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Abstract 

The first goal of this paper is to introduce musi-
cologists and music theorists to the benefits of-
fered by state-of-the-art pattern recognition tech-
niques. The second goal is to provide them with 
a computer-based framework that can be used to 
study large and diverse collections of music for 
the purposes of empirically developing, explor-
ing and validating theoretical models. The soft-
ware presented in this paper implements tech-
niques from the fields of machine learning, pat-
tern recognition and data mining applied to and 
considered from the perspectives of music theory 
and musicology. 

An important priority underpinning the software 
presented here is the ability to apply it to a much 
wider range of art, folk and popular musics of 
the world than is possible using the types of 
computer-based approaches traditionally used in 
music research. The tools and techniques pre-
sented here will thus enable exploratory research 
that can aid in the formation and validation of 
theoretical models for types of music for which 
such models have been elusive to date. These 
tools will also allow research on forming theo-
retical links spanning types of music that have 
traditionally been studied as distinct groups. A 
particular emphasis is placed on the importance 
of performing studies involving many pieces of 
music, rather than just a few compositions that 
may not in fact be truly representative of the 
overall corpus under consideration. 

1. Introduction 

Continuing advances in computer processing 
power and data analysis techniques are creating 
an environment offering great potential to the 
theoretical study of music. It is now possible to 
not only apply to music the same kinds of pattern 
recognition algorithms that have made tasks such 
as automated speech recognition and optical 

character recognition possible, but to do so using 
simple desktop or laptop computers. 

Modern computer-based technology has been 
successfully adopted by many composers and 
performers for tasks such as sound synthesis, 
gestural control and automated or computer-
assisted composition. Computer-based music 
analysis, however, has with only a few excep-
tions remained limited to traditional approaches, 
such as simple grammar-based techniques or 
string matching and searching. Although such 
techniques are still certainly useful and relevant, 
it is unfortunate that they have not been supple-
mented by more sophisticated approaches made 
available by recent advances in information sci-
ence.  

Researchers in the music information retrieval 
(MIR) research community, in contrast, have 
been making significant strides in applying mod-
ern pattern recognition techniques to music. This 
community has been rapidly developing in recent 
years, as demonstrated by the growth of the In-
ternational Conference on Music Information 
Retrieval (ISMIR). This highly multi-
disciplinary community benefits from the shar-
ing of knowledge from fields as diverse as li-
brary sciences, electrical engineering, psychol-
ogy and computer and information sciences. Un-
fortunately, only a few musicologists and almost 
no music theorists have become involved with 
ISMIR to date. 

It is our hope that this trend will change in the 
future, as the musical insights of such research-
ers would be of great benefit to the MIR com-
munity, and a variety of MIR achievements and 
techniques would likewise be highly relevant to 
them. As convincingly argued by David Huron 
(1999), musicological insight and scientific em-
piricism can greatly complement one another. It 
is hoped that the technologies and software pre-
sented in this paper will help to bridge this gap 
by placing powerful computer-based tools for 



large-scale automated feature extraction and ma-
chine learning at the disposal of the music theory 
community, who can in turn apply and enrich 
these tools using their own musical expertise and 
experience. 

An important factor contributing to the general 
relevance of computer-based tools to musico-
logical inquiry is the increasing availability of 
source materials in digital form. Libraries and 
archives are continually digitizing both scores 
and audio recordings, and are increasingly mak-
ing the results and their related metadata avail-
able online. As noted by Huron (1999), the dis-
cipline is going from a “data-poor” field to a 
“data-rich” field. This is making wide ranging 
empirical studies possible to an extent that was 
not previously feasible. 

Although an expert human can certainly analyze 
one or a few pieces with far more insight and 
understanding than a computer, such experts are 
limited in the number of pieces that they can 
analyze in a reasonable amount of time and in 
the range of musics that fall within the scope of 
their expertise. A computer, in contrast, can 
process huge quantities of diverse musics hun-
dreds of times faster than a human, and with per-
fect consistency.  

Computer-assisted theoretical studies thus have 
the important advantage that they can each en-
compass many thousands of recordings. This 
breadth can reveal hidden musical insights that 
might not be apparent from studying just a few 
pieces, and can additionally allow one to empiri-
cally verify the validity of existing theoretical 
frameworks (e.g., Gingras & Knopke 2005). This 
can lead to important theoretical refinements and 
corrections, as well as inspire entirely new theo-
retical approaches and perspectives. 

Although traditional manual musicological or 
theoretical studies involving only a few pieces of 
music are certainly worthwhile and of value in 
increasing the musical understanding of those 
specific pieces, the validity of generalized con-
clusions drawn from such research will always 
be questionable until verified using much larger 
collections of music. The practice of making 
generalizations based on only a few pieces was 
understandable in the past, given the relatively 
limited access to musical literature and the time 
constraints imposed by manual analysis. Com-
puters and digitized music collections have now 
removed these constraints, however, making 
scientifically and statistically valid studies feasi-
ble. Increasing agreement with this perspective 

among music researchers in the arts and humani-
ties has likely contributed to the popularity and 
effectiveness of automated music analysis tools 
such as Humdrum (Huron 2002). 

As noted above, it is now possible to supplement 
such existing software-based music analysis 
tools with techniques drawn from the most re-
cent developments in modern pattern recognition 
and data mining technology. Existing music 
analysis software packages have essentially 
served as aids allowing theorists and musicolo-
gists to automate the types of tasks that they 
have traditionally performed manually. This is in 
no way meant to diminish the worth of such 
tools and approaches as, indeed, they are of 
proven value, and offer a number of benefits that 
pattern recognition techniques do not, just as 
pattern recognition techniques offer advantages 
that traditional analysis techniques do not. 

Research involving traditional analysis software 
has typically incorporated assumptions that, 
while appropriate for the limited studies for 
which they were intended, nonetheless ultimately 
limited the types of music to which they could be 
applied if one were of a mind to expand the 
scope of the studies. Although powerful tools 
such as Humdrum, for examples, can and have 
been applied to a wide variety of very different 
musics, each such application has involved adap-
tations that were specific to the type of music 
under consideration. 

Ideally, one would like to have one single soft-
ware system that could be applied to classical 
music, jazz and a wide variety of popular and 
traditional musics, including cross-disciplinary 
studies that span diverse types of music. Fur-
thermore, one would like to be able to use this 
software without needing to make any manual 
adjustments or adaptations in order to deal with 
different types of music. The types of pattern 
recognition techniques used by the software pre-
sented in this paper make this possible. 

Musical research involving modern machine 
learning algorithms also has the benefit of pro-
viding researchers with a fresh perspective on 
music, as models learned by such algorithms can 
avoid the potentially misleading ingrained as-
sumptions and biases that humans invariably 
develop, despite their best efforts. Human re-
searchers might unconsciously reject potentially 
valuable paths of inquiry because of such preju-
dices, whereas a computer would not. 



Machine learning also enables computers to con-
sider far more features (i.e., musical characteris-
tics) at a time than humans, as well as more 
complex interrelationships between them. This 
can result in the discovery of sophisticated and 
theoretically valuable patterns and relationships 
that might not be apparent to human analysts. 

It is, of course, recognized here that machine 
learning is not a substitute for human research-
ers, nor for traditional analysis software such as 
Humdrum. It is highly improbable that a com-
puter will independently evolve any perfect mu-
sical model on its own. Machine learning and 
pattern recognition techniques can, however, 
reveal insights that might otherwise be obscured, 
and can perturb human researchers out of ideo-
logical ruts that they may have fallen into. This 
and the issues raised above are discussed in fur-
ther detail in Section 6. 

One final advantage of machine learning-based 
approaches is that they can be used to analyze 
features from audio directly, not just from sym-
bolic representations such as scores or MIDI 
files. This is extremely useful not only in analyz-
ing music for which no symbolic representation 
is available, including types of music with no 
written tradition, but also for analyzing perform-
ance practices that are not typically encapsulated 
by symbolic representations. There is not suffi-
cient space to discuss audio-based MIR research 
in any depth here, other than to say that it is a 
very active field of inquiry at ISMIR, and that 
the jSymbolic feature extractor discussed in this 
paper has an analogue for processing audio re-
cordings (McEnnis, McKay & Fujinaga 2006). 

Section 2 of this paper discusses general ap-
proaches to feature extraction. Section 3 intro-
duces jSymbolic, a software tool that the 
authours have developed for extracting features 
from MIDI files. Section 4 presents some basic 
ideas relating to music and machine learning, 
and Section 5 provides an overview of the 
Autonomous Classification Engine (ACE), a 
software system developed by the authours to 
make sophisticated pattern recognition tech-
niques available to researchers in the arts and 
humanities. Section 6 outlines a variety of spe-
cific ways in which pattern recognition tech-
niques are relevant to musicologists and theo-
rists. Finally, Section 7 presents some overall 
conclusions. 

2. Feature extraction 

An essential part of realizing the goals discussed 
in Section 1 is the formalization and implemen-
tation of a large set of “features” that can be ex-
tracted from arbitrary types of music. The term 
“feature” refers to any characteristic or quality 
that may be measured and used to describe or 
characterize a piece of music. For example, 
measures of rubato or the amount of chromatic 
motion in a piece could both be features. 

Features serve as the input to machine learning 
algorithms, and any such algorithm can only 
perform well if provided with features that cap-
ture a sufficient amount of relevant information. 

There are three general types of features that can 
be automatically collected by computers and 
used as inputs to music-oriented pattern recogni-
tion systems: 

• Cultural features: Sociocultural information 
outside the scope of musical content itself. 
These often consist of statistics that can be 
automatically mined from the web, such as 
cooccurrences of certain words. 

• Low-level features: Spectral or time-domain 
information extracted directly from audio sig-
nals. Most features of this type do not provide 
information that seems intuitively musical, but 
they can have significant discriminating power 
when processed by computers.  

• High-level features: Information that consists 
of musical abstractions that are meaningful to 
musically trained humans.  

This paper will focus on high-level features, as 
they are the most obviously relevant to music 
theory. The musicological importance of cultural 
features and the practical utility of low-level 
feature certainly make them very useful for other 
types of musical research, however. 

An obvious source of inspiration when designing 
features is existing theoretical and musicological 
research. However, one must be careful when 
consulting such sources to avoid relying too 
heavily on features that are intrinsically linked to 
particular theoretical frameworks. Although 
some such features can be useful, too many will 
limit the types of music to which a system can be 
applied and will compromise the ability of the 
system to do objective exploratory research. For 
example, feature sets based too heavily on chord 
progressions could incorporate too many as-
sumptions relating to tonal harmony to be appli-



cable to types of music that do not operate on a 
tonal basis. 

It is particularly important to avoid those features 
that are built upon highly sophisticated theoreti-
cal constructs. Although Schenkerian analysis 
could be used to produce a variety of features, 
for example, such features would each be limited 
by the applicability of the Schenkerian system to 
different types of music, as discussed above. 
Furthermore, sophisticated analytical methods 
often involve a high degree of subjectivity, as 
demonstrated by the fact that different experts 
often generate different analyses of a single 
piece. The subjectivity of features derived from 
such systems would undermine the consistency 
that should ideally be characteristic of automatic 
feature extraction. Automatic analysis based on 
sophisticated theoretical constructs can also be 
computationally expensive, and is in some cases 
an unsolved problem. Avoiding features based 
on sophisticated theoretical models is therefore a 
good general strategy.   

It can also be useful to include features that en-
capsulate types of information that are tradition-
ally given a relatively minor role in music analy-
sis. So, while traditionally important features 
based on pitch class frequencies, melodic move-
ment and chord progressions certainly should be 
included in the feature sets that are used, alterna-
tives features that emphasize dynamics, rhythm 
and instrumentation, for example, should also 
play an important role. 

Existing research by ethnomusicologists and 
popular musicologists can be particularly useful 
in designing features, as researchers in these 
fields have traditionally tended to take a more 
empirical approach that is less reliant on particu-
lar analytical models. The Cantometrics project 
(Lomax 1968), which compared several thou-
sand songs from hundreds of different cultural 
groups, is a good example of this kind of re-
search, although it did suffer from some meth-
odological flaws and questionable anthropologi-
cal assumptions. Research involving melodic 
contours (e.g., Adams 1976) can also be valu-
able, although it should not be relied on too 
heavily, as such an approach is not necessarily 
applicable to all types of music. 

There are a number of additional musicological 
sources that can provide useful features (e.g., 
Tagg 1982; Cope 1991; LaRue 1992; Temperley 
2001), although such work typically (but not 
always) emphasizes manual rather than auto-
matic feature extraction. Those few musicologi-

cal research projects that have actually imple-
mented automatic feature extraction on com-
puters have generally made assumptions that, 
while appropriate for their purposes, limit their 
general applicability. For example, both Aarden 
and Huron (2001) and Towsey et al. (2001) con-
sidered only melodic features. 

A number of research projects from the field of 
MIR provide additional valuable sources of fea-
tures, particularly with respect to automatic 
genre classification (Gabura 1965; Dannenberg, 
Thom and Watson 1997; Chai and Vercoe 2001; 
Shan and Kuo 2003; Basili, Serafini, and Stellato 
2004; Ponce de Leon and Inesta 2004). Further 
features have been proposed in a number of mis-
cellaneous studies (Eerola and Toiviainen 2004; 
Sapp, Liu, and Selfridge-Field 2004; Kirlin and 
Utgoff 2005). 

As a general principle, it is best to concentrate 
primarily on features that can be represented by 
simple numbers or small vectors. Such features 
can be more easily processed by machine learn-
ing algorithms, and using them helps to avoid the 
temptation of developing excessively complex 
features that incorporate too many theoretical 
assumptions. 

Simple statistical techniques such as calculations 
of means and standard deviations are useful in 
making it possible to capture overall characteris-
tics of pieces, including how they change. This is 
important in helping to ensure that one does not 
miss the forest for the trees, as it were, although 
some features that consider specific local behav-
iour are also important. Histograms can serve as 
a particular useful statistical tool, as they permit 
an intermediate representation of music to which 
additional techniques such as peak picking can 
be applied in order to arrive at further features. 

For example, researchers such as Brown (1993) 
have proposed “beat histograms” generated using 
autocorrelation of note onsets. Tzanetakis and 
Cook (2002) have successfully used both beat 
histograms and “pitch histograms” as sources of 
features.  

Autocorrelation involves comparing a signal 
with versions of itself delayed by successive 
intervals. This yields the relative strength of dif-
ferent periodicities within the signal. In terms of 
musical data, autocorrelation allows one to find 
the relative strength of different rhythmic pulses. 
In the case of MIDI, this can be calculated based 
on Note On messages: 
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where n is the input sample index (in MIDI 
ticks), N is the total number of MIDI ticks, x is 
the sequence of MIDI ticks and lag is the delay 
in MIDI ticks (0 ≤ lag < N). The value of x[n] 
can be made proportional to the velocity of Note 
Ons. This ensures that beats are weighted based 
on the strength with which notes are played. 

This autocorrelation function can be applied re-
peatedly to each MIDI sequence with different 
values of lag. These lag values corresponded to 
both rhythmic periodicities as well as bin labels 
in beat histograms, and the autocorrelation val-
ues can provide the magnitude value for each 
bin. 

For example, consider the beat histograms ex-
tracted from MIDI representations of I Wanna Be 
Sedated by the punk band The Ramones and 
‘Round Midnight by the jazz performer and 
composer Thelonious Monk, as shown in Figures 
1 and 2 respectively. It is clear that I Wanna Be 
Sedated has significant rhythmic looseness, as 
demonstrated by the spread around each peak, 
each of which represent a strong beat periodicity. 
It also has several strong beats, including ones 
centred at 55, 66, 82, 111 (the tempo) and 164 
beats per minute, the latter two of which are har-
monics of 55 and 82 beats per minute. ‘Round 
Midnight, in contrast, has one very strong beat at 
76 beats per minute, the tempo of the piece, and 
a wide range of much lower level beat strengths. 

Histograms such as these can sometimes be used 
directly as features. Alternatively, a wide variety 
of features consisting of single values can be 
calculated from them, such as the number of 
strong peaks, the relative strengths of the highest 
peaks, the locations and harmonicity of peaks, 
the local spread around peaks and the relative 
contribution of bins not associated with peaks. 

With such histograms in mind, it is useful to con-
sider two subclasses of high-level features, 
namely one-dimensional features and multi-
dimensional features. The former each consist of 
a single number that represents an aspect of a 
piece in isolation. The latter each consist of a set 
of related values that have limited significance 
when considered individually, but together can 
reveal meaningful patterns. For example, the 
average duration of melodic arcs would be a one-
dimensional feature, and a vector representation 

of the bin frequencies of a histogram portraying 
the relative frequency of different melodic inter-
vals would be a multi-dimensional feature. 

This division into single and multi-dimensional 
features is useful because it makes it possible to 
use classifier ensembles (i.e., groups of models 
each developed using machine learning) that 
capitalize on the particular relatedness of the 
components of multi-dimensional features. For 
example, it was found experimentally that train-
ing a separate neural network on each multi-
dimensional feature and a k-nearest neighbour 
classifier on all one-dimensional features im-
proved results when performing automatic musi-
cal genre classification (McKay 2004). 

One must strike a careful balance when choosing 
which features to provide as input to machine 
learning algorithms. From one perspective, 
maximizing the number of available features 
helps to ensure that sufficient information is ex-
tracted to perform the tasks that one is interested 
in. However, too many features can overwhelm 
pattern recognition algorithms, a problem that is 
known in machine learning as “the curse of di-
mensionality.” A good compromise is to develop 
a large catalogue of features, with an emphasis 
on general features. Researchers can then choose 
the features that are best suited to each particular 
application, either based on their own expertise 
or using automated dimensionality reduction 
techniques (see Section 4).  

3. jSymbolic 

jSymbolic is a Java-based software package that 
automatically extracts features from symbolic 
recordings. It is intended for users with a range 
of computer proficiency levels, and has an easy 
to use graphical interface (Figure 3). 

jSymbolic can currently extract a total of 160 
high-level features, far more than any other auto-
mated symbolic feature extraction system known 
to the authours. The term “symbolic” in general 
refers to abstract musical representations, such as 
scores, MIDI files or Humdrum kern files, but 
not audio files. 

jSymbolic is open source, and is designed in 
such a way as to make it easy to add additional 
features in the future. Each feature is designed as 
a modular entity, but also has access to the val-
ues of other features, making it a simple matter 
to iteratively build related libraries of features if 
desired. 



Beat Histogram: I Wanna Be Sedated by The Ramones

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Beats Per Minute

R
el

at
iv

e 
Fr

eq
ue

n
cy

 
Figure 1: Beat histogram for I Wanna Be Sedated by the punk band The Ramones. Each bin corresponds 
to a rhythmic periodicity in the music. The vertical scale specifies the relative strength of each periodicity as 
calculated using autocorrelation of note onsets. 

 

 

 

Beat Histogram: 'Round Mdinight  by Thelonious Monk
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Figure 2: Beat histogram for ‘Round Midnight by Thelonious Monk. Each bin corresponds to a rhythmic pe-
riodicity in the music. The vertical scale specifies the relative strength of each periodicity as calculated using 
autocorrelation of note onsets. 



 
Figure 3: The jSymbolic feature extractor interface. 

 

The jSymbolic software currently only extracts 
features from MIDI files. Although the short-
comings of the MIDI format are well docu-
mented, a much wider range of styles and genres 
of popular, art and folk musics are available in 
MIDI than in any other format. This made it pos-
sible to collect a diverse experimental training 
and testing library consisting of 950 MIDI re-
cordings spanning 38 different types of music 
(McKay 2004). 

This is in no way meant to minimize the impor-
tance of alternative symbolic formats such as 
MusicXML, GUIDO or Humdrum’s variants. 
Such formats have a number of advantages over 
MIDI, and there is a large body of work in cer-
tain particular styles that has been encoded using 
them. It is therefore a priority in future develop-
ment to incorporate functionality into jSymbolic 
for parsing additional symbolic formats. In the 
meantime, converters can be used to translate 
music in alternative formats into MIDI. 

jSymbolic can save extracted features as both 
ACE XML and Weka ARFF files (see Section 
5). These file formats are standards that can be 
parsed by a variety of machine learning systems. 

Tools also exist for converting ARFF files to a 
variety of simple delimited text file formats. 

Although too numerous to describe individually 
in this paper, each of jSymbolic’s features are 
described in detail elsewhere (McKay 2004). 
Some of these features are original and some are 
derived from the sources described in Section 2. 
In general, jSymbolic’s features can be divided 
into the following seven categories: 

• Instrumentation: What types of instruments 
are present and which are given particular im-
portance relative to others? The importance of 
both pitched and non-pitched instruments is 
considered. 

• Texture: How many independent voices are 
there and how do they interact (e.g., poly-
phonic, homophonic, etc.)? What is the rela-
tive importance of different voices? 

• Rhythm: The time intervals between the at-
tacks of different notes and the durations of 
each note are considered. What metrical struc-
tures and rhythmic patterns are present? Is 
rubato used? How does rhythm vary from 
voice to voice? 



• Dynamics: How loud are notes and what 
kinds of variations in dynamics occur? 

• Pitch Statistics: What are the occurrence rates 
of different notes, in terms of both pitches and 
pitch classes? How tonal is the piece? What is 
its range? How much variety in pitch is there? 

• Melody: What kinds of melodic intervals are 
present? How much melodic variation is there? 
What kinds of melodic contours are used? 
What types of phrases are used and how often 
are they repeated? 

• Chords: What vertical intervals are present? 
What types of chords do they represent? How 
much harmonic movement is there and how 
fast is it? 

As discussed in Section 2, these features consist 
of both one-dimensional and multi-dimensional 
features, and make use of a variety of intermedi-
ate representations. These include beat histo-
grams, absolute pitch histograms, pitch class 
histograms, wrapped pitch class histograms, sev-
eral histograms based on the instruments present 
and the relative roles that they play, “melodic 
interval histograms” that measure the frequency 
of various melodic intervals in each voice, “ver-
tical interval histograms” that measures the fre-
quency of different vertical intervals and “chord 
type histograms” that measure how often various 
chord types appear. These intermediate represen-
tations are well documented elsewhere (McKay 
2004). 

Figures 4 and 5 show the values of twenty sam-
ple features extracted from two measures each of 
a Chopin nocturne and a Mendelssohn piano trio. 
A comparison of the two examples and their fea-
tures makes it apparent how such features can be 
useful. For example, the Average Note To Note 
Dynamic Change, Overall Dynamic Range and 
Variation of Dynamics features demonstrates the 
greater range in dynamics of the nocturne, the 
Note Density feature demonstrates the greater 
number of notes per second of the trio, the Or-
chestral Strings Fraction feature indicates that 
strings play roughly half the notes in the trio but 
are absent in the nocturne and the Variability of 
Note Duration feature shows that this portion of 
the nocturne has more rhythmic variety than the 
trio. More traditional features are also present, 
such as the Chromatic Motion feature, which 
demonstrates that this portion of the trio has 
more chromatic motion, or the Range feature, 
which shows that the lowest and highest notes of 
the nocturne span a greater interval. Although 
not necessarily significant when considered indi-

vidually, pattern recognition systems can simul-
taneously examine many such features in order 
to find meaningful patterns. 

4. Machine learning 

Once features have been extracted from music, 
machine learning and pattern recognition algo-
rithms can then be used to process them. 

Machine learning refers to techniques that allow 
a computer to automatically build (“learn”) in-
ternal models that map particular stimuli (i.e., 
feature sets) corresponding to individual exam-
ples (“instances”) to particular outputs. With 
respect to music, these outputs are typically mu-
sically meaningful categories or ontological 
structures, and a recording or score might repre-
sent an instance. 

The notion of classification into categories (or 
“classes”) is important in machine learning. A 
class can have a wide spectrum of possible 
meanings dependant on the subject of interest, 
and can be anything from a pitch or rhythmic 
duration to a historical period or compositional 
style. 

One of the key advantages of machine learning is 
that there is no need to manually specify the de-
tails of the model to be learned, or even neces-
sarily to have any a priori knowledge of the 
model at all. This is because the learning algo-
rithms construct models automatically. This 
means that machine learning is useful not only in 
the mappings performed by the learned models, 
but also in terms of the insights that the models 
themselves can provide. 

There are three general pattern recognition para-
digms, each with its strengths and weaknesses: 

• Expert Systems: These systems use pre-
defined rules to process features and arrive at 
classifications. These rules are typically speci-
fied manually by humans, and do not usually 
utilize machine learning. 

• Supervised Learning: These systems attempt 
to formulate their own classification rules by 
using machine learning techniques to train on 
model labelled instances. Previously unseen 
instances can then be classified into one or 
more of the candidate classes using the rules 
automatically generated during training. 

• Unsupervised Learning: These systems clus-
ter unlabelled instances based on similarities 
and differences that they themselves perceive. 



 
Average Note To Note Dynamics Change: 6.03 
Chromatic Motion: 0.0769 
Dominant Spread: 3 
Harmonicity of Two Strongest Rhythmic Pulses: 1 
Importance of Bass Register: 0.2 
Interval Between Strongest Pitch Classes: 3 
Most Common Pitch Class Prevalence: 0.433 
Note Density: 3.75 
Number of Common Melodic Intervals: 3 
Number of Strong Pulses: 5 

Orchestral Strings Fraction: 0 
Overall Dynamic Range: 62 
Pitch Class Variety: 7 
Range: 48 
Relative Strength of Most Common Intervals: 0.5 
Size of Melodic Arcs: 11 
Stepwise Motion: 0.231 
Strength of Strongest Rhythmic Pulse: 0.321 
Variability of Note Duration: 0.293 
Variation of Dynamics: 16.4

 

Figure 4: Twenty sample features extracted from the first two measures of Fryderyk Chopin’s Nocturne in B, 
Op. 32, No. 1. The features and their units are each defined elsewhere (McKay 2004), and would typically 
be extracted over the entire piece, not just two measures. Performance information relating to dynamics and 
rubato beyond the contents of the score is often available in MIDI files. 

 

 

 
Average Note To Note Dynamics Change: 1.46 
Chromatic Motion: 0.244 
Dominant Spread: 2 
Harmonicity of Two Strongest Rhythmic Pulses: 1 
Importance of Bass Register: 0.373 
Interval Between Strongest Pitch Classes: 7 
Most Common Pitch Class Prevalence: 0.39 
Note Density: 29.5 
Number of Common Melodic Intervals: 6 
Number of Strong Pulses: 6 

Orchestral Strings Fraction: 0.56 
Overall Dynamic Range: 22 
Pitch Class Variety: 7 
Range: 39 
Relative Strength of Most Common Intervals: 0.8 
Size of Melodic Arcs: 7.27 
Stepwise Motion: 0.439 
Strength of Strongest Rhythmic Pulse: 0.173 
Variability of Note Duration: 0.104 
Variation of Dynamics: 5.98

 

Figure 5: Twenty sample features extracted from measures 10 and 11 of the first movement of Felix Men-
delssohn’s Piano Trio No. 2 in C minor, Op. 66. The features and their units are each defined elsewhere 
(McKay 2004), and would typically be extracted over the entire piece, not just two measures. Performance 
information relating to dynamics and rubato beyond the contents of the score is often available in MIDI files. 

 



if ( parallel_fifths == 0 && 

     landini_cadences == 0 ) 
 then composer � Palestrina 
else composer � Machaut 
 

Figure 6: Pseudocode for a simple expert sys-
tem designed to distinguish between the music of 
Guillaume de Machaut and Giovanni Pierluigi da 
Palestrina. If a piece has neither parallel fifths nor 
Landini cadences, then the system concludes 
that it is by Palestrina. If there are either parallel 
fifths or Landini cadences, then the system con-
cludes that the piece is by Machaut. Although 
unrealistically simple systems such as this are 
easy to implement, both the necessary pre-
existing knowledge and the necessary sophistica-
tion of expert systems rapidly grows to unman-
ageable proportions when one must deal with 
more realistic problems involving composers with 
more subtle distinctions between them.  

Expert systems have the advantage that the exist-
ing knowledge of musicologists and theorists can 
be incorporated directly. Unfortunately, such 
systems typically only work well when applied 
to problems that can be easily formalized using 
only a few simple heuristics. Aside from limited 
and specialized applications, music is in general 
too sophisticated and the theory surrounding it 
too sparse, inconsistent and contradictory for 
expert systems to be viably applied. This is read-
ily apparent when one considers the range of 
popular, art and folk musics of the world and the 
variety of theoretical structures or lack thereof 
relating to each corpus. 

Supervised and unsupervised approaches are 
more promising in general with respect to music. 
As discussed previously, insights gained form 
exploratory research utilizing such technologies 
can help lead to the iterative construction of 
theoretical frameworks. The resultant theory can 
then potentially be formalized into expert sys-
tems, making them increasingly viable in spe-
cialized areas of musical inquiry. For example, 
expert systems can and have been successfully 
applied to baroque counterpoint, but are not yet 
as applicable to musics that are less formally 
understood. 

Supervised learning is most useful when one has 
a set of existing labels of any kind that are 
known to be associated with particular musical 
instances. Supervised learning then allows one to 
train a model using these pre-labelled instances 
so that the system learns how to assign correct 
labels to unlabelled instances. 

 Unsupervised learning is more appropriate when 
one is unable or unwilling to impose particular 
pre-existing labels on instances, and prefers to 
have a system autonomously cluster the in-
stances into groups that it finds to be similar 
based on the dimensions specified by the ex-
tracted features. 

The example of an imagined musicological re-
search project involving the attribution of a set of 
historical pieces whose composers are unknown 
can be used to illustrate the relative merits of the 
three pattern recognition paradigms. An expert 
system would be appropriate if the stylistic prac-
tices of each candidate composer are well under-
stood and can be easily formalized into heuristics 
(e.g., Figure 6). A supervised learning approach 
would be suitable if one has a number of pieces 
known to be by each of the candidate composers, 
as these could be used to train the system so that 
it could learn to automatically recognize the 
characteristics of each composer (e.g., Figure 7). 
Finally, an unsupervised approach would be suit-
able if one does not have a set of candidate com-
posers, but would like to segment the music into 
groups that are likely to each correspond to a 
different composer (e.g., Figure 8). 

There are a wide variety of different algorithms 
that can be used to implement supervised or un-
supervised learning, and each of these also has 
its own strengths and weaknesses. For example, 
Bayesian classifiers can perform extremely well, 
but require significant statistical knowledge of 
the data that one is dealing with in order to oper-
ate at their best. Nearest neighbour classifiers are 
simple and fast, but cannot infer logical relation-
ships. Artificial neural networks can learn so-
phisticated relationships, but can take a long time 
to train. Tree induction algorithms are not always 
as effective as other methods, but the inferences 
that they learn are more easily interpretable by 
humans than the models provided by most other 
algorithms. Hidden Markov models are good at 
modelling how instances change with time, but 
are less appropriate when dealing with independ-
ent feature sets. 

There are many further algorithms that can be 
used as well and, to further complicate matters, 
classifiers can also be combined into ensembles, 
each of which also have their own strengths and 
weaknesses. How one can go about choosing the 
best algorithms to use in particular music re-
search projects is addressed in Section 5. 

Feature selection and weighting, which are ex-
amples of “dimensionality reduction” techniques, 



 

Supervised
 Learning

Ockeghem
Josquin
Unknown (Ockeghem)
Unknown (Josquin)

 
Figure 7: An example of supervised learning. In 
this case, many features are projected into two 
dimensions so that they can be more easily dis-
played. The problem is to teach the system to 
distinguish between compositions by Johannes 
Ockeghem (triangles) and Josquin Desprez 
(squares). The system is first trained by providing 
it with labelled compositions that are known to be 
by each composer (the filled in triangles and 
squares). The system is then given six unlabelled 
compositions (the empty triangles and squares). 
Based on the examples that the system was 
trained on, the system identifies three composi-
tions as being by Ockeghem and three as being 
by Josquin. Note that, unlike the expert system in 
Figure 6, it is not necessary to explicitly specify 
any of the characteristics of the composers 
themselves when training the system, since the 
system learns these characteristics itself from the 
examples. 
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Composer 2

Composer 3
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Figure 8: An example of unsupervised learning. 
As in Figure 7, many features are once again 
projected into two dimensions so that they can be 
more easily displayed. The problem is to teach 
the system to separate a body of 16 anonymous 
pieces, for which one has no reliable information 
at all as to their composers. This means that su-
pervised learning is not an option, because no 
labelled training samples are available. The un-
supervised learning algorithm examines the 16 
pieces, and separates them into four groups 
based on their relative differences and similari-
ties, with each group corresponding to a different 
composer. 

are other areas of research that are important in 
musical machine learning, as they provide a 
means for emphasizing to classifiers those fea-
tures that are most salient. It is important to note 
that feature weighting has value beyond simply 
improving classification performance, as exami-
nations of those features that are most significant 
in particular situations can have important musi-
cological relevance. A variety of techniques are 
available for performing feature selection and 
weighting, including classical forward-backward 
selection as well as genetic algorithms that use 
principles of survival of the fittest to “evolve” 
high-quality feature sets.  

There are a variety of complementary resources 
that can be consulted for further information on 
machine learning, pattern recognition and data 
mining (Duda, Hart & Stork 2001; Hastie, Tib-
shirani, & Friedman 2001; Alpaydin 2004; 
Kuncheva 2004; Witten & Frank 2005). 

5. Autonomous classification engine 

Machine learning and pattern recognition are 
subtle and sophisticated areas that require a high 
level of technical knowledge and experience in 
order to be exploited to their full potential. 
Choosing the best algorithm(s) to use for a par-
ticular application and effectively parameterizing  



 

Figure 9: The ACE classification framework’s graphical interface. 

 

them are not tasks that can be optimally per-
formed by inexperienced researchers. 

The Autonomous Classification Engine (ACE) 
was developed as a solution to this problem 
(McKay et al. 2005). Given a set of feature val-
ues from a feature extractor such as jSymbolic, 
ACE automatically performs experiments with a 
variety of classifiers, classifier parameters, clas-
sifier ensembles and dimensionality reduction 
techniques in order to arrive at an effective con-
figuration for the particular problem at hand.  

ACE may also be used directly as a classifier. 
Once appropriate classifier(s) have been chosen, 
whether through automatic ACE optimization or 
using pre-existing knowledge, users need only 
provide ACE with feature vectors and model 
classifications (in the case of supervised learn-
ing). ACE then trains itself and presents users 
with trained classifier(s). 

ACE is designed to facilitate classification for 
those new to pattern recognition as well as pro-
vide flexibility for those with more experience. 
Even those researchers with a great deal of ex-
perience in pattern recognition must often resort 
to experimentation, and the meta-learning ap-
proach used by ACE automates this process for 
them. 

Most significantly for the musicological and mu-
sic theoretical communities, ACE makes sophis-
ticated machine learning techniques available 
without requiring any understanding of how the 
underlying algorithms work. ACE has a simple 
interface to make it easily usable by those with 
even the most limited technical background, and 
the final touches are currently being put on a 
graphical user interface for the software (Figure 
9). 



An important advantage of ACE is that, like 
jSymbolic, it is open source and freely distribut-
able. This means that individual researchers are 
free to modify and customize it as they see fit. 
ACE is also implemented in Java, which means 
that the framework is portable among operating 
systems and is easy to install. 

In all, ten supervised classification and dimen-
sionality reduction algorithms are currently im-
plemented in ACE, and there are plans to incor-
porate many more, including a variety of unsu-
pervised algorithms. ACE is built upon the Weka 
framework (Witten & Frank 2005), which means 
that algorithms developed for Weka can easily be 
added to ACE. ACE can read both Weka ARFF 
files and files in custom designed XML-based 
formats that allow far more expressivity with 
respect to ground truth (model classifications) 
and features than traditional machine learning 
file formats. 

In terms of performance validation, ACE has 
outperformed existing systems at classifying 
standard UCI test datasets, percussion instru-
ments and beatboxing samples in benchmarking 
tests (McKay et al. 2005). 

6. Applications 

As emphasized in Section 1, the feature extrac-
tion and pattern recognition approaches dis-
cussed in this paper are intended to facilitate 
musicological and music theoretical research 
involving diverse types of music and very large 
bodies of musical data. A particular stress has 
been placed on the potential for performing ex-
ploratory research and verification of existing 
theoretical models. This section introduces spe-
cific examples of such research. Of course, these 
applications only represent a small subset of the 
full range of possible research topics. 

To begin with a very simple example, a feature 
could be implemented that describes the preva-
lence of parallel fifths in a piece. This feature 
could be input to an unsupervised clustering al-
gorithm, which would organize compositions 
into groups based on how often parallel fifths 
occur. One would expect the music of J. S. Bach, 
for example, to be in a group with little or no 
parallel fifths, and the music of Green Day (a 
punk band) to be in a group with many parallel 
fifths. If the algorithm segments musical exam-
ples along these lines, then this would confirm 
certain theoretical models concerning Baroque 
counterpoint and the types of chord voicings and 

progressions found in punk music. If not, then 
one would be led to question these same models. 
Additional types of music, such as jungle elec-
tronic dance music or Irish jigs, for example, 
could also be input to the model to see how they 
compare to other types of music in the spectrum 
of parallel fifths. 

This example is, of course, highly simplistic, and 
commonly used tools such as Humdrum could 
just as easily be used to perform equivalent 
tasks. However, consider now a case where one 
wishes to consider hundreds of features and how 
they interrelate to one another, rather than just a 
single feature. 

One would no longer have such clear expecta-
tions of how different types of music would be 
clustered or classified, nor would it likely be 
practically feasible to manually formalize rela-
tionships between features and groups of music. 
This makes the lack of applicability of expert 
system or manual query-based approaches to 
such problems readily apparent, particularly con-
sidering the potentially highly convoluted feature 
dependencies that would likely exist. 

The additional problem arises of how one could 
represent the results of analyses of feature spaces 
involving hundreds of dimensions using either 
manual or traditional computer-based methods. 
Even statistical tools such as cooccurrence and 
correlation analyses are limited in how well they 
can represent such results in ways that are musi-
cally meaningful. 

Of course, traditional manual and computer-
based analysis techniques have not typically in-
volved hundreds of features such as this, perhaps 
specifically because of these problems. Simplifi-
cations have therefore been unavoidably neces-
sary in the past. However, this does not mean 
that such simplifications should be propagated 
now that more powerful alternatives are avail-
able. 

It is obvious that considerations relating to har-
mony, rhythm, melody, dynamics, instrumenta-
tion and other factors are all essentially inter-
twined. A certain melodic progression might be 
appropriate only when played softly, for exam-
ple, or perhaps only when certain notes fall on 
weak beats. A certain chord might sound better 
using a particular instrumentation than another. 
Any attempt to isolate one set of musical pa-
rameters from all others, while traditionally an 
unavoidable simplification in order to make any 
analysis at all possible, unavoidably results in at 



least some level of corruption of results due to 
the failure to fully consider music in a fully ho-
listic sense.  

One of the important advantages of the machine 
learning approach is that it enables computers to 
consider hundreds of features at a time, as well 
as the interrelationships between them. There is 
no requirement to formalize the possible rela-
tionships between features, as these are auto-
matically learned by machine learning algo-
rithms, nor to incorporate assumptions into sys-
tems that would contaminate the objectivity of a 
model. Furthermore, pattern recognition and 
dimensionality reduction algorithms allow re-
sults to be meaningfully represented in low di-
mensional space as self-organized clusters or 
specifically labelled categories. Some tech-
niques, such as decision tree algorithms, also 
allow empirically learned rules and dependencies 
to be output directly. 

Approaches based on machine learning thus have 
the important advantages over traditional com-
puter-based analysis of being able to consider 
many variables at once and the dependencies 
between them, of avoiding the necessity of ex-
plicitly specifying the types of relationships that 
one wishes to compare and of representing the 
results of sophisticated processing in relatively 
simple and easy to understand ways. 

Although these advantages also apply to expert 
human analysts, machine learning algorithms can 
also avoid the biases and assumptions that hu-
mans inevitably develop, despite their best ef-
forts to remain objective. Such algorithms can 
also be used to analyze music of many kinds 
hundreds of times faster than humans, and with 
much greater consistency. 

Of course, the ultimate goal of any analysis is to 
represent musical truth as interpreted by humans, 
so any computer analysis can never be more than 
an approximation of what humans perceive. It is 
therefore impossible for a computer to ever per-
form analyses better than an expert human, and 
computers are certainly not being proposed as 
replacements for human music researchers. 

It is important to realize that this does not in any 
way negate the value of computer-based analy-
ses, however. Although computers can only ap-
proximate human perception, this does not mean 
that they can not approximate it well, and the 
ability to model more diverse types of music 
than a human could feasibly become expert in 
makes it possible for a computer to consider far 

more pieces than a human ever could, and there-
fore arrive at results with more universal mean-
ing and scope. The fresh perspective offered by 
computers can also provide human analysts with 
valuable ideas and insights that they can then 
build on. 

The potential and advantages of machine learn-
ing when applied to validating existing theoreti-
cal models and performing exploratory research 
on how different features are distributed and 
interrelated with respect to different types of 
music should now be clear. There are also many 
additional possible musical applications for ma-
chine learning, however.  

Pattern recognition has most widely been applied 
to music in the MIR field. Those wishing a more 
complete survey of MIR research than the brief 
review presented in the following paragraphs 
should consult the work of Byrd and Crawford 
(2001) and of Downie (2003), or the proceedings 
of the various ISMIR conferences.  

Optical music recognition makes it possible to 
extract symbolic representations (e.g., GUIDO, 
LilyPond, Finale, etc.) from scores or microfilms 
of scores. Research in automatic transcription is 
working towards transforming audio perform-
ances into symbolic formats like MIDI, some-
thing that is particularly useful when applied to 
types of music with no written tradition, as well 
as in capturing performance characteristics that 
are not specified in scores. 

Watermarking and fingerprinting allow one to 
automatically identify particular pieces of music. 
Performer identification and composer attribu-
tion make it possible to automatically determine 
probable authourship of anonymous recordings 
and scores. 

Research in database structuring and metadata is 
highly relevant to the archiving and retrieval of 
valuable primary sources. Query by humming 
enables searching of databases using queries 
entered sonically rather than symbolically.  

Automatic genre, mood, style, temporal and 
geographical classification systems can be used 
to properly label pieces along a variety of dimen-
sions, and can help researchers to understand 
precisely what it is that separates various catego-
ries. Finally, automated similarity measurement, 
in addition to many practical uses such as play 
list generation, recommendation and hit predic-
tion, can also help researchers determine what it 
is that makes specific pieces and collections of 
music similar in various ways. Computer-based 



research in music classification and similarity 
analysis can also be useful in a context beyond a 
musicological and music theoretical research by 
helping to understand the psychological proc-
esses involved in human music classification and 
similarity perception. 

Before concluding, it is appropriate to provide an 
example of experimental evidence supporting the 
effectiveness of jSymbolic and ACE. These soft-
ware packages both grew directly out of the Bo-
dhidharma MIDI genre/style classification sys-
tem (McKay 2004), and are essentially expan-
sions and generalizations of the features and ma-
chine learning algorithms implemented in Bo-
dhidharma. 

Bodhidharma operates by classifying MIDI files 
into one or more of 38 candidate genres,1 ranging 
from bluegrass to baroque to hardcore rap to 
bebop. The effectiveness of Bodhidharma at per-
forming this task was demonstrated by the fact 
that it placed first in all four categories of the 
2005 MIREX Symbolic Genre Classification 
Contest (Downie 2005).  

The models learned by Bodhidharma were exam-
ined in order to extract information that might 
help to understand what it is that distinguishes 
different genres of music from each other 
(McKay & Fujinaga 2005). Although there is 
insufficient room to review the results in detail 
here, it was found that features based on instru-
mentation were in general consistently and sig-
nificantly more effective in distinguishing be-
tween genres than other types of features. De-
tailed analysis of surprising results such as this 
could lead to interesting empirical musicological 
and theoretical developments.  

7. Conclusions 

It is hoped that a convincing case has been made 
for the adoption of sophisticated pattern recogni-
tion and machine learning approaches in musico-
logical and music theoretical research. These 
methodologies have advantages relating to the 
ability to automatically form models that con-
sider a large number of features and the interrela-
tionships between them, the lack of a need to 
formally specify any heuristics or queries before 
beginning analyses, the ability to present results 
of sophisticated processing in low-dimensional 

                                                 
1 Understood here to be broad cultural and stylistic 
groups of music of any kind, as discussed by Fabbri 
(1999). 

spaces and the lack of built in biases and as-
sumptions in analyses. 

Machine learning algorithms are particularly 
well suited to processing very large sets of mu-
sic, which makes it possible to perform large-
scale theoretical exploratory analysis and empiri-
cal validation of existing theories. Machine 
learning techniques can be applied to many di-
verse types of music, including a variety of art, 
popular and folk musics of the world, many of 
which do not yet have established theoretical 
frameworks. Finally, and perhaps most impor-
tantly, the results of processing using machine 
learning can cause human researchers to see mu-
sic from new perspectives and can inspire them 
to pursue promising research directions that 
might not otherwise have been obvious to them. 

It is also hoped that the features implemented by 
jSymbolic will be of research value, and that the 
jSymbolic and ACE software packages them-
selves will not only be used by musicologists and 
theorists in their research, but that researchers 
will also develop further features and contribute 
them to these systems so that they can be used by 
others.  

jSymbolic and ACE are both parts of the jMIR 
research project. Software and documentation 
may be downloaded from 
http://sourceforge.net/projects/jmir. 
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