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Central question 

 How useful is timbre in automatically 

classifying music? 

Useful by itself? 

Useful in combination with other information? 

Not useful at all? 

 Genre classification used as a case study 
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Presentation overview 

 Overview of automatic genre classification 

 The jMIR toolkit 

 Experiment 1: 

Combining features extracted from audio, 
symbolic and cultural data 

 Experiment 2: 

Focusing on features extracted from symbolic 
data 

 Final comments 



Cory McKay 

4/41 

What is genre classification? 

 Using computers to 

automatically associate 

music with genre class labels 

 Genre labels can be broad: 

Jazz, classical, rock, rap, etc. 

 Genre labels can be narrow 

Microsound, chiptunes, glitch, 

IDM, etc. 
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Why is genre classification useful? 

 Music consumers still browse music by genre (Lee and 
Downie 2004) 
 Consumers can be very disobedient to the wishes of some MIR 

researchers 

 Genre can provide important musicological and music 
theoretical insights into how humans organize and 
classify music at a high level 
 Fabbri, Frith, Brackett, etc. 

 Genre classification shares characteristics with other 
types of music classification 
 Mood, listening scenario, performer, composer, etc. 

 An interestingly hard problem whose solution may provide wide-
ranging insights into other classification problems 
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How is gemre classification done? 

 Collect labeled ground truth training and testing 
data 
 Possibly involving structured class ontologies 

 Extract features from this data 

 Build a classification model using supervised 
learning algorithms 

 Validate the model 

 

 Similar methodology to many other kinds of 
automatic music classification 
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Main feature sources 

 Symbolic recordings 

 e.g. MIDI or Humdrum files 

 Cultural data 

 e.g. web text or metadata tags 

 Audio recordings 

 e.g. MP3 or .wav files 

 Traditional source of timbral features 

 

 Others: lyrics and album art 
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How well can we do? 

 The MIREX contest is the 

best way to compare 

performance 

 Best results to date: 

 6 classes: 82.9% (2005b) 

 10 classes: 75.1% (2005a) 

 Differences between 

datasets make it different to 

fairly compare results, but: 

 There is no evidence of 

significant improvement from 

year to year 
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Commonalities in approaches? 

 Relatively easy datasets 

 Genre classes tend to be quite different from one 

another 

 10 genre classes are not very many 

 Some diversity in machine learning strategies 

 Including some very interesting and effective 

approaches (and some less so) 

 Features associated primarily with timbre… 

 Although some simple features associated with pitch 

and rhythm are used as well 
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“Uh oh” says timbre 

 Are timbral features the limiting factor? 

 

 

 

 

 

 Let’s look at some experimental data… 
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Commercial interlude: jMIR 
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Software tools used: jMIR 

 jMIR is a free and open-source Java software 

suite designed for general music classification 

research: 

 jAudio: Audio feature extraction 

 26 core features + metafeatures and aggregators 

 jSymbolic: Feature extraction from MIDI files 

 111 mostly original features 

 jWebMiner: Cultural feature extraction 

 Uses search engine co-occurrence page counts 

 ACE: Meta-learning classification system 

 7 machine learning and 3 dimensionality reduction algorithms 
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More on jMIR 

 jMIR also includes other components 
 ACE XML 

 Codaich 

 jMusicMetamanager 

 jMIRUtilities 

 Bodhidharma MIDI 

 More information: 
 jMIR’s components have each been described 

individually in various publications 

 jmir.sourceforge.net 

 cory.mckay@mail.mcgill.ca 
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We now return to our feature 

presentation 
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Experiment 1(ISMIR 2008) 

 Can combining features extracted from 

audio, symbolic and/or cultural sources 

significantly improve automatic music 

classification performance? 

 Intuitively, they each seem to contain very 

different kinds of information 

 Can this help us break the seeming genre 

classification performance ceiling? 
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Experimental methodology 

 Extracted features from separate audio, 

symbolic and cultural sources of data 

Corresponding to the same musical pieces 

 Compared genre classification 

performance of each of the 7 possible 

subsets of these 3 feature groups 

Audio, Symbolic + Audio, Cultural, Symbolic + 

Cultural + etc. 

10-fold cross-validation 
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Musical dataset used: SAC 

 The SAC Dataset was assembled for this 

experiment 

Symbolic Audio Cultural 

250 recordings belonging to 10 genres 

Audio and MIDI versions of each recording 

 Acquired separately 

Accompanying metadata that could be used 

to extract cultural features from the web 
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Genres in SAC 

 SAC’s 10 genres can be collapsed into 5 genres 
in order to separately evaluate performance on 
both moderate and small genre taxonomies 
 Facilitates evaluation of misclassification severity 

 

 Blues: Modern Blues and Traditional Blues 

 Classical: Baroque and Romantic 

 Jazz: Bop and Swing 

 Rap: Hardcore Rap and Pop Rap 

 Rock: Alternative Rock and Metal 
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Difficulty of SAC 

 Performances of the same song in different 
genres 

 Performances by the same artists in different 
genres 

 10-genre taxonomy includes pairs of relatively 
similar genres 

 

 These factors make SAC harder than the typical 
MIREX datasets 
 More realistic, although still easier than real-world 

application would require 
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Results: 5-genre taxonomy 

 3 feature types 
vs. 1 type 
 11.3% better  

 A 78% decrease 
in the error rate 

 Statistically 
significant 

 3 feature types 
vs. 2 types 
 2.3% better 

 Not statistically 
significant 
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“Uh oh” says timbre, again 

 Audio was the worst 

performing single 

data type 

Most (but not all) 

features extracted 

from it were timbral 
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Results: 10-genre taxonomy 

 Trends similar to 5-

genre results 

 3 feature types vs. 1 

 13.7% better  

 A 39.3% decrease 

in the error rate 

 Statistically 

significant 

 3 feature types vs. 2 

 2.7% better 

 Not statistically 

significant 
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“Yay!” says timbre 

 Audio was the best 

performing single 

data type 

 Perhaps timbre-based 

features are not a 

bridge to nowhere? 
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Misclassification seriousness 

 Misclassification to a similar genre can be less serious 
than misclassification to a dissimilar genre 
 e.g., John Lennon → Beatles vs. John Lennon → Rihanna 

 To investigate this, we calculated weighted classification 
accuracies for the 10-genre experiments 
 Misclassification within a SAC genre pair: 0.5 error 

 Misclassification outside a SAC genre pair: 1.5 error 

 Recall SAC genre pairs: 
 Blues: Modern Blues and Traditional Blues 

 Classical: Baroque and Romantic 

 Jazz: Bop and Swing 

 Rap: Hardcore Rap and Pop Rap 

 Rock: Alternative Rock and Metal 
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Results: weighted vs. unweighted 

 Audio and symbolic 

 No significant difference 

 Although weighted 3%  
greater than corresponding 
unweighted when both 
combined 

 Feature groups including 
cultural features had fewer 
serious misclassifications 
than those without cultural 
features 

 Weighted greater than 
corresponding unweighted 
by average of 5.7% 

 Statistically significant 

 

Comparison of Unweighted and Weighted Accuracies
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Experiment 1 conclusions 

 Combining two or more 
feature groups improves 
performance compared to 
any single feature group 

 Using cultural features 
causes those 
misclassifications that do 
occur to be less serious  

 The performance ceiling 
on genre classification 
performance may not be 
as low as some have 
worried 

Average Classification Performance Based on 
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But what about timbre? 

 It looks like timbre-based features can play 

a role, but may be limited by themselves 
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Experiment 2 (CIM 05) 

 An examination of the relative 

effectiveness of different high-level 

features in automatic genre classification 

 Focused on features extracted from 

symbolic data 

MIDI specifically 
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Software used 

 Used jMIR Bodhidharma 

 The ancestor of jSymbolic and ACE 

 Extracts 111 symbolic features 

 Performs dimensionality reduction using genetic 

algorithms 

 Binary feature selection 

 Linear feature weighting 

 Learning ensemble utilizes of a combination of flat, 

hierarchical and round robin strategies 

 Multi-layer perceptrons 

 K-NN 
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Features 

 111 high-level features implemented: 
 Pitch Statistics 

 e.g. fraction of notes in the bass register 

 Melody 
 e.g. fraction of melodic intervals comprising a tritone 

 Instrumentation 
 e.g. whether modern instruments are present 

 Musical Texture 
 e.g. standard deviation of the average melodic leap of different lines 

 Rhythm 
 e.g. standard deviation of note durations 

 Dynamics 
 e.g. average note to note change in loudness 

 42 more features have been proposed but have not been 
implemented yet, including features based on chords 



Cory McKay 

31/41 

Genre ontology 

 Performed experiments on two genre 
taxonomies: 

Large (38 leaf classes): 
 Tests system under realistic conditions 

Small (9 leaf classes): 
 For loosely comparing system to other 

experiments 
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Large taxonomy 
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Small taxonomy 

 Jazz 

 Bebop 

 Jazz Soul 

 Swing  

 Popular 

 Rap 

 Punk 

 Country 

 Western Classical 

 Baroque 

 Modern Classical 

 Romantic 
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Experimental methodology 

 Extracted all features from 950 MIDI files 

 Performed GA-based feature weighting 

Fitness based on classification performance 

of intermediate trained models 

 Classified reserved validation data using 

the final feature weightings 

5-fold cross-validation 
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Average success rates 

 

 9 Class 

Taxonomy 

 Leaf: 90%  

 Root: 98% 

 38 Class 

Taxonomy 

 Leaf: 57% 

 Root: 81% 
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Feature performance 

Feature Group Number of Features Weighting Scaled by Number of Features (%) 

Instrumentation 20 (18%) 46.1 

Pitch 25 (22%) 24.5 

Rhythm 30 (27%) 14.3 

Melody 18 (16%) 11.6 

Texture 14 (13%) 1.7 

Dynamics 4 (4%) 1.6 

 Features based on instrumentation were collectively assigned 
46.1% of all weightings (after scaling) 
 Even though they only made up 18% of the total features 

 At least one instrumentation feature played a major role in almost 
every classifier in the ensemble 

 Two of the top three features were based on instrumentation 
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Experiment 2 conclusions 

 Features based on instrumentation 

appeared to be very useful 

 Caveat: 

Other features played a dominant role in 

certain stages of classification 

The best results were achieved by 

including a wide variety of features and 

applying feature selection 
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But wait… Timbre is great! 

 Instrumentation is a high-level 

abstraction of timbre 
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Final comments 

 Features related to timbre can prove to be very 
useful in performing automatic music 
classification 
 At both low and high levels of abstraction 

 Timbre-related features seem to be most 
effective when combined with other kinds of data 

 It could be very useful to extract high-level 
timbral information from audio and use it in high-
level features 
 Instrument identification 

 Performance gestures (e.g. bow pressure and speed) 

 Studio audio effects 
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