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Abstract. The first goal of this paper is to 

introduce musicologists and music theorists to 

the benefits offered by state-of-the-art pattern 

recognition techniques. The second goal is to 

provide them with a computer-based frame-

work that can be used to study large and di-

verse collections of music for the purposes of 

empirically developing, exploring and vali-

dating theoretical models. The software pre-

sented in this paper implements techniques 

from the fields of machine learning, pattern 

recognition and data mining applied to and 

considered from the perspectives of music 

theory and musicology. An important priority 

underpinning the software presented here is 

the ability to apply it to a much wider range of 

art, folk and popular musics of the world than 

is possible using the types of computer-based 

approaches traditionally used in music re-

search. The tools and techniques presented 

here will thus enable exploratory research that 

can aid in the formation and validation of 

theoretical models for types of music for 

which such models have been elusive to date. 

These tools will also allow research on form-

ing theoretical links spanning types of music 

that have traditionally been studied as distinct 

groups. A particular emphasis is placed on the 

importance of performing studies involving 

many pieces of music, rather than just a few 

compositions that may not in fact be truly 

representative of the overall corpus under 

consideration. 
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Özet: Bu makalenin ilk amacı müzikologlara 

ve müzik kuramcılarına en son teknoloji 

örüntü tanıma tekniklerinin sa ladı ı yararları 

tanıtmaktır. kinci amaç büyük ve çe itli 

müzik koleksiyonları üzerinde kuramsal mo-

dellerin ampirik olarak geli tirilmesi, ara -

tırılması ve sınanması amaçlarıyla çalı ı-

labilecek bilgisayar-tabanlı bir çerçeve sa -

lamaktır. Bu makalede sunulan yazılım, ma-

kina ö renimi, örüntü tanıma ve veri ma-

dencili i uygulamalarını, müzik kuramı ve 

müzikoloji perspektifleri açısından uygulayan 

ve ele alan teknikleri gerçekle tirir. Burada 

sunulan yazılımın tasarımında gözetilen 

önemli bir öncelik, geleneksel olarak müzik 

ara tırmalarında kullanılan bilgisayar-tabanlı 

yakla ımların sa ladı ına kıyasla, bu yazılımın 

dünyadaki sanat, halk ve popüler müzikler 

anlamında çok daha geni  bir müziksel alana 

uygulanabilecek bir yetene e sahip olmasıdır. 

Burada sunulan araçlar ve teknikler bu an-

lamda kuramsal modellerin olu turulması ve 

sınanmasına yardımcı olabilecek ke if nite-

li indeki ara tırmaları olanaklı kılacaktır. Yani 

bugüne kadar varolan bu tür modellerin 

yetersiz kaldı ı müzik türleri için de modeller 

kurmak olanaklı hale gelebilecektir. Bu araçlar 

aynı zamanda geleneksel olarak ayrı gruplar 

halinde çalı ılan müzik tiplerini kapsayacak ve 

aralarındaki kuramsal ba lantıların kurulması 

üzerine ara tırma yapılmasına imkan tanı-

yacaktır. Çalı mamızda özellikle vurguladı ı-

mız bir nokta, bu tür ara tırmaların, tüm kül-

liyatın aslında gerçek bir temsilini sa laya-

mayacak olan bir kaç beste üzerine yapılma-

sındansa çok sayıda müzik parçasını kapsa-

yacak ekilde yapılmasının önemidir. 
Anahtar kelimeler: Müzik bilgi eri imi, makina 

ö renimi, müzikoloji
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1   Introduction 

Continuing advances in computer processing power and data analysis techniques are 

creating an environment offering great potential to the theoretical study of music. It is 

now possible to not only apply to music the same kinds of pattern recognition algo-

rithms that have made tasks such as automated speech recognition and optical char-

acter recognition possible, but to do so using simple desktop or laptop computers. 

    Modern computer-based technology has been successfully adopted by many com-

posers and performers for tasks such as sound synthesis, gestural control and auto-

mated or computer-assisted composition. Computer-based music analysis, however, 

has with only a few exceptions remained limited to traditional approaches, such as 

simple grammar-based techniques or string matching and searching. Although such 

techniques are still certainly useful and relevant, it is unfortunate that they have not 

been supplemented by more sophisticated approaches made available by recent ad-

vances in information science.  

    Researchers in the music information retrieval (MIR) research community, in con-

trast, have been making significant strides in applying modern pattern recognition 

techniques to music. This community has been rapidly developing in recent years, as 

demonstrated by the growth of the International Conference on Music Information 

Retrieval (ISMIR). This highly multi-disciplinary community benefits from the shar-

ing of knowledge from fields as diverse as library sciences, electrical engineering, 

psychology and computer and information sciences. Unfortunately, only a few musi-

cologists and almost no music theorists have become involved with ISMIR to date. 

    It is our hope that this trend will change in the future, as the musical insights of 

such researchers would be of great benefit to the MIR community, and a variety of 

MIR achievements and techniques would likewise be highly relevant to them. As 

convincingly argued by David Huron (1999), musicological insight and scientific 

empiricism can greatly complement one another. It is hoped that the technologies and 

software presented in this paper will help to bridge this gap by placing powerful com-

puter-based tools for large-scale automated feature extraction and machine learning at 

the disposal of the music theory community, who can in turn apply and enrich these 

tools using their own musical expertise and experience. 

    An important factor contributing to the general relevance of computer-based tools 

to musicological inquiry is the increasing availability of source materials in digital 

form. Libraries and archives are continually digitizing both scores and audio re-

cordings, and are increasingly making the results and their related metadata available 

online. As noted by Huron (1999), the discipline is going from a “data-poor” field to a 

“data-rich” field. This is making wide ranging empirical studies possible to an extent 

that was not previously feasible. 

    Although an expert human can certainly analyze one or a few pieces with far more 

insight and understanding than a computer, such experts are limited in the number of 

pieces that they can analyze in a reasonable amount of time and in the range of musics 

that fall within the scope of their expertise. A computer, in contrast, can process huge 
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quantities of diverse musics hundreds of times faster than a human, and with perfect 

consistency.  

    Computer-assisted theoretical studies thus have the important advantage that they 

can each encompass many thousands of recordings. This breadth can reveal hidden 

musical insights that might not be apparent from studying just a few pieces, and can 

additionally allow one to empirically verify the validity of existing theoretical frame-

works (e.g., Gingras & Knopke 2005). This can lead to important theoretical refine-

ments and corrections, as well as inspire entirely new theoretical approaches and per-

spectives. 

    Although traditional manual musicological or theoretical studies involving only a 

few pieces of music are certainly worthwhile and of value in increasing the musical 

understanding of those specific pieces, the validity of generalized conclusions drawn 

from such research will always be questionable until verified using much larger col-

lections of music. 

     The practice of making generalizations based on only a few pieces was 

understandable in the past, given the relatively limited access to musical literature and 

the time constraints imposed by manual analysis. Computers and digitized music 

collections have now removed these constraints, however, making scientifically and 

statistically valid studies feasible. Increasing agreement with this perspective among 

music researchers in the arts and humanities has likely contributed to the popularity 

and effectiveness of automated music analysis tools such as Humdrum (Huron 2002). 

    As noted above, it is now possible to supplement such existing software-based 

music analysis tools with techniques drawn from the most recent developments in 

modern pattern recognition and data mining technology. Existing music analysis 

software packages have essentially served as aids allowing theorists and musicolo-

gists to automate the types of tasks that they have traditionally performed manually. 

This is in no way meant to diminish the worth of such tools and approaches as, in-

deed, they are of proven value, and offer a number of benefits that pattern recognition 

techniques do not, just as pattern recognition techniques offer advantages that tradi-

tional analysis techniques do not. 

    Research involving traditional analysis software has typically incorporated as-

sumptions that, while appropriate for the limited studies for which they were in-

tended, nonetheless ultimately limited the types of music to which they could be ap-

plied if one were of a mind to expand the scope of the studies. Although powerful 

tools such as Humdrum, for examples, can and have been applied to a wide variety of 

very different musics, each such application has involved adaptations that were spe-

cific to the type of music under consideration. 

    Ideally, one would like to have one single software system that could be applied to 

classical music, jazz and a wide variety of popular and traditional musics, including 

cross-disciplinary studies that span diverse types of music. Furthermore, one would 

like to be able to use this software without needing to make any manual adjustments 

or adaptations in order to deal with different types of music. The types of pattern rec-

ognition techniques used by the software presented in this paper make this possible. 

    Musical research involving modern machine learning algorithms also has the bene-

fit of providing researchers with a fresh perspective on music, as models learned by 

such algorithms can avoid the potentially misleading ingrained assumptions and bi-

ases that humans invariably develop, despite their best efforts. Human researchers 
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might unconsciously reject potentially valuable paths of inquiry because of such 

prejudices, whereas a computer would not. 

    Machine learning also enables computers to consider far more features (i.e., musi-

cal characteristics) at a time than humans, as well as more complex interrelationships 

between them. This can result in the discovery of sophisticated and theoretically valu-

able patterns and relationships that might not be apparent to human analysts. 

    It is, of course, recognized here that machine learning is not a substitute for human 

researchers, nor for traditional analysis software such as Humdrum. It is highly im-

probable that a computer will independently evolve any perfect musical model on its 

own. Machine learning and pattern recognition techniques can, however, reveal in-

sights that might otherwise be obscured, and can perturb human researchers out of 

ideological ruts that they may have fallen into. This and the issues raised above are 

discussed in further detail in Section 6. 

    One final advantage of machine learning-based approaches is that they can be used 

to analyze features from audio directly, not just from symbolic representations such as 

scores or MIDI files. This is extremely useful not only in analyzing music for which 

no symbolic representation is available, including types of music with no written 

tradition, but also for analyzing performance practices that are not typically encapsu-

lated by symbolic representations. There is not sufficient space to discuss audio-based 

MIR research in any depth here, other than to say that it is a very active field of in-

quiry at ISMIR, and that the jSymbolic feature extractor discussed in this paper has an 

analogue for processing audio recordings (McEnnis, McKay & Fujinaga 2006). 

    Section 2 of this paper discusses general approaches to feature extraction. Section 3 

introduces jSymbolic, a software tool that the authours have developed for extracting 

features from MIDI files. Section 4 presents some basic ideas relating to music and 

machine learning, and Section 5 provides an overview of the Autonomous Classifica-

tion Engine (ACE), a software system developed by the authours to make sophisti-

cated pattern recognition techniques available to researchers in the arts and humani-

ties. Section 6 outlines a variety of specific ways in which pattern recognition tech-

niques are relevant to musicologists and theorists. Finally, Section 7 presents some 

overall conclusions. 

2   Feature Extraction 

An essential part of realizing the goals discussed in Section 1 is the formalization and 

implementation of a large set of “features” that can be extracted from arbitrary types 

of music. The term “feature” refers to any characteristic or quality that may be meas-

ured and used to describe or characterize a piece of music. For example, measures of 

rubato or the amount of chromatic motion in a piece could both be features. 

    Features serve as the input to machine learning algorithms, and any such algorithm 

can only perform well if provided with features that capture a sufficient amount of 

relevant information. 
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    There are three general types of features that can be automatically collected by 

computers and used as inputs to music-oriented pattern recognition systems: 

 
• Cultural features: Sociocultural information outside the scope of musical con-

tent itself. These often consist of statistics that can be automatically mined from 

the web, such as cooccurrences of certain words. 

• Low-level features: Spectral or time-domain information extracted directly from 

audio signals. Most features of this type do not provide information that seems 

intuitively musical, but they can have significant discriminating power when 

processed by computers.  

• High-level features: Information that consists of musical abstractions that are 

meaningful to musically trained humans.  

 
This paper will focus on high-level features, as they are the most obviously relevant to 

music theory. The musicological importance of cultural features and the practical 

utility of low-level feature certainly make them very useful for other types of musical 

research, however. 

    An obvious source of inspiration when designing features is existing theoretical and 

musicological research. However, one must be careful when consulting such sources 

to avoid relying too heavily on features that are intrinsically linked to particular theo-

retical frameworks. Although some such features can be useful, too many will limit 

the types of music to which a system can be applied and will compromise the ability 

of the system to do objective exploratory research. For example, feature sets based too 

heavily on chord progressions could incorporate too many assumptions relating to 

tonal harmony to be applicable to types of music that do not operate on a tonal basis. 

    It is particularly important to avoid those features that are built upon highly sophis-

ticated theoretical constructs. Although Schenkerian analysis could be used to pro-

duce a variety of features, for example, such features would each be limited by the 

applicability of the Schenkerian system to different types of music, as discussed 

above. Furthermore, sophisticated analytical methods often involve a high degree of 

subjectivity, as demonstrated by the fact that different experts often generate different 

analyses of a single piece. The subjectivity of features derived from such systems 

would undermine the consistency that should ideally be characteristic of automatic 

feature extraction. Automatic analysis based on sophisticated theoretical constructs 

can also be computationally expensive, and is in some cases an unsolved problem. 

Avoiding features based on sophisticated theoretical models is therefore a good gen-

eral strategy.   

    It can also be useful to include features that encapsulate types of information that 

are traditionally given a relatively minor role in music analysis. So, while traditionally 

important features based on pitch class frequencies, melodic movement and chord 

progressions certainly should be included in the feature sets that are used, alternatives 

features that emphasize dynamics, rhythm and instrumentation, for example, should 

also play an important role. 

    Existing research by ethnomusicologists can be particularly useful in designing 

features, as such researchers have traditionally tended to take a more empirical ap-

proach that is less reliant on particular analytical models. The Cantometrics project 
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(Lomax 1968), which compared several thousand songs from hundreds of different 

cultural groups, is a good example of this kind of research, although it did suffer from 

some methodological flaws and questionable anthropological assumptions. Research 

involving melodic contours (e.g., Adams 1976) can also be valuable, although it 

should not be relied on too heavily, as such an approach is not necessarily applicable 

to all types of music. 

    There are a number of additional musicological sources that can provide useful 

features (e.g., Tagg 1982; Cope 1991; LaRue 1992; Temperley 2001), although such 

work typically (but not always) emphasizes manual rather than automatic feature 

extraction. Those few musicological research projects that have actually implemented 

automatic feature extraction on computers have generally made assumptions that, 

while appropriate for their purposes, limit their general applicability. For example, 

both Aarden and Huron (2001) and Towsey et al. (2001) considered only melodic 

features. 

    A number of research projects from the field of MIR provide additional valuable 

sources of features, particularly with respect to automatic genre classification (Gabura 

1965; Dannenberg, Thom and Watson 1997; Chai and Vercoe 2001; Shan and Kuo 

2003; Basili, Serafini, and Stellato 2004; Ponce de Leon and Inesta 2004). Further 

features have been proposed in a number of miscellaneous studies (Eerola and 

Toiviainen 2004; Sapp, Liu, and Selfridge-Field 2004; Kirlin and Utgoff 2005). 

    As a general principle, it is best to concentrate primarily on features that can be 

represented by simple numbers or small vectors. Such features can be more easily 

processed by machine learning algorithms, and using them helps to avoid the tempta-

tion of developing excessively complex features that incorporate too many theoretical 

assumptions. 

    Simple statistical techniques such as calculations of means and standard deviations 

are useful in making it possible to capture overall characteristics of pieces, including 

how they change. This is important in helping to ensure that one does not miss the 

forest for the trees, as it were, although some features that consider specific local 

behaviour are also important. Histograms can serve as a particular useful statistical 

tool, as they permit an intermediate representation of music to which additional tech-

niques such as peak picking can be applied in order to arrive at further features. 

    For example, researchers such as Brown (1993) have proposed “beat histograms” 

generated using autocorrelation of note onsets. Tzanetakis and Cook (2002) have 

successfully used both beat histograms and “pitch histograms” as sources of features.  

    Autocorrelation (Equation 1) involves comparing a signal with versions of itself 

delayed by successive intervals. This yields the relative strength of different peri-

odicities within the signal. In terms of musical data, autocorrelation allows one to find 

the relative strength of different rhythmic pulses. In the case of MIDI, this can be 

calculated based on Note On messages: 

=
=

1

0
][][

1
][

N

n
lagnxnx

N
lagationautocorrel  (1) 

where n is the input sample index (in MIDI ticks), N is the total number of MIDI 

ticks, x is the sequence of MIDI ticks and lag is the delay in MIDI ticks (0  lag < N). 
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The value of x[n] can be made proportional to the velocity of Note Ons. This ensures 

that beats are weighted based on the strength with which notes are played. 

    This autocorrelation function can be applied repeatedly to each MIDI sequence 

with different values of lag. These lag values corresponded to both rhythmic peri-

odicities as well as bin labels in beat histograms, and the autocorrelation values can 

provide the magnitude value for each bin. 

    For example, consider the beat histograms extracted from MIDI representations of I 

Wanna Be Sedated by the punk band The Ramones and ‘Round Midnight by the jazz 

performer and composer Thelonious Monk, as shown in Figures 1 and 2 respectively 

(see next page). It is clear that I Wanna Be Sedated has significant rhythmic loose-

ness, as demonstrated by the spread around each peak, each of which represent a 

strong beat periodicity. It also has several strong beats, including ones centred at 55, 

66, 82, 111 (the tempo) and 164 beats per minute, the latter two of which are har-

monics of 55 and 82 beats per minute. ‘Round Midnight, in contrast, has one very 

strong beat at 76 beats per minute, the tempo of the piece, and a wide range of much 

lower level beat strengths. 

    Histograms such as these can sometimes be used directly as features. Alternatively, 

a wide variety of features consisting of single values can be calculated from them, 

such as the number of strong peaks, the relative strengths of the highest peaks, the 

locations and harmonicity of peaks, the local spread around peaks and the relative 

contribution of bins not associated with peaks. 

    With such histograms in mind, it is useful to consider two subclasses of high-level 

features, namely one-dimensional features and multi-dimensional features. The for-

mer each consist of a single number that represents an aspect of a piece in isolation. 

The latter each consist of a set of related values that have limited significance when 

considered individually, but together can reveal meaningful patterns. For example, the 

average duration of melodic arcs would be a one-dimensional feature, and a vector 

representation of the bin frequencies of a histogram portraying the relative frequency 

of different melodic intervals would be a multi-dimensional feature. 

    This division into single and multi-dimensional features is useful because it makes 

it possible to use classifier ensembles (i.e., groups of models each developed using 

machine learning) that capitalize on the particular relatedness of the components of 

multi-dimensional features. For example, it was found experimentally that training a 

separate neural network on each multi-dimensional feature and a k-nearest neighbour 

classifier on all one-dimensional features improved results when performing auto-

matic musical genre classification (McKay 2004). 

    One must strike a careful balance when choosing which features to provide as input 

to machine learning algorithms. From one perspective, maximizing the number of 

available features helps to ensure that sufficient information is extracted to perform 

the tasks that one is interested in. However, too many features can overwhelm pattern 

recognition algorithms, a problem that is known in machine learning as “the curse of 

dimensionality.” A good compromise is to develop a large catalogue of features, with 

an emphasis on general features. Researchers can then choose the features that are 

best suited to each particular application, either based on their own expertise or using 

automated dimensionality reduction techniques (see Section 4).  
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Figure 1: Beat histogram for I Wanna Be Sedated by the punk band The Ramones. Each bin 

corresponds to a rhythmic periodicity in the music. The vertical scale specifies the relative 

strength of each periodicity as calculated using autocorrelation of note onsets. 

 

Beat Histogram: 'Round Mdinight  by Thelonious Monk
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Figure 2: Beat histogram for ‘Round Midnight by Thelonious Monk. Each bin corresponds to a 

rhythmic periodicity in the music. The vertical scale specifies the relative strength of each 

periodicity as calculated using autocorrelation of note onsets. 
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3   jSymbolic 

jSymbolic is a Java-based software package that automatically extracts features from 

symbolic recordings (McKay & Fujinaga 2006). It is intended for users with a range 

of computer proficiency levels, and has an easy to use graphical interface (Figure 3). 

    jSymbolic can currently extract a total of 111 high-level features (soon to be ex-

panded to 160), far more than any other automated symbolic feature extraction system 

known to the authours. The term “symbolic” in general refers to abstract musical 

representations, such as scores, MIDI files or Humdrum kern files, but not audio files. 

    jSymbolic is open source, and is designed in such a way as to make it easy to add 

additional features in the future. Each feature is designed as a modular entity, but also 

has access to the values of other features, making it a simple matter to iteratively 

build related libraries of features if desired. 

 

 

Figure 3: The jSymbolic feature extractor interface. 

The jSymbolic software currently only extracts features from MIDI files. Although 

the shortcomings of the MIDI format are well documented, a much wider range of 

styles and genres of popular, art and folk musics are available in MIDI than in any 

other format. This made it possible to collect a diverse experimental training and 

testing library consisting of 950 MIDI recordings spanning 38 different types of mu-

sic (McKay 2004). 
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    This is in no way meant to minimize the importance of alternative symbolic for-

mats such as MusicXML, GUIDO or Humdrum’s variants. Such formats have a num-

ber of advantages over MIDI, and there is a large body of work in certain particular 

styles that has been encoded using them. It is therefore a priority in future develop-

ment to incorporate functionality into jSymbolic for parsing additional symbolic for-

mats. In the meantime, converters can be used to translate music in alternative formats 

into MIDI. 

    jSymbolic can save extracted features as both ACE XML and Weka ARFF files 

(see Section 5). These file formats are standards that can be parsed by a variety of 

machine learning systems. Tools also exist for converting ARFF files to a variety of 

simple delimited text file formats. 

    Although too numerous to describe individually in this paper, each of jSymbolic’s 

features are described in detail elsewhere (McKay 2004). Some of these features are 

original and some are derived from the sources described in Section 2. In general, 

jSymbolic’s features can be divided into the following seven categories: 

 
• Instrumentation: What types of instruments are present and which are given 

particular importance relative to others? The importance of both pitched and non-

pitched instruments is considered. 

• Texture: How many independent voices are there and how do they interact (e.g., 

polyphonic, homophonic, etc.)? What is the relative importance of different 

voices? 

• Rhythm: The time intervals between the attacks of different notes and the dura-

tions of each note are considered. What metrical structures and rhythmic patterns 

are present? Is rubato used? How does rhythm vary from voice to voice? 

• Dynamics: How loud are notes and what kinds of variations in dynamics occur? 

• Pitch Statistics: What are the occurrence rates of different notes, in terms of both 

pitches and pitch classes? How tonal is the piece? What is its range? How much 

variety in pitch is there? 

• Melody: What kinds of melodic intervals are present? How much melodic varia-

tion is there? What kinds of melodic contours are used? What types of phrases 

are used and how often are they repeated? 

• Chords: What vertical intervals are present? What types of chords do they repre-

sent? How much harmonic movement is there and how fast is it? 

 
As discussed in Section 2, these features consist of both one-dimensional and multi-

dimensional features, and make use of a variety of intermediate representations. These 

include beat histograms, absolute pitch histograms, pitch class histograms, wrapped 

pitch class histograms, several histograms based on the instruments present and the 

relative roles that they play, “melodic interval histograms” that measure the frequency 

of various melodic intervals in each voice, “vertical interval histograms” that meas-

ures the frequency of different vertical intervals and “chord type histograms” that 

measure how often various chord types appear. These intermediate representations are 

well documented elsewhere (McKay 2004). 
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    Figures 4 and 5 show the values of twenty sample features extracted from two 

measures each of a Chopin nocturne and a Mendelssohn piano trio. A comparison of 

the two examples and their features makes it apparent how such features can be use-

ful. For example, the Average Note To Note Dynamic Change, Overall Dynamic 

Range and Variation of Dynamics features demonstrates the greater range in dynam-

ics of the nocturne, the Note Density feature demonstrates the greater number of notes 

per second of the trio, the Orchestral Strings Fraction feature indicates that strings 

play roughly half the notes in the trio but are absent in the nocturne and the 

Variability of Note Duration feature shows that this portion of the nocturne has more 

rhythmic variety than the trio. More traditional features are also present, such as the 

Chromatic Motion feature, which demonstrates that this portion of the trio has more 

chromatic motion, or the Range feature, which shows that the lowest and highest 

notes of the nocturne span a greater interval. Although not necessarily significant 

when considered individually, pattern recognition systems can simultaneously exam-

ine many such features in order to find meaningful patterns. 

 

 

 
Average Note To Note Dynamics Change: 6.03 
Chromatic Motion: 0.0769 
Dominant Spread: 3 
Harmonicity of Two Strongest Rhythmic Pulses: 1 
Importance of Bass Register: 0.2 
Interval Between Strongest Pitch Classes: 3 
Most Common Pitch Class Prevalence: 0.433 
Note Density: 3.75 
Number of Common Melodic Intervals: 3 
Number of Strong Pulses: 5 
Orchestral Strings Fraction: 0 
Overall Dynamic Range: 62 
Pitch Class Variety: 7 
Range: 48 
Relative Strength of Most Common Intervals: 0.5 
Size of Melodic Arcs: 11 
Stepwise Motion: 0.231 
Strength of Strongest Rhythmic Pulse: 0.321 
Variability of Note Duration: 0.293 
Variation of Dynamics: 16.4 

Figure 4: Twenty sample features extracted from the first two measures of Fryderyk Chopin’s 

Nocturne in B, Op. 32, No. 1. The features and their units are each defined elsewhere (McKay 

2004), and would typically be extracted over the entire piece, not just two measures. Perform-

ance information relating to dynamics and rubato beyond the contents of the score is often 

available in MIDI files. 
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Average Note To Note Dynamics Change: 1.46 
Chromatic Motion: 0.244 
Dominant Spread: 2 
Harmonicity of Two Strongest Rhythmic Pulses: 1 
Importance of Bass Register: 0.373 
Interval Between Strongest Pitch Classes: 7 
Most Common Pitch Class Prevalence: 0.39 
Note Density: 29.5 
Number of Common Melodic Intervals: 6 
Number of Strong Pulses: 6 
Orchestral Strings Fraction: 0.56 
Overall Dynamic Range: 22 
Pitch Class Variety: 7 
Range: 39 
Relative Strength of Most Common Intervals: 0.8 

Size of Melodic Arcs: 7.27 
Stepwise Motion: 0.439 
Strength of Strongest Rhythmic Pulse: 0.173 
Variability of Note Duration: 0.104 
Variation of Dynamics: 5.98 

Figure 5: Twenty sample features extracted from measures 10 and 11 of the first movement of 

Felix Mendelssohn’s Piano Trio No. 2 in C minor, Op. 66. The features and their units are each 

defined elsewhere (McKay 2004), and would typically be extracted over the entire piece, not 

just two measures. Performance information relating to dynamics and rubato beyond the con-

tents of the score is often available in MIDI files. 
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4   Machine Learning 

Once features have been extracted from music, machine learning and pattern recogni-

tion algorithms can then be used to process them. 

    Machine learning refers to techniques that allow a computer to automatically build 

(“learn”) internal models that map particular stimuli (i.e., feature sets) corresponding 

to individual examples (“instances”) to particular outputs. With respect to music, 

these outputs are typically musically meaningful categories or ontological structures, 

and a recording or score might represent an instance. 

    The notion of classification into categories (or “classes”) is important in machine 

learning. A class can have a wide spectrum of possible meanings dependant on the 

subject of interest, and can be anything from a pitch or rhythmic duration to a histori-

cal period or compositional style. 

    One of the key advantages of machine learning is that there is no need to manually 

specify the details of the model to be learned, or even necessarily to have any a priori 

knowledge of the model at all. This is because the learning algorithms construct mod-

els automatically. This means that machine learning is useful not only in the map-

pings performed by the learned models, but also in terms of the insights that the mod-

els themselves can provide. 

    There are three general pattern recognition paradigms, each with its strengths and 

weaknesses: 

• Expert Systems: These systems use pre-defined rules to process features and 

arrive at classifications. These rules are typically specified manually by humans, 

and do not usually utilize machine learning. 

• Supervised Learning: These systems attempt to formulate their own classifica-

tion rules by using machine learning techniques to train on model labelled in-

stances. Previously unseen instances can then be classified into one or more of 

the candidate classes using the rules automatically generated during training. 

• Unsupervised Learning: These systems cluster unlabelled instances based on 

similarities and differences that they themselves perceive. 

Expert systems have the advantage that the existing knowledge of musicologists and 

theorists can be incorporated directly. Unfortunately, such systems typically only 

work well when applied to problems that can be easily formalized using only a few 

simple heuristics. Aside from limited and specialized applications, music is in general 

too sophisticated and the theory surrounding it too sparse, inconsistent and contra-

dictory for expert systems to be viably applied. This is readily apparent when one 

considers the range of popular, art and folk musics of the world and the variety of 

theoretical structures or lack thereof relating to each corpus. 

    Supervised and unsupervised approaches are more promising in general with re-

spect to music. As discussed previously, insights gained from exploratory research 

utilizing such technologies can help lead to the iterative construction of theoretical 

frameworks. The resultant theory can then potentially be formalized into expert sys-

tems, making them increasingly viable in specialized areas of musical inquiry. For 

example, expert systems can and have been successfully applied to baroque counter-

point, but are not yet as applicable to musics that are less formally understood. 
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    Supervised learning is most useful when one has a set of existing labels of any kind 

that are known to be associated with particular musical instances. Supervised learning 

then allows one to train a model using these pre-labelled instances so that the system 

learns how to assign correct labels to unlabelled instances. 

    Unsupervised learning is more appropriate when one is unable or unwilling to im-

pose particular pre-existing labels on instances, and prefers to have a system autono-

mously cluster the instances into groups that it finds to be similar based on the dimen-

sions specified by the extracted features. 

    The example of an imagined musicological research project involving the attribu-

tion of a set of historical pieces whose composers are unknown can be used to illus-

trate the relative merits of the three pattern recognition paradigms. An expert system 

would be appropriate if the stylistic practices of each candidate composer are well 

understood and can be easily formalized into heuristics (e.g., Figure 6). A supervised 

learning approach would be suitable if one has a number of pieces known to be by 

each of the candidate composers, as these could be used to train the system so that it 

could learn to automatically recognize the characteristics of each composer (e.g., 

Figure 7). Finally, an unsupervised approach would be suitable if one does not have a 

set of candidate composers, but would like to segment the music into groups that are 

likely to each correspond to a different composer (e.g., Figure 8). 

    There are a wide variety of different algorithms that can be used to implement su-

pervised or unsupervised learning, and each of these also has its own strengths and 

weaknesses. For example, Bayesian classifiers can perform extremely well, but re-

quire significant statistical knowledge of the data that one is dealing with in order to 

operate at their best. Nearest neighbour classifiers are simple and fast, but cannot infer 

logical relationships. Artificial neural networks can learn sophisticated relationships, 

but can take a long time to train. Tree induction algorithms are not always as effective 

as other methods, but the inferences that they learn are more easily interpretable by 

humans than the models provided by most other algorithms. Hidden Markov models 

are good at modelling how instances change with time, but are less appropriate when 

dealing with independent feature sets. 

    There are many further algorithms that can be used as well and, to further compli-

cate matters, classifiers can also be combined into ensembles, each of which also have 

their own strengths and weaknesses. How one can go about choosing the best algo-

rithms to use in particular music research projects is addressed in Section 5. 

    Feature selection and weighting, which are examples of “dimensionality reduction” 

techniques, are other areas of research that are important in musical machine learning, 

as they provide a means for emphasizing to classifiers those features that are most 

salient. It is important to note that feature weighting has value beyond simply im-

proving classification performance, as examinations of those features that are most 

significant in particular situations can have important musicological relevance. A 

variety of techniques are available for performing feature selection and weighting, 

including classical forward-backward selection as well as genetic algorithms that use 

principles of survival of the fittest to “evolve” high-quality feature sets.      

    There are a variety of complementary resources that can be consulted for further 

information on machine learning, pattern recognition and data mining (Duda, Hart & 

Stork 2001; Hastie, Tibshirani, & Friedman 2001; Alpaydin 2004; Kuncheva 2004; 

Witten & Frank 2005). 
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if ( parallel_fifths == 0 && 

     landini_cadences == 0 ) 
 then composer � Palestrina 
else composer � Machaut 

Figure 6: Pseudocode for a simple expert system designed to distinguish between the music of 

Guillaume de Machaut and Giovanni Pierluigi da Palestrina. If a piece has neither parallel fifths 

nor Landini cadences, then the system concludes that it is by Palestrina. If there are either par-

allel fifths or Landini cadences, then the system concludes that the piece is by Machaut. Al-

though unrealistically simple systems such as this are easy to implement, both the necessary 

pre-existing knowledge and the necessary sophistication of expert systems rapidly grows to 

unmanageable proportions when one must deal with more realistic problems involving com-

posers with more subtle distinctions between them.  

 

 

Figure 7: An example of supervised learning. In this case, many features are projected into two 

dimensions so that they can be more easily displayed. The problem is to teach the system to 

distinguish between compositions by Johannes Ockeghem (triangles) and Josquin Desprez 

(squares). The system is first trained by providing it with labelled compositions that are known 

to be by each composer (the filled in triangles and squares). The system is then given six unla-

belled compositions (the empty triangles and squares). Based on the examples that the system 

was trained on, the system identifies three compositions as being by Ockeghem and three as 

being by Josquin. Note that, unlike the expert system in Figure 6, it is not necessary to explic-

itly specify any of the characteristics of the composers themselves when training the system, 

since the system learns these characteristics itself from the examples. 
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Figure 8: An example of unsupervised learning. As in Figure 7, many features are once again 

projected into two dimensions so that they can be more easily displayed. The problem is to 

teach the system to separate a body of 16 anonymous pieces, for which one has no reliable 

information at all as to their composers. This means that supervised learning is not an option, 

because no labelled training samples are available. The unsupervised learning algorithm ex-

amines the 16 pieces, and separates them into four groups based on their relative differences 

and similarities, with each group corresponding to a different composer. 

5   Autonomous Classification Engine 

Machine learning and pattern recognition are subtle and sophisticated areas that re-

quire a high level of technical knowledge and experience in order to be exploited to 

their full potential. Choosing the best algorithm(s) to use for a particular application 

and effectively parameterizing them are not tasks that can be optimally performed by 

inexperienced researchers. 

    The Autonomous Classification Engine (ACE) was developed as a solution to this 

problem (McKay et al. 2005). Given a set of feature values from a feature extractor 

such as jSymbolic, ACE automatically performs experiments with a variety of classi-

fiers, classifier parameters, classifier ensembles and dimensionality reduction tech-

niques in order to arrive at an effective configuration for the particular problem at 

hand.  

    ACE may also be used directly as a classifier. Once appropriate classifier(s) have 

been chosen, whether through automatic ACE optimization or using pre-existing 

knowledge, users need only provide ACE with feature vectors and model classifica-
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tions (in the case of supervised learning). ACE then trains itself and presents users 

with trained classifier(s). 

    ACE is designed to facilitate classification for those new to pattern recognition as 

well as provide flexibility for those with more experience. Even those researchers 

with a great deal of experience in pattern recognition must often resort to experimen-

tation, and the meta-learning approach used by ACE automates this process for them. 

    Most significantly for the musicological and music theoretical communities, ACE 

makes sophisticated machine learning techniques available without requiring any 

understanding of how the underlying algorithms work. ACE has a simple interface to 

make it easily usable by those with even the most limited technical background, and 

the final touches are currently being put on a graphical user interface for the software 

(Figure 9). 

Figure 9: The ACE classification framework’s graphical interface. 

    An important advantage of ACE is that, like jSymbolic, it is open source and freely 

distributable. This means that individual researchers are free to modify and customize  

it as they see fit. ACE is also implemented in Java, which means that the framework 

is portable among operating systems and is easy to install. 
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    In all, ten supervised classification and dimensionality reduction algorithms are 

currently implemented in ACE, and there are plans to incorporate many more, in-

cluding a variety of unsupervised algorithms. ACE is built upon the Weka framework 

(Witten & Frank 2005), which means that algorithms developed for Weka can easily 

be added to ACE. ACE can read both Weka ARFF files and files in custom designed 

XML-based formats that allow far more expressivity with respect to ground truth 

(model classifications) and features than traditional machine learning file formats. 

    In terms of performance validation, ACE has outperformed existing systems at 

classifying standard UCI test datasets,1 percussion instruments and beatboxing sam-

ples in benchmarking tests (McKay et al. 2005). 

6   Applications 

As emphasized in Section 1, the feature extraction and pattern recognition approaches 

discussed in this paper are intended to facilitate musicological and music theoretical 

research involving diverse types of music and very large bodies of musical data. A 

particular stress has been placed on the potential for performing exploratory research 

and verification of existing theoretical models. This section introduces specific exam-

ples of such research. Of course, these applications only represent a small subset of 

the full range of possible research topics. 

    To begin with a very simple example, a feature could be implemented that de-

scribes the prevalence of parallel fifths in a piece. This feature could be input to an 

unsupervised clustering algorithm, which would organize compositions into groups 

based on how often parallel fifths occur. One would expect the music of J. S. Bach, 

for example, to be in a group with little or no parallel fifths, and the music of Green 

Day (a punk band) to be in a group with many parallel fifths. If the algorithm seg-

ments musical examples along these lines, then this would confirm certain theoretical 

models concerning Baroque counterpoint and the types of chord voicings and pro-

gressions found in punk music. If not, then one would be led to question these same 

models. Additional types of music, such as jungle electronic dance music or Irish jigs, 

for example, could also be input to the model to see how they compare to other types 

of music in the spectrum of parallel fifths. 

    This example is, of course, highly simplistic, and commonly used tools such as 

Humdrum could just as easily be used to perform equivalent tasks. However, consider 

now a case where one wishes to consider hundreds of features and how they interre-

late to one another, rather than just a single feature. 

    One would no longer have such clear expectations of how different types of music 

would be clustered or classified, nor would it likely be practically feasible to manu-

ally formalize relationships between features and groups of music. This makes the 

lack of applicability of expert system or manual query-based approaches to such 

problems readily apparent, particularly considering the potentially highly convoluted 

feature dependencies that would likely exist. 

                                                
1 The UCI Machine Learning Repository is a collection of data commonly used for the 

empirical analysis of machine learning algorithms. 
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    The additional problem arises of how one could represent the results of analyses of 

feature spaces involving hundreds of dimensions using either manual or traditional 

computer-based methods. Even statistical tools such as cooccurrence and correlation 

analyses are limited in how well they can represent such results in ways that are musi-

cally meaningful. 

    Of course, traditional manual and computer-based analysis techniques have not 

typically involved hundreds of features such as this, perhaps specifically because of 

these problems. Simplifications have therefore been unavoidably necessary in the 

past. However, this does not mean that such simplifications should be propagated now 

that more powerful alternatives are available. 

    It is obvious that considerations relating to harmony, rhythm, melody, dynamics, 

instrumentation and other factors are all essentially intertwined. A certain melodic 

progression might be appropriate only when played softly, for example, or perhaps 

only when certain notes fall on weak beats. A certain chord might sound better using 

a particular instrumentation than another. Any attempt to isolate one set of musical 

parameters from all others, while traditionally an unavoidable simplification in order 

to make any analysis at all possible, unavoidably results in at least some level of cor-

ruption of results due to the failure to fully consider music in a fully holistic sense.  

    One of the important advantages of the machine learning approach is that it enables 

computers to consider hundreds of features at a time, as well as the interrelationships 

between them. There is no requirement to formalize the possible relationships be-

tween features, as these are automatically learned by machine learning algorithms, nor 

to incorporate assumptions into systems that would contaminate the objectivity of a 

model. Furthermore, pattern recognition and dimensionality reduction algorithms 

allow results to be meaningfully represented in low dimensional space as self-organ-

ized clusters or specifically labelled categories. Some techniques, such as decision 

tree algorithms, also allow empirically learned rules and dependencies to be output 

directly. 

    Approaches based on machine learning thus have the important advantages over 

traditional computer-based analysis of being able to consider many variables at once 

and the dependencies between them, of avoiding the necessity of explicitly specifying 

the types of relationships that one wishes to compare and of representing the results of 

sophisticated processing in relatively simple and easy to understand ways. 

    Although these advantages also apply to expert human analysts, machine learning 

algorithms can also avoid the biases and assumptions that humans inevitably develop, 

despite their best efforts to remain objective. Such algorithms can also be used to 

analyze music of many kinds hundreds of times faster than humans, and with much 

greater consistency. 

    Of course, the ultimate goal of any analysis is to represent musical truth as inter-

preted by humans, so any computer analysis can never be more than an approximation 

of what humans perceive. It is therefore impossible for a computer to ever perform 

analyses better than an expert human, and computers are certainly not being proposed 

as replacements for human music researchers. 

    It is important to realize that this does not in any way negate the value of computer-

based analyses, however. Although computers can only approximate human percep-

tion, this does not mean that they can not approximate it well, and the ability to model 

more diverse types of music than a human could feasibly become expert in makes it 
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possible for a computer to consider far more pieces than a human ever could, and 

therefore arrive at results with more universal meaning and scope. The fresh perspec-

tive offered by computers can also provide human analysts with valuable ideas and 

insights that they can then build on. 

    The potential and advantages of machine learning when applied to validating ex-

isting theoretical models and performing exploratory research on how different fea-

tures are distributed and interrelated with respect to different types of music should 

now be clear. There are also many additional possible musical applications for ma-

chine learning, however.  

    Pattern recognition has most widely been applied to music in the MIR field. Those 

wishing a more complete survey of MIR research than the brief review presented in 

the following paragraphs should consult the work of Byrd and Crawford (2001) and 

of Downie (2003), or the proceedings of the various ISMIR conferences.  

    Optical music recognition makes it possible to extract symbolic representations 

(e.g., GUIDO, LilyPond, Finale, etc.) from scores or microfilms of scores. Research 

in automatic transcription is working towards transforming audio performances into 

symbolic formats like MIDI, something that is particularly useful when applied to 

types of music with no written tradition, as well as in capturing performance charac-

teristics that are not specified in scores. 

    Watermarking and fingerprinting allow one to automatically identify particular 

pieces of music. Performer identification and composer attribution make it possible to 

automatically determine probable authourship of anonymous recordings and scores. 

    Research in database structuring and metadata is highly relevant to the archiving 

and retrieval of valuable primary sources. Query by humming enables searching of 

databases using queries entered sonically rather than symbolically.  

    Automatic genre, mood, style, temporal and geographical classification systems 

can be used to properly label pieces along a variety of dimensions, and can help re-

searchers to understand precisely what it is that separates various categories. Finally, 

automated similarity measurement, in addition to many practical uses such as play list 

generation, recommendation and hit prediction, can also help researchers determine 

what it is that makes specific pieces and collections of music similar in various ways. 

Computer-based research in music classification and similarity analysis can also be 

useful in a context beyond a musicological and music theoretical research by helping 

to understand the psychological processes involved in human music classification and 

similarity perception. 

    Before concluding, it is appropriate to provide an example of experimental evi-

dence supporting the effectiveness of jSymbolic and ACE. These software packages 

both grew directly out of the Bodhidharma MIDI genre/style classification system 

(McKay 2004), and are essentially expansions and generalizations of the features and 

machine learning algorithms implemented in Bodhidharma. 

    Bodhidharma operates by classifying MIDI files into one or more of 38 candidate 

genres,2 ranging from bluegrass to baroque to hardcore rap to bebop. The effective-

ness of Bodhidharma at performing this task was demonstrated by the fact that it 

                                                
2 Understood here to be broad cultural and stylistic groups of music of any kind, as discussed 

by Fabbri (1999). 
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placed first in all four categories of the 2005 MIREX Symbolic Genre Classification 

Contest (Downie 2005).  

    The models learned by Bodhidharma were examined in order to extract information 

that might help to understand what it is that distinguishes different genres of music 

from each other (McKay & Fujinaga 2005). Although there is insufficient room to 

review the results in detail here, it was found that features based on instrumentation 

were in general consistently and significantly more effective in distinguishing be-

tween genres than other types of features. Detailed analysis of surprising results such 

as this could lead to interesting empirical musicological and theoretical developments.  

7   Conclusions 

It is hoped that a convincing case has been made for the adoption of sophisticated 

pattern recognition and machine learning approaches in musicological and music 

theoretical research. These methodologies have advantages relating to the ability to 

automatically form models that consider a large number of features and the interrela-

tionships between them, the lack of a need to formally specify any heuristics or que-

ries before beginning analyses, the ability to present results of sophisticated process-

ing in low-dimensional spaces and the lack of built in biases and assumptions in 

analyses. 

    Machine learning algorithms are particularly well suited to processing very large 

sets of music, which makes it possible to perform large-scale theoretical exploratory 

analysis and empirical validation of existing theories. Machine learning techniques 

can be applied to many diverse types of music, including a variety of art, popular and 

folk musics of the world, many of which do not yet have established theoretical 

frameworks. Finally, and perhaps most importantly, the results of processing using 

machine learning can cause human researchers to see music from new perspectives 

and can inspire them to pursue promising research directions that might not otherwise 

have been obvious to them. 

    It is also hoped that the features implemented by jSymbolic will be of research 

value, and that the jSymbolic and ACE software packages3 themselves will not only 

be used by musicologists and theorists in their research, but that researchers will also 

develop further features and contribute them to these systems so that they can be used 

by others.  
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