Using timbre to predict musical genre: Promising solution or dead end?

Cory McKay
McGill University
Montréal, Canada
Central question

- How useful is timbre in automatically classifying music?
 - Useful by itself?
 - Useful in combination with other information?
 - Not useful at all?

- Genre classification used as a case study
Presentation overview

- Overview of automatic genre classification
- The jMIR toolkit
- Experiment 1:
 - Combining features extracted from audio, symbolic and cultural data
- Experiment 2:
 - Focusing on features extracted from symbolic data
- Final comments
What is genre classification?

- Using computers to automatically associate music with genre class labels
- Genre labels can be broad:
 - Jazz, classical, rock, rap, etc.
- Genre labels can be narrow
 - Microsound, chiptunes, glitch, IDM, etc.
Why is genre classification useful?

- Music consumers still browse music by genre (Lee and Downie 2004)
 - Consumers can be very disobedient to the wishes of some MIR researchers
- Genre can provide important musicological and music theoretical insights into how humans organize and classify music at a high level
 - Fabbri, Frith, Brackett, etc.
- Genre classification shares characteristics with other types of music classification
 - Mood, listening scenario, performer, composer, etc.
 - An interestingly hard problem whose solution may provide wide-ranging insights into other classification problems
How is genre classification done?

- Collect labeled ground truth training and testing data
 - Possibly involving structured class ontologies
- Extract features from this data
- Build a classification model using supervised learning algorithms
- Validate the model

- Similar methodology to many other kinds of automatic music classification
Main feature sources

- Symbolic recordings
 - e.g. MIDI or Humdrum files

- Cultural data
 - e.g. web text or metadata tags

- Audio recordings
 - e.g. MP3 or .wav files
 - Traditional source of timbral features

- Others: lyrics and album art
How well can we do?

- The MIREX contest is the best way to compare performance.

- Best results to date:
 - 6 classes: 82.9% (2005b)
 - 10 classes: 75.1% (2005a)

- Differences between datasets make it different to fairly compare results, but:
 - There is no evidence of significant improvement from year to year.

Note: 2005b involved 6 genres and all other runs involved 10 genres.
Commonalities in approaches?

- Relatively easy datasets
 - Genre classes tend to be quite different from one another
 - 10 genre classes are not very many
- Some diversity in machine learning strategies
 - Including some very interesting and effective approaches (and some less so)
- Features associated primarily with timbre…
 - Although some simple features associated with pitch and rhythm are used as well
“Uh oh” says timbre

- Are timbral features the limiting factor?

- Let’s look at some experimental data…
Commercial interlude: jMIR
Software tools used: jMIR

- **jMIR** is a free and open-source Java software suite designed for general music classification research:
 - **jAudio**: Audio feature extraction
 - 26 core features + metafeatures and aggregators
 - **jSymbolic**: Feature extraction from MIDI files
 - 111 mostly original features
 - **jWebMiner**: Cultural feature extraction
 - Uses search engine co-occurrence page counts
 - **ACE**: Meta-learning classification system
 - 7 machine learning and 3 dimensionality reduction algorithms
More on jMIR

- jMIR also includes other components
 - ACE XML
 - Codaich
 - jMusicMetamanager
 - jMIRUtilities
 - Bodhidharma MIDI

- More information:
 - jMIR’s components have each been described individually in various publications
 - jmir.sourceforge.net
 - cory.mckay@mail.mcgill.ca
We now return to our feature presentation
Experiment 1 (ISMIR 2008)

- Can combining features extracted from audio, symbolic and/or cultural sources significantly improve automatic music classification performance?
 - Intuitively, they each seem to contain very different kinds of information
- Can this help us break the seeming genre classification performance ceiling?
Experimental methodology

- Extracted features from separate audio, symbolic and cultural sources of data
 - Corresponding to the same musical pieces

- Compared genre classification performance of each of the 7 possible subsets of these 3 feature groups
 - Audio, Symbolic + Audio, Cultural, Symbolic + Cultural + etc.
 - 10-fold cross-validation
Musical dataset used: SAC

- The SAC Dataset was assembled for this experiment
 - Symbolic Audio Cultural
 - 250 recordings belonging to 10 genres
 - Audio and MIDI versions of each recording
 - Acquired separately
 - Accompanying metadata that could be used to extract cultural features from the web
Genres in SAC

- SAC’s 10 genres can be collapsed into 5 genres in order to separately evaluate performance on both moderate and small genre taxonomies
 - Facilitates evaluation of misclassification severity

- **Blues**: Modern Blues and Traditional Blues
- **Classical**: Baroque and Romantic
- **Jazz**: Bop and Swing
- **Rap**: Hardcore Rap and Pop Rap
- **Rock**: Alternative Rock and Metal
Difficulty of SAC

- Performances of the same song in different genres
- Performances by the same artists in different genres
- 10-genre taxonomy includes pairs of relatively similar genres

- These factors make SAC harder than the typical MIREX datasets
 - More realistic, although still easier than real-world application would require
Results: 5-genre taxonomy

- 3 feature types vs. 1 type
 - 11.3% better
 - A 78% decrease in the error rate
 - Statistically significant

- 3 feature types vs. 2 types
 - 2.3% better
 - Not statistically significant
“Uh oh” says timbre, again

- Audio was the worst performing single data type
 - Most (but not all) features extracted from it were timbral
Results: 10-genre taxonomy

- Trends similar to 5-genre results
- 3 feature types vs. 1
 - 13.7% better
 - A 39.3% decrease in the error rate
 - Statistically significant
- 3 feature types vs. 2
 - 2.7% better
 - Not statistically significant
“Yay!” says timbre

- Audio was the best performing single data type
- Perhaps timbre-based features are not a bridge to nowhere?
Misclassification seriousness

- Misclassification to a similar genre can be less serious than misclassification to a dissimilar genre
 - e.g., John Lennon → Beatles vs. John Lennon → Rihanna
- To investigate this, we calculated weighted classification accuracies for the 10-genre experiments
 - Misclassification within a SAC genre pair: 0.5 error
 - Misclassification outside a SAC genre pair: 1.5 error
- Recall SAC genre pairs:
 - **Blues**: Modern Blues and Traditional Blues
 - **Classical**: Baroque and Romantic
 - **Jazz**: Bop and Swing
 - **Rap**: Hardcore Rap and Pop Rap
 - **Rock**: Alternative Rock and Metal
Results: weighted vs. unweighted

- **Audio and symbolic**
 - No significant difference
 - Although weighted 3% greater than corresponding unweighted when both combined

- **Feature groups including cultural features** had fewer serious misclassifications than those without cultural features
 - Weighted greater than corresponding unweighted by average of 5.7%
 - Statistically significant

![Comparison of Unweighted and Weighted Accuracies](chart.png)
Experiment 1 conclusions

- Combining two or more feature groups improves performance compared to any single feature group.
- Using cultural features causes those misclassifications that do occur to be less serious.
- The performance ceiling on genre classification performance may not be as low as some have worried.
But what about timbre?

- It looks like timbre-based features can play a role, but may be limited by themselves.
Experiment 2 (CIM 05)

- An examination of the relative effectiveness of different high-level features in automatic genre classification
- Focused on features extracted from symbolic data
 - MIDI specifically
Software used

- Used jMIR Bodhidharma
 - The ancestor of jSymbolic and ACE
 - Extracts 111 symbolic features
 - Performs dimensionality reduction using genetic algorithms
 - Binary feature selection
 - Linear feature weighting
 - Learning ensemble utilizes of a combination of flat, hierarchical and round robin strategies
 - Multi-layer perceptrons
 - K-NN
Features

- 111 high-level features implemented:
 - Pitch Statistics
 - e.g. fraction of notes in the bass register
 - Melody
 - e.g. fraction of melodic intervals comprising a tritone
 - Instrumentation
 - e.g. whether modern instruments are present
 - Musical Texture
 - e.g. standard deviation of the average melodic leap of different lines
 - Rhythm
 - e.g. standard deviation of note durations
 - Dynamics
 - e.g. average note to note change in loudness

- 42 more features have been proposed but have not been implemented yet, including features based on chords
Genre ontology

- Performed experiments on two genre taxonomies:
 - Large (38 leaf classes):
 - Tests system under realistic conditions
 - Small (9 leaf classes):
 - For loosely comparing system to other experiments
Large taxonomy

<table>
<thead>
<tr>
<th>Country</th>
<th>Rap</th>
<th>Western Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluegrass</td>
<td>Hardcore Rap</td>
<td>Baroque</td>
</tr>
<tr>
<td>Contemporary</td>
<td>Pop Rap</td>
<td>Classical</td>
</tr>
<tr>
<td>Trad. Country</td>
<td></td>
<td>Early Music</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medieval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renaissance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modern Classical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Romantic</td>
</tr>
<tr>
<td>Jazz</td>
<td>Rhythm and Blues</td>
<td>Western Folk</td>
</tr>
<tr>
<td>Bop</td>
<td>Blues Rock</td>
<td>Bluegrass</td>
</tr>
<tr>
<td>Bebop</td>
<td>Chicago Blues</td>
<td>Celtic</td>
</tr>
<tr>
<td>Cool</td>
<td>Country Blues</td>
<td>Country Blues</td>
</tr>
<tr>
<td>Fusion</td>
<td>Soul Blues</td>
<td>Flamenco</td>
</tr>
<tr>
<td>Bossa Nova</td>
<td>Funk</td>
<td></td>
</tr>
<tr>
<td>Jazz Soul</td>
<td>Jazz Soul</td>
<td></td>
</tr>
<tr>
<td>Smooth Jazz</td>
<td>Rock and Roll</td>
<td></td>
</tr>
<tr>
<td>Ragtime</td>
<td>Soul</td>
<td></td>
</tr>
<tr>
<td>Swing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Pop</td>
<td>Rock</td>
<td>Worldbeat</td>
</tr>
<tr>
<td>Adult Contemp</td>
<td>Classic Rock</td>
<td>Latin</td>
</tr>
<tr>
<td>Dance</td>
<td>Blues Rock</td>
<td>Bossa Nova</td>
</tr>
<tr>
<td>Dance Pop</td>
<td>Hard Rock</td>
<td>Salsa</td>
</tr>
<tr>
<td>Pop Rap</td>
<td>Psychedelic</td>
<td>Tango</td>
</tr>
<tr>
<td>Techno</td>
<td>Modern Rock</td>
<td>Reggae</td>
</tr>
<tr>
<td>Smooth Jazz</td>
<td>Alternative Rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard Rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punk</td>
<td></td>
</tr>
</tbody>
</table>
Small taxonomy

- **Jazz**
 - Bebop
 - Jazz Soul
 - Swing

- **Popular**
 - Rap
 - Punk
 - Country

- **Western Classical**
 - Baroque
 - Modern Classical
 - Romantic
Experimental methodology

- Extracted all features from 950 MIDI files
- Performed GA-based feature weighting
 - Fitness based on classification performance of intermediate trained models
- Classified reserved validation data using the final feature weightings
 - 5-fold cross-validation
Average success rates

- **9 Class Taxonomy**
 - Leaf: 90%
 - Root: 98%

- **38 Class Taxonomy**
 - Leaf: 57%
 - Root: 81%
Feature performance

<table>
<thead>
<tr>
<th>Feature Group</th>
<th>Number of Features</th>
<th>Weighting Scaled by Number of Features (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumentation</td>
<td>20 (18%)</td>
<td>46.1</td>
</tr>
<tr>
<td>Pitch</td>
<td>25 (22%)</td>
<td>24.5</td>
</tr>
<tr>
<td>Rhythm</td>
<td>30 (27%)</td>
<td>14.3</td>
</tr>
<tr>
<td>Melody</td>
<td>18 (16%)</td>
<td>11.6</td>
</tr>
<tr>
<td>Texture</td>
<td>14 (13%)</td>
<td>1.7</td>
</tr>
<tr>
<td>Dynamics</td>
<td>4 (4%)</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- Features based on instrumentation were collectively assigned 46.1% of all weightings (after scaling)
 - Even though they only made up 18% of the total features
- At least one instrumentation feature played a major role in almost every classifier in the ensemble
- Two of the top three features were based on instrumentation
Experiment 2 conclusions

- Features based on instrumentation appeared to be very useful.

- Caveat:
 - Other features played a dominant role in certain stages of classification.
 - The best results were achieved by including a wide variety of features and applying feature selection.
But wait... Timbre is great!

- Instrumentation is a high-level abstraction of timbre
Final comments

- Features related to timbre can prove to be very useful in performing automatic music classification
 - At both low and high levels of abstraction
- Timbre-related features seem to be most effective when combined with other kinds of data
- It could be very useful to extract high-level timbral information from audio and use it in high-level features
 - Instrument identification
 - Performance gestures (e.g. bow pressure and speed)
 - Studio audio effects
Acknowledgements

- **Funding, past and present:**
 - Fonds de recherche sur la société et la culture
 - Social Sciences and Humanities Research Council of Canada
 - The Andrew W. Mellon Foundation

- **My co-authours on related papers:**
 - Ichiro Fujinaga, John Ashley Burgoyne and Jessica Thompson

- **Contact information:**
 - cory.mckay@mail.mcgill.ca
 - jmir.sourceforge.net