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Presentation overview 

 Research context 

 Introduction to Music Information Retrieval 

and Automatic Music Classification 

Experimental goals 

 Experimental methodology 

 Software tools used 

 jMIR 

 Results and conclusions 
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Goals of MIR 

 Extract meaningful information from or 

about music 

 Facilitate music analysis, organization, 

storage and access 
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Automatic music classification 

 Automatic music classification is the particular 
focus of my research 

 Machine learning and pattern recognition 
algorithms learn to classify music in various 
ways based on extracted features 
 Features are various kinds of information distilled 

from music or from sources of information on music 

 Automatic music classification can involve 
classifying music in almost any kind of way 
 Similar techniques are commonly used regardless of 

the classification domain 
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Types of music classification 

 Examples: 

 Genre or style classification 

 Mood classification 

 Performer or composer identification 

 Music recommendation  

 Playlist generation 

 e.g. iTunes Genius, Last.FM, etc. 

 Hit prediction 

 etc. 

 Automatic music classification sub-systems can play an 

important part in many other MIR research areas 

 Automatic transcription, optical music recognition, etc. 
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Benefits of automatic classification 

 Computers can perform classifications faster 
and more consistently than humans 

 Computers can analyze music in novel and non-
intuitive ways that might not occur to humans 

 Computers can avoid human theoretical 
preconceptions that might contaminate 
experimental results  
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Main sources of features 

 Audio recordings 

e.g. MP3 or .wav files 

 Symbolic recordings 

e.g. MIDI or Humdrum files 

 Cultural data 

e.g. text from the web or from 

metadata tags 
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End of the MIR Wild West 

 Diminishing returns 
 Performance gains in most areas of 

MIR have been behaving 
asymptotically in recent years 

 Research is increasingly focusing 
on fine-tuning specialized mini-
tasks 
 e.g. differentiating between oboes 

and bassoons rather than general 
instrument identification 

 Has already happened in speech 
recognition 

 Unless someone has an 
unforeseen breakthrough?  
 MIR cold fusion? 

 Perhaps combining feature types? 
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Research questions addressed 

 Can combining features extracted from audio, 

symbolic and/or cultural sources significantly 

improve automatic music classification 

performance? 

 Classification accuracy rates 

 Severity of misclassifications that do occur 

 e.g., John Lennon → Beatles vs. John Lennon → Rihanna 

 Can such an approach allow us to break past 

the seeming performance ceiling recently 

encountered in tasks like genre classification? 
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Previous research 

 Combining audio and cultural sources (sampling) 
 Whitman and Smaragdis (2002) 

 Baumann, Klüter and Norlien (2002)  

 Dhanaraj and Logan (2005) 

 Aucouturier and Pachet (2007) 

 Eck, Bertin-Mahieux and Lamere (2007)  

 Pampalk and Goto (2007)  

 Reed and Lee (2007) 

 Dopler, Schedl, Pohle and Knees (2008) 

 Combining audio and symbolic sources 
 Lidy, Rauber, Pertusa and Iñesta (2007) 

 Found that combining the two sources improved results 

 Combining cultural and symbolic sources or all three 
 None? 
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Our experimental methodology 

 Extract features from separate audio, 
symbolic and cultural sources of data 

Corresponding to the same musical pieces 

 Compare genre classification performance 
of each of the 7 possible subsets of these 
3 feature groups 

Audio, Symbolic + Audio, Cultural, Symbolic + 
Cultural + etc. 

Using 10-fold cross-validation and multiple 
machine learning algorithms 
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Musical dataset used: SAC 

 The SAC Dataset was assembled for this 

experiment 

Symbolic Audio Cultural 

250 recordings belonging to 10 genres 

Audio and MIDI versions of each recording 

 Acquired separately 

Accompanying metadata could be used to 

extract cultural features from the web 
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Genres in SAC 

 SAC’s 10 genres can be collapsed into 5 genres 
in order to separately evaluate performance on 
both moderate and small genre taxonomies 
 Designed to facilitate evaluation of misclassification 

severity 

 

 Blues: Modern Blues and Traditional Blues 

 Classical: Baroque and Romantic 

 Jazz: Bop and Swing 

 Rap: Hardcore Rap and Pop Rap 

 Rock: Alternative Rock and Metal 
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Software tools used: jMIR 

 jMIR is a free and open-source Java software 
suite designed for general music classification 
research: 
 jAudio: Audio feature extraction 

 26 core features + metafeatures and aggregators 

 jSymbolic: Feature extraction from MIDI files 
 111 mostly original features 

 jWebMiner: Cultural feature extraction 
 Uses search engine co-occurrence page counts 

 ACE: Meta-learning classification system 
 7 machine learning and 3 dimensionality reduction algorithms 

 Updated version to be released soon 
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More on jMIR 

 jMIR also includes other components 
 ACE XML 

 jMusicMetamanager 

 Codaich 

 Bodhidharma MIDI 

 jMIRUtilities 

 More information: 
 jMIR’s components have each been described 

individually in previous publications 

 jmir.sourceforge.net 

 cory.mckay@mail.mcgill.ca 
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Results: 5-genre taxonomy 

 3 feature types vs. 1 

 11.3% better  

 Statistically 

significant (even for 

small SAC dataset) 

 A 78% decrease in 

the error rate 

 3 feature types vs. 2 

 2.3% better 

 Not statistically 

significant 
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Results: 10-genre taxonomy 

 Trends similar to 5-

genre results 

 3 feature types vs. 1 

 13.7% better  

 Statistically 

significant 

 A 39.3% decrease in 

the error rate 

 3 feature types vs. 2 

 2.7% better 

 Not statistically 

significant 
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Misclassification seriousness 

 Misclassification to a similar genre can be less serious 
than misclassification to a dissimilar genre 

 To investigate this, we calculated normalized weighted 
classification accuracies for the 10-genre experiments 
 Misclassification within a SAC genre pair: 0.5 error 

 Misclassification outside a SAC genre pair: 1.5 error 

 Recall SAC genre pairs: 
 Blues: Modern Blues and Traditional Blues 

 Classical: Baroque and Romantic 

 Jazz: Bop and Swing 

 Rap: Hardcore Rap and Pop Rap 

 Rock: Alternative Rock and Metal 
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Results: weighted vs. unweighted 

 Audio and symbolic 

 No significant difference 

 Although weighted 3%  
greater than corresponding 
unweighted when both 
combined 

 Feature groups including 
cultural features had fewer 
serious misclassifications 
than those without cultural 
features 

 Weighted greater than 
corresponding unweighted 
by average of 5.7% 

 Statistically significant 

 

Comparison of Unweighted and Weighted Accuracies
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Feasibility of genre classification 

 Results still too low for practical application 
 Best on 5-genre taxonomy: 96.8% 

 Best on 10-genre taxonomy: 78.8% 

 Results much better than best comparable audio-only 
results, however: 
 This experiment with jMIR (10 classes): 67.6% 

 MIREX 2008 Audio Genre (10 classes): 66.4% 

 22,000 tracks 

 MIREX 2007 Audio Genre (10 classes): 68.3% 

 7000 tracks 

 Combining feature types did significantly improve 
performance results past the seeming ceiling on audio-
only classification 
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Conclusions 

 Combining any two or 
more feature groups 
improves performance 
compared to any single 
feature group 

 Using cultural features 
causes those 
misclassifications that do 
occur to be less serious  

 The performance ceiling 
on genre classification 
performance may not be 
as low as some have 
worried 

Average Classification Performance Based on 
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Future research 

 Repeat experiments on a much larger dataset 
 Using MIDI files transcribed from audio 

 Incorporating larger class ontologies 

 Perform similar experiments with respect to 
other domains of music classification and 
similarity measurement 
 Artist, mood, recommendation, etc. 

 Experiment with combining feature types and 
learning models in more sophisticated ways 
 e.g., blackboard classifier ensembles, ontologically 

structured classification techniques, etc. 
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