

JMIR: TOOLS FOR AUTOMATIC MUSIC CLASSIFICATION

Cory McKay and Ichiro Fujinaga

McGill University

Music Technology Area

cory.mckay@mail.mcgill.ca, ich@music.mcgill.ca

ABSTRACT

jMIR is a free and open-source software suite designed for

applications related to automatic music classification.

jMIR includes the jAudio, jSymbolic and jWebMiner

feature extractors, the ACE meta-learning framework, the

ACE XML information exchange file formats, the

jMusicMetaManager musical dataset management software

and the Codaich, Bodhidharma MIDI and SAC musical

datasets. The primary goals underlying jMIR are the

provision of powerful ready-to-use software tools to music

researchers with diverse ranges of technical backgrounds,

the encouragement of research combining features derived

from audio, symbolic and cultural sources of data, and the

provision of a framework for iteratively and collaboratively

developing further music information retrieval (MIR) tools

and performing original music classification research.

1. INTRODUCTION

Many MIR research areas are strongly dependent upon the

three central tasks of collecting and annotating ground

truth data, extracting characteristic features from this data,

and applying pattern recognition algorithms to the results.

Such research areas include automatic genre classification,

mood classification, performer or composer identification,

music recommendation, hit prediction, and instrument

identification, to name only a few. Furthermore, many of

the most significant developments in MIR have involved

innovation in one or more of these key areas.

Unfortunately, the lack of general, flexible, standardized

and easy-to-use tools designed specifically for MIR

research has made it difficult to compare, evaluate, share

and build upon the approaches used by different

researchers. This has necessitated a significant amount of

duplicated effort and a resultant slowdown in the progress

of MIR research.

MIR researchers need software tools for quickly and

easily performing the basic tasks underlying MIR research,

and they need frameworks for developing new techniques

that can in turn be used to iteratively develop additional

techniques. It should be a simple matter, for example, to

use existing software to extract common features such as

MFCCs and then, in the same software framework, use

them to design new higher-level features, such as pitch-

related features. There should also be an infrastructure for

distributing data, annotations and implementations of new

algorithms to other researchers in a standardized way so

that they can quickly evaluate them and integrate them into

their own research as software plug-ins.

Contrary to this ideal, it is much more common to find

each MIR research group working with its own in-house

software and musical datasets. Efforts to make the means

and fruit of each group’s research easily usable by others

are unfortunately often only an afterthought. For example,

the researchers running the annual MIREX MIR

competition (www.music-ir.org/mirex/2009/) have found

that submitted systems rarely work in their originally

submitted form, even when required by the evaluators to

meet set basic interface requirements.

jMIR has been developed in order to address these

issues. jMIR is an open-source Java software suite

consisting of tools for performing the primary tasks

associated with automatic music classification research. It

can be used to study music in both audio and symbolic

forms, as well as to mine cultural information from the

Internet. It includes software for extracting features,

applying machine learning algorithms, and analyzing and

managing metadata associated with musical datasets. The

ACE XML file formats are also part of jMIR, and are

intended not only for use with the jMIR software, but also

as an expressive and flexible general standard for

exchanging and storing MIR-related information.

There are three primary priorities underpinning the

design of the jMIR components. The first is that they be

easy to install and use by individuals with a variety of

technical backgrounds. This is essential, as researchers in

fields such as music theory, psychology, library sciences

and musicology have important musical insights that can

greatly benefit MIR research, but are often alienated by

software requiring a strong technical background to use.

Installation difficulties and steep learning curves can also

be discouraging for even technically skilled users. The

jMIR components are consequently well-documented,

relatively simple to install, and include easy-to-use GUIs.

The second priority is the provision of an open

framework for performing novel research and distributing

new approaches to others. This is important in ensuring

research transparency and in allowing researchers to

evaluate and build upon each other’s work. In order to

accomplish this, the jMIR components are designed using a

modular plug-in approach. It is thus a simple matter for

researchers to both develop their own algorithms and add

algorithms newly implemented by others to their jMIR

distributions. The jMIR feature extractors also

automatically make the value of each extracted feature

available to each other feature and automatically consider

dependencies when dynamically scheduling extraction

order, something that facilitates iterative feature design.

The third priority is the provision of functionality

allowing features extracted from audio recordings,

symbolic representations and cultural data available on the

Internet to be combined. Music researchers traditionally

tend to focus on only one of these domains, and thus risk

missing out on valuable complementary sources of

information. It has been found experimentally using jMIR

that combining these sources of information can improve

music classification performance significantly [10].

As the details of earlier versions of most of the jMIR

components have been individually published previously,

primarily at the ISMIR conference, this publication focuses

on introducing new developments and on presenting jMIR

to the wider computer music community. This paper also

highlights jMIR as a unified package that is more than just

a collection of isolated tools. Although the jMIR

components can certainly each be used separately, using

them together can be advantageous.

The jMIR software and related documentation may be

downloaded from jmir.sourceforge.net.

2. RELATED WORK

To the best of the authours’ knowledge, jMIR is the only

unified MIR system that encompasses symbolic, audio and

cultural feature extraction, meta-learning, metadata

management and standardized file formats.

There are, however, several high-quality toolsets that

have been designed for broad MIR use. MIDIToolbox [2]

and MIRToolbox [3] are powerful modular Matlab

toolboxes for designing and extracting symbolic and audio

features, respectively. The well-known CLAM [1] and

Marsyas [12] systems focus on audio-related tasks. Also,

the M2K (www.music-ir.org/evaluation/m2k/) graphical

patching interface can be used to connect a range of

different MIR processing components in ways that can take

advantage of distributed processing.

3. THE JMIR COMPONENTS

3.1. jAudio

jAudio [4] is an application for extracting features from

audio files in formats such as MP3, AIFF and WAV. It is

bundled with 28 implemented features extracted from both

the frequency and time domains (e.g., Spectral Flux, RMS,

etc.). It includes several relatively high-level musical

features, mainly related to rhythm, as well as lower-level

signal processing-oriented features. A variety of pre-

processing options are also available, such as

downsampling, normalization and windowing.

In order to make jAudio as accessible as possible, it

includes a GUI interface, a command-line interface, a Java

API to facilitate integration with other software and batch

file processing functionality. jAudio also includes

functionality for synthesizing, recording and displaying

audio in order to facilitate the testing of new features.

jAudio development since its original publication has

focused on facilitating the process of developing and

adding new features. As is also the case with jSymbolic,

new features can be added to jAudio using a simple

inheritance-based plug-in approach that automatically and

dynamically solves scheduling dependencies. jAudio also

includes implementations of “metafeatures” and

“aggregators” that respectively automatically implement

features derived from other features (e.g., the standard

deviation of a feature across analysis windows) and

collapse a set of feature vectors into a single vector or a

smaller set of vectors (e.g., area of moments).

3.2. jSymbolic

jSymbolic [7] is a GUI-based application for extracting

features from MIDI files. It is bundled with 111

implemented features (e.g., Note Density, Instruments

Present, Range, etc.), most of which are based on relatively

high-level musical abstractions and many of which are

novel. This is far more features than any other symbolic

feature extractor. The features fall into the broad categories

of instrumentation, texture, rhythm, dynamics, pitch

statistics and melody.

Like jAudio, jSymbolic has a simple inheritance-based

modular API for adding new features, and feature

dependencies are resolved automatically in order to

encourage the iterative development of increasingly high-

level features (e.g., using features related to chords to

extract features related to harmonic progressions).

An additional 49 features are also proposed for future

implementation, including chord-based features [5].

3.3. jWebMiner

jWebMiner [9] is a GUI-based application for extracting

features from cultural and demographical information

found on the Internet. At its most basic level, the software

operates by automatically using Google and Yahoo! web

services to acquire statistics on how often particular strings

co-occur on the same web pages. This can indicate artist

similarity, for example, by measuring how often artists’

names co-occur with one another or, to give another

example, to classify artists by genre by measuring how

often their names co-occur with particular genre titles.

Search results are processed statistically by jWebMiner

in a variety of ways in order to improve results. Further

processing options include the abilities to filter out sites

containing specified strings, to require that sites contain

certain strings in order to be counted and to weight results

from different sources differently.

jWebMiner can parse iTunes XML, ACE XML, Weka

ARFF [13] or delimited text files in order to conveniently

access the particular strings to use in searches.

3.4. ACE

ACE [6] is a meta-learning software package for selecting,

optimizing and applying machine learning algorithms.

Given a set of extracted features, ACE experiments with a

variety of classifier algorithms, parameters, ensemble

architectures and dimensionality reduction techniques in

order to arrive at a good configuration for the problem at

hand. This can be helpful, as a particular algorithm can be

more or less appropriate for a given problem in terms of

classification accuracy, training speed and classification

speed. Even experts in machine learning can have difficulty

choosing the best algorithms and parameterizations.

ACE is designed to automate this choice and to facilitate

the use of powerful machine learning technology by users

of all technical levels, including users with no background

in machine learning. ACE also provides a framework for

experimenting with new algorithms. ACE is based on the

Weka machine learning package [13], so new algorithms

developed within the Weka framework can be easily added

to ACE. ACE may also be used directly as a classifier.

A significant amount of work has been done on ACE

since its original publication. This includes a considerably

expanded command-line interface, a partially completed

GUI, implementation of a custom cross-validation system

that improves on Weka’s approach, the provision of

additional statistics for use in comparing and evaluating

algorithms, and a general restructuring that simplifies the

API and makes integration with external software easier.

3.5. ACE XML

ACE XML [6] is a set of standardized file formats for

representing feature values extracted from instances,

abstract feature descriptions and parameterizations,

instance labels and annotations, and class ontologies.

These formats have been designed to address the

significant shortcomings in the file formats most commonly

used in MIR. To provide just a few examples, ACE XML

makes it possible to associate multiple class labels with a

single instance, to specify relationships between class

labels, to group associated feature values in ways that can

be meaningful to machine learning algorithms, and to

maintain associations between instances and their sub-

sections and metadata, none of which can be done

conveniently with the file formats that are most typically

used (e.g., Weka ARFF [13]). All of the jMIR components

can read and write ACE XML, although they can also be

used with Weka ARFF files if necessary.

A major update to ACE XML is in the process of being

finalized. The resulting ACE XML 2.0 formats [11] will be

proposed as standards for storing MIR-related information

and communicating it between software packages in

general. Improvements include, to give just a few

examples, the abilities to link to external resources using

RDF-like triples, to specify weighted class memberships, to

express feature arrays of arbitrary dimensionality, to

reduce file sizes using compression, etc.

3.6. jMusicMetaManager

jMusicMetaManager [8] is a GUI-based software package

for profiling and managing large musical datasets and for

detecting metadata errors and inconsistencies in them.

These tasks are essential, as the success of ground-truth

training and evaluation data is contingent upon the quality

of the musical datasets from which they are drawn and the

accuracy of the associated metadata.

jMusicMetaManager uses many metrics to find dataset

inconsistencies and redundancies. These can be used to

detect mislabeled duplicate recordings that could cross-

contaminate training and testing sets, for example, or to

detect misspellings that might cause “Mingus, Charles” and

“Charlie Mingus”, for example, to be erroneously treated

as two different artists during training and evaluation.

In all, jMusicMetaManager provides users with 23 pre-

processing operations, as well as several edit-distance and

word ordering/subset operations. A total of 39 different

HTML reports can also be automatically generated to help

profile and publish musical datasets.

jMusicMetaManager can parse iTunes XML files and

MP3 ID3 tags as well as ACE XML and Weka ARFF files

in order to access the metadata that is to be analyzed.

3.7. Codaich, Bodhidharma MIDI and SAC

Codaich [8], which has been significantly expanded since

its original publication, is an audio dataset consisting of

31,300 MP3 recordings by 2811 artists and belonging to

57 genres of music. These recordings are labelled with 19

metadata fields. The Bodhidharma MIDI dataset [5] is a

collection of 950 MIDI recordings belonging to 38 genres.

Finally, the SAC dataset [10] consists of matching MP3

recordings, MIDI encodings and cultural data for 250

pieces of music belonging to 10 genres of music.

These datasets have all been used in research with the

jMIR components. The SAC dataset in particular is a

prototype designed for research on combining audio,

symbolic and cultural data.

These datasets are intended to eventually be made

publicly accessible using an OMEN-like [8] system. Such

systems enable custom feature extraction requests to be

processed at distributed sites with legal access to music so

that the features can then themselves be distributed

elsewhere without violating copyright legislation.

3.8. jMIRUtilities

The previously unpublished jMIRUtilities is a set of tools

for performing miscellaneous useful tasks associated with

jMIR. These tools include a GUI for batch-associating

class labels with instances, utilities for merging various

kinds of information, and utilities for extracting

information from iTunes XML files or delimited text files.

4. CONCLUSIONS AND FUTURE RESEARCH

jMIR is an open, extensible and easy-to-use suite of

software tools that can be used in MIR and automatic

music classification research by users of all technical

backgrounds. It can be used both directly and as a

framework for developing and sharing new approaches.

All of the jMIR components will continue to be

expanded and improved by the authors and, it is hoped, the

music research community as a whole. The jMIR

components provide an infrastructure for such

collaborative development, and also provide powerful core

libraries of features, machine learning algorithms and

musical data that can contribute to the avoidance of

duplicated effort.

The heterogeneity of existing MIR tools is an important

issue that needs to be addressed, as the availability of too

many tools can have the unintended effect of placing

barriers between user groups. This issue is one of the

central motivators behind the ACE XML 2.0 file formats,

as they are designed to enable flexible and expressive data

communication across toolsets. Future work will

emphasize the provision of developer tools and

application-specific plug-ins to facilitate the integration of

ACE XML compatibility into other toolsets. Work will

also be done on making it even easier to integrate the jMIR

components into other software via simple APIs. Another

important priority is the development of a common

repository for new jMIR modules to be posted and shared.

 jMIR and ACE XML are part of the international

NEMA (nema.lis.uiuc.edu) project, and the ongoing

improvements to jMIR’s accessibility are being developed

and promoted in this context.

5. ACKNOWLEDGEMENTS

The authors would like to thank the Andrew W. Mellon

Foundation, the Social Sciences and Humanities Research

Council (SSHRC), and the Canadian Foundation for

Innovation (CFI) for their generous financial support.

Daniel McEnnis and Jessica Thompson have respectively

made substantial contributions to jAudio and to ACE.

6. REFERENCES

[1] Arumi, P., and X. Amatriain. 2005. CLAM, an object

oriented framework for audio and music. Proceedings

of the International Linux Audio Conference

[2] Eerola, T., and P. Toiviainen. 2004. MIR in Matlab:

The MIDI Toolbox. Proceedings of International

Conference on Music Information Retrieval. 22–7.

[3] Lartillot, O., P. Toiviainen, and T. Eerola. 2008. A

Matlab toolbox for music information retrieval. In

Data Aalysis, Machine Learning and Applications,

ed. C. Preisach, H. Burkhardt, L. Schmidt-Thieme,

and R. Decker. New York: Springer. 261–8.

[4] McEnnis, D., C. McKay, and I. Fujinaga. 2006.

jAudio: Additions and improvements. Proceedings of

the International Conference on Music Information

Retrieval. 385–6.

[5] McKay, C. 2004. Automatic genre classification of

MIDI recordings. M.A. Thesis. McGill University,

Canada.

[6] McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I.

Fujinaga. 2005. ACE: A framework for optimizing

music classification. Proceedings of the International

Conference on Music Information Retrieval. 42–9.

[7] McKay, C., and I. Fujinaga. 2006. jSymbolic: A

feature extractor for MIDI files. Proceedings of the

International Computer Music Conference. 302–5.

[8] McKay, C., D. McEnnis and I. Fujinaga. 2006. A

large publicly accessible prototype audio database for

music research. Proceedings of the International

Conference on Music Information Retrieval. 160–3.

[9] McKay, C., and I. Fujinaga. 2007. jWebMiner: A

web-based feature extractor. Proceedings of the

International Conference on Music Information

Retrieval. 113–4.

[10] McKay, C., and I. Fujinaga. 2008. Combining

features extracted from audio, symbolic and cultural

sources. Proceedings of the International Conference

on Music Information Retrieval. 597–602.

[11] McKay, C., and I. Fujinaga. 2009. Expressing

musical features, class labels, ontologies and

metadata using ACE XML 2.0. Submitted to

Structuring Music through Markup Language:

Designs and Architectures, J. Steyn ed. Hershey: IGI.

[12] Tzanetakis, G., and P. Cook. 2000. Marsyas: A

framework for audio analysis. Organized Sound 10:

293–302.

[13] Witten, I., and E. Frank. 2005. Data mining:

Practical machine learning tools and techniques with

Java implementations. San Francisco: Morgan

Kaufmann.

