

Combining Features Extracted From Audio, Symbolic and Cultural Sources

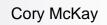
> Cory McKay McGill University Montréal, Canada

Presentation overview

- Research context
 - Introduction to Music Information Retrieval and Automatic Music Classification
 - Experimental goals
- Experimental methodology
- Software tools used
 jMIR
- Results and conclusions

Goals of MIR

- Extract meaningful information from or about music
- Facilitate music analysis, organization, storage and access



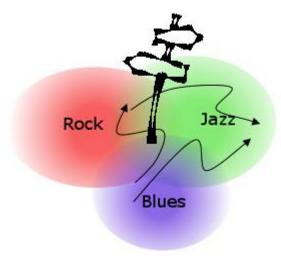
Automatic music classification

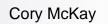
- Automatic music classification is the particular focus of my research
- Machine learning and pattern recognition algorithms learn to classify music in various ways based on extracted features
 - Features are various kinds of information distilled from music or from sources of information on music
- Automatic music classification can involve classifying music in almost any kind of way
 - Similar techniques are commonly used regardless of the classification domain

Types of music classification

Examples:

- Genre or style classification
- Mood classification
- Performer or composer identification
- Music recommendation
- Playlist generation
 - e.g. iTunes Genius, Last.FM, etc.
- Hit prediction
- □ etc.
- Automatic music classification sub-systems can play an important part in many other MIR research areas
 - □ Automatic transcription, optical music recognition, etc.





Benefits of automatic classification

- Computers can perform classifications faster and more consistently than humans
- Computers can analyze music in novel and nonintuitive ways that might not occur to humans
- Computers can avoid human theoretical preconceptions that might contaminate experimental results

Centre for Interdisciplinary Research in Music Media and Technology

Main sources of features

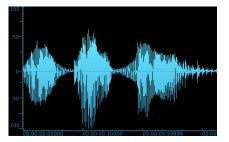
- Audio recordings

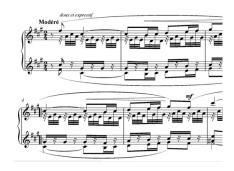
 e.g. MP3 or .wav files

 Symbolic recordings

 e.g. MIDI or Humdrum files

 Cultural data
 - e.g. text from the web or from metadata tags



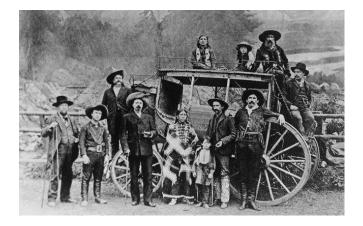


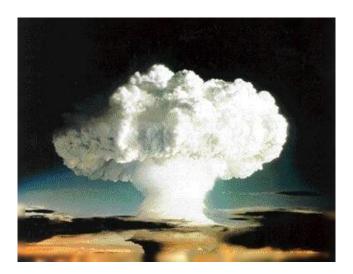
End of the MIR Wild West

Diminishing returns

- Performance gains in most areas of MIR have been behaving asymptotically in recent years
- Research is increasingly focusing on fine-tuning specialized minitasks
 - e.g. differentiating between oboes and bassoons rather than general instrument identification
 - Has already happened in speech recognition
- Unless someone has an unforeseen breakthrough?
 - □ MIR cold fusion?
 - Perhaps combining feature types?

Centre for Interdisciplinary Research in Music Media and Technology





Research questions addressed

- Can combining features extracted from audio, symbolic and/or cultural sources significantly improve automatic music classification performance?
 - Classification accuracy rates
 - Severity of misclassifications that do occur
 - e.g., John Lennon \rightarrow Beatles vs. John Lennon \rightarrow Rihanna
- Can such an approach allow us to break past the seeming performance ceiling recently encountered in tasks like genre classification?

Previous research

Combining audio and cultural sources (sampling)

□ Whitman and Smaragdis (2002)

- Baumann, Klüter and Norlien (2002)
- Dhanaraj and Logan (2005)
- Aucouturier and Pachet (2007)
- Eck, Bertin-Mahieux and Lamere (2007)
- Pampalk and Goto (2007)
- Reed and Lee (2007)
- Dopler, Schedl, Pohle and Knees (2008)
- Combining audio and symbolic sources
 - □ Lidy, Rauber, Pertusa and Iñesta (2007)
 - Found that combining the two sources improved results
- Combining cultural and symbolic sources or all three None?

Our experimental methodology

- Extract features from separate audio, symbolic and cultural sources of data
 Corresponding to the same musical pieces
- Compare genre classification performance of each of the 7 possible subsets of these 3 feature groups
 - Audio, Symbolic + Audio, Cultural, Symbolic + Cultural + etc.

Using 10-fold cross-validation and multiple machine learning algorithms

Musical dataset used: SAC

- The SAC Dataset was assembled for this experiment
 - Symbolic Audio Cultural
 - □ 250 recordings belonging to 10 genres
 - □ Audio and MIDI versions of each recording
 - Acquired separately
 - Accompanying metadata could be used to extract cultural features from the web

Genres in SAC

- SAC's 10 genres can be collapsed into 5 genres in order to separately evaluate performance on both moderate and small genre taxonomies
 - Designed to facilitate evaluation of misclassification severity
- Blues: Modern Blues and Traditional Blues
- Classical: Baroque and Romantic
- Jazz: Bop and Swing
- Rap: Hardcore Rap and Pop Rap
 Rock: Alternative Rock and Metal

Software tools used: jMIR

- jMIR is a free and open-source Java software suite designed for general music classification research:
 - □ jAudio: Audio feature extraction
 - 26 core features + metafeatures and aggregators
 - □ jSymbolic: Feature extraction from MIDI files
 - 111 mostly original features
 - □ jWebMiner: Cultural feature extraction
 - Uses search engine co-occurrence page counts
 - □ ACE: Meta-learning classification system
 - 7 machine learning and 3 dimensionality reduction algorithms
 - Updated version to be released soon

- jMIR also includes other components

 - □ jMusicMetamanager
 - Codaich
 - Bodhidharma MIDI
 - □ jMIRUtilities
- More information:
 - jMIR's components have each been described individually in previous publications
 - □ jmir.sourceforge.net
 - cory.mckay@mail.mcgill.ca

Centre for Interdisciplinary Research in Music Media and Technology

Cory McKay

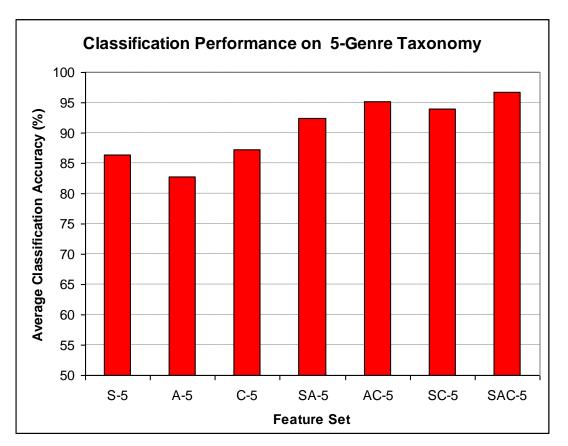
IR

Results: 5-genre taxonomy

3 feature types vs. 1

11.3% better

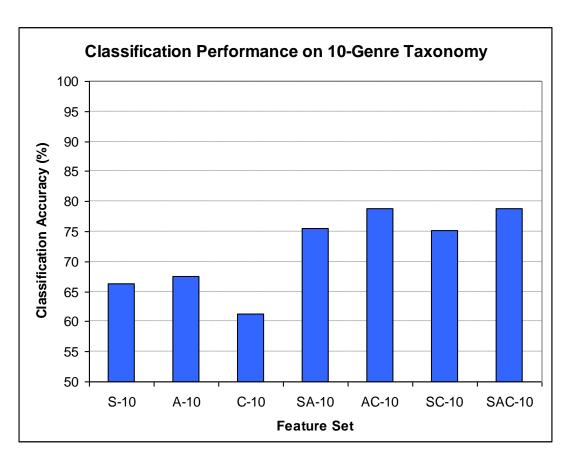
- Statistically significant (even for small SAC dataset)
- A 78% decrease in the error rate
- 3 feature types vs. 2
 - 2.3% better
 - Not statistically significant



R Centre for Interdisciplinary ResearchT in Music Media and Technology

Results: 10-genre taxonomy

- Trends similar to 5genre results
- 3 feature types vs. 1
 - □ 13.7% better
 - Statistically significant
 - A 39.3% decrease in the error rate
- 3 feature types vs. 2
 - □ **2.7%** better
 - Not statistically significant



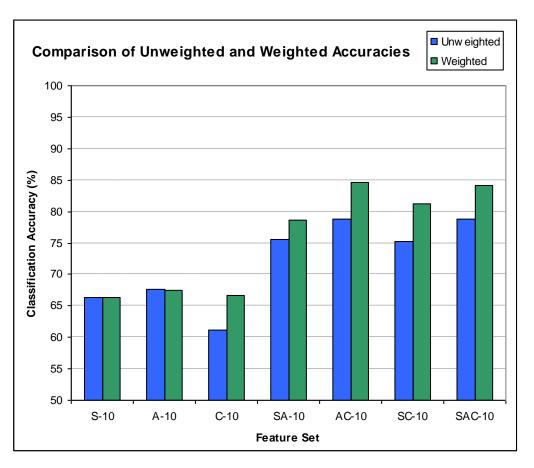
Misclassification seriousness

- Misclassification to a similar genre can be less serious than misclassification to a dissimilar genre
- To investigate this, we calculated normalized weighted classification accuracies for the 10-genre experiments
 - Misclassification within a SAC genre pair: 0.5 error
 - □ Misclassification outside a SAC genre pair: 1.5 error
- Recall SAC genre pairs:
 - □ Blues: Modern Blues and Traditional Blues
 - □ **Classical:** Baroque and Romantic
 - Jazz: Bop and Swing
 - Rap: Hardcore Rap and Pop Rap
 - Rock: Alternative Rock and Metal

Results: weighted vs. unweighted

Audio and symbolic

- No significant difference
- Although weighted 3% greater than corresponding unweighted when both combined
- Feature groups including cultural features had fewer serious misclassifications than those without cultural features
 - Weighted greater than corresponding unweighted by average of 5.7%
 - Statistically significant



Feasibility of genre classification

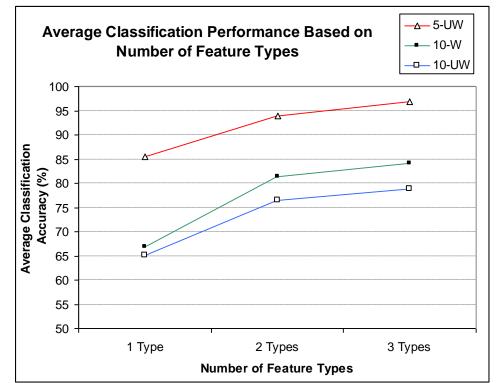
- Results still too low for practical application
 - Best on 5-genre taxonomy: 96.8%
 - Best on 10-genre taxonomy: 78.8%
- Results much better than best comparable audio-only results, however:
 - □ This experiment with jMIR (10 classes): 67.6%
 - □ MIREX 2008 Audio Genre (10 classes): 66.4%
 - 22,000 tracks
 - MIREX 2007 Audio Genre (10 classes): 68.3%
 - 7000 tracks
- Combining feature types did significantly improve performance results past the seeming ceiling on audioonly classification

ĴMIR

Conclusions

- Combining any two or more feature groups improves performance compared to any single feature group
- Using cultural features causes those misclassifications that do occur to be less serious
- The performance ceiling on genre classification performance may not be as low as some have worried

Centre for Interdisciplinary Research in Music Media and Technology



Future research

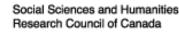
- Repeat experiments on a much larger dataset
 Using MIDI files transcribed from audio
 Incorporating larger class ontologies
- Perform similar experiments with respect to other domains of music classification and similarity measurement

□ Artist, mood, recommendation, etc.

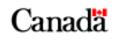
- Experiment with combining feature types and learning models in more sophisticated ways
 - e.g., blackboard classifier ensembles, ontologically structured classification techniques, etc.

Acknowledgements

- Funding, past and future:
 - Social Sciences and Humanities Research Council of Canada
 - The Andrew W. Mellon Foundation
- My doctoral adviser:
 - Ichiro Fujinaga
- Ongoing development of jMIR as part of the NEMA project:
 - Jessica Thompson
- Contact information:
 - cory.mckay@mail.mcgill.ca
 - □ jmir.sourceforge.net



Conseil de recherches en sciences humaines du Canada



🐯 McGill

Schulich School of Music École de musique Schulich

