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ABSTRACT

In general, harmonic analysis refers to the identification
of harmonies from the musical surface. As a key part
of the foundation of modern Western music theory, har-
monic analysis is inherently complex. It is based on low-
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Figure 1. A passage with important differences between
melody-oriented (blue) and harmony-oriented (red) analy-
ses. The final analysis (black) mixes the two styles. Such
inconsistencies are quite common, even between expert
analyses.

level sensory distinctions (consonance vs dissonance), lo-
cal constructs (counterpoint, voice-leading), and global
musical structures (harmonic function, form, tonality, etc.).
Learning it is thus a time-consuming process, requiring
years of training. Furthermore, many prominent music the-
orists (e.g., Rameau, Riemann, Schenker) have proposed
different approaches to harmonic analysis. This means it is
often possible to analyze the same passage in numerous le-
gitimate ways. For example, some analysts prefer interpre-
tations with fewer chords, while others prefer interpreta-
tions with more frequent harmonic changes. We character-
ize these general strategies as “melodic” and “harmonic”,
respectively (Fig. 1 illustrates these interpretive strategies).
Complicating matters further, analysts often disagree, and
are not always internally consistent [12]. Given the com-
plexity, subjectivity, and inconsistency of harmonic analy-
sis, it is challenging to systemize it.

In spite of these challenges, there have been various at-
tempts to automate harmonic analysis. Data generated by
automated approaches could be used to populate a large-
scale, searchable database, which would serve as an in-
valuable resource for music research. For example, such
a database could be used in corpus studies to answer re-

1. INTRODUCTION AND BASIC METHODOLOGY

Automatic harmonic analysis is challenging: rule-based
models cannot account for every possible edge case, and
manual annotation is expensive and sometimes inconsis-
tent, undermining the training and evaluation of machine
learning models. We present an interactive workflow to ad-
dress these problems, and test it on Bach chorales. First, a
rule-based model was used to generate preliminary, consis-
tent chord labels in order to pre-train three machine learn-
ing models. These four models were grouped into an en-
semble that generated chord labels by voting, achieving
91.4% accuracy on a reserved test set. A domain expert
then corrected only those chords that the ensemble did not
agree on unanimously (20.9% of the generated labels). Fi-
nally, we used these corrected annotations to re-train the
machine learning models, and the resulting ensemble at-
tained an accuracy of 93.5% on the reserved test set, a
24.4% reduction in the number of errors. This versatile
interactive workflow can either work in a fully automatic
way, or can capitalize on relatively minimal human in-
volvement to generate higher-quality chord labels. It com-
bines the consistency of rule-based models with the nuance
of manual analysis to generate relatively inexpensive high-
quality ground truth for training effective machine learning
models.
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search questions about musical style or the development of
modern harmonic practices. Automatic harmonic analysis
can also be used in automatic composition and interactive
accompaniment systems.

Some researchers have developed rule-based (RB) mod-
els for automatic harmonic analysis [4, 8, 10, 21–23]. Al-
though these approaches generate chord labels that are in-
ternally consistent, they often fail to produce correct anal-
yses for even moderately exceptional passages, as it is ex-
tremely complicated to define rules that are comprehensive
enough to account for all possibilities.

Other researchers have made use of manual annota-
tions by experts, who can better respond to exceptions
[2,5,6,9,16,17]. Such ground truth can be used to train ma-
chine learning (ML) models for automatic harmonic anal-
ysis [3, 11, 14, 15, 18, 20, 24]. Although the annotations
created by human analysts are more nuanced, manual har-
monic annotations require an enormous amount of time
and expertise, and can be inconsistent [12], which may
undermine a ML model’s effectiveness, especially when
limited amounts of training data are available.

Due to these difficulties, few large high-quality datasets
and automatic harmonic analysis models exist, a situation
that has significantly limited the computational study of
Western harmony.

In this paper, we combine the strengths of existing ap-
proaches to address the common problems of automatic
harmonic analysis within a single interactive workflow, us-
ing a set of largely homorhythmic 1 Bach chorales. The
proposed workflow is illustrated in Fig. 2 and described
below:

1. To solve the problem of analytical inconsistency, we
use an existing RB model [4] to generate prelimi-
nary, consistent chord labels according to a particu-
lar analytical style.

2. These analyses are used to pre-train three ML mod-
els, 2 which together with the RB model form an
algorithm ensemble, where each model within the
ensemble labels all the chords. The most-preferred
chord labels 3 are then output as Analysis 1.

3. To improve the quality of the analyses, a human
expert examines only those chords for which the
ensemble did not agree unanimously, and corrects
them as needed. We call this process “partial man-
ual modification”. Compared to annotating chorales
from scratch, the amount of required work for the
expert is significantly reduced. The first three steps
of this workflow are shown in Part 1 of Fig. 2.

4. Once the expert’s corrections are obtained (Analysis
2), we re-train the ML models. The most-preferred
chord labels from the new ensemble are chosen as
the final chord labels (Analysis 3), which is shown in

1 Homorhythm is a texture where all parts share a very similar rhythm,
as in Fig. 1. It is commonly used in hymn and chorale settings.

2 See the caption of Fig. 2 for the details of these models.
3 If there is a tie, prefer the label for which the rule-based algorithm

voted.

Part 2 of Fig. 2. This paradigm of manually modify-
ing the generated data and re-training the ML mod-
els is known as “interactive machine learning” [1,7].

This workflow is not limited to Bach chorales. With
an adapted RB model (Model 4 in Fig. 2), it can easily
be applied to other genres of music in a fully automatic
way (ending with Analysis 1) or interactively if an expert
analyst is available (ending with Analysis 3). The source
code, data, and results from this project can be found at:
https://bit.ly/2QUdGwH.

2.1 Input Data Encoding and Processing

The workflow currently accepts music encoded in Hum-
drum’s **kern symbolic representation. Any other formats
that can be faithfully converted to **kern can also be used.

Each chord label consists of the letter-name of the root
and the quality of the chord (e.g., C major). Triads can
be major, minor, or diminished; and seventh chords can
be major, minor, dominant, half-diminished, or fully di-
minished. Functional Roman numerals are not used, and
chordal inversions are not specified.

Chord labels are appended to the original **kern file for
each chorale and aligned with the music as “onset slices”
[11,13], as shown in Fig. 4. An onset slice is formed when-
ever a new note onset occurs in any musical voice, and con-
sists of a list of all pitch classes sounding at that moment.

Additionally, all chorales and corresponding chord la-
bels were transposed to the same key to make the tonal
relationships between pitch classes consistent across the
dataset. 4

2.2 Input Features

Each onset slice is mapped to a feature vector for process-
ing by Model 1, Model 2, and Model 3 of the workflow.
These features, 5 and the codes used to refer to them in
Section 3, are as follows:

1. PC12 : A 12-D binary vector of enharmonic pitch
classes present in the slice.

2. M: A 3-D indication of the metrical context of the
slice (down-beat, on-beat, off-beat).

3. O: A 12-D vector indicating which PC12 pitch
classes are real onsets and which are artificial (see
Fig. 4).

4. Wn: A variable size vector containing the (non-Wn)
features from the n previous and following slices

4 The built-in key transposition function from music21 was used, with
the Aarden-Essen key profile (https://bit.ly/2FSIwQY). Chorales were
transposed to C major or A minor depending on their mode.

5 A multi-label one-hot schema was used to encode the features as
inputs for the ML algorithms.

2. DETAILS OF METHODOLOGY

This section introduces additional details of the interactive
workflow shown in Fig. 2 and described in Section 1.
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Figure 2. Interactive workflow for automatic harmonic analysis. There are four models within the algorithm ensemble,
three of which are trainable. Models 1 and 2 both use a machine learning algorithm (MLA) to identify and remove
non-chord tones (NCTs). After this, Model 1 (MLA-NCT+H-CL) uses a heuristic (H) algorithm and Model 2 (MLA-
NCT+MLB-CL) uses a ML algorithm (MLB) to infer chord labels (CL) from the remaining chord tones. We term this
process “NCT-first harmonic analysis”, as shown on the right side of Fig. 3. Model 3 (MLC-CL) uses a single ML algorithm
(MLC) to infer chord labels (CL) directly from the pitch-class collections, without removing NCTs. We term this process
“direct harmonic analysis”, as shown on the left side of Fig. 3.

(e.g., W1 indicates that features for the directly pre-
ceding and directly following slices are included in
the features of the current slice). These surrounding
slices are called “contextual windows”.

The workflow allows for experimentation with different
feature configurations. For example, a “PC12M” config-
uration indicates a 15-D vector, with O and Wn features
omitted. This notation is adopted in Section 3.

2.3 Rule-Based Algorithms

We use an existing RB model [4] to generate preliminary
chord labels (Model 4 in Fig. 2). This tool is publicly
accessible online. 6 A “harmonic” rather than “melodic”
style of analysis is used (see Fig. 1), which prefers more
chord changes and fewer non-chord tones (NCTs) [19],
and is better-suited to the typical chorale texture. An
overview of the specific heuristics of this style can be
found at: https://bit.ly/2XCmNVo. We also used a heuris-
tic algorithm (H-CL from Fig. 2) in Model 1 to infer chord
labels from remaining chord tones. The details of this al-
gorithm can be found at: https://bit.ly/2MBL0dp.

2.4 Machine Learning Algorithms

As shown in Fig. 2, the workflow includes three ML algo-
rithms (MLA, MLB, and MLC) to pre-train. MLA treats
NCT identification as a multi-label problem; the output of
MLA is a 12-dimensional vector specifying which pitch

6 https://bit.ly/2Gh6IhA

classes are both present and identified as NCTs; MLB and
MLC treat chord labeling as a multi-class problem; they
output similar vectors identifying the predicted chord label
among all candidates.

We tested Support Vector Machines (SVMs) and Deep
Neural Networks (DNNs) as MLA, MLB, and MLC classi-
fiers. For DNN, we used three hidden layers, each with 300
hidden units. Adaptive Moment Estimation was used as an
optimizer, with loss functions of binary cross-entropy for
MLA and categorical cross-entropy for MLB and MLC.
SVM used a linear kernel function.

3.1 Data

The experiments below were performed on a modified 7

8 This modified dataset consists of 369 chorales.
To evaluate the performance of our workflow, 39

chorales were randomly chosen before the experiments be-
gan and partitioned into a set reserved for final testing in
Experiment 2. These reserved chorales had their chords
hand-labelled in their entirety by a human expert.

The remaining 330 non-reserved chorales were used for
training, validation (early-stopping) and internal testing.

7 Available at: https://bit.ly/2VWHB8w. Some corrections were made
to the music and Chorale 150 was added to the dataset. Chorales 130 and
316 were excluded, since the original **kern files and the music21-parsed
results are different.

8 https://bit.ly/2D4ju10

3. EXPERIMENTS

dataset of Bach chorales originally produced by Craig
Sapp.
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Figure 3. Comparison of “direct harmonic analysis” (left,
used by Model 3 in Fig. 2) and “NCT-first harmonic anal-
ysis” (right, used by Model 1 and Model 2 in Fig. 2) ap-
proaches to automatic harmonic analysis. The former iden-
tifies chords directly from the score, while the latter first
identifies and removes non-chord tones from the score,
and then generates chord labels from the remaining chord
tones.

Figure 4. Illustration of note onset slices, aligned with
chord labels. An onset slice is created whenever a new
note onset occurs in any musical voice (middle). Any note
sustained from a previous slice becomes an “artificial on-
set” in the new slice (right, circled).

The initial “ground truth” for these remaining 330 chorales
consisted of the labels predicted by the RB model (Model
4), which was found to be quite effective, if not perfect [4].
This imperfect “ground truth” was used in Experiment 1
(see Section 3.2) to get a preliminary sense of how well the
workflow’s component classifiers performed. Final evalua-
tion was performed in Experiment 2 (see Section 3.3) with
the proper, hand-annotated 39-chorale reserved test set.

3.2 Experiment 1

Experiment 1 tested the effectiveness of several different
workflow configurations by experimenting on varying in-
put features and learning algorithms (see Section 2.4). The
performance of Models 1, 2, and 3 from Fig. 2 were tested.

3.2.1 Experimental Setup

Ten-fold cross-validation was performed on the 330 non-
reserved chorales described in Section 3.1. For the

DNN experiments, we divided the non-reserved portion of
the dataset (330 chorales) into training (80%), validation
(10%) and internal testing (10%) folds. The SVM data was
divided into training (90%, the union of the DNN training
and validation sets) and internal testing (10%, matching the
DNN internal test sets) folds. When the W features were
included (see Section 2.2), n was set to 1 for MLA and
MLC, and to 2 for MLB (represented as W1/2).

3.2.2 Results

The results of Experiment 1 are shown in Table 1. The
highest classification value of 90.1% was achieved by
Model 2 using PC12MOW1/2 input features. Results show
that the addition of a small contextual window (feature
Wn) improved the performances of Model 2 and Model 3
significantly. 9 This reflects the general music theoretical
understanding that, in cases of ambiguous harmony (e.g.,
an incomplete chord), a chord’s immediate context is es-
sential to label it properly.

It is important to note that these Experiment 1 find-
ings are based on imperfect ground truth (see Section 3.1),
and so must be interpreted more as preliminary indica-
tions rather than as confirmed truth. Experiment 2 was
performed in order to obtain more empirically meaningful
results.

3.3 Experiment 2

Experiment 2 compared the performance of the classi-
fier ensemble after fully automated training (Analysis 1
in Fig. 2) with that of the ensemble after human-assisted
re-training (Analysis 3 in Fig. 2). This set of experiments
involved evaluation on a reserved expert-labelled test set
(see Section 3.1).

3.3.1 Experimental Setup

Classification models were pre-trained, had their outputs
manually corrected, re-trained, and tested using the full
workflow described in Section 1. Pre-training was done
using the Model 4 output, just as in Experiment 1.

For the DNN training, we used 90% of the 330 non-
reserved chorales as the training set and 10% as the val-
idation set. A cross-validation-like training scheme was
used: we conducted 10 experiments by training 10 models
with rotated training and validation folds, while the test-
ing fold (39 reserved chorales) remained the same. All
330 non-reserved chorales were used to train each of the
SVM classifiers. Only the PC12MOW1/2 input features
(see Section 2.2) were used in Experiment 2. For the W
features, n was set to 1 for MLA and MLC, and to 2 for
MLB (represented as W1/2).

Once Analysis 1 (see Fig. 2) was obtained, the human
expert manually corrected only those chords that the en-
semble did not agree on unanimously. The corrected labels
(Analysis 2) were then used to re-train Models 1, 2, and 3.
The 39 manually-labelled reserved test chorales were then
used to test the original pre-trained models, and then the

9 p<0.05 in Students’ t-tests comparing all Model 2 and 3 accuracies
for PC12 and PC12M with those of PC12W1/2 and PC12MW1/2.
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Model Metric PC12 PC12M PC12W1/2 PC12MW1/2 PC12MOW1/2

SVM
CA1
CA2
CA3

81.7±1.4%
73.0±1.5%
74.9±1.6%

81.6±1.4%
73.1±1.6%
75.6±1.5%

82.7±1.0%
85.4±1.3%
85.4±1.3%

83.0±1.0%
86.1±1.5%
85.9±1.3%

83.5±0.9%
87.4±1.5%
87.7±1.5%

DNN
CA1
CA2
CA3

81.0±1.5%
74.2±1.8%
74.6±1.8%

81.7±1.5%
75.1±1.6%
75.3±1.4%

85.3±0.9%
88.5±1.3%
87.5±1.7%

85.6±0.9%
89.6±1.3%
88.3±1.7%

85.8±0.9%
90.1±1.5%
89.0±2.0%

Table 1. Experiment 1 cross-validation classification accuracies, averaged across folds. Uncertainty values indicate stan-
dard error across folds. Values indicate the percentage of onset slices “correctly” classified by Model 1 (CA1), Model 2
(CA2), and Model 3 (CA3), based on the Model 4 “ground truth”. Columns indicate features (see Section 2.2) and rows
indicate machine learning algorithms (see Section 2.4). The best performance in each column is highlighted in bold.

Model Metric
PC12MOW1/2

Pre-trained
PC12MOW1/2

Re-trained

SVM

CA1
CA2
CA3

CAVote
PUA

85.9%
88.6%
87.7%
91.4%
79.1%

87.0%
89.8%
89.3%
92.7%
79.0%

DNN

CA1
CA2
CA3

CAVote
PUA

85.4±0.2%
88.9±0.3%
87.9±0.7%
90.9±0.2%
80.4±1.2%

88.1±0.2%
91.3±0.4%
90.5±0.3%
93.5±0.2%
79.7±0.4%

RB CA4 90.7%

Table 2. Experiment 2 classification accuracies on the
reserved test set. DNN values are averaged across mod-
els trained using different training/validation sets, and un-
certainty values indicate standard error across these folds.
Values indicate how many onset slices were correctly clas-
sified by Model 1 (CA1), Model 2 (CA2), Model 3 (CA3),
Model 4 (CA4), the ensemble as a whole (CAVote), and
just those CAVote predictions that were unanimous (PUA).
“PC12MOW1/2” indicates the input features (see Sec-
tion 2.2. “Pre-trained” indicates performance before man-
ual correction (i.e., Analysis 1 in Fig. 2), and “Re-trained”
indicates performance after re-training on the corrected
data (i.e., Analysis 3 in Fig. 2). The best performance in
each column is highlighted in bold.

re-trained models. Performance on this reserved test set is
shown in Table 2.

3.3.2 Results

One can see in Table 2 that the original RB algorithm
(Model 4 in Fig. 2) attains a chord accuracy of 90.7%,
which serves as our baseline. The highest accuracy
obtained by the pre-trained ensemble is 91.4%, using
PC12MOW1/2, SVM classifiers, and voting. This (pre-
trained) performance is achieved without any expert hu-
man intervention. It is of interest that CAVote here is
higher than CA4, even though the classifiers in CAVote
were trained on the RB output; this is perhaps because the
RB model is overfitting the theoretical model underlying

it, and that the pre-trained ensemble trained on it may in
fact be smoothing out some of this overfitting to result in
a slightly more general model. A comparison of Table 1
and Table 2 indicates that the Table 1 performance with ar-
tificial ground truth is quite similar to the performance of
Table 2 pre-trained classifiers on the proper test set; this
encouragingly suggests that there is little or no overfitting.

Table 2 also shows that performance improved after re-
training in most cases. 10 The best-performing 11 config-
uration attains an accuracy of 93.5%, using voting DNNs
trained on PC12MOW1/2 features.

12 of
all slices. Compared to examining and annotating every
slice, the amount of required work is reduced substantially.

Figure 5 provides an illustration of how this approach
can be effective, using an excerpt from one of the test set
chorales. Although some algorithms within the ensemble

10 p<0.05 in Students’ t-tests comparing results before and after re-
training for CA1, CA2, CA3, and CAVote, but not PUA.

11 p<0.05 in Students’ t-tests comparing results of CAVote to CA1,
CA2, CA3, and CA4.

12 This value is inferred from Table 2: 100% - PUA.

The partial manual modification workflow is also found
to be relatively efficient, as the expert analyst is only re-
quired to provide manual analyses for about 20.9%

4. DISCUSSION

According to the results, our interactive workflow per-
formed well on the Bach dataset using a “harmonic” style
of analysis. It was found that quite good performance
could be achieved with our rule-based model (90.7% on
the reserved test data), that performance could be improved
slightly using the RB model to self-train a classifier en-
semble (91.4% on the test data), and that still greater im-
provements resulted from partial manual modification and
re-training (93.5% on the test data). Although these im-
provements may seem small in absolute terms, they are sta-
tistically significant, and they represent meaningful frac-
tional decreases in the error rate (drops of 7.5% compar-
ing pre-trained CAVote to RB, 30.1% comparing re-trained
CAVote to RB, and 24.4% comparing re-trained CAVote
to pre-trained CAVote). Of particular importance, the first
two approaches require no human intervention, and the
third requires much less expert labor than full manual an-
notation.
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Figure 5. An illustration of how classifications evolve as processes proceed as outlined in Fig. 2, based on measures 9
through 12 of BWV 315 “Gib dich zufrieden und sei stille”. Chord labels were generated by a DNN-based algorithm
ensemble using PC12MOW1/2 features (see Section 2.2). The algorithm ensemble is made up of the four models within
the dashed rectangle, which vote to generate Analyses 1 and 3. The labels above the first horizontal line were generated
in a fully automatic way, without any human intervention. The labels between the two horizontal lines (other than the
rule-based model) were generated automatically after re-training on partially corrected data. The chord labels highlighted
in red are errors compared to the ground truth provided by an expert analyst.

Results show that this workflow is quite compelling: it
combines the consistency of rule-based models with the
nuance of manual analysis to generate relatively inexpen-
sive, high-quality ground truth for training effective ma-
chine learning models. The resulting classifier ensemble is
able to automatically generate highly consistent and accu-

rate chord labels, which can serve as invaluable resources
for musicians, composers, and music researchers alike.

There are currently a few limitations to our research.
First, music21’s automatic key-finding might not be ideal
for our dataset (early tonal music), and may have resulted
in reduced performance due to faulty transpositions. In-
stead of transposing all chorales to the same key, a bet-
ter, but more complicated solution would be to augment
our data by transposing all chorales to all 12 possible keys.
Second, the RB model can be improved to include chords
of other qualities (e.g., augmented-sixth chords). Finally,
the ground-truth annotations were prepared by a single ex-
pert annotator, and it would be better to repeat this process
using annotations from multiple experts.

An important next step will be to test this workflow us-
ing other analytical styles (e.g., the “melodic” style), which
can be done simply by specifying different heuristics in the
RB model. We also plan to tackle the larger category of
homophonic music, which includes any music with a pri-
mary melodic line accompanied by harmonic support. A
greater variety of homophonic textures poses a challenge
to our RB model because more individual onset slices are
harmonically ambiguous, requiring larger contextual win-
dows to correctly interpret the harmony. In light of this,
we will modify our workflow to address homophonic mu-
sic accordingly. Finally, we will investigate training and
evaluation protocols that permit multiple valid chord labels
per slice.

make errors, the re-trained ensemble ultimately generates
better answers in Analysis 3. Upon examining the errors,
we find that some of them are reasonable alternative ver-
sions of the ground truth: chords with the same roots, but
with or without an added seventh (slices 1, 11, 17, and
19); or chords that are subsets of the ground truth chords
(slices 20 and 21). As a result, some of the “errors” that
the ensemble makes in this particular excerpt are in fact
theoretically acceptable answers. This is encouraging, as
it suggests that at least some of the “mistakes” made by
the classifiers may not in fact be mistakes at all. We still
count them as mistakes, however, because consistency in
analytical style is one of the goals of this work.

5. CONCLUSION AND FUTURE RESEARCH

We present a versatile interactive workflow for generating
chord labels for homorhythmic music. It can be used in a
fully automatic way or, with a relatively small amount of
effort from an expert human analyst who corrects a small,
automatically selected fraction of the generated analyses,
a re-trained classifier ensemble can be produced that per-
forms even better.
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