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Abstract

A system is presented that automatically
transcribes synthesized clarinet and oboe audio
data. A front-end was used that made use of si-
nusoidal tracks as well as a gammatone filter-
bank. Arrays of neural networks were then used
to process the data produced by the front-end
into a score. The system performed very well in
correctly identifying pitches and in avoiding
missed notes and false notes. The rhythm of the
transcriptions was sometimes irregular, however.
Problems that have been encountered in other
transcription systems, such as octave misidentifi-
cation, difficulties with notes of short duration
and dependence on stylistic qualities were
avoided. The potential for scaling the system to
more difficult tasks given more time and com-
puting resources is discussed. A variety of tech-
niques were explored and are discussed here.

1. Introduction

Automated general-purpose polyphonic mu-
sic transcription systems have a great deal of
potential utility, both to music technologists and
to traditional music researchers who would find
it convenient to avoid having to manually tran-
scribe performances. Although there has been
some success with monophonic transcription, a
widely-accepted polyphonic system has yet to be
implemented. There is thus ample opportunity
for researchers to build on the work that has al-
ready been done in this field.

Ideally, a polyphonic transcription system
would take in an arbitrary musical audio signal
and produce a notated score, complete with
pitch, thythm, dynamics and tempo information
for each voice in the signal. Such a system could
perhaps even glean information from audio sig-
nals that is not traditionally notated, but is per-
ceived by humans.

Unfortunately the difficulties related to ex-
tracting precise and reliable data from audio data
make this an unrealistic goal, at least for the
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moment. Problems such as spectral variations
within a given instrument, difficulties in
identifying short notes due to the prevalence of
transients, voice crossing and difficulties in
identifying the correct octave of a note have thus
far prevented the successful implementation of a
general-purpose transcription system.

It was therefore decided to attempt to solve a
simplified version of this problem in order
achieve intermediate results that could give in-
sights into techniques that could be applied to the
general problem of blackboard transcription. The
first simplification was to limit the number of
voices to one or two. A solution to this problem
is likely simpler than transcribing arbitrary num-
bers of instruments, while at the same time still
necessitating a solution that deals with the same
types of problems that are encountered with gen-
eral transcription. This limitation therefore
makes it possible to explore the relative effec-
tiveness of different techniques, which in turn
could give insights into which approaches should
be studied at further length in order to be applied
to the problem of general transcription.

The second simplification was to specify
which instruments would be present. This not an
impractical limitation, given that identification of
instruments can be a difficult task for computers
but is relatively simple for trained humans. A
user could simply specify different modules to
transcribe different combinations of instruments.
A semi-automatic system that requires the user
to specify which instruments are present would
greatly simplify the task of the computer while at
the same time requiring only a moderate contri-
bution from the human user.

The third simplification was to use synthe-
sized audio rather than real audio recordings.
This is the most troublesome simplification, as
synthesized audio is much more consistent than
real-world audio and it is therefore much easier
to successfully apply pattern matching tech-
niques to it. Nonetheless, this approach is consis-
tent with the goal of simplifying the problem in



order to study the effectiveness of different tech-
niques.

One final note is that the transcribed output
contains only rhythm and pitch information. All
other information, including dynamics, is ig-
nored. This is not considered to be a serious limi-
tation, at least at this stage, since pitch and
rhythm are arguably the types of information
best presented by traditional scores.

One approach that has been used elsewhere
that was avoided here was the incorporation of
high-level musical knowledge into the system.
This includes information such as common chord
transitions or melodic devices. Although this
kind of knowledge is both useful and appropriate
for transcription systems, it inherently limits the
system to specific styles of music or particular
musical traditions. It was therefore decided to
avoid this approach since it was our goal to de-
velop a system that could eventually be adapted
to transcription in general. Of course, it would
always be possible to use a music theory system
to process and improve the results of our system
if a particular user were interested only in one
type of music.

This paper will first present a review of
background material and research in the area of
polyphonic transcription. The implementation of
the system will then be discussed and the differ-
ent architectures and techniques that were used
will be presented. The experimental results will
then be given and discussed. This paper will then
be ended with some final conclusions and a dis-
cussion of how this research can be expanded in
the future.

2 Background Research

It seems that much progress has been made
on the problem of polyphonic transcription since
early attempts in the mid-70’s. However, the
success of almost all systems since then has been
as a result of at least one significant simplifica-
tion. As will be seen, systems have been imple-
mented that transcribe audio signals derived
from only one or a few instruments, that extract
only a given instrument from a complex signal or
that deal with music that obeys very restrictive
rules. In addition to these limitations, most sys-
tems that have been implemented produce very
simplified scores, often with information limited
to pitch and note onset time for each voice. Such
systems have reportedly achieved success rates
of between 70% and 90%, although these num-

bers may be inflated due to the limited testing
suites that have been applied.

Although there have been a wide variety of
methodologies applied to polyphonic transcrip-
tion, certain techniques have gained prominence
in recent years. With respect to front-end proc-
essing, two general approaches have come to the
fore. Sinusoidal-based analysis and correlation-
based techniques have laid the groundwork and
show promise for future implementations. This is
doubly important when we consider the limita-
tion that a poor representation of data places on
the rest of the system—without reliable data
from the front-end, the rest of the system’s func-
tionality is extremely limited.

The front-end analyzes PCM audio data and
reinterprets it so that it becomes meaningful to
other components within the transcription sys-
tem. Perhaps the most promising implementation
towards this goal comes via Fourier-based analy-
sis techniques.

Bello et al. (2000) describe a system that
receives the averaged STFT of a signal and
identifies the peaks in the spectrum. These peaks
are stored as tracks; they contain frequency and
magnitude information that the system follows
over time. These sinusoidal tracks, as they’re
referred to, provide a good indication of how the
frequency content of a given sound is evolving
over time.

The advantage of this method over a tradi-
tional STFT is that there is no loss of resolution
towards the lower frequency ranges. A Fourier
transform provides information in bins evenly
spaced in frequency, the result of which is that
more information is provided in the higher fre-
quency ranges, yet there remains poor resolution
and uncertainty in the low frequencies. Con-
trariwise, utilizing sinusoidal tracks allows only
the most salient information to be identified and
extracted from a signal, wherever it may lie in
the frequency spectrum.

Dixon (2000) uses a similar technique to
circumvent this problem. A tracking phase vo-
coder is employed in order to alleviate some of
the uncertainty in the low notes. Rather than us-
ing the centre frequency of each bin, a more ac-
curate estimate is attained by using phase infor-
mation obtained from adjacent FFT windows.
Specifically, in the bins surrounding a spectral
peak, the rate of phase change will correspond to
the actual frequency present. As before, the
peaks in the spectrum and their frequency are



then combined to give, as Dixon describes it,
“atoms of energy localized in time and fre-
quency.” However, because of the similarity of
the output to sinusoidal tracks, this representa-
tion may be viewed as an alternative to sinusoi-
dal-track implementation.

We have described a rather -elaborate
method to extract information from the audio
signal while at the same time preserving low
frequency resolution. Of course, a longer analy-
sis window would certainly help quantify fre-
quencies in the lower frequency range; however,
this comes at the expense of creating another
problem whereby there is insufficient resolution
in time. Thus, forming sinusoidal tracks allows
salient information to be presented while at the
same time maintaining resolution in time.

An altogether different structure for a front-
end employs correlation-based analysis. In gen-
eral, these methods seek to model human percep-
tion by filtering the audio data in a similar way
as the ear. A gammatone filterbank usually pro-
vides a basis for this type of analysis (Martin,
1996b; Martolt, 2001). First, the audio signal is
decomposed into a number of frequency bands
with near-constant-Q bandwidth in the middle
and high frequencies. The frequency and width
of each band closely resembles equivalent bands
on the basilar membrane. Next, the output of
each band is usually processed by a model of the
inner hair cells of the cochlea. This process may
be viewed as “a half-wave rectification followed
by smoothing ... and onset enhancement” (Mar-
tin, 1996b). Often, further analysis is performed
by short-time auto-correlation. One variation
includes using a bank of filters to produce log-
lag correlograms, and then determining pitch by
measuring the periodic energy in each filter
channel as a function of lag (Martin, 1996b).
Martin claims that this approach makes the bot-
tom-up detection of octaves possible. This could
potentially serve as an improvement over auto-
correlation, as it more closely relates the varia-
tion of human pitch resolution ability. However,
while this technique was implemented by Mar-
tin, he did not achieve any definitive experimen-
tal results indicating whether this approach is
actually an improvement.

One advantage of using a front-end that
models human perception in this way is that the
many nuances of human perception may be ac-
counted for. These include the “missing funda-
mental,” and weak pitch perception resulting
from interrupted noise bursts. However, critics of

this approach (Klapuri, 1998) cite difficulties
arising from auditory stream analysis. Creating a
model based on the human ear means that it is
subjected to the same, inherent problems of per-
ception that humans are faced with. For instance,
with autocorrelation a fusion of information on
perceptual grounds (the sound of several instru-
ments combining to form the perception of a
single timbre) restricts the separate treatment of
each harmonic partial. Klapuri claims on this
basis that transcription systems equipped with a
correlation-based front-end would, in theory,
suffer from this, too.

The SONIC system (Martolt, 2001) attempts
to extend the effectiveness of a correlation-based
front-end. It first uses a gammatone filterbank
and a hair model to produce an output on many
frequency channels. Instead of using autocorrela-
tion or some kind of peak-picking algorithm
next, a network of adaptive oscillators is em-
ployed. These oscillators adapt their phase and
frequency in response to an input; when a peri-
odic signal is sent as input, it tries to model that
input by adjusting its phase and frequency. Par-
tial tracks may then be formed by observing the
output of each oscillator. This results in a very
robust front-end, leading to perhaps one of the
most successful transcription systems to date.

A number of methods have been used to de-
rive transcriptions from the output of front-end
systems. One of the most common approaches is
to use a blackboard systems. The term “black-
board” comes from the notion of a group of ex-
perts standing around a blackboard working to-
gether to solve a problem. Each expert writes
contributions on the blackboard based on his/her
expertise. The experts watch the problem evolve
on the blackboard until a solution is achieved. In
terms of computing, the “blackboard” is a central
dataspace that is usually arranged in a hierarchy
so that input is at the lowest level and output is at
the highest. The “experts” are called “knowledge
sources,” and they generally consist of a set of
heuristics and pre-conditions whose satisfaction
results in a hypothesis that is written to the
blackboard. Each knowledge source forms hy-
potheses based on information from the front-
end of the system and hypotheses presented by
other knowledge sources. The problem is con-
sidered solved when all knowledge sources are
satisfied with all hypotheses on the blackboard to
within a given margin of error.

Keith Martin was one of the first researchers
to apply blackboard systems to music transcrip-



tions (Martin, 1996 a). His system was limited to
analyzing performances of piano music and was
tested on four-voice Bach chorales. The front-
end of Martin’s system applied short-time Fou-
rier transforms to the input signal to generate
associated sets of onset times, frequencies and
amplitudes that were fed to the blackboard sys-
tem. The blackboard system consisted of thirteen
knowledge sources, each falling into one of three
types: garbage collection, physics and musical
practice. The hypotheses made by the knowledge
sources fell into five hierachally-organized
classes, namely tracks, partials, notes, intervals
and chords. A sequential scheduler was used to
coordinate the knowledge sources. One of the
greatest weaknesses of this system was that it
tended to misidentify octaves. In order to resolve
this problem, Martin proposed using a bank of
filters to produce log-lag correlograms, as de-
scribed above (1996b). The correlograms could
then be fed as the basic unit to the blackboard
system. Martin did not achieve any definitive
experimental results indicating whether this ap-
proach is better than his original approach.

Bello and Sandler (2000) have designed a
system based on Martin’s design, using a
sequential scheduler. Aside from refining the
knowledge sources and adding high-level musi-
cal knowledge, they implemented a chord recog-
nizer knowledge source as a feed-forward neural
network. The network was trained using spectro-
graphs of different chords of a piano and it pro-
duced candidate chords. The network could out-
put more than one hypothesis at each iteration,
allowing the system to perform a parallel explo-
ration of the solution space. Preliminary testing
showed that the system had a tendency to mis-
identify octaves and make incorrect identifica-
tion of note onsets, but these problems could
potentially be solved by modifications to the
signal processing system that feeds the black-
board system data and by refining the knowledge
sources.

Rather than using a sequential scheduler to
coordinate the blackboard system, Kashino used
a Bayesian probability network (Kashino et al,
1995). Bayesian networks are well known for
producing good results, despite noisy input or
missing data. They are often used in implement-
ing learning methods that trade off prior belief in
a hypothesis against its agreement with current
data. They therefore seem to be well suited to
coordinating blackboard systems. There has not
yet been any experimental research directly
comparing the success of the sequential approach

used by Martin to this Bayesian network ap-
proach, however. Aside from this important dif-
ference between Kashino’s work and that of
Martin, Kashino also used knowledge sources
with information about stream segregation taken
from research in human auditory scene analysis,
as discussed above. Kashino also set up his sys-
tem so that it could analyze signals containing
more than one instrument. In order to accomplish
this, he used knowledge sources programmed
with the frequency components of different in-
struments played with different parameters.

In a later publication (Kashino and Hagita,
1996), Kashino suggested replacing the Bayesian
network with a Markov Random Field hypothe-
sis network. This allowed information to be inte-
grated on a multiply connected hypothesis net-
work, unlike the Bayesian network that only al-
lowed singly connected networks. This made it
possible to deal with two kinds of transition in-
formation within a single hypothesis network,
namely chord transitions and note transitions.
This approach was successful in correcting prob-
lems relating to misidentification of octaves and
of instruments that plagued the previous system,
although it did introduce some new errors. The
new system performed achieved a recognition
rate of 71.7% on a three-part arrangement of
Auld Lang Syne, an overall improvement of
roughly 10% over the old system.

Kashino later suggested a shift away from
strict blackboard systems by performing more
work in the front-end of the system and mathe-
matically formalizing the work previously done
by the knowledge sources (Kashino and Murase,
1998). Adaptive template matching was used in
this new system. This system found the correla-
tion between the output of a bank of filters ar-
ranged in parallel and a set of templates corre-
sponding to particular notes played by particular
instruments. This approach did achieve an aver-
age recognition rate of 88.5% on recordings of
piano, violin and flute.

An alternative approach has been to take an
input signal containing arbitrary instruments and
extract information relating to only one of them.
Some success has been achieved in extracting
basslines in such a manner (Hainsworth and
Macleod, 2001). High frequencies were filtered
out of the signal and simple mathematical rela-
tions were used to trim hypotheses.

The work of Bello and Sandler (2000) and
Marolt and Privosnik (2001) with feed-forward
neural networks has shown some very interesting



promise. It was decided to expand on their work
here by examining in greater detail how systems
of feed-forward neural networks could be ap-
plied to the transcription problem. We have for-
saken the blackboard approach here not because
it does not hold promise, but because we wanted
to concentrate our energies on directly studying
the applicability of neural networks. A future
extension of this work could be to integrate part
of the research here with a blackboard system.

Feed-forward neural networks consist of
networks of sets of input units connected to hid-
den units, which are in turn connected to output
units. Each input unit is linked by a weight to
each hidden unit, and each hidden unit is linked
by a weight to each output unit. Patterns of num-
bers are placed on each input unit, which are
then multiplied by the weights and sent out to the
hidden layer. The inputs to each hidden layer are
summed, and this number is fed into an activa-
tion function, typically the sigmoidal function.
These values are then propagated to the output
units using the same procedure, with the result
that each output unit ends up with a number be-
tween, typically between 0 and 1.

Series of training patterns can be fed to the
input units of neural networks. A process of gra-
dient decent in error space is performed to adjust
the weights of the network so that the training
data patterns produce (hopefully) a convergence
towards the expected output at the output units.
The hope is that the units will adapt to the train-
ing data so that they will be able to perform tasks
such as approximate functions or perform pattern
matching even when they are given data that
they were not explicitly trained with. Neural
networks are thus potentially useful at achieving
difficult to describe mappings between input and
output, which is why they are appropriate to ap-
ply to linking audio data to notes in a score.

3. Implementation

Our system was divided into two largely in-
dependent components: a signal processing
front-end to extract frequency tracks and times of
probable note onsets from audio files, and an
array of neural networks to produce a score from
this information.

Audio data for testing and training was pro-
duced by synthesizing MIDI recordings of clari-
net and oboe performances with Apple’s Quick-
Time player. Sets of training data consisted of
chromatic scales (for the monophonic data) and

all possible pairs of notes in a given range (for
the duet data). Although this necessitated very
long training sets, the result was that the net-
work(s) had seen all possible inputs within the
range of the synthesized sound, and—since the
system processed each frame independently and
was memoryless—should be well prepared to
process test data. Note durations were kept short
(an average of 300 ms) in order to try to force the
system to recognize a note’s transients as well as
its steady state.

In order to synthesize audio data for testing,
a variety of MIDI files were downloaded from
the Internet. Several Schubert and Beethoven
wind duets were employed to test the effective-
ness of the transcription system described herein.
Short segments (usually 10 to 15 seconds long)
of varying styles and contrasting rhythms were
selected and synthesized. The synthesized seg-
ments were then sent to the front-end for analy-
sis. The irregular rthythms and melodic skips in
the training data contrasted with the steady
rhythms and intervals of the training data, thus
providing “real-life” data that helped to provide
insight as to the system’s true effectiveness.

3.1 Implementation of Signal Processing
front-end

The front-end of any transcription system is
essential to its performance, as even the best
performing back-end is impotent without reliable
data from the front-end. As discussed above, two
approaches, namely a sinusoidal and filterbank-
based approach, have become generally accepted
in the literature and have met some degree of
success. The front-end discussed here therefore
includes both of these.

The implementation of the front-end was
performed entirely in MATLAB. Several toolkits
from third-party sources were explored which
extended MATLAB’s functionality. Initial ex-
periments were carried out with the SMT toolkit
(Johnson, 2002). This set of tools allows audio
data to be transformed in a number of ways and
includes algorithms that can be used for note-
onset detection. The STFT algorithm was ini-
tially used to generate spectral data, and peak-
picking algorithms were used to extract the most
prominent peaks. This data was then placed into
an array, with new peaks added each frame. Un-
fortunately, this performed poorly in represent-
ing the evolution of each peak during transitions
from frame to frame. A variety of window-sizes
were employed to help smooth out the disconti-



nuities from each frame (more reliable peaks,
less variation in number), but the underlying
problem still remained. Similar discouraging
results occurred when the constant wavelet trans-
form was used.

It was therefore decided to employ a more
widely used and perhaps more robust method:
SMS analysis (Serra, 1997). Spectral modeling
synthesis is a set of techniques specifically
geared towards the analysis of audio data. Mean-
ingful data may be extracted from the signal in
order to facilitate re-synthesis or further analysis.
The algorithm models an input signal as a num-
ber of stable sinusoids (partials) plus a residual
component. This implementation is advanta-
geous for our purposes as the actual analysis
detects partials by studying the time-varying
spectral characteristics of the sounds. The result-
ing representation with time-varying sinusoids
thus reflects the continually evolving nature of
sound.

Prior to analysis, input audio was first con-
verted to mono and downsampled to 11.025 kHz.
Thus, frequencies as high as SkHz could still be
represented (allowing enough leeway for partials
coming from a note produced in an instrument’s
upper range), while at the same time signifi-
cantly reducing the amount of data. This was
important, as a ten second audio file often took
in excess of three minutes to analyze on a Power-
Book G4 867 MHz machine.

After running several trial runs, it was dis-
covered that a longer window-size greatly im-
proved performance, even at the expense of time
resolution. A window size of 2064 samples was
found to be optimal, with a hop size of 512.
Thus, each window was 47 milliseconds long,
with a new analysis performed every 11.7 milli-
seconds.

A gammatone filterbank was also used to
generate output from the front-end. The actual
implementation of such a front-end was a grossly
simplified version of similar correlation-based
front-ends as described above, yet we were curi-
ous to see what sort of results might be gleaned
from it. A gammatone filterbank was constructed
in MATLAB using an algorithm from the Audi-
tory Toolbox (Slaney, 1998). The centre fre-
quency of each filter was defined to mimic simi-
lar filters of the basilar membrane. Sixty filters
of a near-logarithmic spacing were deployed
from 250 Hz up to the Nyquist frequency
(5012.5 Hz, in this case). Because of the verbos-
ity of the output, it was sampled every 256 sam-

ples to give a set of parameters every 5.8 milli-
seconds. Due to time constraints, we did not
smooth the output of the filterbank by further
processing with a hair-cell model or autocorrela-
tion. This may have compromised our results.

One final note regarding all data produced
by the front-end: a given partial’s frequency and
magnitude value were often two numbers with a
large difference between them. This was a prob-
lem as wildly oscillating data such as this would
adversely influence the performance of the neu-
ral networks in the back-end. To solve this prob-
lem, all input to the artificial neural network was
scaled to values between 0 and 1.

3.2 Implementation of the Transcribing
Back-end

The back-end of the network consisted of ar-
rays of feed-forward neural networks with one
hidden layer. The data from the front-end was
fed into the networks in a variety of formats (see
Table 1) and a variety of neural network archi-
tectures were implemented (see Table 2). In to-
tal, four different types of output from the front-
end were fed into five different neural network
architectures, for a total of twenty configura-
tions. In order to provide further clarification,
Table 3 shows the total number of networks and
the number of input and output units needed for
each configuration.

Experiments were conducted for each of
these arrangements using a varying number of
hidden nodes as well as different learning rates,
momentums and ranges for initial randomly gen-
erated weights. Experiments were also conducted
to find an appropriate number of partials to feed
the networks. Although the system could take in
an arbitrary of instruments, we only experi-
mented with one or two instruments here.

A comparison between the first three net-
work architectures in Table 2 made it possible to
study the relative effectiveness of using separate
networks for different notes and instruments as
compared to using integrated networks. The last
two network architectures in Table 2 determined
pitch and the instrument separately. Although
these latter two architectures could identify pitch
and instrument when combined, they had the
disadvantage of not being able to discriminate
between simultaneous events. Nonetheless, these
architectures were implemented in order to gain
intermediate results if the first three architectures
failed.



Input Format Description

Sinusoidal tracks
sorted by amplitude

Sinusoidal tracks
sorted by frequency
Track frequencies
and amplitudes

Gammatone
filter-bank

Tracks with associated frequencies and amplitudes were generated from the audio
data. These were then sorted based on amplitude and the frequency values were fed
into the input units of the networks. The amplitude values were discarded after sort-
ing.

Frequency tracks were generated from the audio data. These were then sorted and
fed into the input units of the networks.

Tracks with associated frequencies and amplitudes were generated from the audio
data. These were then sorted based on amplitude and then both frequency and am-
plitude values were fed into the input units of the networks.

The frequency components of the audio data were divided amongst frequency bins,
the output of which were fed into the input units of the networks.

Table 1: Types of network input formats experimented with

Network Type Description

instrument'

ment

Combined network

Pitch only

One network per note per A network was generated for every pitch of every instrument. Each network

One network per instru-

Instrument playing only

took in all of the available information for each frame and outputted a single
value corresponding to its pitch and instrument. This allowed every possible
note by every possible instrument to be considered independently by the
system.

One network was generated for each instrument. Each network took in all of
the available information for each frame and had an output unit for every
possible pitch in the specified range. This allowed the output pitch to be con-
sidered collectively by the networks while the instrument choice was consid-
ered independently.

A single network took in all input from the front-end and had an output for
each note on each instrument. This allowed pitch and instrument choice to be
considered collectively.

A single network took in all input from the front-end and had an output unit
for every pitch. No discrimination was made based on instrument.

A single network took in all input from the front-end and had an output unity
for every instrument. Pitch was not identified.

Table 2: Network architectures experimented with

! The architecture was heavily influenced by the SONIC system (Martolt & Privosnik, 2001).



Number Nets

Network Type
1 net / note / instrument

Input Type

f sorted by A
f sorted by f
fand A

filter banks

I*R
I*R
I*R
I*R

1 net / instrument f sorted by A I
f sorted by f
fand A

filter banks

f sorted by A
f sorted by f
fand A

filter banks

f sorted by A
f sorted by f
fand A

filter banks

f sorted by A
f sorted by f
fand A

filter banks

Combined network

Pitch only

Instrument playing only

b e e e e e e e e e e e P

Input Units / Net Output Units / Net

AR IAIAIRIRA

Table 3: Network sizes. | = number of instruments, R = number of notes (i.e. range) and B = number of
tracks (or number of bins in the case of the filterbank inputs). f = frequency and A = amplitude.

The networks produced outputs for every
frame. These were collected into arrays indexed
by frame and pitch (which was derived from
which output unit a value came from) and
thresholded so that all outputs below 0.5 were
counted as off and all values above 0.5 were
counted as on. All consecutive ons were col-
lected into groups, with each group counting as a
note with its duration determined by the number
of consecutive ons multiplied by the frame
length.

The system had produced a score at this
point. However, this score was somewhat noisy,
so the data was then cleaned before a final score
was produced. The biggest problem was that
occasionally there might be one or two frames
that produced offs during a sustained note, or a
few frames that produced ones during rests. This
resulted in rapid staccato notes during a sus-
tained note or a few staccato notes during a rest.
In order to counteract this, the score was
smoothed so that isolated ons in sequences of
offs or isolated offs in sequences of ons were
inverted to produce steady notes or rests. Al-
though, this would cause the system to miss very
rapid notes that only lasted a frame, the frame
size was small enough that this scenario was
unlikely. Also, since the instruments dealt with

here (clarinet and oboe) could only produce one
note at a time, only the on with the highest out-
put level was counted if the networks indicated
that the same instrument should be producing
more than one note at a time.

Finally, a GUI was constructed that enabled
the user to create tailored arrays of networks,
train them and pass test data through trained
networks to generate scores. These final tran-
scriptions could be saved as MIDI files or could
be viewed as raw output on a frame by frame
basis.

4. Results

There were some early problems with train-
ing the networks, the foremost being that the
networks had a tendency to converge to always
being off (i.e. no notes were detected). Our first
suspicion was that this was due to the tendencies
of tracks to switch positions (remember that they
were sorted based on frequency or amplitude)
due to small oscillations when they had close
amplitudes or frequencies. This had the potential
of being very problematic because neural net-
works need to see at least somewhat consistent
patterns to converge during training. A network
can get confused if a given set of inputs corre-



sponds to one expected output for a given input
set but another expected output when the same
set of inputs is seen at a later time.

In order to counteract the problem of switch-
ing tracks, we decided to increase the frame size
to smooth out this problem. Although this was
successful in preventing the switching tracks, the
networks still had problems converging. We ex-
perimented with further techniques such as nor-
malizing and scaling the input to values between
0 and 1 to make the different input units start off
on a more or less equal footing and make the
networks’ initial search of the error space easier.
Although these techniques did help, the networks
still often converged to always being off.

Our next suspicion was that, since each note
was off during most of the training data, particu-
larly for larger pitch ranges, the networks were
seeing many offs in a row during training and
forgetting the brief ons, thus learning to always
output offs. The networks were trained with
chromatic scales where each note would be on
for only a brief period, but then off during all
other notes. Since there were far more offs than
ons, especially for large numbers of pitches, it
was theorized that these extended periods of un-
interrupted offs during training caused the net-
works to effectively forget the little bit of train-
ing that they received during the brief on periods.
In order to solve this problem, we randomized
the positions of each frame in the training data so
that the ons would be spread throughout each
epoch rather than being clustered together. This
technique was successful in causing the networks
to begin converging, so it appears that our hy-
pothesis was likely correct.

Although it was found that very good per-
formance could be achieved eventually, this re-
quired significant training, on the order of at
least 100 000 epochs. Since it took roughly one
day per 50 000 epochs to train a one octave net-
work for two instruments on a modern PC, this
limited the number of experiments that we could
carry out on different types of networks. It also
raised questions about the scalability of the sys-
tem if training were to be limited to basic PCs.
Since a greater range and greater number of in-
struments would eventually be desired, scaling
this system would require access to a supercom-
puter.

Results are still preliminary at this stage, as
there was not enough time to fully test many of
our network architectures and input formats. Due
to these time constraints, we chose to focus on

the most promising approach, namely the 1 net /
note / instrument architecture with the sinusoidal
tracks sorted by amplitude input. All twenty pos-
sible configurations were compared after 5000
training epochs, and this one performed the best.
This does not mean that the other approaches
should not be considered in future research,
however, since proper training took at least 100
000 epochs, and an approach that performed
poorly at first could end up performing better in
the long run. More experimentation is therefore
needed to find the best approach.

All implementations based on a filterbank
front-end data were slow to train and showed no
viable results. This is most likely due to the over-
simplified data produced from the front-end
module; further processing of the data to more
closely mimic “human perception” would likely
improve results.

Sinusoidal tracks sorted by frequency also a
performed poorly. Training was abandoned early
on as the networks did not converge on this type
of input. Networks based on both frequency and
amplitude were also abandoned due to the length
of time required to efficiently train them. This
latter implementation has a great deal of poten-
tial because of the verbosity of the input data, but
this same verbosity has a detrimental effect on
training time.

The architecture that utilized one network
for every note of every instrument and operated
on sinusoidal track data sorted by amplitude per-
formed the best in early trials. It was thus was
the one that was selected for extended training,
for a total of 100 000 epochs. This system suc-
ceeded in correctly transcribing 97% of the 2-
voice frames and 99% of the monophonic
frames.

This performance of the system was excel-
lent in regards to pitch. Almost every note was
detected, almost no false notes were detected and
the pitch identified was almost always correct.
Unfortunately, even the relatively small number
of erroneously transcribed sample-frames re-
sulted in considerable rhythmic irregularities in
the transcriptions, with notes often shorter than
they should be, or occasionally slightly longer.
This was likely due to two factors: the networks
were likely not always able to associate initial
transients with pitches and the fairly long frame
size may have lead to an excessively quantized
and uneven rhythm. The former problem could
possibly be solved by more training and the latter
could be solved by decreasing the frame size.



This was not done here because both of these
solutions would have increased training time, but
they could certainly improve results given more
time and processing power. Future use of onset-
detection information could also help to clean
these problems up.

The error rates discussed above give the
percentage of frames that were correctly associ-
ated with a pitch or a silence. Although these do
give an indication of the performance of the sys-
tem, a better metric would consider the actual
notes produced in the score itself, including
rhythmic irregularities. One such metric would
be to measure the system’s efficiency with the
Dixon formula (Dixon, 2000). Dixon proposes
an evaluation method based on the number of
paired notes, N, false positives, FP, and the
number of false negatives, F'N. An incorrectly
identified note is both false positive and a false
negative in this model. A score, S, may be ob-
tained with the following formula:

B N
N+FP+FN

Although we did not have time to implement
this metric, it would be useful in better judging
the performance of the system in the future.

5. Conclusions

The system performed very well in correctly
identifying pitches and avoiding missed notes
and false notes. The rhythm was choppy, but this
could likely be improved with further time and
processing power and by using the note onsets
provided by the front end. Our system performed
particularly well in regards to detecting short
notes and avoiding the misidentification of oc-
taves, two problems that have plagued many
other systems. The system also avoided using
high-level music theory to improve results as
some other systems do, so no stylistic assump-
tions were made here.

This study was useful in examining different
kinds of network architectures that could be used
for transcription, although more experimentation
is needed to take advantage of the groundwork
laid here. We found that using scales to train the
networks was effective, as long as the frames
corresponding to each note were spread through-
out the training data by randomizing their posi-
tion.

The question to examine in future research
is how well these techniques can scale to the
general problem of transcription. The excellent
performance of this system bodes well, although
it is clear that access to significant computing
power will be necessary to expand it. Experi-
ments could be conducted to see how audio from
different synthesizers performs on this system. If
this is successful, the next step would be to test
the system with larger orchestrations, such as
trios or quartets, and with instruments that can
play more than one note at a time, such as pi-
anos. Finally, the system should be tested on
unsynthesized audio.

Training could be difficult with unsynthe-
sized audio, since great attention must be paid to
producing a model score that matches the audio
exactly. One approach that might simplify this
problem would be to train the data using a MIDI
file that is translated into audio using a high
quality sampling synthesizer, since the MIDI file
could then be used to automatically generate the
model score. Audio test sets could then be used
on the trained networks.
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