g. Bebop was
occasionally misclassified as Jazz Soul, but never as Baroque).
 These numbers are particularly impressive, given that recordings were permitted to
have a variable number of model categories. This made the classification task much more
difficult than simply choosing a single winning category per recording without needing to
also determine the number of categories to select as well. Even with this added difficulty,
recordings were only assigned extra categories that they did not belong to an average of
4±1% of the time. Furthermore, an average of only 89.5±0.3 minutes of training time
were required on a personal computer, a very small amount of time.
 To put these results in perspective, it is important to realize that the average Western
human would probably have difficulty achieving success rates this high. In an experiment
involving listening to three seconds of audio recordings belonging to one out of ten
genres (blues, country, classical, dance, jazz, latin, pop, R&B, rap and rock), college
listeners were only able to perform correct classifications only 70% of the time (Perrot &
Gjerdigen 1999). Although these numbers are not directly comparable to the results of the
system described in this thesis, as different taxonomies were used and audio data was
examined rather than high-level musical representations, this study nonetheless puts
success rates in context. If relatively educated humans with training periods of years can
only achieve success rates of 70%, then a success rate of 86% after only 89.5 minutes of
training is exceptional.
 Although direct comparisons with existing automatic classification systems that have
used entirely different taxonomies, recording libraries and file formats must also be
treated with some caution, some loose comparisons can help to put these success rates in
context. A review of Chapter 4 will show that only one of the audio genre classification
systems to date dealing with more than five candidate categories have achieved success
rates above 80%. Pye (2000), who correctly classified recordings 92% of the time into
one of six candidate categories, is the single exception. As far as classification systems
that use symbolic data go, the best known previous results are 84% for two-way

 127

classifications (Shan & Kuo 2003) and 63% for three-way classifications (Chai & Vercoe
2001).
 When it is considered that increases in taxonomy size are well known to greatly
increase classification difficulty, and that the system presented here was the only one
forced to deal with the added complication of recordings having variable numbers of
correct classifications, the result of 86% with 9 candidate categories is quite impressive.
Of course, it is important to stress once again that one cannot make direct judgements as
to whether one system is better than another without tests involving the use the same
taxonomy and testing recordings. Nonetheless, it is clear that the rate of 86% achieved
here is a very good result, compared to both humans and existing automatic genre
classification systems.
 An important implication of this success is that it clearly demonstrates the potential of
high-level features, which could be applied to a wide variety of musical classification
tasks beyond the scope of genre classification. High-level features could be used in
conjunction with low-level features in future research to improve overall performance of
audio classification systems, and could also be of great use if one wishes to classify
scores for which no audio recordings are readily available.
 The results for the 38 leaf category taxonomy were also encouraging. The best overall
configuration of the system that was experimented with was able to correctly identify the
leaf genre(s) of the 38 leaf taxonomy with an average success rate of 57±5% (with extra
categories selected 21±1% of the time). This configuration also had a success rate of
74.9±0.1% when classifying recordings into one or more of the 9 root genres.
 These numbers are impressive given the very large size of the taxonomy and the fact
that the random chance of success is only a tiny 2.6% even if one is only limiting oneself
to one correct classification per genre. The probability of randomly guessing the correct
genres when there could be more than one is significantly lower even than this.
Furthermore, to put these results in context, Tzanetakis, Essl and Cooks’ (2001)
groundbreaking and often cited automatic genre classification research of only three years
ago achieved a success rate of 62% with only 6 genres, a far easier task than dealing with
38 genres. Since no one, to the best of the authour’s knowledge, has attempted to work
with a taxonomy of anywhere near the size or difficulty of the 38 leaf category taxonomy
experimented with here, the fact that a success rate of 57% was achieved is actually quite
encouraging. The subsequent improvements to Tzanetakis, Essl and Cooks’ system (see
Chapter 4) lead one to hope that similar future improvements will be achieved here as
well.
 It is also encouraging to note that the incorrectly classified recordings were assigned a
label of “unknown” an average of 32±1% of the time rather than some erroneous label.
This is very important, as it can act as a flag for human operators, and is much better than

 128

just giving recordings wrong labels that can be difficult to detect. Furthermore, the correct
genre was specified an average of 13±1% of the time as a secondary choice when it was
missed as a primary choice. Finally, and quite impressively for such a large taxonomy,
these results were achieved after an average of only 99±2 minutes of training on a
personal computer.
 Although the 57% success rate is still too low for practical applications, it is quite
impressive from a theoretical perspective as a groundbreaking rate for such a difficult
taxonomy, and holds a good deal of potential for future improvement. Even beyond the
significantly increased classification difficulty of requiring that the system be able to
classify recordings into a variable number of categories and be able to classify recordings
as unknown in some cases rather than just giving an erroneous classification, there were a
number of other factors that made the classification task performed here particularly hard.
 Time limitations imposed a limit on the number of training recordings that could be
collected, with the result that only 20 recordings were available per leaf category after
some recordings had been reserved for testing. This is not a very large number to learn to
recognize genres with, particularly considering the far larger number of recordings that
humans are exposed to in their lives. The use of MIDI itself also proved to be a challenge,
as important features such are lyrics are not consistently available, and therefore had to be
ignored here, and most recordings are sequenced in an amateurish and inconsistent
manner.
 The 38 leaf category taxonomy also included more categories than the average person
(although not music professional) would likely be well acquainted with, and also
contained some genres where the differences can be primarily sociological for some
recordings (e.g. Alternative Rock and Punk), leaving a limited amount of content-based
differences for the automatic classifier to work with. Furthermore, the categories were not
necessarily structured logically from a content-based perspective (e.g. Modern Classical
and Medieval music should be and were grouped together, despite the fact that they have
little in common from a content-based perspective), as was necessary to accurately
simulate real conditions, with the result that this complicated matters significantly for the
hierarchal classifiers.
 Aside from the actual performance of the system, the results of the experiments
described in Chapter 7 led to some interesting observations. To begin with, it was found
that the inclusion of increasing numbers of candidate features for the feature selection
system to choose from significantly improved classification performance. This leads to
the conclusion that the implementation of even further features could be beneficial,
despite the predictions of the curse of dimensionality, whose effects were probably
alleviated by the feature selection.

 129

 It was also observed that the neural network classifiers and their associated multi-
dimensional features worked slightly better than the KNN classifiers and their associated
one-dimensional features. Overall, however, the results of both types of classifiers acting
together in a classifier ensemble were better than either operating independently.
 In addition, it was found that the genetic algorithms of some round robin and
hierarchal classifiers converged immediately to significantly sub-optimal results during
feature selection and weighting rather than gradually evolving optimal or near-optimal
feature sub-sets. It was discovered that this was due to the classifiers being able to
perfectly classify their training recordings using a wide variety of sub-optimal feature
selections, with the result that even poor selections had perfect fitness, thus giving the
genetic algorithms no reason to evolve better selections. As is typically done with round
robin and hierarchal classifiers, the classifiers were only trained on examples belonging to
their candidate categories. During actual testing, these classifiers were exposed to
recordings that did not in fact belong to any of their candidate categories. Ideally, in
situations such as this, a good feature sub-set would have been evolved which would
reject such recordings. However, since almost any feature sub-set had worked during
training, such a good feature sub-set was not available, and the classifiers behaved
unpredictably when given recordings of types that they had not been trained on.
Essentially, the classifiers were doing their job too well during training for selection and
weighting to work effectively during testing.
 A potential solution to this problem would be to also train these classifiers on
recordings that do not belong to their candidate categories so that they could learn to
reject them. This would make the classifiers’ task more difficult by forcing them to learn
to deal with more types of recordings, thus increasing the probability that a poor feature
selection or weighting would not work as well, thereby forcing the genetic algorithms to
evolve better solutions. The downside of this approach is that it could greatly increase
training times, especially in cases of taxonomies with many leaf categories that would
require a very large number of round robin classifiers that would now each have long
training times.
 It turned out that this problem was less evident with the hierarchal classifiers of the
large taxonomy than it was with the smaller taxonomy. This is probably because the
candidate categories for each hierarchal classifier in the large taxonomy were often quite
similar, thus making the corresponding recordings more difficult to classify, thereby
making the classifiers unable to successfully classify training recordings with arbitrary
feature selections and therefore forcing the genetic algorithms to evolve better feature
selections and weightings. In any event, it was clear that it was important to take steps to
ensure that the round robin and hierarchal classifiers were not able to converge to perfect
fitness with significantly sub-optimal selections and weightings.

 130

 It was also observed that round robin classifiers can be problematic in situations
where recordings can belong to a variable number of candidate categories. This is because
there tends to be little difference between the average scores of all categories across all
round robin classifiers, thus making it difficult to decide how many are correct. This is
not a problem if one only needs a single classification for each recording, as one can
simply choose the category with the highest average score, which usually corresponds to
the correct category, and it does not matter if the score of this category is only slightly
higher than the scores of the other incorrect categories. This is a problem when dealing
with a variable number of possible correct classifications, however, since the small
differences between the scores of different categories produced by round robin classifiers
make it difficult to decide on the correct number of categories to choose.
 One solution would be to train round robin classifier ensembles on all training
recordings, thus making them accustomed to giving negative results as well as positive
results, thereby lowering the overall averages of incorrect categories. This, the same
solution as the solution proposed above for improving feature selection, has the same
disadvantage of potentially drastically increasing training time.
 An alternative solution, and the one used here, was to simply choose one winner for
the round robin classification, thereby bypassing this problem, but allowing the hierarchal
and flat leaf classifiers to select multiple winners, if appropriate. This had the effect of
lowering the overall success rate, since it made it more likely that recordings belonging to
multiple categories would have fewer of these categories selected by the classifiers, but
also decreased the amount of additional incorrect categories that were assigned to
recordings.
 A study of different classifier ensemble coordination methods also found that which
method is the best to use depends on one’s priorities. If one is willing to tolerate some
false positives in addition to the model category(ies), then simple hierarchal classification
is probably the best choice. The use of combined hierarchal and flat classification may
also be appropriate if one does not mind false positives and is willing to increase the
training time in exchange for a better secondary success rate. If one considers false
positives to be a particularly unacceptable type of error and does not mind a significantly
increased training time, then the combination of hierarchal, flat and round robin
classifiers is likely the best option. Flat leaf classification alone is an appropriate choice if
one is particularly concerned about false classifications and wishes to ensure that
erroneously classified recordings are more likely to be marked as unknown rather that
given incorrect labels, and does not mind sacrificing overall success rates a little.
 Overall, testing results showed that the system performed very well with a taxonomy
consisting of 9 leaf genres. The results also showed that, although the system cannot yet
deal with significantly larger taxonomies well enough for practical application, some

 131

respectable success is already possible, and there is great potential for future
improvement, as discussed in Section 8.3. This research also clearly demonstrated that
high-level features can be very successful as a basis for automatic classification.

8.2 Research contributions of this thesis
 This thesis attempted to classify recordings into a much larger, more sophisticated and
more realistic taxonomy than has been used in any known previous research on automatic
genre classification. Far more categories were used than had been previously, and
complications such as the possibility of recordings belonging to more than one category,
recordings not belonging to any categories, and categories having more than one parent
were incorporated into the taxonomy and classification methodology in order to make it
more realistic. Realistic genre categories were also used, many of which were similar to
one another. Realistic training examples were used as well, including ones that were in
many ways atypical of the genres that they belong to. All of this made the classification
done here far more difficult than any attempted previously, making this the first system to
approach genre classification as more than a toy problem.
 A large library of MIDI files was collected and manually classified based on genre.
This library could be used in future systems as a test bed comparing different systems.
 This research was the first wide-ranging investigation of the problem of musical genre
classification in general based on symbolic data rather than audio data. There certainly
have been some very interesting papers published on classification using symbolic data,
but all of them used a much narrower range of features than those used here, and did not
take full advantage of the types of features that can be extracted from symbolic data.
 The feature library designed and implemented here provides a very diverse and useful
resource for analyzing music, both for the purposes of classification and for other types of
analysis. Although there certainly has been a significant amount of research on
computerized analysis systems, this is the largest and most diverse one known to the
authour that analyzes and characterizes music in an overall statistical sense rather than
trying to derive meaning about the music or its structure. Many of the features that were
developed are original, and a number of features that had not previously been presented in
connection with one another were also collected from a variety of sources and presented
here in a united form. The feature library presented here could be made use of in a diverse
range of research projects.
 Feature selection and weighting techniques were used to experimentally determine
which features were most significant in different classification contexts. When combined
with the hierarchical classification approach that was used, this makes it possible to study
the importance of different features with respect to differentiating between different
categories, something which is of great musicological interest.

 132

 This is the first known implementation of on automatic genre classification that
includes a significant and serious discussion of the musicological and theoretical issues
relating to musical genre taxonomies rather than treating the task primarily in terms of
being an engineering problem only. This thesis also contains the most complete and
multidisciplinary known survey of automatic musical genre classification systems to date.
 The software was designed to have an easy-to-use and flexible graphical interface and
an easily extensible program design. This allows users and programmers of different skill
levels to easily adapt the software to their own classification needs with little learning
time. The software was also carefully coded and well documented in order to allow more
in-depth modifications by those with coding experience. This system was designed so that
it could be used for a large variety of musical classification tasks well beyond the scope
of musical genre classification, with little or no modification being necessary.
 A novel classification system was used here that made simultaneous use of
hierarchical classification, flat leaf category classification and round robin classification.
The separation of features into one and multi-dimensional types so that ensemble
classifiers could be used that took advantage of the relative strengths of KNN and neural
networks where they were needed the most was also a novel technique.

8.3 Future research
 The genre classification system that was developed here could easily be adapted to
tasks such as composer identification, performer identification, mood classification or
classification based on time period simply by changing the classification taxonomy and
training data. Future experiments with this expansion of scope could explore the multiple
ways in which this system could be used.
 More sophisticated methods could be developed for displaying the results of
classifications in order to make the positions of each recording relative to different
categories and of different categories relative to one another intuitively apparent. This has
been discussed by Pampalk (2001), Pampalk, Rauber and Merkl (2002) and Pampalk,
Dixon and Widmer (2003). Interfaces of the type described by Tzanetakis, Essl, and Cook
(2001) could also be investigated further and implemented as part of this system.
 The field of literary studies is perhaps the area in which the most work has been done
on identifying and classifying genres, and the adaptation of applied research from this
field into a musical context could prove useful. Rauber and Müller-Kögler (2001), to cite
just one example among many, have done interesting research into automatically
analyzing and classifying text documents and then presenting the results using an intuitive
GUI.
 Further theoretical study of genre in areas outside of music could provide insights as
well. The collections of papers edited by Duff (2000) and Grant (2003) are excellent

 133

resources on literary genre and film genre respectively. An expanded study could also be
made in the field of classification and labelling theory itself. Lakoff’s book (1987)
provides an excellent start in this direction, and further research in the fields of
psychology and library science could also be useful. Even the way that recipes are
categorized in a cook book, for example, or the ways that biologists organize types of life,
could be revealing in respect to how humans assign labels and organize categories.
Research in this field could help one to construct improved musical genre taxonomies.
 The system could be expanded to deal with other types of file formats. A module for
analyzing KERN, MusicXML or GUIDO files, or perhaps translating them to MIDI,
would expand the types of recordings that could be classified. Further research into
extracting high-level information from printed scores and audio data would also be
useful.
 The system could also be expanded to include features extracted from low-level audio
data directly that are not necessarily directly translatable to symbolic terms, but
nonetheless help one to distinguish between genres. The work covered in Section 4.2
would certainly prove useful in this respect, as would more general work such as that by
Scheirer (2000). Audio data contains the information that most humans actually use to
perform content-based classifications, so it would be advantageous to make use of these
low-level cues as well as the higher-level musical awareness that trained musicians
possess.
 Using both symbolic and audio data would make it possible to take advantage of score
alignment research in order to match scores to audio recordings and remove noisy
transcription and performance errors. This would also give a measure of the amount of
deviation from the score in a performance, which could be a useful feature in itself.
Perhaps the ideal would be the exploitation of music formats, such as that proposed in the
MPEG-21 standard, which can package audio data together with symbolic data describing
the score and production parameters of the music. This would make an extremely wide
range of features available all in one package.
 Data mining techniques could be implemented in order to collect sociocultural
features about the performers and audiences of different genres. Metadata such as country
of origin, date of composition, composer, performers who have recorded a piece, ethnicity
of performers, age of performers, fan demographics, etc. could all prove to be highly
revealing. The emergent approach suggested by Aucouturier and Pachet (2003) holds a
great deal of promise in theory. The work of Whitman and Smaragdis (2002) would
provide a good starting point for this. A module to derive features from lyrics, including
meaning, vocabulary used, rhyming scheme and syllabic structure could prove very
useful.

 134

 As suggested by Tekman and Horascsu (2002), emotional feeling and mood could
provide useful features, albeit potentially hard ones to extract. Research on the KANSEI
system (Katayose & Inokuchi 1989) as well as other recent research in this area, such as
that by Liu, Lu and Zhang (2003) and Li and Ogihara (2003), could prove useful in this
respect.
 Further high-level features could be implemented as well, including those that were
presented in Chapter 5 but have not yet been implemented. Despite the limitations of
sophisticated theoretical analytical techniques in relation to genre classification, as
discussed in Section 5.1, one should still use whatever information is available. Features
derived from these types of analyses could in fact be highly useful for a certain limited
number of genres. Harmonic analysis could, for example, be useful for distinguishing
between types of Classical music, but one would need a separate module to first, for
example, measure the degree of tonality of a recording in order to decide whether it
would be appropriate to use such an analysis. A hybrid expert system / supervised
learning system could be developed in order to take advantage of sophisticated analysis
techniques while avoiding the weaknesses of expert systems discussed in Section 1.5.
 If it turns out that sophisticated analytical techniques are too problematic to
implement, it could still be useful to implement a relatively rudimentary harmonic
analysis system. Work such as that by Raphael and Stoddard (2003) and the techniques
used by Rowe (2001) could be useful in this respect. Features derived from chord
progressions based on Roman numerals or from chord voicings / inversions could be
extracted, for example. Although these analyses might certainly contain errors due to the
difficulty and subjectivity of harmonic analyses, and would have limited value in and of
themselves, features derived from such analyses could still provide a rough but effective
way of distinguishing between genres. Simple statistics based on the intervals of notes
above the bass note could prove to be revealing in the context of known chord
progressions. The ability to take arpeggios into account as well as vertical chords would
also be valuable.
 More sophisticated statistical analyses could also be applied to the histogram features
described in Chapter 5. The calculation of higher order moments, skew, scatter and
excess, for example, could all be useful. Gabura’s paper (1965) provides a good starting
point for this approach. A more in depth study of the techniques used by
ethnomusicologists to compare different types of music could also provide more ideas. It
might also be beneficial to use alternative ways of representing pitch, as suggested by
Chai and Vercoe (2001).
 Further research on more sophisticated features based on sequential information could
be useful as well. Phrasing and repetition, in terms of melodies, chord progressions and
rhythms, are very important. The degree and regularity at which such patterns are

 135

repeated, as well as their general character, length and register could all be useful
features. It would also be good to collect features related to transposition, decoration and
inversion of motifs. In order to extract features related to these characteristics, however, it
would first be necessary to have an effective phrase detection and segmentation system,
something which would be a valuable research contribution beyond just the scope of just
classification systems. It would also be useful to make use of a system that could
automatically segment different lines in order to derive features related to melodic
contour.
 The problem of segmentation in general is highly relevant to genre classification, as a
single recording can have different parts that are characteristic of different genres. It
would be beneficial to have a system that could properly segment such pieces so that each
segment could be classified separately, rather than having the features averaged out,
which could result in features that are not indicative of any of the correct genres.
 There has been some interesting research done on models of how humans code
sequential musical information as well as on applications of generative grammars to
music, which is one way in which to think of phrases. Stevens and Latimer (1997) present
some references on these areas that could provide a good starting point for adapting this
research to the purposes of music classification, as well as some further references on the
limitations of these approaches. Research on detecting and processing repeating musical
patterns, such as that by Hsu et al. (2001), Typke et al. (2003) or Lartillot (2003), could
be taken advantage of. Works such as those by Tseng (1999) or Foote (1999) could also
be useful in devising a system to extract melodies and segment recordings. An alternative
and potentially very interesting approach to extracting features from phrases would be to
characterize melodies by fitting them to functions, as was done by Laine and
Kuuskankare (1994), in order to search for patterns and then apply functional data
analysis techniques. In the case of audio segmentation, Dannenberg and Hu (2002)
present several techniques for searching the underlying structure of music that could be
used to search for different types of repetition in the music.
 Existing research on query by humming systems could also provide a useful resource
for the extraction of features based on sequences and phrases. Features could be extracted
by collecting and analyzing n-grams relating to melodies, rhythms and chord
progressions. There are a number of resources that could be useful in this respect
(Agrawal & Srikant 1995; Hsu, Liu & Chen 2001; Selfridge-Field 1998; Uitdenbogerd &
Zobel 1998). The work of Shan and Kuo (2003) could also be of use, as it considers the
problem in the context of style classification. The work of Yip and Kao (1999) also
provides some useful background on melody-based features.
 All of the features that were used in this thesis were extracted from entire MIDI files,
in order to take advantage of the full data that was available. Given that it is possible for

 136

humans to make genre identifications based on only short segments of data (Perrott &
Gjerdingen 1999), it should be possible for similar classifications to be made by
computers. It would therefore be interesting to conduct further studies using only short
segments of MIDI recordings to see if the system could still perform well. This would be
useful from the perspective of real-time classification. It should be noted, however, that
humans may make these quick classifications based on timbral data that is not available in
symbolic musical representations such as MIDI.
 The use of alternative classifiers could also improve results. Support vector machines,
for example, would be particularly well suited to the binary round-robin classifiers, and
some success has been had with this approach in the past (Xu et al. 2003). Hidden
Markov models could also be useful for classifying features dealing with sequential
events, such as melodies or chord progressions. Neural networks with feedback could also
be used to process sequential features.
 There have been a number of studies on the benefits of combining neural networks in
ensembles of different types using a variety of methods to coordinate the results (Granitto
et al. 2002; Hansen & Salaman 2001; Wanas & Kamel 2001; Wanas & Kamel 2002;
Zhou et al. 2001). Network ensembles such as these could be experimented with for the
purposes of musical genre classification, and some of the coordination techniques could
be adapted to the types of classifier ensembles already used here. Stevens and Latimer
(1997) and Crump (2002) present good surveys of literature relating to the application of
neural networks to music that could be consulted in order to devise more sophisticated
networks.
 Non-metric methods such as induction trees could also be used, as they offer the
significant advantage of revealing how classifications are performed. Inductive learning
could also help eliminate unneeded features. Some interesting work relating to this has
been done by John et al. (1994).
 Alternatives to genetic algorithms for feature selection could also be experimented
with. For example, principal component analysis could be used to reduce the
dimensionality of multi-dimensional features, since it is not as important that one be able
to judge the musicological importance of their components as it is for entirely different
features.
 Existing research into alternative ways of deciding which classifiers to group into
ensembles, such as that by Zenobi and Cunningham (2001) could be further explored in
order to gain ideas as to alternative types of classifier ensembles. Alternative techniques
could also be used to coordinate the ensembles as well. Studies such as that by Tax et al.
(2000) could be useful in this respect. Blackboard systems are one particularly promising
approach, where different classifiers or ensembles of classifiers could be treated as
knowledge sources. A good coverage of such systems is presented in Jagannathan et al.’s

 137

book (1989). The advantages of both expert systems and supervised learning could be
taken advantage of with this approach. Opitz and Maclin (1999) review and evaluate
some promising techniques for different ways in which neural networks and decision tree
classifiers can be combined.
 A system could be implemented that punishes certain kinds of errors more than
others. For example, a misclassification between two similar sub-genres would not be as
bad as confusion between Gangsta Rap and Baroque organ fugues, for example. This
could be considered in the evaluation of the system as well, rather than only looking at
potentially deceptive overall error rates, which may be as influenced by the choice of
genre taxonomy as by problems in the systems itself.
 Probably the best way to improve performance would be to acquire a larger and better
classified library of training and testing recordings. An automated system for finding and
downloading files and the acquisition of access to a large database of easily accessible
music would be of great use here.
 Techniques for automatically selecting the “best” training samples and eliminating
inappropriate ones could be applied. Hartono and Hashimoto (2002) have already done
some research on this topic, and there is certainly room for more exploration here. Care
must be taken not to leave out atypical members of a genre that nonetheless clearly do
belong to the genre, however. This means that this approach would require a great deal of
training data with well balanced representatives from all sub-types of each genre.
 More categories and training samples could also be used to further expand the scope
and effectiveness of the system in general. More attention could be given to the selection
of the taxonomy and model examples as well. These were, of necessity, designed and
chosen by the authour personally. Although external resources were certainly consulted,
better results could probably be achieved by forming a panel of experts that could come
up with their own taxonomy and model examples. The correlations between the
judgements of different panel members could also provide interesting psychological data.
 The results of such a study could be used as a large, diverse and standardized testbed
for other automatic musical genre classification systems, something that is sorely missing
at the moment, making it difficult to compare different systems. The work of Goto et al.
(2003) provides the beginning of work in this direction. Research into developing a
standardized way of studying and measuring musical similarity (Ellis et al. 2002;
Berenzweig et al. 2003) could also be adapted to genre-based applications.
 In regard to expansions to the taxonomy, the sub-genres of techno are one area of
particular muscicological interest, for which Reynolds’ work (1998) could be of particular
use, although it is becoming somewhat dated due to rapid rate of change in these types of
music. The taxonomy could also be expanded to include the ways in which blues music
has interfaced with other types of rhythm & blues music, such as jump blues and uptown

 138

R&B. The addition of genres such as Rockabilly, Surf, early British Invasion and Folk
Rock would help to make the taxonomy more complete. Folk musics of all kinds could
also be added, including American Old-Time, as well as more World Pop. The limited
availability of these recordings is a problem if one limits oneself to MIDI recordings, but
the inclusion of an optical music recognition sub-system that could translate scores into
MIDI would greatly improve matters.
 The issues raised by Pachet and Cazaly (2000) and by Aucouturier and Pachet (2003),
in terms of the needs of a large global database, could also be considered when designing
an alternate taxonomy. A system could be implemented that classifies the genre of artists
rather than individual recordings, for example. The emergent approach proposed by
Aucouturier and Pachet (2003) of deriving taxonomies by applying data mining
techniques to resources such as radio play lists and CD track listings could also provide a
powerful alternative.
 It could also be useful to train the system with custom recordings of musicians asked
to play music in specific genres. This would have the advantage of using “idealized”
prototypical training data rather than training data that may be “contaminated” with
irregularities. This would, of course, carry the risk of making the system unable to
classify recordings that are not purely typical of a genre. Perhaps it would be a good
compromise to use training data comprised of both custom recordings and normal
recordings.
 Aside from improvements that could benefit the practical performance of the system,
there are also several important areas of musicological research that could be
investigated. Unsupervised learning could be applied to the features that were extracted
from recordings in order to arrive at similarity measurements. The resultant categories
could be compared to the genres used by humans in order to get a feeling of the relative
“objective” similarity of music that humans put in the same or different categories. The
resulting similarity measurement system would also have numerous applications
independent of genre. Some of the research discussed in Chapter 4 would be of use here,
and work such as that of Dittenbach et al. (2000) would be of particular use, as it allows
the formation of hierarchical taxonomies which could be compared to existing
hierarchical taxonomies.
 Psychological experiments could be performed in order to gain a more precise idea of
the extent to which humans agree with each other when they classify music. Experiments
could be done where subjects come up with their own categories as well as experiments
where subjects fit recordings into supplied categories. This would help to give a
quantitative measure of human consistency that would put automatic classification
success rates in better context. Subjects could also be asked why they classify certain
recordings in certain ways, and the results could be compared to the particular features

 139

that the automatic system used for different groups of genres. It would also be interesting
to see if there is a difference in how well human subjects classify MIDI recordings
compared to audio recordings.
 The features extracted from different recordings and the results from the feature
selection process for different groups of categories could be studied from a musicological
perspective in order to attempt to derive meaning from the classifications that were
performed and to help understand how different genres of music are related to particular
features. Music theorists could also use the feature extraction system developed here to
collect data that could be used to develop or enhance music theories in relation to
different genres of music.

 140

9. Bibliography

Aarden, B., and D. Huron. 2001. Mapping European folksong: Geographical localization

of musical features. Computing in Musicology 12: 169–83.

Abdi, H., D. Valentin, and B. Edelman. 1999. Neural Networks. Thousand Oaks, CA:
Sage Publications.

Adams, C. 1976. Melodic contour typology. Ethnomusicology 20 (2): 179–215.

Adeli, H., and S. L. Hung. 1995. Machine learning: Neural networks, genetic algorithms
and fuzzy systems. New York: Jowh Wiley & Sons.

Agrawal, R., and R. Srikant. 1996. Mining sequential patterns: Generalizations and
Performance improvements. Proceedings of the International Conference on
Extending Database Technology. 3–17.

Ash, T. 1989. Dynamic node creation in backpropagation networks. Connection Science
1: 365–75.

Aucouturier, J. J., and F. Pachet. 2003. Representing musical genre: A state of the art.
Journal of New Music Research 32 (1): 1–12.

Bengio, Y. 1996. Neural networks for speech and sequence recognition. London:
International Thomson Computer Press.

Berenzweig, A., B. Logan, D. P. W. Ellis, and B. Whitman. 2003. A large-scale
evaluation of acoustic and subjective music similarity measures. Proceedings of the
International Symposium on Music Information Retrieval. 99–105.

Brackett, D. 1995. Interpreting popular music. New York: Cambridge University Press.

Brackett, D. 2002. (In search of) musical meaning: Genres, categories and crossover.
London: Arnold.

Briscoe, G., T. Caelli. 1996. A compendium of machine learning volume 1: Symbolic
machine learning. Norwood, NJ: Ablex Publishing.

Broere, B. J. 1983. El Chambú – A study of popular music in Nariño, South Colombia. In
World music, politics and social change, edited by S. Frith. New York: Manchester
University Press.

Brown, J. C. 1993 Determination of meter of musical scores by autocorrelation. Journal
of the Acoustical Society of America 94 (4): 1953–7.

 141

Burred, J. J., and A. Lerch. 2003. A hierarchal approach to automatic musical genre
classification. Proceedings of the International Conference on Digital Audio Effects.

Chai, W. and B. Vercoe. 2001. Folk music classification using hidden Markov models.
Proceedings of the International Conference on Artificial Intelligence.

Cook, N. 1987. A guide to musical analysis. London: J. M. Dent & Sons.

Cooper, G., and L. B. Meyer. 1960. The rhythmic structure of music. Chicago: University
of Chicago Press.

Cope, D. 1991a.Computer simulations of musical style. Computers in Music Research.
15–7.

Cope, D. 1991b. Computers and musical style. Madison, WI: A-R Editions.

Cope, D. 1996. Experiments in musical intelligence. Madison, WI: A-R Editions.

Crump, M. 2002. A principle components approach to the perception of musical style.
Honours thesis. University of Lethbridge, Canada.

Cumming, J. E. 1999. The motet in the age of Du Fay. Cambridge, UK: Cambridge
University Press.

Dannenberg, R. B., B. Thom, and D. Watson. 1997. A machine learning approach to
musical style recognition. Proceedings of the International Computer Music
Conference. 344–7.

Dannenberg, R. B., and N. Hu. 2002. Pattern discovery techniques for music audio.
Proceedings of the International Symposium on Music Information Retrieval. 63–70.

Deshpande, H., U. Nam, and R. Singh. 2001. Classification of music signals in the visual
domain. Proceedings of the Digital Audio Effects Workshop.

Dittenbach, M., D. Merkl, and A. Rauber. 2000. The growing hierarchical self-organizing
map. Proceedings of the International Joint Conference on Neural Networks. VI-15 –
VI-19.

Duda, R.O., P.E. Hart, and D.G. Stork. 2001. Pattern classification. New York: John
Wiley & Sons Inc.

Duff, D., ed. 2000. Modern genre theory. New York: Longman.

Ellis, D. P., B. Whitman, A. Berenzweig, and S. Lawrence. 2002. The quest for ground
truth in musical artist similarity. Proceedings of the International Symposium on
Music Information Retrieval.

 142

Fabbri, F. 1981. A theory of musical genres: Two applications. In Popular music
perspectives. edited by D. Horn and P. Tagg. Göteborg: IASPM.

Fabbri, F. 1982. What kind of music? Popular Music 2: 131–43.

Fabbri, F. 1999. Browsing music spaces: Categories and the musical mind. Proceedings
of the IASPM Conference.

Fausett, L. 1994. Fundamentals of neural networks: Architectures, algorithms and
applications. Englewood Cliffs, NJ: Prentice Hall.

Foote, J.T. 1999. Methods for the automatic analysis of music and audio. FXPAL
Technical Report FXPAL-TR-99-038. FXPAL. Palo Alto, CA.

Frith, S. 1996. Performing rites: On the value of popular music. Cambridge, MA:
Harvard University Press.

Frühwirth, M., and A. Rauber. 2001. Self-organizing maps for content-based music
clustering. Proceedings of the Italian Workshop on Neural Nets.

Fujinaga, I. 1996. Exemplar-based learning in adaptive optical music recognition system.
Proceedings of the International Computer Music Conference. 55–6.

Fukunaga, K. 1972. Introduction to statistical pattern recognition. New York: Academic
Press.

Gabura, A. J. 1965. Computer analysis of musical style. Proceedings of the ACM
National Conference. 303–14.

Gallant, S. I. 1993. Neural network learning and expert systems. Cambridge, MA: MIT
Press.

Gardner, H. 1973. Children’s sensitivity to musical styles. Merrill-Palmer Quarterly 19:
67–77.

Geary, D. M. 1999. Graphic Java 2: Mastering the JFC. Palo Alto, CA: Prentice Hall.

Gosling, J., and K. Arnold. 1996. The Java programming language. Don Mills, Canada:
Addison-Weley.

Goto, M., H. Hashiguchi, T. Nishimura, and R. Oka. 2003. RWC music database: Music
genre database and musical instrument sound database. Proceedings of the
International Symposium on Music Information Retrieval. 229–30.

 143

Granitto, P. M., P. F. Verdes, H. D. Navone, and H. A. Ceccatto. 2002. Aggregation
algorithms for neural network ensemble construction. Proceedings of the Brazilian
Symposium on Neural Networks. 178–83

Grant, B. K., ed. 2003. Film genre reader III. Austin, TX: University of Texas Press.

Grimaldi, M., A. Kokaram, and P. Cunningham. 2003. Classifying music by genre using
a discrete wavelet transform and a round-robin ensemble. Work Report. Trinity
College, University of Dublin, Ireland.

Hallinan, J. 2001. Feature selection and classification in the diagnosis of cervical cancer.
In The practical handbook of genetic algorithms applications, edited by L. Chambers.
New York: Chapman & Hall.

Hansen, L. K., and P. Salamon. 1990. Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Learning 12 (10): 993–1001.

Hargreaves, D. J., and A. C. North. 1999. Developing concepts of musical style. Musicae
Scientiae 3: 193–216.

Hartono, P., and S. Hashimoto. 2002. Adaptive neural network ensemble that learns from
imperfect supervisor. Proceedings of the International Conference on Neural
Information Processing. 2561–5.

Horstmann, C. S., and G. Cornell. 2000. Core Java Volume II – Advanced Features. 2nd
edition. Palo Alto, CA: Prentice Hall.

Horstmann, C. S., and G. Cornell. 2001. Core Java Volume I – Fundamentals. 2nd edition.
Palo Alto, CA: Prentice Hall.

Hsu, J. L., C. C. Liu, and A. L. P. Chen. 2001. Discovering nontrivial repeating patterns
in music data. IEEE Transactions on Multimedia 3 (3): 311–25.

Hussein, F., R. Ward, and N. Kharma. 2001. Genetic algorithms for feature selection and
weighting, a review and study. International Conference on Document Analysis and
Recognition. 1240-4.

Jagannathan, V., R. Dodhiawala, L.S. Baum, eds. 1989. Blackboard architectures and
applications. New York: Academic Press.

Jain, A. K., and D. Zongker. 1997. Feature selection: Evaluation, application and small
sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence
19 (2): 153–8.

Jain, A. K., R. P. W. Duin, and J. Mao. 1999. Statistical pattern recognition: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (1): 4–37.

 144

James, M. 1985. Classification algorithms. London: William Collins and Sons.

Jennings, H. D., P. C. Ivanov, A. M. Martins, P. C. da Silva, and G. M. Viswanathan.
2003. Variance fluctuations in nonstationary time series: A comparative study of
music genres. Elsevier Science preprint: retrieved May 27, 2004 from
http://xxx.lanl.gov/abs/cond-mat/0312380.

Jiang, D.N., L. Lu, H.J. Zhang, J.H. Tao, and L. H. Cai. 2002. Music type classification
by spectral contrast feature. Proceedings of Intelligent Computation in Manufacturing
Engineering. 113–6.

John, G. H., R. Kohavi, and K. Pfleger. 1994. Irrelevant features and the subset selection
problem. Proceedings of the International Conference on Machine Learning. 121–9.

Kandel, A., and H. Bunke, eds. 2002. Hybrid methods in pattern recognition. London:
World Scientific.

Katayose, H., and S. Inokuchi. 1989. The KANSEI music system. Computer Music
Journal 13 (4): 72–7.

Karpov, I. 2002. Hidden Markov classification for musical genres. Course Project, Rice
University.

Kirby, M. 2001. Geometric data analysis: An empirical approach to dimensionality
reduction and the study of patterns. New York: John Wiley & Sons.

Kosina, K. 2002. Music genre recognition. Diploma thesis. Technical College of
Hagenberg, Austria.

Laine, P., and M Kuuskankare. 1994. Genetic algorithms in musical style oriented
generation. Proceedings of the IEEE Conference on Evolutionary computation. 858–
62.

Lakoff, G. 1987. Women, fire, and dangerous things: What categories reveal about the
mind. Chicago: University of Chicago Press.

Lambrou, T., P. Kudumakis, R. Speller, M. Sandler, and A. Linney. 1998. Classification
of audio signals using statistical features on time and wavelet transform domains.
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing: 3621–4.

Lartillot, O., S. Dubnov, G. Assayag, and G. Bejerano. 2001. Automatic modeling of
musical style. Proceedings of the International Computer Music Conference. 447–54.

Lartillot, O. 2003. Discovering musical patterns through perceptive heuristics.
Proceedings of the International Symposiumon Music Information Retrieval. 89–96.

 145

LaRue, J. 1992. Guidelines for style analysis. Warren, MI: Harmonie Park Press.

Li, T., and G. Tzanetakis. 2003. Factors in automatic musical genre classification of audio
signals. Proceedings of the IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics. 143–6.

Li, T., and M. Ogihara. 2003. Detecting emotion in music. Proceedings of the
International Symposium on Music Information Retrieval. 239–40.

Li, T., M. Ogihara, and Q. Li. 2003. A comparative study on content-based music genre
classification. Proceedings of the ACM SIGIR Conference. 282–9.

Liu, D., L. Lu, and H. J. Zhang. 2003. Automatic mood detection from acoustic music
data. Proceedings of the International Symposium on Music Information Retrieval.
81–7.

Lomax, A. 1968. Folk song style and culture. Washington: American Association for the
Advancement of Science.

Maclin, R., and J. Shavlik. 1995. Combining the predictions of multiple classifiers: Using
competitive learning to initialise neural networks. Proceedings of the International
Joint Conference on Artificial Intelligence. 524–30.

Manuel, P. 1988. Popular musics of the non-western world. Toronto: Oxford University
Press.

Matityaho, B., and M. Furst. 1995. Neural network based model for classification of
music type. Proceedings of the Convention of Electrical and Electronic Engineers.
4.3.4/1–5.

McKay, C. 2004. Automatic genre classification as a study of the viability of high-level
features for music classification. Accepted for publication in the 2004 Proceedings of
the International Computer Music Conference.

McKay, C., and I. Fujinaga. 2004. Automatic genre classification using large high-level
musical feature sets. Accepted for publication in the 2004 Proceedings of the
International Symposium on Music Information Retrieval.

McKinney, M. F., and J. Breebaart. 2003. Features for audio and music classification.
Proceedings of the International Symposium on Music Information Retrieval. 151–8.

Michalski, R. S., I. Bratko, M. Kubat, eds. 1999. Machine learning and data mining:
Methods and applications. Toronto: John Wiley & Sons.

Middleton, R. 1990. Studying popular music. Philadelphia: Open University Press.

 146

Middleton, R. 2000. Popular music analysis and musicology: Bridging the gap. In
Reading pop: Approaches to textual analysis in popular music, edited by R.
Middleton. New York: Oxford University Press.

MIDI Manufacturers Association. 2001. Complete MIDI 1.0 detailed specification v96.1.
Los Angeles: International MIDI Association.

Mitchell, T. M. 1997. Machine learning. New York: McGraw-Hill.

Moore, A. F. 2001. Categorical conventions in music discourse: Style and genre. Music &
Letters 82 (3): 432–42.

Nam, N., and J. Berger. 2001. Addressing the same but different-different but similar
problem in automatic music classification. Proceedings of the International
Symposium in Music Information Retrieval. 21–2.

Negus, K. 1999. Music genres and corporate cultures. New York: Routledge.

Nettl, B. 1990. Folk and traditional music of the western continents. Englewood Cliffs,
NJ: Prentice-Hall.

North, A. C., and D. J. Hargreaves. 1997. Liking for musical styles. Music Scientae 1:
109–28.

Opitz, D., and R. Maclin. 1999. Popular ensemble methods: An empirical study. Journal
of Artificial Intelligence Research 11: 169–98.

Pachet, F., and D. Cazaly. 2000. A taxonomy of musical genres. Proceedings of the
Content-Based Multimedia Information Access Conference.

Pachet, F. 2002. The Continuator: Musical interaction with style. Proceedings of the
International Computer Music Conference. 211–8.

Pampalk, E. 2001. Islands of music: Analysis, organization and visualization of Music
Archives. Master’s thesis. Vienna University of Technology, Austria.

Pampalk, E., A. Rauber, and D. Merkl. 2002. Content-based organization and
visualization of music archives. Proceedings of ACM Multimedia. 570–9.

Pampalk, E., S. Dixon, and G. Widmer. 2003. Exploring music collections by browsing
different views. Proceedings of the International Symposium on Music Information
Retrieval. 201–8.

Pantham, S. 1999. Pure JFC Swing. Indianopolis, IN: SAMS.

 147

Perrott, D., and R. O. Gjerdingen. 1999. Scanning the dial: An exploration of factors in
the identification of musical style. Research Notes. Department of Music,
Northwestern University, Illinois, USA.

Ponce de Leon, P. J., and J. M. Inesta. 2002. Musical style identification using self-
organising maps. Proceedings of the International Conference on Web Delivery of
Music. 82–89.

Pudil, P., F. Ferri, J. Novovicova, and J. Kittler. 1994. Floating search methods for feature
selection with nonmonotonic criterion functions. Proceedings of the IEEE
International Conference on Pattern Recognition. 279–83.

Pye, D. 2000. Content-based methods for the management of digital music. Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing. 2437–
40.

Rabiner, L., and B. H. Juang. 1986. An introduction to hidden Markov models. IEEE
ASSP Magazine 3 (1): 4–16.

Rabiner, L. 1989. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77 (2): 257–86.

Raphael, C. and J. Stoddard. 2003. Harmonic analysis with probabilistic graphical
models. Proceedings of the International Symposium on Music Information Retrieval.
177–81.

Rauber, A., and M. Frühwirth. 2001. Automatically analysing and organising music
archives. Proceedings of the European Conference on Research and Advanced
Technology for Digital Libraries. 402–14.

Rauber, A., and A. Müller-Kögler. 2001. Integrating automatic genre analysis into digital
libraries. Proceedings of the ACM-IEEE Joint Conference on Digital Libraries. 1–10.

Rauber, A., E. Pampalk and D. Merkl. 2002. Using psycho-acoustic models and self-
organizing maps to create a hierarchical structuring of music by sound similarity.
Proceedings of the International Symposium on Music Information Retrieval. 71–80.

Reti, R. 1951. The thematic process in music. New York: Macmillan.

Reynolds, S. 1998. Generation ecstasy: Into the world of techno and rave culture. Boston:
Brown.

Rosch, E. 1975. Cognitive representations of semantic categories. Journal of
Experimental Psychology: General 104: 192–233.

Rothstein, J. 1995. MIDI: A comprehensive introduction. Madison, WI: A-R Editions.

 148

Rowe, R. 2001. Machine musicianship. Cambridge, MA: MIT Press.

Russell, S., and P. Norvig. 2002. Artificial intelligence: A modern approach. Upper
Saddle River, NJ: Prentice Hall.

Ryan, M. L. 1981. Introduction: On the why, what, and how of generic taxonomy. Poetics
10: 109–26.

Sakawa, M. 2002. Genetic algorithms and fuzzy multiobjective optimization. Norwell,
MA: Kluwer Academic Publishers.

Scheirer, E.D. 2000. Music-listening systems. Doctoral thesis. M.I.T., MA.

Selfridge-Field, E., ed. 1997. Beyond MIDI: The handbook of musical codes. Cambridge,
MA: MIT Press.

Selfridge-Field, E. 1998. Conceptual and representational issues in melodic comparison.
In Melodic similarity: Concepts, procedures, and applications, edited by W. B.
Hewlett and E Selfride-Field. Cambridge, MA: MIT Press.

Shan, M. K., and F. F. Kuo. 2003. Music style mining and classification by melody.
IEICE Transactions on Information and Systems E86-D (3): 655–9.

Siedlecki, W., and J. Sklansky. 1989. A note on genetic algorithms for large-scale feature
selection. Pattern Recognition Letters 10 (5): 335–47.

Society of Motion Picture and Television Engineers. 1994. ANSI/SMPTE 268M-1994,
SMPTE standard for file format for digital moving-picture exchange (DPX), v 1.0, 18.
White Plains, NY: Snell & Wilcox.

Soltau, H., T. Schultz, M. Westphal, and A. Waibel. 1998. Recognition of musical types.
Proceedings of the International Conference on Acoustics, Speech and Signal
Processing. 1137–40.

Stevens, C., and C. Latimer. 1997. Music recognition: An illustrative application of a
connectionist model. Psychology of Music 25 (2): 161–85.

Tagg, P. 1982. Analysing popular music: Theory, method and practice. Popular Music 2:
37–67.

Tarasti, E. 2002. Signs of music: A guide to musical semiotics. New York: Mouton de
Gruyter.

Tax, D., M. van Breukelen, R. Duin, and J. Kittler. 2000. Combining multiple classifiers
by averaging or by multiplying? Pattern Recoginition 33 (9): 1475–85.

 149

Taylor, J. R. 1989. Linguistic categorization: Prototypes in linguistic theory. Oxford:
Clarendon Press.

Tekman, H. G., and N. Hortacsu. 2002. Aspects of stylistic knowledge: What are different
styles like and why do we listen to them? Psychology of Music 30 (1): 28–47.

Temperley, D. 2001. The cognition of basic musical structures. Cambridge, MA: MIT
Press.

Toynbee, J. 2000. Making popular music: Musicians, creativity and institutions. London:
Arnold.

Towsey, M., A. Brown, S. Wright, and J. Diederich. 2001. Towards melodic extension
using genetic algorithms. Educational Technology & Society 4 (2): 54–65.

Tseng, Y.H. 1999. Content-based retrieval for music collections. Proceedings of the
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 176–82.

Typke, R., P. Giannopoulis, R. C. Veltkamp, F. Wiering, and R van Oostrum. 2003.
Using transportation distances for measuring melodic similarity. Proceedings of the
International Symposium on Music Information Retrieval. 107–14.

Tzanetakis, G. 2002. Analysis and retrieval of audio signals. Doctoral dissertation.
Princeton University, USA.

Tzanetakis, G., and P. Cook. 2002. Musical genre classification of audio signals. IEEE
Transactions on Speech and Audio Processing 10 (5): 293–302.

Tzanetakis, G., A. Ermolinskyi, and P. Cook. 2002. Pitch histograms in audio and
symbolic music information retrieval. Proceedings of the International Symposium on
Music Information Retrieval.

Tzanetakis, G., G. Essl, and P. Cook. 2001. Automatic musical genre classification of
audio signals. Proceedings of the International Symposium on Music Information
Retrieval. 205–10.

Uitdenbogerd, A. and J. Zobel. 1998. Manipulation of music for melody matching.
Proceedings of the ACM International Multimedia Conference. 235–40.

Vafaie, H., and I. Imam. 1994. Feature Selection Methods: Genetic Algorithms vs.
Greedy-like Search. Proceedings of the International Conference on Fuzzy and
Intelligent Control Systems.

de Villiers, J., and E. Barnard. 1992. Backpropagation neural networks with one and two
hidden layers. IEEE Transactions on Neural Networks 4 (1): 136–41.

 150

Wanas, N. M., G. Auda, M. Kamel and F. Karray. 1998. On the optimal number of
hidden nodes in a neural network. Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering. 918–21.

Wanas, N. M., and M. S. Kamel. 2001. Decision fusion in neural network ensembles.
Proceedings of the International Joint Conference on Neural Networks. 2952–7.

Wanas, N. M., and M. S. Kamel. 2002. Weighted combination of neural network
ensembles. Proceedings of the International Joint Conference on Neural Networks.
1748–52.

Whitehead, P., E. Friedman-Hill, and E. Vander Veer. 2002. Java and XML. Mississauga,
Canada: Wiley Publishing Inc.

Whitman, B., and P. Smaragdis. 2002. Combining musical and cultural features for
intelligent style detection. Proceedings of the International Symposium on Music
Information Retrieval. 47–52.

Xu, C., N. C. Maddage, X. Shao, F. Cao, and Q. Tian. 2003. Musical genre classification
using support vector machines. Proceedings of the International Conference on
Acoustics, Speech and Signal Processing. Vol. V, pp. 429–32.

Yip, C. L., and B. Kao. 1999. A study on musical features for melody databases. HKU
CSIS Technical Report TR-99-05. Hong Kong University, Department of Computer
Science and Information Systems, Hong Kong.

Zenobi, G., and P. Cunningham. 2001. Using diversity in preparing ensembles of
classifiers based on different subsets to minimize generalization error. Proceedings of
the European Conference on Machine Learning. 576–87.

Zhou, Z. H., J. X. Wu, Y. Jiang, and S. F. Chen. 2001. Genetic algorithm based selective
neural network ensemble. Proceedings of the International Joint Conference of
Artificial Intelligence, 797–802.

All classical guide. Retrieved November 6, 2003, from http://www.allclassical.com.

All music guide. Retrieved November 6, 2003, from http://www.allmusic.com.

Amazon.com. Retrieved November 6, 2003, from http://www.amazon.com.

Java technology. Retrieved May 5, 2003, from http://www.java.sun.com.

MIDI Manufacturers Association. Retrieved Sept. 4, 2003, from http://www.midi.org.

Xerces Java Parser. Retrieved January 7, 2004, from http://xml.apache.org/xerces-j.

