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Abstract 

Automatic music classification is a wide-ranging and multidisciplinary area of inquiry 

that offers significant benefits from both academic and commercial perspectives. This 

dissertation focuses on the development of jMIR, a suite of powerful, flexible, accessible 

and original software tools that can be used to design, share and apply a wide range of 

automatic music classification technologies. 

jMIR permits users to extract meaningful information from audio recordings, 

symbolic musical representations and cultural information available on the Internet; to 

use machine learning technologies to automatically build classification models; to 

automatically collect profiling statistics and detect metadata errors in musical collections; 

to perform experiments on large, stylistically diverse and well-labelled collections of 

music in both audio and symbolic formats; and to store and distribute information that is 

essential to automatic music classification in expressive and flexible standardised file 

formats. 

In order to have as diverse a range of applications as possible, care was taken to avoid 

tying jMIR to any particular types of music classification. Rather, it is designed to be a 

general-purpose toolkit that can be applied to arbitrary types of music classification. Each 

of the jMIR components is also designed to be accessible not only by users with a high 

degree of expertise in computer-based research technologies, but also by researchers with 

valuable musical expertise, but perhaps less of a background in computational research. 

Moreover, although the jMIR software can certainly be used as a set of ready-to-use tools 

for solving music classification problems directly, it is also designed to serve as an open-

source platform for developing and testing original algorithms.  

This dissertation also describes several experiments that were performed with jMIR. 

These experiments were intended not only to verify the effectiveness of the software, but 

also to investigate the utility of combining information from different types of musical 

data, an approach with the potential to significantly advance the performance of 

automatic music classification in general. 
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Sommaire 

La classification automatique de la musique est un vaste domaine de recherche, 

multidisciplinaire par nature, et qui donne lieu à des avancées significatives tant du point 

de vue scientifique que du point de vue des applications commerciales. La présente 

dissertation s’articule autour d’un thème central qui est la conception et le développement 

de jMIR, une suite originale de logiciels qui sont à la fois puissants, flexibles et 

accessibles. Ces outils peuvent être utilisés pour concevoir, partager et appliquer une 

grande variété de technologies de classification automatique de la musique. 

jMIR permet à l’utilisateur d’extraire de l’information significative des 

enregistrements audio, des représentations musicales symboliques et des informations 

culturelles disponibles sur l’Internet; de se servir des technologies d’apprentissage 

automatiques afin de construire des modèles de classification, de compiler 

automatiquement des profils statistiques, de détecter les erreurs de métadonnées dans les 

collections de pièces musicales; d’effectuer des expériences sur de larges corpus de 

musique; et enfin de répertorier et distribuer de l’information essentielle à la classification 

automatique de la musique sous des formats expressifs, standardisés et flexibles.  

jMIR est plutôt conçu comme une boîte à outils d’usage général pouvant être 

appliquée à n’importe quel type de classification de la musique. Chaque élément de jMIR 

est aussi conçu pour être accessible autant à des utilisateurs experts en technologies de 

l’information qu’à des, chercheurs dont l’expertise musicale précieuse ne serait pas 

doublée d’une formation en technologies de l’information. Bien que jMIR intègre un jeu 

d’outils prêts à résoudre directement des problèmes de classification de la musique, il 

permet également de s’en servir comme d’une plate-forme ouverte de développement 

logiciel ainsi que de validation de nouveaux algorithmes.  

Enfin, la présente dissertation décrit plusieurs expériences réalisées au moyen de 

jMIR. Ces expériences avaient non seulement pour but de vérifier la pertinence de cet 

environnement logiciel, mais également d’investiguer les bénéfices qu’apportent 

l’utilisation conjointe d’informations musicales de nature diverse, cette dernière approche 

ayant le potentiel de faire avancer de façon significative la classification automatique de 

la musique en tant que discipline de recherche. 
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1. Introduction and background 

1.1 General overview 

1.1.1 Introduction 

Automatic music classification is a process that consists of computers automatically 

mapping musical information of some kind to categories of interest. A few examples of 

relatively low-level, although certainly far from trivial, types of music classification 

include the identification of particular instruments, pitches and rhythmic patterns in audio 

signals. On a somewhat higher level, one might identify chords, chord progressions, 

melodies, structural segmentations and so on. It is also possible to design systems that can 

map pieces of music to still higher-level categories, such as in the cases of classification 

by composer, performer, genre, style, mood, listening scenario or preference profile. 

These are just a few examples of the many possible types of music classification that can 

be performed, of course, but they do help to illustrate the variety and scope of 

applications that can be addressed by automatic music classification and the range of 

benefits that can be reaped from the successful implementation of accurate and consistent 

classification software.  

Research on automatic music classification has significant value from both academic 

and commercial perspectives. Not only can the results of various types of classification be 

very useful in and of themselves, such as in helping to label and organize large music 

collections, but automatic music classification can also play an essential role in 

accomplishing component parts of many large and wide-ranging tasks. For example, a 

successful system for automatically transcribing audio signals to symbolic musical scores 

would likely consist of numerous sub-systems that each perform automatic classification 

in order to solve related sub-problems, such as voice segmentation, note onset detection, 

pitch tracking, tempo induction and so on. 

In practice, many types of music classification are very difficult to perform 

consistently and accurately. This is often the case both for human classifiers and for 

computers programmed with pre-defined classification heuristics. In cases such as 

classification by genre or mood, for example, there are very few precise, clear and 
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consistent rules delineating the musical qualities and characteristic of each category. 

Indeed, it can sometimes be difficult even to come up with a generally accepted set of 

categories to categorize pieces of music into. 

Fortunately, automated pattern recognition techniques provide a very useful empirical 

way of dealing with such issues by learning to recognize statistical regularities in 

collections of music, and thus effectively building categorization models that can map 

musical data to appropriate categories. Tools that can allow researchers to quickly, easily 

and effectively apply such approaches could prove to be very valuable to researchers 

involved in diverse areas of musical inquiry. 

The overall goal of this dissertation is thus the provision of powerful, flexible, 

accessible and original tools that can be used to develop, share and apply techniques 

associated with automatic music classification. A suite of software tools called jMIR has 

been produced in fulfillment of this goal. The jMIR components enable users to extract 

meaningful information from audio recordings, symbolic musical representations and 

cultural information relating to music that is available on the Internet; to automatically 

build classification models capable of mapping music to categories that are meaningful 

for particular research applications; to automatically collect profiling statistics and detect 

metadata errors in musical collections; to perform experiments on a large, stylistically 

diverse and well-labelled collections of music in both audio and symbolic formats; and to 

store and distribute information that is essential to automatic music classification in 

expressive and flexible standardised file formats. 

In order to have as diverse a range of applications as possible, jMIR is very 

purposefully not tied to any particular type of music classification, but is rather designed 

to be a general-purpose toolkit that can be applied to arbitrary types of music 

classification. Each of the jMIR components is also designed to be accessible not only to 

users with a high degree of expertise in computer-based research technologies, such as 

researchers in electrical engineering and machine learning, but also to researchers with 

very valuable musical expertise but less of a background in computational research, such 

as some musicologists, music theorists and music psychologists. 

It is hoped that providing music researchers with sophisticated empirical tools for 

studying music in traditionally unorthodox ways will help them to glean important new 
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insights into music. An important advantage of software such as jMIR is that it allows 

researchers such as musicologists and music theorists to perform empirical research on a 

much wider range of art, folk and popular musics of the world than is typically possible 

using the type of heuristics-based computational approaches traditionally used in music 

informatics. Furthermore, these tools also facilitate the automated extraction and 

processing of information from audio and cultural information sources, an important 

break from the symbolic emphasis of traditional music informatics. It is also hoped that 

the insights and needs made apparent by these types of research will in turn help to 

expand the scope of current research in automatic music classification. 

It is important to note that jMIR is intended as more than just a set of to ready-to-use 

tools that can be used to solve classification problems directly, although this is certainly 

an important intended use of jMIR. The software is also designed to serve as an open-

source standardized platform for developing and testing original algorithms that can be 

used to diversify and improve automatic music classification in the future. It is hoped that 

this will help to facilitate the rapid spread of new approaches as they are developed, 

reduce redundant duplication of work, facilitate the integration of approaches contributed 

by researchers in diverse fields, help to promote inter-institutional research collaboration 

in general and aid in the development of technologies allowing researchers to exceed the 

performance of existing automatic classification systems.  

The jMIR development process involved the design of novel data extraction and 

processing algorithms; the collection, standardization and implementation of existing 

algorithms; the design and implementation of original infrastructure and interfaces for 

performing and researching diverse types of automatic music classification; and the 

analysis, design and refinement of new and existing research methodologies. The jMIR 

components were also used in several experiments, as described in Chapter 9. These 

experiments were intended not only to verify the effectiveness of jMIR, but also to 

investigate the utility of combining information from different types of musical data 

sources. 

Each of the jMIR components may be used independently, or they may be used 

together as an integrated whole, depending on the needs of individual users. This 

independence is reflected in the structure of this dissertation, with the result that each of 
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the jMIR components is presented in its own chapter, from Chapter 3 to Chapter 8. The 

multidisciplinary nature of the jMIR project involved elements of many disciplines, 

including digital signal processing, music theory, web-based data mining, machine 

learning, musicology and knowledge management. Each of the chapters therefore 

provides background information from the fields that are the most relevant to its 

particular jMIR component. 

Chapter 2 provides a brief review of psychological and musicological research on 

human music classification. Although this chapter does not deal directly with any specific 

jMIR components, it is included in this dissertation because many automatic music 

classification applications essentially involve the simulation and prediction of the types of 

classifications produced by humans. It is helpful to have some fundamental insights into 

how humans perform such classifications in order to accomplish this, even if the actual 

processes used by computers to arrive at corresponding classifications may be entirely 

different.  

This first chapter is intended to provide an overview of and context for the jMIR 

project, as well as to present appropriate background information relevant to the project 

as a whole. It also provides more details on many of the issues raised in this introductory 

Section 1.1.1. Section 1.1.2 introduces certain basic vocabulary and fundamental concepts 

that are essential to understanding automatic music classification. Section 1.1.3 then 

provides a brief overview of each of the jMIR components, and Section 1.2 details the 

chapter by chapter structure of this dissertation. 

Section 1.3 provides a general introduction to music information retrieval, a field of 

which automatic music classification is a sub-discipline, and then continues on to provide 

a relatively detailed discussion of the nature, types, applications and advantages of 

automatic music classification. The differences and similarities between music 

classification and similarity measurement are also discussed, an issue that is revisited in 

Chapter 2. Of particular significance, Sections 1.3.6 and 1.3.7 summarize other systems 

that have been developed for performing automatic music classification research.  

Section 1.4 discusses the overall design principles that motivated the development of 

jMIR. This section also provides an overview of how the jMIR components as a whole 

fulfill these design principles. 
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Section 1.5 reviews some of the essential theoretical and research contributions of this 

dissertation. This is done in order to highlight them against the backdrop of the 

engineering aspects of the jMIR project. 

1.1.2 Essential concepts in automatic music classification 

It is useful to briefly explain the core procedures and terminology associated with 

automatic music classification before proceeding to describe jMIR in more detail, as a 

familiarity with these essential aspects of automatic music classification will greatly 

facilitate this description. The information provided in this sub-section is very much a 

high-level overview, and more detailed information is available in Section 1.3 and, to an 

even greater extent, in the individual chapters of this dissertation that pertain to the 

various aspects of automatic music classification. 

Most automatic music classification systems make use of machine learning to at least 

some extent, and it is a central aspect of many systems. Machine learning involves using 

computer algorithms to automatically build, or learn, a model that can be used to perform 

some task. From the perspective of automatic music classification, this model allows 

different entities of interest, called instances, to be classified by the system into the 

categories of interest, called classes. Classes could be, to give just a very few examples, 

names of composers, types of musical genres or musical pitches. These classes may be 

treated as unrelated entities, or they may be organized into a class ontology. Instances can 

be many different things, depending on the application domain, such as musical pieces, 

short musical excerpts, the collected works of a musician or composer, etc. 

The essential advantage of machine learning is that it enables computers to 

automatically learn solutions to very difficult problems, even when there is no pre-

existing knowledge of the solution to a given problem. Machine learning also eliminates 

the difficult and time-consuming need to explicitly formalize and implement potentially 

very complex solutions even when they are known. Machine learning can thus provide an 

excellent solution for many music classification problems, since effective classification 

models are both often poorly understood and very complex. 

There are many varieties of machine learning, but in general a class of techniques 

called supervised learning tend to be the most appropriate for most music information 



 22 

retrieval problems.
1
 Supervised learning requires first acquiring a set of instances, called 

ground-truth data, that have been labelled with model class labels that are known to be 

correct. The machine learning algorithm that is being used is then trained on this data, 

thereby automatically learning to associate particular characteristics of ground-truth 

instances with the classes that they are labelled with. This is, at least from a very high-

level perspective, similar in concept to how a human might be trained to classify 

instances by observing exemplars that he or she is told belong to particular categories. 

If all goes well, the classification model built by the machine learning algorithm will 

have learned associations between the characteristics of the ground-truth training 

instances and their labelled classes that may be generalized so that it can classify new 

unlabelled instances correctly based on their own characteristics. Ground-truth data is 

typically divided into training, testing and validation sets in order to attempt to verify that 

such generalization has occurred. 

The labelling of ground-truth data with correct class labels is essential to the training 

of successful models. The association of ground-truth instances with various other kinds 

of data can also be helpful as well. The term metadata, which can be defined as data 

about data, is used to refer to any kind of data that instances are annotated with. 

Unfortunately, metadata annotations mined from the Internet tend to be inconsistent and 

error prone, so it is often necessary to correct them before they can be used in machine 

learning problems. 

There are three primary types of musical information that traditionally serve as 

instances in automatic music classification: 

 Audio data: Digital representations of physical audio signals. These are typically 

stored in formats such as MP3s, WAVs and FLACs. 

 Symbolic musical representations: Representations of sound based on abstract 

symbols that are musically meaningful, such as the music notation used in scores. 

File formats such as MIDI, OSC, Music XML and Humdrum store symbolic data. 

                                                 
1
 The reasons for this, alternative approaches and exceptions to this general rule of thumb are discussed in 

Chapter 6. 
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 Cultural data: Information that is related to the music of interest, but is not a 

direct representation, abstract or otherwise, of the actual sound comprising the 

music. The Internet provides the most commonly exploited source of cultural data, 

as it makes available resources such as edited metadata repositories, unedited 

listener tags, playlists and searchable web pages in general. Other potential 

sources of cultural data include expert writings such as album reviews, statistics 

such as sales statistics, surveys, the results of psychological experiments and 

images of album art.  

As noted above, machine learning algorithms must be provided with characteristics of 

instances that encapsulate sufficient information to learn and apply classification models. 

Such measurable characteristic pieces of information that can be extracted from instances 

and provided as the percepts of machine learning algorithms are called features, and the 

particular choice of features to extract from instances can be essential to the success of 

the learned classification model. The use of too many features can pose problems, as 

described in Chapter 6, so it is often necessary to apply dimensionality reduction 

algorithms in order to effectively reduce the size of large feature sets while minimizing 

the consequent loss of relevant information. 

It can be useful to group features into the three following classes: 

 Low-level content-based features: Spectral or time-domain information 

extracted directly from audio signals. Most features of this type do not provide 

information that seems intuitively musical, but they can have significant 

discriminating power when processed by computers, and they can also sometimes 

have psychoacoustic significance. Mel-Frequency Cepstral Coefficients, Zero 

Crossings and Signal RMS are examples of such features. 

 High-level content-based features: Information extracted from symbolic or 

audio data that is formulated in such a way that it is meaningful to musically 

trained humans. Measures of the amount of chromatic motion, the amount of 

rubato, the instruments present and information associated with song lyrics are 

examples of such features. 
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 Cultural features: Sociocultural information outside the scope of the musical 

content itself. In practice, the most commonly used cultural features tend to 

consist of statistics that can be automatically mined from the web, such as playlist 

cooccurrences of various musical tracks or sales statistics. 

Not coincidentally, these feature types roughly coincide to the three types of data 

described above.  

The basic procedures involved in a typical automatic music classification task are 

summarized in Figure 1.1. 

1.1.3 Overview of the jMIR components 

As noted above in Section 1.1.1, jMIR is a suite of software tools and resources 

developed for use in research associated with automatic music classification. jMIR is 

designed not only to be used directly for performing automatic music classification-

related tasks like feature extraction, pattern recognition and experimental validation and 

investigation, but also as a platform for developing and sharing new technologies, such as 

new features or machine learning techniques. 

Each of the various jMIR components is designed to address a particular task or set of 

tasks related to automatic music classification: 

 ACE XML: A set of standardized file formats that can be used to store 

information such as extracted feature values, feature metadata, class labels 

associated with instances, miscellaneous instance metadata and class ontologies. 

These file formats allow information to be transferred between the jMIR software 

components,
2
 and are also proposed as a general standard for use in storing and 

communicating data associated with automatic music classification beyond the 

context of jMIR. 

                                                 
2
 For the sake of general compatibility the jMIR software components can also read and write Weka ARFF 

(Witten and Frank 2005), the current de facto file format standard in the MIR community, but ACE XML is 

strongly recommended as an alternative due to its many relative advantages, as discussed in Chapter 7. 
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Figure 1.1: A workflow of the tasks that must be performed in a typical automatic music 

classification scenario. The first step involves collecting the ground-truth data. This 

collected musical data must then be labelled with metadata or, if the metadata is already 

present, then it must be validated. Features must then be extracted from the ground-truth 

data. These extracted features must be capable of sufficiently characterizing the 

differences between the classes that the ground-truth instances are to be classified into. 

The features are then input to the machine learning algorithm(s) that are to classify the 

music, typically using training and validation subsets of the ground-truth data. Once the 

classifiers are trained and validated, new unlabelled instances can then have their 

features input to the trained classification model, which in turn will output predicted class 

labels. 

Ground-Truth Collection 
Audio recordings 

Symbolic recordings 

Cultural information 
 

Basic Tasks in Automatic 

Music Classification 

Feature Extraction 
Low-level content-based features 

High-level content-based features 

Cultural features 
 

Machine Learning 
Supervised learning 

Dimensionality reduction 

Metadata 

Metadata 
Annotation 

Error detection 

Error correction 

 
 

Classification Results 

Music 

Classifier Training 
Segmented training 

and validation sets 



 26 

 jAudio: An audio feature extractor that includes implementations of 26 core 

features, including both features proven in MIR research and more experimental 

perceptually motivated features. jAudio places an even greater emphasis on 

extensibility than the other jMIR components, and includes implementations of 

metafeatures and aggregators that can be used to automatically generate many 

more features from core features (e.g., standard deviation, derivative, etc.). A 

number of tools to facilitate the development and testing of new features are also 

included, such as time and frequency domain visualization tools; audio recording 

functionality; test data synthesis; audio file format conversion; and MIDI to audio 

conversion functionality. Feature extraction parameters such as window size, 

overlap, downsampling and normalization can also be set by the user. 

 jSymbolic: An application for extracting features from MIDI files. jSymbolic is 

packaged with a very large collection of 111 features, many of which are original. 

A further 42 features are proposed for implementation in the jSymbolic feature 

library. These features all fall into the broad categories of instrumentation, texture, 

rhythm, dynamics, pitch statistics, melody and chords. 

 jWebMiner: A cultural feature extractor that, at its most basic level, operates by 

using web services to measure relative hit counts for sets of query strings 

submitted to search engines. jWebMiner then processes these hit counts to 

calculate feature values denoting classifications or similarity measurements based 

primarily on co-occurrence. Search results are processed statistically by 

jWebMiner in a variety of ways in order to improve results. Further processing 

options include the abilities to specify search string synonyms; to filter out sites 

containing specified strings; to require that sites contain certain strings in order to 

be counted; and to weight results from different on-line sources differently. 

jWebMiner can also automatically access a variety of sources in order to acquire 

the strings needed to build queries. Such sources include Apple iTunes XML 

files,
3
 delimited text files, ACE XML files and Weka ARFF files (Witten and 

Frank 2005). 

                                                 
3
 support.apple.com/kb/HT1660 
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 ACE: Meta learning software for experimenting with, selecting and applying 

pattern recognition algorithms. Given a set of extracted features, ACE experiments 

with a variety of machine learning algorithms, algorithm parameters, classifier 

ensemble architectures and dimensionality reduction techniques in order to arrive 

at a good configuration for the problem at hand. This can be very helpful, as a 

particular algorithm can be more or less appropriate for a given problem in terms 

of considerations such as classification accuracy, training speed and classification 

speed. ACE can also be used simply to build and apply pre-selected classification 

models if desired. ACE is based upon the well-known Weka (Witten and Frank. 

2005) Java pattern recognition library, so new classification algorithms 

implemented in Weka can be easily incorporated into ACE. 

 jMusicMetaMangaer: A tool for statistically profiling large musical datasets as 

well as automatically detecting metadata errors, inconsistencies and redundancies. 

Such dataset analysis and metadata error checking are essential tasks, as the 

success of ground-truth training and evaluation data is contingent upon the quality 

of the musical datasets from which they are drawn and the accuracy of the 

associated metadata, especially class labels. jMusicMetaManager implements a 

wide variety of metadata error detection operations, including general edit-

distance and word ordering/subset operations as well as customized operations 

designed to detect specific common errors. A total of 42 different HTML reports 

can be automatically generated to help profile and publish musical datasets. 

jMusicMetaManager can parse iTunes XML files and MP3 ID3 tags as well as 

ACE XML and Weka ARFF files in order to access the metadata that is to be 

analyzed. 

 Codaich, Bodhidharma MIDI and SAC: Three different labelled datasets for 

use in debugging, validating and evaluating automatic music classification 

technologies and for performing general exploratory computational musical 

research. 

o Codaich is an audio dataset consisting of over 25,000 MP3 recordings 

belonging to 55 genres of music. The recordings in Codaich are labelled 
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with a variety of metadata that has been carefully checked for errors and 

inconsistencies both manually and with jMusicMetaManager. Information 

about Codaich is available in the form of iTunes XML files and 

jMusicMetaManager reports. 

o The Bodhidharma MIDI dataset is a collection of 950 MIDI recordings 

belonging to 38 genres. 

o The SAC dataset consists of matched MP3 recordings, MIDI encodings 

and cultural data for 250 pieces of music belonging to 10 genres of music. 

This dataset is specifically designed for research comparing the relative 

utility of features extracted from audio, symbolic and cultural sources of 

information, both individually and in combination. 

 jMIRUtilities: A set of tools for performing miscellaneous tasks associated with 

jMIR. These tools include a GUI for batch-associating class labels with instances, 

utilities for merging various kinds of information, and utilities for extracting 

useful information from iTunes XML files or delimited text files. 

The jMIR components are designed so that they may be used either together, as an 

integrated whole, or separately as individual and isolated applications, as the user prefers. 

The relationships between and the various jMIR components are illustrated in Figure 1.2. 

The jMIR software is all open-source and is implemented in Java in order to promote 

platform independence. Both the source code and compiled user versions of each of the 

jMIR components may be downloaded for free from jmir.sourceforge.net. This website 

also includes detailed manuals and other documentation. Further information on each of 

the jMIR components is also provided in the various chapters of this dissertation, as 

detailed below in Section 1.2. Each of these chapters also includes references to various 

jMIR-related publications, and there is also a paper by McKay and Fujinaga (2009b) that 

summarizes the jMIR software suite as a whole. Section 1.4 also includes an overview of 

the core design priorities and characteristics of the jMIR project as a whole.  
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Figure 1.2: The relationships between the different components of the jMIR software 

suite. Audio recordings, symbolic recordings and/or cultural data available on the Internet 

can all provide input to jMIR. The various components of jMIR can be used to extract 

features from this data and check the metadata associated with it. Extracted features 

may also be processed such that the relative appropriateness of various pattern 

recognition algorithms to the problem are compared, a classification model is trained on 

the features or predicted class labels are output for instances. It is important to note that, 

for the sake of legibility and simplicity, this figure only demonstrates how ACE XML files 

can be used to store extracted feature values, when in fact other information, including 

feature metadata, instance metadata, class labels associated with instances and class 

ontologies can also all be stored in ACE XML files. 
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1.2 Structure of this dissertation 

This first chapter provides an overview of the jMIR project and places it in context. 

Section 1.3 provides relevant background on music information retrieval in general and 

automatic music classification in particular, as well as an overview of prominent software 

systems that have been designed to perform or facilitate automatic music classification. 

Section 1.4 then describes the primary design priorities and corresponding characteristics 

of jMIR, and Section 1.5 highlights some of the primary research contributions of this 

dissertation. 

Chapter 2 provides insights from the fields of psychology, musicology and music 

theory relating to how humans classify music and measure musical similarity. Although 

automatic music classification systems can and have been implemented without explicitly 

taking such research into account, the position is taken here that an understanding of how 

humans classify music can help to more accurately simulate their behaviour using 

computers. 

Chapter 3 presents jAudio, the jMIR application that extracts features from audio 

data. Aside from a detailed description of the software itself, this chapter also provides 

relatively substantial background information associated with digital audio and audio 

feature extraction, as one of the goals of jAudio is to encourage and facilitate the 

development of new and useful features that can be extracted from audio data. 

Chapter 4 introduces jSymbolic, the jMIR application that extracts features from 

symbolic musical data. An essential aspect of jSymbolic is its extensive library of 111 

implemented features and 42 further proposed features, as this is by far the most 

extensive library of symbolic classification features to date. Each of these 153 features is 

described in this chapter, along with guidelines for designing symbolic features and other 

associated background information. 

Chapter 5 describes jWebMiner, the jMIR application that extracts cultural features 

from the Internet. Techniques that can be used to extract further cultural features from the 

Internet are also discussed, as are particular problematic issues to consider. 

Chapter 6 presents ACE, the jMIR meta learning application that can be used to train 

classification models, perform classifications using trained models and perform 

experiments evaluating and facilitating the selection of classification algorithms that are 
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well suited to individual problems. Although ACE is designed to make powerful machine 

learning algorithms available to users with little or no background in such techniques, it is 

also designed to be a tool for experts in machine learning and a platform for applying and 

evaluating new algorithms. This chapter therefore includes relatively extensive 

background information on machine learning problems, techniques and algorithms. 

Chapter 7 introduces ACE XML, a set of standardized file formats for representing, 

storing and distributing feature values, feature metadata, instance class labels, instance 

metadata and class ontologies. ACE XML is the default format for communicating 

information between the jMIR components, and is also proposed as a standard for more 

general use. This chapter includes a critical review of alternative approaches to storing 

information important to music classification, and proposes a set of design principles that 

should be taken into account when designing or selecting particular file formats for use in 

MIR-related tasks. 

Chapter 8 presents the three datasets that were assembled as part of the jMIR 

framework, namely the Codaich audio dataset, the Bodhidharma MIDI dataset and the 

SAC mixed symbolic, audio and cultural dataset. This chapter also introduces 

jMusicMetaManager, the jMIR application for statistically profiling and detecting 

metadata errors in large music collections, as well as jMIRUtilites, the jMIR application 

for performing various miscellaneous tasks. A discussion of approaches and priorities to 

consider when building, selecting and using ground-truth data collections and associated 

class ontologies is also included in this chapter. 

Chapter 9 describes several experiments that have been performed using jMIR in 

order to validate it and demonstrate its usefulness. Particular emphasis is placed on two 

sets of experiments, one involving a winning entry of the jSymbolic feature library
4
 in the 

MIREX Symbolic Genre Classification competition, and the other involving an 

experimental investigation of the benefits of combining features extracted from matching 

audio, symbolic and cultural data sources. 

Chapter 10 provides a summary of the jMIR project. This chapter also outlines key 

areas of future development and research. Chapters 3 to 9 also include more detailed 

                                                 
4
 The jSymbolic feature library was submitted as part of the Bodhidharma symbolic genre classifier, the 

predecessor of jSymbolic and ACE. 
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ideas for future research that are more specifically related to each of their respective 

topics. 

Finally, the bibliography for this dissertation is found in Chapter 11. 

1.3 Context and background information 

1.3.1 Music information retrieval (MIR)  

Music information retrieval, or MIR, is a field of research associated with the 

computational extraction of information from music, and with making this information 

accessible to users of different kinds in ways that are useful to them. MIR overlaps with 

and is enriched by many other disciplines, including but not limited to machine learning, 

data mining, digital signal processing, music theory, musicology, music psychology, 

music education, human computer interaction and the library sciences. As is made clear 

below, not only is automatic music classification an essential component of many aspects 

of MIR, but it is the central goal of several of its sub-disciplines. 

Some particularly common sub-disciplines of MIR, both past and present, include: 

 Score following: Tracking the position in a known score of an audio rendition of 

the score. This is sometimes associated with automatic accompaniment systems. 

 Optical music recognition: The generation of symbolic scores from optical scans 

of physical scores. 

 Automatic transcription: Producing a symbolic representation of music from an 

audio signal. This can involve monophonic audio, which contains only one audio 

source and is typically relatively easy to transcribe automatically, or it can involve 

polyphonic audio, which contains more than one audio source and can be very 

difficult to transcribe. 

 Source segmentation: Separating out the components of audio signals originating 

from different sources. 

 Onset detection: Identifying the beginnings of individual notes. 

 Pitch tracking: Identifying the pitch of notes. 
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 Chord identification: Segmenting and identifying harmonic units. 

 Key identification: The identification of the key of a piece including, sometimes, 

modulations to other keys. 

 Tempo induction: Identifying the tempo and, sometimes, the meter of an audio 

signal. 

 Beat tracking: Identifying and following the beat of an audio signal. 

 Instrument identification: Identifying the type of instrument or instruments 

contained in an audio signal. 

 Song segmentation: The identification of the points in time where musical pieces 

start or end in a continual audio signal. 

 Structural analysis: The breaking apart of a musical piece into structurally 

discrete segments. This can involve high-level structures (e.g., verses and 

choruses) as well as lower-level structures (e.g., melodic segmentation). 

 Automatic musical analysis: The automatic analysis of music using high-level 

musical models. 

 Fingerprinting: The identification of musical pieces by matching data extracted 

from unknown songs to data extracted from known songs. These extracted 

―fingerprints‖ should ideally be invariant to acoustic listening environment and 

audio compression. 

 Artist identification: The identification of musical performers. 

 Composer identification: The identification of composers. 

 Genre classification: The classification of music based on musical genre, as well 

as the study of appropriate genre ontologies to use. 

 Mood classification: The classification of music based on mood or emotion. 

 Tag prediction: Automatic textual annotation of music with tags of various kinds 

that listeners would likely use or find helpful. 
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 Digital Rights Management (DRM): Various kinds of digital protection applied 

to audio files for the purpose of listeners’ ability to copy and/or transmit the 

music. Watermarking, or the embedding of traceable perceptually hidden data in 

audio signals, has been a particular area of past MIR interest. 

 Cover song detection: The identification of different versions of the same 

musical piece. This sub-discipline is sometimes also associated with investigations 

of potential copyright violations. 

 Hit prediction: The identification of musical pieces that are likely to become 

commercially successful. 

 Music recommendation: Automatic recommendation of music that individual 

listeners are likely to enjoy based on their personal tastes. 

 Playlist generation: Automatic formulation of playlists consisting of pieces that 

are considered to be particularly suitable to be played together. Such playlists are 

often, but not always, associated with particular listening scenarios, such as while 

reading, working out, driving, performing chores, etc. The particular ordering of 

the pieces can be an important consideration, not just the selection of the pieces 

themselves. 

 Musical similarity: Strongly related to a number of the tasks listed above, such as 

music recommendation, playlist generation and hit prediction, the measurement of 

musical similarity involves the study and prediction of perceived similarity 

between different pieces of music along various dimensions. 

 Feature extraction: The design of features that can be extracted from musical 

data and gainfully used for various useful purposes, such as classification, 

similarity measurement or visualisation. 

 Internet-based data mining: The extraction of useful music-related information 

from the Internet. There are many possible sources of data, with web services 

offered by various organizations serving as particularly useful resources. 
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 Music archives, libraries and digital collections: Issues relating to collecting, 

annotating, organizing, archiving and making musical data accessible. 

 Standards: Standardized formats and methodologies for storing, annotating and 

making music-related data available. 

 Metadata collection and annotation: Methodologies for acquiring reliable 

metadata, correcting faulty metadata, determining the types of metadata that are 

appropriate to use for different purposes and finding good ways to store metadata 

and make it available. There has been a particular focus on the semantic web in 

recent years. 

 Musical querying: This can consist of traditional symbolic or textual queries, or 

it can involve query by humming or query by tapping, which involve, 

respectively, searching music collections based on sung or tapped queries. 

Automatic query correction is sometimes necessary. 

 Visualization and interfaces: This can involve anything from forming visual 

representations of aspects of individual pieces to visualizing large music 

collections as a whole. There are many possible reasons for doing so, such as 

annotating music, editing music or facilitating music browsing. 

 Music perception and cognition: Studies and models of how, for example, 

listeners evaluate musical similarity, classify music, organize music and perceive 

various musical parameters. 

 User behaviour: Studies of how individuals consume and would like to consume 

music. 

 Sociology, economics and law of digital music: Issues relating to the production, 

marketing, distribution and consumption of music. This is often associated with 

intellectual property rights. 

 MIR evaluation and information exchange: Methodologies for comparatively 

evaluating the performance of different MIR systems and algorithms, as well as 

for sharing data and algorithms efficiently and effectively. 
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Foote (1999a), Byrd and Crawford (2001), Downie (2003), Fingerhut (2004) and 

Casey et al. (2008) have each written excellent overviews of music information retrieval 

research. The International Society for Music Information Retrieval Conference (ISMIR),
5
 

an annual conference that focuses specifically on MIR and publishes its proceedings 

online free of charge, is an excellent source of cutting edge MIR research. Also of 

particular interest, the Music Information Retrieval Evaluation eXchange (MIREX)
6
 is an 

annual competition associated with ISMIR where various approaches and algorithms are 

independently compared using the same data. Due to its highly multidisciplinary 

character, MIR research is also published in a wide variety of other conferences and 

journals.  

1.3.2 Advantages of automatic music classification 

As noted above, automatic music classification involves using computers to 

automatically label musical instances with appropriate class labels of some kind. 

Automatic music classification has many advantages relative to manual human 

classification. To begin with, computers can perform classifications much faster than 

humans. A human must listen to music in real-time if she or he is to classify it, whereas a 

powerful computer can effectively ―listen‖ to music by extracting features from it much 

more quickly. Once this is done, computers can process these features through a trained 

classification model and store classification results almost instantaneously in most cases, 

whereas humans need seconds or even minutes to arrive at a classification and then store 

this classification. The consequence of this is that computers can classify music many 

times faster than humans, something that is very significant when dealing with the 

potentially immense size of modern music collections. 

Automatic classification is also much cheaper than manual classification. For 

example, consider the case of a large library that wishes to classify its music collection by 

genre. Accomplishing this task manually with any degree of reliability would require 

hiring several highly trained musical experts, each of whom must be remunerated 

appropriately based on their expertise. Furthermore, each recording should probably be 

classified by more than one human expert in order to minimize individual bias and 

                                                 
5
 www.ismir.net 

6
 www.music-ir.org/mirex/2009/ 
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increase consistency. These experts would also need to be trained to use the particular 

genre class ontology under consideration consistently, something that requires still further 

expenditure. Each of these experts would also require a computer and an appropriately 

quiet facility to work in, which also costs money. 

Performing this task using an automatic classification system would require only one 

computer, although more could increase the speed even further, and could indeed be 

performed without purchasing new computers by using the same computers that the 

library provides to the public while the library is closed or when there is no demand for 

them. No human intervention is needed, other than beginning the process. Once provided 

with the data, the system could train itself within a matter of minutes to, at most, a week 

or two, and could then likely classify music at rates between several recordings a second 

to one recording every few minutes, per computer, depending on the algorithms used and 

the power of the computers. 

An additional advantage of automatic classification is that classification models can 

be updated relatively easily. For example, to continue the library genre classification use 

case scenario, automatic classification models can be easily updated or retrained if a 

decision is made to add new genres to the class ontology. So, for instance, perhaps all 

Jazz music was simply labelled as Jazz in the original ontology. A decision is later made 

to also label it with sub-genres, such as Dixieland, Swing, Bebop, etc. If manual 

classification were being performed, then it would be necessary for new experts to be 

hired to go through all of the Jazz recordings. If automatic classification were being used, 

in contrast, then all that would be needed would be some ground-truth data to train a more 

detailed Jazz classification model, and then this could be used to quickly and 

economically update all of the appropriate labels automatically. 

The techniques developed for a particular type of classification can also be relatively 

easily adapted to other types of classifications. So, for example, the same feature 

extraction and machine learning software used to classify music by genre could also 

likely be used to classify music by artist or mood, for example. The only modifications 

needed would be a new class ontology and ground-truth dataset to train the new 

classification model, with quite possibly no changes at all being necessary in the software 

itself or the computer(s) running it.  
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It is clear that automatic classification is dramatically cheaper and faster than manual 

classification. Indeed, it is cheap enough that it can be used for free or with minimal 

expenditure even by individuals who may have little or no music training on their own 

personal music collections for purely recreational purposes, something that is entirely out 

of the question for high-quality manual classification. 

Of course, automatic classification is only useful if it can classify recordings at least 

as reliably as musical experts. In order to determine whether this is the case, it would be 

helpful to establish a baseline for human classification. Unfortunately, there is very little 

experimental evidence establishing such a baseline, and even if there were, it would be 

hard to generalize, since human performance is likely highly dependent on the type of 

classification, the particular class ontology, the particular instances to be classified and 

the expertise of the human classifiers. 

Genre classification is one area where two relatively widely cited studies have been 

performed. The first found that a group of undergraduate students made classifications 

agreeing with those of record companies only 72% of the time when classifying among 

ten genres (Perrot and Gjerdingen 1999). Listeners in these experiments were only 

exposed to 300 ms of audio per recording, however, and higher agreement rates could 

quite possibly have been attained had longer listening intervals been used. 

Another study involving longer thirty second listening intervals found inter-

participant genre agreement rates of 76% (Lippens et al. 2004). However, one of the six 

categories used in this study was ―Other,‖ an ambiguity that could lead to substantial 

disagreement due to degree of membership and category coarseness issues rather than to 

entirely divergent classification perspectives. 

So, although these two studies do provide useful insights, neither involved true 

musical experts, and there are some problematic experimental aspects with respect to 

determining an accurate classification baseline.
7
 There is therefore clearly a need for 

more experimental evidence before definitive conclusions can be drawn regarding expert 

human genre classification performance. In any case, the best evidence we have to date 

seems to indicate that non-expert classification rates seem to lie roughly in the seventieth 

                                                 
7
 These problematic aspects are in no way an indication of poor research quality, as these studies are both of 

a very high quality. The issue is simply that the experiments were designed to address research questions 

that are only obliquely related to those being considered here. 
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percentile. Considering that this is undesirably low, it seems reasonable to hope that 

automatic classification systems can perform at least well as this, if not better. This is 

substantiated by the experimental results achieved with jMIR, as described in Section 9.4, 

where instances were classified automatically into a ten-class genre ontology with a 

success rate of 78.8%, a value slightly better than the human performances described 

above. Although this is still much lower than desirable for practical purposes, it does 

support the potential viability of automatic classification systems relative to manual 

classification in terms of classification reliability. 

An additional advantage of automatic classification systems relative to manual 

classification systems is that they are arguably more likely to be able to perform 

classifications consistently. Multiple human classifiers, as are unavoidably necessary if 

large quantities of music must be classified manually in a reasonable amount of time, are 

each likely to have varying internal models of the class ontology under consideration, and 

as a result are each likely to vary somewhat in their classifications, even if they are all 

experts in the types of music in question. There is, for example, experimental evidence 

that even highly experienced adjudicators at music competitions can display a high degree 

of variability with one another, even when they are internally consistent (McWilliams 

2005). Furthermore, individual classifiers are often not always even consistent with 

themselves, as their classifications can vary depending on their mood and other factors.  

Computers, in contrast, will typically use the same consistent model once it is trained 

without variation, so a given trained model will output the same classification for a 

feature set corresponding to a given musical instance no matter when or by which 

computer it is classified. Although it is often possible to update the model if desired when 

new training data or features become available, this can be limited to circumstances 

where it is intended and desirable. Also, although one certainly wishes to have perfectly 

classified data, it is at least preferable to have misclassified data that is misclassified in 

similar ways when it is misclassified, as this makes it easier to detect and deal with the 

misclassifications. Automatic classification thus holds advantages over manual 

classification in terms of consistency, with respect to both correct classifications and 

incorrect classifications. 
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Automatic classification also has the advantage that computers can analyze and 

classify music in novel and non-intuitive ways that might not occur to human classifiers 

or researchers. Computer classifiers can thus avoid the preconceptions and biases that 

humans typically have, no matter how objective they try to be, which means that 

computer classifiers may find effective ways of classifying music that might not occur to 

human classifiers, and can also avoid contaminating experimental procedures and 

evaluations with such preconceptions. Furthermore, the development and application of 

automatic classification systems can result in insights and revelations that inspire new 

research ideas and directions that might not otherwise have been considered. 

Of course, the labelling of the ground-truth data itself is still typically sensitive to 

human bias, which can, unfortunately, influence the quality of a model trained on it. It is 

therefore necessary to take special care when labelling ground-truth, and ideally multiple 

experts should label each instance and consult with each other in order to achieve as 

much consistency and correctness as possible. Although such a process can be expensive, 

labelling a small ground-truth dataset carefully is much less expensive than labelling an 

entire musical collection by hand. 

Machine learning algorithms are also ultimately limited to the data provided to them, 

and human preconceptions can result in the failure to extract potentially useful features if 

care is not taken. This issue is one of the reasons why it is often best to extract many 

features and then automatically, and therefore objectively, reduce them to a manageable 

number using dimensionality reduction techniques, as described in Chapter 6. 

Automatic music classification techniques can also have a number of important 

advantages with respect to musicological and music theoretical research. This is discussed 

in Section 1.3.4 below. 

1.3.3 Applications of automatic music classification 

Automatic music classification can be applied to a wide variety of tasks, both 

academic and commercial in nature. Correspondingly, there are many ways in which one 

can classify music, for many different purposes. For example, automatic music 

classification techniques can be of great use to: libraries and other institutions that archive 

music; composers and musicians who wish to make use of these technologies in their 

creative works; educational institutions that can use automatic classification techniques in 
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pedagogically useful teaching software; courts making decisions on potential copyright 

violations; recording studios and record companies; music vendors; listeners who wish to 

improve and customize their listening experiences and personal music collections; and 

researchers in both music technology-oriented disciplines as well as in more traditional 

fields, such as musicology and music theory. This sub-section provides highlights of 

some of the ways in which automatic music classification can be of value to such users. 

To begin with, automatic music classification is an essential part of many types of 

MIR research, as is made clear by an examination of the sub-disciplines of MIR outlined 

in Section 1.3.1. Indeed, many important areas of MIR research can be formulated 

directly as automatic music classification problems. Tasks such as genre, mood, artist and 

composer classification are all examples of this, as are tag prediction and classification by 

time period or geographical place of origin. 

Many of the MIR research areas associated with musical similarity also use very 

similar techniques to those used in automatic music classification. For example, tasks 

such as playlist generation, music recommendation, cover song detection and hit 

prediction all typically involve many of the same features used in automatic music 

classification. Such tasks also typically require the collection and labelling of ground-

truth data and application of machine learning algorithms, albeit sometimes using 

unsupervised rather than supervised approaches. The distinction between and relative 

advantages of classification-based and similarity-based systems are discussed below in 

Section 1.3.5. 

Automatic music classification is also essential to many important sub-tasks 

associated with a variety of other MIR research areas. Many optical music recognition 

systems use classification-based approaches to identify qualities such as the pitch and 

rhythmic duration of notes, for example. Automatic music classification techniques are 

also often applied to the sub-tasks of automatic transcription, including areas such as 

pitch, chord, instrument, tempo, meter and key identification, as well as areas such as 

onset detection and segmentation. 

Individuals can use a variety of tools based on automatic music classification to 

improve their personal musical experiences. For example: music recommendation 

systems can help them discover music that they might not otherwise know of; playlist 
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generation software can customize their music consumption to particular listening 

scenarios and moods, as well as reacquaint them with portions of their music collections 

that they have unknowingly neglected; visualizations and music interfaces in general can 

help them browse their musical collections in new and interesting ways; sophisticated 

querying technologies can help them find music that they are looking for but having 

difficulty locating; and auto-tagging and classification systems can help them organize 

and annotate their music collections. 

Musicians and composers can also use automatic classification technology in a variety 

of ways. Optical music recognition and automatic transcription software, for example, can 

reduce the work required to annotate, arrange, store and publish their compositions. 

Interactive accompaniment systems can also be used in concerts, and automatic 

classification techniques can open interesting opportunities in the implementation of 

artificial intelligence-based composition systems. 

These technologies can also have significant pedagogical value when incorporated 

into music education software. Such software can detect and track errors in a student 

performer’s pitch or rhythm, for example, and can automatically provide them with 

custom exercises to improve upon their particular weaknesses. Automatic analysis 

systems can also detect errors in student compositions or music theory exercises in order 

to help them improve. Score following and interactive accompaniment software can also 

accompany student musicians so that they can gain experience playing with other 

―musicians‖ when human musicians are unavailable to accompany them. Such systems 

can accompany a musician in a much more flexible and adaptive way than simply playing 

along with a recording. Automatic transcription systems can also help students annotate 

and learn music if they are unable to locate a score for it and have not yet acquired the 

skills or do not have the time to do so by ear. 

Automatic music classification technologies can also be of great use to audio 

engineers and producers, both amateur and professional. The integration of functionality 

for tracking pitch and detecting note onsets and track segmentations, for example, have 

already significantly facilitated the use of digital editing software, and further 

improvements to related automatic transcription-related technologies could help to even 

further facilitate the process of editing and mixing music. Source separation functionality 
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can also be extremely helpful when remixing music or making mashups when multitrack 

masters are not available.  

Music vendors and producers have long recognized the potential of automatic music 

classification-related software, particularly with respect to similarity-related technologies, 

and have played an important role in funding much of the early research in this field. 

Software that can automatically label their music with various tags greatly decreases costs 

associated with hiring people to label their catalogues with metadata. These labels, along 

with visualisation technologies, can be essential in helping users search for and browse 

on-line music catalogues, particularly as these catalogues have grown in size. 

Fingerprinting technology has also been very useful in helping consumers identify music 

that they are interested in. Music recommendation technologies have drawn particular 

interest in recent years, as they can potentially be very useful in influencing customers to 

buy music that they might not otherwise have considered purchasing. There are also 

hopes that hit prediction technology can help record companies focus their resources on 

developing artists who are the most likely to be commercially successful. 

There has been significant interest in similar technologies with respect to intellectual 

property rights. Cover song detection, artist identification, automatic music analysis and 

similarity analysis systems in general hold potential for use in, and in fact have been used, 

in legal cases attempting to determine if copyright infringements have occurred. 

Fingerprinting and watermarking technologies have also been proposed for use in 

detecting and tracking music piracy. 

Libraries and other institutions that archive music have also long been interested in 

automatic classification technologies. Software that can automatically classify and label 

music with metadata quickly, accurately and consistently can be of particularly great 

value to them given their sometimes immense music collections and often limited 

budgets. Sophisticated musical querying functionality can also be of significant value, as 

it can permit queries based on sung pitches or tapped rhythms, for example, and also 

improve the results from queries entered symbolically, such as melodic themes or chord 

progressions. Optical music recognition and automatic transcription software can be 

especially useful, as it can be used to generate scores in digital form that can be easily 

accessed and distributed digitally.  
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1.3.4 Applying automatic music classification technologies to musicology 

and music theory 

The use of automatic music classification and musical similarity measurement 

technologies in musicological and music theoretical research is something that warrants 

special attention. As convincingly argued by Huron (1999), musicological insight and 

scientific empiricism can greatly complement one another. It is particularly hoped that 

jMIR and other MIR-related technologies and software will help to bridge the gap 

between music information retrieval and the musicological and music theoretical research 

communities by placing powerful tools for performing large-scale automated feature 

extraction and machine learning at the latter’s disposal. Musicologists and music theorists 

can in turn apply these tools to their research and provide feedback that can be used to 

enrich and improve these tools based on their musical expertise and experience. 

An important factor contributing to the general relevance of MIR tools to music 

research in the humanities is the increasing availability of musical source materials in 

digital form. Libraries and archives are continually digitizing both scores and audio 

recordings, and are increasingly making the results and the related metadata available to 

researchers online. As noted by Huron (1999), the discipline is going from a ―data-poor‖ 

field to a ―data-rich‖ field. This is making wide-ranging empirical studies possible to an 

extent that was not previously feasible. 

Although an expert human can certainly analyze one or several musical pieces with 

far more insight and understanding than a computer, such experts are limited in the 

number of pieces that they can analyze in a reasonable amount of time and in the range of 

musics that fall within the scope of their individual expertise. A computer, in contrast, can 

process huge quantities of diverse music many times faster than a human with perfect 

consistency. More specifically, feature extraction and pattern recognition techniques can 

successfully be applied to many varieties of art, popular and folk musics from various 

parts of the world, including those musics that do not have established theoretical 

frameworks.  

The musical breadth permitted by research software that can very quickly process 

many thousands of musical works can reveal hidden musical insights and regularities that 

might not be apparent from studying just a few pieces, and can additionally allow one to 
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empirically verify the validity of existing theoretical frameworks (e.g., Gingras and 

Knopke 2005). This can lead to important theoretical refinements and corrections, as well 

as inspire entirely new approaches and perspectives. Although traditional manual 

musicological or theoretical studies involving only a few pieces of music are certainly 

worthwhile and can be of value in increasing one’s understanding of those specific pieces, 

the validity of generalized conclusions drawn from such research must of necessity 

remain in doubt until verified using much larger collections of music. The practice of 

making effectively unverified generalizations based on only a few musical examples was 

understandable in the past, given the lack of alternatives due to the relatively limited 

access to musical literature and the time constraints imposed by manual analysis. 

Computers and digitized music collections have now removed these constraints, however, 

making scientifically and statistically valid studies feasible and, one might argue, 

imperative to the advancement and validation of musicological and music theoretical 

scholarship.  

Software utilizing sophisticated feature extraction and pattern recognition techniques 

and technologies can help to greatly expand upon the research benefits offered by more 

conventional music analysis software tools, such as Humdrum (Huron 2002). Analysis 

tools like Humdrum essentially serve as aids simply allowing theorists and musicologists 

to automate the types of tasks that they have traditionally performed manually, rather than 

allowing the application of fundamentally new approaches. Also, the application of 

traditional analysis software has typically incorporated assumptions that, whilst 

appropriate for the limited studies for which they were intended, nonetheless ultimately 

limit the types of music to which they can be applied. Of course, this is in no way meant 

to diminish the worth of such tools and approaches, as they are of proven value. They 

offer a number of benefits that pattern recognition tools do not, just as pattern recognition 

tools offer advantages that traditional analysis software tools do not. 

Ideally, one would like to have a single software system that could be applied to 

classical music, jazz and a wide variety of popular and traditional musics, including 

cross-disciplinary studies that span diverse types of music. Furthermore, one would like 

to be able to use this software without needing to make any manual adjustments or 

adaptations in order to deal with different types of music. The types of feature extraction 
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and pattern recognition techniques associated with automatic music classification make 

this possible. As noted above, musical research involving modern machine learning 

algorithms has the benefit of providing researchers with a fresh perspective on music, as 

models learned by such algorithms can avoid the potentially misleading ingrained 

assumptions and biases that humans invariably develop, despite their best efforts. Human 

researchers might unconsciously reject potentially valuable paths of inquiry because of 

such prejudices, whereas a computer would not. 

In order to demonstrate the potential benefits of automatic music classification and 

similarity measurement-related technologies to musicological and music theoretical 

research, it is helpful to begin with a simple example. Consider a feature that measures 

the prevalence of parallel fifths in a piece. This feature could be input to a clustering 

algorithm, which would organize compositions into groups based on how often parallel 

fifths occur. One would expect the music of J. S. Bach, for example, to be clustered into a 

group with few or no parallel fifths, and the music of Green Day to be clustered into a 

group with many parallel fifths. If the clustering algorithm consistently segments musical 

examples along these lines, then this would confirm certain theoretical models concerning 

the differences between Baroque counterpoint and the types of chord progressions and 

voicings found in Punk music. If not, then this would lead one to question these same 

models. Additional types of music, such as Jungle electronic dance music, Romantic 

symphonies or Irish jigs, for example, could also be input to the model to see how they 

compare to other types of music with respect parallel fifths. 

This example is, of course, very simplistic, and conventional analysis tools such as 

Humdrum could just as easily be used to perform equivalent tasks. However, the 

usefulness of such automatic music classification and similarity-based approaches 

becomes apparent when one considers less trivial examples where one considers hundreds 

of musical features and the potentially very complex ways in which they interrelate with 

one another, rather than just one feature. One will no longer have such clear expectations 

of how different types of music will be clustered or classified when many different 

features and types of music are under consideration, nor will it likely be practically 

feasible to manually formalize relationships between musically meaningful features and 
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particular groups of music using conventional analysis techniques with any empirically 

verifiable validity. 

It is clear that considerations relating to harmony, rhythm, melody, texture, dynamics, 

instrumentation and other factors are all essentially intertwined. A certain melody in a 

given harmonic context might be appropriate only when certain notes are played softly, 

for example, or perhaps only when certain notes fall on weak beats. A certain chord 

voicing might sound better using a particular instrumentation than another. Skilled 

musicians and composers clearly intuitively incorporate such knowledge into their work, 

but it is rarely clearly and unambiguously specified in formal theoretical models, largely 

because of the difficulties discussed above. Any attempt to isolate one set of musical 

parameters from all others, while traditionally necessary to make possible any meaningful 

analysis at all, nonetheless comprises the completeness, scope and validity of the resultant 

theoretical models due to the associated failure to consider music in its full holistic sense.  

It is also important to consider the issue of how one might represent and analyze the 

output of a feature extraction system that includes dozens or hundreds of dimensions. 

Even traditional statistical co-occurrence and correlation-based analyses are limited in 

how well they can represent such data in ways that are musically meaningful when 

compared to what can be achieved by the more sophisticated statistical techniques 

associated with machine learning-related dimensionality reduction, classification and 

clustering. Such techniques allow high-dimensional information to be meaningfully and 

conveniently represented in low-dimensional spaces as self-organized clusters or 

specifically labelled categories. Some machine learning techniques, such as decision tree 

algorithms, also allow empirically learned rules and dependencies to be examined 

directly. 

Of course, traditional manual and computer query-based analysis techniques have not 

typically involved hundreds of features such as this, perhaps precisely because of these 

problems. As a consequence, ultimately undesirable simplifications have often been 

unavoidable in the past with respect to the number of musical characteristics considered 

simultaneously. As noted above, however, this past necessity does not mean that such 

simplifications should be propagated now that more powerful alternatives are made 

available by pattern recognition-based technologies. 
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So, it is clear that approaches based on machine learning techniques have a number of 

important advantages over manual or conventional computer-aided analyses: the ability to 

consider many musical variables and the dependencies between them at once; the 

elimination of the necessity of explicitly formalizing, often subjectively, the types of 

relationships between musical characteristics that one wishes to compare ahead of time; 

the avoidance of potentially invalid theoretical assumptions and simplifications; the 

ability to very quickly study huge and diverse collections of music; and the ability to 

represent the results of sophisticated processing in relatively simple and easy to 

understand ways. It is particularly important to reemphasize that machine learning 

algorithms can help to avoid the biases that humans inevitably develop, despite their best 

efforts to remain objective. The fresh perspective offered by machine leaning-based 

processing can thus provide human researches with valuable ideas, insights and 

inspiration that they can then build on. 

It is important to stress once again that it is recognized here that machine learning is a 

substitute neither for human researchers nor for traditional analysis software like 

Humdrum. It is highly improbable that a computer will independently evolve any perfect 

musical model on its own. The great amount of generalized musical knowledge, 

experience and understanding that human experts have available to them, as well as their 

human intuition, certainly allows them to achieve results in musicological and music 

theoretical studies that would be missed by computers. Furthermore, the human 

perception of music is really the only fundamental truth of significance when one is 

considering music, and this is ultimately what machine learning-based systems should 

model, even if indirectly. 

The arguments above do, however, demonstrate the very significant value of machine 

learning-based musicological and music theoretical research as an important supplement 

to manual human research, particularly with respect to exploratory research and 

verification of theoretical models on larger and potentially broader musical datasets than 

could feasibly be studied by a human expert. Pattern recognition techniques can reveal 

insights that might otherwise be obscured, and can perturb human researchers out of 

ideological ruts that they may have fallen into.  
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It is also possible to use data generated by automatic classification systems to perform 

research into how we construct the notion of musical similarity and form musical 

groupings. Automatically generated feature weightings can be used as experimental data 

providing some indication of the relative importance of different features in 

distinguishing between particular classes. Genre classifiers, for example, can be used to 

gain experimental insights into what characteristics are important in distinguishing 

between particular genres and how these characteristics vary (McKay and Fujinaga 

2005a). Classification results can be used to support sociological and psychological 

research into how humans construct the notion of musical similarity and form musical 

groupings, and how this compares to the ―objective‖ truth produced by computer-based 

classifiers. 

There are also a number of more specific ways in which automatic music 

classification-based technologies can be useful to music researchers. To provide a 

practical example, such technologies can provide more effective and sophisticated 

querying software that can be very useful in helping researchers find particularly pertinent 

musical material even when performing manual analyses or studies. 

Optical music recognition and automatic transcription technologies also allow digital 

symbolic representations of music to be made available to them in cases where physical 

scores may be rare and hard to come by or, in the latter case, if only audio recordings are 

available. This can be particularly useful when studying types of music with no written 

tradition as well as for analyzing performance practices that are not typically encapsulated 

by traditional symbolic representations. 

There are also a number of very direct applications of automatic music classification 

in musicology and music theory. One might, for example, train classifiers to recognize the 

work of particular composers, and then use the trained classifiers to attempt to determine 

if compositions whose authorship is unknown are in fact likely to belong to be the work 

of one of these composers. One could also use such systems to detect and classify 

particular musical devices and stylistic characteristics in association with particular 

composers, time periods, geographical locations, styles and so on.  
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1.3.5 Comparing musical classification and similarity measurement 

Automatic music classification and musical similarity measurement are sometimes 

treated as entirely separate sub-disciplines in the music information retrieval literature, 

and are sometimes treated very similarly. This emphasizes the varying opinions as to the 

links between these two approaches and the relative appropriateness of each of them to 

various types of tasks. It is therefore useful to clarify the differences between them, as 

well as to discuss their relative strengths and advantages. 

In the case of classification, the essential problem is to fit each instance into one or 

more appropriate classes found in a pre-existing class ontology. Similarity, in contrast, 

does not make any a pirori assumptions about the existence of such a class ontology, or 

even necessarily of classes at all. Similarity-based research attempts to arrive at some 

measurement of similarity between instances that indicates how strongly each instance is 

related to each other instance, without reference to an external structure.
8
 

For example, genre and artist identification are clearly classification problems, as 

pieces of music are classified into pre-existing genre or artist classes, respectively. In 

order to perform such tasks, one must first have candidate genre or artist classes to which 

each instance can be mapped. Applications like music recommendation and playlist 

generation, in contrast, are typically posed as similarity problems. One must respectively 

recommend music to a listener based on its similarity to what he or she is known to like 

or choose music that would go well together because it is sufficiently similar or, in the 

case of playlists that emphasize variety, dissimilar. The decision of whether to 

recommend a particular piece or place it on a particular playlist is thus typically made 

based on its similarity with other pieces music, not on what classes it belongs to. 

Having noted this, it is possible to pose certain problems as either classification or 

similarity problems. For example, mood extraction could be treated either as a 

classification problem, where the mood of a piece is associated with one or more 

candidate mood classes or, less commonly, as a similarity-based clustering problem, 

where features are chosen such that the music is grouped based on mood-related 

considerations. To give another example, even though playlist generation is typically 

                                                 
8
 It is certainly possible, however, to derive class or other structures from similarity measurements. For 

example, one can derive discriminants separating classes defined by groups of similar instances that are 

well clustered in similarity space. 
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posed as a similarity problem, as noted above, it could also be treated partially as a 

classification problem where piece is classified into listening scenario and/or mood 

classes. An appropriate listening scenario or mood could then be chosen for the playlist, 

and then only pieces with appropriate scenario or mood labels would be considered for 

inclusion on the playlist. Even music recommendation could theoretically be treated as a 

classification problem with two classes, where one class is recommend and the other is 

not recommended.  

Indications have been found in some psychological research that there may be a very 

strong link between the processes used by humans to measure similarity and to classify 

instances. As noted in Chapter 2, exemplar-based models of human classification in 

particular are generally based upon the assumption that humans classify each instance that 

they observe by measuring its similarity to exemplars that they have stored in an 

internalized similarity space.  

There is often a significant overlap in the techniques and technologies used in 

automatic classification and in similarity measurement. For example, similar features are 

often extracted and used for both. Machine learning techniques are often used for both as 

well, although classification research usually involves supervised learning and similarity 

is more likely to involve unsupervised learning. 

Having noted there are certainly important links between automatic classification and 

similarity measurement, there can also be important differences between them. One may 

not have any good-quality class ontology, for example, or it may be impossible or 

inappropriate to apply one to a given problem, in which case a similarity-based approach 

is clearly appropriate. Alternatively, one might be interested in associating instances with 

particular labels, in which case a classification-based approach would be much better. 

jMIR is designed specifically to perform automatic music classification. This 

emphasis on classification is a bit of a deviation from the general momentum of MIR 

research, which has in recent years tended to emphasize similarity research over 

classification research, although a significant amount of research on the latter is certainly 

still performed. 

Commercial software has also tended to focus more on similarity in recent years, 

particularly as the industry has come to place more importance on tasks such as music 
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recommendation, playlist generation and hit production over more traditional 

classification tasks. Part of this is because such similarity-related applications most 

strongly facilitate the ultimate goal of commercial software, which is to sell music; part of 

it is because some classification problems have essentially been solved, such as 

fingerprinting; part of it is due to the fact that that problems such as genre or artist 

classification have turned out to be more difficult to perform successfully and to scale 

than initially anticipated; and part of it is because there seems to be a common belief in 

industry that similarity-based music selection and browsing have a greater appeal to 

listeners than more classification-oriented querying approaches to retrieving music. 

It is argued here that, contrary to this recent tendency to emphasize similarity over 

classification, classification does in fact have a number of important benefits over 

similarity with respect to a variety of important research tasks and domains. It is also, of 

course, recognized that similarity can also have its own advantages with respect to other 

tasks and research domains. In essence, research in both areas can be very helpful, and 

can each be more or less applicable to different problems. Since it has been proposed by 

some strong proponents of similarity research that classification research should be 

abandoned in favour of similarity, however, it is appropriate to briefly emphasize some of 

the relative strengths of classification. 

Genre classification in particular serves as a good example to center this discussion 

around,
9
 as it is one of the most difficult and inherently ill-defined kinds of classification, 

and thus particularly subject to criticism with respect to its usefulness. It has been 

suggested by some that genre is a hopelessly ambiguous and inconsistent way to organize 

and explore music, and that users’ needs would be better addressed by abandoning it in 

favour of more general similarity-based approaches. Those adhering to this perspective 

generally hold that genre classification is only a subset of the broader and, to them, more 

meaningful similarity problem, and that genre classification is only worth pursuing as an 

initial stage of research where features and pattern recognition algorithms can be 

developed, compared and refined in preparation for a more general similarity-based 

approach. 

                                                 
9
 McKay and Fujinaga (2006) present a more detailed discussion of the relative strengths and weaknesses of 

genre classification and more similarity-based approaches. 
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Although it is certainly true that genre classification is related to similarity in a variety 

of ways, genre has a strong association with culturally determined and defined classes, as 

discussed in Chapter 2. This association to external classes suggests that there is more to 

genre than simple similarity. Even similarity measurements that involve cultural features 

such as playlist co-occurrence tend to be based on individual preferences rather than 

genre’s more formal and general cultural characteristics. In essence, the query ―find me 

something like this (relatively small) set of recordings‖ is intrinsically different from 

―find me something in this generally understood genre category,‖ which could encompass 

a potentially huge set of recordings and that is based on culturally determined categories 

rather than more content-oriented or individually defined notions of similarity.  

Furthermore, although browsing and searching by genre is certainly not perfect—and 

alternatives are always worth researching—end users are nonetheless already accustomed 

to browsing both physical and on-line music collections by genre, and this approach is 

proven to be at least reasonably effective. A relatively recent survey, for example, found 

that end users are more likely to browse and search by genre than by recommendation, 

artist similarity or music similarity, although these alternatives were each popular as well 

(Lee and Downie 2004). Resources such as the AllMusic Guide,
10

 which use labelled 

fields such as genre, mood and style, are also commonly used, while alternative 

similarity-based interfaces have yet to be as widely adopted by the public, despite the 

significant research and commercial attention that they have been given. MIR researchers 

and software developers should avoid adopting a patronizing approach where they insist 

that end users abandon a form of music retrieval for which they have a demonstrated 

attachment and which they find to be useful.  

Categories such as genre also have significant importance beyond simply their utility 

in organizing and exploring music, and should not be evaluated solely in terms of 

commercial viability. For example, classification-oriented labels such as genre and mood 

have the important advantage that they provide one with a vocabulary that can be used to 

easily, efficiently and effectively discuss musical categories. Conversations concerning 

more general notions of similarity, in contrast, are quickly limited by the lack of such a 

vocabulary and the necessity of making frequent references to musical examples in order 
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to make oneself understood. Moreover, such discussions can be unclear in terms of which 

dimensions of similarity are being considered with respect to the musical examples that 

are used.  

Furthermore, many individuals actively identify culturally with certain genres of 

music, as can easily be observed in the divergent ways in which many fans of Death 

Metal, Classical Music or Rap dress and speak, for example. Genre is so important to 

listeners, in fact, that psychological research has found that the style of a piece can 

influence listeners’ liking for it more than the piece itself (North and Hargreaves 1997). 

Additional psychological research has also indicated that categorization in general plays 

an essential role in both music appreciation and cognition (Tekman and Hortacsu 2002).  

Research in classification can also provide valuable empirical contributions to the 

fields of musicology and music theory in ways that are distinct from the also valuable 

contributions offered by similarity research. Research that forms correlations between 

particular cultural and content-based characteristics and particular categories and 

ontological structures, for example can have important musicological and music 

theoretical significance. 

Once one accepts the usefulness to listeners and music consumers of categories such 

as genres, then the advantages of automatically classifying recordings stored in large 

music databases becomes clear. This is particularly true given the difficulty and time 

requirements associated with manually labelling the huge and rapidly growing musical 

databases that are becoming increasingly common, as noted above. 

One of the most common criticisms of genre classification systems, and classification 

systems in general, is that high-quality ground-truth can be difficult and expensive to 

label properly, with the consequence that the quality of trained classification models and 

the metrics used to evaluate them is compromised. However, it is important to point out 

that similarity measurement has many of its own problems related to ground-truth 

ambiguity and subjectivity, particularly when it comes to evaluating systems and 

comparing their performance. Indeed, problems in objectively and consistently evaluating 

the quality of similarity measurements are probably even greater than those associated 

with classification. It is therefore inconsistent to promote similarity as a superior 
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alternative to categorical classification specifically because of problems relating to 

ground-truth. 

Ultimately, research in both classification and similarity can be very useful, and 

neither should be neglected. Furthermore, as noted in above, there is a strong 

correspondence between the component tasks that must be addressed in order to perform 

either automatic music classification or similarity measurement. These include areas such 

as ground-truth collection and labelling; feature design and selection; and the application 

and training of machine learning algorithms, be they supervised or unsupervised. 

The jMIR applications are thus very much applicable to certain aspects of similarity 

research as well as to classification research. For example, jAudio, jSymbolic and 

jWebMiner can be used to extract features from datasets such as Codaich, SAC and 

Bodhidharma MIDI, which have had their metadata validated by jMusicMetamanager, 

and these extracted features can serve as the basis for similarity research just as much as 

they can for classification research. 

1.3.6 Existing non-academic systems 

This section highlights prominent commercial and other non-academic software 

systems and services that utilize or provide technologies associated with automatic music 

classification. A particular emphasis is placed on systems providing APIs that can be used 

in research projects. A great many companies have designed systems associated with 

various aspects of similarity and automatic music classification, so for the sake of brevity 

this section focuses only on systems that are particularly well-established or have 

significant value with respect to performing original automatic music classification 

research. More details on other more specialized systems are presented in the chapters of 

this dissertation that are the most directly related to them. 

As noted above, commercial systems in general have tended to focus more on 

similarity-based tasks than on more structured classification problems. This is likely 

because music recommendation in particular has long been seen as an area with 

significant potential profitability because of its ability to increase electronic music sales 

by making the long tail
11

 accessible to consumers and to promote music in general. This 

                                                 
11

 In the context of music, the ―long tail‖ refers to types of music that each have a small market share, but 

which are significant in aggregate (Anderson 2006). 
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has also helped to motivate work in other similarity-related areas, such as playlist 

generation, which can be useful in generating advertising revenue and subscription fees 

from personalized Internet radio stations. A number of companies have also used their 

services as a tool for collecting extensive valuable data associated with their users’ 

listening and tagging behaviour. 

Fortunately for the MIR research community, several commercial entities have been 

kind enough to make their data and/or tools available for free via web services.
12

 

Unfortunately, very few of these companies publish open-source code, with the result that 

developers may use their tools only as ―black boxes.‖ Although there are therefore no 

guarantees as to how long these resources will continue to be available, they have already 

been used to great benefit by many MIR researchers and music developers in general.  

Amazon
13

 was one of the first companies to provide automated recommendation 

services to the public at large. In addition to offering basic search functionality, this on-

line retailer provides two primary tools that users can use to access music. The first 

involves browsing through hierarchically organized genre or ―subject‖ categories, and the 

second involves recommendations based on music that other customers with similar 

buying histories have purchased. The former approach involves manually classified 

music, and is thus not directly relevant to automatic music classification. The latter 

approach essentially consists of collaborative filtering, a strategy that has a number of 

significant weaknesses, as discussed in Section 5.2.4. Nonetheless, the huge wealth of 

data available to Amazon has made this feature at least somewhat effective, and at the 

very least it is likely good at promoting impulse purchases. Amazon provides access to 

much of its data via web services.
14

 

MoodLogic was one of the first recommendation engines dedicated specifically to 

music. Unfortunately, it has been inactive since 2003, although it has been absorbed by 

the Rovi Corporation,
15

 who may integrate its technology into the All Music Guide.
16

 The 

original MoodLogic approach consisted of building a database of song profiles based on 

                                                 
12

 ―Web services‖ are resources available on-line that can be accessed by software via standardized 

interfaces. 
13

 www.amazon.ca 
14
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15
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16
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the ratings of users that could then be used to classify and recommend music. In 

particular, class types such as genre, mood and ―perceived energy‖ played an important 

role. Fingerprinting was used to identify songs in users’ collections so that metadata could 

be downloaded from the MoodLogic database. Each user was provided with a certain 

number of ―credits‖ that they could use to access song profiles, and further credits could 

be obtained by profiling songs themselves or by paying. 

Pandora
17

 is a well-known Internet radio station that integrates automatic music 

recommendation technology. Unfortunately, Pandora no longer allows access to its 

services outside of the U.S.A. due to licensing constraints. Pandora is built upon the 

Music Genome Project (Joyce 2006), which was an effort to describe music with vectors 

consisting of hundreds of ―genes‖ or ―musical attributes‖ describing each song. Each 

gene describes some characteristic of the music, such as ―gender of lead vocalist,‖ ―level 

of distortion on the electric guitar‖ or ―type of background vocals.‖ These genes can then 

be used to rank similarity using a distance function. Although the process of 

recommendation is fully automated, the manual annotation of each song can be a very 

expensive process. 

Users of Pandora can either listen to general genre-based stations, or they can seed 

their own station with songs or artists of their choice. Listeners can respond to each song 

presented to them negatively or favourably, which helps refine their station and allows 

Pandora to collect additional information that can be used to integrate a collaborative 

filtering element into their recommendation algorithm. 

Last.FM
18

 is another high-profile Internet radio station that is integrated with a music 

recommendation engine. Unlike Pandora, Last.FM focuses on a collaborative filtering 

approach. Although this does suffer from the same problems of all collaborative filtering, 

Last.FM has the significant advantages over Amazon’s approach of focusing on detailed 

listening behaviour rather than on purchasing behaviour; of focusing on song-by-song 

data rather than album-based data; and of using social networking functionality to 

facilitate the collection of valuable user data, such as personal recommendations and user 

tags. Last.FM has been particularly proactive and helpful in providing access to their data 

                                                 
17

 www.pandora.com 
18

 www.last.fm 



 58 

through a powerful web services API.
19

 This API has been used by many MIR 

researchers in their own work.  

Musicovery
20

 is another interactive web radio station that also provides interesting 

visual musical maps. It allows users to search for stations by entering artist names as well 

as by entering filtering metadata relating to mood, tempo, danceability, genre and time 

period.  

Apple incorporated an automatic playlist generator called the ―Genius‖ into its iTunes 

media player,
21

 iPods and iPhone in 2008. This feature received a great deal of publicity, 

although responses to it have been mixed. Although the details of the algorithm have not 

been publicly released, it appears that individual pieces in a user’s music collection are 

identified based on audio fingerprints, and collaborative filtering oriented information 

such as user ratings and skip counts are then used to generate short playlists from the 

user’s collection based on a single seed song provided by the listener. iTunes can also 

generate ―Genius Recommendations‖ consisting of songs that are judged to be similar to 

a seed song by the Genius but are not in the user’s music library. 

Sun Microsystems has been involved in a number of research projects associated with 

music browsing and recommendation, namely the Search Inside the Music project 

(Lamere and Eck 2007) and the Music Explore FX.
22

 Both of these allows users to 

explore music based on similarity, with the former emphasizing graphical browsing 

spaces and the latter presenting music in more conventional clusters that incorporate the 

notion of ―hotness‖ and ―familiarity.‖ 

The now inactive Sony Cuidado (Pachet et al. 2006) system also focused on providing 

users with convenient browsing interfaces, although with more of an emphasis on 

traditional metadata-based filtering than the Sun systems. Cuidado collected metadata 

from users and also extracted and predicted it using automatic music classification 

technology. 

The above examples are just a few of the many commercial browsing, 

recommendation and playlist generation systems that have been released, some of which 
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are no longer active, and some of which have proven themselves to be commercially 

successful. Many of these are excellent systems, and most operate on some combination 

of collaborative filtering, manually edited metadata and content-based audio analysis. 

Most also operate using the same basic business models, which is to say they typically 

offer some combination of Internet radio, musical social networking and personal music 

collection filtering and organization to gain revenue from advertising, relayed music sales 

and data collection. Additional examples of such systems include Audiobaba,
23

 Critical 

Metrics,
24

 ExploreMusic,
25

 The Filter,
26

 Grooveshark,
27

 MediaUnbound,
28

 MusicStation
29

 

and Slacker Personal Radio.
30

 

The types of software tools mentioned above present users with many new and 

powerful ways of accessing and discovering music. Although the public at large has not 

yet taken full advantage of such tools, they do have a great deal to offer and can 

potentially have a significant impact on listening behaviour and music consumption. It is 

worth noting that a number of scholars have provided important and insightful 

observations on related social, cultural and commercial issues, such as Anderson (2006), 

Jennings (2007) and Moscote Freire (2007). 

As noted above, there are a number of commercial systems that make musical data or 

processing functionality available to developers and researchers via web services. 

Last.FM and Amazon have already been credited for the valuable services that they 

provide to the MIR community, and there are certainly others as well. 

The Echo Nest
31

 has been particularly proactive in providing powerful tools via their 

API.
32

 Although the processing itself is closed source, as are almost all of the systems 

discussed in this section, it does provide extensive functionality for analyzing, retrieving 

metadata, and processing music. Several useful third-party libraries and tools have also 

been developed using the Echo Nest API. 
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Yahoo! Music
33

 provides access to a huge amount of musical information via their 

Music API.
34

 Yahoo! also offers many other APIs
35

 that may be used for musical data 

mining, including the Yahoo! Search Web Services,
36

 which provides access to general 

Yahoo! search functionality, and Flickr Web Services,
37

 which may be used to access 

images relating to music. Google
38

 also offers several APIs
39

 that may be adapted to 

musical applications, including a YouTube API.
40

 

MusicBrainz
41

 offers a fingerprinting service that allows users to access its huge 

recording metadata database using web services.
42

 Of particular interest, MusicBrainz 

takes the rare step of making some of its developer tools open-source. MusicBrainz is 

associated with FreeDB,
43

 a database of CD track listings, which also has its own API.
44

 

Gracenote
45

 also offers access to a huge quantity of recording metadata via fingerprinting, 

but its developer API
46

 offers limited benefits relative to MusicBrainz if one does not 

purchase a commercial licence from Gracenote. 

There are also several sites that make lyrics available via web services. Of particular 

interest, Lyrcisfly
47

 and LyricWiki
48

 allow developers to download lyrics and associated 

metadata via, respectively, URL querying
49

 and a SOAP-based API.
50

 

Discogs
51

 is a community-built database of musical metadata. Although the range of 

fields that it offers are somewhat limited, its data is extensive and consistently formatted. 
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More significantly from an MIR perspective, it also makes this data available via an 

API.
52

 

Billboard
53

 has made information associated with their historical sales charts available 

to developers as well.
54

  

The BBC
55

 has made a significant amount of musical information available, in their 

case via a RESTful framework.
56

 Of particular interest, they have integrated their 

information with MusicBrainz and Wikipedia. In the U.S.A., National Public Radio
57

 has 

made information associated with their radio stations available via an API.
58

 YES.com
59

 

also tracks playlist information from commercial radio stations in the U.S.A. and makes 

this information via an API.
60

 

Gigulate
61

 is a music news aggregator, with a particular emphasis on tracking concert 

dates. This data is made available via an API.
62

 Songkick
63

 also has an API
64

 that gives 

one access to information on live performances. Idiomag
65

 provides access to musical 

articles, as well as multimedia content, via an API.
66

 

There are also a number of more general-purpose sites that have useful APIs from the 

perspective of MIR. For example, Wikipedia has an API,
67

 although it is relatively under-

documented. Freebase
68

 also makes its data available via web services.
69

 Although the 

data available through Freebase is not as extensive as that accessible via Wikipedia 

directly, it is more structured and its API provides better access to it. DBPedia
70

 also 

provides structured access to Wikipedia data. 
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Some general social networking sites also offer powerful APIs that can be used to 

access music-related data, even though they do not focus on musical applications in 

particular. Examples of such APIs include MySpace,
71

 Twitter,
72

 and Facebook,
73

 with 

MySpace’s API in particular offering some specialized musical functionality. iLike
74

 also 

has a Facebook application for sharing musical information, and it has an API.
75

 

BLIP.fm
76

 is a more specialized social service that allows users to register as ―DJs.‖ 

Each DJ may submit songs packaged with short textual comment, known collectively as a 

―blips.‖ DJs may also submit a limited number of ―props‖ to other DJs who they feel have 

submitted good blips. Those DJs who receive many props gain prestige as well as the 

ability to issue additional props. From an MIR perspective, this process produces rich 

data that BLIP.fm has made available via an API.
77

  

PeoplesMusicStore
78

 is an on-line retailer that allows users to serve as ―storekeepers‖ 

who each promote artists of their choosing via metadata entries and recommendations to 

others. Users can purchase music by discovering it through the promotional efforts of 

storekeepers, with the result that the recommending storekeeper receives points earning 

prestige and credit with which they can purchase music themselves. This generates useful 

data from an MIR perspective, which can be accessed via the PeoplesMusicStore API.
79

 

Although popular music is available at the PeoplesMusicStore, the focus is on lesser-

known music. SoundCloud
80

 and its API
81

 also emphasize music that is not as well 

known. Music released under Creative Commons licensing can also be accessed from the 

Free Music Archive
82

 and its API.
83
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Spotify
84

 is a music streaming service that provides APIs
85

 that allow developers to 

access both streamed audio and metadata. Listiply
86

 also provides a way of accessing 

Spotify playlists. Rhapsody
87

 is a subscription-based streaming on-demand music service 

that also offers an API
88

 providing access to some of its data. 7digital
89

 is another 

company that focuses on selling and delivering multimedia content, including music. It 

has an API
90

 that can be used to access its catalogue, including tags, although it does not 

promote it strongly for public use. 

Playdar
91

 is a system allowing users to search various locations for music based on 

metadata tags. It has a simple HTTP API,
92

 and it is possible to write plug-ins for it. 

As noted above, only a few commercial systems have focused specifically on music 

classification, and when they do it tends to be only in combination with similarity-based 

methods, such as in the case of Cuidado. This is unfortunate, as many music consumers 

still do seek music using categories like genre and artist name (Lee and Downie 2004). As 

a consequence, music retailers continue to organize their music by category, whether they 

are brick and mortar stores like HMV or Walmart, or on-line stores like Amazon and 

iTunes. This requires a significant amount of overhead, due to the costs of manual 

classification and metadata entry. Similarity-oriented services based on manually edited 

data, such as Pandora, could also benefit from classification technology that could predict 

appropriate tag values automatically. 

Fortunately, significant work has been done in academic contexts that is more directly 

related to music classification, and less exclusively focused on similarity-based tasks. 

Moreover, many academic systems have the significant advantage from a research 

perspective of being open-source. 
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1.3.7 Existing academic systems  

This section highlights existing academic software tools that have been developed for 

performing research in automatic music classification. There are a great many tools that 

have been developed for specialized types of music classification, or for performing 

specific sub-tasks associated with music classification, so this section focuses only on 

those tools that are intended for general-purpose music classification or are particularly 

well-established. More details on these systems and on more specialized systems that are 

omitted here can be found in the chapters of this dissertation that are most directly related 

to them. 

Some of the earliest audio analysis systems were developed for application to speech 

rather than music. Nonetheless, some of these tools do have a number of analysis, 

visualization and statistical tools that can be usefully applied to certain MIR research 

tasks. WaveSurfer (Sjölander and Beskow 2000) is an open-source tool that can be used 

to visualize audio and extract simple features from it. Praat (Boersma and Weenink 2009) 

is another system originally intended for speech that allows one to analyze, synthesize 

and manipulate audio.  

Marsyas (Tzanetakis and Cook 2000) is a pioneering C++ system that played an 

essential role in popularizing automatic music classification in general and audio analysis 

in particular in the MIR community. Marsyas emphasizes audio information extraction 

and processing, and also includes machine learning functionality. 

Music-to-Knowledge, or M2K (Downie, Futrelle and Tcheng 2004), is a graphical 

patch-based system implemented in Java. It is designed to be applied to a broad range of 

applications, including machine learning and feature extraction, and is a powerful tool for 

prototyping new systems or integrating existing systems.  

M2K makes use of the D2K distributed processing framework, something that is both 

a strength and a weakness. D2K allows M2K to process tasks using many computers 

simultaneously, and also provides good classification libraries and a flexible GUI 

framework. Unfortunately, D2K’s licence can make it complicated for researchers outside 

of the U.S.A. to gain legal access to it, and D2K still has a number of unresolved bugs, 

something that can be particularly problematic since not all of D2K is open-source. 
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Fortunately, a descendant of M2K is currently being implemented using SEASR, or 

the Software Environment for the Advancement of Scholarly Research (Llorà 2008), as 

an alternative to D2K. SEASR offers more functionality, is more reliable and is less 

limiting than D2K. This is being done as part of the NEMA project.
93

 

MIDIToolbox (Eerola and Toiviainen 2004) and MIRToolbox (Lartillot, Toiviainen 

and Eerola 2008) are powerful modular Matlab toolboxes for visualising, extracting 

information from and processing symbolic and audio data, respectively. These systems 

include cognitively inspired analytical tools relating to melodic contour, similarity, key-

finding, meter-finding, segmentation and other high-level musical analysis. These tools 

can be very useful for rapidly prototyping new systems, but can pose a barrier to users 

without a strong signal processing and coding background, or who do not have access to 

Matlab. 

CLAM (Amatrain, Arumi and Ramirez 2002; Amatriain and Pau 2005; Arumi and 

Amatriain. 2005) is a well-known audio analysis system implemented in C++. It includes 

extensive functionality for processing, synthesizing and visualizing audio, as well as for 

extracting certain features. Although the software can pose initial obstacles to non-

specialist users who wishes to quickly extract features or design new features, its 

powerful functionality makes it worth the effort, and it can be an effective tool for 

application building. 

Sonic Visualiser (Cannam et al. 2006) is a system for visualizing audio data in a 

variety of ways, and also allows one to extract certain features from the audio. This 

software can be applied to a wide variety of MIR tasks, including automatic music 

classification. Sonic Annotator
94

 is an associated command-line program that can be used 

to batch extract features from audio files and publish them to the semantic web in RDF 

form. One of the important advantages of Sonic Visualiser and Sonic Annotator is their 

incorporation of Vamp
95

 plug-in functionality. Vamp is an external API that can be used 

to add functionality to compatible software for processing audio in various ways. Sonic 

Visualiser, Sonaic Anotator and the Vamp plug-in format are all implemented using C++, 

although it is also possible to implement Vamp plug-ins in Python. 
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Work has also been done on adding embedded feature extraction and machine 

learning functionality to the ChucK audio programming language (Wang, Fiebrink and 

Cook 2007; Fiebrink, Wang and Cook 2008a). This has the potential to result in a very 

flexible environment for quickly implementing feature extraction and analysis tools that 

can be used in real-time, although the available functionality is still somewhat limited at 

the time of this writing. 

The Humdrum toolkit (Huron 2002) is perhaps the best-known symbolic analysis 

toolkit, with a variety of query tools and specialized high-level musical representations. 

Although feature extraction is certainly not the software’s primary intended purpose, 

Humdrum data has at times had features extracted from it, such as in the work of Sapp, 

Liu and Selfridge-Field (2004). Knopke (2008) has written new implementations of much 

of the Humdrum software that makes it more useful from an MIR perspective, including 

functionality such as MIDI-compatible file format translation.  

Although it is neither a specialized MIR system nor an academic system, some 

researchers choose to perform research directly in MatLab.
96

 MatLab is a powerful 

general framework with a variety of well-developed and well-tested machine learning and 

signal processing toolboxes. The disadvantages of MatLab are that it is a proprietary 

closed-source framework, and can also suffer from efficiency and extensibility issues. 

Nonetheless, it can be very useful for rapid prototyping. 

Despite the many benefits of the systems described above, none of them are designed 

to deal with the full range of tasks associated with general-purpose automatic music 

classification. To the best of the authors’ knowledge, jMIR is the only unified automatic 

music classification framework that addresses all, or even most of, the essential tasks of 

symbolic, audio and cultural feature extraction; meta learning-based machine learning; 

metadata management; dataset collection; and standardized file format design. 

Furthermore, most but not all of the systems described above suffer from limitations with 

respect to extensibility and usability. Most of these systems also focus on specific 

problems and limited types of data, and do not integrate easily with one another. These 

limitations, among others, have led to the design priorities underlying jMIR, as described 

below. 
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1.4 jMIR’s core objectives and characteristics 

Although some very important gains have been achieved recently in automatic music 

classification-related technologies, it has become evident that the pace of progress has 

slowed in recent years. An examination of results of the annual MIREX
97

 competition, for 

example, will demonstrate that relatively few improvements have been made in the best 

success rates from year to year in various classification-related evaluation tasks. Such 

limitations have been anticipated and observed for a number of years, such as by 

Berenzweig and his colleagues (2004) or by Aucouturier and Pachet (2004). There are a 

number of problems with the ways in which automatic music classification software and 

techniques have traditionally been designed, implemented and distributed that are likely 

contributing to the recent failure to achieve significant classification performance gains, 

or at least hampering the MIR community’s ability to progress past this apparent ―glass 

ceiling‖ on performance. 

These problems served as motivators for the development of jMIR, and played an 

important role in guiding its design principles. This section describes the overall goals 

and design priorities of the jMIR project, and how these goals and priorities address some 

of the factors currently limiting automatic music classification systems in general. This 

section also describes the corresponding characteristics shared by all of the jMIR 

components. The particular implementation of jMIR’s design objectives in any given 

individual jMIR component, however, is explained in that component’s chapter, as are 

any additional design characteristics particular to that component. 

1.4.1 Bridging the gaps between the MIR-related disciplines 

Music is a multi-faceted area of inquiry, with the many factors that influence any 

individual’s experiences of music leading to many different ways of considering music. 

Given the consequent diversity of approaches to studying music, researchers sometimes 

have a tendency to focus their attentions on limited types of music or on particular 

specialized approaches to studying music. 

As noted in Section 1.3, MIR is greatly enriched by contributions from researchers 

from fields as diverse as machine learning, data mining, digital signal processing, music 
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theory, musicology, music psychology, music education, human computer interaction and 

the library sciences. Of course, no single individual can reasonably be expected to have 

true expertise in more than one or a few of these fields, so there is a need for ways to 

facilitate the integration of knowledge, insights and methodologies from each of these 

fields. For example, an electrical engineer might have invaluable expertise with respect to 

extracting information from digital audio signals, but might lack the music theoretical and 

psychological background to design features that would be the most musically 

meaningful or effective for a given task. To give another example, musicologists and 

music theorists have extremely valuable musical knowledge but do not necessarily have 

the background to fully take advantage of machine learning or digital signal processing 

technology in their research. 

jMIR is designed specifically to help break down these kinds of barriers between 

research disciplines. jSymbolic, jAudio and jWebMiner, for example, allow even users 

with limited or no knowledge in, respectively, symbolic music, digital signal processing 

and web-based data mining to utilize powerful techniques from each of fields. Moreover, 

ACE may be used by researchers with little or no background in machine learning to 

automatically build powerful classification models using such features. Furthermore, 

ACE XML allows all of this information to be expressively and flexibly stored and 

communicated so that it can be used in combination with still other tools and techniques 

that may be of interest to individual researchers. 

Another important advantage of jMIR is that it is designed to facilitate research using 

different types of music, something that is important in investigating the generality of any 

given research approach or perspective. For example, Codaich and the Bodhidharma 

MIDI dataset both contain examples of music from many different genres of music, 

thereby providing researchers with a diverse set of musical data that can be used to carry 

out or validate their research. Furthermore, jMusicMetaManager helps to manage and 

verify the metadata associated with these or other large collections of music. ACE and the 

jMIR feature extractors are also designed to extract useful information from as many 

different types of music as possible. All of this allows jMIR to aid researchers in 

performing research involving large and diverse collections of music, something that can 

help to overcome the scientific and statistical weaknesses of the approach that one 
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sometimes encounters of investigating the applicability and validity of various approaches 

and perspectives on only a few relatively similar musical examples. 

Finally, jMIR is not specifically tied to any particular kind of classification. This 

means that it can be applied agnostically to the diverse range of musical classification 

problems described in Section 1.3. The jMIR components can thus be used to accomplish 

goals in many different MIR sub-disciplines, whether these sub-disciplines have 

traditionally focused on automatic classification or not. 

1.4.2 Facilitating the effective combination of different types of musical data  

A cross-disciplinary approach not only has benefits with respect to taking advantage 

of diverse types of expertise, but also with respect to the types of data that can be studied. 

For example, an engineer at a commercial lab with access to a large audio research 

database, a computer scientist at an on-line social music service with access to valuable 

listener data and a musicologist associated with an academic library with a large 

collection of scores each have access to very different types of musical data.  

Traditionally, individual music researchers have each tended to focus on only one 

type of musical data, depending on their particular backgrounds. Unfortunately, research 

with a limited scope such as this risks missing out on valuable complementary sources of 

information. Audio is clearly useful because it represents the essential way in which 

music is consumed; cultural data is well-known to be highly influential on our 

interpretation and experience of music; and symbolic data incorporates valuable high-

level musical abstractions. Features extracted from each of these types of data sources 

have an increased likelihood of orthogonal independence, which can significantly 

increase classification performance compared to cases where one is limited to extracting 

information from only one of these types of data sources. The experiments described in 

Section 9.4, for example, provide empirical evidence supporting the benefits of 

combining different types of musical data in this way. 

jMIR is designed not only to facilitate the integration of information extracted from 

symbolic, audio and cultural data sources, but also to encourage it. Firstly, it includes 

feature extractors that can extract features from all three types of data. Secondly, it allows 

these features to be combined cleanly, consistently and transparently via the ACE XML 

file formats. Thirdly, ACE can be used to process features in a way that is indifferent to 
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the type of musical data from which they have been extracted. Finally, Codaich and the 

Bodhidharma MIDI dataset provide researchers with audio recordings, symbolic 

recordings and metadata that can be used to extract cultural features. In particular, the 

SAC dataset is specifically designed for carrying out research using all three types of 

musical data.  

As a matter of related interest, it can be argued that it is particularly important at the 

moment to promote MIR research on symbolic music, a type of data that has become 

somewhat unfashionable amongst MIR researchers in recent years in comparison to audio 

and cultural data. The value of symbolic data is clear: it is relatively easy to extract 

features from symbolic data that incorporate high-level musical knowledge, something 

that can be particularly valuable in performing many kinds of musical classification. For 

example, it can be very difficult to detect cover songs if one does not have access to high-

level musical features providing insights on information such as chord progressions or 

melodies, as lower-level features will likely obscure the essential musical invariances of 

different arrangements of the same piece.  

Although there is currently relatively little commercial interest in studying or 

collecting and annotating symbolic data, an individual taking a long-term perspective will 

note that automatic transcription technology is continuing to move ever closer to being 

able to produce symbolic transcriptions from audio recordings that are of a sufficiently 

high quality for automatic classification purposes. Even if resultant transcriptions are too 

error-prone for use in performance contexts, for example, it has been found that 

classification systems in particular can be relatively robust to errors (e.g., Lidy et al. 

2007). 

Once transcription systems that are sufficiently accurate for feature extraction become 

available it will then become a simple matter to extract high-level features from the 

resultant intermediate symbolic representations. For example, one might implement an 

intermediate transcription layer to generate a MIDI file from audio analyzed by jAudio, 

which could in turn have features extracted from it by jSymbolic. The high-level features 

output by jSymbolic, as well as the original low-level jAudio features, could then all be 

processed together by ACE, without the need for any original musical data other than the 

audio itself. It is therefore useful to put effort into research on high-level features now so 
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that it can be immediately taken advantage of as transcription technologies improve. Such 

research can easily be performed now using existing symbolic recordings. Furthermore, 

there is certainly a great deal of valuable music theoretical and psychological research 

that can be performed directly on symbolic musical representations, without any reference 

to audio recordings. 

1.4.3 Accessibility and ease of use 

Software that is overly technical or difficult to learn can pose significant and 

alienating barriers to potential users. This can be a particularly important issue with 

respect to software that is intended for users with backgrounds in diverse disciplines, as is 

the case in MIR, since such users share only a limited common knowledge base. If a 

designer wishes such users to adopt and gainfully use his or her software tools, then he or 

she must place a special emphasis on making the software widely accessible. 

Unfortunately, much of the software produced for and by MIR research tends to 

emphasize essential functionality at the expense of usability. Although this is certainly 

understandable given researchers’ limitations with respect to manpower and the pressure 

to meet publication deadlines before technologies become obsolete, it nonetheless has had 

the consequence of making much MIR software inaccessible to casual users and, in some 

cases, to effectively all but the developers of the software themselves. For example, the 

researchers running the annual MIREX
98

 MIR competition have found that systems 

submitted to MIREX rarely work in their originally submitted form, even when required 

by the evaluators to meet set basic interface requirements, a minimal step towards 

usability that is itself not required of published systems in general. 

jMIR, in contrast, is designed with the goal of making it as easy to use as possible for 

researchers from the full range of MIR-related disciplines, with a particular emphasis on 

making the software accessible to researchers with little or no training in areas directly 

related to engineering and computer science. As noted above, researchers such as 

psychologists, musicologists and music theorists have essential expertise and insights that 

are invaluable to MIR research, but not all such researchers have strong backgrounds in 

computer-related fields. Such researchers may thus be easily alienated by software 
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requiring extensive computer skills or backgrounds in areas such as machine learning and 

signal processing. Indeed, software with steep learning curves can be discouraging even 

to users with extensive backgrounds in such areas, so maximizing accessibility and 

usability are in fact important in increasing the likelihood that users of all backgrounds 

will take advantage of the software. 

In order to accomplish this, it is necessary to at once limit the exposure of users to 

overly technical details and terminology in the software interface when such content is 

unlikely to be necessary, while at the same time allowing highly technical and detailed 

options to be available when the user is in fact interested in them. One way of 

accomplishing this is to give users a choice of interfaces. For example, users with only a 

limited technical background might be very uncomfortable using non-graphical 

interfaces, but other users might prefer to use a command-line interface in order to 

facilitate batch processing. Alternatively, users with computer programming backgrounds 

might be more interested in well-developed APIs that allow them to integrate the 

software’s functionality into their own code.  

The jMIR components were produced with this in mind. Each of the jMIR 

components therefore has a clear and easy to use API, and all of the components also 

include a GUI. ACE and jAudio also provide users with the option of accessing their 

functionality via command-line interfaces if desired. 

The jMIR software also hides technical details from users when they do not need to 

be aware of them. For example, the jMIR feature extractors auto-schedule feature 

extraction based on feature dependencies, and automatically extract features that are not 

explicitly requested by users but are necessary for calculating other features that have 

been requested, all without requiring any knowledge on the part of the user of this 

processing or of the corresponding feature dependencies. These dependencies are made 

very clear in the code itself, however, so that this information is easily available to 

developers who do need to be aware of it. 

Customizability is also an important priority to pursue when maximizing the usability 

of software, as different users will want to use software in different ways to perform 

different tasks under different conditions. The jMIR components are each designed with 

this principle in mind. To provide a few examples, the jMIR feature extractors allow users 
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to select which specific features they want to extract; jAudio allows users to customize 

pre-processing options as well as individual feature parameters; jWebMiner and 

jMusicMetaManager allow users to customize the types of processing to be performed 

and the information to be included in generated reports; and ACE allows users to select 

different machine learning options, such as whether to order instances randomly during 

training, which of several variations on stratified or unstratified cross-validation to use 

and so on. 

Documentation is also essential to making software accessible, with respect to both 

code documentation and user manuals. In terms of the former, all of the jMIR code is 

very well-documented with detailed Javadoc-formatted comments. In terms of the latter, 

ACE, jAudio, jWebMiner and jMusicMetaManager all have detailed HTML frames-

based user manuals, and jSymbolic includes a helpful README document. Most of the 

jMIR components also include menu accessible help functionality. 

It is also important to make software easy to install and use on the operating system of 

the user’s choice. For example, requiring users to recompile code in order to install it, and 

potentially adjust make files and resolve linking problems when doing so, will 

immediately render the software completely inaccessible to users with limited computer 

backgrounds, and can very well irritate even expert computer programmers to the point 

that they choose not to use the software. jMIR is therefore implemented entirely in Java,
99

 

with the consequence that it benefits from Java’s platform independence. All third-party 

libraries used by jMIR are also implemented in Java and are packaged and installed with 

jMIR, so there is no need to acquire or install any additional technologies or resources.  

Although it can be very difficult to avoid all conceivable installation difficulties, 

jMIR is designed to make the process as simple as possible. Each of the jMIR 

components is contained in a simple and self-contained folder
100

 that may be copied to the 

directory of the user’s choice, and the software can be run directly from a Java JAR file. 

Each jMIR component also includes a detailed README file that provides easy-to-

follow instructions clearly describing the simple installation process. For developers who 
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wish to extend jMIR, development versions of the jMIR components have been packaged 

as NetBeans
101

 projects, and the source code may also be easily compiled outside of 

NetBeans if desired using standard Java development tools.  

It is also ideally preferable to avoid requiring that users have access to proprietary 

software or libraries in order to use one’s software, as this limits the accessibility of the 

software. jMIR is available free of charge, and none of its components require the use or 

installation of any closed software or libraries. jMIR and the third-party libraries used by 

it may also be freely redistributed. This means that both the jMIR software and future 

software utilizing its functionality will remain accessible even to users with very limited 

budgets.  

1.4.4 Longevity and extensibility 

There are many examples of excellent music software packages that were essentially 

abandoned after their initial development and publication. An unfortunate by-product of 

the academic process is that the publication of new research tends to be rewarded but the 

support, refinement and incremental improvement of existing software tends to be more 

difficult to use as a means of acquiring funding and publications. Furthermore, the 

graduate students who develop the majority of academic software systems typically move 

on to other pursuits after graduating, often without the opportunity or incentive to 

continue working on the software that they developed. The consequence of this is that 

even software with excellent potential often falls out of use as technologies progress and 

improve but the software is not kept up to date. 

The solution to this is two-fold. Firstly, it is important for research labs, peer-review 

committees and granting agencies to invest in long-term software support so that good 

systems stay up to date and continue to improve. Secondly, it is essential to design 

software such that it is easily extensible both by the original developers and by others. 

Although the first of these solutions is of course largely out of the control of 

individual developers, the second is certainly not. The original developers of a given 

software system will be more likely to support and expand the software themselves in the 

long-term if doing so is relatively easy to do. Even more importantly, other users will 
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themselves contribute improvements and updates to the software if they find this to be 

easy and useful to them. Emphasizing extensibility is therefore one of the most important 

contributions that developers can make towards improving the probable longevity of their 

software. Of course, this is easier said than done, as writing extensible code requires 

significantly more thought and time, but the long-term dividends make it worth the effort. 

This is demonstrated by the long-term success and growth of existing software projects 

such as Gamera (MacMillan, Droettboom and Fujinaga 2001), for example. 

jMIR emphasizes extensibility in a variety of ways. Most essentially, it is entirely 

open-source, which means that developers can see exactly how the jMIR code works, 

without having to deal with any ―black box‖ code. The code is also all clearly formatted 

and documented, as noted in Section 1.4.3. The prioritization of extensibility is also 

evident in the jMIR class structure and organization, which reflect both good object 

oriented design principles and a general cognizance of how future users are likely to want 

to use and expand the code.  

An additional important point is that jMIR does not utilize any external technologies 

other than the very well established Java language. In addition to the advantages 

associated with Java’s platform independence, this avoids the risk associated with the 

possibility that external technologies will become obsolete or difficult to find, thereby 

compromising the longevity of all software built using them. jMIR uses only a few third-

party libraries, and they are all purely Java-based as well. 

The ACE XML file formats are also designed to be extensible, especially the ACE 

XML 2.0 formats. These file formats provide a variety of optional and highly flexible 

modes of data expression, and are not specifically tied to any of the jMIR components. 

The jMIR components are also themselves decoupled, so that they can be used either 

independently or together, as is convenient for any given user. For example, the jMIR 

audio feature extraction code is in no way dependent on machine learning code. This has 

important advantages, since users interested in particular jMIR components do not need 

to consider or even be aware of how the other jMIR components work if they do not wish 

to, thereby significantly reducing the learning curve associated with extending individual 

jMIR components. For those developers who do wish to extend multiple jMIR 
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components, however, each of the components are designed using common conventions 

and design practices, which facilitates learning in their case as well. 

There are a number of additional aspects of the jMIR code that favor extensibility, 

such as its use of portable modular components and of metafeatures and aggregators for 

auto-generating new functionality. Details are provided below in Section 1.4.5. 

1.4.5 Providing a framework for developing new approaches 

The jMIR components are designed so that they can be used directly as distributed, 

which is to say as ready-to-use MIR software applications allowing researchers to utilize 

automatic music classification technologies in their own work. This aspect of jMIR is 

essential to fulfilling the goals described in Sections 1.4.1, 1.4.2 and 1.4.3. This, however, 

only reflects one of the primary use cases for which jMIR is designed. The ability to use 

jMIR as a framework for developing new technologies and approaches also figures very 

prominently in jMIR’s design. 

The development, deployment and evaluation of new MIR research assets such as 

features, pattern recognition methodologies and metadata annotation strategies often 

requires a significant amount of infrastructural investment. Once a given lab has 

developed this infrastructure, the expenditures associated with its creation often make the 

lab reluctant to move away from it. The consequence of this is that time and resources are 

taken away from original research while the infrastructure is being implemented and, 

once that infrastructure is complete, it is typically not compatible with infrastructures 

used by other labs. 

jMIR is designed to address this problem by, in addition to providing a set of ready-

to-use applications, also providing a framework for developing, testing and distributing 

new techniques and algorithms. This allows jMIR to be used to implement and 

experiment with new technologies, not just apply existing ones. This can be very helpful 

in eliminating the need for each lab to develop its own infrastructure, as much of the 

infrastructure needed to perform MIR research involving automatic music classification is 

already implemented in jMIR. The extensive documentation and emphasis on 

extensibility associated with jMIR, as described in Sections 1.4.3 and 1.4.4, help to 

facilitate the accessibility of this infrastructure. 
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The jMIR components are each designed to have a generally modular structure 

overall. In particular, most of the jMIR components allow new functionality to be added 

via a simple and standardized plug-in architecture. For example, each of the features 

extracted by jAudio or jSymbolic are implemented as independent classes that extend a 

common superclass. New features can be added simply by extending this class and 

following its clear and simple conventions. A dependency on another feature, for 

instance, can be implemented simply by adding a reference to the name of that feature to 

one of the superclass’ inherited fields. As noted above, the jMIR feature extractor will 

then automatically extract the value of the associated feature and provide it to the new 

feature at runtime. The implementation of a new feature therefore requires little more than 

the implementation of the processing associated with the new feature itself, since a 

complete extraction infrastructure is already provided by the jMIR feature extractor. Only 

a very minimal knowledge of the overall architecture of the jMIR feature extractor is 

necessary to add new features.  

Other jMIR components also incorporate similar modular architectures. For example, 

ACE uses Weka (Witten and Frank. 2005) machine learning algorithm implementations. 

Weka is also open-source and Java-based, and it is supported by a very active 

development community. It is very easy to add additional Weka algorithm 

implementations to ACE so that they will be automatically used in meta learning trials. 

New machine learning algorithms can thus be implemented using the Weka framework, 

and then added to ACE, as can new algorithms added to the Weka distribution by others. 

The error-detection algorithms used by jMusicMetaManager are also relatively modular. 

jAudio in particular goes especially far in facilitating the addition of new algorithms 

through metafeature and aggregator functionality. In essence, these automatically 

implement features based on other features, such as calculations of the variance of a 

feature or feature histograms. Metafeatures and aggregators are each described in more 

detail in Sections 3.4.7 and 3.4.8, respectively. 

One of the essential advantages of jMIR’s modular approach is that it facilitates the 

iterative development of new algorithms that build upon other algorithms, and that can 

then themselves be used as a building blocks for implementing still further algorithms. 

This makes it possible to utilize a design approach that incorporates ever increasing levels 
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of abstraction. To provide a simple example, one could extract the RMS (Root-Mean-

Square) feature from each of a series of analysis windows, perform an auto-correlation on 

this data to produce a beat histogram and then use this histogram to extract higher-level 

information on tempo and meter. 

The widespread use of a common MIR development platform such as jMIR would not 

only allow individual researchers to build upon their own work in this manner, but also to 

add new jMIR algorithm implementations created by others to their own jMIR 

distributions and distribute their own new algorithms so that others may do the same with 

their work. This aspect of jMIR is discussed further in Section 1.4.6.  

There is also further infrastructure built into jMIR that facilitates its use as a 

development platform. For example, ACE XML allows valuable data and metadata to be 

stored and communicated between applications in flexible ways. jMIRUtilities automates 

various useful administrative tasks. Also, the jMIR datasets are useful in providing data 

that can be used to test and validate new algorithms. 

This last point emphasizes the particularly important advantage offered by jMIR of 

facilitating experimental comparisons of newly implemented algorithms with alternative 

pre-existing approaches. The performance of a new feature or machine learning strategy, 

for example, can be easily compared with other features or machine learning strategies 

already implemented in jMIR or previously added to it by using ACE’s meta learning 

functionality to perform comparative experiments. This issue is also discussed in further 

detail in Section 1.4.6. 

These characteristics of jMIR contrast with what one finds when using most 

alternative music research software. Most such software is poorly documented; difficult 

to install and use; difficult to extend; and not characterized by the modularity necessary to 

facilitate its use as a shared development platform. In particular, feature extraction code is 

often tightly coupled to pattern recognition and analysis code, something that hampers the 

reuse of the code in other contexts, especially in the case of researchers who wish to 

develop features and machine learning algorithms independently. Such software is also 

often tied in to specific types of applications and research goals, which limits its general 

usefulness. Finally, many music research systems suffer from dependencies on particular 
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platforms or proprietary technologies, which limits their usability for other researchers 

who cannot or do not wish to develop code using these platforms or technologies. 

1.4.6 Facilitating and promoting inter-institution collaboration 

As noted above in Section 1.4.5, many MIR research groups have had a tendency to 

develop their own in-house software tools and musical datasets, an approach that has a 

number of important disadvantages in addition to those described above: 

 The implementation of a full in-house MIR research framework requires a very 

substantial amount of effort. Since this framework itself is typically essentially 

secondary to the research that it is intended to support, researchers will have a 

tendency, and understandably so, to compromise functionality, documentation and 

testing of the framework when resources and time become scarce in favour of 

devoting them to the primary research. This results in support infrastructure that is 

likely not as well developed and tested as it would be if the infrastructure itself 

were the primary goal of those implementing it. 

 Each research group tends to specialize in one or a few MIR sub-disciplines, yet 

the work required to develop a full in-house MIR research software framework 

often requires work associated with additional disciplines in which the lab 

members do not have expertise. For example, an MIR lab in an electrical 

engineering department that develops its own in-house system will likely need to 

collect and annotate ground-truth datasets, but will probably lack members with 

the musicological training to do so properly. 

 Different implementations of the same algorithm may in fact differ subtly in ways 

that are not always apparent or well documented in publications, but that can 

impact results. For example, one implementation of genetic algorithms might use 

islands but another might not, or two different implementations of the Spectral 

Roll-off Point feature might use different values for the fractional parameter (e.g., 

0.85 or 0.95). 

 Each research group will typically develop their framework in a way that is 

convenient to their own available resources and research goals, with the result that 
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core infrastructure such as data structures and file formats, as well as the 

technologies used to implement them, are often incompatible with those used by 

other research groups.  

The end result of this is that the quality of in-house MIR research frameworks tends to 

be compromised in certain respects and, at the very least, requires a substantial initial 

investment of time and resources that is often a redundant and wasteful duplication of 

work already done by others. Even more importantly, the lack of standardization makes it 

very difficult to share resources and data conveniently and efficiently between different 

research groups. This is a very serious problem, as the success of any field is dependent 

upon the ability of different researchers to evaluate the performance of their approaches 

relative to those developed by others, and their ability to incorporate successful 

approaches used by others into their own work. 

The facilitation of and promotion of inter-institution collaboration is therefore one of 

the core goals of jMIR. This is tied in closely to the qualities of jMIR discussed in 

Sections 1.4.4 and 1.4.5, since the implementation of this goal is dependent on the ability 

of researchers to extend jMIR and use it as a development platform. 

If researchers implement new features and pattern recognition algorithms in the jMIR 

framework, for example, this then means that they can immediately distribute their jMIR 

implementations to other researchers. These other researchers can then easily plug these 

implementations into their own jMIR installations and use them in their own research, or 

even extend them. This means that powerful new algorithms can immediately be used by 

the entire jMIR-using community in their own research without any difficulties or delays 

associated with resolving incompatibilities or implementation ambiguities. Even more 

importantly, it also greatly facilitates the iterative development of increasingly 

sophisticated approaches that build upon one another, not only by individual researchers, 

but by the entire jMIR-using community. 

One particularly helpful step in facilitating such sharing of implementations would be 

to build a common repository of algorithms implemented under a standardized framework 

such as jMIR. Such a repository would have important advantages for developers, as it 

would allow them to easily distribute and publish their implementations, as well as for 

users, as it would provide them with an easily accessible and up to date set of tools that 
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they could expect to operate consistently for all users who have added them to their jMIR 

distributions. This would also allow researchers from diverse backgrounds to easily take 

advantage of the work of researchers from other disciplines, an important advantage for 

the reasons discussed in Section 1.4.1. 

The use of a single development environment like jMIR by a large segment of the 

MIR community would also have important advantages with respect to the validation and 

comparison of different approaches to solving MIR problems. Modern scientific research 

methods are predicated on the ability of different research groups to independently verify 

and evaluate each other’s work. This is essential in ensuring research transparency and in 

allowing researchers to build upon each other’s work. If software incompatibilities and 

inconsistencies make it difficult for one group to verify the results of another group or to 

fairly compare their approaches to solving a given problem with those used by another 

group, then the consequence is that the merits of one approach relative to another become 

ambiguous, and the progress of the field is slowed down by uncertainty as to which 

solutions are the best to use and build upon. Even when one approach can be 

demonstrated to be better than another, a given research group may still be reluctant to 

adopt it if its implementation in their own potentially incompatible research infrastructure 

would involve significant time and effort. 

These problems would be eliminated if the competing algorithms were each 

implemented in a single framework, such as jMIR. Any researcher could then simply add 

the jMIR implementations of the various algorithms to their jMIR installation and 

perform evaluative experiments using them. The dimensionality reduction and meta 

learning implemented by ACE are particularly useful in this respect, as the performance 

of these tasks implicitly involves comparisons of different features and machine learning 

algorithms. One can also use jMIR to perform more traditional comparative experiments 

as well, of course. The jMIR datasets also provide a large, diverse and ready-to-use 

collection of ground-truth data that can be used as a basis for such experiments. 

The annual Music Information Retrieval Evaluation eXchange (MIREX)
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competition has played an invaluable role in facilitating the comparison of different 

approaches. Unfortunately, MIREX is only run once a year, and only systems that are 
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submitted to it by their authors can be evaluated. Furthermore, as indicated above, it has 

been noted by the MIREX organizers that submitted systems rarely work in their 

originally submitted form even when required by the organizers to meet specific basic 

interface requirements. This has necessitated a significant amount of work on the part of 

the organizers in order to perform the evaluations. A shared infrastructure would be very 

helpful in addressing such problems, since algorithms to be evaluated could simply be 

submitted as jMIR classes, for example, and installed without needing compatibility 

modifications on the part of either the submitters or the evaluators.  

Such an approach is an important part of the Networked Environment for Music 

Analysis (NEMA)
103

 project, which will include jMIR components in a distributed 

processing and data infrastructure framework that will allow users to automatically and 

independently submit algorithms and processing requests. A very significant advantage of 

shared infrastructures like jMIR and NEMA in general is that they allow individual 

researchers to run large-scale evaluations of their new approaches relative to other 

existing approaches at any time.  

jMIR also has additional advantages with respect to the promotion of inter-

institutional collaboration beyond its extensible plug-in architecture. The ACE XML file 

formats are particularly important in this respect, as they allow users to store extracted 

feature values, ground-truth labels and a diverse range of metadata in expressive, flexible 

and clear ways. This means that different research groups who do not have access to the 

same datasets or who are using different infrastructures can still share essential 

information using ACE XML as a standardized format.  

As a final point, it is important to note that too wide a range of tools intended for 

general MIR research use can have the unintended consequence of placing barriers 

between different user groups, just as too few tools can have the same effect by 

encouraging the use of specialized in-house tools. For example, users who have adopted 

jMIR might be unwilling to take advantage of some of the useful tools described in 

Sections 1.3.6 and 1.3.7, and vice versa. Such a scenario would certainly be 

counterproductive from the perspective of promoting inter-institutional collaboration. 

Although it might be stated here that jMIR is the best choice and that it should be adopted 
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by all MIR researchers, the developers of other tools might very well make the same 

claim, with the result that each researcher in the MIR community will make their own 

choices, and different tools will be adopted by different institutions.  

This potential problem is one of the key motivators behind the ACE XML file 

formats, as they are designed to facilitate data communication across diverse toolsets. 

Another important step is for the developers of each toolset to provide simple and well-

documented APIs to facilitate the porting of new algorithms to multiple toolsets. This has 

been another motivating factor for jMIR’s emphasis on extensibility and documentation, 

as described in Sections 1.4.3 and 1.4.4, and it also provides a strong argument in favor of 

an overall distributed processing umbrella such as that proposed by NEMA. 

1.5 Highlights of research contributions 

Much of this dissertation places significant emphases on the engineering work 

associated with each of the jMIR components and on background knowledge that will be 

useful in helping music researchers new to the various fields touched on by jMIR 

understand them better. This is done in order to provide as much information as possible 

to readers about why and how they can use the software effectively to perform music 

research, and it is in keeping with the overall goal of the jMIR project of facilitating 

effective cross-disciplinary original research by others. 

It is important to emphasize, however, that the jMIR project was not simply an 

engineering project, and that it also involved significant theoretical work and 

experimental research as well. A considerable amount of exploratory work was done 

during the design phase of each of the jMIR components, for example. It was not possible 

to include all of the associated details in this already lengthy document, however, due to 

space constraints. The purpose of this sub-section is to highlight those portions of this 

work that it was possible to include, and to summarize the results of some of the 

experiments that have been performed with jMIR. 

One of the most important theoretical contributions of the jMIR project is the library 

of high-level features outlined in Section 4.5, many of which are original. Just as 

important is the theoretical discussion presented in Sections 4.1.2 and 4.4 of how one 

should approach the problem of designing and choosing high-level features. This is an 
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important area that is rarely touched on in the literature, as those designing computational 

features rarely have extensive music theoretical or musicological knowledge, and music 

scholars very rarely consider music in terms of features intended for processing by pattern 

recognition algorithms. 

Another area of significant theoretical interest is the discussion of fundamental issues 

associated with the collection and labelling of ground truth data, including concerns 

related to class ontologies. These issues are treated rather carelessly in too much MIR 

research, a problem that is explored in Section 8.2, along with proposed guidelines for 

addressing these problems in a responsible way. These guidelines played an important 

role in methodology used to assemble the jMIR datasets, as described in Sections 8.5.2 

and 8.5.3 in relation to the Bodhidharma MIDI dataset, for example. 

An additional important theoretical contribution is the discussion of the limitations of 

existing file formats associated with representing data relevant to automatic music 

classification, and the proposal of design priorities to consider when creating new 

formats, as discussed in Sections 7.3 and, especially, 7.4. This theoretical work was 

essential in the design of ACE XML and ACE XML 2.0, as described in Sections 7.5 to 

7.11, which was itself an important research contribution. 

This first chapter has also already presented an analysis of some of the current 

problems in the current state of automatic music classification research. Several general 

solutions have also been proposed in order to move past these problems. 

A number of original algorithms have also been developed during the course of the 

jMIR project, such as the automatic feature extraction scheduling and dependency 

resolution algorithm used by jAudio and jSymbolic, as discussed in Section 3.4.6. The 

novel accessible approaches to metafeatures and feature aggregators, as described in 

Sections 3.4.7 and 3.4.8, are also helpful new contributions.
104

 A series of new metadata 

error and redundancy detection algorithms were also developed as part of 

jMusicMetaManager, as described in Section 8.4.  

A significant amount of experimental research has been performed during the course 

of the jMIR project. Space and time constraints made it impossible to include all of it in 
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detail in this dissertation, which is why only brief overviews are presented of some of the 

results, such as the exploration of the kinds of metadata errors common to music found 

on-line (Section 8.6.4) or the types of high-level features that are most effective in 

classifying music by genre (referred to briefly in Section 4.5.1). Other experiments, such 

as those described in Section 9.2, or the MIREX 2005 winning performance of the 

jSymbolic features on symbolic genre classification described in Section 9.3, were more 

associated with evaluating system performance than with revealing musical insights. 

An experiment that was particularly important in revealing meaningful information 

about music, however, was that described in Section 9.4. This experiment explored 

whether classification performance gains could be realized by combining multi-modal 

information, specifically features extracted, for each piece of music, from audio 

recordings, symbolic recordings and cultural data available on-line. The results indicate 

that there are indeed statistically significant performance gains when features extracted 

from two or three of these types of data are combined, compared to when only one type of 

data is used. It was also found that features extracted from cultural data are not only 

helpful in improving classification performance, but also in reducing the seriousness of 

those misclassifications that do occur. 

More details on these and other theoretical and experimental contributions of this 

dissertation are provided in each of the remaining chapters. Sections 10.1 and 10.2 also 

provide more detailed general summaries than that provided here, albeit ones that include 

novel engineering contributions as well as research contributions. In addition, summaries 

of the particular contributions of Chapters 3 to 9 are presented near the end of each of 

these chapters. 
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2. Related research from psychology and the humanities 

2.1 Chapter overview 

This dissertation as a whole focuses primarily on technical procedures and tools for 

automatically classifying music in various ways. Strictly speaking, it is not necessarily to 

imitate the processes used by humans in order to perform such classifications, as entirely 

different process can potentially be used by computers to simulate human classification 

behaviour. Computers process information in ways that are intrinsically different from the 

mechanisms used by the human brain, and the best approaches to modelling human 

behaviour with computers may well be very different than those actually used by humans 

themselves. 

Having noted this, automatic music classification is, at least from the perspective of 

most currently conceptualized applications, still very much a problem of modelling 

human behaviour. The particular musical categories that humans use as well as the 

particular classifications that they make are often subjective from a purely data-driven 

perspective, and sometimes even irrational. Since most automatic classification 

applications require simulating the subjective and potentially irrational classification 

judgements that humans may make, it is therefore useful to gain as much of an 

understanding as possible about the mechanisms used by humans to make classifications. 

This can help in implementing automatic classification systems that anticipate and imitate 

human behaviour as well as possible, regardless of whether the systems actually 

implement similar mechanisms. 

This chapter is therefore presented in order to provide a basic grounding in some of 

the research in psychology and in the humanities on human music classification and 

similarity judgement. Such research is rarely given the attention that it deserves in the 

music information retrieval literature, and it is presented here in order to help address this 

shortcoming. Research in psychology and the humanities can be essential not only in 

providing inspiration for techniques that are implemented in automatic music 

classification systems, such as the choice of features to extract, but can also be essential 

in designing as well as evaluating the relevance and significance of automatic music 

classification evaluation experiments. 
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The material in this chapter is intended only to present particularly significant 

highlights of the relevant literature in psychology and the humanities, however, and is 

certainly not a comprehensive survey. This chapter is intended primarily to provide 

context and background for the rest of this dissertation, which focuses more specifically 

on using computers to perform automatic music classification. More detailed coverage of 

research on human music classification is well beyond the scope of this dissertation and is 

outside of the author’s area of expertise. The works of Lakoff (1987), Ashby (1992), 

Nosofsky and Zaki (2002) and Smith and Medin (1981) provide broad overviews of 

established research, and there are many other excellent sources as well, including many 

that highlight more recent approaches and results. Many more details are available in the 

works referred to in this chapter and in the psychological, musicological and music 

theoretical literature at large. 

Section 2.2 describes the psychological models that have been developed with respect 

to human categorization and classification in general, without particular respect to music. 

This includes explanations of both classical models and exemplar-based models, which 

are the two most commonly espoused general models for human classification, as well as 

a few other models and miscellaneous relevant psychological insights. 

Section 2.3 focuses on psychological research that has been done specifically on 

music classification. The topic of similarity is emphasized here as well because it is 

essential to most exemplar-based models of classification and because it has been a 

particular focus of research in music psychology. 

Section 2.4 presents insights drawn from the musicological and music theoretical 

literature as a complement to the psychological research presented in the previous two 

sections. A particular, although certainly not exclusive, emphasis is placed on genre 

classification, as this is one of the hardest and most interesting kinds of music 

classification, and because it is particularly emphasized in the literature. 

2.2 General psychological classification models and research  

2.2.1 Classical classification theory 

The oldest known theory of classification, known as the classical theory, dates back 

to Aristotle. It is based upon the idea that, in order to be considered a member of a 
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particular category, an entity must fulfill each of a set of necessary and sufficient 

conditions required by the category in question. The details of the classical theory are 

well documented in the literature (e.g., Smith and Medin 1981). 

To provide an example of how the classical theory works, one might consider an 

equilateral triangle. Such a triangle is defined as a closed figure with three sides of equal 

length, where each side must be a line segment. If all of these conditions are met, then an 

entity may be considered to be an equilateral triangle. Failure to meet any of these 

conditions, however, would mean that the entity would fail to qualify as an equilateral 

triangle.  

There are a number of problems with the classical theory, as famously noted by 

Wittgenstein (1953) and verified both experimentally and theoretically by many others. 

For example, different entities belonging to the same category can have some 

fundamentally different key characteristics. Not all games can be said to meet the same 

requirements, for instance, as some involve competition and some do not. 

An additional problem is that classifications can often be context-dependent, and can 

depend on one’s current state of mind as well as background. The classical theory 

incorrectly assumes absolute rules in all cases. 

Yet another problem is that numerous experiments have demonstrated that people 

often consider some entities to be better, or more typical, examples of a category than 

others. This is called centrality, and is associated with membership gradience, or the 

notion that categories can have degrees of membership as well as unclear boundaries. For 

example, a robin can be considered to be a better example of a bird than a peacock, or a 

chair can be considered a better example of furniture than a shoe rack. 

There have been a number of attempts to modify the classical theory in order to 

account for such problems. One modification permits an entity to be considered a member 

of a category if it successfully meets some but not all of its membership rules (e.g., 

Wittgenstein 1953). This approach allows some entities to be better members of a 

category than others because they fulfill more rules than other lesser members. Different 

rules may also be given different weightings. Another modification allows categories to 

incorporate diversity by allowing them to be defined in terms of a union of other smaller 

categories each with their own rules which may differ from one another. 
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It is interesting to note that the classical model is in some ways similar to expert 

system approaches to computer-based classification (see Section 6.2.2). 

2.2.2 Exemplar-based classification theory 

The classical theory waned in popularity as evidence mounted against it. One of the 

most influential alternative theories to be proposed was based on the notion that 

categories, rather than being defined by rules, are defined based on prototypical 

exemplars, and classifications are made by comparing probe entities with these 

prototypical exemplars (Poser and Keele 1968, 1970; Reed 1972; Rosch 1973a, 1973b; 

Rosch, Simpson and Miller 1976). A probe entity can thus be considered, under many 

variants of such a model, to belong to the same category as that of the prototype to which 

it is the most perceptually similar. Members of a category may also be thought of as being 

connected by a series of overlapping similarities, something that is referred to in the 

literature as family resemblance (Wittgenstein 1953). 

The prototype model overcomes many of the inconsistencies in the classical theory. 

For example, it is no longer necessary for each and every entity belonging to a category to 

share certain properties with all other entities belonging to the same category, as 

categories are not defined by such properties under the prototype model. Furthermore, 

entities may have differing amounts of typicality, based on their relative similarity to a 

prototypical exemplar, and boundaries between categories can be fuzzier and more 

flexible. The prototype theory can also help account for category ambiguity, such as 

encountered when subjects are asked to classify a tomato as a fruit or as a vegetable. 

A number of experiments support this prototype-based approach. It was found, for 

example, that prototypes were the first exemplars learned by children (Mervis 1980; 

Rosch 1973b), that prototypes are the most likely to be named when subjects are asked to 

list all members of a category (Mervis, Catlin and Rosch 1976) and that, when asked to 

verify whether a probe entity is a member of a category, the fastest yes responses are to 

category prototypes (Rips, Shoben and Smith 1973; Rosch 1973b). 

A vertical hierarchical structure of categories is typically associated with exemplar-

based models. The basic categories are those categories at the level that is most 

commonly processed by humans, and consist of categories that have common attributes 

but are not variants of one another (e.g., skirt, coat, pants, etc.). Broader superordinate 
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categories are above these basic categories, and are defined by their function (e.g., clothes 

cover people). More specific categories, called subordinate, are below basic categories, 

and consist of categories that are variants of the basic categories (e.g., parkas, rain coats, 

wind breakers, etc.). To provide an additional example, animal→bird→robin is an 

example of the superordinate→basic→subordinate structure. Exemplar-based models also 

typically have a horizontal aspect to them as well. 

Basic categories are considered to be of particular importance, a notion referred to as 

basic-level primacy. As summarized by Lakoff (1987), they are: 

 The highest level at which a single mental image can reflect the entire category. 

 The highest level at which a person uses similar motor actions when interacting 

with category members. 

 The level at which subjects are fastest at identifying category members. 

 The level with the most commonly used labels for category members. 

 The first level named and understood by children. 

 The level at which most of our knowledge is organized. 

The earliest exemplar-based models assumed that each category has only one 

prototype, and that each category is distributed normally around its prototype. 

Classifications can thus be made by calculating the distance between an entity and each 

prototype in psychological space and then choosing the category whose prototype is 

closest to the entity. The closer an entity is to a prototype, the better an example of the 

category it is under this model. Essentially, degree of category membership is evaluated 

based on the similarity of an entity to a category’s prototype. 

Experimental evidence soon began to demonstrate that this model was too simplistic, 

however (Smith and Medin 1981). For example, the assumption that similarity is 

inversely related to psychological distance is not always correct (Tversky and Gati 1982), 

and it has been found that categorization performance can be affected if exemplars 

possess correlated properties (Ashby and Maddox 1990). It has also been repeatedly 

demonstrated experimentally that internalized exemplars beyond just the prototype can 

have an effect on categorization (e.g., Brooks 1978).  
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Exemplar-based models were therefore modified to allow categories to be defined by 

multiple prototypes rather than just one (Rosch 1975; Rosch 1978). For example, the bird 

category might have both robins and sparrows serving as prototypical exemplars. Some 

versions of this theory hold that there is still a single prototype that is more influential 

than other exemplars, while other versions allow multiple exemplars to be equally 

important, with no single central prototype. In either case, classification of a probe entity 

still involves comparing it with all stored exemplars of all categories and choosing the 

category that has the prototype that is the most similar to the probe entity. 

The Generalized Context Model (GCM) (Nosofsky 1986) provides a variant of the 

exemplar-based model that, as usual, assumes that classifications are made by making 

comparisons between probe exemplars and prototype exemplars. However, special 

attention is given to the role of selective attention in the GCM. The similarity of two 

stimuli is assumed to be probabilistically related to psychological distance between the 

stimuli in perceptual space, with the implication that a given subject may respond 

differently to the same stimulus at different times. 

There has been a break between exemplar-based models that assign particular 

significance to prototypical exemplars and models that assume that humans store and use 

many exemplars in a more equitable fashion that does not give primacy to prototypes. 

The first approach assumes that classification decisions are made based on similarity 

comparisons between probe entities and the various prototypes. The second approach 

assumes that classification is performed based on similarity comparisons with all stored 

exemplars. In the literature, variants of the former approach are often referred to as 

prototype-based models, and variants of the latter as exemplar-based models. However, 

the term exemplar-based models is also sometimes used to refer to both approaches 

collectively, so there is some ambiguity in the terminology. Contemporary supporters of 

prototype-based models include Minda and Smith (2001), for example, and supporters of 

exemplar-based models include Nosofsky and Zaki (2002). 

One problem with most exemplar-based models is that they typically assume that 

humans perform similarity comparisons between an entity and every exemplar of each 

category when we are making classifications. Ashby (1992) questions this because of the 

large computational load required.  
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There are also a number of questions with respect to exemplar-based models that 

remain to be definitively resolved. For example, for models that include prototypes, how 

exactly are these prototypes determined? More precisely, how does one find the 

prototypes of a category if it is assumed that categories are defined by the prototypes? 

Although there are certainly possible solutions to such problems of category formation, 

such as the potential for a bottom-up clustering method (e.g., Cambouropoulos 2001), 

such models can be difficult to verify.  

It is interesting to note that exemplar-based models have similarities to nearest 

neighbour computer classification algorithms (see Section 6.2.6.4). The similarity 

measurements that are part of exemplar-based models can also be said to have 

resemblances to stochastic local search techniques that are used in machine learning to 

optimize feature selections and measure distances in feature space appropriately (see 

Section 6.2.5).  

2.2.3 General recognition theory 

General recognition theory (GRT) (Ashby 1989; Ashby 1992) is a modified version 

of exemplar-based models that does not require the large number of mental similarity 

comparisons required by most unmodified exemplar-based models. The essential idea 

behind GRT is that humans divide perceptual space into regions and associate a category 

label with each region. Each region is separated by a decision boundary given by some 

function, and each probe entity is assigned the category of the region into which it falls. 

Each classification therefore involves first mapping the probe entity to the appropriate 

region in perceptual space and then assigning the category corresponding to this region. 

The linking of categories to abstract regions of perceptual space makes it unnecessary to 

compute similarity with all exemplars every time that a probe entity is presented. 

In GRT, the decision regions in perceptual space are formed based on the union of, 

typically, multivariate normal probability density regions surrounding each exemplar. 

Each category can therefore be represented perceptually as the probability mixture of its 

stored exemplars. 

One implication of GRT is that the similarity of two categories can be viewed as the 

proportion of each category’s decision region that falls in the other’s decision region, 

something that fits well with a vertical approach to categorization. For example, apples 
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and oranges have little or no intersection as they are unlikely to be confused with each 

other, but they both overlap with the fruit category’s decision region. Apples and oranges 

can therefore be said to be more similar to fruit than to each other. 

Proponents of GRT (e.g., Perrin 1992) note that GRT is particularly successful in 

uniting similarity and preference in a way that does not falsely assume that similarity is 

symmetrical. This approach therefore arguably allows a deeper exploration of the 

relationship between identification, similarity, preference and categorization, while at the 

same time avoiding some of the weaknesses of other approaches. 

It is interesting to note that decision-boundary models such as GRT have similarities 

to discriminant-based classification algorithms (see Section 6.2.6.6).  

2.2.4 Assumptions and evaluation of classification models 

Ashby (1992) has usefully noted that classification models tend to make three types of 

assumptions: 

 Representation assumptions: These assumptions describe how contrasting 

categories and the stimuli are represented internally. Most categorization models 

assume that a stimulus can be represented as a point in multidimensional space, 

but differ in other respects. 

 Retrieval assumptions: These assumptions describe the information that must be 

collected before a response can be made. For example, exemplar-based models 

assume that subjects compute similarities between stimuli and exemplars. 

 Response assumptions: These assumptions describe how subjects select the 

particular category or categories to assign to stimuli. 

Ashby provides a detailed description of each of the assumptions made by the different 

models and notes that, in practice, it can be difficult to accurately and precisely evaluate 

different classification models and the assumptions that they make in experiments. 

2.2.5 Additional issues in classification theory 

The issue of determinism is an important area of continuing debate in classification 

theory. Deterministic models assume that a subject given the same stimulus multiple 

times will classify the stimulus in the same way each time, whereas probabilistic models 
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permit variation based on factors such as perceptual noise, cognitive noise, attention and 

experience. Probabilistic models typically incorporate perceptual noise and/or cognitive 

noise and use probability density functions in order to evaluate similarity and make 

classifications. 

In practice, it seems that classification is often probabilistic if inter-category similarity 

is high (Ashby 1990; Ashby 1992). This can be the result of both perceptual noise and 

noise in one’s internal model, something called criterial noise. One’s memory can vary 

with time, just as one’s internalized model of categories can change as one is exposed to 

new stimuli over time. 

An additional area of debate is whether or not entities can in fact be represented as 

points in a multidimensional space, as assumed by exemplar-based models and GRT. It 

has been suggested that such a numerical representation of entities may be inappropriate 

(Sattath and Tversky 1977; Tversky 1977). The assumption of a geometric model 

imposes boundaries on the number of nearest neighbours that any point may have, based 

on the dimensions of the model. For example, a point in a one-dimensional space may 

only have up to two nearest neighbours. Although this upper bound does not appear to be 

problematic in perceptual space, it may be significant in conceptual space (Tversky and 

Hutchinson 1986). 

The possibility of category overlap is another essential issue. This overlap can 

manifest itself in situations where an entity can be said to truly be a member of multiple 

categories at once, as well as in situations where the entity is in fact only a member of a 

single category, but differentiation is difficult or impossible with the given set of 

percepts. As pointed out by Ashby (1992), it is very unlikely that an individual will 

confuse vegetables and cars, but it is much more likely that a non-wine drinker will 

confuse similar grapes. Any successful model of classification should therefore account 

for category overlap. 

There have been a number of proposals on how to accommodate entities that belong 

to various categories to varying degrees. Fuzzy set theory, for example, assumes that 

entities can be given a number from 0 to 1 indicating how much they belong to each 

category. 
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There are many other variants of the models discussed above, as well as several 

entirely different classification models. There is still no absolute consensus as to precisely 

which model most accurately reflects human behaviour, although some experiments have 

found that a number of different models perform similarly when applied to classification 

problems (e.g., Cohen 1992). 

2.3 Insights from music psychology  

The information presented above in Section 2.2 describes psychological models and 

research relating to classification and categorization in general. This section describes 

research that is specific to music classification and musical similarity. 

The various classification models described above can certainly be applied to music 

classification. For example, an adherent to one of the variations of the classical model 

might argue that we compare musical properties that we perceive, such as rhythmic 

patterns or the particular instruments being played, with our existing knowledge, 

conscious or unconscious, of the characteristics of a particular musical category. An 

adherent of an exemplar-based model, in contrast, might argue that we perform 

classifications by measuring the musical similarity of the music that we hear with the 

prototypical exemplars of various musical categories. As one might expect, most 

approaches to music classification are based upon variants of these two dominant overall 

models. 

2.3.1 Music classification  

Deliege (1996; 2001a; 2001b), for example, approaches music classification from the 

perspective of exemplar-based models. She does emphasize certain differences between 

music classification and other types of classification, however, such as the particular 

importance of time in musical classification relative to various visual classification tasks. 

She suggests that we abstract cues from music, by which she means salient
105

 properties 

that are useful for making classifications. Deliege emphasizes the role of abstracted cues 

in categorization, and the underlying role that categorization plays in the progressive 

development of a mental schema for a musical piece. 

                                                 
105

 The salience of a property can be understood as the relative importance and relevance of the property 

with respect to performing a particular type of classification. 
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Deliege also suggests that imprints occur when cues are repeated and stressed. These 

imprints serve as landmarks that help humans perceive structure in music, and are 

strengthened and refined after repeated listening. Since human memory cannot store all 

cues over a long piece, it is therefore necessary either to average some of them out or to 

choose to remember only the ones judged to be the most significant. Deliege argues that 

imprints are essential in this respect, and that imprints can serve as prototypes such that 

we compare the similarity of future cues to previously formed imprints in order to 

measure similarity and perform classifications. 

Deliege notes that it is known that melodies retain a degree of similarity if contour 

and rhythmic organization remain unchanged, even if the tempo, key or size of the 

intervals are altered. Since melodies can still be recognized even after such 

transformations, it would seem that transformations that leave the abstracted cues that are 

relevant to a particular kind of classification intact do not tend to interfere with that 

particular kind of classification. However, if transformations are made that do 

significantly change abstracted cues that are relevant to a given type of classification, 

such as melodic contour or rhythmic organization in the case of melody recognition, then 

the ability to recognize the melody is impaired. 

Deliege suggests that we automatically segment music by looking for changes in 

adjacent cues. Segmentation of sections is likely to occur when abstracted cues start to 

differ from what was just heard previously, and musical phrasing and rests may help this 

segmentation process. 

Once this segmentation is complete, we can then perform similarity measurements by 

comparing the abstracted cues from different sections of the music in such a manner that 

both the similarity and the dissimilarity between different sections can reinforce or 

inhibit, respectively, the overall sense of similarity. This allows us to perform tasks such 

as thematic recognition. 

Although music theorists often consider musical structure from a perspective that 

encompasses each musical piece in its entirety, Deliege argues that human memory is 

limited, and that it is unlikely that human classification in fact emphasizes musical 

properties that develop over the long term. Furthermore, humans have been shown 

experimentally to be able to segment and classify music after hearing only very short 
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segments (Perrott and Gjerdingen 1999). It therefore seems much more likely that 

listeners form cue abstractions and groupings in the short term as they listen. 

Lerdahl and Jackendoff (1982) have also formed a model of how musical groupings 

are made, based on gestalt principles of proximity, similarity, common fate, closure and 

good continuation. Other research emphasizes the role of rhythm (Cooper and Meyer 

1960) and of melodic contour (Deutsch 1999) in forming groupings. 

Research seems to indicate that different musical backgrounds can cause certain 

properties to be emphasized over others when forming groupings. Non-musicians, for 

example, tend to focus more on intensity and register, while musicians are more likely to 

focus on motivic aspects (Pollard-Gott 1983). Thorisson (1999) also found that novices 

base categorization of Romantic and Classic piano on texture more than chord 

progressions. Deliege and Thorisson also both note that perceived similarity and 

categorization may be dependent on culture and personal experience. 

Overall, Deliege draws a parallel between Rosch’s approach to categories and her 

own abstracted cues and imprints. Horizontality can be associated with the variations 

developed from a single cue, such as the variations of a motif, where these variations 

generate an imprint that is analogous to a prototype. Various types of cues, in turn, can be 

organized vertically into hierarchies. 

Ockelford (2004) has modified and built upon Deliege’s approach using an approach 

that is informed by both psychological research and music theory. He puts a particular 

emphasis on the notion of derivation and on the importance of mental links we form 

between chunks of music. He also notes that, when observing themes and variations, 

listeners must notice sufficient difference in order to tell differences in parts of piece, but 

there must still be enough similarity for the piece to have coherence. 

Ockelford models music as being conceptually divided into frames, or slices of time, 

each with their own set of perspects, or properties. Any frame may be compared with any 

other frame using each of their associated perspects. We can also form mental 

relationships between different perspect values in different frames, something Ockelford 

calls interperspective relationships. If enough perspects match for any two frames, then 

they can be judged to be similar and, if all perspects deemed to be salient are the same, 
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then the frames are perceptually identical. Ockelford notes that such judgments can vary 

with attention, context and experience. 

Ockelford suggests modifying Deliege’s model by introducing the notion that one 

musical element can be considered to derive from another element. If one perspective 

value is thought to be an imitation of another, then the second is considered to be a 

derivative of the first. Ockelford calls the interperspective relationships that can indicate 

derivation zygonic relationships. Zygons linking perspect values that are perceived to be 

identical are perfect and zygons linking similar values are imperfect. A sense of imitation 

can occur even if the derivative is only similar but not identical to the original. Under this 

system, the strength of the sense of derivation varies based on the perceptual salience of 

the values concerned.  

Ockelford argues that such an understanding of derivation makes it possible to form 

larger mental models of structure, and that zygonic relationships can be used to describe 

how perceptual groupings relate to one another. He notes that, based on Ockham’s razor, 

it may be best to assume that music is modeled in cognition using the simplest and fewest 

possible mental processes. 

Cambouropoulos (2001) provides a good summary of categorization theory applied to 

music. In particular, he emphasizes the position that cue abstraction, similarity and 

categorization are inextricably bound together. He also stresses that issues of property 

salience are particularly important with respect to music classification. It is interesting to 

note that the salience of various properties with respect to different kinds of classification 

can also be an important issue in automatic computer-based classification systems. 

Unfortunately, the psychological study of salience is often complicated by context-

dependence.  

Cambouropoulos also points out that expectation can potentially play an important 

role in music classification. For example, if one is hearing music performed by a musician 

who is known for performing Classical music, one may be more likely to classify the 

music that is actually heard as Classical than if this a priori knowledge of the performer 

were absent. 

Cambouropoulos also emphasizes a number of issues that further complicate matters. 

For example, although all members of a category may arguably be said to be similar, not 
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all similar entities will necessarily share a category. It also seems likely that we 

constantly update our notions of similarity, our ontology of categories and the properties 

that are salient when performing classifications. Furthermore, the perceived similarity of 

entities can depend upon the contexts in which they are found, just as other aspects of 

similarity and classification can also be context-dependent. 

Cambouropoulos proposes a model for category formation that is intended to address 

such issues. This model is based upon a clustering algorithm called unscramble that 

generates a set of categorizations given a set of entities. Two entities are defined as 

similar if the perceptual distance between them is below some threshold, and a category is 

defined as a set of entities where all entities are pair-wise similar. This approach permits 

overlapping classes, although it has the disadvantage that it does not account for 

categories that encompass several distant discrete clusters in perceptual space. 

In order to address salience, the unscramble algorithm assigns weights representing 

salience to properties. Higher weights are also given to properties that are unique to a 

category, and lower weights are given to properties that are shared by multiple categories. 

Prototypes are calculated once clusters are formed by the unscramble algorithm, and 

these prototypes are then used to perform classifications, as normally assumed by 

examplar-based approaches. Cambouropoulos reports that this algorithm performed well 

in simulating human behaviour, although he acknowledges that this does not necessarily 

prove that humans perform operations similar to the unscramble algorithm. 

Although there is convincing evidence that music categorization cannot be explained 

by a purely classical model (e.g., Deliege 2001a.; Ziv 2007; Volk et al. 2008), it has been 

suggested by some (e.g., Lamontand and Dibben 2001) that perhaps some researchers 

have been a little too hasty to concentrate only on exemplar-based models of musical 

classification. It has been suggested that perhaps it would be best to consider both 

perceptual and conceptual elements and to use models of categorization that incorporate 

elements of both classical models and exemplar-based models.  

For example, some cognitive psychologists argue that similarity may be too 

unconstrained to ground categories (Thorisson 1999), as is required by most purely 

exemplar-based models. Furthermore, similarity judgment and classification may each 

involve different properties and different weightings. Although similarity judgments 
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based on differences in lists of properties likely do play a potentially important role in 

classification, it is also possible that classifications are performed partly based on higher-

level analytical knowledge as well. Additionally, classification may also potentially affect 

similarity, as noted above, such as in the case of a listener who can identify the genre of a 

given piece and then use this information as part of future similarity judgments between 

this piece and others. 

 There is some empirical basis for such a hybrid approach, such as the experiment by 

Hortaçsu and Tekman (2002) that indicated both that style categories seem to be defined 

more by casual principles than by lists of properties, which supports a classical approach, 

and that style categories follow a hierarchical organization, which is more indicative of an 

exemplar-based approach. Another study found that listeners provided with some basic 

analytical knowledge were able to classify music into categories better than listeners 

without the same analytical knowledge (Thorisson 1999). So, even though it seems clear 

from the large body of experimental evidence that a purely classical model is unlikely, it 

is also seeming increasingly likely that a purely exemplar-based model may not be correct 

either. 

2.3.2 Musical similarity 

Exemplar-based classification models typically fundamentally assume that humans 

base classifications upon judgements of the similarity between probe entities and 

exemplars. As emphasized by McAdams and Matzkin (2003), similarity judgements also 

underlie other essential musical operations, including perceived invariance under musical 

transformation, music recognition and the perception of familiarity in music.  

There are many perceptual cues that one could potentially use to judge musical 

similarity, including statistical properties extracted from the auditory data, structural 

information collected during the course of listening to a piece of music and judgments of 

how well the music matches one’s expectations of the grammar that the music is 

understood to have. 

There is some debate on the relative importance of surface properties (e.g., melodic 

contour, statistical pitch distribution, dynamics, accents, note durations, rhythm, timbre 

and performance techniques such as trills, vibrato and portamento) and deep properties 

(e.g., harmonic structure, metric structure and thematic variations). Related to this, 
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McAdams and Matzkin (2003) have postulated three types of potentially overlapping 

types of similarity: 

 Statistical distribution of surface properties, their derivatives, the relations 

between them and, potentially, transitional probabilities. 

 Figural similarity, which is to say patterns of properties that provide perceptual 

landmarks within long pieces of music. These landmarks will be perceived as 

invariant even after limited transformation of the audio signal. This idea is 

somewhat similar to Deliege’s imprints. 

 Structural similarity, which relies on the abstraction of structural invariants. This 

may be based on underlying harmonic and metric templates. 

Although it is certainly possible that both surface properties and deep properties play 

some role, there is some evidence that seems to minimize the role of deep properties. For 

example, Bigand and Tillmann (1996) performed an experiment where recordings were 

divided into sections that were then played in reverse order. It was found that there was 

little perceived difference in expressivity or coherence by test subjects. In contrast, 

surface properties such as loudness, duration and pitch contour were found 

experimentally to have a significant role in influencing similarity judgments. In 

particular, chromatic pitch alterations and changes to note durations seem to be 

particularly important in creating a sense of dissimilarity (McAdams and Matzkin 2003). 

Eerola and his colleagues (2001) found that properties based on the frequency of musical 

events played a moderate role in influencing similarity judgements, and descriptive 

variables such as the number of tones, rhythmic variability and melodic predictability 

were more significant. 

It has generally been noted that transposition and tempo changes have relatively little 

effect on perceived similarity (McAdams and Matzkin 2003). Even a few small interval 

changes do not interfere too much with the perception of similarity if certain prominent 

intervals that maintain melodic contour are maintained (McAdams and Matzkin 2003). 

Having noted this, such changes can still play some role in perceived similarity, which 

has led Hoffman-Engl (2001) to suggest the use of melotons, which are experimentally 
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determined by studying pitches perceived by subjects, rather than pitches defined by 

physical frequencies when studying melodic similarity. 

It also seems that the more changes to salient properties are made, the more dissimilar 

two musical segments will sound. Experiments have found that a change to both pitch and 

rhythm creates a greater sense of dissimilarity than a change to just one or the other 

(McAdams and Matzkin 2003). 

Potentially related to this, issues relating to auditory streaming (Bregman 1990) can 

also be very important. If a segment of music is altered enough so that it is broken 

perceptually into multiple streams, such as by varying the timbre of every note, then the 

perceived dissimilarity is likely to increase significantly (McAdams and Matzkin 2003).  

Another important issue is that the perception of similarity between two musical 

excerpts can depend on what is heard between them. If intervening audio information that 

is similar itself to the first excerpt is played in between the two excerpts then this may 

degrade the perception of similarity between the first and final excerpts. This effect 

appears to be modular in that, even if some dimensions of the intervening material are 

similar, if other dimensions are different then the perception of similarity between the 

first and final excerpt will not be degraded as significantly as would be the case if all 

dimensions of the intervening material were similar (McAdams and Matzkin 2003). 

This issue of modularity (Fodor 1983), which is to say whether or not the dimensions 

of perception are processed independently, is itself an important issue in general with 

respect to music. According to Fodor’s modularity thesis, the cognitive system contains 

multiple specialized subsystems. The central processing system is specialized in 

association, symbolization and metaphorization and other subsystems specialize in the 

detection of invariants and the formation of percepts and gestalts. Although it is not 

entirely clear whether music perception follows this model (Leman 1995), the results 

referred to by McAdams and Matzkin do seem to indicate some level of modularity with 

respect to pitch and duration processing, albeit not complete independence. 

Several experiments have been performed relating to comparisons of the similarity 

judgments made by musicians and non-musicians, just as experiments have been 

performed on their respective categorization behaviours, as described in Section 2.3.1. 

Several of these similarity experiments have indicated that listeners of both types tend to 
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make similar similarity judgements (e.g., Lamont and Dibben 2001), although sometimes 

for different reported reasons. There is some experimental evidence that musicians tend to 

consider structural properties such as motivic and harmonic relationships more than non-

musicians, whereas non-musicians focused more on surface properties such as dynamics, 

articulation, texture and contour (Pollard-Gott 1983; Lamont and Dibben 2001). This may 

indicate that there are parallel approaches using different properties that can be used to 

arrive at the same similarity judgments.  

Somewhat different results have been found in a sequence of experiments with 

musician and non-musician children between ten and eleven years old (Koniari, Predazzer 

and Mélen 2001). It was found that musician children performed better classifications 

than non-musician children on one piece but not on another piece. It was further found 

that similarity evaluations were made based on both surface and deep properties, and that 

different children segmented differently from each other, although each child tended to 

segment music in a way consistent with him or herself, particularly in the case of the 

musician children. The fact that even the musicians in this group were still relatively 

young children may account with the contrast with other studies.  

It can be difficult to determine which properties are being used by a particular listener 

at a particular time, as these properties can be dependent on the listener’s experience, the 

type of music that he or she is listening to, his or her mood, the situation that he or she is 

in and where his or her attention is focused. Salience is a core issue here, as different 

listeners may judge different properties to be salient at different times. Personal 

preference must also be considered, as a study of Turkish undergrads found that subjects 

tended to find different pieces more similar if they liked them than if they did not like 

them (Hortaçsu and Tekman 2002). 

Lamont and Dibben (2001) have noted that experiments have revealed four ways in 

which context can affect how listeners perceive similarity and perform classifications: 

 Experience: Children focus on factors such as loudness, whereas adults focus 

more on melody-based properties. Sensitivity to rhythm also increases with age. 
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 Familiarity: Surface properties such as melodic contour, loudness and texture 

dominate when a listener is unfamiliar with a piece. Structure is more important 

when users are more familiar with a piece, however. 

 Complexity: The types of properties that are salient depend on the complexity of 

the music. Structure is more easily perceivable for simple music, for example. 

 Task complexity: Thematic relationships are more easily extracted in less 

cognitively demanding situations 

A further complication that must be recognized by a successful model is that 

similarity is not symmetric (Tversky 1977). For example, a contemporary composer 

might decide to write a piece that can be said to be very much like Beethoven’s Symphony 

No. 5 in C minor, for example, but Beethoven’s symphony would not be said to be like 

the new composition to the same degree. In addition, musical similarity can violate the 

triangle equality (Tversky 1977). For example, Dave Grohl is like Nirvana and is also like 

the Foo Fighters, but Nirvana and the Foo Fighters are not as similar with one another. 

Tversky suggests that such asymmetries may be addressed by using a measure of the 

similarity between two entities based on a function of their shared properties minus the 

properties that are distinctive to either of them. 

One can also take the approach that similarity can be viewed as the distance between 

two entities in perceptual space, which ties in with exemplar-based classification models. 

Perceptual salience can be accounted for by weighting different properties differently 

when making similarity judgments. If two entities have a perceptual distance between 

them under some threshold, then they can be said to be similar. If all salient properties are 

the same, then they can be judged to be identical. As noted by Krumhansl (1978), issues 

of asymmetry can be addressed if one sees similarity from this perspective and takes the 

density of entities in one’s cognitive space into account. Two points in a dense region of 

entities could be said to have a smaller similarity than two points equally far apart in a 

less dense region of cognitive space.  

As a final note, it is to important to note that the vast majority of the psychological 

experiments upon which the models discussed above are based have been performed on 

North American or European listeners who are accustomed to listening primarily to 
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Western music. It may well be that the properties that have been found to be dominant in 

judging musical similarity are influenced by musical culture and training, and that 

listeners trained primarily in non-Western musical traditions may emphasize different 

properties in their similarity judgements and classification decisions. 

2.4 Musicological and music theoretical insights 

The research and models described in Sections 2.2 and 2.3 are largely based upon 

experimental data and relatively low-level models that are supported by this data. 

Musicological and music theoretical research, in contrast, tends to take a higher-level 

approach that is less based on controlled experiments with human subjects and more 

based on direct studies of music itself and on more general sociological research, such as 

the reception of music. Although there has been relatively little musicological and music 

theoretical research performed directly on the mechanisms used by humans to classify 

music, at least compared to the scope of the psychological literature, there is nonetheless 

some very useful work that touches on the subject, and it useful to highlight some of it 

here. 

Another important distinction between the psychological research and research in the 

humanities is that a significant proportion of psychological research has focused, often of 

necessity, on classification behaviour and similarity judgements in response to small and 

carefully controlled groups of audio signals. There has been much less psychological 

research on musical classification behaviour and similarity judgements on a greater scale 

and with a greater scope. For example, how do humans classify and measure the 

similarity between different performers’ playing styles, between different albums by the 

same performer or between different genres of music? Such judgments each require 

decisions that span multiple pieces of music, and thus may potentially operate on entirely 

different levels and using different mechanisms than comparisons between just a few 

well-controlled audio signals. Internalized abstracted symbolic and cultural 

representations and models, for example, may be just as significant here as relatively 

short-tem perceptual and cognitive representations of audio signals. Fortunately, there is 

some musicological and music theoretical research that has been performed that may help 

to fill in the gaps. 
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Lerdahl and Jackendoff (1982) suggest that listeners perform a reduction of music 

based on their well-formedness rules. It might be argued that this reduction serves as the 

mechanism by which we store information about music, since there is too much 

information in the raw audio signal for it to be stored in its entirety over the long term. 

This reduction could then provide the information about music that is used for performing 

classifications and similarity comparisons, whether one prefers classical or exemplar-

based models.  

Temperley (2001) has proposed preference rules that are in some sense an expansion 

on Lerdahl and Jackendoff’s well-formedness rules. Temperley proposes these preference 

rules as a way of reducing representations of music and as a way of evaluating the 

goodness of various possible analyses of music. He further suggests that perhaps humans 

have internalized such rules and can judge the similarity between pieces based on how 

well they each meet the requirements of various preference rules. Different genres of 

music will have different preference rules, and how well the particular preference rules 

for a given genre are fulfilled by a given musical piece could provide a basis for 

classifying the piece. Although this approach does seem intuitively reasonable, and could 

certainly be experimented with as a tool for computer-based classification, Temperley 

acknowledges that there is only limited experimental support for this model. 

Related to this, Fabbri (1981) has suggested that we form hyper rules to create 

different hierarchies of importance associated with different discriminants that depend on 

the particular characteristics of the music under consideration. For example, if one 

recognizes that a certain song is by a certain performer who is associated with certain 

styles and genres, this may affect subsequent similarity and classification judgments. This 

ties in with the importance of expectation, as emphasized by Cambouropoulos (2001) and 

others, as described in the sections above. 

This reemphasizes the importance of not focusing exclusively on sonic cues when 

considering how humans classify music. Cultural and social characteristics of music 

beyond the scope of audio signals can also be of as much or more importance. 

Musical genre represents one of the most fundamental ways in which humans 

categorize music, and serves as in interesting case study. Genre is strongly linked to the 

social, economic and cultural backgrounds of both musicians and listeners. Both of these 
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groups tend to identify with and associate themselves with certain genres, with the result 

that their behaviour is influenced by their preferences. Or, viewed from a different 

perspective, many people have strong identifications with social and cultural groups that 

are associated with certain musical genres. In either case, there is often a strong 

correlation between musical genre preferences and personal appearance and behaviour. 

One need only see a photo or watch an interview with a musician, without ever having 

heard his or her music, to be almost certain whether the musician plays rap, heavy metal 

or classical music, for example. 

The style of the album art, web pages and music videos of musicians all provide non-

sonic cues that humans can use to classify music. Similarly, as noted above, a performer’s 

appearance and actions on stage (facial expressions, ritual gestures, types of dancing, etc.) 

provide further cues, as do an audience’s demographics, dress and behaviour (clapping, 

shouting, sitting quietly, dancing, etc.). The fine musical distinction between some sub-

categories may well be related to such social and cultural properties more than musical 

content itself.  

The writings of Franco Fabbri are particularly influential with respect to these types 

of issues, particularly in relation to musical genre. Fabbri discusses the links between 

genre and social, economic and cultural factors and how genres come into being in one of 

his early papers (Fabbri 1981). Fabbri continues this discussion in a slightly later paper 

(Fabbri 1982). He also presents a discussion of the issues related to musical categories, 

how the mind processes them and their importance in general in a more recent paper 

(Fabbri 1999). Of particular interest, Fabbri (1981) argues that musical genres, and by 

extension, perhaps, musical categories in general, can be characterized using the 

following types of rules, of which only the first is related strictly to musical content: 

 Formal and technical: Content-based practices that are typically followed by 

members of the genre. 

 Semiotic: Abstract concepts that are communicated (e.g., emotions or political 

messages). These can also relate to information conveyed by ways of dressing and 

acting and what they symbolize. 

 Behaviour: How composers, performers and audiences appear and behave. 
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 Social and ideological: The links between musical categories and demographics 

such as age, race, sex and political viewpoints. 

 Economical and juridical: The laws and economic systems supporting a musical 

category, such as record contracts or performance locales (e.g., cafés or 

auditoriums). 

In particular, Fabbri suggests that if one views categorization according to the 

classical theory then it can be said that musical discriminants are learned as part of 

enculturation and education. If one espouses exemplar-based models, then one might say 

that individuals also learn prototypical exemplars via supervised learning provided, again, 

via enculturation and education. So, Fabbri suggests, in either case each culture provides 

its members with the general bases for performing musical classification, although there 

can be some variance in rules or exemplars from individual to individual. This means that 

one should not see categories and the rules or exemplars that define them as static and 

absolute, but rather as constantly shifting products of culture. In addition, as we 

collectively adapt our conceptions of categories based on our cultural surroundings, our 

society also collectively updates itself based on changes in individuals’ conceptions, a 

bidirectional feedback process (Fabbri 1982; Fabbri 1999). Fabbri also suggests that new 

musical genres are originally formed as rules of existing genres begin to become 

consistently broken in consistent ways over time (Fabbri 1981). 

Fabbri builds upon Umberto Eco’s contention that categories do not tell us what a 

thing is, but how to put it into a system of concepts. Our awareness of the kind of music 

that we are listening to thus influences how we listen to it, something that underlines the 

importance of musical classification to musical experience in general (Fabbri 1999).  

Frith (1996) explores related topics by presenting a discussion of the types of social 

and cultural factors that can affect how category distinctions are formulated and what 

their meaning is. Toynbee (2000) provides an interesting discussion of how genres inform 

musicians, of the influences of identifications with different communities and of the 

music industry. 

Brackett has also done some very interesting work on musical genre, including a 

discussion of how the ways in which particular genres are constructed and grouped can 



 110 

vary in various charts, radio formats and media fan groups, and of issues relating to 

recordings crossing over from one set of groupings to another (Brackett 2002). Brackett 

has also written a good resource for those trying to deal with the task of characterizing 

genres (Brackett 1995). 

It is important to emphasize that a great deal of theoretical work has been done on 

genre in fields other than musicology. Much of this work provides insights that are not 

only applicable to musical genre, but to musical classification in general. The collections 

of works edited by Duff (2000) and Grant (2003), for example, are excellent resources on 

literary genre and film genre, respectively. 

Lyrics are another type of cue that can be particularly important in classifying music. 

Although lyrics are of course contained in sonic audio signals, they are often treated 

separately from more ―musical‖ cues in the literature, and are often given relatively little 

attention by musicologists. Nonetheless, lyrics can be very important to many listeners. 

Content (e.g., love, political messages, etc.), rhyming scheme, vocabulary, use of clichéd 

phrases and use of characteristic slang, for example, all likely provide useful indications 

of genre.  

It is for the reasons outlined above that jWebMiner (see Chapter 5) is included in 

jMIR. It is able to extract cultural information not stored in sonic cues, and complements 

the more traditional types of features extracted by jAudio (see Chapter 3) and jSymbolic 

(see Chapter 4). There are also plans in the future to write further jMIR tools to access 

even more of the information that can be useful for classification, such as a jLyrics 

feature extractor that will extract features from textual lyrics, and a jAlbumArt, which 

will extract features from images of album art. 

There is a significant amount of additional relevant musicological and music 

theoretical research that is presented in other chapters of this dissertation. An area of 

particular interest, from both theoretical and practical perspectives, is the ways in which 

humans form, interrelate and organize categories. These issues are discussed in Section 

8.2, as they are particularly relevant to the formulation and organization of musical 

collections. 

The particular sonic cues that humans use to classify music have also been considered 

in the humanities as well as in psychological research. From the point of view of 
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automatic music classification, this is something that is directly pertinent to feature 

extraction. These issues are consequently discussed in Section 4.4. 
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3. jAudio: Extracting features from audio 

3.1 Overview of audio feature extraction and jAudio 

3.1.1 Introduction 

Audio feature extraction is the process of automatically extracting characteristic 

information about audio files which can then be used for purposes such as classifying and 

analyzing audio. As discussed in the various sub-sections of Section 3.2, this involves a 

number of steps, including parsing and potentially decompressing the audio samples from 

the file in which they are stored, pre-processing the samples so that they are appropriately 

prepared for the particular features to be extracted and, finally, extracting the features 

themselves, which may be calculated based on the basic samples, other features that have 

already been extracted, or both. 

jAudio is the jMIR component devoted to extracting features from audio data, and it 

performs all of these steps. It is designed to be used directly as a simple audio feature 

extraction software application as well as a platform for iteratively developing new 

features that can then be shared amongst researchers. 

Audio feature extraction has to date commanded significantly more attention in the 

MIR community than either symbolic or cultural feature extraction. As a consequence, 

there are already several well-established audio feature extraction software systems 

designed for use in MIR research, as is discussed in Section 3.3.2. Reasons for this 

emphasis on audio feature extraction include, among other factors, strong commercial 

interest in technology for processing digital audio and, as discussed in Section 3.3.1, a 

large body of existing related research in speech recognition. 

MIR researchers have been quick to make use of existing and easily accessible 

applied work in non-music related areas of audio research, something that has in many 

ways benefited MIR research. Unfortunately, this has, in some cases, been done without a 

full awareness of the relevant digital signal processing theory. Although quick and 

encouraging early results have been achieved in many cases, using approaches that are 

not fully informed can have the ultimate consequence of limiting long-term performance.  
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To give one example, many MIR researchers have been quick to use Hamming 

windows (see Section 3.2.3) when extracting frequency domain information from audio 

signals, likely because this is a common approach in speech analysis applications. 

However, although appropriate when dealing with signals such telephone speech, for 

example, this may not always be the best approach when dealing with musical audio. To 

give another example, relatively little attention has been paid to the potentially critical 

issue of feature dependence on audio encoding schemes, as discussed in Section 3.2.5.  

This chapter therefore places a greater emphasis on background information than 

some of the other chapters. Although naïve approaches to signal processing can produce 

acceptable results in some cases, performance will ultimately be improved if one has the 

necessary background knowledge to properly parameterize feature extractions and design 

effective new features.  

The wealth of existing work on audio feature extraction has also influenced the design 

priorities of jAudio. Much of the work in producing jWebMiner and jSymbolic was 

devoted to developing a basic framework for analyzing data and designing and 

implementing specific features.  

The existing research and software relating to audio feature extraction made it 

possible to more fully develop jAudio than some of the other jMIR components. In 

particular, this involved adding functionality for testing new features, including basic 

recording, sound synthesis and visualization tools, as discussed in Section 3.4.9. It also 

made it possible to put an even greater emphasis on making it easy for developers to 

design and implement features within the jAudio framework, as discussed in Sections 

3.4.5 to 3.4.8. jAudio also provides users with a particularly broad range of interface 

choices for extracting features, including a simple and easy-to-use GUI, a command-line 

interface for batch processing and an API for embedding jAudio’s functionality in other 

applications. This GUI is described in Section 3.5. 

3.1.2 Iterative feature development  

Designing new features to extract from audio signals can be a particularly problematic 

task. A typical, or even musically trained, person might have difficulty expressing a 

precise list of characteristics when asked to distinguish between two different sounds, 

even if he or she can easily differentiate between the sounds. Even when one is able to 
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describe audio characteristics, these features are likely to be abstractions that are difficult 

to quantify and scientifically extract from audio signals. For example, a musician asked to 

describe the differences between two genres of music is likely to use terms that require 

the ability to extract information based on pitches, rhythms and timbres. 

Unfortunately, high-level information such as this is currently difficult or impossible 

to reliably extract from general music signals. This difficulty means that one must at least 

start with low-level signal processing-oriented features. Determining which such low-

level features are best-suited for any particular task can be difficult, as humans do not 

tend to think about sound in terms that are meaningful in a low-level signal processing 

sense. 

Fortunately, there are successful approaches to dealing with this problem. One can 

take an iterative approach to feature extraction, where low-level features derived directly 

from audio signals are used to derive mid-level representations, which can in turn be used 

to derive increasingly high-level features that are musically meaningful to humans. For 

example, basic spectral and amplitude features can currently be used to track note onsets 

and pitch in the special case of monophonic music, which can in turn be used to generate 

MIDI transcriptions, which can then be used to generate high-level features relating to 

rhythmic patterns and melodies. It is important to note that the degree of accuracy needed 

for automatic transcription is not necessarily required for features intended for 

classification. Individual incorrect notes, for example, can be averaged out through the 

construction of intermediate data structures such as beat histograms or pitch histograms. 

Furthermore, although low-level features are not usually intuitive to humans directly, an 

individual well-trained in signal processing and in auditory perception can use his or her 

expertise to gain insights into when certain low-level features can be useful even on their 

own. 

An additional important point is that, even though it might be the case that some low-

level feature is not generally used by humans to perform a given type of classification, 

this does not necessarily mean that this feature cannot effectively be used by a computer 

to perform the same type of classification. Feature selection techniques, which are 

statistical procedures for eliminating unpromising features for the purpose of improving 
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classifier speed and accuracy, can be used to experimentally determine which features are 

useful and which are not in a given context. 

Such an explorative approach is particularly important with respect to music 

classification. Although a great deal of research has been done on features that are useful 

for speech recognition, music has received much less attention. Experimental research on 

which features work well with respect to different kinds of music in different contexts 

could be of theoretical interest in and of itself, in addition to improvements in 

classification success rates that might also result. 

In any case, it is clear that the acquisition of a large number of low-level features can 

be very useful, for the purposes of theoretical research, direct applied classification and 

constructing more abstract higher-level features. Software that can easily do this is 

therefore essential for audio classification, as is a good platform for iteratively designing 

new features. 

A consequence of the past emphasis on low-level features in audio feature extraction 

is that tasks such as tempo extraction or chord identification are often treated as discrete 

MIR goals. In actuality, it can be appropriate to also think of the results of such 

processing simply as features that can themselves be used for other tasks, such as song 

identification or playlist generation, once again with the goal of iteratively developing 

increasingly high-level features. Indeed, although one certainly prefers perfectly reliable 

feature values, many machine learning-based approaches can deal with a certain amount 

of input noise, so such tasks/features can potentially be used effectively in higher-level 

tasks even before they are fully perfected. 

A key design goal behind jAudio is to provide an infrastructure for facilitating these 

kinds of approaches to iterative feature development and reuse. An approach developed 

specifically for note onset detection, for example, could also be distributed and used by 

other researchers interested in audio transcription. So, while the majority of the features 

packaged with jAudio are in fact low-level features, it is hoped that they will be used to 

develop other more high-level features. 

3.1.3 Contributions to jAudio 

The work in both designing and implementing jAudio was shared with Daniel 

McEnnis. jAudio originated as two independent projects, one by the author of this thesis 
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and the other by McEnnis. These two projects were merged into a collaboration prior to 

either of the original publications on jAudio (McEnnis, McKay, Fujinaga and Depalle 

2005; McEnnis, McKay and Fujinaga 2006a). 

McEnnis has been responsible for the significant majority of the work in improving, 

maintaining and supporting jAudio since these initial publications.  

Most of the audio processing performed by jAudio is custom-implemented. However, 

jAudio does make use of four existing freely distributable third-party libraries to perform 

certain tasks, namely audio file parsing, sample rate conversion, calculation of MFCCs, 

calculation of LPCs and XML file parsing. These libraries, some of which are used to 

perform more than one of these tasks, are the Tritonus Open Source Java Sound library,
106

 

Ocvolume,
107

 Sun’s Java MP3 Plugin
108

 and the Xerces XML Parser.
109

  

3.1.4 Downloading jAudio 

The jAudio Java bytecode and the associated source files are freely available at 

jaudio.sourceforge.net and at jmir.sourceforge.net/index_jAudio.html. Note that a number 

of independent changes may have been made by Daniel McEnnis to the most recent 

versions of jAudio that are not incorporated into this chapter. 

The original jAudio prototype that was designed independently by the author of this 

thesis before it was merged with McEnnis’ work is also available for historical reasons, 

although it lacks much of the functionality described in this chapter. 

3.2 Background information 

This section is intended to provide background information on digital audio, digital 

signal processing (DSP) and specific features that are often extracted from audio files. 

Readers who are already knowledgeable in DSP may wish to skip directly to sub-sections 

3.2.6 to 3.2.8, which deal directly with features that can be extracted from audio. 

For readers less familiar with DSP, sub-section 3.2.1 provides a quick basic 

introduction to digital audio. Sub-section 3.2.2 then proceeds to describe Fourier analysis 

and the frequency domain, which is to say that it discusses digital audio from the 
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 118 

perspective of its frequency content. Sub-section 3.2.3 discusses windowing functions, 

which are an important tool in performing effective Fourier analysis, and sub-section 

3.2.4 covers other types of pre-processing that can be usefully applied to audio before 

extracting features. Sub-section 3.2.5 then provides a brief overview of some different 

audio formats and compression schemes, and discusses related problems relevant to 

feature extraction. 

3.2.1 Digital audio 

For the purposes of MIR research, features are typically extracted from audio in 

digital form rather than in analog form, as the vast majority of music consumed in the 

West is distributed in digital formats. It is therefore useful to briefly provide some 

pertinent background on digital audio. 

A continuous analog signal can be represented in digital form by measuring the signal 

level of the analog signal at regular time intervals. This results in a sequence of discrete 

numbers that approximate the original analog signal, as shown in Figure 3.1. Each of 

these discrete numbers is known as a sample, and the value of each sample effectively 

represents the average of the signal level over the duration of the sample. 

 

 

Figure 3.1: Sampling of one period of an analog sine wave (the continuous curve) into a 

digital signal (the step function).110  

                                                 
110

 This image belongs to the Wiki Commons and is included here under the GNU Free Document License 

and Creative Commons Attribution ShareAlike License. It was obtained from 

http://en.wikipedia.org/wiki/File:Pcm.svg. 
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It is appropriate to clarify the notation used in this chapter. The instantaneous signal 

strength of an analog signal is notated as a function where the input variable of time, t, is 

enclosed in parentheses (e.g., f(t)). Digital signals, in contrast, are represented by 

enclosing the input variable (be it t or the sample number, x) with square brackets (e.g., 

f[t] or f[x]). 

Sampling involves a number of parameters, two of the most significant of which are 

the sampling rate and the bit depth. The sampling rate refers to how many samples are 

measured per second during digitization. The bit depth indicates how many bits are used 

to represent each sample. Higher sampling rates and bit depths generally result in better 

quality audio, but also result in the need for more sensitive instruments and greater 

storage space. To provide context, CD audio has a sampling rate of 44.1 kHz and a bit 

depth of 16 bits. 

Based on what is known as the Nyquist Theorem, a digital signal can only represent 

frequencies that are no larger than one half of the sampling rate. Digitizing a signal with 

frequencies higher than half of the sampling rate results not only in the failure to encode 

these frequencies, but also in the addition of undesirable artefacts of the sampling 

process, referred to as aliasing. Low-pass filters are therefore typically applied before 

sampling occurs in order to remove any problematic high frequencies. 

It is often assumed that sampling rates as low as 44.1 kHz produce acceptable quality 

audio because frequencies above approximately 20 kHz are outside of the range of human 

hearing. Some, however, have argued that higher sampling rates nonetheless result in 

perceptibly improved audio quality. 

The choice of bit depth influences the dynamic range of a digital audio signal as well 

as the amount of signal distortion, known as quantization error. The greater the number 

of bits, the greater the number of signal levels that can be represented per sample. For 

example, a bit depth of 3 bits only allows 2
3
=8 different signal levels to be represented, 

whereas bit depths of 16 bits and 24 bits (DVD quality audio) permit 65,536 and 

16,777,216 values, respectively. These discrete signal levels must be spread over a 

dynamic range defined by each particular audio format. 

Any input signal that is stronger than the largest value that can be represented results 

in a form of signal distortion known as clipping, something that provides reason for 
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choosing a high dynamic range. However, a larger dynamic range with a fixed bit depth 

results in larger spacing between each of the representation levels, with a corresponding 

larger average rounding error when analog levels are translated to digital levels, the 

essence of quantization error. Many audio formats use non-linear mappings to optimize 

perceptual audio quality with a given bit rate. 

3.2.2 Fourier analysis 

With the exception of artificially generated sound waves, all audio waves contain a 

spectrum of many different frequencies, each with its own amplitude and phase. It is 

possible to use a process known as Fourier analysis (which uses the Fourier transform) 

to decompose a wave into its component frequencies and phases. This allows signals to 

be considered in the frequency domain. A wave represented in the frequency domain can 

also be transformed into the time domain (via a process known as the inverse Fourier 

transform), which is the more generally familiar representation of a wave’s instantaneous 

signal strength as a function of time.  

Fourier analysis makes it possible to extract a great many useful features, and is 

therefore an essential part of any audio feature extraction system. There is no loss of data 

or signal corruption when the Fourier transforms or inverse Fourier transforms are 

applied.  

It is possible to apply Fourier transforms to waves represented digitally via a process 

known as the discrete Fourier transform (DFT). A DFT results in a frequency histogram 

and a phase histogram. The phase histogram is most often not given significant attention 

in the extraction of audio features, but is essential for reconstructing the time domain 

representation from the frequency domain representation. The frequency histogram 

essentially consists of a set of bins, each corresponding to a different range of 

frequencies. The value corresponding to each histogram bin corresponds to either the 

combined magnitudes or the combined powers of all sinusoidal components of the wave 

in question with frequencies that fall within the bin’s limits. In essence, a DFT outputs a 

vector of relative frequency strengths that is the same as a vector output by a filter bank 

consisting of a set of bandpass filters with regularly increasing center frequencies.  
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DFT and inverse DFT operations can be expressed mathematically as follows. 

Consider a set of N complex numbers, x0,. . . , xN-1, that are to be transformed into a 

sequence of complex numbers, X0, . . . , XN-1. The DFT is then: 
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The inverse DFT is: 
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The complex numbers Xk each represent the amplitude and phase of the binned 

frequency components of the input signal represented by the samples xn. This can be seen 

by writing Xk in polar form, where the binned sinusoidal amplitudes are | Xk | and the 

phases correspond to the complex argument. The vector of calculated relative amplitudes 

of each range of sinusoidal components output by the FFT is referred to as the magnitude 

spectrum, or, alternatively, the power spectrum, which is the square of the magnitude 

spectrum. 

In practice, when extracting features from audio, one must deal with nonstationary 

signals, which is to say signals that change over time. A DFT taken over 5 seconds of 

audio during which 12 different pitches are played, for example, will provide vectors of 

amplitudes and phases that are the averages of all spectral content over the entire 5 

seconds. This means that the frequency contents of all 12 notes are smudged together, 

making it impossible to determine the spectral characteristics of the notes individually. It 

therefore seems reasonable to take DFTs of very short segments of the signal, called 

windows or frames, so that details of each of the 12 notes, and how they each evolve 

spectrally, can be captured. 

Unfortunately, taking the DFT of shorter segments of sound comes with a 

mathematical consequence, namely the loss of frequency resolution. In other words, the 

fewer the number of samples used to calculate the DFT (and, correspondingly, the shorter 

the amount of time under consideration), the broader the frequency range of each bin 

output by the DFT. This means that each bin spans a wider range of frequencies, and one 

therefore loses frequency precision as one reduces the number of samples processed by 

the DFT. One must therefore balance the competing needs of time localization and 
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spectral resolution, a trade-off that is physically analogous to the Heisenberg Uncertainty 

Principle. 

It is useful to note that a consequence of the tradeoff between time localization and 

spectral resolution is that audio with a high sampling rate can be better analyzed 

spectrally than audio sampled at a lower sampling rate, because there are more samples to 

work with per unit time. Additionally, it is common to use overlapping windows in order 

to, in a sense, increase the time localization. The distance between the starts of 

overlapping windows is sometimes referred to as the hop size. 

In practice, 256-sample, 512-sample, 1024-sample or 2048-sample windows are most 

often used for audio applications, depending on the time vs. frequency resolution 

priorities of the application and the sampling rate. In terms of time duration, windows of 

10 ms to 30 ms are usually used, with overlap step sizes ranging from 5 ms to 20 ms. 

Much longer windows can be appropriate if trying to gather information on large-scale 

structure, for example. Window sample sizes are typically powers of 2, for reasons of 

computational efficiency.  

Graphs of the magnitude spectrum or power spectrum vs. frequency bin are often used 

to provide visual representations of the frequency content of a signal over the duration of 

the samples processed by a single DFT window. This visual representation has the 

disadvantage, as might be expected, that it provides no indication of how the spectrum 

evolves over time. Spectrograms provide an alternative for viewing this evolution by 

graphing the results of a sequence of DFTs consecutively. Spectrograms thus graph 

frequency bin vs. time, with colour used to represent magnitude or power. Figures 3.2 and 

3.3 respectively provide examples of graphs of the power spectrum and the spectrogram 

of the same signal. 

Optimized versions of the DFT, running in O(N log N) time, as opposed to the O(N
2
) 

performance of the basic DFT, are known as Fast Fourier Transforms, or FFTs. There 

are a number of such algorithms, the most common of which is known as the Cooley-

Tukey algorithm. 
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Figure 3.2: Power spectrum of a 440 Hz sinusoid lasting 0.5 seconds, followed by a 

4400 Hz sinusoid lasting 0.5 seconds. The sampling rate was 44.1 kHz and Hann 

windows of 16,384 samples were used. Note that there is no way to tell when each tone 

occurred in time. Note also that, although the peaks corresponding to the two 

frequencies are clear, there is still low-level spectral leakage at other frequencies. 

 

 

Figure 3.3: Spectrogram of the same signal analyzed in Figure 3.2. The vertical axis 

represents frequency, the horizontal axis represents time and the colour represents 

power. Note that the two frequencies of the sinusoids are still clear, and that the location 

in time of the two sine tones is now also clear as well. There is still spectral leakage, 

however. 

As a side note, it is useful to note that an alternative to the DFT exists, namely the 

discrete wavelet transform (DWT). From the perspective of audio feature extraction, the 

essential difference between the two relates to frequency and time resolution. The DFT 

provides uniform time resolution for all frequencies. The DWT, in contrast, provides 
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higher time resolution and lower frequency resolution for high frequencies, and lower 

time and higher frequency resolution for low frequencies. This is closer to the way that 

human perception operates than the uniform resolution of the DFT. 

3.2.3 Windowing functions 

As mentioned in Section 3.2.2, breaking audio samples into shorter windows is a 

common technique for obtaining a degree of time localization when performing Fourier 

analyses. Although it is possible to use simple rectangular windows (also called Dirichlet 

windows), where each sample in a window is left unmodified, better results can be 

achieved in some cases by using windowing functions that give higher weightings to 

samples in the center of windows. In particular, alternative windowing functions can be 

used to reduce the problem known as spectral leakage, which refers to power that is 

assigned to frequency components that are not actually in the signal being analyzed. 

Although simple rectangular windows do have good resolution characteristics when 

applied to signals containing spectral components of comparable strength, they perform 

poorly when there are spectral components with disparate amplitudes (a problem known 

as low dynamic range). At the other extreme, windowing functions with high dynamic 

range, such as Blackman-Harris windows, tend to result in lower frequency resolution and 

tend to be poorer with respect to sensitivity, which is to say that weak spectral 

components can be overwhelmed by random noise. In general, high dynamic range 

windowing functions are preferable when dealing with signals expected to contain 

spectral components of significantly varying strengths, and low dynamic range 

windowing functions are preferable when dealing with signals where components are 

expected to have similar amplitudes. Harris (1978) provides an excellent overview of 

windowing functions applied to the DFT, and only some of the most pertinent details are 

described below. 

Two of the most commonly used windowing functions are Hamming windows and 

Hann windows, which are both moderate with respect to dynamic range. Their popularity 

is due to their applicability to a wide variety of wave types. They are particularly 

appropriate for applications associated with moderate bandwidth signals, such as 

telephone channels. There are also many other windowing functions, each with its own 

strengths and weaknesses. 
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The following equations and their associated figures describe each of the windowing 

functions discussed above. The variable w represents the windowing function, N 

represents the width in samples of one window and n represents the sample index. Each 

of these equations is applied to all samples in a frame, and it is the output that is 

processed by a DFT. 
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Figure 3.4: Rectangular, or Dirichlet, windowing function.111 This window leaves the 

original samples in the window unchanged. The image on the left corresponds to the 

shape of the windowing function, as described in Equation 3.3, and the image on the 

right demonstrates the type of spectral leakage that results when a window of a simple 

sinusoidal signal is processed by a DFT after being transformed this windowing function. 
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 This image has been released into the public domain by its creator. It was obtained from 

http://en.wikipedia.org/wiki/File:Window_function_%28rectangular%29.png. 
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Figure 3.5: Blackman-Harris windowing function.112 The image on the left corresponds to 

the shape of the windowing function, as described in Equation 3.4, and the image on the 

right demonstrates the type of spectral leakage that results when a window of a simple 

sinusoidal signal is processed by a DFT after being transformed this windowing function. 

 

 

Figure 3.6: Hamming windowing function.113 The image on the left corresponds to the 

shape of the windowing function, as described in Equation 3.5, and the image on the 

right demonstrates the type of spectral leakage that results when a window of a simple 

sinusoidal signal is processed by a DFT after being transformed this windowing function. 

                                                 
112

This image has been released into the public domain by its creator. It was obtained from 

http://en.wikipedia.org/wiki/File:Window_function_%28blackman-harris%29.png. 
113

 This image has been released into the public domain by its creator. It was obtained from 

http://en.wikipedia.org/wiki/File:Window_function_%28hamming%29.png. 
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Figure 3.7: Hann windowing function.114 The image on the left corresponds to the shape 

of the windowing function, as described in Equation 3.6, and the image on the right 

demonstrates the type of spectral leakage that results when a window of a simple 

sinusoidal signal is processed by a DFT after being transformed this windowing function. 

3.2.4 Pre-processing 

Audio samples are often pre-processed in a variety of ways before features are 

extracted from them. This is done to improve efficacy when features are processed by 

machine learning algorithms, among other reasons. 

One common technique is to normalize samples based on amplitude. There are a 

variety of approaches that can be used to normalize signals, but one simple approach is to 

take the highest absolute sample value in a signal and then multiply all samples in the 

signal by the highest representable signal value (as determined by the bit depth) divided 

by the highest sample value present. In effect, this amplifies the signal such that it is as 

strong as it can be without clipping. If the original signal is clipped, then normalization 

simply leaves the signal unchanged by effectively multiplying all samples by 1. 

Such normalization can be beneficial if multiple signals (or, equivalently, multiple 

audio files) are to be processed, as it causes all signals to take advantage of the full 

available dynamic range. This can be helpful when applying machine learning algorithms, 

since it helps to remove noise for the learners by controlling for variability in recording 
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 This image has been released into the public domain by its creator. It was obtained from 
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levels unrelated to the patterns being studied. However, normalization can in some cases 

destroy useful information, such as in cases where variability in recording levels is in fact 

a useful indicator in the application under consideration. So, for example, normalization 

might be a good idea if features are to be extracted for the purpose of genre classification 

applied over a diverse corpus of musical recordings. Using normalization might be a poor 

choice if one is interested in classifying the work of different sound engineers, however, 

as recording levels might be indicative of their styles. 

Another common pre-processing technique is known as downsampling, where the 

sampling rate of a digital signal is reduced. This can be useful in cases where it is 

important to reduce data size, which could, for example, speed up feature extraction and 

machine learning.  

Downsampling can also be useful for the purpose of making feature vectors for 

different audio files correspond to the same bandwidth. Consider the case of one file 

sampled at 44 kHz and another sampled at 11 kHz. If the power spectrum is extracted for 

the two signals, the 44 kHz signal will contain frequencies up to 22 kHz, but the 11 kHz 

signal will only contain frequencies up to 5.5 kHz. It would be difficult to train machine 

learning algorithms on such non-matched power spectra, as the frequency bins would 

cover different domains. Downsampling the 44 kHz signal to 11 kHz would have the 

benefit of making the domains of the power spectra of the two signals match, and 

therefore be easier to process. 

Of course, downsampling a signal involves throwing away potentially useful 

information. Since files are typically all downsampled to the sampling rate of the file with 

the lowest sampling rate, this means that audio quality is reduced to that of the lowest 

quality audio file, at least in terms of sampling rate. Although there is the alternative of 

upsampling the files with the lower sampling rates, this does not add any useful 

information to the files that had lower sampling rates originally, but it does increase their 

size and corresponding required processing times. 

The ideal is to start off with files that are all encoded using the same sampling rate, 

but this is a luxury that one does not always have. In any case, it is generally believed that 

the most important information in musical signals tends to be at lower frequencies, so 

sampling rates as low as 22 kHz or even 11 kHz can preserve much of the information 
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useful for MIR tasks, despite the loss of audio quality for listening purposes when files 

are downsampled to such sampling rates.  

Channel merging is also sometimes performed, which is to say that all channels in 

stereo or multi-channel audio are combined into one track (and usually attenuated and 

normalized to avoid clipping that could result from simple signal addition). Although 

panning information can be very useful for some MIR-oriented tasks, such as producer 

identification, it is generally felt that for most MIR tasks it is not significant, and that the 

data reduction achieved by channel merging is worth the loss of this data. It should be 

noted, however, that merging channels can introduce problems related to phase 

interference, in which case it might be better to simply choose one channel if channel 

reduction is necessary for the purpose of data reduction. 

Signals are also sometimes rectified in order to remove the negative components of 

signals. This can facilitate some types of feature calculations. Two types of rectification 

can be applied to a signal x[n], namely full wave rectification and half wave rectification, 

as described by the following two equations: 

][][ nxnx fullwave           (3.7) 

xhalfwave[n] = x[n] if x[n] ≥ 0, else xhalfwave[n] = 0     (3.8) 

3.2.5 File formats and associated problems 

As discussed in Section 3.2.1, different audio files can be encoded with different 

parameters, such as sampling rates and bit depths. Such inconsistencies can cause 

problems when features are extracted, by influencing feature values in ways that are 

unrelated to the essential musical content being analyzed. It is possible to at least partially 

address some of these inconsistencies using pre-processing techniques such as 

downsampling, but there are, unfortunately, a variety of differences in encoding strategies 

and parameters that can vary across file formats for which such relatively easy solutions 

are not available. Before proceeding to discuss these, it is useful to first provide some 

brief background on audio compression and some of the most common digital audio file 

formats. 

A driving force behind much of the past two decades of research in digital audio files 

has been to reduce audio size. Raw, uncompressed audio has a size corresponding to the 
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duration of the audio multiplied by the number of channels, the sampling rate and the bit 

depth, which can result in very large files. This can be inconvenient due to the need for 

correspondingly large storage space and network bandwidth, although these resources are 

now much less expensive than they were in the past. A variety of methods have been 

developed for reducing file size, including both lossless techniques to lossy techniques. 

Lossless techniques take advantage in data redundancies to reduce the space needed to 

represent audio samples, without losing the ability to exactly reproduce original audio 

samples. Lossy techniques, in contrast, eliminate some information in ways such that it 

cannot be recovered, in the hopes that the lost information will not significantly affect 

perceptible audio quality. Downsampling is a simple example of lossy compression, 

although most lossy encoding schemes use much subtler and more sophisticated 

techniques. Perceptual encoding compression techniques take advantage of human 

physiological and psychological auditory limitations in order to remove only that data, it 

is hoped, whose absence will not have an important perceptual impact on listeners. Lossy 

techniques have in the past decade become very popular because of the much larger 

compression ratios than they can achieve relative to lossless compression. 

Any software application using file formats associated with either lossless or lossy 

compression requires software components known as codecs to read or write audio in the 

appropriate formats. Codecs can be either embedded in the software or distributed as 

plug-ins. Sometimes a single format can have multiple codecs.  

There are a variety of different file formats for losslessly encoding audio, some of 

which also allow the option of applying lossy compression as well. Below are some of the 

most common lossless formats: 

 FLAC: A format widely supported by the open-source community. 

 WAVE: The standard format promoted for use with Windows PCs. 

 AIFF: The standard format promoted for use with Macintosh computers. 

 AU/SND: Developed for UNIX computers. 

There are also a variety of formats that emphasize lossy compression. Most of these 

formats allow music to be encoded using different bitrates (degrees of compression), and 
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there are also multiple implementations of some of their compression algorithms. Further 

complicating matters, variable bitrate encoding is also sometimes used to dynamically 

vary the bitrate in a single encoding to optimize both audio quality and space efficiency. 

Below are some of the most commonly used lossy formats: 

 MP3: The most popular lossy format, currently. The compression algorithm is not 

included in the MP3 standard, and there are a wide variety of proprietary 

algorithms that are used, each of which applies different perceptual encoding 

techniques, and each of which can therefore have different effects on feature 

values. There are therefore multiple different encoding codecs, each with their 

own strengths and weaknesses, although the output of any of these can be 

successfully parsed by any decoding codec. 

 OGG: An open-source container that supports a variety of codecs. The most 

popular of these is Vorbis, which is often said to perform better than MP3 codecs, 

but is nonetheless much less popular. 

 AAC/MP4: A format based on the MPEG2 and MPEG4 standards that is 

considered an improvement over MP3s. Apple uses a proprietary version that can 

include built-in digital rights management (DRM). 

 WMA: Microsoft’s Windows Media Audio format that emphasizes DRM. 

 RA: The Real Audio format, originally designed for streaming audio over the 

Internet. 

Sound files that use lossless compression pose no special challenge to feature 

extraction systems, as the original pre-compression audio signal can be reconstructed 

exactly. Lossy algorithms can be much more problematic, however, as the extent to which 

a given compression algorithms affects various features can vary, and depends largely on 

the particular compression algorithms and the particular features. 

Some features are invariant to certain compression schemes, which is to say that 

feature values are not significantly affected by whether or not the compression is applied. 

Many features are not invariant in this way, however, which is problematic, as in general 

it is desirable to have features that are dependent on the music itself, not on the 
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particularities of how it was encoded. This can pose serious problems in real-world 

situations, such as users extracting features from their libraries of MP3s, which could be 

encoded using a variety of encoders and bitrates. 

 The problems of determining which combinations of algorithms and features are 

vulnerable and of developing corrective processing are exacerbated by the fact that there 

can be many different compression algorithms even for a single file format, and a variety 

of compression parameters can be used even for a single algorithm. Furthermore, these 

algorithms are often proprietary, so it can be very difficult to determine exactly how they 

operate.  

Lossy compression algorithms are developed with the intent of making them as 

invariant as possible to human hearing. If the features being extracted are similar to the 

features effectively being extracted by humans and if the models developed by machine 

learning systems based on these features operate similarly to human processing, then 

perhaps the features themselves could be argued to be relatively invariant to compression, 

something that would be good news for feature extractors. However, there is no guarantee 

that this is in fact the case, since models built by machine learning algorithms can well 

operate in entirely different ways than the human auditory system. 

The dependence of feature values on compression schemes is in many ways an 

elephant in the room of MIR audio feature extraction research. Most published MIR 

research either assumes, whether correctly or not, that the features extracted are invariant 

to compression algorithms, or sidesteps the problem entirely by using only losslessly 

compressed audio or audio compressed using only one algorithm and bitrate. This latter 

approach is not an accurate simulation of how audio is consumed in the real world. 

In one of the few studies to methodically study these issues with respect to music, 

Sigurdsson, Petersen and Lehn-Schioler (2006) found that, at least for the special case of 

MFCCs (see Section 3.2.6) extracted from MP3s encoded using different parameters, 

MFCCs are robust at bitrates equal to or higher than 128 kbits/s, but not at lower bit rates. 

This is at least somewhat encouraging from a practical perspective, given that most MP3s 

are encoded at 128 kbits/s or above. However, it must be kept in mind that these results 

only apply to one specific type of feature, and that all of the MP3s that were 

experimented with were encoded with the same codec, namely the LAME 3.96.1 encoder. 
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In any case, these results are discouraging from a general perspective, since they show 

that there can be significant feature dependence on encoding methodology at least in 

special cases. 

There is a pressing need for further study on the vulnerability of each feature to each 

compression algorithm, but for the moment this remains an unresolved issue. There is no 

immediate and easy solution in sight, even if comprehensive data on feature/compression 

variance were to become available. 

3.2.6 Common low-level features extracted using the DFT 

This section briefly presents some of the low-level spectral features that have often 

been used in MIR research. Note that the descriptions below have in many cases been 

expressed in terms of either the power spectrum or the magnitude only as a matter of 

convention, and many of these features can be calculated in terms of either. Mt[n] refers 

to the magnitude spectrum at bin n, out of N bins, for the Fourier analysis frame 

corresponding to index t. Similarly, Pt[n] refers to the power spectrum. 

 Power Spectrum: A histogram derived directly from a DFT indicating the 

relative amounts of energy contained in various regions of the frequency spectrum 

over a window of time, as discussed in Section 3.2.2. The power spectrum is 

calculated by, for each bin, summing the square of the imaginary output of a DFT 

with the square of the corresponding real output of the DFT. The power spectrum 

and magnitude spectrum are rarely used directly as features, since they are often 

considered to contain too much raw information to be effectively processed 

directly by machine learning algorithms. Many spectral features are derived from 

either the power spectrum or the magnitude spectrum, however. 

 Magnitude Spectrum: A histogram where the value for each bin is the square 

root of the value for the corresponding bin of the power spectrum. The magnitude 

spectrum is often used rather than the power spectrum when one wishes to pay 

closer attention to the lower energy spectral activity, and the power spectrum is 

used when it is desirable to emphasize the strong peaks. 
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 Strongest Partial: The center frequency of the bin of the magnitude or power 

spectrum with the greatest strength. Can provide a primitive form of pitch 

tracking. 

 Spectral Variability: The standard deviation of the bin values of the magnitude 

spectrum. Provides an indication of how flat the spectrum is and if some 

frequency regions are much more prominent than others. 

 Spectral Centroid: The centre of mass of the power spectrum. Perceptually, this 

feature gives an indication of how ―dark‖ or ―bright‖ a sound is, roughly speaking. 

The spectral centroid, SC, is calculated for a window as follows: 
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 Partial-Based Spectral Centroid: Based on a variation of the spectral centroid 

proposed where the spectral centroid is calculated only using bins of the power 

spectrum that are peaks rather than all bins in the power spectrum, as is done in 

the traditional spectral centroid. A related feature is used in MPEG-7, where it is 

referred to as the harmonic spectral centroid. 

 Partial-Based Spectral Smoothness: Based on McAdams’ (1999) spectral 

smoothness algorithm, this algorithm operates on a set of M spectral peaks, Tt[m], 

found by some peak picking algorithm applied to the power spectrum 

corresponding to the analysis frame with index t. The peak-based spectral 

smoothness, SS, is calculated as follows: 
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Note that if M < 3 then this feature does not generate a value. This feature gives 

an indication of how smooth the power spectrum is. 

 Compactness: This feature is also based on McAdams’ (1999) spectral 

smoothness algorithm. The difference between the compactness and the partial-

based spectral smoothness is that the compactness is calculated based on the 
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magnitude spectrum in general instead of a vector of selected partials. 

Compactnes, C, is calculated as follows: 
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 Spectral Roll-off Point: The frequency below which some fraction, k (typically 

0.85 or 0.95), of the cumulative spectral power resides. This provides a measure of 

the skewness of the power spectrum, and provides an indication of how much of 

the energy of the signal is in the lower frequencies. This feature is especially 

useful in speech analysis for differentiating between voiced and unvoiced speech. 

The spectral rolloff, SRt, is defined as follows: 
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 Spectral Flux: A measure of the amount of spectral change in a signal from frame 

to frame. The spectral flux, SF, is found by calculating the change in the 

normalized magnitude spectrum, Nt[n], from frame to frame. 
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 Partial-Based Spectral Flux: Similar to the spectral flux, but calculated using a 

vector of peaks found in the magnitude spectrum that are tracked across frames 

rather than simply using the magnitude spectrum as a whole. 

 Method of Moments: A feature vector consisting of the first five statistical 

moments of the magnitude spectrum. These consist of the area (0
th

 order), mean 

(1
st
 order), spectral density (2

nd
 order), skew (3

rd
 order), and kurtosis or 

―peakedness‖ (4
th

 order). Although some of these components are individually 

redundant with some of the other features described in this section, as a unified 

feature vector the method of moments can provide a compact statistical 

representation of the magnitude spectrum. 
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 Area Method of Moments: Similar to the simple method of moments feature 

described above, but this feature analyzes a series of frames of spectral data rather 

than only one frame. A matrix is constructed consisting of the magnitude spectrum 

in one dimension and the frame number in the other, which is then analyzed using 

the two-dimensional method of moments (Fujinaga 1997). This provides a 

relatively compact statistical representation of a spectrograph encompassing a 

brief period of time. 

 Mel-Frequency Cepstral Coefficients (MFCC): A feature vector that is 

analogous to the magnitude transformed into perceptually motivated bins. This 

feature vector is calculated by taking the log-amplitude of the magnitude spectrum 

and then grouping and smoothing the bins based on the perceptually motivated 

Mel-frequency scale. A discrete cosine transformation is applied. Traditionally, 13 

coefficients have been used in much speech-oriented research, but other 

dimensionalities can certainly be experimented with. Rabiner and Juang (1993) 

provide more details. 

3.2.7 Common low-level features extracted in the time domain 

Features calculated from the time domain are typically calculated directly from the 

sequence of samples representing the digital signal. These features are typically extracted 

over windows of samples of a fixed width, called analysis windows, ranging from a few 

milliseconds to seconds or even minutes. For the purpose of symmetry, it is common to 

choose analysis windows spanning the same number of samples as the frames used to 

calculate discrete Fourier transforms. Although this is convenient for combining features 

from both the time and frequency domains, it is not compulsory. 

Some features extracted in the time domain are calculated from collections of 

consecutive analysis windows in order to capture an indication of how a signal changes 

over time. In the feature formulae described below, x[n] refers to value of the signal x at 

sample n, for an analysis window consisting of N samples. 

 Zero Crossings: The number of times that a signal passes the 0 midpoint of the 

signal range. ―Crossing zero‖ is defined as (x[n-1] < 0 and x[n] > 0), (x[n-1] > 0 

and x[n] < 0) or (x[n-1] ≠ 0 and x[n] = 0). This feature provides an indication of 
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signal noisiness, as noisy signals with no DC component will have a tendency to 

cross the midpoint often. There is also a correlation between zero crossings and 

the spectral centroid of clean (non-noisy) signals. 

 Strongest Frequency via Zero Crossings: A primitive measure of dominant 

frequency based on zero crossings, ZC, and sampling rate, SR, as follows. 
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This feature can provide a primitive form of pitch tracking for non-noisy 

monophonic signals. 

 Root Mean Square (RMS): A measure of the average energy of a signal 

calculated over an analysis window: 
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 Relative Difference Function: A measure of the amount of change in a signal 

relative to its signal level. This feature, proposed by Klapuri (1999), can be useful 

in detecting significant changes in a signal, such as note onsets. The relative 

difference function, RDF, is calculated as follows: 
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A[n] is an amplitude envelope function of the input signal, x[n]. RDF is set to 0 if 

x[n] falls below the audible threshold. 

 Fraction of Low Energy Frames: The fraction of analysis window within a set 

of consecutive windows that have an RMS below some threshold. A common 

variation is to set this threshold dynamically to be the average RMS for the set of 

frames under consideration. This feature gives an indication of the proportion of 

silence or near silence in the portion of a signal under consideration. 
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 Linear Predictive Coding (LPC): A methodology developed for analyzing 

speech signals. LPC can be used to analyze a speech signal by estimating formants 

(spectral bands corresponding to resonant frequencies in the vocal tract), filtering 

them out, and estimating the intensity and frequency of the residual ―buzz‖ that is 

assumed to be the original excitation signal. The result is a vector of values that 

can be used to estimate the formants and the residue. This is often used as an 

efficient way of representing a speech signal, as the vector can be used to create a 

source signal based on the residue that can then be filtered based on the formants. 

With respect to music, LPC can be useful in that the relationships between the 

formants and the nature of the residue can be helpful in identifying instrument 

types, for example. There are a variety of ways of implementing LPC. These are 

in general based on the idea of using a difference equation to represent each 

sample of a signal as a linear combination of previous samples. The coefficients of 

the difference equation are typically calculated by minimizing the mean-square 

error between the actual signal and the predicted signal, which can be done my 

computing a matrix of coefficient values and finding a solution to the 

corresponding set of linear equations. Approaches such as autocorrelation, 

covariance and recursive lattice formulation have been used to efficiently 

converge to a unique solution. Whatever the implementation, the resulting 

coefficients can be used as an audio feature vector. 

3.2.8 High-level information that can be usefully extracted from audio 

signals 

One would ideally like to be able to reliably extract high-level features such as pitches 

present, chords present, precise rhythmic patterns, etc. Unfortunately, it is not currently 

known how to reliably automatically extract such high-level information from general 

signals. Nonetheless, some useful high-level information can still sometimes be extracted, 

if one operates under the assumption that enough imperfections in the extracted 

information will be averaged out in broad high-level representations. So, for example, 

while it may not currently be possible to reliably calculate the precise timing of all note 

onsets in a complex signal, it still might be possible to construct a reasonably accurate (on 

average) histogram of time intervals between note onsets that gives some overall 
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information about the rhythmic patterns in the signal as a whole. This section reviews 

some of the most common ways of representing such high-level information as usable 

features. Tzanetakis and Cook’s work (2002) has been particularly influential in 

promoting this approach, and Brown’s (1993) proposed use of autocorrelation to calculate 

rhythmic information about music has been widely adopted. 

Autocorrelation is a technique that involves comparing a signal with versions of itself 

delayed by successive intervals, which yields the relative strength of different 

periodicities within the signal. In terms of musical data, autocorrelation allows one to find 

the relative strength of different rhythmic pulses. In the case of audio, this can be 

calculated based on some representation of the strength of a signal consisting of N 

samples, Y[n], at various points in time: 
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where lag is the number of samples of delay. Autocorrelation is calculated for all integer 

values of lag, subject to 0 ≤ lag < N.  

Note that the function Y, may be something as simple as the RMS, or may involve 

more complex processing, such as a sophisticated onset detection algorithm. Y usually 

involves pre-processing such as full wave rectification, low-pass filtering, downsampling 

and removal of any DC components to center the signal at zero before autocorrelation is 

applied. 

The calculation of autocorrelation results in a histogram where each bin corresponds 

to a different lag time. Since the sampling rate is known, such a histogram provides an 

indication of the relative importance of the time intervals that pass between strong peaks, 

which is to say probable note onsets. The histogram can thus reasonably be called a beat 

histogram.  

Simple statistics can be calculated from beat histograms in order to extract useful 

high-level rhythmic information, particularly after the application of peak picking 

algorithms. The periods of the highest peaks, for example, provide good candidates for 

the tempo of the signal. The ratios between the highest peaks, in terms of both amplitude 

and period, can give metrical insights and an indication as to whether a signal is likely 

polyrhythmic or not. The proportional collective strength of low-level bins can give an 

indication of degree of rubato or rhythmic looseness, as can the width of peaks. The sum 
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of the histogram as a whole can give an indication of beat strength. The number of strong 

peaks can provide some measure of rhythmic sophistication. And so on. 

Histograms can also used to represent useful pitch information. Although there is 

currently no general polyphonic pitch tracker reliable enough for performing audio to 

symbolic transcription, there are a wide variety of algorithms that can be used to provide 

somewhat noisy pitch information that can nonetheless be sufficiently accurate on 

average for the purpose of providing useful features when the output is collected into a 

histogram over a period of time.  

A variety of different pitch histograms can be constructed, as proposed by Tzanetakis 

and Cook (2002). Examples include large simple pitch histograms with one bin for each 

possible (usually discrete) pitch, smaller histograms where pitches separated by integer 

octave intervals are collected so that there is one bin for each pitch class and folded pitch 

classes, where there is also one bin for each pitch class, but consecutive bins are separated 

by perfect fifths rather than semitones. 

Once again, there are many useful features that can be calculated from such 

histograms. The difference between the lowest pitch and the highest pitch in a pitch 

histogram can indicate range, for example. The bin label of the pitch class histogram with 

the highest amplitude may indicate the primary key of the piece, or perhaps its dominant. 

The interval between the two strongest pitches of the folded pitch class histogram can 

give an indication of the centrality of tonality in the piece. And so on. 

As the reliability of pitch detection technology improves, additional histograms of 

greater complexity could be constructed. Examples include melodic or harmonic 

histograms. 

3.3 Previous music information retrieval research 

3.3.1 The development and cataloguing of features 

Many of the audio features that have been used in MIR research were originally 

developed for use in areas of digital signal processing not directly related to music. 

Research in speech processing and recognition in particular had a strong influence on 

much of the early audio MIR research, with the result that many of the audio features still 

used today in MIR date back directly to decades-old speech research.  
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The influence of speech recognition research certainly had a positive initial influence 

in providing an excellent starting point for MIR audio research, both in terms of a well-

developed and well-tested set of features known to be effective at least in the realm of 

speech processing, and in terms of a set of pattern recognition-oriented methodologies 

that could be applied to these audio features. The excellent work of Scheirer and Slaney 

(1997) and of Cary, Parris and Lloyd-Thomas (1999) was particularly important in 

pioneering the application of speech-oriented approaches to music, and the very 

influential work of Tzanetakis and Cook (2002) played an essential role in bringing 

related approaches to the mainstream of the MIR community. 

The unfortunate consequence of the easy availability of features originally developed 

for application to speech is that many researchers have come to rely on them rather than 

concentrate on developing new features specifically suited to music. Although excellent 

results can and have been achieved in some cases using primarily speech-oriented 

features, such features nonetheless fail to fully explore the full range of information 

available in audio signals that can be particularly pertinent to music. One of the primary 

goals of jAudio is to provide a platform for easily developing new music-specific 

features. 

Having said this, there is still certainly much to be learned from speech and other 

audio processing technologies that can be applied to music. Rabiner and Juang (1993) and 

Gold and Morgan (2000) provide excellent summaries of the early work on speech 

analysis and processing, in terms of both history and techniques. McClellan, Schafer and 

Yoder (1999) and Oppenheim, Schafer and Buck (1999) also both provide good 

backgrounds on digital signal processing in general. The work of Mierswa and Morik 

(2005) is particularly helpful in discussing general issues and strategies relating to 

extracting features for use in classifying large collections of audio data in a relatively 

formalized fashion. 

There has also been some important work done with music specifically in mind. 

Researchers in sound source and instrument identification have made important 

contributions (e.g., Fujinaga 1998; Kotek 1998; Martin and Yim 1998; Kashino and 

Murase 1999; Eronen 2001; Herrera, Peeters and Dubnov 2003; Essid, Richard & David 

2004). Musical genre classification research has also often emphasized audio features, 
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particularly in the research inspired by the work of Tzanetakis (Tzanetaks, Essl and Cook 

2001; Tzanetakis 2002; Tzanetakis and Cook 2002). There has also been important work 

done on comparing different feature sets and audio parameterizations, such as that by 

McKinney and Breebaart (2003) and West and Cox (2004). Further relevant general 

research has been published by Jensen (1999), Park (2000), Verfaille (2003) and by Pope, 

Holm and Kouznetsov (2004). Works such as these include references to several features 

that hold potential but have yet to be widely adopted by the MIR community. 

Although most of the aforementioned works each present the reader with background 

on a significant number of features, there has been relatively little published work on 

collecting features into a unified library to avoid duplication of effort and undocumented 

discrepancies in the ways that features are implemented. One of the goals of jAudio is to 

provide a framework for developing and distributing such a collection of features so that 

they can be shared between researchers as new features are developed. 

Lerch, Eisenberg and Tanghe (2005) have begun some promising work on developing 

the FEAPI API for feature extraction that could be standardized and shared between 

researchers, serving a role similar to that served by VST in the field of audio effects 

processing. Unfortunately, no work has since been published on widely adopting or 

further developing this API. It is hoped that this will change, as the API is well thought 

out and could facilitate cooperative work and comparative testing between research 

groups. Some very promising work has also been done by Pope and Kouznetsov (2004) 

on the FASTLab Music Analysis Kernel Library (FMAK), but the details of this work 

remain proprietary and unpublished in the academic literature. 

3.3.2 Alternative MIR audio feature extractor applications 

There are a number of existing MIR-oriented standardized audio feature extractors 

that present alternatives to jAudio. Perhaps the best known of these is Marsyas 

(Tzanetakis and Cook 2000), a pioneering system that has strongly influenced much of 

the MIR audio classification research since its release and which is still widely used 

today. Marysyas is an open-source system that is implemented in C++ and which can 

save extracted features in Weka’s ARFF format, a de facto MIR standard. Although there 

were some initial hurdles with respect to usability, Marsyas has since been updated so 

that it can be configured using a scripting language that makes it relatively easy to control 
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which features are selected for extraction, and it also now supports distributed feature 

extraction (Bray and Tzanetakis 2005). Despite these improvements, there can still be 

something of a learning curve for new users of Marsyas, particularly with respect to the 

implementation of new features. 

CLAM (Amatrain, Arumi and Ramirez 2002; Amatriain and Pau 2005; Arumi and 

Amatriain. 2005) is another well-known system that, like Marsyas, is implemented in 

C++. Although CLAM certainly can be used to extract audio features, much of its 

emphasis is on signal processing and synthesis functionality. The consequence is that the 

software’s interface and development framework can pose initial obstacles to the non-

specialist user who wishes to quickly extract features or design new features. 

M2K (Downie, Futrelle and Tcheng 2004) is a patch-based system implemented in 

Java. This system provides a powerful tool for prototyping new approaches or integrating 

different systems. Like CLAM, it is designed to be applied to a broad range of 

applications, and is not specifically designed for feature extraction, although it certainly 

does provide relatively easy access to feature extraction functionality. It also provides a 

good environment for developing new features. 

M2K makes use of the D2K distributed processing framework, something that is both 

a strength and a weakness. D2K allows M2K to process tasks using several computers 

simultaneously, and also provides good classification libraries and a powerful GUI 

framework. The most significant problems associated to D2K are related to its legal 

status. D2K’s licence not only sometimes makes it complicated for researchers outside 

the U.S.A. to gain legal access to the software, but forbids its use in commercial 

applications. This means that any system that uses D2K cannot itself be used for any non-

research-based tasks. In addition, D2K itself still has a number of unresolved bugs, 

something that can be particularly problematic since not all of D2K is open-source. 

Maaate (Pfeiffer and Parker 2001) was produced by the Commonwealth Scientific 

and Industrial Research Organization. While it has a GUI front end, this GUI is geared 

towards visualization rather than controlling the feature extraction process. Also, 

maintenance and system development appear to have been inactive for several years. 

MIRtoolbox (Lartillot and Toiviainen 2007) is a set of modular Matlab functions for 

extracting audio features. This system can be very useful for rapidly prototyping new 
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systems, but poses a significant barrier to users without a strong signal processing and 

coding background or who do not have access to Matlab. 

Sonic Visualiser (Cannam et al. 2006) is a system for visualizing audio data in a 

variety of ways, and also allows one to extract certain features from audio. Sonic 

Annotator
115

 is an associated command-line program that can be used to batch extract 

features. One of the important advantages of Sonic Visualiser and Sonic Annotator is 

their incorporation of Vamp
116

 plug-in functionality. Vamp is an external API that can be 

used to add functionality to compatible software for processing audio in various ways. 

Sonic Visualiser, Sonaic Anotator and the Vamp plug-in format are all implemented 

using C++, although it is also possible to implement Vamp plug-ins in Python. 

Work has also been done on adding embedded feature extraction and machine 

learning functionality to the ChucK audio programming language (Fiebrink, Wang and 

Cook 2008a). This has the potential to result in a very powerful environment for 

implementing feature extraction tools that can be used in real-time, although only a few 

rudimentary features are available to date. 

The Chroma Toolbox
117

 extracts features specifically designed for deriving 

information associated with pitch. Although these features are a little too specialized for 

general-purpose automatic music classification, they are an excellent contribution to 

pitch-oriented MIR research, and can provide a useful supplement to other more general 

feature libraries. 

3.4 jAudio’s functionality 

3.4.1 Fundamental functionality 

The essential functionality offered by jAudio is the ability to extract features from 

audio files. jAudio can currently extract features from MP3, WAVE, AIFF, AIFC, AU 

and SND files. Extracted features can be saved in either Weka ARFF files or as ACE 

XML files. The latter formats can also include feature metadata (via ACE XML Feature 
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Description files) as well as the actual feature values themselves (via an ACE XML 

Feature Value files). 

Users may choose to save feature values for each individual window, or may choose 

to save only the mean value and standard deviation over all windows for each feature. 

The former option is useful if one wishes to retain information on how a feature changes 

over time or wishes to only look at particular moments in time. The latter option is 

preferable if one wishes to reduce the feature data that needs to be stored and processed or 

is only interested in acquiring an overview of an audio file as a whole. Users may also 

choose to save both types of information if they prefer. 

As discussed previously in this chapter, jAudio places an even greater emphasis on 

providing a platform for the development of new features than do the other jMIR 

components. The details are described in Sections 3.4.5 to 3.4.8. 

Another important aspect of jAudio is that it is integrated with McEnnis’ OMEN 

system (McEnnis 2006; McEnnis, McKay, and Fujinaga 2006b). As described in Section 

8.6.3, OMEN allows the sharing of extracted audio feature values among different 

research groups without violating copyright laws by performing feature extractions on-

site and only distributing feature values, not audio samples themselves. A centralized 

network interface is used to coordinate extraction requests and feature distribution, with. 

jAudio as the default tool used by OMEN to extract the features on-site. 

3.4.2 Pre-processing options 

jAudio allows users to choose among the following settings prior to feature 

extraction: 

 Whether or not to apply amplitude normalization  

 Downsampling or upsampling all audio to a specified sampling rate 

 Window size 

 Window overlap 

Many of the features implemented in jAudio have their own specialized 

parametrizations, each of which can be individually set in jAudio. jAudio automatically 

converts multi-channel audio to mono. 
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3.4.3 Implemented features 

All together, jAudio is packaged with 26 core implemented features, which are listed 

below. The details of these features are described in Sections 3.2.6 to 3.2.8. When 

metafeatures (see Section 3.4.7) are taken into account, jAudio is able to extract a total of 

136 features. Even more features can be extracted when jAudio’s already implemented 

aggregators (see Section 3.4.8) are applied to any of the existing features. 

There are also two additional ―features‖ that can be extracted by jAudio, but that are 

in fact only useful as intermediates for calculating other features, not as features 

themselves. These are FFT Bin Frequency Labels and Beat Histogram Bin Labels. So, 

while technically jAudio extracts 28 core features, for the purposes of practical usability 

only 26 are typically used. 

The core features implemented and distributed with jAudio are: 

 Power Spectrum 

 Magnitude Spectrum 

 Magnitude Spectrum Peaks 

 Spectral Variability 

 Spectral Centroid 

 Partial-Based Spectral Centroid 

 Partial-Based Spectral Smoothness 

 Compactness 

 Spectral Roll-off Point 

 Spectral Flux 

 Partial-Based Spectral Flux 

 Method of Moments 

 Area of Moments 

 MFCC 
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 Zero Crossings 

 RMS 

 Relative Difference Function 

 Fraction of Low-Energy Frames 

 LPC 

 Beat Histogram 

The following features based on the beat histogram feature are also implemented and 

packaged with jAudio: 

 Strongest Beat 

 Beat Sum 

 Strength of Strongest Beat 

Finally, the following rudimentary features for estimating fundamental frequency are 

also included: 

 Strongest Frequency via Zero Crossings 

 Strongest Frequency via Spectral Centroid 

 Strongest Frequency via FFT Maximum 

3.4.4 Multidimensional features 

It should be noted that many of the features referred to in Section 3.4.3 are 

multidimensional features, which is to say that each feature ―value‖ in fact consists of a 

vector of associated values rather than a single value. MFCCs or a beat histogram, for 

example, are multidimensional features, while RMS and spectral centroid are one-

dimensional features. 

Some multidimensional features, such as the magnitude spectrum, have 

dimensionalities that vary and are automatically calculated by jAudio based on factors 

such as sampling rate and window length. Others, such as MFCC and LPC, have 
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dimensionalities that can be selected by the user. Others, such as the method of moments, 

have fixed dimensionalities. 

jAudio allows the components of multidimensional features to be grouped together 

into logically related vectors, unlike most alternative audio feature extraction systems, 

which typically treat each dimension simply as a separate one-dimensional feature when 

it is saved. The logical grouping functionality offered by jAudio only works when 

features are saved to ACE XML files, however, as the Weka ARFF format does not 

permit this type of representation. 

A separation between single and multi-dimensional features can be useful because it 

makes it possible to use classifier ensembles that capitalize on the particular relatedness 

of the components of multi-dimensional features. An example of this would be an 

ensemble constructed by training a separate classifier on each multi-dimensional feature, 

an approach that was experimentally found to be effective for genre classification 

(McKay 2004). 

The maintenance of a clear and distinct logical relationship between the components 

of multidimensional features is also important when applying metafeatures and 

aggregators, as it allows dimensional consistency. It is also useful in facilitating the 

implementation of new features based on existing multidimensional features. 

3.4.5 Platform for developing new features 

The iterative approach to feature development emphasized in the design of all jMIR 

feature extractors is particularly important with respect to audio features, where low-level 

features can be combined to build increasingly high-level and musically meaningful 

features. jAudio therefore takes special steps to facilitate the iterative development and 

implementation of new features.  

Features in jAudio are each implemented as a separate Java class. The class for each 

feature extends the existing FeatureExtractor superclass, which provides a simple, 

convenient and consistent framework for implementing new features. The new feature 

can specify any other features that it needs in order to be calculated (e.g., spectral centroid 

is calculated based on the power spectrum), any time offsets for each of these 

dependencies (in case the feature depends on past or future windows) and metadata 

describing the feature and its dimensionality. It is then only necessary to implement a 
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method for calculating the feature value(s), called extractFeature, which will be called by 

jAudio during feature extraction. jAudio automatically passes this method an array of 

sample values, the sampling rate and any other feature values that were specified as 

needed by the new feature. 

This approach has many advantages with respect to minimizing the learning curve and 

effort needed to implement new features. An additional advantage is that it does not 

require any knowledge of the details of how existing features are implemented in order to 

use them in calculating a new feature. For example, a new feature could output the pitch 

of detected note onsets based on multiple other features, such as MFCCs and onset 

detection features, which could in turn be based on features such as power spectrum and 

RMS. In other words, it is possible to implement increasingly high-level features using 

lower-level features while maintaining full abstraction on the part of the implementer if 

desired. 

Individuals implementing new features in jAudio do not need to do anything beyond 

the steps described above. It is not necessary to make any changes anywhere in jAudio’s 

code, as the feature will automatically be detected, called and provided with any data that 

it needs by jAudio. It is also not necessary to take any action to ensure that a new 

feature’s extraction will be scheduled after that of any other features that it needs, as such 

scheduling is performed automatically by jAudio, as described in Section 3.4.6. 

It is not even necessary for the implementer of a new feature to recompile jAudio 

after adding a new feature. The new feature class file just needs to be added to a plug-in 

directory and a reference added to it in jAudio’s XML configuration file. This not only 

simplifies the process of implementation, but is extremely helpful in enabling new 

features to be distributed to other users of jAudio, who will not need to recompile their 

jAudio installations. This is especially useful for making new features available to users 

with limited technical proficiency and for facilitating the use of new features in the 

context of OMEN. It is even possible to remotely access new features by placing a URL 

pointing to a feature’s class file in the XML configuration file. Features are also 

automatically detected by jAudio if they are in the Java Classpath. 

jAudio also greatly simplifies the process of dealing with audio for those 

implementing new classes. By automatically interpreting and pre-processing audio files 
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(see Section 3.4.2), jAudio automatically eliminates a great deal of legwork on the part of 

implementers by simply providing features with an already processed array of samples.  

The default Java Core Libraries provide only very basic audio functionality, and 

jAudio helpfully abstracts away many low-level implementation details for those wishing 

to implement new features so that they do not need to concern themselves directly with 

issues such as buffering and format conversions. jAudio is packaged with a number of 

custom-implemented low-level audio libraries, which users are free to use for performing 

audio processing tasks, either inside or outside the jAudio framework. 

3.4.6 Automatic feature extraction dependency resolution and scheduling 

A difficulty encountered by any platform designed for iteratively building features 

that can be calculated based on other feature values is that extraction must be scheduled 

in the proper order so that feature calculation dependencies are properly resolved. If not 

treated with care, this difficulty could lead to significant difficulties as users select at 

runtime which features to extract for a particular task. 

jAudio therefore includes functionality for automatically dynamically scheduling 

feature extraction at runtime such that features that are needed to calculate any other 

feature will automatically be extracted first. In other words, just before extraction begins, 

jAudio dynamically orders the execution of feature calculations based on the features 

selected by the user such that every feature’s calculation is executed only after all of the 

features upon which it depends have been calculated.  

Because jAudio calculates feature dependencies and orderings specifically at runtime, 

it becomes possible to efficiently perform custom extractions that save only a desired 

subset of all available features. jAudio’s scheduling algorithm automatically notes if there 

are any features that have not been requested for extraction by the user but are in fact 

needed to calculate one or more other features that have been requested. In such a case, 

jAudio will automatically extract values for the intermediate features, use them in the 

appropriate calculations, but not save the intermediate feature values unless specifically 

requested to do so. Users might thus choose to extract many features calculated from the 

power spectrum, for example, but not to save the power spectrum itself. They would not 

need to know that these features depend on the power spectrum or intervene to have it 

extracted, since jAudio takes care of these details automatically. So, in addition to its 
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benefits with respect to increasing the ease of adding new features to jAudio, jAudio’s 

automatic scheduling also reduces the knowledge needed on the part of users of jAudio. 

jAudio’s scheduling algorithm also has advantages with respect to efficiency, both by 

enabling users to extract only those features that they are interested in, and by avoiding 

the recalculation of intermediate features each time that they are needed for a new feature. 

This is done by reusing previously calculated values while at the same time saving space 

by only saving those values that are explicitly needed. 

The dependency resolution algorithm has two distinct steps, namely determining 

which features to extract and determining the order in which they are to be extracted. 

jAudio begins by making a list, A, of all features whose values are to be saved. Another 

list, B, is then built that will eventually contain a list of all features to be extracted. These 

two lists can differ, as a user may not wish to save a given feature, but this feature may 

nonetheless be needed in order to calculate another feature that the user does in fact want 

to save.  

Initially B is set to be identical to A. jAudio then loops through each feature in B and 

adds each feature’s dependencies to the end of B if they are not already in B. The loop 

terminates when an iteration is completed without adding any new features. 

Once the features to be extracted have been identified, jAudio orders these features to 

ensure that every feature is calculated only after its dependencies have been calculated. 

To accomplish this, jAudio creates an ordered list of features to extract, C. jAudio then 

cycles through all the features in B. If all of the dependencies of a given feature in B are 

in C, then this feature is added to the end of C. This loop terminates once all features in B 

have been added to C. 

3.4.7 Metafeatures 

It can often be useful to calculate certain types of statistical information about a 

feature. For example, one might wish to calculate the change of a feature’s value from 

window to window, or one might wish to calculate its standard deviation over a series of 

windows. Such information can often be useful with respect to a wide range of features. 

Having to implement such statistical information as a separate individual feature for 

each relevant feature would be needlessly complex and time consuming. For example, if 

one is interested in finding the standard deviation over a series of windows for 20 
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different features, such as spectral flux, spectral centroid, RMS, etc., one would not want 

to have to implement 20 new functions, namely spectral flux standard deviation, spectral 

centroid standard deviation, RMS standard deviation, etc. 

Metafeatures offer a convenient solution to this problem. Metafeatures are feature 

templates that can be applied to all features to automatically create new derivative 

features. So, for example, an implementation of a standard deviation metafeature could be 

used to automatically extract the standard deviation of any other feature, including new 

features that have yet to be implemented, without needing to explicitly implement it for 

each feature. Metafeatures are output by jAudio exactly like any other features. 

jAudio automatically gives users the option at runtime of extracting each metafeature 

for every feature that is present in the jAudio feature catalogue. The option of applying 

existing metafeatures to new features is automatically added to the jAudio interface once 

a new feature is added to jAudio, and the option of applying new metafeatures to all 

existing features is automatically given to the user once the new metafeature has been 

added to jAudio. 

jAudio is packaged with implementations of three basic metafeatures: 

 Derivative: The change in the value of a feature from window to window. 

 Running Mean: The mean of a feature across a set of adjacent windows. This can 

be useful in smoothing noisy features, assuming that sufficient time resolution is 

available. 

 Standard Deviation: The standard deviation of a feature across a set of adjacent 

windows. Standard deviations have been found to be particularly useful in a 

number of informal experiments, as they provide a relatively compact 

representation of how audio signals change with time. 

jAudio also makes it possible to chain metafeatures together. jAudio includes 

implementations of two such chained metafeatures: 

 Derivative of Running Mean: The change in the running mean metafeature from 

one set of windows to another. This can be useful in tracking overall trends in 

noisy data. 
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 Derivative of Standard Deviation: The change in the standard deviation 

metafeature from one set of windows to another. This can be useful in tracking 

changes in the variability of a feature. 

jAudio therefore includes a total of five metafeatures. The software is designed to 

make it simple to implement and add further metafeatures in the future, as it is only 

necessary to extend the MetaFeatureFactory class to implement a new metafeature. 

Adding new metafeatures to jAudio is much like adding new features, as described in 

Section 3.4.5.  

To further illustrate how metafeatures work, consider the example of a researcher who 

has implemented an imagined feature named tonal energy and has added it to jAudio. 

Users would then automatically have the option at runtime of whether or not to extract 

each metafeature (i.e., derivative, running mean, standard deviation, etc.) for this new 

feature, without the implementer of tonal energy needing to implement any code for 

calculating these quantities. Figure 3.8 provides another illustration of how metafeatures 

work. 

It should be noted that the metafeature aspect of jAudio was designed, implemented 

and tested entirely by Daniel McEnnis. 

3.4.8 Feature aggregators 

A feature aggregator is a jAudio function for collapsing some sequence of feature 

vectors into a smaller sequence of vectors or into a single vector. This idea is very similar 

to the aggregate features proposed by Bergstra et al. (2006). Aggregators in jAudio take 

as input the output of a selected subset of the available features over all windows in an 

audio file and produce a single output for the entire file. In essence, aggregators collapse 

information on how a feature or set of features vary with time into a single representation. 

Aggregators can be very helpful in attempting to come to terms with the curse of 

dimensionality when dealing with potentially huge amounts of feature data. 
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Figure 3.8: An illustration of how metafeatures work. This example shows three windows 

of an audio signal. The MFCC and zero crossings features are extracted from these 

windows, with dimensionalities of 13 and 1, respectively. The derivative metafeature is 

then calculated for each window and for each feature, with dimensionalities of 13 and 1, 

corresponding to the dimensionalities of the MFCC and zero crossings features 

respectively. This graphic is taken from the poster presented by McEnnis at ISMIR 2006 

(McEnnis, McKay and Fujinaga 2006a). 

Aggregators in jAudio come in two varieties, namely general aggregators and 

specific aggregators. General aggregators are functions that, if they are selected by the 

user, will automatically be applied individually to every feature extracted. For each 

feature, per-window feature output is collapsed into a single vector. If a feature that a 

general aggregator is applied to is multidimensional, then the aggregator function will be 

applied to each dimension separately. jAudio includes implementations for the following 

general aggregators: 

 Mean: Calculates the mean value of a feature over all windows in a file. 

 Standard Deviation: Calculates the standard deviation of a feature over all 

windows in a file. 
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 MFCC: This aggregator treats the value of the feature that it is applied to for each 

window as if it were a sample in a digital signal. The MFCC is then calculated for 

this ―signal.‖ 

Specific aggregators are functions that target only one or more specific features 

instead of all features. The features to which they are to be applied must therefore be 

specified when specific aggregators are chosen to be extracted. Specific aggregators can 

be very useful for representing in a low-dimensional way how different features change 

together. jAudio implements the following specific aggregators: 

 Area of Moments: This aggregator combines the values for all selected features 

into a single array for each window, which results in a two-dimensional matrix, 

with one row for each window and one column for each feature. This matrix is 

then treated as a two-dimensional image, and the two-dimensional statistical 

moments (Fujinaga 1997) are calculated and output for this image. 

 Multiple Feature Histogram: An aggregator that constructs a histogram 

indicating in how many windows various feature values fall within various bins of 

value ranges. This can be useful in tracking concurrent changes between features 

over an input signal.  

As is the case with features and metafeatures, users can implement their own 

aggregators relatively easily. This is done by extending the Aggregator class. 

It should be noted that the aggregator aspect of jAudio was designed, implemented 

and tested entirely by Daniel McEnnis.  

3.4.9 Additional functionality 

jAudio is intended to be used not only as a feature extractor, but also as a platform for 

developing new features. As such, it includes additional functionality to assist the testing 

of new functions, as follows: 

 Sound Synthesis: Basic additive sound synthesis functionality is included that 

allows sine waves, complex tones, white noise, FM sweeps, decay pulses, etc. at 

various specified frequencies and amplitudes to be combined and saved. 
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 Recording: jAudio can record audio from microphones. The system sound can 

also be recorded, if permitted by the sound card and operating system. 

 Playback: Audio and MIDI files can be played.  

 MIDI to Audio Conversion: The recording and playback functionality can be 

combined to perform rudimentary real-time MIDI to audio conversion. 

 Format Conversion: Sampling rate, bit depth, signing, byte order and file 

encoding format can all be varied.  

 Audio Processing: Gain, normalization and channel combination can be 

performed on a file-by-file basis. This is in addition to jAudio’s pre-processing 

functionality, which can automatically apply such operations to groups of files. 

 Display Functionality: Audio waveforms and power spectra can both be graphed 

for any file or portion of a file. Individual sample values can also be listed by time. 

 Batch and Configuration Files: jAudio includes a configuration file format that 

allows feature extraction and pre-processing settings to be saved between jAudio 

sessions. Batch files can also be saved that include this information as well as sets 

of files to extract features from. This facilitates the repetition of experiments after 

changes have been made to the software as well as the performance of multiple 

experiments with similar parameters. 

 Installation Utility: Automatically installs jAudio, taking into consideration each 

user’s particular operating system and Java installation. 

3.5 jAudio’s interface 

Like all of the jMIR components, jAudio has been designed to be easily usable by 

researchers with a wide range of technical backgrounds, from users who want to use it 

simply as a dedicated feature extraction application, to developers who wish to add 

functionality or modify the code to meet their own research needs. jAudio therefore 

includes several different interfaces, namely a GUI, a command-line interface and an API 

for embedding jAudio’s functionality in other applications. The ability to embed jAudio 
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in other applications was designed with the particular needs of the OMEN project in 

mind, although jAudio can certainly be embedded in other applications as well.  

The command-line interface is designed to enable users to quickly extract features 

from batches of audio files. Although all of the functionality provided by the command-

line interface is also accessible via the GUI, some users prefer the speed of access offered 

by a command-line interface. In any case, the best way to use the command-line interface 

is typically to save batch files via the GUI interface, and then simply load these files via 

the command-line. Of course, some settings can be set directly via command-line 

arguments, and batch files can be modified manually using a text editor if preferred. 

The GUI makes all of the user-oriented functionality described in Section 3.4 

available to users. This functionality will not be explicitly repeated in detail here, but the 

details of how some of the highlights can be accessed via the GUI will be discussed. 

More details are available in jAudio’s documentation, particularly in its embedded 

manual (Figure 3.9). 

jAudio’s fundamental functionality is accessible via the Feature Extraction Window 

(Figure 3.10). The left side of this window lists all audio files that the user has selected to 

have features extracted from. The right side of this window lists all features and 

metafeatures that are detected by jAudio at runtime. The basic features are listed in bold, 

and available metafeatures are automatically generated under each such feature. The user 

may select which features and metafeatures to extract using the checkboxes presented 

here, and parameters for individual features and metafeatures, as well as identifying 

descriptions, can be accessed by double clicking on feature names. Aggregators may be 

accessed and configured via separate windows (Figure 3.11).  

The Feature Extraction Window also provides direct access to some of jAudio’s most 

commonly used functionality, including the ability to add or delete recordings, set feature 

save paths and set window settings. jAudio’s other functionality can be accessed via its 

various menus. 

All of the user settings relating to features, metafeatures, aggregators and selected 

recordings can be saved to configuration or batch files, as can certain other settings 

relating to pre-processing audio. Loading these will restore the appropriate settings on the 

GUI. 
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jAudio also includes functionality for viewing information on audio files and applying 

basic processing operations to them, as shown in Figure 3.12. This includes the ability to 

display time indexed sample values, waveforms and spectral analyses for all or parts of 

audio files (Figure 3.13). A separate window (Figure 3.14) also allows users to change the 

encoding settings for individual files. 

In order to facilitate the testing of new features, jAudio also allows users to record 

audio from a microphone or from the system sound (Figure 3.15) or to perform 

rudimentary additive sound synthesis (Figure 3.16). 

 

 

Figure 3.9: jAudio’s manual, which can be accessed via jAudio’s Help menu. 
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Figure 3.10: jAudio’s main window. This window allows the user to choose both the 

recordings to extract features from and the particular features and metafeatures to 

extract, as well as to specify other settings. 
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Figure 3.11: jAudio windows allowing aggregators to be selected (top) and configured 

(bottom). 
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Figure 3.12: jAudio window allowing the user to see various types of information about 

individual recordings as well as apply some basic processing operations to them. 
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Figure 3.13: jAudio windows for displaying waveforms (top) and power spectra (bottom) 

for all or parts of audio files. 
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Figure 3.14: The jAudio window for selecting or changing encoding settings for 

individual audio files. 
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Figure 3.15: jAudio window allowing the user to record sound from a microphone or from 

the system sound in order to facilitate the testing of new features. 
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Figure 3.16: jAudio window allowing the user to perform rudimentary additive sound 

synthesis in order to facilitate the testing of new features. 
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3.6 Summary of original contributions 

jAudio is designed to be a dedicated audio feature extraction application, a code 

library that can be embedded in other applications and a feature development platform. 

There are, as discussed in Section 3.3.2, already a number of existing alternative high-

quality audio feature extraction applications designed for use in MIR research. jAudio 

does, however, have a number of characteristics that distinguish it from these alternatives. 

Many, but not all, of these advantages are associated with jAudio’s emphasis on 

providing a platform for developing, testing and sharing new features. The highlights of 

jAudio’s distinguishing characteristics are as follows: 

 Functionality facilitating the use of multidimensional features in a logically 

natural way, including features with variable dimensionalities, both in terms of 

using them to derive other features and in terms of maintaining a logical 

relationship between the values of multidimensional features that facilitates their 

use with specialized classifier ensembles. 

 The ability to save extracted feature values in ACE XML files. This has many 

advantages over alternatives such as Weka ARFF (a format that jAudio can also 

save to if required). These benefits include the ability to store the specific 

relationships between analysis windows and audio files as a whole, the ability to 

preserve the relationship between the dimensions of multidimensional features, the 

ability to save features for files overall in combination with features only extracted 

from portions of these files and the ability to automatically store metadata about 

recordings as well as features themselves. ACE XML files are discussed in more 

detail in Chapter 7. 

 The ability to implement features as plug-ins using a simple API and distribute 

compiled new features to other users without requiring these new users to 

recompile their jAudio installations. 

 Automatic feature dependency resolution and scheduling. 

 Metafeatures. 

 Feature aggregators. 
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 Functionality facilitating feature testing, including the ability to record audio, 

sonify MIDI files, synthesize audio, convert between audio formats and graph 

audio waveforms and spectral analyses. The ability to save configuration settings 

and batch files also facilitates retesting after implementing bug fixes. 

 Easy-to-use GUI making the software usable by non-technically oriented 

researchers. An installation utility is also included. 

3.7 Future research 

The primary emphasis in future research will be to develop, test and share new 

features. The features that are distributed with jAudio provide a good basis for developing 

higher-level features, which can then in turn be used to implement increasingly high-level 

features. Research in music theory, of the type discussed in Chapter 4 with respect to 

jSymbolic, could provide useful inspiration for developing such high-level features. 

Psychological research in audio perception and cognition could also be helpful, such as 

the general work described by Moore (2003) or the grouping principles outlined by 

Bregman (1990). Such research, as discussed in Chapter 2, could help to provide an 

understanding of what basic types of information humans extract from audio signals. 

There are also a number of existing and as-of-yet unthought-of low-level features that 

remain to be implemented. Examples include spectral flatness measure and spectral crest 

factor (Jayant and Noll 1984), as well as chroma vectors (Goto 2003). Features derived 

from the discrete wavelet transform rather than the FFT could also be useful. Additional 

metafeatures and aggregators could also prove helpful, especially ones designed for 

extracting various statistical characteristics from histogram-based features. 

 As discussed in Section 3.2.5, much research remains to be done on the extent to 

which various features are dependent on audio file format and associated representational 

parameters. jAudio would provide an excellent platform for carrying out such research. 

With respect to improvements to the jAudio software itself, a priority is to increase 

jAudio’s processing speed. Although fast enough as is for many practical MIR purposes, 

it would ideally be nice to have jAudio be fast enough to extract features in real-time. 

Features could then be broadcast to real-time applications for purposes such as interactive 
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performance systems (e.g., McKay 2005). Faster feature extraction would also make 

jAudio more generally applicable to rapid processing of very large audio collections. 

There are also a number of low-level optimizations that could improve jAudio’s 

performance. In particular, more efficient techniques and representations could be used to 

generate the array of samples that serve as the basic input to individual features. Minor 

improvements could also be made that would reduce the small amount of rounding error 

currently found in jAudio’s sample calculations. jAudio also currently requires a large 

amount of memory during processing, particularly when applied to long audio files, 

something that could be ameliorated in the future. 

There are also several useful types of functionality that could be added to jAudio. For 

example, it would be helpful to have more flexible control over windowing. Being able to 

extract features from only a subset of all windows of a recording could be useful for some 

tasks, such as genre classification or music recommendation. It could be helpful for users 

to be able to either choose where in a recording such a subset of windows are to be 

selected, or to be able to instruct jAudio to choose the locations randomly. 

Another potential improvement would be to incorporate functionality for representing 

extracted features more sparsely, for the purposes of conserving space and machine 

learning processing time as well as, potentially, increasing performance of classification 

by removing feature noise. One way of doing this would b to allow users to extract 

buckets of windows, where ten or so sets of windows, each spanning a few dozen or so 

milliseconds, are selected at random points in a recording. Since each such bucket spans 

only a small amount of time, the features for all windows in a bucket could reasonably be 

averaged together. This approach would dramatically reduce the data that would need to 

be stored and then processed by machine learning algorithms, but still provide hopefully 

representational probes at various points in each recording. 

It would also be useful to provide users with a choice of windowing functions when 

calculating FFTs, as jAudio currently automatically applies a Hann window. 

Functionality could also be added to jAudio for parsing additional audio file formats. 

Ogg Vorbis, AAC/MP4, FLAC and SDIF would be particularly useful choices. It could 

also be useful to incorporate functionality into jAudio allowing it to extract features from 

live audio streams. 
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There also plans to make minor improvements to the GUI interface, particularly with 

respect to the ways that aggregators are accessed and with respect to expanding the details 

covered by jAudio’s manual. jAudio is easy-to-use and well-documented compared to 

most existing MIR software, but there is still certainly room for improvement. 
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4. jSymbolic: Extracting features from symbolic music  

4.1 Introduction 

4.1.1 Overview of symbolic feature extraction and jSymbolic 

Symbolic musical file formats represent musical information in a fundamentally 

different way than audio files. As discussed in Chapter 3, audio files store actual sound 

signals by digitally approximating the signals themselves. Symbolic files, in contrast, 

store higher-level abstractions about music rather than direct representations of the sound 

itself. So, while an audio file such as an AIFF file would store an approximation of the 

actual sound waves produced by a bass and alto sax duet, for example, a symbolic file 

would store information such as the pitch of each note, which instrument played each 

note and the start and stop times of each note. Examples of symbolic musical 

representations range from sheet music written by composers and read by musicians to 

the holes punched in player piano rolls to modern digital file formats such as MIDI, 

Humdrum and MusicXML. 

jSymbolic is the jMIR software application devoted to extracting features from 

musical data stored symbolically, specifically in MIDI files. As is the case with jAudio, 

jSymbolic is designed to be used directly as a feature extraction application as well as a 

platform for iteratively developing new features that can then be shared amongst 

researchers. jSymbolic also shares many of the design characteristics of jAudio that 

emphasize feature extensibility. This includes a modular design that facilitates the 

implementation and incorporation of new features, automatic provision of all other 

feature values to each feature and dynamic feature extraction scheduling that 

automatically resolves feature dependencies. Unlike jAudio, however, jSymbolic does not 

yet have functionality for automatically generating metafeatures and aggregators. 

As is the case with all of the jMIR components, jSymbolic is designed to be 

accessible to users with a variety of technical skill levels, and has a simple and easy-to-

use GUI. Also like all of the jMIR components, jSymbolic is implemented in platform-

independent Java, and is entirely open-source and freely available. 
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jSymbolic includes a library of 111 implemented features that may be extracted from 

symbolic files. A further 42 features that remain to be implemented are also proposed in 

this document, for a total catalogue of 153 features, including both single-value features 

and multi-dimensional features. These features can be loosely divided into the following 

categories: 

 Instrumentation: Which instruments are present, and which are emphasized 

relative to others? Both pitched and non-pitched instruments are considered.  

 Texture: How many independent voices are there and how do they interact (e.g., 

polyphonic or homophonic)? What is the relative importance of different voices?  

 Rhythm: Features are calculated based on the time intervals between note attacks 

and the durations of individual notes. What meter and what rhythmic patterns are 

present? Is rubato used? How does rhythm vary from voice to voice?  

 Dynamics: How loud are notes and what kinds of variations in dynamics occur?  

 Pitch Statistics: How common are various pitches relative to one another, in 

terms of both absolute pitches and pitch classes? How tonal is the piece? What is 

its range? How much variety in pitch is there?  

 Melody: What kinds of melodic intervals are present? How much melodic 

variation is there? What can be observed from melodic contour measurements? 

What types of phrases are used and how often are they repeated?  

 Chords: What vertical intervals are present? What types of chords do they 

represent? How much harmonic movement is there, and how fast is it? 

The 153 jSymbolic features were originally developed through extensive analysis of 

publications in the fields of music theory, musicology and MIR as part of the 

Bodhidharma symbolic genre classification project (McKay 2004). The features have 

since been refined. Most of these features had not previously been applied to MIR 

research, and many of them are entirely novel. 

The effectiveness of these features has been experimentally demonstrated by the fact 

that Bodhidharma placed first in all four categories of the MIREX 2005 Symbolic Genre 
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Classification Contest (McKay and Fujinaga 2005b; www.music-ir.org/evaluation/mirex-

results/), the most recent MIREX symbolic genre evaluation. The refinement and porting 

of these features to jSymbolic now allows these features to be used for a range of MIR 

tasks beyond only genre classification. 

A special emphasis was placed on ensuring the diversity of the features in the 

jSymbolic feature catalogue, which is part of the reason why so many features were 

implemented. General-purpose suites such as jMIR must be able to deal with many 

different types of music, and the features that might be relevant to certain types of music 

might be useless with respect to others. jSymbolic thus presents researchers with a large 

palette of features from which to choose, based on either their own musical expertise or 

ACE’s automatic feature selection functionality (see Chapter 6). 

The jSymbolic Java bytecode and the associated source code are freely available at 

jmir.sourceforge.net/index_jSymbolic.html. The software makes use of the Xerces XML 

Parser,
118

 which is also freely available. There is also some initial published work 

available on jSymbolic (McKay and Fujinaga 2007b; McKay and Fujinaga 2006a; 

McKay and Fujinaga 2006c). 

4.1.2 Benefits of extracting features from symbolic data 

There has, at least to date, been much more MIR research performed on features that 

can be extracted from audio data than from symbolic data. This is to be expected, given 

that most commercial MIR applications and users in general are much more interested in 

processing audio files than symbolic files such as MIDI. 

One must not underestimate the advantages offered by symbolic file formats, 

however. In stark contrast to the majority of MIR researchers, musicologists and music 

theorists have focused, and continue to focus, on symbolic musical representations, 

namely printed or written scores. There is therefore an immense existing body of 

knowledge that can be taken advantage of to design features that can be extracted from 

symbolic data and, correspondingly, many potential applications for such features.  

Furthermore, the information represented by features extracted from audio data 

generally have little intuitive meaning to humans. So, for example, while spectral centroid 
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and spectral flux values extracted over a sequence of audio windows can certainly be of 

potential use to an automatic classification system, they are unlikely to give a music 

theorist or composer any musical insights or inspiration. These types of features can be 

referred to as low-level features, as they represent information about musical signals at a 

relatively low level of abstraction. 

The features extracted from symbolic data, on the other hand, can be much more 

directly meaningful to humans. Features directly related to tempo or key, for example, 

can prove helpful in providing humans with meaningful insights on music. Such features 

can be referred to as high-level features, because they incorporate high levels of musical 

abstraction.  

Symbolic data by its nature already fundamentally includes a high level of musical 

abstraction. While the fundamental unit of an audio representation is typically a sample, 

the fundamental unit of a symbolic representation might be a note, for example. This 

means that it is much easier to extract high-level musical features from symbolic 

representations than from audio representations. Despite ongoing efforts, few high-level 

features can currently be reliably extracted from arbitrary audio data. It is for this reason 

that one might argue that the MIR research community has made a misstep by focussing 

so much more on audio features than on symbolic features. Symbolic data yields much 

more immediate and reliable access to musically meaningful research.  

It is also important to point out that research in the fields of audio feature extraction 

and symbolic feature extraction will likely be much more linked in the future than they 

are at the moment. Research on automatic transcription, which is essentially the task of 

generating symbolic representations from audio representations, is an important area that 

receives significant research interest. If future advances allow audio to symbolic 

transcription to be reliably performed, then existing research on symbolic feature 

extraction could be profitably applied to symbolic transcriptions extracted as intermediate 

data structures from audio files. A strong body of research on symbolic feature extraction 

now could thus pay dividends in the future by providing immediate access to a wide 

range of high-level features that could be indirectly extracted from audio data. 

Although general polyphonic transcription is still very much an unsolved problem, 

significant achievements have already been made in areas such as monophonic 
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transcription or piano-only transcription, and general improvements continue to be made 

(Klapuri and Davy 2006). Furthermore, automatic music classification tends to be much 

more noise tolerant than other applications of automatic audio transcription. While an 

audio transcription, where 10% of the notes are incorrect, might be entirely unacceptable 

to a human performing an automatically transcribed score, for example, such an error 

level would not necessarily prove to be a serious detriment to automatic classification 

algorithms, many of which are specifically designed to deal with such noisy data. In 

addition, the averaging out of features during the feature aggregation process could also 

effectively smooth out much of this transcription noise. So, research on high-level 

features performed now using symbolic data could be of significant use in the future with 

respect to audio data as well, perhaps even in the very near future.  

Of course, feature extraction from symbolic musical data is an important area of 

research in and of itself, even without reference to audio feature extraction, as there are 

already many existing symbolic musical recordings. There is a large and active 

commercial and volunteer MIDI encoding community, researchers have encoded a large 

amount of music in other symbolic formats (see Section 4.2.1), and there is also music 

available in the formats used by commercial score editors such as Finale and Sibelius. 

Existing optical music recognition techniques can also be used to process printed or 

written scores into symbolic file formats from which features can then be extracted. Most 

academic music libraries have many more scores than audio recordings, thus making free 

and legal access to the music cheaper and easier, and there are also many scores for which 

audio recordings do not exist or are hard to acquire. Extracting high-level features from 

processed scores can in fact be in some ways preferable from a musicological perspective 

to processing audio data, as it removes potential performance biases and errors, and 

focuses entirely on the artifact provided by the composer. 

High-level features can also have important musicological and music theoretical 

research value outside the specific context of automatic music classification. For 

example, research has found that instrumentation is of particular importance when 

distinguishing between genres (McKay and Fujinaga 2005a), a conclusion that would be 

difficult to achieve if one were using only low-level features. 
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There is great potential that has barely begun to be tapped for automated research 

using high-level features in fields such as empirical musicology and music theory. 

Researchers in these fields typically currently use relatively primitive kinds of computer 

processing, when they use computers at all, and almost never use sophisticated machine 

learning tools. Software such as jSymbolic, potentially combined with pattern recognition 

software such as ACE, makes it possible to process much greater quantities of music than 

previously possible in order to search for regularities or to prove or disprove theoretical or 

musicological hypotheses. jSymbolic could therefore be of significant use to music 

researchers in the humanities as well as in MIR, and it is one of the goals of jSymbolic to 

encourage just such research. 

Having noted all of this, it is important to recognize some of the important general 

limitations of symbolic data with respect to musical representation and feature extraction. 

One of the most significant of these limitations is that timbral data is usually only 

represented symbolically in a relatively coarse manner, usually via instrument identifiers. 

Although some additional information can in principle be represented using information 

such as MIDI Channel Pressure messages (see Section 4.2.2), for example, such encoding 

practices are not standardized, with the consequence that they are effectively meaningless 

if features are extracted from files coming from multiple sources. Timbral information 

plays an important role in human hearing, so this is a potentially serious issue. 

A symbolic recording of a human performance will almost always sound significantly 

worse than an audio recording of the same performance. This is partly because it is 

impossible to properly record the full range of control parameters for most instruments, 

which is significant from the perspective of analytical feature extraction, and partly 

because of synthesizer limitations, which is less significant from this perspective. 

An additional problem is that most symbolic formats were devised primarily with 

Western musical models in mind. This can limit their applicability to certain non-Western 

musics, although certainly not all. For example, MIDI cannot represent instruments that 

are not specified in General MIDI in a standardized way, although MIDI can represent 

microtonal pitch intervals. 

Despite all of this, the increased accessibility of high-level features in symbolic 

formats, as discussed above, remains a very significant asset. Symbolic formats such as 
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MIDI also have a number of additional advantages over audio recordings. For example, 

they are typically much more compact, which in turn makes them easier to store or 

transmit, and much faster to process and extract features from. Symbolic recordings are 

also usually relatively simple to visualize in human-meaningful ways, such as via 

standard sheet music notation (as opposed to audio waveforms or spectrograms), and they 

can also be edited entirely non-destructively. 

Symbolic data also makes it easier to extract meaningful features relating to entire 

recordings, such as key or meter, for example. Audio data, in contrast, typically has to be 

segmented into analysis windows prior to feature extraction, as explained in Chapter 3. 

This results in an explosion of data and processing complexity, where features extracted 

from individual windows may be overly noisy because of their short duration, and 

averaging out these features over many windows may smooth out some potentially 

meaningful information. 

As an additional note, the loss of timbral data beyond instrumentation in symbolic 

formats may not be as significant as it may seem at first. For example, Aucouturier and 

Pachet (2003) suggest that the relationship between timbral features and musical genres 

may not be as strongly correlated as one might imagine. It is, of course, true that timbre 

clearly does play a role in many kinds of human auditory classification, but Aucouturier 

and Pachet’s work still provides an indication that the importance of timbre may have 

been overemphasized in past research, and that other types of musical information may 

well make timbre unnecessary for some kinds of automatic classification. The fact that 

timbre-based features have played a sometimes overwhelming role in many of the 

existing audio classification systems may have even potentially impaired their 

performance. 

Overall, one can say that audio encodings have certain significant advantages over 

symbolic encodings, and that symbolic encodings likewise have certain significant 

advantages over audio encodings. This is precisely why jMIR includes both jSymbolic 

and jAudio, so that the advantages offered by both approaches to encoding musical 

information may be taken advantage of, whether one searches out matching symbolic and 

audio versions of a particular piece, or whether transcription technology or synthesis 

technology is respectively used to generate one type of encoding based on the other. 
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4.1.3 Chapter outline 

Section 4.2.1 of this document provides a brief overview of some of the most relevant 

symbolic musical file formats. Section 4.2.3 includes justifications for the particular 

choice of MIDI as the format from which jSymbolic extracts features. A relatively 

detailed description of the MIDI specification is also provided in Section 4.2.2, in order to 

ensure that the reader is fully prepared for the feature descriptions provided in Section 

4.5. 

Existing software that can be used for symbolic feature extraction is reviewed in 

Section 4.3. The main focus in this section is on software specifically designed for feature 

extraction, although some particularly pertinent tangential research is also mentioned. 

Section 4.4 reviews and integrates research from several fields in order to arrive at 

general principles to consider when designing and choosing features to extract from 

symbolic data. The focus of this section is primarily on theoretical research in disciplines 

related to music theory and musicology, although this is not exclusively the case. 

The features that are proposed as part of the jSymbolic feature catalogue are described 

individually in Sections 4.5.1 to 4.5.7. These features are grouped into the categories 

described above in Section 4.1.1 for the purpose of clarity, and include both the 111 

features that are implemented in jSymbolic as well as the 42 features that remain to be 

implemented. For the purpose of illustration, Section 4.5.8 includes two short musical 

excerpts and examples of some of actual feature values extracted from these excerpts. 

Section 4.6 outlines the basic functionality offered by jSymbolic, while the software’s 

interface itself is described in Section 4.7. A summary of the original research 

contributions of this chapter is presented in Section 4.8, and some final ideas for future 

research in symbolic feature extraction and expansion of jSymbolic’s functionality are 

provided in Section 4.9. 

4.2 Background information 

4.2.1 Symbolic music file formats 

It is generally possible to divide digital symbolic file formats into three broad 

categories: formats intended to communicate performance information between gestural 

controllers, computers and synthesizers; formats intended to represent musical scores and 
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associated visual formatting information; and formats intended to facilitate theoretical and 

musicological analysis. 

MIDI (MIDI Manufacturers Association. 2001; Rothstein 1995), which falls primarily 

into the first of the three categories described above, is the symbolic file format that is by 

far the best known by the general public. As a result, there is a very large quantity of 

music of many kinds that has been encoded in MIDI. Ironically, MIDI was originally 

intended as a real-time protocol for communication between instrumental controllers and 

synthesizers, and did not originally have any file format specification. Nonetheless, its 

relatively early arrival and wide industry adoption has led to its broad popularity as a 

format for storing symbolic musical data. More details on MIDI are provided in Sections 

4.2.2 and 4.2.3. 

Open Sound Control (Wright and Freed 1997), or OSC, is another real-time 

performance-oriented symbolic file format, and was designed specifically as a successor 

to MIDI. It is widely recognized as technically superior to the essentially obsolete MIDI 

protocol, but the wide industry penetration of MIDI has prevented OSC from making 

significant progress in replacing MIDI. Some of the advantages of OSC include explicit 

compatibility with modern networking technology and improved general flexibility and 

organization, as well as technical advantages such as improved time resolution. 

The most commonly used file formats for representing formatted musical scores are 

likely the native file formats of the two dominant score editing applications, namely the 

Sibelius
119

 .SIB format and the Finale
120

 .MUS formats. Unfortunately, these are closed 

formats, which means that the details of how they represent scores are not openly 

published, so one must buy the associated software in order to read or write these formats. 

Furthermore, even if reverse engineered, the file standards may be changed unilaterally at 

any time by the software developers, something that Finale in particular is notorious for 

doing between versions of their score editing application. Problems such as these 

significantly limits the research value of these file formats. 
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Fortunately, there are a variety of more research-oriented formats that can be used to 

represent musical scores, including GUIDO (Hoos et al. 2001) and Lilypond (Nienhuys 

and Nieuwenhuizen 2003), two relatively well-known text-based formats.  

MusicXML (Guess 2001), an open XML-based format, has achieved a relatively high 

profile, particularly due to its adoption by a variety of commercial music notation 

programs, including Finale, Sibelius and the Steinberg Cubase
121

 music sequencer. The 

use of MusicXML as an intermediate file format is currently the best approach available 

for transferring data between .SIB and .MUS files. 

In the realm of music analysis, the file formats associated with the Humdrum Toolkit 

(Huron 2002) are particularly prominent. These formats include the fairly general **Kern 

format (Huron 1997) as well as formats intended to represent more specialized types of 

music, such as the **Hildegard
122

 neume encoding or the **Koto
123

 format for koto 

tablature. 

There are many other symbolic file formats that have been developed, as well as a 

number of published guidelines for developing such formats. Although there is 

insufficient space to go into more detail here, Dannenberg (1993) and Selfridge-Field 

(1997) have provided excellent overviews of the classic symbolic formats. 

4.2.2 The MIDI specification 

MIDI is an encoding system that is used to represent, transfer and store symbolic 

musical information. As mentioned above, the MIDI standard was originally developed as 

a real-time communication protocol between instruments and synthesizers. However, 

even though the notion of a MIDI file was not part of the original MIDI specification, 

MIDI files are now very much part of the standard and are broadly used. 

Only those parts of the MIDI specification that are relevant specifically to symbolic 

feature extraction are discussed in any kind of detail in this section. Those aspects of 

MIDI that are only relevant to live performance and not to MIDI files are for the most 

part omitted here due to the breadth of the MIDI specification. There are many books on 

MIDI, such as that by Rothstein (1995), which can be consulted for further information 
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on MIDI if desired. The complete MIDI specification is published by the MIDI 

Manufacturers Association (2001).  

Like all symbolic file formats, MIDI files store abstract representational instructions 

that can be sent to synthesizers or score editing software, and not actual sound samples. 

The quality of the sound that is produced when a MIDI file is played is therefore highly 

dependant on the particular synthesizer that the MIDI instructions are sent to.  

MIDI essentially consists of sequences of instructions called MIDI messages. Each 

MIDI message corresponds to an event or change in a control parameter. MIDI messages 

each consist of one or more bytes of data, which fall into two types: status bytes and data 

bytes. The status byte is always the first byte of a MIDI message, always starts with a 1 

bit and specifies the type of MIDI message and, implicitly, the number of data bytes that 

will follow to complete the message. Data bytes always start with a 0 bit, which means 

that each data byte has 7 remaining bits to specify values with ranges between 0 and 127. 

MIDI allows the use of up to sixteen different channels on which different types of 

messages can be sent. Each channel operates independently of the others for most 

purposes. Channels are numbered from 1 to 16. There is no channel 0. 

There are two important classes of MIDI messages: channel messages and system 

messages. The former influence the behaviour of only a single channel and the latter 

affect the MIDI system as a whole. Channel voice messages, a type of channel message, 

are the only type of messages that are relevant to symbolic feature extraction. The four 

least significant bits of the status byte of all channel voice messages indicate the channel 

number (0000 is channel 1 and 1111 is channel 16). Note On, Note Off, Channel 

Pressure, Polyphonic Key Pressure, Program Change, Control Change and Pitch Bend 

messages are all channel voice messages, as described below. 

A Note On messages instructs a synthesizer to begin playing a note. This note will 

continue playing until a matching Note Off message is received. The four most significant 

bits of the status byte of all Note On messages must be 1001 and, as with all channel 

voice messages, the four least significant bits specify the channel on which the note 

should be played. Note On messages have two data bytes: the first specifies pitch, from 0 

to 127, and the second specifies velocity, also from 0 to 127. Pitch is numbered in 

semitone increments, with note 60 being designated as middle C. Equal temperament 
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tuning is used by default, although synthesizers can be instructed to use alternate tunings 

if desired. The velocity value specifies how hard a note is struck, which most synthesizers 

map to loudness. 

A Note Off message has an identical format to a Note On message, except that the 

four most significant bits of the status byte are 1000. The pitch value specifies the pitch of 

the note that is to be stopped on the given channel and the velocity value specifies how 

quickly a note is to be released, which is generally mapped to the fashion in which the 

note dies away. Many synthesizers do not implement Note Off velocities, however. A 

Note On message with velocity 0 is equivalent to a Note Off message for the given 

channel and pitch. 

Channel Pressure messages specify the overall pressure for all notes played on a 

given channel. This can be mapped by synthesizers in a variety of ways. Aftertouch 

volume (the loudness of a note while it is sounding) and vibrato are two common 

mappings. The status byte of Channel Pressure messages has 1101 as its four most 

significant bits, and there is one data byte that species the pressure (between 0 and 127). 

Polyphonic Key Pressure messages are similar to Channel Pressure messages, except 

that they contain an additional byte (the one immediately following the status byte) that 

specifies pitch, thus restricting the effect of the message to single notes rather than to all 

notes on the channel. The most significant bits of such a status byte are 1010. 

Program Change messages allow one to specify the instrumental timbre that is to be 

used to sonify all future notes played on the specified channel until a new program 

change message is received for it. Program, patch and voice are all terms that can be used 

equivalently in reference to the instrumental timbres specified by Program Change 

messages. The most significant bits of the status byte are 1100, and there is a single data 

byte specifying the patch number, from 0 to 127. 

The particular 128 instrumental timbres and sound effects corresponding to particular 

patch numbers are specified by the MIDI Program Table, which is part of an addendum 

to the MIDI specification called General MIDI. The MIDI Program Table is relevant to 

all channels except channel 10. All notes played on channel 10 are considered to be 

percussion notes, and General MIDI includes a separate Percussion Key Map specifying 

47 percussion timbres that are always used for notes sent to channel 10. The timbre that is 
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used for each note played on channel 10 is determined based on the pitch value of its 

corresponding Note On message, not by Program Change messages. The pitch value of 

Note On messages on all other channels specifies pitch, and has nothing to do with 

instrumental timbre. Rothstein (1995) provides copies of both the MIDI Program Table 

and the General MIDI Percussion Map. 

Control Change messages affect the sound of notes that are played on a specified 

channel in various ways. Volume and modulation are two parameters that are often 

controlled via Control Change messages. In total, there are 121 different MIDI controllers 

that may be accessed via Control Change messages, including some that are unspecified 

in the standard. However, many synthesizers do not implement most, or even any, of 

these controllers. The four most significant bits of the status byte of Control Change 

messages are 1011. The first data byte specifies the controller that is being referred to, 

from 0 to 120. There is a second data byte that specifies the setting of the controller, 

which can range from 0 to 127. 

If a greater resolution is required, a second Control Change message may be sent to 

supplement the first, resulting in a control resolution of 16,384, as opposed to the 

standard resolution of 128. Controllers 0 to 31 represent the most significant byte in this 

case, and controllers 32 to 63 represent the least significant byte. Two Control Change 

messages can thus cause a single change to be implemented with much greater resolution 

than a single Control Change message. Rothstein (1995) provides details on particular 

Control Change messages. 

Control Change messages are generally intended for use with continuous gestural 

instrumental controllers, and are only standardized to a limited extent. Control Change 

messages are often absent in MIDI files, and their lack of standardization could cause a 

good deal of noise in extracted feature values. They are therefore only utilized by 

jSymbolic in a very limited capacity.  

Pitch Bend messages allow microtonal synthesis. The four most significant bits of the 

status byte of such messages are 1110. There are two data bytes, the first of which 

specifies the least significant byte of the Pitch Bend and the second of which specifies the 

most significant byte. Maximum downward bend corresponds to data byte values of 0 

followed by 0, centre pitch (no bend) corresponds to values of 0 followed by 64 and 
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maximum upward bend corresponds to values of 127 followed by 127. General MIDI 

specifies that the default Pitch Bend range is plus or minus two semitones. This setting 

can be altered on individual synthesizers, however, so one must be careful to ensure that 

the Pitch Bend range that is actually played corresponds to what is desired. 

MIDI timing is controlled by a clock that emits ticks at regular intervals. Clock rates 

are usually related to temporal note durations in terms of parts per quarter note, or ppqn. 

A greater ppqn corresponds to a greater rhythmic resolution, which allows the 

representation of notes that push or lag the beat a little. A greater resolution also allows 

one to represent complex tuplets with a greater precision. The most commonly used 

resolution is 24 ppqn, which allows sufficient resolution to permit 64th note triplets. At 

24 ppqn, a half note corresponds to 48 ticks, a quarter note to 24 ticks, an eighth note to 

12 clicks, at sixteenth note to 6 clicks, etc. It should be noted that the actual speed of 

playback of quarter notes is controlled by tempo change meta-events (see below). 

MIDI also permits an alternative to the ppqn representation of time, namely the 

SMPTE time code (Society of Motion Picture and Television Engineers 1994), which is 

divided into hours, minutes, seconds and frames. This is very useful when synchronizing 

MIDI to visual media such as film or video. There are variations of SMPTE for different 

frame rates. Thirty frames per second is the rate that is most commonly used by MIDI. 

Although there are a variety of proprietary file formats that were used in the early 

history of MIDI to store MIDI data, nowadays MIDI is almost always encoded in one of 

the three open standard MIDI file formats, numbered 0, 1 and 2 (MIDI Manufacturers 

Association 2001). The main difference between these three formats is the manner in 

which they deal with tracks, which can be used by sequencers to segment different 

voices. Format 0 files consist of a single multi-channel track, Format 1 files have 

multiple tracks that must all have the same meter and tempo (the first track contains the 

tempo map that is used for all tracks), and Format 2 files have multiple tracks, each with 

its own tempo and meter. Format 1 files are the most commonly used format today, and 

Format 2 files are still rarely used. 

Each of the three standard MIDI file types consist of groups of data called chunks, 

each of which consist of a four-character identifier, a thirty-two bit value indicating the 
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length in bytes of the chunk and the chunk data itself. There are two types of chunks: 

header chunks and track chunks. 

Track chunks contain all of the information and MIDI messages specific to individual 

tracks. The header chunk is found at the beginning of the file and includes the type of file 

format (0, 1 or 2), the number of tracks and the division. The division value can mean one 

of two things, depending on whether it specifies the use of either ppqn timing or SMPTE. 

In the former case, it specifies the timing resolution of a quarter note. In the latter case, it 

specifies the SMPTE frame rate and the number of ticks per SMPTE frame. 

Time intervals between MIDI events are notated using delta times, which specify the 

amount of time that has elapsed between the current event and the previous event on the 

same track. This approach is used because it requires less space than simply listing the 

absolute number of MIDI ticks that pass before an event occurs. 

MIDI messages stored in files and their associated delta times are called track events. 

Track events can involve both MIDI events and meta-events. Meta-events provide the 

ability to include information such as lyrics, key signatures, time signatures, tempo 

changes and track names in files. 

Key signature meta-events include two pieces of information: sf and mi. sf indicates 

the number of flats (negative number) or sharps (positive number) in the key signature. 

For example, C major and A minor are represented by 0 (no sharps or flats), 3 represents 

3 sharps (A major or F# minor) and -2 represents 2 flats (Bb major or G minor). mi 

indicates whether the piece is major (0) or minor (1). 

Time signature meta-events contain four pieces of information: nn, dd, cc and bb. nn 

and dd are the numerator and denominator of the time signature respectively. It should be 

noted that dd is given as a power of 2, so a dd of 3 corresponds to 2^3 = 8. Thus, a time 

signature of 5/8 corresponds to nn = 5 and dd = 3. cc is the number of MIDI ticks in a 

metronome click and bb is the number of 32nd notes in a MIDI quarter note.  

Tempo change meta-events consist of three data bytes specifying tempo in 

microseconds per MIDI quarter note. If no tempo is specified then the default tempo is 

120 beats per minute. 
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4.2.3 Reasons for choosing MIDI as the format from which to extract 

features  

Ideally, one would prefer to have a feature extractor that could extract features from 

music encoded in any symbolic file format. Unfortunately, the development of parsing 

functionality for each format can be a labour intensive process. Furthermore, certain 

formats cannot represent information as well as other formats, or at all. For example, one 

format might be able to represent dynamics, but not another format, or one format might 

be able to represent precise time values while another format might only be able to 

represent strictly quantized rhythmic values. Issues such as this can cause significant 

variations in extracted feature values that are dependent only on the encoding format, not 

the music itself, something that can be problematic during machine learning. 

It was therefore decided to only implement parsing functionality for a single file 

format in jSymbolic, although one of the long-term development goals of jSymbolic is to 

develop functionality for parsing more formats. Specifically, the MIDI format was 

chosen. 

At first glance, the particular choice of MIDI may seem an odd one. MIDI is in many 

ways an obsolete format with a number of established fundamental weaknesses that has 

survived only because it is a widely supported standard. There is a relatively low 

threshold on the amount of information that MIDI can encapsulate, for example, and it 

uses grossly outdated transmission protocols. Furthermore, it can be difficult and time 

consuming to properly record sophisticated synthesis instructions in MIDI, with the result 

that many encoders do not bother to do so. Many of the formats described in Section 4.2.1 

have important advantages over MIDI, and OSC in particular is generally accepted as 

technically superior in almost every way. 

So, why choose MIDI for jSymbolic? The answer lies principally in the fact that 

MIDI is still the most generally popular and widely used format. A good feature extractor 

should be able to extract features from the format that is the most used and in which the 

most music is encoded, not in a format that one might ideally prefer to be the most 

popular. There is more music encoded in MIDI than in any other symbolic format, 

including music in a wide range of popular, art and folk genres. Such variety is essential 
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if a feature extractor like jSymbolic is to be widely applicable. Most other symbolic 

formats tend to only have music belonging to a few specific genres encoded in them. 

MIDI also has the advantage that it is a performance-oriented format, and can thus 

encode information such as relatively precise timings and dynamics as well as microtonal 

pitches. This is not true for all symbolic formats, in particular those intended primarily for 

representing sheet music or for performing theoretical analyses, since these kinds of 

precise representation are not as significant in these domains. This makes it more 

appropriate to write translation algorithms to generate MIDI from other formats, since the 

reverse could result in the loss of feature-relevant information. 

Having noted this, it is also true that the popularity of MIDI has been slowly waning 

in the past decade. There were large and very active MIDI encoding communities in the 

1980’s and 1990’s that encoded a broad range of music into MIDI. Although these 

communities still exist and are still active, one now sees less new music encoded into 

MIDI than was previously the case. 

Also, the emphasis of symbolic feature extraction will likely switch to machine 

generated files as polyphonic transcription technology improves in the future. It will be 

appropriate to work with a file format that is superior to MIDI at that point, such as OSC, 

since format popularity will no longer be an overriding concern if human encoders are 

removed from the equation. A goal for future development will therefore be the 

implementation of parsing libraries for additional file formats as recordings of many 

different kinds of music encoded in them become available. 

4.3 Existing software related to symbolic feature extraction 

Most MIR feature extraction research to date has focused on audio data rather than 

symbolic data, as mentioned above. Although there is a significant amount of existing 

software designed for processing symbolic musical data, a relatively small proportion of 

it has emphasized feature extraction in particular, or the specific needs of MIR. Most of 

the existing systems emphasize either musical performance or automated search or 

analysis algorithms designed to assist very specific kinds of musicological or music 

theoretical research. Unfortunately, most of these systems generate only a relatively small 

amount of information that can be adapted for use as features in pattern recognition 
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systems, and most of them also make musical assumptions that are only appropriate for 

certain types of music, such as classical music. Such systems also tend to emphasize 

search-oriented tasks and basic string comparisons rather than the broader types of 

information extraction processing that are most relevant to MIR research. Nonetheless, 

there are a few standout systems of this type that should be discussed before discussing 

work more directly related to symbolic feature extraction. 

The Humdrum toolkit (Huron 2002) is perhaps the best-known of these systems, with 

its variety of query tools and its specialized musical representations. Although feature 

extraction is certainly not the software’s primary intended purpose, Humdrum data has at 

times been used specifically for the purpose of feature extraction, such as in the work of 

Sapp, Liu and Selfridge-Field (2004). Knopke (2008) has written new implementations of 

much of the Humdrum software that makes it more usable for MIR applications, 

including functionality such as MIDI-compatible file format translation functionality.  

The Melisma Music Analyzer (Temperley 2001) is another important analysis-

oriented software system, with its tools for extracting information relating to meter, 

phrasing, contrapuntal structure, harmony, pitch spelling and key. 

The RUBATO system (Mazzola and Zahorka. 1994) is a platform that was developed 

for extracting information from MIDI and other symbolic files. Although this relatively 

early system is based on the obsolete NEXTSTEP environment, and oriented towards 

music analysis rather than feature extraction, it nonetheless extracts some high-level 

information that could be used as features. 

The MIDI Toolbox (Eerola and Toiviainen 2004) is one of the few systems that offers 

standardized and easily accessible symbolic processing software oriented towards MIR 

research. It includes tools for visualizing and processing MIDI files, including filtering 

functions and cognitively inspired analytical tools relating to melodic contour, similarity, 

key-finding, meter-finding and segmentation. Although this software is an excellent tool 

in general, it is not ideally adapted specifically for feature extraction. It is also a Matlab 

toolbox, which carries the advantage of making it directly compatible with all of Matlab’s 

associated functionality, but also the disadvantage of requiring that the user have access 

to the Matlab platform, which can be expensive, and which requires familiarity with a 

fairly technical platform. 
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There are also a number of software systems that have been developed for use in 

specific research experiments, rather than for general application, but which nonetheless 

contain implementations of a number of useful features. Aarden and Huron (2001), for 

example, have performed an interesting study where corresponding characteristics of 

European folk songs were studied in terms of spatial location. A potentially very useful 

catalogue of sixty high-level features was used, although the system was limited to 

monophonic melodies. To give another example, Towsey et al. (2001) developed a 

system for compositional purposes that uses 21 high-level melodic features that have 

application beyond the aesthetic fitness judgements that they were used for in the original 

study. 

Some of the most significant software directly related to symbolic feature extraction 

has been developed as part of genre, style, mood or other classification projects. Although 

the feature extraction software systems used in many of these research projects are not 

publicly available, or are not designed to be used easily outside of the particular projects 

for which they were designed, some excellent features have been developed as part of 

these projects. Since these features have actually been implemented in software and 

successfully applied experimentally to music, it is appropriate to provide highlights of 

this research here. 

Some of the most relevant work of this kind is Ponce de León and Iñesta’s (2002) 

system for processing MIDI tracks in order to extract melodic, harmonic and rhythmic 

features. The system used these features to form distinguishable categories using self-

organising maps. This work has since been expanded (Ponce de León and Iñesta 2007; 

Rizo et al. 2006). 

Ruppin and Yeshurun (2006) developed several features relating specifically to 

melodic contour. Of particular interest, these features were designed to be invariant to 

some of the transformations that one commonly finds in music, such as transpositions and 

rhythmic prolongation. 

Twenty features were implemented by Backer and van Kranenburg (2005) in the 

context style classification. These features are for the most part only meaningful with 

respect to polyphonic compositions with clearly separated voices, however. 
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Basili, Serafini and Stellato (2004) used only five features, but were also among the 

earliest researchers, along with McKay (2004), to use instrument information extracted 

from symbolic data in their features. Some of these features are multi-dimensional. The 

five features are Melodic Intervals, Instruments, Instrument Classes and Drumkits, 

Meter/Time Changes and Note Extension. 

Lin and his colleagues (2004) performed genre classification experiments by 

transforming sequences of MIDI data into intermediate representations based on rhythm 

and pitch that can also be treated as features. The authors then processed this data to 

break it into repeating patterns. Karydis, Nanopoulos and Manolopoulos (2006) also 

made the notion of repeating patterns an essential part of their feature extraction 

approach, with respect to pitch and duration information in particular. 

Shan and Kuo (2003) extracted features based exclusively on melodies and chords for 

the purpose of automatic genre classification. This research is particularly valuable in 

terms of the ways in which melodic and chordal features were extracted. 

Chai and Vercoe (2001) used hidden Markov models to classify monophonic 

melodies belonging to one of three different types of Western folk music (Austrian, 

German and Irish). They were able to achieve 63% accuracy in three-way classifications 

that used only melodic features. Interestingly, to include a machine learning note, they 

found that the number of hidden states had only a relatively minor effect on success rates, 

and that simple Markov models outperformed more complex models. 

Dannenberg, Thom and Watson (1997) designed a real-time system to classify 

performance styles. Improvisations were classified as lyrical, frantic, syncopated, 

pointillistic, blues, quote, high and low. The system was trained with MIDI recordings of 

trumpet performances. The following features were extracted from the MIDI data: 

averages and standard deviations of MIDI key numbers, durations, duty factors (the ratio 

of duration to inter-onset interval), pitches (which differ from key number in that Pitch 

Bend information is included) and volume levels, as well as counts of notes, Pitch Bend 

messages and volume change messages. 

Lartillot et al. (2001) used two types of unsupervised learning to classify recordings 

based on musical style. This was done using analyses of musical sequences in terms of 

rhythm, melodic contour and polyphonic relationships. 
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Anagnostopoulou and Westerman (1997) also applied unsupervised learning to 

symbolic music. They used features based on melodic shape, rhythmic movement, 

interval patterns and instrument register. 

Some of the earliest research on automatic genre classification was published by 

Gabura (1965). This paper only deals explicitly with classical music, however, which 

limits its applicability. Despite this, and the its age, this paper nonetheless offers some 

interesting ideas that appear to have been overlooked in many later publications, 

particularly in regard to the use of relatively sophisticated statistics and theoretical models 

to derive features. 

Research has also been done in other specific areas of MIR that incorporated 

interesting features that can be adapted for other purposes. To give one relatively early 

example, Blackburn and De Roure (1998) implemented a system for classifying the 

musical parts of MIDI files, with a focus on pitch class methods. 

Maxwell and Eigenfeldt (2008) implemented a symbolic query system that includes a 

number of searchable type parameters that could also be used as features in classification 

tasks. Bergeron and Conklin (2008) also developed an approach that they applied to 

retrieval from symbolic music that includes a number of useful simple features. Kirlin and 

Utgoff (2005) have also extracted simple features as part of query research, and Conklin 

and Bergeron (2008) have published associated research that is more specifically related 

to feature extraction.  

Volk et al. (2008) considered a large number of features in the context of evaluating 

musical similarity. These features could also be adapted for other purposes, although 

some of them are subjective. Meudic (2003) has also proposed some important similarity-

related measures that could also be used for other purposes. 

There is also a significant body of work that is highly relevant to symbolic feature 

extraction, particularly from a high-level perspective, that has not involved actual 

software implementations of feature extraction algorithms. Such work is discussed in 

Section 4.4 below. 
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4.4 Considerations when designing and choosing features 

This section reviews and integrates research from several fields in order to arrive at 

general principles to consider when designing and choosing features to extract from 

symbolic data. The focus of this section is primarily on theoretical research in disciplines 

related to music theory and musicology, although research from other disciplines is 

discussed as well. 

There has been some important applied work done in more technical disciplines that 

has involved not only designing features, but actually implementing automatic extraction 

algorithms. Such work is reviewed in Section 4.3. It should be noted that most of the 

corresponding publications do not provide theoretical support or motivations for the 

features that they use, and almost none of them provide guidelines for implementing new 

features, unlike the majority of the work reviewed in this section. Chapter 2 also reviews 

some general research in psychology and the humanities that relates to how humans form 

categories and make classifications, some of which is relevant to symbolic feature design. 

People often claim that they ―do not know what to listen to‖ when they are first 

exposed to an unfamiliar type of music. This demonstrates how listening methodologies 

that apply to one type of music may be of little value when applied to another type of 

music, and how difficult basic listening tasks can be in terms of feature extraction in such 

situations. Consequently, it seems reasonable that it would be useful for feature extraction 

software to make a broad range of features available, in order to at least have reasonably 

sized feature subsets that will be applicable to each of as many different types of music as 

possible. 

This is one of the reasons that so many features are implemented in jSymbolic, as 

described in Section 4.5. Although machine learning issues relating to the curse of 

dimensionality (see Section 6.2.3) generally make it unwise to provide pattern recognition 

systems with too many features, having a very large feature catalogue available makes it 

possible to choose those particular features that are meaningful and relevant to both a 

specific given task and to the specific types of music that are under consideration. This 

selection of the particular features to use for a particular project may either be made by 

humans with expert musical knowledge, or by automatic dimensionality reduction 

algorithms (see Chapter 6.2.5). Conversely, having too few features implemented by the 
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feature extraction software could make it impossible for pattern recognition software to 

achieve adequate success rates, because there might simply not be sufficient information 

encapsulated in the features that are available to discriminate properly between classes. 

Providing a large catalogue of features from which to choose also makes features 

available for future applications whose feature needs might not currently be understood or 

anticipated. 

Nonetheless, having presented the case that it is useful to design many features, it is 

also important to point out that care should still be taken to avoid features that are 

unlikely to be useful. Too many features can overwhelm even sophisticated feature 

selection methodologies, be they manual or automatic, and only finite time and 

computational resources are available for feature development and extraction. It is 

therefore reasonable to prioritize those features that are likely to be the most promising, 

with the understanding that one would ideally like features that encapsulate as much 

information as possible that is relevant to as many types of music and to as many 

classification applications as possible. Features that represent information in ways that are 

easy for pattern recognition algorithms to process should also be prioritized. 

It is clear that even people with little formal musical knowledge can perform 

sophisticated pattern recognition tasks like artist identification or the recognition of 

stylistically ―wrong‖ notes. It might therefore be argued that music classification systems 

should pay special attention to features that are meaningful to the average, musically 

untrained listener, and that features based on more technical or sophisticated musical 

properties may be overkill. 

It could also be argued, however, that the ultimate goal of a classification system is to 

produce a correct classification, and that whatever readily available features help to do 

this should be used, whether or not they are perceptible or meaningful to the average 

human listener. The fact that some expert musical skills, such as the ability to precisely 

and consciously perceive detailed rhythmic or harmonic characteristics, may not be 

necessary to distinguish between musical categories does not mean that such information 

might not be helpful to both humans and computers. In addition, pattern recognition 

systems operate using significantly different mechanisms than their human analogs, so 

there is no reason to assume that the types of percepts suited for one are necessarily best 
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suited to the other. Since moderately high-level musical information is relatively readily 

available from symbolic formats such as MIDI, it might as well be taken advantage of. 

Having said this, it is also of course very important to take advantage of the kinds of 

information that the average human listener can in fact use, since ―unskilled‖ listeners are 

demonstrably able to use it to perform successful classifications. 

A related issue is the question of exactly how high level one’s features should be. 

Although it seems reasonable that one could glean meaningful features from fairly high-

level information like chord progressions or melodic arcs, for example, should one also 

consider even higher-level musical concepts based on sophisticated analytical 

frameworks? There is a great deal of existing literature on music theory that could be 

used to design such features. The books of Cook (1987) and LaRue (1992), to give just 

two of many examples, provide good complementary surveys of analytical methods that 

could potentially be of use. 

Ideally, one would like to have a grand unified analytical methodology that could be 

used to extract meaningful features from any type of music. Unfortunately, there is no 

generally accepted process of this sort. However, even though no single analytical system 

is complete, and most are only applicable to a limited range of musical genres, several 

systems could nonetheless be used in a complementary or parallel way. For example, 

Schenkerian analysis could be used to analyze harmony if other features indicate a 

significant degree of tonality in a recording, complimented perhaps by a set theory 

analysis to deal with non-tonal music. To extend this example, techniques such as those 

of Cooper and Meyer (1960) could also be used to analyze rhythm and melody, and the 

techniques of Reti (1951) could be used to gain insights by looking at motivic patterns. 

Semiotic analysis (Tarasti 2002) could also potentially be useful, although somewhat 

difficult to implement automatically from a content-based perspective. Analytical 

approaches that take advantage of insights from fields such as cognitive science and 

linguistics, such as the work of Lerdahl and Jackendoff (1983), could also be used. 

Multi-purpose existing automatic analysis systems, such as some of those described in 

Section 4.3, could be taken advantage of in order to facilitate this process. Even though 

these types of analyses are intrinsically different and typically built on disjoint or even 
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incompatible musical assumptions, they could nonetheless each be used to generate 

individual features that could prove to be complementary. 

There are, unfortunately, a number of disadvantages with using such an approach of 

combining sophisticated analytical systems for use in feature extraction. To begin with, 

many of these techniques require a certain amount of intuitive subjective judgement, as 

the rules specified in analytical models are sometimes vague or ambiguous. This is 

demonstrated by the inconsistencies that one often encounters between analyses of a 

single piece by different people using the same analytical system. Another problem is that 

sophisticated theoretical analyses are often computationally expensive, thus making their 

use inappropriate for very large musical collections or real-time classification 

applications. 

In addition, most analysis techniques have been designed primarily from the 

perspective of Western art music, which limits their applicability to popular and non-

Western musics. For example, feature sets based too heavily on chord progressions could 

incorporate too many assumptions relating to tonal harmony to be applicable to types of 

music that do not operate on a tonal basis. This general problem, however, may be less 

crippling than it seems, as analyses could still be generated that are internally consistent, 

even if the analytical systems themselves may not be fundamentally meaningful to a 

given type of music. Future experimentation is necessary to investigate whether features 

based on such theoretically compromised analyses could nonetheless be useful for 

performing classifications. 

In any event, a generally accepted software system capable of quickly performing a 

wide range of sophisticated theoretical analyses has yet to be implemented. One must 

therefore make do, at least for the moment, with occasionally taking simple and 

incomplete concepts from a range of analytical systems, of necessity somewhat 

haphazardly, and combining them with intuitively derived musical characteristics in order 

to arrive at suitable features. Features that are used for classification purposes need not be 

consistent or meaningful in any overarching theoretical sense. All that matters for the 

purpose of classification is that each feature helps to distinguish between relevant classes, 

which is to say that they need only represent characteristics that consistently differ 

statistically between classes. It is certainly nice if one can also use features to derive 
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musically meaningful insights, but this is by no means a necessity from the perspective of 

applied automatic classification. 

In any case, as discussed above, most humans are certainly unable to perform 

sophisticated theoretical analyses, but are nonetheless able to perform sophisticated 

classification tasks like genre recognition. It is therefore clear that such analyses are not 

strictly necessary in order to implement a successful automatic classification system. 

Furthermore, a study of how well children of different ages can judge the similarities of 

music belonging to different styles found that there was almost no difference between the 

success rates of eleven-year olds compared to college sophomores, despite the fact that, 

unlike the college students, the eleven-year olds displayed almost no conscious 

knowledge of musical theory or stylistic conventions (Gardner 1973). To provide an 

additional supporting experimental finding, Perrott and Gjerdingen (1999) found that 

humans with little to moderate formal musical training are able to make genre 

classifications agreeing with those of experts 72% of the time (among a total of 10 

genres) based on only 300 milliseconds of audio. This is far too little time to perceive 

musical form or structure, which are key aspects of most sophisticated analytical systems. 

This suggests that there must be a sufficient amount of information available in very short 

segments of music to successfully perform classifications, and that more sophisticated 

analyses may not be strictly necessary. Of course, this does not necessarily mean that 

features based on sophisticated analytical systems might not eventually be useful to an 

automated classification system, but it does appear that they are not absolutely necessary, 

which is fortunate, given the difficulty that is currently involved in extracting them. 

In the case of jSymbolic, it was decided to emphasize simple features that could 

arguably be immediately perceptible to musically well-trained humans, but would not 

require them to make extended analyses. Well-trained humans are more likely to be 

skilled music classifiers, so the features that they use are therefore more likely to be 

useful in general. This does not mean that other features were ignored in the jSymbolic 

music library, however, as there are very likely other important discriminating 

characteristics of music that musical experts are not consciously aware of. This approach 

provides a good compromise between music theoretical simplicity and sophistication that 

permits the development of many potentially useful features, while helping to avoid the 
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development of features that would be too computationally expensive to extract, or of 

irrelevant features that would introduce unproductive noise into classification systems. 

Once such a design philosophy is decided upon, the next step is to consider relevant 

research by musicologists and music theorists in order to search for inspiration for 

features that might be of particular use. Ethnomusicologists in particular have done 

significant work on comparing the musics of different cultures, something that is 

important to consider if one wishes to make features available that are likely to have a 

high discriminating power outside the limited scope of Western art music. An additional 

advantage of ethnomusicological research is that it tends to focus more on empirical 

observation than other musicological or music theoretical disciplines, something that is 

very helpful from the perspective of feature design. Empirical ethnomusicological 

research also tends to be less likely to be intrinsically tied to specific types of music or to 

limiting theoretical assumptions. 

Perhaps the most extensive work in this vein was performed by Alan Lomax and his 

colleagues as part of the Cantometrics project (Lomax 1968). Although this work has 

been criticized on a number of political fronts (Nattiez 1990), it remains valuable from 

the perspective of feature design for automatic classification systems. This project 

compared several thousand songs from hundreds of different cultural groups based on 

thirty-seven features that were extracted from audio recordings by hand: 

 Leader chorus: the importance of the lead singer relative to the chorus. 

 Relation of orchestra to vocal part: importance and independence of the 

orchestra relative to the vocal part. 

 Relation within orchestra: relative independence of the different parts of the 

orchestra. 

 Choral musical organization: texture of the choral singing. 

 Choral tonal integration: degree to which the chorus blends singing together to 

create the perception of unity and resonance. 

 Choral rhythmic organization: degree of rhythmic coordination of the chorus. 

 Orchestral musical organization: texture of the orchestra. 
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 Orchestral tonal concert: degree to which the orchestra blends together to create 

the perception of sonority. 

 Orchestral rhythmic concert: degree of rhythmic coordination of the orchestra. 

 Text part: whether singers tend to use words or other sounds. Also measures 

amount of repetition of text. 

 Vocal rhythm: complexity of meter used by singers. 

 Vocal rhythmic organization: degree to which singers use polyrhythms. 

 Orchestral rhythm: complexity of meter used by orchestra. 

 Orchestral rhythmic organization: degree to which orchestra uses polyrhythms. 

 Melodic shape: melodic contour of most characteristic phrases. 

 Melodic form: complexity of form. 

 Phrase length: temporal length of phrases. 

 Number of phrases: average number of phrases occurring before full repeats. 

 Position of final tone: position of the final pitch relative to the range of the song. 

 Range of melody: pitch interval between the lowest and highest notes of the song. 

 Average interval size: average melodic interval. 

 Type of vocal polyphony: type of polyphony present, ranging from a drone to 

counterpoint. 

 Embellishment: amount of embellishment used by the singer(s). 

 Tempo: speed of song from slow to very fast. 

 Volume: loudness of song. 

 Vocal rhythm: amount of rubato in the voice part. 

 Orchestral rhythm: amount of rubato in the orchestral part. 

 Glissando: degree to which voice(s) slide to and from notes. 
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 Melisma: number of pitches sung per syllable. 

 Tremolo: amount of undulation on held notes. 

 Glottal effect: amount of glottal activity present. 

 Vocal register: whether singers are singing near the bottom, middle or top of their 

ranges. 

 Vocal width and tension: degree to which voice(s) sound thin or rich. 

 Nasalization: how nasal the singing sounds. 

 Raspy: amount of raspiness in singing. 

 Accent: strength of attack of sung tones. 

 Consonants: precision of enunciation in singing. 

There are a number of difficulties in implementing automatic extraction algorithms 

for some of these features. Some of these features, such as nasalization, require somewhat 

subjective judgements, and others require information that is not typically stored in 

symbolic formats, such as glottal effect. Nonetheless, some of these features can currently 

be extracted relatively easily from symbolic data, and future advances might make many 

of the remaining features accessible via audio/symbolic hybrid systems. Lomax did find a 

good correlation between these features and cultural patterns, and they intuitively seem as 

if they might perform well, so the work necessary to automatically extract these features 

may well be worth the effort. Many of these features might be of particular utility to 

automatic classification projects focussing on non-Western music. 

One feature of particular interest is Lomax’s melodic shape feature, which relates to 

the overall shape of individual melodies or phrases, something that is commonly referred 

to as melodic contour or melodic arc. This is an area in which a significant amount of 

research has been done, and it is worthy of special attention. Charles Adams, for example, 

found that examining melodic contour can allow one to differentiate successfully between 

different musics (Adams 1976). Adams based his analyses on only the initial note, highest 

note, lowest note and final note of melodies, a simplicity of approach that is intuitively 

appealing from the perspective of automatic feature extraction. 
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There are, unfortunately, some complications encountered in automatically applying 

Adams’ approach to typical MIDI recordings. To begin with, automatically isolating the 

individual melodies of a piece can be difficult when dealing with music with multiple 

voices, as the melodies can involve notes contained in only one or in many voices. In the 

case of polyphonic music, one must deal with simultaneous melodies. One solution would 

be to implement a specialized melodic segmentation pre-processing system. Although 

some research has been done on such systems, none of have yet been successfully 

developed that could be applied to arbitrary types of music. Fortunately, it is possible to 

extract at least some features related to melodic contour using relatively simple 

assumptions and pre-processing. Section 4.5.6 specifies several features in the jSymbolic 

catalogue that were inspired by the work of Adams and others. 

A number of writers have emphasized certain broad areas that they suggest would be 

particularly useful to concentrate on for the purpose of musical classification. Nettl 

(1990), for example, has proposed the following feature areas as having significance to a 

range of different cultures: 

 Sound and singing style 

 Form 

 Polyphony (texture) 

 Rhythm and tempo 

 Melody and scale 

Cumming (1999) has suggested a number of features in relation to motets in 

particular. With the understanding that ―voices‖ can be adapted to mean voices or 

instruments, a number of these features appear to have a good deal of general 

applicability: 

 Texture 

 Number of voices 

 Voice ranges 
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 Melodic behaviour (leaps, steps) 

 Relative speed of voices 

 Coordination of phrases between voices 

 Use of rests 

 Length 

 Complexity 

 Tone 

Philip Tagg has proposed the following ―checklist of parameters of musical 

expression‖ that can be used as a basis for designing features for both symbolic and audio 

extraction systems: 

 

1. Aspects of time: duration of analysis object and relation of this to any other 

simultaneous forms of communication; duration of sections within the analysis 

object; pulse, tempo, meter, periodicity; rhythmic texture motifs. 

2. Melodic aspects: register; pitch range; (melodic) motifs; tonal vocabulary; 

contour; timbre. 

3. Orchestration aspects: type and number of voices, instruments, parts; 

technical aspects of performance; timbre; phrasing; accentuation. 

4. Aspects of tonality and texture: tonal centre and type of tonality (if any); 

harmonic idiom; harmonic rhythm; type of harmonic change; chordal 

alteration; relationship between voices, parts, instruments; compositional 

texture and method. 

5. Dynamic aspects: levels of sound strength; accentuation; audibility of parts. 

6. Acoustical aspects: characteristics of (re-)performance „venue‟; degree of 

reverberation; distance between sound source and listener; simultaneous 

„extraneous‟ sound. 

7. Electromusical and mechanical aspects: panning, filtering, compressing, 

phasing, distortion, delay, mixing, etc.; muting, pizzicato, tongue flutter, etc. 

(Tagg 1982, 45-46). 
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Although this checklist was designed with the analysis of Western music in mind, many 

of the ideas embedded in it have a more general applicability. Another useful list of 

parameters has been suggested by David Cope (1991b), although this list also emphasizes 

parameters specific to Western art music. 

Once one decides upon the general types of information that should be emphasized in 

features, it is then necessary to define more specifically the form that the features 

themselves will take. As a general principle, it is best to concentrate primarily on features 

that can be represented by simple numbers. 

Continuous numerical values, as opposed to strings or discrete numbers, have the 

advantage that they generally allow a more precise representation of degree. For example, 

a numerical feature used to represent the key of a tonal piece could indicate not only its 

key, but also how strongly the piece can be said to belong to that key. This could be used 

to indirectly encapsulate information about the amount of chromaticism, for example, in a 

way that a discrete letter value cannot. Even in the case where discrete feature values are 

the most appropriate, integer representations are typically a better choice than string 

representations, as they can be most naturally and consistently processed by the majority 

of machine learning algorithms. 

Based on informal experience gleaned from developing jSymbolic and other feature 

extractors, it was found that the easiest to use and, often, most effective features consist of 

either a single numerical value or a vector of numerical values. Larger feature arrays can 

also be useful at times as well, although not all machine learning algorithms can process 

them directly. 

Vectors and arrays tend to be best suited to information that consists of a set of related 

values that have limited significance when considered individually, but can reveal 

meaningful patterns when considered together. For example, the average duration of 

melodic arcs in a piece would be a good example of a feature that is best represented as a 

single value, and the bin magnitudes of a histogram indicating the relative frequency of 

different melodic intervals might be a good feature vector. Although the individual bin 

frequencies could certainly each be represented as a separate feature, combining them 

into a vector highlights their particular interrelatedness. This division into single-value 
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features and feature vectors is useful from the perspective of machine learning because it 

makes it possible to use classifier ensembles that capitalize on the particular relatedness 

of the components of each multi-dimensional feature, such as an ensemble constructed by 

training a separate classifier (e.g., a neural net) on each multi-dimensional feature and a 

single nearest neighbour classifier on all single-value features. This particular approach 

was used successfully in genre classification experiments (McKay 2004). 

Simple statistical techniques can be useful in capturing overall characteristics of a 

piece, as well as how these characteristics change as the piece progresses. The calculation 

of metafeatures like the mean or variance of a feature across windows of a piece are good 

examples of this. With this in mind, it is important to point out that one would prefer to 

avoid feature noise due to non-representative local characteristics of a piece, while at the 

same time not ignoring characteristic local behaviour by smudging feature values over 

large analysis windows. For example, one would not want melodic ornamentations to 

obscure a feature that is measuring melodic structure, but might still want to measure the 

overall amount or type of ornamentation in a separate feature, as this itself could be 

characteristic of a class. 

Histograms can serve as a particularly useful and convenient tool for dealing with the 

problem of wanting to encapsulate both local and overall behaviour, and statistical tools 

such as peak picking can be applied to histograms in order to derive further features from 

them. Examples of statistics often calculated from histograms include the number of 

strong peaks, the relative strengths of the highest peaks, the locations and harmonicity of 

peaks, the local spread around peaks and the relative contribution of bins not associated 

with peaks. Histograms can thus be used directly as feature vectors, or they can be used as 

intermediate representations for deriving other features. jSymbolic includes a variety of 

histogram-based features, as described in Section 4.5. 

As a final point, it is desirable not only to have features that effectively partition 

recordings into different classes, but also to have features that can arguably be perceived 

by humans and are of musicological interest, at least when possible. Although this is by 

no means a requirement for systems with purely practical or commercial goals, it is 

certainly advantageous to research projects designed to provide insights on how humans 
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process and consume music, and a good feature catalogue should have at least some 

features that can be used in such a fashion. 

4.5 The jSymbolic feature catalogue 

Sections 4.5.1 to 4.5.7 describe the features that make up the jSymbolic feature 

catalogue. These features were all designed in the context of the research described in 

Sections 4.3 and 4.4. Some of these features are very similar or identical to features that 

have been used in previous MIR research, others are formulated as features for the first 

time but are based on existing theoretical or musicological work, and still others are 

entirely original. 

It was not possible to correctly implement all 153 of the features proposed in this 

section within the time constraints of this project. A total of 111 features were 

nonetheless implemented in the jSymbolic software, a much larger number of features 

than have been implemented in any other existing symbolic music classification system. 

The particular choice of which features to omit in the current implementation was based 

on a combination of the author’s judgement of how useful each feature would be and of 

how time-consuming it would be to implement it, an important concern given the size and 

scope of the jMIR software. All of the features described in Sections 4.5.1 to 4.5.7 are 

implemented, except for T-11, T-14, T-16, T-17, T-18, T-19, R-16, R-26, R-27, R-28, R-

29, P-26, M-16, M-20 and C-1 to C-28. 

The cultural origins and training that inform any person’s knowledge about music can 

lead them to give too much weight to some characteristics of music and too little to 

others. Correspondingly, the reader will notice a bias towards Western tonal music in 

examining the jSymbolic features, as one might expect given the background of 

jSymboloic’s author and the research upon which many of the jSymbolic features are 

based. This particular emphasis is also partly due to the current dominance of Western 

genres in MIR research in general, and to the limitations of MIDI and other symbolic 

formats, which tend to be more oriented towards Western music. Despite this, efforts 

were certainly still made to include features that might not be obvious to one accustomed 

only to Western music whenever possible. The addition of more diversely representative 
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features is certainly a priority for future research, and the jSymbolic feature catalogue is 

intended as a work in continual progress that can always be expanded and refined. 

The reader will also notice that there is a small amount of redundancy in the 

jSymbolic feature catalogue, in the sense that one feature occasionally emphasizes a 

particular aspect of another feature. This was done in order to ensure that features are 

available that provide an overview of certain musical aspects as well as features that 

provide more focused information that might be particularly salient for some types of 

classification. The jSymbolic feature catalogue is intended as a catalogue or palette from 

which different feature subsets can be selected for different research projects, not as an 

indivisible feature set that must always be extracted in its entirety. Some features may be 

appropriate for certain tasks but not others. The feature catalogue was designed to give 

musical experts and/or feature selection algorithms as wide a range of features as possible 

from which to choose for any given research application. The redundancy in the features 

was consequently purposely included to facilitate this choice by making it possible to 

meet subtle musical classification needs.  

Efforts were made when possible to utilize features that could be easily adapted to a 

variety of symbolic music representations, not just MIDI. Of course, MIDI is the format 

actually processed by jSymbolic, so the features are described in the following sub-

sections using MIDI terminology. This allows the feature definitions to be more precise, 

but it does not mean that many of the features could not still easily be adapted to other 

symbolic formats. For example, one could substitute the MIDI term velocity for some 

other measure of loudness. The reader may wish to consult Section 4.2.2 if he or she is 

unfamiliar with MIDI terminology. 

Unfortunately, from the perspective of standardized feature extraction, there are many 

different ways of encoding MIDI data. MIDI recordings can be produced by writing out 

music by hand in score writing software like Finale, or by performing actual real-time 

recordings using MIDI instruments, for example, and each of these approaches can result 

in significant differences in the encoded music. Rhythmic quantization is one common 

example of a common resulting difference. Differences in MIDI encoding styles or even 

in the particular choice of sequencer or score writing software can also result in 

differences in the encoded music. Such differences can result in feature noise that can be 



 206 

potentially problematic for certain types of classification. A composer classification 

system, for example, should be insensitive to the encoding style. Care was therefore 

taken, when possible, to use features that had as little sensitivity as possible to such 

differences in encoding style.  

One will notice that there are a few ―magic numbers‖ in the descriptions of some of 

the features. The values of these constants are based on intuition and informal 

experimental experience, and magic numbers are only used when the nature of a 

particular feature necessitates it, and are avoided whenever possible. 

A number of intermediate representations of the MIDI recordings, including 

histogram-based representations, were constructed in order to derive some of the features 

described below. The most interesting of these representations are explicitly mentioned in 

the following sub-sections, particularly in cases where the intermediate representations 

were themselves used as features as well.  

4.5.1 Features based on instrumentation 

Although there is a significant amount of literature on instrumentation with respect to 

composing and arranging, very few music analytical systems take instrumentation into 

consideration. This is a shame, as information on instrumentation can in fact be very 

helpful in discriminating between certain types of classes. One study, for example, 

indicated that features based on instrumentation were the most effective type of features 

when classifying symbolic music by genre (McKay and Fujinaga 2005a). 

The jSymbolic software capitalizes on the fact that the General MIDI (level 1) 

specification allows MIDI files to include 128 different pitched-instrument patches, and 

the MIDI Percussion Key Map permits a further 47 percussion instruments. Although 

these MID instruments are certainly much fewer in number than the full range of extant 

instruments, particularly with respect to non-Western musics, they are nonetheless diverse 

enough for a reasonable variety of musical types. 

MIDI instrumentation notation can be somewhat sensitive to encoding inconsistencies 

between different MIDI authors in some cases. In a few fortunately rare cases, authors fail 

to specify patch numbers, with the result that all notes are played using a piano patch by 

default. Another problem is the inconsistency in the choice of patches that are used to 

represent sung lines, since there is no good General MIDI patch for solo vocal lines. 
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Despite these occasional problems, however, features based on instrumentation can still 

be highly characteristic of various musical categories, and the complementary use of 

other types of features can help to counterbalance inconsistencies in individual authors’ 

choices of patches. 

The jSymbolic feature catalogue includes the following instrumentation-related 

features: 

 I-1 Pitched Instruments Present: A feature vector with one entry for each of the 

128 General MIDI Instruments. Each value is set to 1 if at least one note is played 

using the corresponding patch, or to 0 if that patch is never used. 

 I-2 Unpitched Instruments Present: A feature vector with one entry for each of 

the 47 MIDI Percussion Key Map instruments. Each value is set to 1 if at least one 

note is played using the corresponding patch, or to 0 if that patch is never used. 

 I-3 Note Prevalence of Pitched Instruments: A feature vector with one entry for 

each of the 128 General MIDI Instruments. Each value is set to the number of 

Note Ons played with the corresponding MIDI patch, divided by the total number 

of Note Ons in the piece. 

 I-4 Note Prevalence of Unpitched Instruments: A feature vector with one entry 

for each of the 47 MIDI Percussion Key Map instruments. Each value is set to the 

number of Note Ons played with the corresponding MIDI patch, divided by the 

total number of Note Ons in the piece. 

 I-5 Time Prevalence of Pitched Instruments: A feature vector with one entry 

for each of the 128 General MIDI Instruments. Each value is set to the total time 

in seconds in a piece during which at least one note is being sounded with the 

corresponding MIDI patch, divided by the total length of the piece in seconds. 

 I-6 Variability of Note Prevalence of Pitched Instruments: Standard deviation 

of the fraction of total notes in a piece played by each General MIDI instrument 

that is used to play at least one note. 
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 I-7 Variability of Note Prevalence of Unpitched Instruments: Standard 

deviation of the fraction of total notes played by each MIDI Percussion Key Map 

instrument that is used to play at least one note. 

 I-8 Number of Pitched Instruments: Total number of General MIDI patches that 

are used to play at least one note. 

 I-9 Number of Unpitched Instruments: Total number of MIDI Percussion Key 

Map patches that are used to play at least one note. 

 I-10 Percussion Prevalence: Total number of Note Ons belonging to percussion 

patches divided by total number of Note Ons in the recording. 

 I-11 String Keyboard Fraction: Fraction of Note Ons belonging to string 

keyboard patches (General MIDI patches 1 to 8). 

 I-12 Acoustic Guitar Fraction: Fraction of Note Ons belonging to acoustic 

guitar patches (General MIDI patches 25 and 26). 

 I-13 Electric Guitar Fraction: Fraction of Note Ons belonging to electric guitar 

patches (General MIDI patches 27 to 32). 

 I-14 Violin Fraction: Fraction of Note Ons belonging to violin patches (General 

MIDI patches 41 or 111). 

 I-15 Saxophone Fraction: Fraction of Note Ons belonging to saxophone patches 

(General MIDI patches 65 to 68). 

 I-16 Brass Fraction: Fraction of Note Ons belonging to brass patches, including 

saxophones (General MIDI patches 57 to 68). 

 I-17 Woodwinds Fraction: Fraction of Note Ons belonging to woodwind patches 

(General MIDI patches 69 to 76). 

 I-18 Orchestral Strings Fraction: Fraction of Note Ons belonging to orchestral 

string patches (General MIDI patches 41 to 47). 

 I-19 String Ensemble Fraction: Fraction of Note Ons belonging to orchestral 

string ensemble patches (General MIDI patches 49 to 52). 



 209 

 I-20 Electric Instrument Fraction: Fraction of Note Ons belonging to electric 

non-―synth‖ patches (General MIDI patches 5, 6, 17, 19, 27 to 32, 34 to 40). 

4.5.2 Features based on musical texture 

Although the term texture is associated with several different musical meanings, the 

features falling into this category of the jSymbolic catalogue relate specifically to the 

number of independent voices in a piece and how these voices relate to one another. 

jSymbolic takes advantage of the fact that MIDI notes can be assigned to different 

channels, thus making it possible to segregate the notes belonging to different voices. 

Although it might seem natural to use MIDI tracks instead of channels to distinguish 

between voices, since only a maximum of sixteen MIDI channels are available, this is an 

ineffective approach in practice. Using MIDI tracks would mean that it would be 

impossible to extract texture-based features from all Type 0 MIDI files, since this format 

only allow permits a single track to be represented. Even in the case of Type 1 files, 

which do allow tracks to be specified, it is still not unusual to find all MIDI data saved on 

a single track in practice. Almost all MIDI files do use different channels for different 

voices, however, and it is possible to take advantage of Program Change messages to 

multiplex multiple voices onto a single channel in order to avoid being restricted to only 

sixteen voices. It was therefore decided to use MIDI channels in order to distinguish 

between voices rather than MIDI tracks. 

This approach is not perfect, as it is possible to use a single channel to hold multiple 

voices even without regular program change messages. A piano could be used to play a 

four-voice chorale, for example, with all notes occurring on one MIDI channel. This 

problem is unavoidable, unfortunately, unless one implements a sophisticated voice 

partitioning pre-processing module to automatically segregate voices prior to feature 

extraction, something that is beyond the current scope of this work. Fortunately, this 

problem does not occur all that often in MIDI files. 

The jSymbolic feature catalogue includes the following texture-related features: 

 T-1 Maximum Number of Independent Voices: Maximum number of different 

channels in which notes are sounded simultaneously. 
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 T-2 Average Number of Independent Voices: Average number of different 

channels in which notes are sounded simultaneously. Rests are not included in this 

calculation. 

 T-3 Variability of Number of Independent Voices: Standard deviation of 

number of different channels in which notes are sounded simultaneously. Rests are 

not included in this calculation. 

 T-4 Voice Equality – Number of Notes: Standard deviation of the total number 

of Note Ons in each channel that contains at least one note. 

 T-5 Voice Equality – Note Duration: Standard deviation of the total duration of 

notes in each channel that contains at least one note. 

 T-6 Voice Equality – Dynamics: Standard deviation of the average volume of 

notes in each channel that contains at least one note. 

 T-7 Voice Equality – Melodic Leaps: Standard deviation of the average melodic 

leap distance for each channel that contains at least one note. 

 T-8 Voice Equality – Range: Standard deviation of the differences between the 

highest and lowest pitches in each channel that contains at least one note. 

 T-9 Importance of Loudest Voice: Difference between the average loudness of 

the loudest channel and the average loudness of the other channels that contain at 

least one note, divided by 64 (128 / 2). 

 T-10 Relative Range of Loudest Voice: Difference between the highest note and 

the lowest note played in the channel with the highest average loudness divided by 

the difference between the highest note and the lowest note in the piece overall. 

 T-11 Relative Range Isolation of Loudest Voice: Number of notes in the 

channel with the highest average loudness that fall outside the range of any other 

channel divided by the total number of notes in the channel with the highest 

average loudness. 
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 T-12 Range of Highest Line: Difference between the highest note and the lowest 

note played in the channel with the highest average pitch divided by the difference 

between the highest note and the lowest note in the piece overall. 

 T-13 Relative Note Density of Highest Line: Number of Note Ons in the 

channel with the highest average pitch divided by the average number of Note Ons 

in all channels that contain at least one note. 

 T-14 Relative Note Durations of Lowest Line: Average duration of notes (in 

seconds) in the channel with the lowest average pitch divided by the average 

duration of notes in all channels that contain at least one note. 

 T-15 Melodic Intervals in Lowest Line: Average melodic interval in semitones 

of the line with the lowest average pitch divided by the average melodic interval 

of all lines that contain at least two notes. 

 T-16 Simultaneity: Average number of notes sounding simultaneously. 

 T-17 Variability of Simultaneity: Standard deviation of the number of notes 

sounding simultaneously. 

 T-18 Voice Overlap: Number of notes played within the range of another voice 

divided by total number of notes in the piece overall. 

 T-19 Parallel Motion: Fraction of all notes that move together in the same 

direction within 10% of the duration of the shorter note.  

 T-20 Voice Separation: Average separation in semi-tones between the average 

pitches of consecutive channels (after sorting based on average pitch) that contain 

at least one note, divided by 6. 

4.5.3 Features based on rhythm 

Several scholars have expressed the view that rhythm plays a very important or even 

dominant role in many types of music. Richard Middleton (2000), for example, stresses 

the importance of rhythm in characterising music in a discussion of ways to approach 

creating a widely applicable method for music analysis. It is unfortunate that the majority 

of traditional analytical frameworks, with a few exceptions like the work of Cooper and 
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Meyer (1960), tend to give rhythm less attention than it deserves. Rhythmic features are 

often used successfully in audio analysis systems, in contrast, and they are 

correspondingly included in the jSymbolic feature catalogue in order to address the 

traditionally limited role of rhythm in traditional symbolic analysis.  

The two elementary pieces of information from which most rhythmic features can be 

calculated are the times at which notes begin (called note onsets) relative to one another, 

and the durations of notes. Note onsets can be extracted relatively reliably from audio 

data, at least in cases where note density is not too high, but durations are more difficult 

to extract reliably. In the case of symbolic data, however, both note onsets and durations 

are easily and precisely available. As one might expect, several of the rhythmic features 

that are based on note onsets in the jSymbolic catalogue are very similar to features that 

are often used in audio feature extraction systems. Duration-based features, in contrast, 

are very rarely currently used by audio feature extraction software, but can easily be 

extracted from symbolic data, and are thus included in the jSymbolic feature catalogue in 

order to allow their utility to be empirically evaluated. 

Before proceeding to discuss the details of the jSymbolic rhythmic feature catalogue, 

it is important to emphasize a detail of how MIDI encodes rhythmic information that must 

be considered when designing rhythmic features, whether for jSymbolic or for some other 

MIDI software. MIDI timings are affected by both the number of MIDI ticks that go by 

between Note On events and by tempo change meta-events that control the rate at which 

MIDI ticks go by. Tempo change meta-events must therefore be monitored by the feature 

extraction software, something which jSymbolic does of course do. 

One disadvantage of symbolic data is that some important rhythmic features are 

related to performance characteristics that are not always available in symbolic data, or 

available in only a very coarse sense. For example, musical scores may indicate that a 

piece should be played rubato or with a swing rhythm. There is a great deal of variety in 

the ways in which these rhythmic performance styles can be implemented, however, 

something that can be of essential importance for tasks such as performer identification. 

Although formats such as MIDI certainly can represent precise note onset timings, and 

many recorded MIDI performances do indeed take advantage of this, MIDI files that are 

generated using score writing software are often strictly quantized, which means that 
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performance timing information is not always consistently available with the precision 

that would ideally be preferred. 

Nonetheless, even quantized rhythms can still result in very useful feature values. One 

of the nice things about MIDI is that it allows one to access timing information in terms 

of raw time of note onsets as well as in terms of rhythmic note values (i.e., half notes, 

quarter notes, etc.), thus providing both low-level and high-level rhythmic information. 

This information, along with time signature and tempo change meta-events, can 

potentially provide features with a high discriminating power. 

Of course, as mentioned above, MIDI rhythmic information is somewhat sensitive to 

MIDI encoding style. This inconsistency is precisely the reason why the jSymbolic 

feature catalogue places a particular emphasis on rhythmic features derived from beat 

histograms, as described below. This approach helps to statistically smooth over some 

inconsistencies due to encoding style. 

Beat histograms are an approach that was first applied to MIR research by Brown 

(1993), and was later publicized and used for automatic genre classification by Tzanetakis 

and his colleagues in a number of papers (Tzanetakis, Essl & Cook 2001; Tzanetakis & 

Cook 2002; Tzanetakis 2002). A slightly modified version of Tzanetakis’ histogram is 

used by jSymbolic to derive a number of rhythmic features. Although Section 3.2.8 

explains how beat histograms are calculated by jAudio, the concept is briefly described 

again below from the specific perspective of symbolic MIDI data. 

It is necessary to have some understanding of how autocorrelation works in order to 

understand how beat histograms are constructed. Autocorrelation essentially involves 

comparing a signal with versions of itself delayed by successive intervals. This technique 

is often used to find repeating patterns in signals of any kind, as it yields the relative 

strengths of different periodicities within a signal. In terms of musical data, 

autocorrelation allows one to find the relative strengths of different rhythmic pulses. 

jSymbolic constructs its rhythmic histograms by processing sequences of MIDI Note 

On events, with MIDI ticks comprising the time scale. The autocorrelation function is: 
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where Y is the sequence of MIDI data, n is the input sequence index (in MIDI ticks), N is 

the total number of MIDI ticks in the sequence and lag is the delay in MIDI ticks (0 ≤ lag 
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< N). The value of Y[n] is calculated to be proportional to the velocity of Note Ons in 

order to ensure that beats are weighted based on the strength with which notes are played. 

This autocorrelation function is applied iteratively to each MIDI sequence, once for each 

value of lag within the domain 0 ≤ lag < N. The values of lag correspond to both 

rhythmic periodicities as well as, after processing, the bin labels of the beat histogram, 

and the autocorrelation values provide the magnitude value for each bin.  

Once the histogram is populated using all permissible values of lag for a given MIDI 

sequence, jSymbolic then downsamples and transforms it so that each bin corresponds to 

a rhythmic periodicity with units of beats per minute. The histogram is then normalized 

so that different MIDI sequences can be compared. The end result is a histogram whose 

bins correspond to rhythmic pulses with units of beats per minute and whose bin 

magnitudes indicate the relative strength of each such rhythmic pulse. In effect, a beat 

histogram portrays the relative strength of different beats and sub-beats within a piece. 

Consider, for example, the beat histograms extracted from MIDI representations of I 

Wanna Be Sedated, by the punk band The Ramones, and ‟Round Midnight, by the jazz 

performer and composer Thelonious Monk, as shown in Figures 4.1 and 4.2 respectively. 

It is clear that I Wanna Be Sedated has significant rhythmic looseness, as demonstrated by 

the spread around each peak, each of which represents a strong beat periodicity. I Wanna 

Be Sedated also has several clear strong beats, including ones centred at 55, 66, 82, 111 

(the actual tempo of the song) and 164 beats per minute, the latter two of which are 

harmonics of 55 and 82 beats per minute. ‟Round Midnight, in contrast, has one very 

strong beat at 76 beats per minute, the actual tempo of the piece, and a wide range of 

much lower-level beat strengths. This indicates that, as might be expected, ‟Round 

Midnight is more rhythmically complex and is also performed more tightly. 

This type of information can be very representative of different musical classes, such 

as genre. Techno, for example, often has very clearly defined beats, without any 

surrounding spread, because the beats are precisely generated electronically. Much 

modern Classical music, to provide a contrasting example, often has much less clearly 

defined beats. 
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Beat Histogram: I Wanna Be Sedated  by The Ramones
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Figure 4.1: Beat histogram for I Wanna Be Sedated by The Ramones. 

 

Beat Histogram: 'Round Midnight  by Thelonious Monk
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Figure 4.2: Beat histogram for ’Round Midnight by Thelonious Monk. 
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Part of the challenge of histogram-related features is that one must find a way to 

represent the information embedded in them as useful features. Although beat histograms 

certainly can be used directly as feature vectors, and they sometimes are in jSymbolic, 

experience has shown that machine learning algorithms can sometimes have trouble 

learning to extract useful information from them in this raw form if they are too large. 

Beat and other feature histograms are, however, very useful in providing an intermediate 

data structure from which other features can be extracted. Experience has shown 

informally that the two highest peaks of beat histograms tend to be of particular 

importance in extracting such information, as they are the most likely to represent the 

main beat of the music or one of its multiples or factors. 

The jSymbolic feature catalogue includes the following rhythm-related features: 

 R-1 Strongest Rhythmic Pulse: Bin label of the bin of the beat histogram with 

the highest magnitude. 

 R-2 Second Strongest Rhythmic Pulse: Bin label of the beat histogram peak 

with the second highest magnitude. 

 R-3 Harmonicity of Two Strongest Rhythmic Pulses: Bin label of the higher (in 

terms of bin label) of the two beat histogram peaks with the highest magnitude 

divided by the bin label of the lower. 

 R-4 Strength of Strongest Rhythmic Pulse: Magnitude of the beat histogram bin 

with the highest magnitude. 

 R-5 Strength of Second Strongest Rhythmic Pulse: Magnitude of the beat 

histogram peak with the second highest magnitude. 

 R-6 Strength Ratio of Two Strongest Rhythmic Pulses: Magnitude of the 

higher (in terms of magnitude) of the two beat histogram bins corresponding to the 

peaks with the highest magnitude divided by the magnitude of the lower. 

 R-7 Combined Strength of Two Strongest Rhythmic Pulses: The sum of the 

magnitudes of the two beat histogram peaks with the highest magnitudes. 
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 R-8 Number of Strong Pulses: Number of beat histogram peaks with normalized 

magnitudes over 0.1. 

 R-9 Number of Moderate Pulses: Number of beat histogram peaks with 

normalized magnitudes over 0.01. 

 R-10 Number of Relatively Strong Pulses: Number of beat histogram peaks 

with magnitudes at least 30% as high as the magnitude of the peak with the 

highest magnitude. 

 R-11 Rhythmic Looseness: Average width of beat histogram peaks (in beats per 

minute). Width is measured for all peaks with magnitudes at least 30% as high as 

the highest peak, and is defined by the distance between the points on the peak in 

question that have magnitudes closest to 30% of the height of the peak. 

 R-12 Polyrhythms: Number of beat histogram peaks with magnitudes at least 

30% of the highest magnitude whose bin labels are not integer multiples or factors 

(using only multipliers of 1, 2, 3, 4, 6 and 8, and with an accepted error of +/- 3 

bins) of the bin label of the peak with the highest magnitude. This number is then 

divided by the total number of bins with frequencies over 30% of the highest 

magnitude. 

 R-13 Rhythmic Variability: Standard deviation of the beat histogram bin 

magnitudes (excepting the first 40 empty ones). 

 R-14 Beat Histogram: A feature vector consisting of the bin magnitudes of the 

beat histogram described above. 

 R-15 Note Density: Average number of notes per second. 

 R-16 Note Density Variability: The recording is broken into windows with 5 

second durations. The note density is then calculated for each window, and the 

standard deviation of these windows is then calculated. 

 R-17 Average Note Duration: Average duration of notes in seconds. 
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 R-18 Variability of Note Duration: Standard deviation of note durations in 

seconds. 

 R-19 Maximum Note Duration: Duration of the longest note (in seconds). 

 R-20 Minimum Note Duration: Duration of the shortest note (in seconds). 

 R-21 Staccato Incidence: Number of notes with durations of less than 0.1 

seconds divided by the total number of notes in the recording. 

 R-22 Average Time Between Attacks: Average time in seconds between Note 

On events (regardless of channel). 

 R-23 Variability of Time Between Attacks: Standard deviation of the times, in 

seconds, between Note On events (regardless of channel). 

 R-24 Average Time Between Attacks For Each Voice: Average of the 

individual channel averages of times in seconds between Note On events. Only 

channels that contain at least one note are included in the average. 

 R-25 Average Variability of Time Between Attacks For Each Voice: Average 

standard deviation, in seconds, of time between Note On events on individual 

channels that contain at least one note. 

 R-26 Incidence of Complete Rests: Total amount of time in seconds in which no 

notes are sounding on any channel divided by the total length of the recording. 

 R-27 Maximum Complete Rest Duration: Maximum amount of time in seconds 

in which no notes are sounding on any channel. 

 R-28 Average Rest Duration Per Voice: Average, in seconds, of the average 

amounts of time in each channel in which no note is sounding (counting only 

channels with at least one note), divided by the total duration of the recording. 

 R-29 Average Variability of Rest Durations across Voices: Standard deviation, 

in seconds, of the average amounts of time in each channel in which no note is 

sounding (counting only channels with at least one note). 

 R-30 Initial Tempo: Tempo in beats per minute at the start of a recording. 
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 R-31 Initial Time Signature: A feature vector consisting of two values. The first 

is the numerator of the first occurring time signature and the second is the 

denominator of the first occurring time signature. Both are set to 0 if no time 

signature is present. 

 R-32 Compound Or Simple Meter: Set to 1 if the initial meter is compound 

(numerator of time signature is greater than or equal to 6 and is evenly divisible by 

3) and to 0 if it is simple (if the above condition is not fulfilled). 

 R-33 Triple Meter: Set to 1 if numerator of initial time signature is 3, set to 0 

otherwise. 

 R-34 Quintuple Meter: Set to 1 if numerator of initial time signature is 5, set to 0 

otherwise.  

 R-35 Changes of Meter: Set to 1 if the time signature is changed one or more 

times during the recording. 

4.5.4 Features based on dynamics 

The ways in which musical dynamics are used in a piece can also be characteristic of 

different types of musical classes. Once again, however, this information is only rarely 

used in traditional analytical systems, and is generally notated only very coarsely in 

musical scores. Fortunately, MIDI velocity values make it possible to annotate dynamics 

much more precisely, even though MIDI encodings generated by score editing software 

admittedly generally fail to take full advantage of this. 

One important point to consider with respect to MIDI dynamics is that, while MIDI 

velocities are generally used to indicate the strength with which notes are sounded, this is 

not the only way in which loudness is controlled. MIDI channel volume can also be 

changed independently. jSymbolic takes this into account by using the following formula 

to find loudness values used to calculate the features described in this sub-section: 

 

loudness = note velocity x (channel volume / 127)                                                  (4.2) 
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It should also be noted that all of the jSymbolic features related to dynamics use relative 

measures of loudness rather than absolute measures because the default volume and 

velocity values set by sequencers can vary.  

The jSymbolic feature catalogue includes the following features related to dynamics: 

 D-1 Overall Dynamic Range: The maximum loudness value minus the minimum 

loudness value. 

 D-2 Variation of Dynamics: Standard deviation of loudness levels of all notes. 

 D-3 Variation of Dynamics in Each Voice: The average of the standard 

deviations of loudness levels within each channel that contains at least one note. 

 D-4 Average Note To Note Dynamics Change: Average change of loudness 

from one note to the next note in the same channel. 

4.5.5 Features based on overall pitch statistics 

The majority of traditional analytical systems place a particular emphasis on 

information related to pitch, and this type of information certainly has value with respect 

to symbolic features as well. The pitch-related features in the jSymbolic catalogue are 

divided into three groups: Section 4.5.6 deals with melody and features based on 

sequences of pitches in general, Section 4.5.7 deals with chords and features based on 

vertical intervals in general, and this section deals with overall statistics on the pitches 

used in pieces as a whole. Unlike the features in Sections 4.5.6 and 4.5.7, the features in 

this section do not take into account the temporal locations of notes.  

Just as beat histograms are useful for calculating a variety of rhythmic features, there 

are several histograms which can be used to calculate features related to pitch statistics. 

The jSymbolic feature catalogue uses slightly modified versions of the three pitch 

histograms implemented by Tzanetakis and his colleagues (Tzanetakis and Cook 2002; 

Tzanetakis, Ermolinskyi and Cook 2002; Tzanetakis 2002). 

The first type of histogram is a basic pitch histogram. It consists of 128 bins, one for 

each MIDI pitch. The magnitude of each bin is first set to the number of Note On 

messages in the piece with the corresponding pitch, and the histogram is normalized after 
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all Note On messages have been accounted for. This type of histogram gives particular 

insights into the range and variety of pitches used in a piece. 

To provide practical examples, Figure 4.3 shows the basic pitch histogram for a Duke 

Ellington jazz piece and Figure 4.4 shows the histogram for a Dr. Dre rap song. A number 

of genre-typical differences are immediately apparent from even a rough visual 

comparison of these two histograms, such as the fact that the rap song uses far fewer 

pitches than the jazz piece, for example. 

The second type of histogram is called a pitch class histogram. It has one bin for each 

of the twelve pitch classes, which means that it is essentially a version of the basic pitch 

histogram where octaves are collapsed for each of the pitch classes. The magnitude of 

each bin is set to the number of Note On messages with a MIDI pitch that can be wrapped 

to this pitch class, with enharmonic equivalents assigned to the same pitch class number. 

The histogram is normalized, and the bins are translated so that the first bin corresponds 

to the pitch class with the highest magnitude, with the successive bins ordered 

chromatically in semitone increments. This type of histogram provides insights into areas 

such as the types of scales used and the amount of transposition that is present, for 

example. 

The third type of histogram is called a folded fifths pitch histogram, and is derived 

directly from the pitch class histogram. This histogram is calculated by reordering the 

bins of the original unordered pitch class histogram such that adjacent bins are separated 

by perfect fifths rather than semitones. This is done using the following equation 

)12mod()7(                                                                                                        (4.3) 

where  is the folded fifths pitch histogram bin and  is the corresponding pitch class 

histogram bin. The number seven is used because this is the number of semitones in a 

perfect fifth, and the number twelve is used because there are twelve pitch classes in total. 

This histogram is useful for measuring dominant tonic relationships and for looking at 

types of transpositions.  

The utility of the folded fifths pitch histogram can be seen by comparing Figure 4.5, 

which shows the folded fifths pitch histogram for a Baroque Vivaldi concerto, and Figure 

4.6, which shows the folded fifths pitch histogram for an atonal Schoenberg piano 

miniature. The Vivaldi piece never or rarely uses five of the twelve pitch classes, and the 
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pitch classes that are used are clustered around one section of the circle of fifths. These 

are characteristics that one would typically expect of basic tonal music without many 

tonally distant modulations or significant use of chromaticism. In contrast, all of the pitch 

classes are used to a significant degree in the Schoenberg piece, and the most frequently 

used pitch classes are not clustered together on the circle of fifths, both of which are 

characteristics that one would expect of such an atonal piece. 

All three of these histogram types are included directly as features in the jSymbolic 

feature catalogue, and are also used to calculate a number of other features.  

It should be mentioned that all notes occurring on MIDI channel ten are ignored for 

all of the features described in this section. This is because the ―pitch‖ values on channel 

ten correspond to (mostly unpitched) percussion patches, not to pitches. 

Some of the features in this section are based on MIDI Pitch Bends. Although the use 

of Pitch Bends is somewhat variable from MIDI encoder to MIDI encoder, and therefore 

not entirely dependant on the music itself, features relating to Pitch Bends can 

nonetheless have a high discriminating power, so they are included here. Efforts were 

made to use features with as limited a sensitivity to non-musical factors as possible. 

 

Basic Pitch Histogram:  Sophisticated Lady  by Duke Ellington

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0
5

1
1
2

1
1
9

1
2
6

MIDI Pitch

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

 

Figure 4.3: Basic pitch histogram for Sophisticated Lady by Duke Ellington. 
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Basic Pitch Histogram: Forgot About Dre  by Dr. Dre
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Figure 4.4: Basic pitch histogram for Forgot About Dre by Dr. Dre. 

 

Fifths Pitch Histogram:

Four Seasons (Spring)  by Vivaldi
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Figure 4.5: Folded fifths pitch histogram for The Four Seasons (Spring) by Vivaldi. 
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Fifths Pitch Histogram:

Sechs Kleine Klavierstücke  by  Schoenberg
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Figure 4.6: Folded fifths pitch histogram for a piano miniature from Sechs Kleine 

Klavierstücke by Schoenberg. 

The jSymbolic feature catalogue includes the following features related to overall 

pitch statistics: 

 P-1 Most Common Pitch Prevalence: Fraction of Note Ons corresponding to the 

most common pitch. 

 P-2 Most Common Pitch Class Prevalence: Fraction of Note Ons corresponding 

to the most common pitch class. 

 P-3 Relative Strength of Top Pitches: The magnitude of the second most 

common pitch divided by the magnitude of the most common pitch. 

 P-4 Relative Strength of Top Pitch Classes: The magnitude of the second most 

common pitch class divided by the magnitude of the most common pitch class. 

 P-5 Interval Between Strongest Pitches: Absolute value of the difference in 

semitones between the pitches of the two most common pitches. 

 P-6 Interval Between Strongest Pitch Classes: Absolute value of the difference 

in semitones between the pitches of the two most common pitch classes. 
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 P-7 Number of Common Pitches: Number of pitches that account individually 

for at least 9% of all notes. 

 P-8 Pitch Variety: Number of pitches used at least once. 

 P-9 Pitch Class Variety: Number of pitch classes used at least once. 

 P-10 Range: Difference in semitones between the highest and lowest pitches. 

 P-11 Most Common Pitch: MIDI pitch value of the most common pitch divided 

by the number of possible pitches. 

 P-12 Primary Register: Average MIDI pitch. 

 P-13 Importance of Bass Register: Fraction of Note Ons between MIDI pitches 

0 and 54. 

 P-14 Importance of Middle Register: Fraction of Note Ons between MIDI 

pitches 55 and 72. 

 P-15 Importance of High Register: Fraction of Note Ons between MIDI pitches 

73 and 127. 

 P-16 Most Common Pitch Class: Bin label on the pitch class histogram of the 

most common pitch class. 

 P-17 Dominant Spread: Largest number of consecutive pitch classes separated 

by perfect 5ths that accounted for at least 9% each of the notes. 

 P-18 Strong Tonal Centres: Number of peaks in the fifths pitch histogram that 

each account for at least 9% of all notes. 

 P-19 Basic Pitch Histogram: A feature vector consisting of the bin magnitudes 

of the basic pitch histogram described above. 

 P-20 Pitch Class Distribution: A feature vector consisting of the bin magnitudes 

of the pitch class histogram described above. 

 P-21 Fifths Pitch Histogram: A feature vector consisting of the bin magnitudes 

of the fifths pitch histogram described above. 
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 P-22 Quality: Set to 0 if the key signature indicates that a recording is major, set 

to 1 if it indicates that it is minor and set to 0 if the key signature is unknown. 

 P-23 Glissando Prevalence: Number of Note Ons that have at least one MIDI 

Pitch Bend associated with them divided by the total number of pitched Note Ons. 

 P-24 Average Range of Glissandos: Average range of MIDI Pitch Bends, where 

―range‖ is defined as the greatest value of the absolute difference between 64 and 

the second data byte of all MIDI Pitch Bend messages falling between the Note 

On and Note Off messages of any note. 

 P-25 Vibrato Prevalence: Number of notes for which MIDI Pitch Bend messages 

change direction at least twice divided by total number of notes that have Pitch 

Bend messages associated with them. 

 P-26 Prevalence of Micro-Tones: Number of Note Ons that are preceded by 

isolated MIDI Pitch Bend messages as a fraction of the total number of Note Ons. 

4.5.6 Features based on melody and melodic intervals 

Although features based on overall pitch statistics are often meaningful and useful, 

they do not reflect information relating to the order in which pitches occur. Melody is a 

very important part of how many humans hear and think about music, so features based 

on such sequential information are needed to complement features based on overall pitch 

statistics. Fortunately, ample theoretical work has been done that can be taken advantage 

of when designing melodic features, ranging from compositional resources like manuals 

on writing Baroque counterpoint, to more analytically formulated ideas like melodic 

contour. Section 4.4 highlights several relevant resources. 

Unfortunately, the tasks of detecting and partitioning musical phrases and melodies, 

and of determining which notes belong to which phrases, are not trivial. Although expert 

humans can perform such tasks relatively easily, automatic systems for performing them 

have still achieved only limited general success, particularly in cases where the notes in a 

phrases are shared across voices. So, although a phrase detection pre-processing system 

would make many potentially useful melodic features accessible, such a system is not 

currently available. 
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What one can do fairly easily, however, is collect basic statistics about melodic 

intervals and melodic motion. Although such statistics may be relatively rudimentary 

compared to expert melodic analyses, they can still potentially be very effective in 

performing classifications. One can also extract somewhat more sophisticated features 

related to melodic contour by making a few naïve but often effective basic assumptions, 

such as the assumptions that all notes belonging to a phrase will be on the same MIDI 

channel and that phrases will each follow the overall shape of a basic concave or converse 

arc. Although such assumptions are clearly false, and certainly not acceptable for any 

wide-ranging analytical framework, they do make it possible to extract some potentially 

discriminating higher-level melodic features without a sophisticated phrase detection 

system. 

A melodic interval histogram is proposed here as a way of facilitating the extraction 

of certain basic features relating to melodic intervals. Each bin of this histogram 

represents a different melodic interval, and is labelled with a number indicating the 

number of semitones in the interval. The magnitude of each bin is set to the number of 

Note On messages in the piece that have a pitch interval from the preceding Note On 

message on the same MIDI channel corresponding to the bin label. The direction of the 

interval (i.e., up or down in pitch) is ignored in this histogram. The histogram is then 

normalized, so that the magnitude of each bin indicates the fraction of all melodic 

intervals that correspond to the melodic interval of the given bin. 

This histogram clearly has a few limitations. It treats all voices equally, for example, 

even though the highest line of a piece often carries the most significant melodic 

information. It is also problematic for polyphonic instruments such as pianos that can play 

harmonies or multiple melodies simultaneously. It is, however, a quick and easy approach 

that has been found experimentally to often be helpful in discriminating between classes. 

Another intermediate data structure is also used to help calculate some of the features 

listed below. This consists of an array where each indice corresponds to a MIDI channel 

and each entry consists of a list of all melodic intervals, in semitones, for the associated 

channel. The numbers representing the intervals in this second intermediate data structure 

are set to negative for downward motion and to positive for upward motion. 
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Once again, all notes occurring on MIDI channel ten are ignored for all of the features 

described in this section. This is because the ―pitch‖ values on channel ten correspond to 

percussion patches, not to pitches. 

The jSymbolic feature catalogue includes the following features related to melody and 

melodic intervals: 

 M-1 Melodic Interval Histogram: A feature vector consisting of the bin 

magnitudes of the melodic interval histogram described above. 

 M-2 Average Melodic Interval: The average melodic interval, in semitones. 

 M-3 Most Common Melodic Interval: The most frequently occurring melodic 

interval, in semitones. 

 M-4 Distance Between Most Common Melodic Intervals: Absolute value of the 

difference between the most common melodic interval and the second most 

common melodic interval, in semitones. 

 M-5 Most Common Melodic Interval Prevalence: Fraction of melodic intervals 

that belong to the most common interval. 

 M-6 Relative Strength of Most Common Intervals: Fraction of melodic 

intervals that belong to the second most common interval divided by the fraction 

of melodic intervals belonging to the most common interval. 

 M-7 Number of Common Melodic Intervals: Number of melodic intervals that 

represent at least 9% of all melodic intervals. 

 M-8 Amount of Arpeggiation: Fraction of melodic intervals that are repeated 

notes, minor thirds, major thirds, perfect fifths, minor sevenths, major sevenths, 

octaves, minor tenths or major tenths. 

 M-9 Repeated Notes: Fraction of notes that are repeated melodically. 

 M-10 Chromatic Motion: Fraction of melodic intervals that correspond to a 

semitone. 
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 M-11 Stepwise Motion: Fraction of melodic intervals that correspond to a minor 

or major second. 

 M-12 Melodic Thirds: Fraction of melodic intervals that are major or minor 

thirds. 

 M-13 Melodic Fifths: Fraction of melodic intervals that are perfect fifths. 

 M-14 Melodic Tritones: Fraction of melodic intervals that are tritones. 

 M-15 Melodic Octaves: Fraction of melodic intervals that are octaves. 

 M-16 Embellishment: Fraction of notes that are surrounded on both sides by 

Note Ons on the same MIDI channel that have durations at least three times as 

long as the central note. 

 M-17 Direction of Motion: Fraction of melodic intervals that are rising rather 

than falling. 

 M-18 Duration of Melodic Arcs: Average number of notes that separate melodic 

peaks and troughs in any channel. 

 M-19 Size of Melodic Arcs: Average melodic interval separating the top note of 

melodic peaks and the bottom note of melodic troughs. 

 M-20 Melodic Pitch Variety: Average number of notes that go by in a channel 

before a note is repeated. Notes that do not recur after sixteen notes are not 

counted. 

4.5.7 Features based on chords and vertical intervals 

Chords in general, and tonal harmony in particular, are the areas that have typically 

received the most attention in traditional Western analytical systems. As a result, there is 

a great deal of background information that can be taken advantage of in designing 

features based on chords. Section 4.4 highlights some relevant references that were used 

to design many of the features in this section. In particular, some of the techniques for 

chord analysis discussed by Rowe (2001) were particularly useful. 
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It is essential to point out that the existing theoretical frameworks based on tonal 

harmony do not apply to many kinds of music, as they were developed primarily with 

respect to Western classical music. As a consequence, most of the chord-based features 

proposed as part of the jSymbolic feature library are not based on harmonic function, and 

emphasize instead basic statistical information about the vertical intervals between 

pitches that sound simultaneously. Having recognized this, it is once again important to 

recall that features are useful simply if they help to differentiate between classes 

statistically, even if they are inspired by theoretical assumptions that do not apply to some 

of the music under consideration. There are therefore a few features in the jSymbolic 

catalogue that make use of certain basic concepts that are specific to Western harmonic 

theory. 

Two new histograms are proposed as intermediate data structures for calculating 

chord-based structures. The first, called a vertical interval histogram, consists of bins 

associated with different vertical intervals and labelled with the number of semitones in 

the corresponding interval. The magnitude of each bin is found by going through a MIDI 

recording tick by tick and noting all vertical intervals that are sounding at each tick. This 

is done exhaustively, so that multiple vertical intervals will be noted per tick if there are 

more than two pitches sounding simultaneously. The histogram is then normalized. The 

end result is a histogram that indicates which vertical intervals are most common relative 

to one another, with a weighting based on duration rather than simply the number of notes 

sounded corresponding to each interval. This is reasonable, since long notes often have 

greater harmonic significance than short notes. This histogram does not incorporate any 

tonal assumptions, although it does require quantization into the twelve standard pitch 

classes. 

It is also potentially useful to have a histogram that can be used to extract features 

more directly related to tonal harmony, since many music classification projects do 

involve music based on the basic chord ontologies of Western music. A chord type 

histogram is proposed with this need in mind. This histogram has bins labelled with types 

of chords: vertical intervals consisting of two pitch classes, minor triads, major triads, 

other triads, diminished chords, augmented chords, dominant seventh chords, major 

seventh chords, minor seventh chords, other chords with four pitch classes and chords 
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with more than four pitch classes. The bin magnitudes are calculated by going through 

MIDI ticks one by one and incrementing the counter for the bin that corresponds to the 

chord, if any, that is present during a given tick. All inversions are treated as equivalent 

and octave doubling is ignored in the calculation of this histogram. The histogram is 

normalized and is weighted based on chord duration, just like the vertical interval 

histogram. 

Neither of these histograms provides any information about arpeggiation, 

unfortunately, but some information related to this is collected during the melodic feature 

extraction. A more sophisticated system in the future could integrate vertical statistics 

with arpeggios, and could also collect information about inversions as well as chord 

transitions in order to obtain more sophisticated and accurate features.  

Once again, all notes occurring on MIDI channel ten are ignored for all of the features 

described in this section. This is because the ―pitch‖ values on channel ten correspond to 

percussion patches, not to pitches. 

The jSymbolic feature catalogue includes the following features related to chords and 

vertical intervals: 

 C-1 Vertical Intervals: A feature vector consisting of the bin magnitudes of the 

vertical interval histogram described above. 

 C-2 Chord Types: A feature vector consisting of the frequencies of each of the 

bins in the chord type histogram discussed above. 

 C-3 Most Common Vertical Interval: The interval in semitones corresponding 

to the vertical interval histogram bin with the highest magnitude. 

 C-4 Second Most Common Vertical Interval: The interval in semitones 

corresponding to the vertical interval histogram bin with the second highest 

magnitude. 

 C-5 Distance Between Two Most Common Vertical Intervals: The difference 

between the bin labels of the two most common vertical intervals. 

 C-6 Prevalence of Most Common Vertical Interval: The fraction of vertical 

intervals corresponding to the most common vertical interval. 
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 C-7 Prevalence of Second Most Common Vertical Interval: The fraction of 

vertical intervals corresponding to the second most common vertical interval. 

 C-8 Ratio of Prevalence of Two Most Common Vertical Intervals: The 

fraction of vertical intervals corresponding to the second most common vertical 

interval divided by the fraction of vertical intervals corresponding to the most 

common vertical interval. 

 C-9 Average Number of Simultaneous Pitch Classes: Average number of 

different pitch classes sounding simultaneously. 

 C-10 Variability of Number of Simultaneous Pitch Classes: Standard deviation 

of the number of different pitch classes sounding simultaneously. 

 C-11 Minor Major Ratio: Number of minor vertical intervals divided by number 

of major vertical intervals. 

 C-12 Perfect Vertical Intervals: Fraction of all vertical intervals that are perfect 

intervals. 

 C-13 Unisons: Fraction of all vertical intervals that are unisons. 

 C-14 Vertical Minor Seconds: Fraction of vertical intervals that are minor 

seconds. 

 C-15 Vertical Thirds: Fraction vertical intervals that are thirds. 

 C-16 Vertical Fifths: Fraction of vertical intervals that are fifths. 

 C-17 Vertical Tritones: Fraction of vertical intervals that are tritones. 

 C-18 Vertical Octaves: Fraction of vertical intervals that are to octaves. 

 C-19 Vertical Dissonance Ratio: Total number of vertical 2nds, tritones, 7ths 

and 9ths divided by the total number of vertical unisons, 4ths, 5ths, 6ths, octaves 

and 10ths. 

 C-20 Partial Chords: Fraction of simultaneously sounding pitch groups that 

consist of only two pitch classes. 
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 C-21 Minor Major Triad Ratio: Number of minor triads divided by number of 

major triads. 

 C-22 Standard Triads: Fraction of all chords that are either major or minor 

triads. 

 C-23 Diminished and Augmented Triads: Fraction of all chords that are either 

diminished or augmented triads. 

 C-24 Dominant Seventh Chords: Fraction of all chords that are dominant 

sevenths. 

 C-25 Seventh Chords: Fraction of all chords that are dominant seventh, major 

seventh or minor seventh chords. 

 C-26 Complex Chords: Fraction of all chords that contain more that four pitch 

classes. 

 C-27 Non-Standard Chords: Fraction of all simultaneously sounding pitches 

that consist of more than two pitch class chords and are not major or minor triads 

or seventh chords. 

 C-28Chord Duration: Average duration of a chord in seconds. 

4.5.8 Examples 

For the purpose of illustration, Table 4.1 shows the values of twenty sample features 

extracted from two measures each of a Chopin nocturne and a Mendelssohn piano trio 

(Figures 4.7 and 4.8, respectively). A comparison of the two examples and their features 

makes it apparent how such features can be useful in distinguishing between pieces and 

musical categories of various kinds. For example, the Average Note To Note Dynamic 

Change (D-4), Overall Dynamic Range (D-1) and Variation of Dynamics (D-2) features 

demonstrate the greater range in dynamics of the nocturne, the Note Density (R-15) 

feature demonstrates the greater number of notes per second of the trio, the Orchestral 

Strings Fraction (I-18) feature indicates that strings play roughly half the notes in the trio 

but are absent in the nocturne, and the Variability of Note Duration (R-18) feature shows 

that this portion of the nocturne has more rhythmic variety than the trio. More 
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traditionally-oriented features are also present, such as the Chromatic Motion (M-10) 

feature, which demonstrates that this portion of the trio has more chromatic motion, or the 

Range (P-10) feature, which shows that the lowest and highest notes of this section of the 

nocturne span a greater interval. Although such features are not necessarily significant 

when considered individually, pattern recognition systems can simultaneously examine 

many of them in order to find meaningful patterns and discriminate between classes. Of 

course, the features would typically be extracted over the entire pieces, not just two 

measures. 

 

Feature Name Nocturne Piano Trio 

Average Note To Note Dynamics Change (D-4) 6.03 1.46 

Chromatic Motion (M-10) 0.0769 0.244 

Dominant Spread (P-17) 3 2 

Harmonicity of Two Strongest Rhythmic Pulses (R-3) 1 1 

Importance of Bass Register (P-13) 0.2 0.373 

Interval Between Strongest Pitch Classes (P-6) 3 7 

Most Common Pitch Class Prevalence (P-2) 0.433 0.39 

Note Density (R-15) 3.75 29.5 

Number of Common Melodic Intervals (M-7) 3 6 

Number of Strong Pulses (R-8) 5 6 

Orchestral Strings Fraction (I-18) 0 0.56 

Overall Dynamic Range (D-1) 62 22 

Pitch Class Variety (P-9) 7 7 

Range (P-10) 48 39 

Relative Strength of Most Common Intervals (M-6) 0.5 0.8 

Size of Melodic Arcs (M-19) 11 7.27 

Stepwise Motion (M-11) 0.231 0.439 

Strength of Strongest Rhythmic Pulse (R-4) 0.321 0.173 

Variability of Note Duration (R-18) 0.293 0.104 

Variation of Dynamics (D-2) 16.4 5.98 

 

Table 4.1: Comparison of twenty sample features extracted from the first two measures 

of Fryderyk Chopin’s Nocturne in B, Op. 32, No. 1 (Figure 4.7) and from measures 10 

and 11 of the first movement of Felix Mendelssohn’s Piano Trio No. 2 in C minor, Op. 66 

(Figure 4.8). 
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Figure 4.7: First two measures of Fryderyk Chopin’s Nocturne in B, Op. 32, No. 1, from 

which the features in Table 4.1 were extracted.  

 

Figure 4.8: Measures 10 and 11 of the first movement of Felix Mendelssohn’s Piano Trio 

No. 2 in C minor, Op. 66, from which the features in Table 4.1 were extracted.  

4.6 jSymbolic’s functionality 

The essential functionality offered by jSymbolic is the ability to extract features from 

MIDI files, including files in Format 1 as well as Format 0. Extracted features can be 

saved as ACE XML files (see Chapter 7), which may then be converted to Weka ARFF 

files or to other formats. Both the actual feature values and metadata about the features 

can be saved by jSymbolic, in ACE XML Feature Value files and ACE XML Feature 

Description files, respectively. 

As is the case with all jMIR components, jMIR is designed to serve not only as a 

feature extraction application, but also as a platform for developing new features. As 

such, jSymbolic has a modular and extensible architecture with well-documented code. 

New features can be implemented simply by extending the MIDIFeatureExtractor class. 

The jSymbolic software then automatically provides the new features with the MIDI data 
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for each file, a library of MIDI processing tools and any other needed feature values, in 

case a new feature is calculated based on other existing features. As is the case with 

jAudio, feature extraction order is automatically scheduled dynamically, so all feature 

dependencies are handled automatically. This approach makes it unnecessary for 

developers of new features to have any knowledge of how jAudio’s interface or control 

structures work, thereby allowing them to focus directly on feature development itself. 

The mechanisms used by jSymbolic to do all of this are very similar to those used by 

jAudio, as described in Sections 3.4.5 and 3.4.6. However, although jSymbolic does 

include a number of explicitly implemented metafeatures and aggregators, it does not 

include automatic metafeature and aggregator feature generation like jAudio, and 

jSymbolic must still be recompiled when new features are added. Like all jMIR 

components, jSymbolic’s Java implementation is open-source and platform-independent. 

The MIDIIntermediateRepresentations and MIDIMethods classes offer developers a 

variety of MIDI data representation and processing tools. This means that a great variety 

of features can be implemented at a high level, without actually working directly with the 

MIDI data, unless, of course, one wishes to. 

4.7 jSymbolic’s interface 

jSymbolic is designed for users with varying levels of computer expertise. It is 

particularly targeted towards musicologists and music theorists who might not currently 

be using computer technology in their research, so the interface is a simple and easy-to-

learn graphical user interface, as shown in Figure 4.9. 

This GUI is very simple relative to the other jMIR components, and consists of only a 

single window. The left side of the window holds an area displaying the MIDI files that 

have been selected for feature extraction, and the right side includes a list of all features 

that may be extracted. Individual features may be selected or deselected for extraction. In 

cases where one feature is selected that requires another feature that is not selected in 

order to be calculated the software automatically simply extracts the feature that is not 

selected, uses it in the calculation of the selected feature and then discards its value 

without saving it. 
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Basic functionality is also offered for playing MIDI files and viewing metadata about 

them. There is also a section of the GUI for entering preferences related to windowed 

feature extraction, but it is currently greyed out, as this functionality is not yet 

implemented. 

Unlike jAudio and ACE, jSymbolic does not yet include a command interface or API 

designed specifically for integration into external software. The jSymbolic features 

themselves are very modular, however, and there is a general well-documented API, so 

jSymbolic’s functionality certainly can still be integrated into other software with 

relatively little work. 

 

Figure 4.9: A screen shot of the jSymbolic GUI interface.  

4.8 Summary of original contributions 

jSymbolic is both a dedicated symbolic feature extraction application and a platform 

for feature development. It is the only application currently available designed 

specifically for MIR-oriented symbolic feature extraction that is intended for general use. 
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jSymbolic also includes 111 implemented features, far more than any other existing 

software that can be used for symbolic feature extraction. 

The jSymbolic feature catalogue, as described in Section 4.5, is also an important 

contribution. It includes 153 features, including features relating to instrumentation, 

texture, rhythm, dynamics, pitch statistics, melody and chords. These features, as an 

aggregate, are designed to be relevant to a wide variety of musics, and can be adapted for 

use in areas such as analytical theoretical research and empirical musicological research, 

not just MIR and automatic music classification. This feature catalogue is, to the best of 

the author’s knowledge, the largest and most diverse high-level musical feature catalogue 

currently available. This catalogue includes many original features.  

Section 4.4 also offers important contributions by discussing important issues relevant 

to feature design and selection, and by offering guidelines for developing new high-level 

features. This discussion takes into account insights from a variety of disciplines, and can 

serve as a useful resource if expanding the jSymbolic feature catalogue or designing an 

entirely new catalogue of high-level features. The topics dealt with in this sub-section are 

particularly significant to MIR research in automatic classification, as most research in 

this field has been technically motivated, and has often failed to take into account highly 

relevant insights offered by disciplines such as musicology and music theory. 

4.9 Future research 

As mentioned above, jSymbolic is intended not only as a tool for extracting features 

from music stored in symbolic music files, but also as a platform for iteratively 

developing new features. Correspondingly, an important part of future research will focus 

on designing and implementing new features. The first priority will be the 

implementation of the 42 remaining unimplemented features in the current jSymbolic 

feature catalogue, so that all 153 features will be implemented. Once this is done, the 

catalogue itself can be expanded, with special attention paid to features that represent 

increasingly higher-level information. 

The implementation of pre-processing functionality of various kinds could also be 

very useful. For example, automatic voice partitioning algorithms could help detect and 

correct MIDI files where voices are multiplexed on a single channel or track using a 
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single patch. Phrase detection pre-processing would also make it possible to extract 

features relating to melodic contour more reliably. 

An important design priority of the current jSymbolic feature catalogue was to ensure 

that the majority of features could be applied to a broad range of musics. As a result, the 

catalogue contains only a limited number of features that are designed for specific types 

of music, such as Western tonal music, for example. New features and pre-processing 

functionality related specifically to harmonic analysis, for example, could be of particular 

utility to researchers only interested in such particular types of music.  

It could be useful to build even a relatively rudimentary automatic harmonic analysis 

pre-processing system into jSymbolic if sophisticated analytical techniques are too 

difficult to implement automatically. Work such as that by Raphael and Stoddard (2003) 

or the techniques used by Rowe (2001) could be useful in this respect. Features derived 

from simple Roman numeral analysis and chord voicings could be extracted, for example. 

Although such automatically generated analyses would very likely contain errors due to 

the difficulty and subjectivity of harmonic analysis, and would have limited value in and 

of themselves, features derived from such analyses could still provide rough but effective 

information that could help distinguish between classes. The ability to intelligently take 

arpeggios into account as well as vertical chords would also be valuable. 

More sophisticated statistical analyses could also be applied to the jSymbolic’s 

different histogram features. The calculation of higher-order moments, skew, scatter and 

excess, for example, could all be useful. Gabura’s work (1965) provides a good starting 

point for such an approach. A more in-depth study of the techniques used by 

ethnomusicologists to compare different types of music could also provide additional 

ideas. It might also be beneficial to use alternative ways of representing pitch, as 

suggested by Chai and Vercoe (2001). 

Further research on more sophisticated features based on sequential information could 

be useful as well. Phrasing and repetition, in terms of melodies, chord progressions and 

rhythms, can be very important musically. The degree and regularity with which such 

patterns are repeated, as well as their general character, length and register, could all 

furnish useful features. It could also be helpful to collect features related specifically to 

transposition, decoration and inversion of motifs.  
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There has been some interesting research done on models of how humans code 

sequential musical information and on applications of generative grammars to music. 

Stevens and Latimer (1997) present relevant references on both the strengths and 

weaknesses of such approaches. Research on detecting and processing repeating musical 

patterns, such as that by Hsu et al. (2001), Typke et al. (2003) or Lartillot (2003), could 

be worthwhile. Work such as that by Tseng (1999) or Foote (1999b) could also be 

valuable in devising a system to extract melodies and segment recordings. An alternative 

and potentially very interesting approach to extracting features from phrases would be to 

characterize melodies by fitting them to functions, as was done by Laine and 

Kuuskankare (1994), in order to search for patterns and then apply functional data 

analysis techniques.  

Existing research on query-by-humming systems could also provide a useful resource 

for the extraction of features based on sequences and phrases. Features could be extracted 

by collecting and analyzing n-grams based on melodies, rhythms and chord progressions. 

There are a number of resources that could be beneficial in this respect (Agrawal and 

Srikant 1995; Hsu, Liu and Chen 2001; Selfridge-Field 1998; Uitdenbogerd and Zobel 

1998). The work of Shan and Kuo (2003) could also be of particular use, as it considers 

the problem in the context of style classification. The work of Yip and Kao (1999) also 

provides some helpful background on melody-based features. 

It would also be convenient if jSymbolic could extract features from other symbolic 

file formats, such as Humdrum **Kern, MusicXML or OSC. Functionality could be built 

into jSymbolic to either extract features from such formats directly, or at least to 

automatically translate them into MIDI streams from which features could then be 

extracted. 

The ability to extract features over small windows of time instead of only for files as a 

whole could also be advantageous. This includes the use of disjoint as well as overlapping 

windows. The musical characteristics of different parts of a piece can vary significantly, 

with the consequence that feature values that are the average of such dissimilar sections 

may in fact not be representative of any of the sections. Windowed feature extraction is 

also a requirement for automatically segmenting pieces or performing general structural 
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analyses. The infrastructure for such windowed feature extraction is already in place in 

jSymbolic, and has already been implemented in jAudio. 

jAudio also includes other useful functionality that could be ported to jSymbolic. This 

includes automatic metafeature and feature aggregator generation, as well as the ability to 

add new features as plug-ins without recompiling the software. The ability to save feature 

values as ARFF files directly would also be a helpful addition 

Additional ways of accessing jSymbolic’s functionality will also be implemented. A 

command-line interface would facilitate simple batch processing, and the jSymbolic API 

could be improved to even further facilitate the ability to incorporate jSymbolic’s 

functionality into other software. The jSymbolic user documentation could also be 

improved to the level of jWebMiner and jMusicMetaManager, although jSymbolic’s 

documentation is already at least as good as most academic software systems. 
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5. jWebMiner: Extracting cultural features from the 

Internet 

5.1 Overview of community metadata, cultural features and 

jWebMiner 

There is psychological and musicological reason to believe that cultural factors 

beyond the content of music itself play an essential role in how humans interpret and 

organize music. Fabbri (1981), for example, has argued that content-based aspects of 

music represent only one of five ways in which musical genres can be characterized, and 

North and Hargreaves (1997) found experimentally that the style of a piece can influence 

listeners’ liking for it more than the piece itself. Cano and Koppenberber (2004) also 

found experimentally that the nature of cultural data accessible on the Internet has 

intriguing potential for MIR research. 

Although there are many sources of cultural information that bear eventual targeted 

investigation, ranging from social networking data to critical writings to sales statistics, 

the decision was made for the purpose of jMIR to focus on the largest source of 

information available: text data on the web, which will be referred to here as community 

metadata. Rather than attempting to specialize in extracting features from only one or a 

few types of data sources, it was decided that it would be more profitable to make use of 

the functionality offered by search engines to extract information from the web as an 

amalgamated whole. In addition to the huge scope and diversity of information that may 

be mined, this approach has the additional significant advantage that the information on 

the web constantly self-updates.  

In order for cultural data of any kind to be beneficial for the purposes of jMIR, or 

machine learning in general, it is necessary to first find ways of automatically extracting 

useful information in a systematic way and then, ideally, formulating it so that it can be 

expressed in the form of simple numerical features. Such features are referred to here as 

cultural features. 

The jMIR software component developed to perform this cultural feature extraction 

has been named jWebMiner (McKay and Fujinaga 2007a). The details of its operation and 
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interface are described in Sections 5.4 and 5.5. The Java bytecode, the source files and the 

manual are freely available at jmir.sourceforge.net/index_jWebMiner.html. 

5.2 Background information 

5.2.1 Screen scraping and web services 

The most direct way of extracting data from the web is called screen scraping. In 

essence, this involves downloading pages from a web site as if they were to be viewed on 

a web browsing application and then parsing them in some way to extract meaning. This 

can work well if the structuring and formatting of pages on the web site consistently 

conform to a set template. In practice, however, this approach can be problematic, as 

contemporary web sites typically use a variety of difficult-to-parse scripting languages to 

structure their web pages, and pages from a site are often not perfectly consistent with one 

another. Even a minor change to a site’s design can cause the screen scraping software to 

become entirely ineffective. So, while screen scraping can be useful as a last resort, it is 

preferable to avoid it if possible. 

Web services offer an alternative to web scraping. Some web sites choose to allow 

users to submit queries and receive results over a network using a platform-independent 

standardized protocol. It is thus possible to submit queries to Google, for example, and 

receive responses in a way that bypasses the HTML-based web site itself. Examples of 

web service protocols include REST, SOAP, BEEP and many others. 

In theory, web services make it possible for applications to access a site’s content 

without being disturbed by cosmetic or structural changes to the site. In practice, 

however, web sites can and do discontinue web services or change protocols, as happened 

in December 2006 when Google deprecated its SOAP API in favour of an AJAX API. 

Nonetheless, web services in general offer a much easier, more consistent and more 

reliable way of accessing data on the Internet compared to screen scraping. Web sites 

often improve convenience by providing simple APIs for accessing their web services, 

and often make available free corresponding code libraries for major programming 

languages such as Java or C++. 
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5.2.2 Search engines 

Web search engines are some of the most powerful tools that can be taken advantage 

of using web services. Different search engines use a variety of algorithms to search the 

web, ranging from a significant amount of manual human editorial input to fully 

automated web crawlers. The most famous algorithm is arguably Google’s
124

 PageRank 

(Brin and Lawrence 1998), which causes sites crawled by the Goobglebot web crawler to 

be favoured in search result rankings based on how many other sites link to them. Google 

also uses many other criteria to generate results, including machine learning. Google’s 

predecessor as the most popular search engine, Yahoo!,
125

 began essentially as a set of 

bookmarks organized into a hierarchical set of categories, but grew to first use Google 

results and then its own web crawling-based search engine. Yahoo! has the advantage of 

offering a specialized music service.
126

 

Although there are many good quality search engines, Google and Yahoo! have the 

special advantages of being particularly popular and of offering extensive web services. 

They are therefore the services emphasized by jWebMiner. Yahoo! offers ―REST-like‖ 

web services, for which a simple overview has been written by Wenz (2007). The Google 

web services used by jWebMiner are based on the SOAP API, and are well documented 

by Calishain and Dornfest (2003). The SOAP API was used rather than its AJAX 

replacement because the AJAX API only returns HTML-formatted results which must 

then be scraped to be used in cultural feature extraction, a process that undermines one of 

the essential advantages of web services. 

5.2.3 Sources of community metadata 

The web as a whole provides a rich source of community metadata that has been 

taken advantage of as a whole by a number of researchers. However, as can be seen in 

Section 5.3, other researchers have largely chosen to pay particular attention to particular 

sites in an attempt to improve musical relevancy of results. Although there are far too 

many sites to cover with any completeness here, some key sites are briefly reviewed 
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 www.google.com 
125

 www.yahoo.com 
126

 music.yahoo.com 
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below. In general, the following categories of cultural information can be particularly 

helpful: 

 Data from social networking web sites and music recommendation systems 

 Traffic and individual usage data from peer-to-peer systems 

 Published listener or radio playlists and compilation album track listings 

 Interviews with musicians and composers 

 The writings of musicologists, critics and bloggers 

 Surveys and other methodological listener studies 

 Sales, marketing and other industry data such as Billboard listings or results of 

awards shows 

Last.FM
127

 has received extensive attention from the MIR community, particularly 

since it began providing free access to its data via the Audioscrobbler
128

 web services 

portal. Last.FM is an Internet radio station that uses the Audioscrobbler music 

recommendation system to recommend artists to users based on a collaborative filtering 

algorithm (see Section 5.2.4). A great deal of useful information can be freely accessed 

via Audioscrobbler’s web services, including information such as artists and tracks 

preferred by particular users, metadata tags entered by users, similarity data for each artist 

amalgamated from many users, and much more. 

There are a great many other existing commercial music recommendation systems 

that can potentially yield useful cultural features. Pandora is worth particular mention 

here because of its popularity.
129

 Like Last.FM, Pandora couples an Internet radio station 

with music recommendation. However, Pandora bases recommendations primarily on 

expert-entered descriptive musical ―attributes‖ (e.g., syncopation, key tonality, etc.) rather 

than Audioscrobbler’s collaborative filtering. Unfortunately, Pandora is not available 

outside the U.S.A., and it does not offer free web services. 

                                                 
127

 www.last.fm 
128

 www.audioscrobbler.net 
129

 www.pandora.com 
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The AllMusic
130

 site offers an invaluable source of musical data. It contains 

information on an essentially comprehensive list of music and artists, including extensive 

formatted metadata (including MIR-relevant fields such as genre, mood, style, themes, 

influences and similar artists and albums) as well as reviews and artist biographies. All 

information is entered by professional reviewers and editors. The key disadvantage of the 

site is that it does not offer free web services, which means that data must be either 

manually collected or scraped. 

MusicBrainz
131

 is a free audio fingerprinting (song identification) site that allows 

fingerprinting to be performed and metadata to be accessed via web services. Art of the 

Mix
132

 publishes user playlists. freeDB
133

 also allows information such as track listings or 

music tags to be downloaded. Gracenote
134

 is a commercial site that maintains track 

listings of CDs including commercial CDs.  

Established music blog sites, such as Pitchfork
135

 or The Hype Machine,
136

 are 

another useful source of community metadata, although they have a tendency to 

emphasize new music over older music. Social networking sites such as MOG
137

 can also 

be rich sources of information. Unfortunately, such sites usually do not offer web services 

and often require logins. Information can sometimes be extracted from them indirectly 

using search engines, however.  

Some general sites can also provide musical information that is particularly useful. 

Amazon,
138

 for examples, allows data on purchasing patterns to be accessed via web 

services. Wikipedia
139

 or Citizendium
140

 can also be useful when queried with artist 

names, for example, although they do not yet offer web services. 
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 www.allmusic com 
131

 musicbrainz.org 
132

 artofthemix.org 
133

 www.freedb.org 
134

 www.gracenote.com 
135

 www.pitchforkmedia.com 
136

 hypem.com 
137
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5.2.4 Collaborative filtering and co-occurrence analysis 

Collaborative filtering is one common way of extracting information from community 

metadata, and is generally related to recommendation-based applications. Collaborative 

filtering involves drawing links between entities, such as CDs or books, based on the 

expressed shared interests of people who share similar taste profiles and preference 

behaviours. Vendors such as Amazon, for example, use collaborative filtering to 

recommend items to customers that many other customers who have purchased similar 

items in the past have also purchased. If, for example, Customer A has bought many 

Duke Ellington CDs, and many other customers who bought Duke Ellington CDs have 

also purchased Count Basie CDs, then Amazon would recommend Count Basie to 

Customer A. There is a large body of existing research on collaborative filtering (e.g., 

Shardanand and Maes 1995; Herlocker, Konstan and Riedl 2000; Herlocker et al. 2004). 

Although collaborative filtering can certainly be useful for research areas such as 

musical similarity analysis and music recommendation, it suffers from a number of well-

known weaknesses: 

 A very large user group is needed in order for results to be meaningful. 

 Items that have not been purchased by many other users are often ignored by 

collaborative filtering in favour of more popular choices. This is particularly 

problematic, as discovery of unknown music is a key aim of areas such as music 

recommendation, and recommending music to a user that is so well known that 

s/he is already aware of it is not useful. It can be especially difficult for new items 

not supported by strong external publicity campaigns to reach significant mass in 

the filtering mechanism to be recommended to users by the system. This is known 

as the cold start problem. 

 Even when techniques are implemented to attempt to counteract popularity biases, 

potentially significant bootstrapping time is still needed for new items to gain 

sufficient mass to be recommended via collaborative filtering.  

 Individuals who purchase items as gifts for others can introduce significant noise.  
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 There is a bias against eclectic taste profiles and algorithms tend to have difficulty 

escaping from preference clusters once they are established. Such problems are 

well documented by Epstein (1996), among others. 

Co-occurrence analysis offers a useful alternative. Co-occurrence analysis is based on 

the idea that if two items appear in the same context, such as a web page or a music 

playlist, then there is likely some relatedness or similarity between them. In essence, 

collaborative filtering can be viewed as a special case of co-occurrence analysis. There 

has been a significant amount of research in linguistics indicating that similarity 

measurements based on co-occurrence analysis are cognitively reasonable (e.g., Schütze 

1992; Lowe and McDonald 2000).  

For the sake of clarity, the term co-occurrence will be used here to refer specifically 

to the occurrence of two strings from the same set of strings in the same document (e.g., 

web page). Cross tabulation will be used here to refer specifically to the occurrence of 

two strings from different sets of strings on the same document. For example, examining 

how often different artists co-occur on the same document would correspond to co-

occurrence, and measuring how often artist names co-occur with genre names would 

correspond to cross tabulation. Although generally speaking co-occurrence in fact refers 

to either of these two scenarios, this special distinction is made here for the sake of 

clarity. 

As found experimentally by Aucouturier and Pachet (2003), co-occurrence analysis 

tends to generate meaningful clusters of similar entities. In the case of music, they found 

that these clusters tend to be based in general on thematic, genre and period relationships, 

although relationships can also be more ―metaphorical.‖ The vague nature of the clusters 

is both a disadvantage and a benefit from the perspective of MIR applications, in the 

sense that they are poorly suited for precise classification, but can be interesting for music 

discovery. It should be noted that Aucouturier and Pachet did not perform cross tabulation 

experiments with artist names and genre names, for example, and such an approach is 

likely better suited for direct classification, as was found in a number of the research 

projects discussed in Section 5.3. 

With respect to the web, one way of using co-occurrence analysis is to measure how 

often or in which ways certain terms co-occur on the same web pages or web sites, 
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usually based on search engine hit counts. This is the essence of the approach used by 

jWebMiner. The fundamental assumption here is that there is a sufficient amount of 

expertise embedded in the web to overwhelm erroneous or misleading information that is 

also present. As will be presented throughout this chapter, there are a number of ways of 

helping to improve the relevancy and correctness of the data accessed by features that are 

extracted using co-occurrence analysis. In particular, co-occurrence analysis algorithms 

based on web search engine hit counts should consider and correct for the following 

sources of noise: 

 Synonyms can be problematic. For example, if one is extracting hit counts for the 

funk musician George Clinton, one would like to ensure that hits do not instead 

refer to the former U.S. Vice-President. Fortunately, such noise can at least be 

mitigated by requiring that filter words such as music also be present to help hit 

counts bias towards relevant hits. 

 Misspellings or variations of a string (e.g., Mister Mister compared to Mr. Mister) 

in web pages or queries can artificially reduce counts. Search engines such as 

Google can account for such problems to some extent, but cannot always be relied 

upon. 

 Strings consisting of multiple tokens may be present on a web page in various 

orders or subsets (e.g., Buddy Guy vs. Guy, Buddy vs. Guy vs. Buddy). Services 

such as Google are once again good at dealing with varying token orderings, but 

do not account for subsets unless they use OR-based searches that can introduce 

more distortion than they prevent (e.g., both the queries Buddy and Guy would 

result in many hits unrelated to the artist Buddy Guy). 

 It can be difficult to ensure relevancy of hits. There is no guarantee that hits found 

on the same document indicate relatedness in the way that a researcher is looking 

for. For example, several years ago searches for Chistina Aguilera and Eminem 

would have resulted in a very high co-occurrence because of a feud between the 

two. This would have therefore resulted in a misleadingly high musical similarity 

measure. 



 251 

 True private behaviour might not correspond to public behaviour. An individual 

might like listening to Paris Hilton, for example, but might be embarrassed by 

this, and would not publicize it on his or her blog or published playlists. 

 Negative meanings can be deceptive. If attempting to classify songs by mood, for 

example, the song Gloomy Sunday might be referred to as not happy on a web 

site, but a naïve feature extractor might mark this as a co-occurrence between 

Gloomy Sunday and happy.  

In general, the huge amount of information available on the web does help to smooth 

out erroneous hits, particularly when counts are extracted using well-crafted filtering and 

other techniques described in the following sections. Nonetheless, the precision and, in 

some limited but significant cases, the accuracy of hit counts can be limited, so features 

extracted using co-occurrence analysis should be treated as only approximations, albeit 

potentially very useful approximations.  

As a final note, query complexity must be considered when choosing a co-occurrence 

analysis algorithm. Algorithms designed to counteract popularity biases (due to there 

being many more web pages on Rihanna than the Zoobombs, for example) that have 

exponential search complexities of O(n
2
), or worse, will not scale to realistic large-scale 

applications, particularly since many web services can consume several seconds per 

query, and there are often limits on daily usage. 

5.2.5 More sophisticated text processing techniques 

There is a significant body of research available on more sophisticated ways of 

mining information from text data that is far too large to cite with any completeness here. 

That being said, some of this work has been used in previous MIR research (see Section 

5.3), and it could certainly be useful in future research. Of particular interest is work such 

as Brill’s (1992) on classifying words into nouns, verbs, pronouns, adverbs, etc., or the 

work of Evans and Zhai (1996) and Evans and Klavans (2000) in extracting ―noun 

phrases‖ from text documents. A noun phrase is essentially a noun packaged with 

descriptive text surrounding it. Noun phrases are extracted using pieces of software called 

NP chunkers, and can be very useful in extracting units of meaningful data from streams 

of text. A particularly useful and simple technique for the purpose of this and other text-
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processing tasks is to pre-process text by breaking it into n-grams, which are sequences of 

ordered words each consisting of n words. 

5.3 Previous music information retrieval research 

To the best of the author’s knowledge there is no MIR research software other than 

jWebMiner that has been specifically designed for general-purpose cultural feature 

extraction and collaborative development and expansion by the MIR community. There 

are, however, a number of relevant publications related to using community metadata in 

specific MIR research areas such as playlist generation and music recommendation. This 

section describes some key examples, with an emphasis on surveying the variety of 

approaches that have been used to attempt to counterbalance problems such as popularity 

bias. 

The earliest MIR research in automatically extracting information from community 

metadata focused on collaborative filtering (e.g., Cohen and Fan 2000; French and 

Hauver 2001; Pestoni et al. 2001). Pachet and his colleagues (2001) built upon this by 

utilizing co-occurrence and correlation techniques applied to radio playlists and 

compilation CD databases for the purpose of artist and song title classification. They 

calculated a normalized co-occurrence, Coocnorm, as follows: 
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where a and b indicate two different song titles and C is the number of documents that 

contain the indicated title(s). A similarity distance between titles, S1, was defined as: 

),(1),(1 baCoocbaS norm        (5.2) 

A more sophisticated similarity measurement, S2', was also used that takes indirect 

links into account (i.e., if Stevie Ray Vaughan co-occurs with Eric Clapton and Eric 

Clapton co-occurs with Robert Johnson, then this could indicate a link between Stevie 

Ray Vaughan and Robert Johnson): 
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where the covariance, Cov, is defined as: 
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E is the mathematical expectation and μi is the expected value of a or b. The distance 

between a and b, S2, was then calculated as: 

  2/),('11),( 22 baSbaS         (5.5) 

Whitman and Lawrence (2002) were among the first to use more sophisticated text 

processing techniques. They based their work upon a seed list of artist names and mined 

manually entered similarity data from AllMusic. They also queried search engines using 

the name of each artist and the filter terms music and review. The top 50 pages were then 

downloaded (the assumption being that the first pages returned are the most relevant.), 

and text was extracted from them and divided into noun phrase n-grams surrounding artist 

names. Statistical features were then calculated based on how often various terms 

occurred in relation to each artist, and artist similarity was measured based on the overlap 

of term frequencies (after various types of pre-processing). 

Whitman and Lawrence also applied a collaborative filtering approach to peer-to-peer 

data available at the time. The following similarity measure, S3, is an attempt to 

counteract the preference for well-known artists endemic to collaborative filtering 

approaches: 
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Here a and b each indicate two different artists, c is the most popular of all artists in the 

set of all artists under consideration, S indicates their similarity score and C indicates the 

number of peer-to-peer users that have the indicated artist(s) in their set. The second term 

is a popularity cost that decreases the similarity measure if one artist is much more 

popular than the other. 

Whitman and Smaragdis (2002) combined a variant of this work with audio features 

to arrive at an impressive combined success rate of 100% when classifying among five 

musical genres. They also proposed as future research the intriguing idea of using a 

culture ratio to measure the relative effectiveness of cultural features relative to audio 

features for dealing with particular classes. This could then be used to differentially 

weight cultural and audio features in different classification scenarios. 

Baumann, Klüter and Norlien (2002) also combined audio and community metadata, 

but with an emphasis on retrieving music using natural language queries. Labelling for 
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audio segments was acquired from Gracenote, freeDB and the ID3 tags of MP3 files, an 

approach that can unfortunately produce very noisy and unreliable results. This 

publication also includes some very interesting work on lyric analysis and natural 

language processing in general. 

Baumann and Hummel (2003) built on this work by applying it to the problem of 

artist recommendation. Like Whitman and Lawrence, they downloaded 50 web pages for 

each artist that they were studying and divided them into n-grams. They then weighted 

resulting terms using TFIDF weightings, which are based on the number of occurrences 

of each term in each set of 50 pages and the number of occurrences of the term in the 

pages downloaded for all artists as a whole. Unlike Whitman and Lawrence, they used a 

simple HTML-filtering stage to attempt to remove noise such as advertisements added to 

pages. They based their ground-truth evaluations on AllMusic and Yahoo! Launch.
141

 

Ellis and his colleagues (2002) approached community metadata as a source of 

ground-truth for evaluating audio-based classification, rather than as a source of features 

to be used in classification themselves. In addition to using the techniques used by 

Whitman and his colleagues discussed above, they also performed a web survey asking 

informants to evaluate the similarity between various artists in a number of ways. 

Zadel and Fujinaga (2004) made use of Amazon and Google web services to generate 

clusters of related artists. Amazon Listmania! Lists were traversed, starting from initial 

seed artists, to find potentially related artists. Google was then used to evaluate the co-

occurrence of pairs of artists on web pages. Relatedness, S4, was calculated as follows: 
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Here a and b each indicate two different artists and C indicates the number of web pages 

containing the indicated artist(s). 

Celma, Ramírez and Herrera (2005) proposed the alternative approach of extracting 

information from RSS feeds and FOAF documents.
142

 This approach combined 

information about personal characteristics of users with their explicit musical preferences, 

and made use of sources of information previously untapped by the MIR community. 

                                                 
141

 The precursor of Yahoo! Music. 
142

 www.foaf-project.org 
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Geleijnse and Korst (2006b) used Google to classify artists by genre and by mood 

using cross tabulation. The first method used was based on simple hit counts, with a 

correction for popularity bias based on pointwise mutual information theory (Manning 

and Schütze 1999). Each artist a, from the set of artists A, was assigned a score, T1, 

indicating its membership in class g according to the following equation: 
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where C indicates the number of web pages containing its parameters. 

Geleijnse and Korst also experimented with a ―pattern-based mapping‖ approach 

designed to help improve relevancy of hits. Instead of searching for artist a and class g 

when finding C(a,g), they searched for phrases (or ―patterns‖) such as a is one of the 

biggest g artists used in combination with phrases such as artists such as a or g artists 

such as. C(a,g) was thus recalculated as: 

C'(a,g) =  “number of occurrences of a when querying patterns containing g” + 

  “number of occurrences of g when querying patterns containing a” (5.9) 

Geleijnse and Korst have considered both manually formatted patterns and automatically 

generated patterns (2006a). This approach also relates to work done by others, such as 

that by Cimiano and Staab (2004). 

The third technique used by Geleijnse and Korst (―document-based mapping‖, similar 

to the work done on styles in the visual arts by Boer, Someren and Wielinga (2006)) was 

to download the first k web pages found by Google for artist a and then count the number 

of occurrences of each g in all of the downloaded pages (as opposed to the number of 

pages containing g, as was done in the first two techniques). The same was also done with 

the roles of a and g reversed. C(a,g) was then redefined as: 

C''(a,g) =  “number of occurrences of a in documents found with g” + 

  “number of occurrences of g in documents found with a”   (5.10) 

In order to improve results, Geleijnse and Korst posited that artists who belong to the 

same class are likely to be mentioned together on the same web pages more often than 

artists in different classes. A similarity rating for the artists a and b, S5, was then 

calculated: 
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where C(a,b) is the co-occurrence count of a and b on the same web page, A is the set of 

all artists studied and a,bA. This was implemented with both pattern-based and 

document-based mappings, as well as simple page-count mappings. T1 was then 

calculated only for those n artists with the highest S5 scores. 

Geleijnse and Korst also used various synonyms to improve results. They, for 

example, combined and normalized results for Indie, Alternative Rock and Alternative 

Rock/Indie. They also used the filter word music. In the end, they found that document-

based mapping approach was the best overall performer for both genre and mood 

classification. 

Schedl and his colleagues (2006) experimented with using Google to classify artists 

by genre using co-occurrence analysis with two different scoring metrics. They also 

compared the effectiveness of the following filter string combinations: music, music + 

genre, music + style and music + genre + style. The two metrics used to measure an artists 

a’s membership in a genre g, T2 and T3, were: 
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where C indicates the number of web pages containing both a and g, just g or just a, as 

indicated. Schedl and his colleagues found that T2 worked better with broad genre classes 

and T3 worked better with narrower classes. 

This work was based on previous work by varied subsets of the authors. Schedl, 

Knees and Widmer (2005a) used Google page counts to measure how often different 

artist names were mentioned on the same web pages, and then used this to construct an 

asymmetric artist similarity matrix. This was used to classify artists by genre based on k-

nearest neighbour similarity to artists with known genres. The filter words music and 

review were used, and results were combined with different results where both artist 

names had to occur specifically in the title of a page for it to be counted as a hit.  
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Schedl, Knees and Widmer (2005b) used a similar technique to visualize artist 

similarities using genre prototypes as reference points. They later added a penalization 

function to counteract distortion due to bands whose names equal common speech words, 

such as Kiss (2006). Geleijnse and Korst (2007) have also developed an algorithm for 

dealing with such ambiguous artist names, by using the Google define: function to 

approximate the number of other definitions corresponding to an artist name, and using 

this to approximate the probability that a hit corresponds to the actual artist. Schedl et al. 

(2007) also used named entity detection and rule-based linguistic analysis to extract band 

members and instrumentations from the web. 

In an earlier and somewhat different work, Knees, Pampalk and Widmer (2004) 

investigated genre classification and artist similarity measurement using a machine 

learning approach. They queried both Google and Yahoo! using artist names and a variety 

of filter words (combinations of music, review, genre and style) and downloaded the top 

50 pages from each search engine. HTML tags and English stop words (e.g., a, and, or, 

the, etc.) were then removed. The number of occurrences of each artist, each unique 

―term‖ (word) and each term cross referenced with artists on the same page as the term 

were all counted. In order to reduce the thousands of resulting terms, all terms that did not 

occur in at least five of the downloaded pages and that did not pass a 
2
 test were deleted. 

The result was a normalized vector of artist term weights, which was then fed to a support 

vector machine classifier to classify based on genre, to a k-nearest neighbour classifier to 

evaluate similarity and to self-organizing maps to visualize the artist space. Experimental 

results indicated that daily Internet fluctuations did not significantly impact results, that 

Google outperformed Yahoo!, and that the combination of the filter words music and 

review outperformed other filter word sets.  

A related approach was also used, combined with audio features, to provide an 

interface for visually mapping music collections (Knees et al. 2006). These techniques 

were further developed into an additional interface for browsing music spaces (Pohle et 

al. 2007b) based on a technique where non-negative matrix factorisation was used to 

relate artists to archetypical bases (Pohle et al. 2007a).  

Bergstra, Lacoste and Eck (2006) emphasized machine learning applied to extracting 

information from community metadata. They mined data from the freeDB database in 
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order to correlate it with AllMusic data for the purpose of classifying music by genre. 

Neural networks were used to predict ―canonical‖ AllMusic genre labels from uncurated 

FreeDB genre labels. 

Pampalk and Goto (2007) built an artist recommendation visual interface based on 

community metadata extracted from the web. Google was used to search the web based 

on artist names in a way similar to that used by Whitman and Lawrence (2002). Pampalk 

and Goto, however, parsed the resulting web pages based on four different vocabularies: 

genres/styles, instruments/types, moods/adjectives and countries/regions. Words were 

selected to summarize each artist by selecting words that both occurred frequently and 

were statistically well suited to distinguishing sets of artists from other sets of artists. 

Similarity calculations were based on both such community metadata as well as audio 

features. 

There has been a recent research trend towards using tags that have been assigned by 

users to artists or recordings, particularly since sites such as Last.FM have begun to make 

such tags available via web services. Geleijnse, Schedl and Knees (2007), for example, 

found experimentally that tag-based genre classification performed comparably with 

search-engine based classifications of types listed above, and found it to hold significant 

potential for other tasks. They also proposed a normalization method to remove 

meaningless tags. Eck, Bertin-Mahieux and Lamere (2007) have proposed the novel idea 

of using supervised learning on audio features to auto-tag music, or improve existing tags, 

and then use these tags for other classification tasks. 

5.4 jWebMiner’s functionality 

5.4.1 Fundamental functionality 

At its most basic level, jWebMiner operates by accessing Google and/or Yahoo! via 

web services to acquire hit counts indicating the number of pages containing one or more 

search strings. These hit counts are then processed using a choice of user-selectable 

scoring metrics in order to generate the feature values output by jWebMiner.  

jWebMiner allows two fundamental types of feature extractions to be performed: co-

occurrence and cross tabulation. As discussed in Section 5.2.4, the term co-occurrence 

analysis is used here to refer specifically to the occurrence of two strings from the same 
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set of strings on the same web page, and cross tabulation analysis is used to refer 

specifically to the occurrence of two strings from different sets of strings on the same 

page. So, for example, examining how often different artists co-occur on the same page 

would correspond to co-occurrence, and measuring how often artist names co-occur with 

genre names would correspond to cross tabulation. In general, co-occurrence analysis is 

useful for similarity tasks and cross tabulation analysis is useful for classification tasks, 

although queries can certainly be formulated for different purposes. 

Research has indicated (e.g., Geleijnse and Korst 2006b; Schedl et al. 2006) that the 

best choice of procedures for obtaining and processing hit counts can vary. One must 

consider not only the accuracy of an approach, but also its search complexity, as web 

services are sometimes slow and typically impose daily limits on queries. jWebMiner 

therefore allows users to choose among a variety of approaches for formulating queries 

and generating features from their results, as described in the following sections. 

jWebMiner has also been designed to be as flexible as possible so that it can be used 

for as a wide variety of MIR applications as possible. In fact, although it certainly was 

designed with the particular needs of the MIR community in mind, there is nothing about 

it that limits its use to music research, as arbitrary search strings may be used. 

5.4.2 Web services utilized 

The user may choose to use either one or multiple web services to generate features. 

jWebMiner comes packaged with functionality for accessing either Google or Yahoo!. 

Although in theory one might imagine that the two search engines would give similar 

results, informal experimentation has shown that they can often generate significantly 

different hit count ratios.  

It should be noted that, while jWebMiner comes hard coded with a Yahoo! 

Application Key, users must enter their own Google License Key in order to access 

Google services. This is because Yahoo!’s usage limit of 5000 queries per day is applied 

per IP address, whereas Google’s limit of 1000 queries per day is applied per key, 

regardless of IP address. 

Users also have the option of adding additional web services if they wish, and 

jWebMiner’s architecture has been designed specifically to make this a simple matter to 
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implement. As discussed in Section 5.7, adding web services is a particular emphasis for 

future work. 

One problem with dependence on web services is that they sometimes fail to respond 

to some queries, or sometimes temporarily go off-line entirely. jWebMiner therefore 

includes automatic cyclic time out and retry algorithms to account for such service 

discrepancies. Users are also automatically asked how they would like to proceed if 

certain queries or services repeatedly continue to fail over an extended period of time. A 

two-tiered progress bar is also provided that includes estimates of extraction time based 

on past and current response times of web services. 

5.4.3 Features extracted and statistical processing 

In the case of co-occurrence feature extractions, jWebMiner gives the user the choice 

of using either Equation 5.6 or 5.11 to generate similarity scores for pairs of strings. In 

the case of cross tabulation extractions, Equations 5.8, 5.12 or 5.13 may be used, as well 

as this original scoring metric, T4, which is a variation of Equation 5.8: 
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Here C indicates the number of web pages containing its parameter strings, a is a string 

from the first set of queries and g is a string (usually a class name) from the second set of 

queries, G. 

Users also have the choice of normalizing the resulting scores in several ways: 

 Normalize across web services: If multiple web services are used (e.g., both 

Yahoo! and Google), the hit counts of each can be balanced so that services that 

produce fewer hits overall are not underweighted in the final scores. 

 Normalize across web sites: As discussed in Section 5.4.6, a user may choose to 

specify specific web sites to search, as well as or in addition to the web as a 

whole. This option causes the number of hits returned by each specified source to 

be scaled so that it is not underweighted compared to other sources that generate 

more hits overall. This is separate from and does not affect manual source weights 

that the user can specify, as discussed in Section 5.4.6. 
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 Normalize feature settings: Final feature scores may be normalized to fall 

between 0 and 1, either over all classes per instance or over the whole data set. 

The similarity scores output after all processing are the features output by jWebMiner. 

These may either be used directly as similarity metrics or class membership metrics, or 

they may be fed to machine learning systems such as ACE to generate more sophisticated 

mappings.  

5.4.4 Synonyms 

jWebMiner allows users to define synonyms between different search strings so that 

their hit counts will be combined during feature value calculations. For example, the 

genre class names R and B and RnB might be usefully combined. Synonyms can be 

important in avoiding falsely diminished hit counts for some entities because some web 

pages only refer to the entity in question using a word of equivalent meaning. 

5.4.5 Filter strings 

As discussed in Sections 5.2 and 5.3, one problem with algorithms based on co-

occurrence analysis is that there is the danger of hit counts being biased by hits 

corresponding to non-relevant content. Simple searches on the band The Doors, for 

example, might be inflated by hits on carpentry or construction sites. Filter strings offer 

one way of reducing the effects of this kind of problem. 

Required filter strings are the first kind of filter allowed by jWebMiner. These are 

strings that must be present on all web sites in addition to each specified query string or 

strings in order to be included in hit counts. The word music, for example, is one way of 

helping to ensure that counted hits are relevant to music. Other words, such as review, can 

perhaps increase the reliability and pertinence of counted hits. 

Excluded filter strings, in contrast, indicate strings that, if found on a web page, will 

disqualify that page from appearing in hit counts. These are useful for eliminating non-

relevant hits. For example, one might wish to exclude sites containing the words paradise 

or zen in order to avoid false hits relating to the band Nirvana. 

Users have the option of using pattern-based required filter strings if they wish, as an 

alternative to simple filter strings. Pattern-based strings allow users to specify phrases that 

contain wildcards that will change on each query based on the particular search strings 
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submitted for that query. So, for example, if one is classifying songs based on the albums 

that they appear on, one might use a pattern-based filter such as <song> is on the 

<album> album where the <song> and <album> variables will be replaced be each song 

and album title in the set of strings for which features are being extracted.  

Although they can be powerful tools, one must be careful when choosing filter strings 

in order to avoid biasing hit counts. One must carefully strike a balance between 

eliminating irrelevant hits and including as many relevant hits as possible. Too many 

filter words or filter words that are too limiting or biasing can have a negative impact on 

feature values. 

5.4.6 Source selections and weightings 

jWebMiner’s default setting is to obtain hit counts for the web as a whole. However, 

users also have the option of specifying specific sites, such as AllMusic, to be searched 

separately so that hit counts will be collected for pages on those sites exclusively. This is 

a useful way of emphasizing sites known to be relevant and reliable in hit counts. 

Multiple sites may be specified, and individual hit counts will be collected for them 

exclusively or in addition to results from the web as a whole. Users also have the option 

of applying varying weights to each source if they consider some sources to be more 

trustworthy than others. 

5.4.7 Other configurable options 

There are a variety of other options that influence the hit counts that feature values are 

based on: 

  Treat strings literally: Whether all search queries should be literal searches 

(e.g., for the query heavy metal, sites must have the two words adjacent if they are 

to be considered a hit if the search is literal).  

 Perform search as OR instead of AND: Whether pages need only contain at 

least one of the specified query words in order to result in a hit, or whether they 

must all be present.  
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 Include non-matching similar hits: Whether results returned by search queries 

may include hits that do not contain one or more of the specified query words but 

do contain terms very similar to them (e.g., alternative spellings).  

 Suppress similar hits: Whether to suppress similar hits when reporting results. 

Similar in this context means either sites with identical titles and/or descriptions, 

or multiple hits from the same host.  

 Suppress adult content: Whether to suppress hits that are classified as containing 

adult content by the search service in question. 

 Limit to language: Sets the name of a language that pages must be in in order to 

be counted as hits.  

 Limit to country: Sets the country that pages must be hosted in in order to be 

counted as hits.  

 Search from region: Sets the name of a country where searches will be 

performed (e.g., Google Canada rather than Google France). Results are not 

necessarily limited to this country, however.  

 Limit to file type: Sets a file format (e.g., PDF, Word document, HTML page, 

etc.) that documents must be in order to be counted as hits. 

5.4.8 Input and output 

Users may manually enter any desired strings, and jWebMiner can also save and load 

settings for search strings, filters, source sites and weightings as delimited text files. In 

the case of search strings, jWebMiner can also parse strings from iTunes XML, ACE 

XML or Weka ARFF files. In the case of iTunes XML files, users can choose which field 

to parse strings from (e.g., song title, artist, genre, etc.) and jWebMiner will load all 

strings for that field for all recordings in the iTunes file, remove duplicate string values 

and sort them alphabetically. 

Feature values are tabulated and displayed to the user following extraction. 

jWebMiner can also present a range of additional information to users following feature 

extraction, including the precise queries submitted to each web service and the results of 
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all intermediate calculations. This information can be very helpful when debugging new 

functionality that is added to jWebMiner. 

The reports displayed by jWebMiner can be saved exactly as they appear in the GUI 

as HTML files to be easily read by humans. Final feature values can also be exported to 

ACE XML, Weka ARFF or delimited text files to facilitate post-processing by software 

such as ACE or Weka. 

5.5 jWebMiner’s interface 

Like all of the jMIR components, jWebMiner has been designed to be easily usable 

by researchers with a wide range of technical skills, from users who want to simply use it 

out of the box to extract cultural features to developers who wish to add functionality or 

modify the code to meet their own research needs. jWebMiner therefore includes a simple 

and intuitive GUI interface as well as modular and well documented code. An extensive 

HTML manual (Figure 5.1) is also provided that includes installation instructions, a 

tutorial, an interface reference guide, development instructions and general tips and 

pointers. 

The jWebMiner GUI is divided into six panels. The first, the Search Words Panel, 

allows users to specify whether they would like to perform co-occurrence or cross 

tabulation analyses. In the former case, users enter a set of search strings such as artist 

names on which to extract similarity scores (e.g., Figure 5.2). In the latter case, users 

enter two sets of search strings corresponding, for example, to artists that are to be 

classified by genre (e.g., Figure 5.3). Figure 5.2 also demonstrates how the 

<SYNONYM> keyword can be used to specify one or more synonyms if desired. 

As mentioned in Section 5.4.8, results are presented to the user in HTML formatted 

reports. Figure 5.4 shows sample results from the search words corresponding to Figure 

5.3. Full reports can include much more information beyond the final feature values 

shown here, depending on user settings. 

The Required Filter Words Panel and Excluded Filter Words Panel allow users to 

enter lists of filter words. Figure 5.5 shows the Required Filter Words Panel and 

demonstrates how keywords can be used to access pattern-based filters. 
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The Site Weightings Panel allows users to specify whether the entire available 

network and/or specific sites should be searched. As shown in Figure 5.6, the 

<WHOLE_NETWORK> keyword is used to refer to the overall results returned by web 

services, and additional individual sites can also be specified. The <WEIGHT> keyword 

allows different weights to be assigned to different sources when feature values are 

calculated. All entered weights are automatically normalized and scaled. Leaving this 

panel blank causes only the whole available network to be searched, and omitting the 

<WEIGHT> keyword results in equal weightings for all specified sources. 

The Options Panel (Figure 5.7) allows additional options to be selected. These 

include which web searches are to be used, special instructions to submit to search 

engines, details of the scoring functions used and what information is to be included in 

final reports. 

jWebMiner is also designed to encourage both experimentation with different 

extraction parameterizations and functionality expansion by the MIR community. It can 

be useful in both of these cases to see specific search results in addition to hit counts 

themselves. jWebMiner therefore includes a dialog box allowing users to perform test 

queries and see search results for different web services side by side (Figure 5.8). 

5.6 Summary of original contributions 

jWebMiner is, to the best of the author’s knowledge, the first and only out-of-the-box 

cultural feature extractor designed for general-purpose MIR research. It has the 

advantages of having a well-documented GUI interface that makes it accessible to 

researchers of all technical backgrounds. 

jWebMiner also offers the only polished and well-documented open-source MIR 

cultural feature extraction code base. The software is especially designed with an easily 

extensible architecture intended to encourage collaborative development within the MIR 

research community. jWebMiner also includes helpful debugging functionality. 
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Figure 5.1: jWebMiner’s HTML manual. This manual can be viewed either within the 

jWebMiner interface or via a web browsing application. 
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Figure 5.2: Query terms for a sample co-occurrence feature extraction that will measure 

the similarity between four musical artists. A synonym for Charles Mingus is included. 

 

 

Figure 5.3: Query terms for a sample cross tabulation feature extraction that will 

measure class membership of six artists in three musical genres. 
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Figure 5.4: Sample results from the queries from Figure 5.3. The values represent the 

normalized weighted relative frequencies with which each artist name appears on the 

same web page with each genre name. The highest value for each artist is automatically 

bolded. 

 

 

Figure 5.5: The jWebMiner Required Filter Words Panel with one pattern-based filter 

string and two basic filter strings designed for measuring performer / composer 

relationships. The <PRIMARY_SEARCH_STRING> and 

<SECONDARY_SEARCH_STRING> keywords are wildcards that will be replaced in 

queries by search strings from the Search Words Panel. 
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Figure 5.6: The jWebMiner Site Weightings Panel with both the whole network and 

specifically the AllMusic and Pitchfork web sites selected to be individually searched 

separately. The results from the whole network will be assigned 50% of the weighting on 

the hit counts used to calculate features, AllMusic will be assigned 30% and Pitchfork will 

be assigned 20%. 
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Figure 5.7: Additional ways of customizing jWebMiner feature extractions offered by the 

Options Panel. 
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Figure 5.8: The jWebMiner Network Search Dialog Box, which allows users to see 

results of test queries in addition to hit counts themselves. This is for the purposes of 

experimentation and debugging. A sample search for the artist Cormega is shown here. 
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5.7 Future research 

The flexibility of jWebMiner’s interface encourages experimentation with various 

techniques and feature extraction parameterizations. It is still poorly understood which 

ones work best in various different circumstances, so an important emphasis of future 

research will involve comparing the relative efficacy of various different filter strings, 

synonyms, site weightings, scoring metrics and other configurations for a variety of tasks. 

Even small changes to such settings have shown the potential to dramatically affect 

results during informal experiments, and methodical experimentation could provide 

useful guidelines for using jWebMiner and other cultural feature extractors. An important 

caveat, however, is that the web is changing constantly, as are the algorithms used by 

each search engine, so a configuration that is superior one month may be inferior the next. 

Another important priority is to design a simpler API for the jWebMiner code so that 

others can access it from their own software even more easily. Although jWebMiner is 

already open-source and was implemented using well-documented and modular code, the 

emphasis was on providing an effective GUI. It is hoped that an improved API will 

further encourage collaborative development of jWebMiner and of cultural feature 

extraction algorithms in general by the MIR community. 

There are a number of excellent web services that remain to be taken advantage of by 

jWebMiner, such as those offered by Last.FM and Amazon. Yahoo! Music also offers 

specialized functionality that remains to be exploited by jWebMiner. These services could 

be incorporated into jWebMiner’s existing search engine co-occurrence and cross 

tabulation framework, or they could be used to extract entirely different types of features. 

Building an API and GUI facilitating the development of specialized screen scrapers 

would also be a helpful addition, as there are a number of useful sites, such as AllMusic 

or Pandora, that do not make web services publicly available. 

There are also a number of techniques described in Sections 5.3 that have yet to be 

implemented in jWebMiner. Examples include using the define: Google keyword to gain 

information on query synonyms, limiting hits to sites that include query strings 

specifically in page titles, wildcard phrase-based searching (e.g., as done by Geleijnse and 

Korst (2006b)) and an expanded number of feature metrics. It would also be useful to take 

greater advantage of search engines’ spelling recommendation functionality to detect 
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misspelled queries. jWebMiner also currently considers only page counts, not the number 

of occurrences of terms on each page. More sophisticated natural language processing 

could also be incorporated into jWebMiner, such as n-gram analysis and per-page string 

proximity measures. Specialized features with a narrower focus also deserve study, and 

there are many sources of cultural information available that warrant targeted 

investigation, as seen in Section 5.2.3. 

Some important first steps have been taken on using text processing techniques to 

extract features from libretti / song lyrics, and there remains much to be done. Content 

(e.g., love, political messages, etc.), rhyming scheme, vocabulary, clichéd phrases, 

characteristic slang and other characteristics can all provide useful data. Although it is 

true, strictly speaking, that features extracted from lyrics are content-based rather than 

cultural, there are similarities in the text processing strategies that can be applied to both, 

and parallel research in the two areas could be mutually informative. 

Still and video images such as album art, band home pages, promotional photographs 

or music videos can also yield significant amounts of useful cultural features. Simply 

looking at how three musicians are dressed, for example, can make it immediately 

possible to identify which ones play rap, classical and metal, for example. Meaningful 

information can be extracted by looking at a performer’s appearance and actions on stage 

(facial expressions, ritual gestures, types of dancing, etc.) as well as from looking at an 

audience’s dress and behaviour (clapping, shouting, sitting quietly, dancing, etc.). 

Automatically extracting musically useful features from such images is an area which 

researchers have only begun to explore. 
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6. ACE: Applying machine learning to music 

6.1 Introduction to ACE and machine learning 

The previous three chapters introduced jAudio, jSymbolic and jWebMiner, three 

software applications designed to extract features from audio, symbolic and textual 

cultural musical data, respectively. The step that follows feature extraction in the 

automatic music classification workflow is to utilize methodologies that can 

automatically recognize patterns in feature values that are characteristic of the particular 

categories that one wishes to classify music into. This then makes it possible to have a 

computer use feature values extracted from music to automatically associate music with 

an appropriate category or categories. 

This mapping between feature values and categories is the purview of machine 

learning and pattern recognition, which utilize a range of techniques that often include 

algorithms that train themselves on feature values, a process that is at least somewhat 

analogous to how humans learn from exemplars. ACE (Autonomous Classification 

Engine) is the jMIR component that applies machine learning to feature values in order to 

automatically learn to associate them with particular categories. 

As discussed in Chapter 1, there are many important areas of MIR research in which 

automatic music classification plays an essential role, both academic and commercial. 

These include direct classification problems like genre, style, mood, composer or 

performer classification; similarity-related classification problems like music 

recommendation, playlist generation and hit prediction; and tasks associated with audio to 

symbolic transcription like onset detection, pitch tracking and instrument identification. 

Tools such as ACE can therefore have a very broad breadth of application in the MIR 

research community. 

6.1.1 Why use machine learning? 

Given that computers can process huge quantities of data much more quickly, cheaply 

and, potentially, consistently, than humans, it is clear that automatic music classification 

can have important advantages over manual human classification. However, it might be 

argued that it would be better to encode expert knowledge into music classification 
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systems rather than to use machine learning. For example, a genre classifier designed to 

identify Blues music might be explicitly programmed to look for a swung rhythm, 

predominance of pentatonic scales, a twelve bar blues chord progression, an AAB 

structure and so on when. So, why use machine learning instead of such an approach? 

Unfortunately, it can be very difficult to impossible in practice to manually encode 

such information into automatic classification systems in any kind of general sense. 

Musical classification problems often involve multiple competing and incompatible 

theoretical models. Even when there is general music theoretical agreement, the number 

of variables and considerations to be taken into account can have such a great scope that it 

can be very difficult to properly and sufficiently encode them into a heuristics-based 

classification system. In addition, expert humans can sometimes have unconscious biases 

associated with their individual theoretical predispositions, whereas data-driven machine 

learning is not biased by such potential prejudices.
143

  

Machine learning, in contrast, requires minimal or no explicit human specification of 

a problem, or even understanding of it. This is because machine learning operates 

empirically on statistical patterns in the data that is being learned rather than relying on 

pre-existing theoretical models and heuristics, although some algorithms do allow these to 

be incorporated as well. 

Machine learning-based music classification has the additional advantages that 

learned models can be automatically retrained when needed with minimal direct human 

involvement. This is also particularly advantageous when classifying music, which 

changes constantly. A genre classifier trained in the 1980’s could easily be retrained to 

recognize Grunge when it arose in the 1990’s, for example, just as a classifier trained in 

the early 1990’s could be retrained in the early 2000’s to recognize Emo. Music 

classifiers based on machine learning can thus not only process music much more quickly 

and cheaply than human classifiers, but can also be updated via retraining to keep abreast 

of the changing musical climate.  

                                                 
143

 The particular choice of features that are provided to machine learning algorithms can potentially 

introduce theoretical bias, however. If one assumes that only harmony and not rhythm, for example, is 

relevant to solving  a given classification problem, and as a result only extracts features related to harmony, 

then one is effectively introducing theoretical bias into the process by preventing the machine learning 

system from considering all potentially relevant information. 
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Yet another advantage of machine learning is that it can be taken advantage of by 

users to process types of music that they may know little about themselves. This can help 

facilitate large-scale global music processing systems that deal with a breadth of music 

that exceeds what any individual human could reasonably hope to become expert in. 

6.1.2 Overview of ACE and meta learning 

Machine learning and pattern recognition are subtle and sophisticated areas that re-

quire a high level of technical knowledge and experience in order to be exploited to their 

full potential. Choosing the best algorithm(s) to use for a particular application and 

effectively determining which values to use for the parameters of each algorithm are not 

tasks that can be optimally performed by researchers inexperienced in machine learning, 

and can be as much of an art as a science even for experienced experts. As a consequence, 

the unfortunate status quo in MIR research has often been to simply use only a few often 

arbitrarily chosen and parameterized classification algorithms, something that can result 

in significantly reduced performance. 

As noted above, ACE is the jMIR component that performs machine learning. It is 

designed to increase classification success rates not only for machine learning experts, but 

also for users with little or no background in machine learning. ACE can be used to train 

new classification models on labelled data, to use previously learned models to classify 

novel musical (or other) data and to automatically evaluate the suitability of different 

machine learning configurations for a particular classification problem. There are a 

variety of machine learning strategies that may be applied to any given problem, as noted 

in Section 6.2, and ACE not only allows users to choose manually between them, but also 

provides users with the option of having ACE automatically perform experiments to 

automatically find which strategy appears to most suitable for the given problem based on 

empirical evidence. 

This process of comparing and evaluating different machine learning algorithms with 

respect to a particular problem is the basis of a process called meta learning. Each 

machine learning algorithm has its own strengths and weaknesses, and a particular 

algorithm may be very well-suited to solving a certain classification problem, but less 

effective with respect to other problem domains. The experiment shown in Table 9.2, for 

example, as well as several of the other experiments described in Chapter 9, demonstrate 
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empirically how the best classification algorithm for a problem can depend on the 

particular problem. This issue is also discussed theoretically in Section 6.2. 

Not only can different algorithms vary in terms of classification accuracies, but they 

can also vary in consistency and in the time that it takes to train new models or to perform 

classifications. Another important difference is that some algorithms produce 

classification models that can be relatively easily examined and understood by humans 

once they have been learned, and other algorithms produce models that are essentially 

black boxes. 

Since an essential goal of jMIR in general and ACE in particular is to make effective 

machine learning accessible to users with potentially no background in it, it is desirable to 

automate the process of choosing the algorithm to apply to a particular classification 

problem. ACE, as noted above, therefore uses meta learning to automatically perform 

experiments on a given dataset and its associated categories using a variety of different 

machine learning algorithms and parameterizations in order to automatically determine 

which are better suited to the problem at hand. Each algorithm is evaluated in a variety of 

ways so that users may choose one (or more) that is appropriate for their particular needs. 

For example, one might find that a given algorithm classifies data with a slightly higher 

accuracy than a second algorithm on average, but might still choose the second algorithm 

because it is more consistent or performs classifications more quickly. 

It is important to reemphasize that meta learning, at least as it is implemented in ACE, 

is a purely empirical process, so users do not need any background whatsoever in 

machine learning in order to take advantage of it. This is essential in fulfilling jMIR’s 

goal of making powerful machine learning technology available to researchers in fields 

such as the humanities or the library sciences who have very valuable musical knowledge 

but less background in machine learning. Of course, it may be true in some cases that a 

pattern recognition expert could recommend a specialized solution to a given problem 

that is as good or better than one found experimentally by ACE. ACE is not intended to 

replace such experts, but rather to automatically provide good solutions relatively quickly 

and effortlessly to users with diverse skill levels. If a user has a particular reason for using 

a particular algorithm, then ACE will certainly allow them to use it. Having noted this, 

even those researchers with a great deal of experience in pattern recognition often resort 
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to experimentation in order to find good algorithms, and the meta learning approach used 

by ACE automates this process for them. 

 Of additional interest to expert users, ACE is utilizes the well-established Weka 

machine learning library (Witten and Frank 2005), which makes it relatively easy to 

develop new algorithms within the powerful Weka framework and then add them directly 

into the ACE meta learning framework. This also means that new algorithms 

implemented by the very active Weka community can be incorporated into ACE as they 

are released. Both ACE and Weka are implemented in Java, and both are entirely open-

source and freely distributed. 

Although ACE and the ACE XML file formats (see Chapter 7) are designed to meet 

the special needs of music, and include a number of important advantages with respect to 

music that are not available in alternative platforms such as Weka (see Section 6.3.2), 

there is nothing about ACE that prevents it from being applied to classification problems 

that do not involve music. ACE can in fact be used to apply meta learning to any 

application domain to which Weka could also be applied, and can read and write Weka’s 

native ARFF file format in addition to ACE XML. 

The original prototype version of ACE, ACE 1.0 (McKay and Fujinaga 2005a; 

McKay et al. 2005; McKay and Fujinaga 2007b), was originally developed in 2005, prior 

to the formulation of the jMIR project as an integrated whole. This version of ACE has 

since been used successfully in several experimental studies (Fiebrink, McKay and 

Fujinaga 2005; Sinyor et al. 2005; McKay and Fujinaga 2008). Although this original 

version 1.0 was found to be very effective, the need for improvements nonetheless 

became apparent, particularly with respect to the user interface and API structure. As a 

result, the improved ACE 2.0 (Thompson et al. 2009) is now available as an alpha 

release, although ACE 1.0 remains the stable release version at the time of this writing. 

However, given that much of ACE 2.0 is already complete, this chapter includes 

information relating to this updated version as well as ACE 1.0. The differences between 

the two versions are described in Section 6.6. 
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The ACE Java source code and associated bytecode are freely available at 

jmir.sourceforge.net/index_ACE.html. The distributions use and include the Xerces XML 

Parser
144

 and the Weka Data Mining Software,
145

 which are both also distributed for free.  

6.1.3 Chapter outline 

Although it is in no way necessary to have a background in machine learning in order 

to use ACE, a strong underlying understanding of machine learning is necessary to extend 

ACE, and it is of course always beneficial to have some such knowledge of machine 

learning if one is to apply it to problems. A relatively detailed background section on 

machine learning is therefore provided in Section 6.2. This includes a general overview of 

some of the fundamental procedures and problems of machine learning as well as a partial 

survey of some of the most commonly used machine learning algorithms, including those 

used by ACE. 

Although ACE is currently the only meta learning software system designed 

specifically for music information retrieval research, there are some excellent more 

general machine learning environments available, as well as musical systems that do not 

include meta learning. Section 6.3 briefly overviews several frameworks of both kinds. 

ACE itself is the subject of the remainder of this chapter. Section 6.4 describes the 

functionality offered by the software and itemizes the algorithms that it utilizes. The 

additional functionality that has and is currently being added to ACE as part of Version 

2.0 is described in Section 6.6, and Section 6.5 provides an overview of ACE’s user 

interfaces. Section 6.7 summarizes the original research contributions associated with the 

ACE component of jMIR, and Section 6.8 highlights long-term research goals. 

6.2 Overview of machine learning 

6.2.1 Fundamentals of machine learning 

Machine learning can be understood as referring to algorithms that allow computers 

to automatically construct abstract representations of problems by learning them from 

data of some kind. Machine learning can be used for many purposes, such as artificial 
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 xerces.apache.org 
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 www.cs.waikato.ac.nz/ml/weka/ 
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intelligence or general regression problems, but from the perspective of automatic music 

classification it is used to learn mappings from musical data that can be used to classify 

the music. The particular algorithms that learn classification mappings are referred to as 

classifiers or learners. 

The use of machine learning for the purpose of classification falls under the 

disciplinary umbrella of pattern recognition, or discriminant analysis, as statisticians 

refer to it. Data mining, or the application of machine learning to large data collections, is 

another strongly related discipline, although it is most often associated with a business 

context.  

The individual entities classified by classifiers are variously referred to in the 

literature as instances, data points, samples, observations, examples, exemplars or feature 

vectors. Instances are typically only samples drawn from a population. The classification 

of an instance by a classifier into a particular class, or set of classes, is called a prediction, 

classification or hypothesis.  

The categories that instances are classified into by classifiers are typically called 

classes. Abstract classes and the relationships between them can be organized into class 

ontologies.  

As noted above, the process of classification, or labelling of individual instances with 

class names, typically first requires the extraction of features from instances. Just to 

review for the purpose of completeness, features are pieces of descriptive information that 

can be extracted from each instance and then used by classifiers to associate each instance 

with appropriate class labels. Features are also sometimes referred to as attributes, inputs 

or variables, and sets of features extracted from individual instances are sometimes 

referred to as patterns or as the input representation. 

Features can be either numeric or nominal. Numeric features, also sometimes referred 

to as continuous, consist of numeric values such as integers or real numbers, and may 

thus have values corresponding to any one of the infinite number of numerical values 

available. Nominal features, also sometimes called categorical, must take one of a finite 

number of values, each of which is denoted with a name or symbol. Nominal features 

may be ordinal features, which is to say that they may be ranked but do not have precise 

inter-value distances (e.g., hot > warm > cold). Alternatively, some nominal features may 
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not have any notion of ordering, or they may be interval features, which means that inter-

value distances may be calculated more precisely. In practice, interval features are 

typically numeric rather than nominal, although this is not always the case. 

The process of learning classification mappings from a dataset is called training. This 

training process optimizes the parameters of the classifier’s internal representation of the 

mapping between feature values and class labels. Although the term model is sometimes 

used to refer to some particular classification algorithm (e.g., a multilayer perceptron
146

), 

it is more often used to refer to the particular mapping function learned by some given 

trained classifier. This latter use of the term model is the one that is used in this 

document. This learned model can be represented as:  

)|( xgy           (6.1) 

where y is the output class, x is the feature set and ө is the set of model parameters (e.g., 

the architecture and weights of a multilayer perceptron). Learned models can be viewed 

in a variety of ways, one of which is to express them as of sets of discriminants, which is 

to say functions or rules that separate instances of different classes based on their 

features. In practice, it can be very difficult to find models that perfectly map all instances 

to appropriate classes. Those instances that do not obey the rules of the model are referred 

to as outliers. 

A model may be predictive, which is to say that it can be used simply to predict 

unknown class labels from feature values, or it may be descriptive, meaning that it can be 

used to gain additional knowledge from the data, or both. The practice of acquiring 

simple rules from a model that explain the underlying nature and behaviour of the data is 

called knowledge extraction. 

The particular data that is used to train and test classifiers is referred to as the ground-

truth. This data is often labelled with model class labels that are assumed to be canonical. 

The choice of this data can have a very significant impact on the quality of the learned 

model, as will be discussed in the sub-sections below.  

It is now useful to provide a musical genre classification example with the goal of 

more fully clarifying the terms described above. One would begin by constructing a 

ground-truth data set consisting of musical recordings associated with genre class labels 
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 See Section 6.2.6. 
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that are assumed to be reliable. Each of these recordings could be seen as an instance or, 

alternatively, each recording could be divided into analysis windows and each such 

window could be seen as an instance. One would than extract features from each ground-

truth instance and give the features to the classifier to train on. The average tempo of a 

piece or the spectral flux of an analysis window are examples of possible features. The 

classifier would then generate a model by training on the features extracted from the 

ground-truth, and would then be able to use this model to predict the class labels of novel 

instances based on features extracted from them. 

Although machine learning and automatic classification are described in some depth 

in the following sub-sections, many additional details are available in the vast machine 

learning literature. To give just a few of the many available resources, the books of 

Bishop (2007), Alpaydin (2004), Duda, Hart and Stork’s (2001), Russell and Norvig’s 

(2002) and Mitchell (1997) are excellent places to start. Jain et al. (1999) and Briscoe and 

Caelli (1996) offer excellent reviews of some of the earlier machine learning algorithms, 

many of which are still very effective. Hastie, Tibshirani, and Friedman (2001) provide a 

very good statistical perspective on machine learning. 

Rowe’s book (2001) is a good resource for those wishing to apply algorithms 

associated with artificial intelligence to musical tasks. Although this book touches on the 

actual techniques in less detail and much less rigorously than some of the other resources 

mentioned above, it is a very good introduction to artificial intelligence from a musical 

perspective and provides some excellent insights on how music can be conceptualized 

and represented in ways that computers can deal with effectively. 

6.2.2 Automatic classification paradigms 

There are primary overall paradigms associated with automatic classification: expert 

systems, supervised learning and unsupervised learning. 

Expert systems use pre-defined heuristics to process features and arrive at class 

predictions. These heuristics are typically specified manually by humans based on pre-

existing knowledge about the problem domain and, as such, expert systems do not 

typically use machine learning. Expert systems can be very effective for simple, easily 

defined and well understood problems, and can result in very high classification success 

rates by taking advantage of facts that are known to be true. Machine learning is much 
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more suitable for more complex problems, however, since the manual formalization of 

many complex and interrelated heuristics can be very difficult and time consuming to 

implement properly. An additional major problem with expert systems is that models can 

be very difficult to modify so as to reflect changes in the problem domain. 

As discussed in Section 6.1.1, expert systems tend to be a poor choice for problems 

related to music, with the exception of a few limited and specialized applications. This is 

because of the sophistication of musical problems and because pre-existing theoretical 

knowledge of precise heuristics that can be formalized into discriminants is often too 

sparse, inconsistent and contradictory for expert systems to be viably applied. This is 

readily apparent when one considers the range of popular, art and folk musics of the 

world and the variety of theoretical frameworks or lack thereof relating to each corpus.  

These weaknesses of expert systems emphasize one of the key advantages of machine 

learning, which is the lack of a need to manually specify any details of the model to be 

learned or to have any a priori knowledge of the model at all.
147

 This is because the 

learning algorithms construct models automatically. This can be useful not only in 

performing actual instance classifications, but also with respect to analyses of the learned 

models themselves, which can offer useful practical and theoretical insights into a 

problem domain. 

Classifiers that utilize supervised learning attempt to formulate their own features to 

class mappings by using machine learning techniques to train on labelled ground-truth. 

Put more formally, they minimize the classification error by optimizing ө from Equation 

6.1 as they learn from labelled training instances. The key point here is that the ground-

truth instances are annotated with class labels, so that the supervised learning algorithms 

can learn by example. Once a model is learned, the classifier can use it to predict the class 

labels of unlabelled instances. 

Supervised learning can be very useful in classifying instances into the particular 

classes that are of interest to users, but for it to be useful users must know precisely which 

classes they are interested in. Users must also have labelled ground-truth, which can be 

expensive to acquire in large quantities.  
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 Although some pre-existing knowledge can sometimes be useful with respect to certain machine 

learning algorithms, it is certainly not necessary. 
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Unsupervised learning, in contrast, does not require training data that is annotated 

with canonical class labels. This is because unsupervised learning groups instances into 

groups, or clusters, based on similarities and differences purely in the feature data itself, 

without reference to any pre-defined class labels. In statistics, this finding of a structure in 

the input space is referred to as density estimation. 

Although each resulting instance cluster can certainly be interpreted as a class, there is 

no guarantee that these self-learned classes will be useful or meaningful with respect to 

specific problem domains. For example, unsupervised learning is arguably poorly suited 

to musical genre classification. This is because, even the clusters that are produced will 

likely legitimately indicate similarity on some level, this similarity will likely not be of 

the kind that causes the clusters to be associated with the particular genre labels that 

humans use. 

The main focus of this chapter is therefore on supervised rather than unsupervised 

learning, since supervised learning is typically much better suited to classification 

problems. This does not mean that unsupervised learning can never be useful with respect 

to music classification, however, as it can perform very well in classification problems 

where one is only interested in a few quite dissimilar classes. Unsupervised learning can 

also be very useful for problems where one is more interested in similarity in general than 

in pre-defined class groupings, such as automatic playlist generation or music 

recommendation. 

The example of an imagined musicological research project involving the attribution 

of a set of historical pieces whose composers are unknown can be used to illustrate the 

relative merits of the three pattern recognition paradigms described above. An expert 

system would be appropriate if the stylistic practices of each candidate composer are well 

understood and can be easily formalized into heuristics (e.g., Figure 6.1). A supervised 

learning approach would be suitable if one has a number of additional pieces known to be 

by each of the candidate composers, as these could be used to train the system so that it 

could learn to automatically recognize the characteristics of each composer (e.g., Figure 

6.2). Finally, an unsupervised approach would be suitable if one does not have a set of 

candidate composers, but would like to segment the music into groups that are likely to 

each correspond to a different composer (e.g., Figure 6.3). 
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Figure 6.1: Pseudocode for a simple expert system designed to distinguish between the 

music of Guillaume de Machaut and Giovanni Pierluigi da Palestrina. If a piece has 

neither parallel fifths nor Landini cadences, then the system concludes that it is by 

Palestrina. If there are either parallel fifths or Landini cadences, then the system 

concludes that the piece is by Machaut. In practice, of course, this heuristic is a 

dramatically oversimplified discriminator, and would likely perform quite poorly. 

if ( parallel_fifths == 0 && 

     landini_cadences == 0 ) 

 then composer → Palestrina 

else composer → Machaut 
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 Learning

Ockeghem

Josquin

Unknown (Ockeghem)

Unknown (Josquin)

 

Figure 6.2: An example of supervised learning. In this case, many features are projected 

into two dimensions so that they can be more easily displayed. The problem is to teach 

the system to distinguish between compositions by Johannes Ockeghem (triangles) and 

Josquin Desprez (squares). The system is first trained by providing it with labelled 

compositions that are known to be by each composer (the filled in triangles and 

squares). The system is then given six unlabelled compositions (the empty triangles and 

squares). Based on the examples that the system was trained on, the system identifies 

three compositions as being by Ockeghem and three as being by Josquin. Note that, 

unlike the expert system in Figure 6.1, it is not necessary to explicitly specify any of the 

characteristics of the composers themselves when training the system, since the system 

learns these characteristics directly from the training examples. 
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Unsupervised

Learning
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Composer 2

Composer 3

Composer 4

 

Figure 6.3: An example of unsupervised learning. As in Figure 6.2, many features are 

projected into two dimensions so that they can be more easily displayed. The problem is 

to teach the system to separate a body of sixteen anonymous pieces for which one has 

no reliable information at all about attribution. This means that supervised learning is not 

an option, because no labelled training samples are available. The unsupervised 

learning algorithm examines the sixteen pieces and separates them into four groups 

based on their relative differences and similarities, with each group hopefully 

corresponding to a different composer. 

As a side note, there is another large class of machine learning called reinforcement 

learning that is used when one needs to assess the goodness of a sequence of actions. A 

single action is not necessarily important in itself, but a sequence of actions such as a 

sequence of moves in a chess game is. The reinforcement learning research community is 

largely distinct from the automatic classification community, and reinforcement learning 

problems are typically formulated in terms of an agent moving through an environment 

and learning a policy of actions to take as it goes that maximizes its reward. Having noted 

this, reinforcement learning could potentially be applied to certain sequential musical 

problems, such as automatic harmonic analysis of chord progressions. Reinforcement 
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learning is not appropriate for most supervised learning oriented problems such as genre 

classification, however. 

6.2.3 Classification error and common difficulties that must be overcome 

The classification models that classifiers build during training are often imperfect, and 

will not necessarily correctly predict the classes of all of the instances that they are used 

to classify. This can be true not only of instances not included in the training set, but even 

of instances that are in fact in the training data. The proportion of the training instances 

that are incorrectly classified after a given training iteration is referred to as the empirical 

error, and this is what is typically minimized as training proceeds. The empirical error 

will ideally be zero after training is complete, although this will not always be the case. A 

particular classification algorithm may simply be inherently unable to correctly model a 

particular problem, or it may get caught in a local rather than global minimum in the error 

space even if it could theoretically model a correct mapping. 

Underfitting is one of the important problems that one must account for in automatic 

classification. Underfitting occurs when the mapping function underlying the model is 

insufficiently complex compared to the function underlying the data. For example, a 

classifier that uses only linear discriminants will be unable to correctly model a problem 

where the discriminants are actually higher order. A non-zero empirical error after 

training is complete can be one indication of underfitting, although a zero empirical error 

is not necessarily sufficient proof that underfitting has been avoided. 

Another important problem is related to the fact that training instances are typically 

only a sample drawn from a much larger population, and one wishes not only to train a 

model that performs well on the training data, but one that will perform well on any 

instance in the population. Generalization refers to the ability of a trained model to 

classify instances not in the training set, something that is of essential importance. A 

measure of generalization can be found by calculating the generalization error, which 

reflects the classification performance on instances in some validation set (also 

sometimes called a test set) that contains instances not in the training set. Evaluation 

methodologies for helping to ensure generalization are discussed in Section 6.2.4. 

Overfitting is a problem associated with insufficient generalization. The risk of 

overfitting is increased when an overly complex model is used, such as one with high 
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degree polynomial discriminants when the data’s inherent model has simple linear 

discriminants. Although a complex model in such a scenario can of course sometimes 

simply model a less complex model without problem, there is the risk that the complex 

model will instead learn noise in the training data in order to minimize empirical error 

that does not generalize to the overall instance population and in fact increases 

generalization error.  

Underfitting and overfitting are often associated with bias error and variance error, 

respectively.
148

 A high bias error means that the model that a classifier has learned is 

insufficiently complex to properly discriminate between classes, and this learned model is 

unable to properly classify instances. A high variance error means that the learned model 

is too complex and has modeled noise in the training sample that does not generalize to 

the population as a whole. One indication that variance error is a problem can be models 

that change significantly when the training data is varied, although it can be beneficial 

under certain conditions to use unstable models in general (see Section 6.2.7). 

Since one does not typically know the model underlying the instance population of 

interest, one does not necessarily have a piori knowledge of the best classifier complexity 

to choose. This makes it difficult to choose a model that is sufficiently complex to avoid 

underfitting but not so complex as to promote overfitting. One must therefore resort to 

intuition or experimentation, the latter of which can be automated via meta learning (see 

Section 6.2.10).  

It is also important to note that the risk of overfitting the data when using a given 

classification algorithm decreases as the size of the training data increases. Unfortunately, 

large training sets are often expensive to acquire and annotate with class labels, and 

increasing the number of instances can also increase training and/or classification times 

significantly, depending on the classification algorithm used. 

The particular choice of instance to be included in the ground-truth is also important, 

as one wishes to have typical exemplars in order to help avoid overfitting, but unusual 

instances should also be present to help avoid underfitting. Instances of all classes of 

interest must be present as well, ideally in roughly equal proportions, since some 
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classifiers may minimize error in complex problems by simply learning to never map 

feature patterns to classes for which only a few instances are proportionally present in the 

training data. A scenario where the training data does not contain sufficiently diverse 

instances for the model to correctly generalize is referred to as an ill-posed problem. This 

is not always easy to anticipate and avoid due to the potentially high cost of ground-truth 

and the lack of a priori knowledge about the population, however, so one must often 

make assumptions when choosing the training data, something that is called the inductive 

bias. 

Noise refers to the problem of unwanted anomalies in training or validation data. 

Noise can be due to improperly labelled ground-truth (called teacher noise), improperly 

extracted or recorded feature values or features that are important to the data’s inherent 

model but that have not been extracted (called latent features or unobserved variables).  

Latent features are modeled as a random component by the classifier unless they are 

well correlated with other features that are in fact extracted. One can therefore be tempted 

to extract a wide variety of features from instances in order to guard against the presence 

of such unobserved variables. Unfortunately, too many features can in fact degrade 

classifier performance, a problem known as the curse of dimensionality. Increasing the 

size of a feature set increases the complexity of the model that must be learned, and thus 

increases the risks of overfitting or of never converging to a good solution, and can also 

be problematic with respect to the resources needed to extract, store and learn features. As 

a rule of thumb, the number of training instances needed to properly train a model tends 

to increase exponentially with the number of features. 

As with other aspects of machine learning, the choice of the feature set to use can be 

as much of an art as it is a science. One needs a feature set that is not too small and not 

too big, without knowing ahead of time what the ideal size is for the particular problem at 

hand. The choice of the particular features to use is particularly important, as they must 

encapsulate sufficient information to train a model that sufficiently approximates the 

underlying model of the data. It is generally wise to try to avoid redundant features, and it 

can also be very useful to consult experts in the given problem domain who can provide 

insights that can be invaluable in choosing the features to use. Dimensionality reduction 
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techniques can also be used to automatically reduce the size of excessively large feature 

sets, as described in Section 6.2.5.  

6.2.4 Validating and comparing classification models 

As noted above, a low classification error on the training data itself is not a 

sufficiently reliable indicator that the learned model is well generalized to the population 

from which the training sample was drawn. The problem of evaluating generalization is 

addressed by reserving part of the ground-truth for use in evaluating generalization. Such 

validation data must not be used to train the model in any way. 

Although good performance on a validation set still does not prove generalization, it 

is certainly a better indicator than empirical error. A generalization error that is similar to 

the empirical error is a good sign that overfitting has been avoided, although it is not a 

guarantee. For example, if the ground-truth data was selected from the data population 

using a selective bias, then overfitting due to this bias will not be detected by validation 

data drawn from this same ground-truth.  

Although the best ratio of training to validation instances can vary, 10% to 20% of 

ground-truth instances are typically reserved for validation. A greater number of total 

available instances usually necessitates a smaller proportion of instances reserved for 

model validation in order to achieve statistical significance in the validation. 

It is also important to be able to statistically anticipate the expected error rates of 

different classification algorithms on a given problem in order to choose which approach 

to use. This is also necessary when experimentally choosing model hyperparameters to 

use for a particular algorithm, such as the value of k for a k-NN classifier (see Section 

6.2.6.4). Both of these problems are examples of meta learning, as described in Sections 

6.1.1 and 6.2.10. 

There are several ways of calculating the expected error rate of a classifier so that it 

can be compared with those of other classifiers, as described below. It is important to first 

stress, however, that when comparing multiple models a third partition of the ground-

truth should be reserved to evaluate the classifier that is finally chosen. This publication 
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set
149

 must consist entirely of instances that have not been used to train or validate any of 

the individual classification algorithms up until this final stage. This is necessary to help 

ensure that the choice of classifier is not overfitted, just as it is necessary to use a 

validation set to ensure that the parameters of a learned model are not overfitted. 

It can also be important to go beyond simply ensuring that the instances chosen for 

training, validation and publication do not overlap directly. For example, a genre 

classification experiment that includes recordings by the same performer in both the 

training set and the validation set may arguable effectively be contaminating the 

validation set because of the particular similarity of recordings by the same performer. As 

a result, some music classification experiments have used artist filters to avoid such 

situations (Flexer 2007). 

Cross-validation is one common method that is used to evaluate how well a classifier 

is expected to perform. This involves first randomly dividing the ground-truth instances 

into k equally sized parts. The classification algorithm is then used to train k models that 

are each validated once. The training and validation of each of the k models is called a 

fold. Each fold involves using one of the k data partitions for validation and the other k-1 

partitions for training. Each of the k partitions is thus used for validation exactly once, 

and none of the k trained models is ever validated on instances that were used to train it. 

An indication of bias error can be found by calculating the average error rate across folds, 

and variance error is indicated by calculating the standard deviation of the error rate 

across all folds.  

The best choice of k depends on the amount of ground-truth that is available and on 

the processing resources needed by the classification algorithm. A large k means that 

many models need to be trained, each on relatively many instances, which can be 

computationally expensive for some algorithms. A small k means that the number of 

training instances available for each training run is reduced, something that can be 

problematic if too few ground-truth instances are available in each training partition to 

train proper models. In general, five to thirty-fold cross-validation is commonly used. A 
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small k is acceptable if ground-truth is plentiful and training times are an issue, and a 

large k is best when only a small amount of ground-truth is available. 

Leave-one-out is an extreme version of cross-validation that is appropriate when one 

has only a small ground-truth dataset. If there are n instances available in the ground-truth 

then k = n. This means that n models must be trained, each of which is validated on only 

one instance.  

Bootstrapping is another approach that can be used when only very small datasets are 

available, although there is much less data independence than one would ideally like. This 

approach samples n instances with replacement from datasets containing n instances, 

meaning that a given instance may be chosen more than once. This process is repeated in 

order to generate multiple subsets, which are then grouped randomly into training and 

validation pairs. 

5 x 2 is another variant of cross-validation that involves using training and validation 

sets of equal size. The instances are first randomly divided into two equally sized 

partitions. Two folds are then performed, the first using one of the two partitions for 

training and the other for validation. The roles of the partitions are then reversed in the 

second fold. This process is repeated four more times, each using a different random 

partitioning, for a total of ten folds. The disadvantage of this approach is that there is less 

independence between the ten trials than there is in traditional ten-fold cross-validation, 

for example, something that can make it statistically difficult to achieve good confidence 

levels with the 5x2 approach. The advantage of this approach is that it allows larger 

amounts of training data to be used in each fold than if traditional cross-validation were 

applied, which can be necessary if there is only a small amount of ground-truth data 

available. 

It is usually best to make sure that each class is represented in comparable proportions 

in each cross-validation data subset. For example, if 20% of all note durations 

encountered in an optical music recognition problem are quarter notes, then the durations 

of roughly 20% of the notes in each and every training and validation set should also be 

quarter note durations. Cross-validation that maintains class proportions in this way is 

called stratified. 
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There are a number of alternative validation techniques that can be used to help 

choose an appropriate classification algorithm for a particular problem, including 

regularization, structural risk minimization, minimum description length and Bayesian 

model selection (Alpaydin 2004). These approaches all make prior assumptions about the 

model, however, so cross-validation is usually a better general-purpose approach, 

assuming a large enough ground-truth. The other approaches can be better when training 

data is sparse, however. 

A confusion matrix can be used to illustrate the types of misclassifications made by a 

classifier. This is a square table whose rows indicate true classes and whose columns 

indicate the classifier’s predicted classes. Each entry of the table indicates the fraction of 

instances belonging to the class of the corresponding row that were classified as 

belonging to the corresponding column’s class. A perfect classifier would thus have non-

zero entries only on the diagonal.  

Although techniques such as cross-validation allow one to make comparisons between 

the performance of different classifiers, there is still no guarantee that one classifier with 

a higher average classification performance across folds will in fact perform better than a 

second classifier with a lower average performance. Statistical hypothesis testing and 

significance testing tools based on interval estimation (Kendall and Stuart 1973) can help 

to increase one’s confidence that a given classifier really is better than another based on 

their relative cross-validation performances. 

Interval estimation allows one to make the claim that, given a set of data, a certain 

hypothesis is correct within a certain error range with a certain amount of confidence. For 

example, one might be able to say that, based on a study performed on a sample of the 

population, the population has an average height between 160 cm and 170 cm with 95% 

confidence. This means that the actual average height of the population will fall within 

the calculated range 95% of the time. Such statistical hypothesis testing makes it possible 

to judge the likeliness that a given average classification accuracy across cross-validation 

folds, for example, will be within a certain range of the true performance of the classifier 

on the population. 

There are a number of different hypothesis testing techniques that can be used, each 

with their own sets of assumptions and correspondingly varying amounts of 
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appropriateness for different classification problems. Student‟s paired t test can be used to 

examine the results of k folds in order to, with a chosen confidence level, accept or reject 

the hypothesis that the true error rate of a classifier is at or below some value.  

A contingency table may be constructed in order to indicate how well two classifiers 

perform on the same validation set after being trained on the same training set. Such a 

table specifies the number of instances correctly classified by both classifiers, the number 

incorrectly classified by both, the number correctly classified by one but incorrectly by 

the other and vice versa. McNemar‟s test makes it possible to use a contingency table to 

test, with a given confidence level, the hypothesis that the two classifiers have statistically 

the same error rate. 

In practice, one often wishes to test more than two classifiers in order to find which is 

truly the most accurate. For example, consider the case where l candidate algorithms are 

each trained on k datasets, such that there are k trained classifiers for each of the l 

algorithms, and one wishes to test the l algorithms for statistically significant differences 

in performance. Analysis of variance (ANOVA) provides a means for doing this, by 

testing the hypothesis that the mean error rates of the l groups are equal. If this hypothesis 

is rejected, then the procedure may be repeated on different subsets of the l groups in 

order to find which have statistically significant differences in performance and which do 

not. Not all possible combinations need to be tested, since the algorithms can be ranked 

by mean error rates and only neighbours need to be tested. As a rule of thumb, if it is 

found that two algorithms are not significantly different in terms of error rate, then it is 

usually best to choose the one that is simpler (e.g., has fewer parameters) and/or faster. 

Unfortunately, one can find many examples in the literature where significance testing 

is not used as rigorously as it could be. For example, the methods discussed above assume 

that the number of validation errors made by each classifier is binomial with an 

approximately normal distribution, assumptions that are not necessarily always valid. 

Fortunately, there are tests that do not make these assumptions. The Wilcoxon signed-

rank test is a nonparametric alternative to Student’s paired t-test that can be used when 

the population cannot be assumed to be normally distributed. There are also 

nonparametric alternatives to ANOVA, such as the Kruskal-Wallis test or the Newman-

Keuls test (Motulsky 1999).  
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An additional issue is that most hypothesis tests test whether classifiers have the same 

error rates, not if the particular errors that they make are the same. In practice, different 

misclassifications can have varying costs, and it may be appropriate to use loss functions 

so that this may be taken into account. Unfortunately, hypothesis testing that takes such 

cost functions into account is much more difficult. 

In addition, there are a variety of factors to consider when making the final decision 

on the classification algorithm or algorithms to apply to a given problem beyond bias and 

variance error. These include: 

 Training time and space complexity of the algorithm. 

 Classification time and space complexity of the algorithm. 

 The number of features needed to train an effective model and how cheaply they 

can each be extracted. 

 The number of ground-truth instances needed to train an effective model and how 

cheaply they can each be acquired and annotated. 

 The amount of a priori knowledge one has about the population’s instances and 

their features. For example, are features known to follow a normal probability 

distribution? 

 The class ontology. How many classes are there? How similar are classes to one 

another? Is there a formal class structuring? May instances belong to more than 

one class? 

 Ability of the algorithm to perform structured learning (see Section 6.2.8). 

 Interpretability of the algorithm (i.e., whether or not knowledge can be extracted 

from the trained model in order to gain insights into the problem domain). 

 Ability of the algorithm to perform cost-sensitive learning (i.e., whether or not it is 

possible to model situations where some misclassifications are more serious than 

others). 
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 Ability of the algorithm to improve learned models as additional data becomes 

available. 

 Ease of implementation of the algorithm. 

As a final point, it should be noted that classification accuracy is sometimes evaluated 

in terms of precision and recall. The precision associated with a class is the number of 

instances correctly classified as belonging to that class divided by the total number of 

instances labelled by the classifier with predicted class labels corresponding to that class 

(i.e. the number of true positives plus the number of false positives). The recall for a 

class, in contrast, is the number of instances correctly classified as belonging to that class 

divided by the total number of instances with that ground-truth class label (i.e. the number 

of true positives plus the number of false negatives). Precision can therefore be seen as a 

measure of classification fidelity and recall can be seen as a measure of classification 

completeness. Ideally, one would have values of 1 for both precision and recall, but in 

practice there can often be a trade-off between one and the other.  

6.2.5 Dimensionality reduction 

As discussed in Section 6.2.3, it is essential that features provide enough information 

to machine learning algorithms for them to be able to properly train models that can 

properly discriminate between classes. Since one typically does not have a priori 

knowledge of which features are needed to do this, one is tempted to simply extract as 

many features as possible as insurance against unobserved variables. The use of more 

features increases model complexity, however, which in turn increases time complexity, 

space complexity, the number of training instances needed and, overall, the risk of 

overfitting. 

Dimensionality reduction techniques address this trade-off by taking a given feature 

space and automatically mapping it to a feature space with fewer dimensions. The ideal is 

to do this in a way that retains the most important information in the original feature 

space while only discarding information that is redundant or irrelevant to the particular 

classification problem at hand. 

In addition to advantages with respect to classification performance, reducing the 

number of features can make it easier for humans to visualize and study feature data in 
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order to understand it and gain insights about its underlying nature. It can be difficult for 

humans to visualize data in more than three to five dimensions (e.g., x, y, z, time and 

colour). 

Dimensionality reduction techniques can be very effective in reducing the risk of 

overfitting due to too many input features, but they do not offer a guarantee that some 

useful information will not be discarded, although they do try to minimize the likelihood 

of this occurring. So, while these techniques are without a doubt often very useful, one 

should avoid making the mistake that they are always the best solution, or to reflexively 

apply a favourite dimensionality reduction technique without considering alternative 

dimensionality reduction techniques that might be more appropriate for the particular 

problem at hand. For example, one should not discard the option of consulting experts in 

particular problem domains for their views on which features will be useful in favour of 

simply applying off-the-shelf dimensionality reduction techniques. 

Certain classification algorithms, such as decision trees, automatically do feature 

selection internally. Some, such as multilayer perceptrons, even do non-linear feature 

weighting internally. Dimensionality reduction pre-processing can still be useful even 

with such algorithms, however, as a greater number of features can still increase model 

complexity in such cases, thereby requiring a larger ground-truth to avoid overfitting. For 

example, multilayer perceptrons require a greater number of input units if there are a 

greater number of input features. Furthermore, depending on the algorithms in question, 

dimensionality reduction pre-processing can result in efficiency gains in terms of feature 

extraction, training and classifying costs. 

One very simple, and typically unsuccessful, type of dimensionality reduction is to 

evaluate how well each feature can be used to classify instances individually, and then 

choose the n best performing features. Unfortunately, this approach fails to take into 

account the fact that the ways in which different features vary together can have powerful 

discriminating power. This approach can therefore result in the rejection of a very useful 

feature subset simply because a single feature in it that is very effective when combined 

with the other features in the subset does not perform well individually. A feature 

evaluation system must therefore consider the discriminating power of features operating 

collectively, not just individually.  
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Before proceeding to discuss better dimensionality reduction algorithms, it should 

first be emphasized that dimensionality reduction should be trained and validated with 

separate partitions of the ground-truth data, just as one does with classification 

algorithms. This helps to avoid overfitting the feature selection to the particular training 

data (Fiebrink and Fujinaga 2006). 

It is also useful to note that are several ways to numerically estimate the usefulness of 

various feature sets. Information gain, for example, provides a way of calculating the 

increase in information that is gained by adding a new feature to a feature set via entropy 

calculations. Although information gain is typically associated specifically with decision 

trees, it may be generalized. 

There are two primary overall approaches to dimensionality reduction. The first, 

feature extraction,
150

 consists of deriving a smaller set of new features from the original 

features. The second overall approach, feature selection, involves simply choosing a 

subset of the original features and discarding the remainder.  

The primary advantages of feature extraction over feature selection are that it is 

usually easier to implement and can produce results much more quickly. However, most 

feature extraction algorithms have the disadvantage that they operate entirely on the 

feature data itself without reference to the particular classes in question.
151

 Most, but not 

all, feature extraction techniques tend to emphasise those features that have the greatest 

variability in general, which will not necessarily coincide with the particular variability 

that one needs when classifying instances into a particular class ontology. 

An additional disadvantage of many feature extraction approaches is that they can still 

require the calculation of a large feature set in order to perform the mapping to the lower 

dimensional feature space, something that can be problematic if features are expensive to 

calculate. Furthermore, it is sometimes useful to retain information on how well features 

perform in their original form in order to gain theoretical knowledge about a problem. For 

example, one might be interested in gaining musicological and music theoretical insights 
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from how well different musically meaningful features can distinguish between different 

musical genres (McKay and Fujinaga 2005). 

There are a variety of commonly used feature extraction algorithms, including 

principle component analysis (PCA), linear discriminant analysis (LDA), factor analysis 

(FA) and multidimensional scaling (MDS). All of these methods are unsupervised, with 

the exception of LDA, and thus do not take class labels into account. Particular attention 

is given here to PCA because it is very often used in MIR and classification research in 

general. 

The goal of PCA, as with other feature extraction dimensionality reduction 

algorithms, is to find a mapping from a d-dimensional feature space to a new k-

dimensional space where k<d such that one loses as little useful information as possible. 

PCA finds a linear combination of the original features that projects them onto a new 

feature space in a way that maximizes variance. Each dimension of the new feature space 

is called a principle component, and each principle component is chosen so as to have a 

maximum amount of spread of instances across its dimension. The principle components 

can then be ranked based on their variance and those principle components with the 

lowest variance can be dropped in order to arrive at a dimensionality reduction. It should 

be noted, however, that if the dimensions of the original feature space are not correlated, 

then PCA will not lead to any reduction in dimensionality. 

It is important to note that if the variances of the original features vary considerably 

then this will affect the direction of the principal components more than feature 

correlations. In order to avoid this problem the data is often pre-processed so that each 

original dimension has a mean of 0 and a unit variance before applying PCA. This 

combination of pre-processing and PCA therefore essentially centers the instance features 

and then rotates the axes to line up with the directions of highest variance. 

PCA is sensitive to outliers, as a few points distant from the center can have a large 

effect on the variances and thus the choice of principle components. It is therefore 

common to discard outliers before applying PCA. One simple method for doing this is to 

calculate the Mahalanobis distance of data points and to then discard the isolated data 

points. 



 302 

Linear discriminant analysis also bears special mention because it is a supervised 

method. Given instances from various classes, LDA tries to find a projection that 

separates the classes from each other as much as possible within the new feature space. 

This is done by using Fisher’s linear discriminant to keep the means of each class as far 

apart as possible. Fisher’s linear discriminant is optimal if the classes are normally 

distributed, although it can still often be used effectively even if this is not the case. 

A general problem with linear projection methods like PCA, FA, MS and LDA is they 

assume features interact in a linear manner when in fact features often interact in a 

nonlinear manner. One solution is to use principle curves to find curves, as opposed to 

lines, that pass through the ―middle‖ of a group of instances. In general, however, such 

non-linear approaches are possible but difficult. 

One final point to mention before proceeding to discuss feature selection techniques is 

that many classification approaches use Euclidian distances. However, strictly speaking, 

Euclidian distances are only appropriate if all features have the same variance and are not 

correlated. If this is not the case then a distance metric such as the Mahalanobis distance 

should be used instead. Alternatively, the Euclidean distance could still be used by the 

classifier, but suitable feature normalization should first be performed using a technique 

such as principle component analysis. 

Feature selection typically involves iteratively training and testing a chosen 

classification algorithm with different subsets of the features available. The feature subset 

that is found to produce the best classification performance can then be selected as the 

subset to use.  

A variant of feature selection, feature weighting, is performed by associating weights 

with each of the selected features in order to indicate their importance relative to one 

another. Simple feature selection is often preferred to feature weighting because it is 

simpler to perform and because many classification algorithms effectively perform 

feature weighting as part of their model training anyway. Processing complexity is a 

particular problem with feature weighting, as the search space grows with Θ(nd), where d 

is the number of features and n is the (potentially infinite) number of allowable values for 

each weight (Punch et al. 1993). Having noted this, feature weighting can still be useful in 

some cases, such as in certain specialized classifier ensembles (McKay 2004). 
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Ideally, one would like to exhaustively test every possible feature subset. The simplest 

type of feature selection, exhaustive feature selection, does exactly this. Although this can 

work for small feature sets and with classification algorithms that do not require long 

training times, it is otherwise not usually feasible. For a set of d features there will be 2
d
-1 

possible experiments, each involving the training and testing of a classification model. 

Although techniques such as branch-and-bound searching can be used to improve speed, 

exhaustive searches are often effectively intractable in practice. 

Although exhaustive selection does ensure that the features selected will be optimal 

for the ground-truth data available and the classification algorithm chosen, it in no way 

guarantees that the selected features will be optimal for the overall instance population. 

The processing complexity of exhaustive searches therefore becomes particularly 

unattractive given this lack of assured generalization optimality. Fortunately, there are a 

variety of alternative feature selection techniques available that, while still not ensuring 

an optimal feature set, can arrive at solutions much more quickly than exhaustive 

searches. 

Forward selection and backward selection are well-known approaches of this kind. 

Forward selection operates by starting with an empty feature set and adding features one 

by one. This process begins by first testing all possible feature subsets consisting of one 

feature only and choosing the one that best classifies the test data. Next, all possible 

feature subsets consisting of this feature and one other feature are tested, and the best 

performing pair is chosen. Features continue to be iteratively added one by one in this 

way until some maximum number of features are selected or until performance stops 

improving. Backward selection, in contrast, starts with the full set of features, and 

iteratively removes features one by one. Forward and backward selection have the same 

technical complexity, but forward selection will often be faster in practice because 

smaller feature subsets are usually faster to evaluate.  

A problem with these two techniques is that there is no way to remove (or restore) a 

feature once it has been added (or taken away). This problem, called nesting, can be 

significant, since a feature that performs well early on in the feature selection process 

may actually not be one of the best features to choose. A technique called forward plus l 

take away r overcomes nesting by first applying forward selection l times and then 
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applying backward selection r times. A variation of this technique, called sequential 

floating selection, dynamically assigns the values of l and r instead of fixing them (Pudil 

et al. 1994). 

Genetic algorithms, or GAs, are another approach that can be used to search for a 

good feature subset. GAs can be used for a wide variety of purposes, including 

optimization problems where exhaustive searches are not practical. Siedlecki and 

Sklansky (1989) pioneered the use of genetic algorithms for feature selection, and they 

have been used successfully in the past with respect to music classification (e.g., Fujinaga 

1996). There is some evidence that, in general, GAs perform feature selection better but 

slower than greedy search algorithms (Vafaie and Imam 1994). Additionally, Minaei-

Bidgoli et al. (2004) have shown that GAs are also powerful tools for feature weighting in 

multiple classifier systems. Fiebrink, McKay and Fujinaga (2005) found that genetic 

algorithms applied to feature selection and weighting can result in improved performance 

in a specifically musical context, particularly when utilized with a parallel architecture. 

GAs are inspired by the biological process of evolution. They make use of data 

structures called chromosomes that iteratively breed in order to evolve a (hopefully) good 

solution to a problem. Each chromosome consists of a bit string that encodes a potential 

solution to the problem that the GA is being used to solve. This bit string is somewhat 

analogous to the DNA of a biological chromosome, and is combined with the bit strings 

of other chromosomes when breeding occurs. Each bit string has a fitness associated with 

it that indicates how well its associated solution solves the problem at hand. 

In the case of feature selection, each bit in the bit string can be used to represent a 

feature, with a value of 1 implying that the feature is to be used and a value of 0 implying 

that it is not to be used. Alternatively, each bit string can be used to encode segmented 

multi-bit words, each of which represents a numerical value indicating the weighting of a 

feature. 

A GA begins with a population of many chromosomes whose bit strings are randomly 

generated. Reproduction, and hence the evolution of potential solutions, occurs through a 

process called crossover. Some fraction of the chromosomes, based on a GA parameter 

called the crossover rate, is selected for reproduction, and the remaining chromosomes 

are discarded. One way of selecting the chromosomes that will reproduce, called the 
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roulette method, assigns a probability of selection for reproduction to each chromosome 

based directly on its fitness. An alternative, called rank selection, ranks the chromosomes 

based on fitness and then bases the probability of selection for crossover on this ranking. 

This latter approach prevents one or a few chromosomes with very high relative fitnesses 

from dominating early on, as this could lead to a local minimum in error space that is far 

from the global minimum. 

The actual process of crossover most often involves taking two of the chromosomes 

selected for breeding and breaking the bit string of each one into two or more parts at 

randomly selected locations. The resulting has with a bit string constructed from the 

pieces of the bit strings of its parents. An alternative approach involves going through the 

bit strings of the parents one bit at a time and copying the bits to the child when the 

values for the parents correspond and randomly selecting a bit’s value when the 

corresponding bit of the two parents differs. Each parent chromosome can reproduce 

multiple times, either polygamously or monogamously. 

There are several additional characteristics that are sometimes incorporated into GAs. 

Mutation involves assigning a probability that is usually very small to every bit of every 

child’s bit string that the bit will be flipped. Elitism involves automatically cloning the 

chromosome with the highest fitness from one generation to the next. Villages or islands 

involve segregating the chromosomes into different groups that evolve independently for 

the most part, but can occasionally exchange a few chromosomes. 

A simplified version of genetic algorithms, known as random mutation hill climbing, 

is also occasionally used. This involves eliminating the crossover step, and having the 

population improve through mutation only. 

Genetic algorithms have been shown to find good solutions to many problems, 

although not necessary the optimal ones. Their success is highly dependant on the quality 

of the fitness function that is used. In the case of feature selection, this fitness function is 

related to how well the selected feature subsets perform in classifying test instances. 

GAs can be very computationally expensive, particularly if fitness evaluation is 

expensive, since fitness must be calculated for each chromosome at each generation. This 

makes GAs suitable for classification algorithms that require little or no training time, but 

less appropriate for approaches that are computationally expensive to train. 
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There are a number of alternative feature selection techniques, such as simulated 

annealing. Jain and Zongker (1997) have written a good overview of experimental feature 

selection methods as well as an empirical study of their relative performance. Kirby 

(2001) offers a good resource for those looking for more specialized techniques than 

those discussed here.  

As a final note, dimensionality reduction is just one among many types of pre-

processing and post-processing that may be applied to data in the context of machine 

learning. Bruha (2001), for example, provides a good overview of such pre- and post-

processing techniques. 

6.2.6 Commonly used machine learning algorithms 

There are a great variety of algorithms that implement machine learning in various 

ways, each with its own strengths and weaknesses. For example, Bayesian classifiers are 

efficient and can perform classifications with theoretical optimality, but require pre-

existing statistical knowledge of the data that one is dealing with in order to do so. 

Nearest neighbour classifiers are simple and fast to train, but cannot infer sophisticated 

logical relationships between features. Multilayer perceptrons can model such 

relationships, but take a relatively long time to train. Tree induction algorithms are not 

always as effective as some other methods, but the models that they train are more easily 

interpretable by humans than the models trained by most other algorithms. Hidden 

Markov models can be good at modelling sequential data, but are less appropriate when 

dealing with independent feature sets. 

These are just a few examples of the many differences between various algorithms. 

Further complicating matters, there are often different versions of each algorithm with 

different hyperparameters (e.g., the value of k in a k-nearest neighbour classifier). 

Different algorithms can also be combined into classifier ensembles (see Section 6.2.7), 

which can operate using a variety of different coordination algorithms, each of which 

have their own strengths and weaknesses. 

This sub-section focuses on some of the most commonly used algorithms that have 

been shown to be successful in a variety of problem domains. There are certainly many 

other excellent algorithms available, however, and new ones are continually being 

developed. This sub-section also places a strong emphasis on supervised learning 
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algorithms in particular, as they tend to be the best choice for most automatic music 

classification tasks. 

The overview of classifiers presented here emphasizes an intuitive and practical 

discussion of the algorithms. Rigorous theoretical proofs and detailed mathematical 

descriptions of learning schemes are largely omitted, as they are documented at length 

elsewhere and the goal of this sub-section is primarily to emphasize the more applied 

aspects of automatic classification so that existing implementations may be more easily 

understood and used effectively. 

Although there are many alternative ways that one might organize classification 

algorithms, the distinction between parametric and nonparametric classification 

methodologies is given particular emphasis in the literature. The parametric approach 

assumes that the training sample is drawn from a population whose feature values obey 

known statistical distributions, such as Gaussian distributions. Parametric algorithms 

essentially attempt to find the parameters of these distributions during training. So, in the 

case of a Gaussian distribution, training would involve inferring the mean and variance of 

the Gaussian from the training data. Nonparametric classifiers, in contrast, do not assume 

any particular statistical distributions, and local models are estimated based only on the 

training data. 

6.2.6.1 Overview of parametric methods 

Parametric classifiers have the advantages of being efficient and of tending to perform 

very well when the features do in fact obey the assumed distribution. They can be 

particularly useful in helping to smooth noisy training data, particularly since many 

nonparametric methods have a tendency to generate overly complex models that risk 

overfitting noisy training data. The major disadvantage of the parametric approach is that 

the true distributions of feature values may not in fact match the assumed distributions. 

Although parametric classifiers can sometimes still achieve adequate classification 

success rates even in such cases, the success rates do tend to degrade significantly in such 

circumstances. 

Bayesian decision theory is a common point of departure for discussing automatic 

classification algorithms. If x is a feature pattern corresponding to some instance and y is 
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a class belonging to the class ontology Y, then one is interested in the following 

quantities: 

 P(y|x): The probability that an instance belongs to class y given that it has a 

feature pattern x. This is referred to at the posterior probability. 

 P(y): The probability that any given instance belongs to a given class y, regardless 

of its feature pattern. This is referred to as the prior probability. It is useful to note 

that, if one assumes that each instance may only belong to a single class, then for 

all classes y1 through yn in a class ontology: 

 1 = P(y1) + … + P(yn)       (6.2) 

 P(x|y): The probability that an instance has a feature pattern x given that it belongs 

to class y. This is referred to as the likelihood. 

 P(x): The marginal probability than an instance will have the feature pattern x, 

regardless of the class that it belongs to. This is referred to as the evidence. 

So, for example, if P(y) is the probability that any individual plays the guitar and P(x) 

is the probability that any person has calluses on their fingers, whether or not that person 

plays the guitar, then P(y|x=callused) is the probability that a person who is known to 

have callused fingers does in fact play the guitar. 

These basic quantities are associated with Bayes‟ Rule, the fundamental equation of 

Bayesian decision theory: 
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An important qualification to Equation 6.3 is that the second equality is only valid if x 

and y are independent.  

Bayes’ Rule is very useful for classification. Given a feature pattern xi extracted from 

an instance i, one can use Bayes’ Rule to calculate the posterior probability P(yj|xi) for 

each class yjɛY. These posteriors in effect indicate the probabilities with which the 

instance i belongs to each class in Y. One can then simply classify the instance i into the 

class yj with the highest posterior probability, or one can treat the posteriors as class 
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membership weightings. A classifier that use Bayes’ Rule in such a manner is called a 

Bayes‟ classifier. 

It is also possible to account for cases where certain types of misclassifications are 

more costly than others. For example, misclassifying a symphony by Mozart as being by 

Haydn is likely better than misclassifying it as being by Schoenberg. This can be done by 

calculating the expected risk, R, associated with classifying an instance as class yj: 
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Of course, this necessitates knowledge of λjk, which is some given measure of loss 

incurred by potentially misclassifying an instance as class yj when it actually belongs to 

class yk. If λjk is known, then one can calculate the expected risk for all classes yɛY, and 

then classify an instance as belonging to the class y with the lowest expected risk. There 

are also alternatives solutions to this type of problem, such as utility functions. 

The greatest advantage of Bayes’ classifiers is that their classification performance is 

optimal in theory. This is a claim that can be made for very few classifiers, since the norm 

for many classifiers is simply to hope that the learned model converges to a good local 

minimum in the error space, without any guarantee that it will in fact be the global 

minimum. 

Unfortunately, in reality one is rarely able to actually achieve optimality with Bayes’ 

classifiers, since optimality requires perfectly accurate knowledge of the prior, likelihood 

and evidence, which must in practice usually be estimated. Such estimations serve as the 

foundation of many parametric models, which use statistical distributions such as the 

Gaussian distribution to estimate these probabilities. Estimation techniques such as this 

do not work well when the instances belonging to each class do not each form coherent 

groups in feature space, however, since if instances of a single class are located in 

multiple discrete clusters then this implies multiple distributions (e.g., multiple Gaussians, 

each with their own mean and variance, or even multiple distributions of different kinds). 

Fortunately, this problem can be addressed with mixture models, which are described 

below. 

Before doing so, however, it is useful to first discuss simpler cases. The Bernoulli 

distribution is often used to estimate Bayesian probabilities for two-class problems, and 
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can be generalized to the multinomial distribution for problems involving more than two 

classes.  

The Gaussian distribution is often used for modelling class-conditional probability 

densities. In practice, a multivariate normal probability density is often assumed, even 

when the true distribution may well not be normal. It is useful in the multivariate 

situation, which is to say when there are multiple features, to represent the instances as a 

matrix where each column is a feature and each row is an instance. One can then calculate 

the mean vector, which has elements consisting of the mean of each column (i.e., of each 

feature) across all known instances. 

It can also be helpful when approaching classification problems to calculate how each 

feature varies compared to each other feature via a covariance matrix. The entries on the 

diagonal give the variance of each feature and all other entries give the covariance of each 

pair of features. This matrix can be used to calculate the correlation between features. If 

two features are independent then their covariance must be zero, although a covariance of 

zero does not necessarily mean that the features are independent.  

The calculation of the mean vector and the covariance matrix are useful because they 

can be used as parameters of a multivariate distribution. Also, the assumption of a shared 

covariance matrix can be a very useful in simplifying problems. Although this assumption 

can increase bias, it also tends to reduce the variance of estimators. This assumption of a 

shared covariance matrix leads to linear discriminants, which is to say linear decision 

boundaries between classes in feature space, something that can be a convenient 

simplification but which should also be treated with caution, since the true discriminants 

may not be linear. Linear discriminant analysis and the related Fisher‟s linear 

discriminant (see Section 6.2.5), for example, are techniques for finding the linear 

combination of features that best separate two or more classes. 

Bayesian networks, which are also called belief networks or probabilistic networks, 

are visual models for representing the interactions between features. These networks are 

composed of acyclic graphs consisting of nodes and directed arcs connecting the nodes. 

Each node is associated with a random variable, x, and has a value corresponding to the 

probability of the random variable, P(x). An arc from a node X to another node Y 

indicates that the node Y is influenced, although not necessarily caused, by X. Arcs are 
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associated with the probability P(y|x). The relevance of this to classification is that 

Bayesian networks may be converted to trees and belief propagation may be used for 

inference. 

The naïve Bayes‟ classifier is a simplified variant of Bayes’ classifier that ignores 

possible correlations among the input features. In other words, it is assumed that the 

absence or presence of any feature is unrelated to the absence or presence of any other 

feature. For example, a musical instrument might be (potentially incorrectly) classified as 

a member of the violin family because it has strings and is bowed. Even though the 

feature of being bowed depends on the feature of there being strings, a naïve Bayes’ 

classifier considers these two features to contribute independently to the probability that 

the instrument is a member of the violin family. Keeping this assumption of the naïve 

Bayes’ classifier in mind, a multi-feature problem can be reduced to a group of single 

feature problems, so the likelihood and posterior can respectively be expressed as: 
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Although the assumption of feature independence is often invalid, the naïve Bayes’ 

algorithm can in fact nonetheless perform surprisingly well. The naïve Bayes’ classifier is 

also relatively efficient, because the assumption of independence is equivalent to setting 

all off-diagonal entries of the covariance matrix to 0, so they do not need to be calculated. 

As noted above, well-known statistical distributions are often used to estimate the 

Bayesian likelihood, estimate and prior so that Bayes’ rule can be applied. In order to do 

this, one must first choose a statistical distribution and then find its parameters.  

If the type of statistical distribution is known, then maximum likelihood estimation is a 

statistical method for fitting the distribution to the data and for finding estimates for the 

distribution’s parameters. If the feature patterns X of all known instances I are likely to 

occur in a population with some probability density p(x|θ), where θ represents the 

distribution’s parameters, then the process of maximum likelihood estimation attempts to 

find the θ that gives the highest p(x|θ) for X. In other words, maximum likelihood 
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estimation picks the model parameters that make the given data more likely than any 

other parameters would make them. 

6.2.6.2 Distribution estimation 

Purely parametric approaches assume a single statistical distribution. Semiparametric 

density estimation techniques are also available for empirically estimating a mixture of 

distributions from the training data. Since one often encounters instances that are drawn 

from multiple sub-groups, the use of multiple distributions is often advisable. For 

example, a pitch classification system should be able to recognize a middle C played on a 

piano as well as a middle C played on a guitar. Semiparametric methods are typically 

applied by assuming a type of distribution, such as Gaussian, but not the number of co-

existing distributions of this type, since one does not have a priori knowledge of how 

many sub-groups instances are drawn from or which instances are associated with which 

sub-groups. 

Any of the range of available unsupervised clustering algorithms can be used to group 

instances into clusters as a pre-processing stage before applying parametric estimation to 

each of the clusters. It is also often useful in practice to apply dimensionality reduction to 

each of the clusters separately, before estimating parameters. 

The mixture density of a mixture model with k distributions can be expressed as: 
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where the Gi are the k mixture components and each x represents the feature pattern of a 

training instance. The mixture components are also called groups or clusters. The p(x|Gi) 

are the component densities and P(Gi) are the mixture proportions. The number of 

mixture components, k, and the instances, x, are the inputs, and the learner estimates the 

component densities and mixture proportions. If it is assumed that the component 

densities all obey a parametric model, then it is only necessary to find their parameters. 

Although unsupervised clustering algorithms are outside the particular focus of this 

chapter, it is appropriate in the context of supervised parametric and semiparametric 

estimation to briefly explain one simple algorithm, k-means clustering, as an example of 

how clustering can be performed. In k-means, one first specifies the number of clusters 

being sought, k, after which k cluster centers are chosen in feature space. All instances are 

then assigned to their nearest cluster center, where ―nearest‖ is determined by measuring 
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the distance between the feature pattern of each instance and the cluster center. The mean 

center of each cluster is then calculated, and these centers are taken to be the new cluster 

centers. Instances are then each reassigned to the clusters whose centers are closest to 

each of them. This process continues iteratively until no more changes are made. 

This algorithm is very sensitive to the initial placement of the k centers, and there are 

a number of ways of choosing this initial configuration. For example, the centers can 

correspond to the feature coordinates of k randomly selected instances, the centers can be 

placed random distances from the overall centre for all instances or the centers can be 

evenly spaced along the principal component. There are also a variety of ways to choose 

the k hyperparameter, such as the needs of an application, manual choice after plotting the 

data in two or three principal component dimensions or simply experimentation with 

different values. 

The k-means algorithm is a special case of the expectation-maximization algorithm 

that assumes a Gaussian mixture and that assumes features are independent with equal 

and shared variances. This is why k-means uses hyper-circles to form clusters, while the 

more general expectation-maximization uses hyper-ellipses of arbitrary shapes and 

orientations. There are also many alternative clustering algorithms that are more 

sophisticated than k-means, such as self-organizing maps and adaptive resonance theory. 

Despite the improvement offered by allowing for multiple distributions, 

semiparametric approaches still assume one or more particular distribution types, such as 

Gaussian. This is a potentially incorrect assumption that can lead to classifier bias. 

Fortunately, other estimators are available that estimate the distributions themselves 

empirically, although the curse of dimensionality causes them to be less effective when 

dealing with instances with many extracted features. 

Histogram estimators offer one such approach. These divide the feature space into 

equally sized intervals called bins and associate magnitudes to each bin based on the 

number of instances in the training data that fall within its region in feature space. This 

results in a histogram that models the probability density. 

The choice of bin width is an important hyperparameter to consider when using 

histogram estimators. Wide bins lead to smoother, less noisy probability density 

estimates, but can also lead to loss of detail. Conversely, narrow bins are undesirably 
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sensitive to noisy data, but are better at capturing details in feature space. One solution to 

this tradeoff is to use kernel estimators, also called Parzen windows, which use 

overlapping kernel function, such as a Gaussian kernel, to smooth the input in order to 

permit relatively narrow bins. There are also methods for dynamically varying window 

widths intelligently (Gentle 2009). 

6.2.6.3 Overview of nonparametric methods 

Histogram estimators are an example of a nonparametric approach. Although in the 

application described above the nonparametric algorithm is used as a kind of pre-

processing for a parametric algorithm, nonparametric algorithms can certainly be used 

alone. This means that no assumptions are made about data distribution(s) and that 

classification models are trained purely empirically based on available data. 

Nonparametric algorithms can also be called instance-based or memory-based algorithms. 

The fundamental advantage of nonparametric methods over parametric and 

semiparametric approaches is that they avoid model bias due to assumptions about 

probability distributions that may be invalid, although with the trade-off that the risk of 

overfitting may be higher. Also, parametric and semiparametric approaches have the 

advantage over nonparametric approaches of reducing classification problems to the 

estimation of only a small number of simple parameters. Nonparametric methods are 

therefore often less efficient than parametric methods. Although this does not apply to all 

algorithms, parametric methods are often O(d) or O(d
2
) in computational complexity 

during classification, where d is the number of parameters, and many nonparametric 

methods are O(N), where N is the number of training instances. Notably, usually d
2
 << N. 

This relative classification inefficiency is most notably true of those nonparametric 

algorithms that store training data and postpone model computation until they are 

required to perform a classification. Such algorithms are called lazy learners, as opposed 

to eager learners that compute models during training, such as parametric algorithms. 

The upside of lazy learners is that their training time is often much shorter than that of 

eager learners, although in practice one typically prefers fast classification over fast 

training. 
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6.2.6.4 Nearest neighbour classifiers 

One of the most commonly used lazy learning algorithms is k-nearest neighbour, also 

called k-NN. Training is performed simply by storing the feature space coordinates of 

each training instance. A test instance may then be classified by calculating the distance 

between its feature space coordinates and the coordinates of the surrounding training 

instances that were memorized during training. The test instance is then associated with 

the class labels of the k nearest training instances. Finally, there are a number of ways of 

determining the final class or classes of the test instance, such as simply assigning the 

class that occurs most frequently among the k nearest neighbours or by performing a vote 

weighted by the feature space distances to each of the neighbours. If multiple classes may 

be associated with instances in the given problem domain then no such operations are 

necessary. 

Considered slightly differently, k-NN classification involves growing a cell in feature 

space around a test point until the k nearest training points are captured. A variety of tools 

developed for computational geometry can therefore be used to improve classification 

performance. Of particular interest, condensing or thinning methods can be used to reduce 

classification complexity and memory requirements by reducing the number of stored 

training instances. These methods can also remove noisy outliers that could degrade 

classification accuracy. The idea is to select a subset of the training instances that lowest 

error on the testing data. Gabriel thinning is one particularly appropriate approach 

(Bhattacharya, Mukherjee and Toussaint 2005). Varieties of the nearest neighbour 

algorithm that use data thinning are called condensed nearest neighbour algorithms. 

There are a variety of distance measures that can be used to calculate the distances 

between points in feature space. Euclidean distance is often used, although it is 

sometimes appropriate to use alternatives such as Manhattan distance, Tanimoto distance 

or tangent distance (Duda, Hart and Stork 2001). As with many other nonparametric 

algorithms, it is best to normalize feature values before storing them in order to ensure 

that all features have the same numerical range, otherwise features with large values may 

inappropriately dominate distance measurements relative to features with small values. 

Since Euclidean distance measurements assume uncorrelated inputs with equal variances, 
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when this is not the case it can be advisable to use techniques that locally estimate 

optimal distance to separate classes, such as the discriminant adaptive nearest neighbour. 

The choice of the k hyperparameter of k-NN is important, as a k that is too large risks 

inappropriately including points belonging to instances of non-corresponding classes in 

the selection region even if the training points are well clustered. A k that is too small, on 

the other hand, can make the classifier too sensitive to noisy training points. Higher 

values of k are more appropriate when the value of n, the number of training samples, is 

higher. One common rule of thumb is to set k to the square root of n, and the value of k is 

often chosen to be odd in order to avoid ties. When dealing with unstratified training data, 

which is to say when there are different numbers of training instances per class, it is 

appropriate to also consider the number of training instances belonging to each class, 

otherwise classes with too few training samples relative to k will be overwhelmed even if 

the training data is well clustered. 

The nearest neighbour classifier is a simplified version of k-NN where k is set to 1. 

This approach divides the feature space into a Voronoi tessellation. It has been shown 

that, as the number of training instances approaches infinity, the misclassification rate of 

1-NN is never worse than twice the Bayes’ rate, which is to say the optimal rate (Duda, 

Hart and Stork 2001).  

k-NN classifiers have a number of important advantages. They are very good at 

dealing with scenarios where instances belonging to a single class are distributed in 

feature space in several distant sub-clusters, as demonstrated in Figure 6.4. Their models 

are also easy to update even after they have been trained, since new training points can 

simply be added to the model. Also, the k-NN algorithm can be trained almost 

instantaneously since all it must do is memorize points (assuming no thinning has been 

applied). 

The disadvantage of k-NN is that, like other lazy learners, classifications can be 

computationally expensive to perform. A naïve implementation of k-NN will have a 

classification complexity of O(dn
2
), where d is the number of features and n is the number 

of training instances. Fortunately, a variety of more computationally efficient k-NN 

implementations are available, although eager algorithms do still tend to perform 

classifications significantly more efficiently. 
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Figure 6.4: An artificial example demonstrating one type of scenario where k-NN 

classifiers are particularly advantageous. Here the instances belonging to Class 1 are 

divided into two different clusters separated with other instances belonging to Class 2, 

such that there is no single linear discriminant that could segment this feature space in 

such a way that all instances of Class 1 would be found on one side of it and all 

instances of Class 2 on the other side. k-NN classifiers, in contrast, would be unaffected 

by the fact that the Class 1 instances are in two different clusters, as long as k is small 

enough compared to the number of instances in each cluster. 

k-NN classifiers are also limited with respect to the types of relationships between 

features that they can model. Classifications are based purely on distances, with no 

contingency for modelling conditional relationships between features. For example, 

consider the case of an experiment where one is attempting to classify musical recordings 

by genre, and the only feature that is available is the fraction of notes played by each 

different instrument. Ideally, a classifier will note from the training data that if even one 

note is played by an electric guitar then one can categorically eliminate all traditionally 

performed pre-20
th

 century genres from contention. k-NN classifiers cannot learn this, 
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however, as they are incapable of modelling such logical relationships between features. 

Consequently, the extensive use of a flute in a progressive rock recording also containing 

a very small amount of electric guitar might cause a k-NN classifier to falsely conclude 

that the piece is a classical flute sonata, for example. 

6.2.6.5 Feedforward neural networks 

Feedforward neural networks (FNNs) are a type of nonparametric classifier than can 

model more sophisticated relationships between features than purely distance-based 

classifiers. They can also typically perform classifications more quickly than classifiers 

like k-NN, although training them usually takes much longer. FNNs are a member of a 

class of classifiers called artificial neural networks that are inspired by the organic brain, 

although they do not actually simulate neurological processes. 

FNNs are composed of units called nodes that are also sometimes called neurons. 

These nodes are interconnected by unidirectional links, each with an associated weight. 

Learning in FNNs takes place by iteratively modifying the values of these weights. 

The nodes of FNNs are organized into layers. The input layer is composed of nodes 

that are provided with input data directly. For the purposes of classification, each node in 

the input layer is typically given a value corresponding to a single feature value. There is 

also an output layer, whose nodes provide the output of the FNN in response to each 

input pattern placed on the input nodes. A typical approach to using networks for 

classification involves associating one output node with each possible class, although 

there are alternative approaches. 

A FNN consisting of only an input layer and an output layer is called a perceptron. 

An important limitation of perceptrons is that they are only capable of learning linearly 

separable patterns. This means, for example, that they cannot learn a Boolean XOR 

function. In order to address this issue, one or more hidden layers of nodes may be added 

in between the input and output layers. The kind of FNN that results from doing this is 

called a multilayer perceptron. The universal approximation theorem for neural networks 

states that any continuous function that maps some interval of real numbers to some other 

interval of real numbers can be approximated arbitrarily closely by a multilayer 

perceptron with only one hidden layer, assuming an appropriate activation function such 

as the sigmoid function is used (see below). 
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 Multilayer perceptrons are perhaps the most commonly used artificial neural network 

architecture. The presence of one or more hidden layers results in a classifier that 

essentially acts as a black box, since only the input and output layers are interacted with 

directly. 

Each node in a FNN has a link to every node in the previous layer (if any) and to 

every node in the subsequent layer (if any). Each node also has an activation level, which 

is the value propagated down the links leading to nodes in the subsequent layer, or to the 

output sensors in the case of nodes in the output layer. 

The activation level of a node is calculated by adding the values on all of the links 

coming into the node from nodes in the previous layer and processing the sum through an 

activation function. The value on each link is calculated by multiplying the link’s weight 

and the value placed on the link by the node preceding it. Some FNNs also include a bias 

unit, or bias node, for each hidden or output node that outputs a constant value through a 

weighted link. 

The activation function must be continuous, as its derivative is taken during training. 

A commonly used activation function is the sigmoid function: 

 

                                                  (6.8) 

 

As a side note, in practice it is usually best to scale model outputs to between 0.1 and 0.9 

when using the sigmoid activation function, as using a range between 0 and 1 can overtax 

the network. 

Stated more formally, the net input into an input node is simply the input value placed 

on it. The net input netj into a hidden or output node j is given by: 

 

                                                    (6.9) 

 

where wb is the weight of the bias link, b is the bias constant (0 if no bias node are used), 

each i corresponds to a node in the preceding layer, n is the number of nodes in the 

preceding layer, wij is the weight on the link from node i to node j, and oi is the output of 

node i. The output of node j with net input netj and a sigmoidal activation function is 

then: 
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            (6.10) 

 

FNNs are trained by putting training patterns on their inputs and observing how the 

outputs of the network differs from the model outputs. Weights are then iteratively 

adjusted in order to make the output closer to the model output using gradient descent. 

The specific process of first adjusting the weights leading into the output nodes and then 

successively adjusting the weights in each preceding layer is known as backpropagation.  

The training modifications to the weights leading into an output node k are adjusted 

by first calculating δk, the error signal: 

            (6.11) 

 

where tk is the target or model activation value for the unit k, ok is the actual activation 

value, netk is the net input into k, and f' is the derivative of the activation function. For the 

sigmoid activation function: 

            (6.12) 

 

The weights leading into output unit k from each unit j in the preceding layer, wjk, are 

adjusted as follows from iteration t to iteration t+1: 

 

            (6.13)  

 

where 

 

             (6.14)  

 

and η and α are neural network parameters known as the learning rate and the 

momentum, respectively. The momentum term is sometimes omitted. These 

hyperparameters control how quickly a neural net is likely to converge to a stable solution 

and how likely it is to get stuck in a poor local minimum in error space far from the 

global minimum. The learning rate controls how large the adjustments to the weights are 

during each training iteration (i.e., how large the steps are in error space towards a 

solution), and the momentum stops the network from ineffectually oscillating back and 

forth in error space from iteration to iteration by taking into account the previous 

adjustment to each weight. Increasing the learning rate can cause a network to converge 
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faster, but a value that is too high may also cause the network to jump around so much 

that it does not converge. Increasing the momentum also usually increases the speed of 

convergence, but can cause poor classification performance if it is set too high. As rules 

of thumb, a value of 0.2 or less is often best for the learning rate, and values between 0.5 

and 1 are usually best for the momentum. The initial values of the weights are randomly 

determined.  

The error signal for a hidden unit, j, behind unit k in a subsequent layer is given by: 

            (6.15) 

 

The weight change formula used to modify the weights of the links pointing to a hidden 

unit is the same as that for the links pointing to an output unit (equation 6.14). 

There are a variety of ways of going about the training process, all of which for the 

most part produce similar results. One can simply feed the training samples into the 

network one by one, and adjust the weights after each sample, a process called online 

learning. If one is inclined to be more mathematically orthodox, one can instead only 

actually implement the weight adjustments after all of the adjustments have been 

calculated for a particular training sample in its entirety, a process called offline learning. 

In practice, either approach can work well, but it is generally a good idea to randomly 

order the training samples if online learning is used in order to avoid receiving many 

similar patterns consecutively, which could be conducive to falling into a poor local 

minimum in error space. 

The process of classifying the entire training set once and updating the weights based 

on the error signal is called an epoch or a training iteration. Many epochs are usually 

needed before the network converges to a good solution. An indication of convergence 

can be measured by observing the rate of change from epoch to epoch of the sum of 

squares error between the model output activation values and the actual values, E: 

            (6.16) 

  

Convergence can generally be said to have occurred when this error stops changing 

significantly from epoch to epoch, although it is not unknown for a network to seemingly 

converge for a large number of epochs before suddenly starting to change significantly 

again. 
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There is some disagreement in the literature as to the best number of hidden layers to 

use and how many hidden nodes should be used in each. de Villiers and Barnard (1992) 

offer some convincing arguments that more than one hidden layer can actually degrade 

performance rather than improve it, for example. There have also been a number of 

competing formulas proposed as to the ideal number of hidden units to use. For example, 

Wanas et al. (1998) claim that the best performance, in terms of both performance and 

computation time, occurs when the number of hidden nodes is equal to log(n), where n 

represents the number of training samples. There is no real consensus on this matter in the 

literature, however, and the optimal number of hidden nodes likely depends on the 

particularities of each individual problem. 

A good experimental approach is to test performance by gradually adding hidden 

nodes one by one until the performance fails to improve by a certain amount. There are 

many variations of this approach, including Ash’s pioneering work (1989). Another 

approach is to use techniques such as genetic algorithms to optimize network architecture. 

Alternatively, one can in some cases reflect perceived structure in the application domain 

in the network architecture. In any case, it is true in general that increasing the number of 

hidden units increases the complexity of the functions that can be modelled, but also 

increases the training time and, potentially, the probability that the network will not 

converge or will overfit the data. In practice, it can be helpful to pre-process features so 

that the input is normalized for factors such as size and rotation in order to simplify the 

job of the learner. 

Feedforward neural networks are just one of the many varieties of artificial neural 

networks that exist, each with its own strengths and weaknesses. For example, recurrent 

neural networks include connections from the output nodes back to nodes in earlier 

layers, something that incorporates memory into the network so that present classification 

results can influence the classification of subsequent instances. This is useful in 

classifying data whose sequence is meaningful, such as chord progressions. Kohonen self-

organizing networks perform unsupervised learning, to give another example. These are 

just a few of the many varieties of artificial neural networks that have been developed. 
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6.2.6.6 Discriminant-based classifiers: Linear classifiers, SVMs and decision trees 

Discriminant-based classifiers are the last type of classifier that will be discussed in 

this sub-section. Such classifiers focus on finding the discriminants that separate instances 

from different classes by estimating the parameters of these discriminants directly. This 

differs from likelihood-based classifiers, such as many of the classifiers discussed above, 

which attempt to estimate the parameters of feature probability distributions instead of 

directly focusing on the discriminants themselves. One can therefore avoid needing to 

make potentially faulty assumptions about whether features are correlated or about what 

kind of statistical distributions the features follow when using discriminant-based 

classifiers. 

The trade-off is that discriminant-based classifiers must often make potentially 

incorrect assumptions about the discriminants themselves. Linear discriminant-based 

classifiers, for example, assume that instances of a class are linearly separable from 

instances of other classes, something that is often not in fact true. In practice, however, 

good classification performance can still often, but not always, be attained even when the 

true discriminants are not in fact linear. Although approaches can certainly be used where 

higher-order discriminates are calculated (quadratic classifiers in particular have some 

limited popularity), the use of linear discriminants have several significant benefits: 

training and classification speed tend to be very high,
152

 classification performance tends 

to be high even when there are many input features and the risk of overfitting is reduced. 

It is therefore often a good idea to try a linear discriminant-based classifier to see if it is 

sufficient before using more sophisticated techniques. 

Put more formally, one can define the i
th

 discriminant as gi(x|Φi), where x represents 

the input features and Φi represents the discriminant parameters. Learning is thus an 

estimation of Φi. Each of a set of d linear discriminants can then be written as: 
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where wi are the weights that must be learned. 
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 Efficiency of linear classifiers is O(d), where d is the number of features. Quadratic classifiers, in 

contrast, are O(d
2
). 
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Such sets of linear discriminants define hyperplanes in feature space. If all classes are 

linearly separable, then there must exist a hyperplane such that all instances belonging to 

any one class will be found on one side of the hyperplane and all instances belonging to 

all other classes will be found on the other side of the hyperplane. So, assuming once 

again that a problem is linearly separable, one need only find a discriminant defining such 

a hyperplane for each class in order to arrive at an optimal classifier. 

If the classes are not in fact linearly separable, then one imperfect but often 

reasonably effective solution is to divide the problem into a set of linear sub-problems 

using a technique called pairwise separation of classes. This approach requires that a 

separate hyperplane discriminant be found for each pair of classes, which is to say that 

K(K-1)/2 linear discriminants must be found if there are K classes.. 

An alternative approach for dealing with problems that are not linearly separable is to 

substitute in terms that are non-linear functions of the original features in order to perform 

a mapping into a higher-dimensional space where the problem may in fact be linearly 

separable. Higher-order terms, sinusoids or logarithms are all examples of functions that 

might be used in such substitutions. Stated more formally, one can express a discriminant 

as a linear sum of nonlinear basis functions, also called kernel functions. For example, for 

two input features, x1 and x2, one can define five new variables, z1=x1, z2=x2, z3=x1
2
, 

z4=x2
2
 and z5=x1x2, which can then themselves be combined in an entirely linear function. 

A linear discriminant may thus be defined in the five-dimensional z-space that 

corresponds to a nonlinear discriminant in the two-dimensional x-space. 

Returning to the training of linear discriminants in the form of Equation 6.17, 

regardless of whether the x are the original features or kernel functions, the weights w are 

typically learned using gradient descent. Much as described above for backpropagation 

artificial neural networks, this involves iteratively reducing classification errors on 

training data by finding the gradient of the error function with respect to the discriminant 

weights, which are initialized randomly.  

It is desirable to not only find a hyperplane that separates instances belonging to a 

class from instances not belonging to it, but to find the particular hyperplane that 

maximizes the distance between itself and training instances in order to improve its 

ability to generalize and thus not overfit the training data. The distance from the 
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hyperplane to the instances closest to it on either side is called the margin, and the 

optimal separating hyperplane is the hyperplane that maximizes the margin. Those 

particular training instances whose points in feature space constrain the width of the 

margin are called support vectors. 

Support vector machines (SVMs) are a popular and very effective type of classifier 

designed to find optimal separating hyperplanes. With respect to a simple two-class and 

two-feature problem, an SVM finds the line (or hyperplane, for feature spaces with a 

greater dimensionality) that maximizes the margin between the support vectors. Support 

vectors can be defined as the instances in feature space that lie on the maximum margin 

hyperplanes. The weights defining the discriminant are calculated by taking the average 

across all support vectors. 

It is useful to note that this approach in effect discards all training instances that are 

not close to the decision boundary by only using the support vectors to calculate 

discriminants. The efficiency of SVMs can therefore be improved by using a more 

efficient method to remove training instances on the interior before training the SVM in 

order to reduce the work that needs to be done during SVM optimization. 

Although SVMs are designed specifically for two-class problems, they can be 

generalized to K-class problems by defining K two-class problems, each one separating 

one class from all others. An alternative approach is to use pairwise separation of classes, 

as described above for linear classifiers in general, which requires K(K-1)/2 

discriminants. 

Kernel functions are often used in SVMs in order to be able to deal with problems that 

are not linearly separable by, as discussed above, mapping lower-dimensional spaces to 

higher-dimensional spaces where hyperplanes can in fact be used to effectively 

discriminate between instances. SVMs that use kernel functions are sometimes called 

kernel machines. The most popular kernel functions for SVMs are polynomials of various 

degrees, radial-basis functions and sigmoid functions. 

SVMs also sometimes use slack variables to deal with problems that are not linearly 

separable. Slack variables indicate the deviation from the margin of problem instances, 

which is to say instances whose feature coordinates fall on the wrong side of the 

discriminant or are on the correct side but are too close to it. These slack variables can be 
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used to improve performance by using them in a penalty term. This in effect creates a soft 

margin that permits some misclassifications, and a cost parameter can be used to control 

the balance between forcing rigid margins and allowing training errors. It is often best to 

err on the side of not making the cost penalty too large, as otherwise the risk of overfitting 

the training data can become too large. 

It is important to note that classifiers framed specifically as discriminant-based 

classifiers are by no means the only classifiers that can be used to estimate discriminants. 

For example, computational geometry can be used to easily estimate discriminants from a 

k-NN classifier, as noted earlier. In fact, SVMs are very similar to condensed k-NN 

classifiers that throw away training points that are not necessary to find discriminants. 

SVMs are also closely related to artificial neural networks, and an SVM using a sigmoid 

kernel function is in fact mathematically equivalent to a two-layer perceptron. The 

difference between discriminant-based classifiers like SVMs and classifiers such as 

feedforward neural networks and k-NN, however, is that discriminant-based classifiers 

estimate discriminants directly, rather than making them available as a by-product of 

other processing. Even most nonparametric classifiers effectively estimate feature 

probability densities, something that is avoided when using discriminant-based classifiers.  

Decision tree classifiers are another type of discriminant-based classifier. A decision 

tree is a hierarchical data structure that performs classifications using a divide-and-

conquer strategy that breaks complex decision functions into series of simple decisions. 

Decision trees consist of internal decision nodes and terminal leaves. Each decision node 

implements a test function that takes as input the features of an instance and outputs a 

branch of the node that points to a particular subordinate decision node, a process called a 

split. The instance’s feature values are then in turn processed by the test function of the 

decision node that is selected by the previous split. This process starts at the root of the 

tree and is repeated recursively until a terminal leaf node is reached, whereupon a final 

class label is assigned to the instance. 

The test function of a given decision node can take a variety of forms. If the features 

being considered are discrete, then there is a branch for different possible combinations of 

features. If the features are numeric, then inequalities involving thresholds are used as 

decision rules. In either case, each test function effectively implements a discriminant. 



 327 

Univariate decision trees are a simple variant that only process a single feature in 

each decision node, although trees as a whole can still certainly process multiple features 

by processing different features in different decision nodes. The test functions of 

multivariate trees, in contrast, may take as input any of the available features. 

Omnivariate trees are a hybrid approach where some decision nodes process single 

features and some process multiple features. 

Decision trees have a number of important strengths. Some varieties, especially 

univariate trees, process data very quickly, even faster than linear discriminant-based 

classifiers in some cases. Also, decision trees are very compact in terms of space 

efficiency, as only discriminants need to be encoded, unlike some nonparametric methods 

like k-NN that must memorize feature values. Perhaps the greatest advantage of decision 

trees, however, is their interpretability. Unlike many other classification methods, like 

feedforward neural nets, for example, decision trees are not just black boxes that can be 

used to perform classifications. Instead, the decision rules implemented by the test 

functions of decision nodes can be examined in order to gain information about the 

solution to the problem that can be theoretically meaningful for the particular problem 

domain. This process is called knowledge extraction, and yields a hierarchy of if-then 

rules that can be applied to features in order to arrive at classifications. This is, of course, 

exactly what a decision tree actually does when performing classifications, and it is the 

resemblance to a naturally human intuitive way of making decisions that makes the 

discriminants learned by decision trees much more human-meaningful than the models 

learned by most other classification algorithms. 

It can be useful to calculate rule support when using decision trees, which is to say 

the percentage of training data covered by each rule, where a rule is said to be covered by 

an instance if the instance satisfies all conditions of the rule. Rule support can help show 

which decisions and which features are most important for arriving at classifications. 

Even though multivariate trees can solve more complex problems than univariate 

trees, the rules that they learn tend to be more complex and more difficult for humans to 

interpret. Univariate trees are often preferable to multivariate trees because of this and 

because of their efficiency, and in practice they can still often perform quite well even 

when applied to moderately complex problems. An additional advantage of univariate 
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trees is that they essentially perform their own feature selection, as they ignore features 

that they do not need. 

The disadvantage of decision trees, especially univariate decision trees, is that they 

are not as effective as many other algorithms at learning complex models. Nonetheless, 

the interpretability of decision trees and their speed has caused them to remain reasonably 

popular, at least for problems that are not too complex. They are especially popular for 

use in classifier ensembles, as discussed in Section 6.2.7. 

Decision trees learn their models from training data using a process called tree 

induction. There are several learning algorithms that can be used to implement this, 

including the well-known C4.5 algorithm (Quinlan 1993). In most cases, the goal of the 

process is to find the smallest (and therefore simplest, least susceptible to overfitting and 

easiest to interpret) tree that can be constructed with no error on the given training data. 

There are typically many possible such trees and, since finding the smallest tree is NP 

complete, one is forced to use local search procedures, most commonly greedy 

algorithms. The most common approach is start at the root, look for the best split, and 

then proceed recursively down the tree until no more splits are needed and a leaf can be 

created. The goodness of a split is measured using a metric called the impurity measure. 

A split is pure if, after the split, all instances in each branch belong to the same class. If a 

split cannot be pure, then the instances are split such that the split minimizes impurity.  

Unfortunately, noisy training data can easily lead to very large trees that overfit the 

data. Furthermore, splitting tends to favour those features with many possible values, 

which can also lead to overly large and complex trees. In order to minimize such 

problems, tree construction often ends when nodes become pure beyond some threshold, 

rather than strictly requiring an impurity of zero. Entropy, Gini index and 

misclassification error are three different ways of measuring impurity that for the most 

part perform similarly. An alternative approach is to introduce a metric that penalizes too 

much branching. In practice, it is generally best not to split a node if the number of 

instances reaching it is smaller than a certain percentage of the training set, such as 5%, 

regardless of impurity.  

The process of reducing the size of a decision tree is called pruning. Stopping tree 

construction before an impurity of 0 is reached, as discussed above, is called prepruning 
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the tree. Postpruning occurs after a full tree has been grown such that all leaves are pure 

and there is no training error. Postpruning involves setting aside a portion of the ground-

truth data into a pruning set and using it to test the full tree for overfitting so that it can 

then be pruned appropriately.  

6.2.7 Ensemble learning 

Ensemble learning involves using multiple classifiers to solve individual 

classification problems. Each of the component classifiers is called a base learner. In 

principle, any learning algorithm could be used by any given base learner, and the various 

base learners in an ensemble might each use either the same or different algorithms. 

There are a wide variety of techniques that can be used to coordinate the base learners in 

order to output overall classification results from the ensemble, and there are also a 

variety of ways of training ensembles. 

The practice of combining classifiers into ensembles is inspired by the notion that the 

combined opinions of a number of experts is more likely to be correct than the opinion of 

a single expert. Based on this, one might intuitively posit that an ensemble of classifiers 

will likely similarly perform better than one of its component classifiers operating 

individually. In practice this can often in fact be the case, assuming the use of a well-

designed ensemble, although it is certainly not guaranteed.  

One might reasonably question whether the increased computational demands and 

implementation complexity that typically accompany ensemble classification are justified 

if one is not guaranteed an increase in performance. Dietterich (2000) has proposed three 

reasons why classifier ensembles are worthwhile: 

 The statistical reason: Suppose one has a number of trained classifiers. Although 

it is easy enough to find how well they each perform on the training and validation 

samples, this knowledge still offers only an estimate of how well the classifiers 

will each generalize to the instance population as a whole. If several of the 

classifiers performed similarly on the validation data, then there is no way of 

knowing which classifier is in fact the best with respect to the population. If one 

chooses a single classifier, one runs the risk of accidentally choosing one of the 

poorer ones. This statistical argument is particularly strong in cases where only 
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limited training and validation data is available, as the evaluation of individual 

classifiers using validation sets is likely to have a potentially high error. 

 The computational reason: This argument applies to classifiers that train using 

hill-climbing or random search techniques. Training several multilayer 

perceptrons, for example, on the same training data might result in significantly 

different learned models, depending on the randomly generated initial weights. 

Aggregating these classifiers into an ensemble can take advantage of the 

multiplicity of solutions offered by each of the classifiers. The computational 

argument also highlights the particular appropriateness of unstable learners for 

ensemble classification, which is to say algorithms like decision trees, condensed 

k-NN
153

 or multilayer perceptrons that are very sensitive to differences in training 

data, in terms of factors such as the instances present or the features extracted, and 

can potentially converge to very different trained models when this information is 

changed only slightly.  

 The referential reason: This argument is based on the fact that there is no 

guarantee that the types of classifiers that one is using for a particular problem 

could ever converge to a theoretically optimal solution. To provide a simple 

example, consider a case where a researcher mistakenly believes that a given 

problem is linearly separable, and decides to use a linear classification algorithm. 

In reality, the optimal discriminants will be non-linear, so it is not possible for any 

linear classifier to perform optimally individually. However, an ensemble of linear 

classifiers could approximate non-linear decision boundaries, and could therefore 

potentially perform better than any single linear classifier could.  

An essential element in the effectiveness of classifier ensembles is their diversity. If 

all of the classifiers in an ensemble tend to misclassify the same instances, then 

combining their results will have little benefit. In contrast, a greater amount of 

independence between the classifiers can result in errors by individual classifiers being 

overlooked when the aggregate results of the ensemble are combined. So, even if the 
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 Only condensed nearest neighbour classifiers are unstable, as a nearest neighbour classifier without data 

thinning is in fact a good example of a stable learner. 
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component base learners of two different ensembles all have the same average 

classification error rate, the ensemble that has the greater base learner diversity will likely 

have a better overall ensemble classification error rate, which is what really matters. 

Many of the most successful ensemble approaches are therefore based on increasing 

classifier diversity. 

Classifier ensembles can achieve diversity in a variety of ways: 

 Each base learner may use a different learning algorithm. Different algorithms 

tend to be based upon different assumptions, so it is hoped that the bias error due 

to incorrect assumptions will be filtered out through the use of multiple 

algorithms. For example, one base learner might be parametric and another 

nonparametric, or one might use linear discriminants and another non-linear 

discriminants. 

 Different base learners may utilize the same learning algorithm, but with different 

hyperparameter settings. For example, one might vary k in a k-NN classifier or the 

number of hidden nodes in a multilayer perceptron. Randomly generated initial 

conditions of classifiers can also be varied, such as the initial weights of an 

artificial neural network. 

 Different base learners may use different representations of the input data, namely 

different features. This can be particularly useful when dealing with very different 

types of input, such as speech recognition based on video of the speaker’s lips as 

well as the audio signal. This approach can also be applied to classification 

problems in general, where different feature subsets are provided to different base 

learners based perhaps on random partitioning or on the output of different 

dimensionality reduction algorithms.  

 Different subsets of the available training data may be used to train the different 

base learners. As noted above, this is particularly appropriate when using unstable 

learning algorithms. 

Weak learners, which are learners that are likely to have only poor classification 

accuracy when applied individually, are often used in classifier ensembles. Weak learners 
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can have classification accuracies even as low as 55% on two-class problem, for example. 

The primary advantage of weak learners is that they tend to use simple classification 

models that are good at avoiding overfitting, something that can otherwise be a particular 

problem with classifier ensembles due to the increase in model complexity when multiple 

classifiers are combined together. Of course, even when using weak learners one must 

still be careful to avoid situations where the ensemble coordination methodology 

reintroduces a high risk of overfitting. 

An additional advantage of weak learners is that they are usually quick to train, an 

important consideration if one is using an ensemble consisting of many base learners that 

must each be trained. Decision stumps (decision trees with very short depths imposed on 

them) are one of the most commonly used weak learners in classifier ensembles, although 

there are certainly other alternatives as well. 

The obvious trade-off of using weak learners is that they are prone to underfitting, 

hence their poor individual performance. The assumption of classifier ensembles that use 

weak learners is that the bias error of individual learners is averaged out in the ensemble 

as a whole since many weak learners are used.  

Methodologies for combining the classifications made by individual base learners can 

be divided amongst several general groups. The first, classifier fusion, involves merging 

the classification results of all of the base learners via a process such as voting. The 

second, classifier selection, involves using some system to dynamically select which 

classifiers to use for classifying each particular given instance. The mixture of experts or 

stacking methods, as described below, are examples of how these two approaches can be 

combined together. 

There are also several basic approaches to training base learners and processing 

features when classifying. Multiexpert combination approaches involve base learners 

operating in parallel, such that the features of each instance to be classified are given to 

every learner. Multistage combination methods, in contrast, utilize serial approaches 

where each base learner is trained only or primarily on instances that learners earlier in 

the serial classification chain performed badly on. Then, during classification, the base 

learners can be sorted in increasing complexity so that a complex learner might only be 

used if the preceding simpler learners are not confident in their classification result for a 
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given instance. There is a rough but not universal correspondence between classifier 

fusion and multiexpert combination approaches, and between classifier selection and 

multistage combination approaches. 

Voting is perhaps the simplest approach to coordinating classifier ensembles. An 

average is compiled of the classification outputs of each base learner, and the class with 

the most votes wins. Each base learner may output a simple binary yes/no for each class, 

or it may associate certainty value with each class, depending on the algorithm used by 

each base learner. Each learner can also have a weight associated with it in weighted 

voting schemes, based on some measure of its accuracy relative to the other base learners. 

Voting essentially operates as an averaging filter that smoothes out errors made by 

individual base learners, and is particularly appropriate for base learners with a small bias 

and a small variance. 

Bagging, which is short for bootstrap aggregating, is a voting method where each 

base learner is trained using a different training set. The training sets are generated by 

bootstrapping, which means that, given N training instances, N instances are drawn with 

replacement for each base learner. This means that some instances may not be drawn at 

all for any given base learner’s training subset, and some may be drawn more than once.  

Bagging tends to work best when the base learners are unstable algorithms, which is 

to say that they are sensitive to the potentially small differences in training data that 

bootstrapping produces. As one might expect from the discussion above, weak learners 

are usually used because this is helpful in overcoming variance error, and the diversity of 

learners helps to overcome the bias error. Decision stumps are a popular choice of base 

learner in bagging ensembles, as they are both weak and unstable.  

Bagging is a good approach to use when only a limited amount of training data is 

available, since it enables the data to be reused by multiple base learners. However, if N is 

in fact very large then it is best to train each base learner on a subset of the training data 

consisting of fewer than N instances in order to help increase classifier diversity. In 

practice, though, bagging is rarely used when large amounts of training data are available, 

since alternative ensemble coordination techniques tend to perform better when training 

data is plentiful. 
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Boosting is an example of an ensemble coordination methodology that works better 

than bagging when reasonably large amounts of training data are available. Boosting 

involves serially training base learners on the training instances that previous base 

learners are unable to classify correctly. This means that successive base learners make up 

for the weaknesses of previous base learners, with the consequence that classifiers further 

along in the classification change correct the bias error of previous classifiers. Boosting 

can often result in exceptionally high classification accuracies, but it requires more 

training data than bagging in order to be effective, and it can be more susceptible to noisy 

training data and outliers. 

It is also generally best to use weak learners in boosting ensembles, particularly near 

the end of the classifier chain. This is because only relatively few training samples will be 

available late in the chain, and one must therefore be especially careful not to overfit 

them. Unstable base learners are also often a good choice, but less essentially so than with 

bagging.  

AdaBoost, short for adaptive boosting, is a boosting variant that is currently one of the 

most popular and effective ensemble classification algorithms. Although it does still 

typically require more training data than bagging in order to achieve good results, it does 

not need as much as more conventional boosting methodologies. Decision stumps are 

once again a particularly common choice of base learner for AdaBoost. 

There are several different versions of AdaBoost. Resampling variants 

probabilistically draw training instances for a given base learner, where the probability of 

a given training instance being chosen is proportional to the difficulty learners earlier in 

the chain had in correctly classifying it. Reweighting variants of AdaBoost perform final 

classifications using a type of voting where each base learner is given a voting weight 

based on its performance during training.  

The mixture of experts approach to classifier ensembles involves using a gating 

learner that adaptively learns voting weights to assign to base learners when voting is 

performed to arrive at the final class labels to assign to instances. The weights that are 

assigned to each learner by the gating learner depend on the particular instance being 

classified, since the gating learner is trained using feature values extracted from instances. 

This approach in effect encourages each base learner to become an expert specializing in 
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classifying particular kinds of instances, and the gating learner learns which such experts 

are best to consult for any particular instance. 

The stacking approach is similar to the mixture of experts approach, except that the 

coordinating learner is a combiner learner instead of a gating learner. Whereas a gating 

learner takes feature values as inputs and outputs voting weights associated with each 

base learner, the combiner learner takes in the output of each of the base learners as input 

and outputs the final classifications of the ensemble. The combiner therefore does not 

process feature values directly, and the base learners do not vote directly. The combiner 

instead learns to map base learner outputs directly to class labels, which means that it 

effectively learns how the base learners make errors relative to one another.  

The base learners in both the mixture of expert and stacking approaches are usually 

weak, but the coordinating learners are not. A multilayer perceptron is a common choice 

for the gating or combiner learner, as multilayer perceptrons naturally models weightings. 

Diversity can be incorporated into the base learners through varied features, training data 

or hyperparameters and, as always, one must be careful to avoid reintroducing variance 

error by overfitting the coordinating classifier. For example, the combiner should be 

trained using data that was not used to train the base learners. 

Cascading is another ensemble approach that involves a serial chain of base learners. 

For cascading to work, each base learner must be able to associate certainty scores with 

its classification outputs or, alternatively, some implementations use an additional 

coordinating classifier to judge the reliability of the base learners given particular feature 

inputs. In either case, if there is sufficient certainty in the classification output of a given 

base learner, then this classification is output as the final decision of the ensemble. If the 

ensemble is not sufficiently certain of the base learner’s classification it then defers to the 

next base learner in the chain. This means that the bias error of each classifier is 

essentially estimated for each instance and this is used to decide if the learner is 

competent to make a decision. 

Cascading can be sensitive to variance error that can result from inflated certainty 

estimations. It is therefore usually best not to use weak learners in cascading ensembles, 

as one wants the early classifiers to be correct most of the time, or at least competent 

enough to tell when they may be incorrect. The use of k-NN classifiers as base learners is 
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fairly common, as they are typically not weak learners and because they output a certainty 

score, namely the fraction of k corresponding to the chosen class. Of course, sufficient 

training data must be available to allow diversity in the base learners if k-NN is used. 

Multilayer perceptrons offer a good alternative to k-NN when less training data is 

available, as they are unstable classifiers, unlike uncondensed k-NN classifiers. 

Of course, the base learners used in cascading ensembles do not all need to be based 

on the same algorithm. In practice the base learners are usually sorted in terms of space or 

time complexity such that the learners earlier in the chain are faster. This can significantly 

reduce consumption of computing resources. In cases such as this, parametric classifiers 

such as the naïve Bayes’ classifier can be used, since they are fast and the posterior 

probability provides a good certainty estimation. The last classifier in the chain is still 

often nonparametric, however, as it serves as the last resort if none of the other classifiers 

can produce a classification with sufficient confidence. Also, the combination of 

parametric with nonparametric methodologies allows the parametric methods to classify 

typical instances and the nonparametric method to classify the exceptions. 

Classifier ensembles based on error-correcting output codes (ECOC) attempt to break 

a difficult classification problem into a set of simpler problems. Classifiers specialized in 

each of the simpler problems can then be trained and combined to arrive at final 

classifications. 

Each base learner is a binary classifier with an output of -1/+1. These classifiers may 

simply distinguish one class from all other classes, they may distinguish between only 

two classes or they may be trained to output the same value for different classes in order 

to generate useful code words. In any case, the output of the ensemble in response to any 

instance is in effect a binary code word. 

A code matrix of size K x L can then be formed, where K is the number of candidate 

classes and L is the number of base learners. The entries of the matrix are set to the ideal 

ground-truth classification results of each base learner. Each row (i.e., each class) is 

thereby assigned a code word uniquely identifying its class. ECOC ensembles always 

have many more base learners than candidate classes, as this incorporates redundancy 

into the code words, with the result that the Hamming distance between the code words 

increases. There are also a number of other methods that can be used to help increase the 
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Hamming distance. In any case, one of the many available binary error correction 

algorithms available can then be applied to the code words output by the classifier 

ensemble when classifying individual instances in order to flip incorrect bits generated 

due to errors made by individual base learners (Kuncheva 2004).  

Those interested in finding further information on classifier ensembles in general may 

wish to consult Kuncheva’s book (2004) or the book edited by Kandel and Bunke (2002).  

6.2.8 Ontological learning and blackboard systems 

Classification approaches that take advantage of structure in the class ontology of a 

problem can also be used. For example, one might organize musical genres into a 

hierarchical ontology where broad genres such as Jazz are at the root of the genre tree and 

narrower genres such as Dixieland, Swing and Bebop are nearer the tree’s leaves. Since 

classification problems generally increase in difficulty with the number of candidate 

classes, it can be useful to reduce a complex and difficult classification problem involving 

many leaf genres to a series of easier sub-problems. To continue the above example, the 

classifier might first solve a simple three-class Jazz/Classical/Rock problem and then 

address a series of increasingly more specific sub-problems using specialized models that 

are each trained to classify only amongst the direct descendants of each node in the tree. 

Such a hierarchical classification approach involving a hierarchically organized set of 

specialized classifiers has in fact been effectively used for musical genre classification in 

this manner (McKay 2004). This approach is also often applied to computer vision 

problems, where objects can be reduced to collections of smaller shapes, or otherwise 

organized hierarchically (e.g., Barutcuoglu and DeCoro 2006). 

This hierarchical classification approach not only has the advantage of taking 

advantage of knowledge about the problem domain to improve classification success 

rates, but can also result in misclassifications that are less severe than they might 

otherwise be when misclassifications do occur. This is because serious misclassifications 

will usually only occur when they are made near the top of the hierarchical class 

ontology, since classes become increasingly similar as one descends down the tree. 

Furthermore, this approach facilitates weighted penalization during training because of 

the knowledge embedded in the representation of the class ontology, although training 

schemes that penalize misclassifications between dissimilar classes more than 
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misclassifications between similar classes during training can certainly be used even 

when hierarchical classifier ensembles are not used. 

Blackboard systems offer a particularly interesting approach that was popular in the 

past, but is less fashionable recently, perhaps unfairly so. Blackboard systems consist of 

knowledge sources that are each experts in different problem domains and that each write 

hypotheses about a problem to a shared data space called a blackboard. Each knowledge 

source can then access information written to the blackboard by other knowledge sources 

and use it to refine its own hypotheses. Blackboards provide an excellent infrastructure 

for combining expert systems with supervised and unsupervised learning methodologies 

such that known information about a given problem domain can be incorporated into 

overall ensembles that also take advantage of machine learning to make up for areas of 

the problem domain that are poorly understood. The book edited by Jagannathan, 

Dodhiawala and Baum (1989) is a good source of information on blackboard systems. 

6.2.9 Sequential learning 

The classification algorithms described above and in Section 6.2.6 are designed to 

process instances individually, which is to say that it is assumed that the instances are 

independent and their ordering is irrelevant. Although this is certainly a reasonable 

assumption for certain types of classification, such as classification of songs by composer 

or mood, there are also many other cases where the sequence of inputs is significant. 

Melody and harmony, for example, are inherently sequential concepts. It is much more 

likely that a ii chord will be followed by a V chord than by a I chord in tonal music, for 

instance and, to give another example, speech recognition involves learning to associate a 

sequence of phonemes with a particular word. 

There are a number of classification algorithms designed specifically to deal with data 

where the sequence of inputs is meaningful. Although ACE in its current form does not 

yet include any such algorithms, their inclusion in a future version is a priority, so it is 

appropriate to briefly touch on a few highlights of sequential classification here. 

Recurrent neural networks, as briefly discussed in Section 6.2.6, are one well-known 

algorithm for dealing with sequential data. They incorporate a memory of previously 

encountered data via links leading from output nodes to nodes in previous layers. 
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Conditional random field classifiers offer another alternative for classifying 

sequential data, in this case using a probabilistic approach. An undirected graphical model 

is constructed, in which each vertex represents a random variable whose distribution must 

be inferred and in which each edge represents a dependency between the random 

variables of the two associated vertices. 

Hidden Markov models (HMMs) are perhaps the best-known sequential classifier, and 

are in effect a special case of conditional random fields with stricter assumptions about 

the input and output sequence distributions. Like conditional random fields, HMMs can 

be visualized as graphs, although in the case of HMMs the edges are directed, each vertex 

represents a state and the edges represent transition probabilities between the states. 

HMMs will be explained in some detail here, as they are a good illustration of how 

sequential classification can work. 

In order to illustrate HMMs, it is useful to consider a system that can be in one of N 

distinct states, S1, S2, . . . , SN. The state at some time or position, t, is denoted as qt. The 

system may move to a new state with some probability dependant on the previous states 

of the system in time: 

 P(qt+1=Sj | qt=Si, qt-1=Sk, . . . )       (6.18) 

A first-order Markov model makes the assumption that the state at time t+1 only 

depends on the state at time t, and not on time t-1, t-2, . . ., t1. This is equivalent to saying 

that the future depends on the present but not on the past. A problem can be further 

simplified by assuming that transition probabilities are independent of time, which is to 

say that the probability of going from Si to Sj does not change as time goes by. Put more 

formally, these assumptions mean that the probability of a transition, aij, from state i to 

state j becomes: 

aij = P(qt+1=Sj | qt=Si)        (6.19) 

where 

 0ija  and 1
1




N

j

ija         (6.20) 

and where N is, once again, the number of possible states. The set of all aij can then be 

combined into an NxN matrix A whose rows sum to 1: 

A=[aij]          (6.21) 
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The initial state, or first state, can be defined using the initial probabilities, πi, which 

gives the probability that the first state in the sequence is Si: 

πi = P(q1=Si) where 1
1




N

i

i        (6.22) 

The initial probabilities can then be expressed as a vector: 

Π=[πi]           (6.23) 

where the N elements sum to 1. 

In an observable Markov model the current state can be observed. Put more formally, 

the value of qt is known at time t, and one can observe the sequence of states that the 

model passes through over time, O: 

O = Q = {q1q2 . . . qT}        (6.24) 

whose probability is 

qTqTqqq

T

t tt aaqqPqPAQOP 12112 11 ...)|()(),|(         (6.25) 

Here πai is the probability that the first state is q1 and aq1q2 is the probability of going from 

state q1 to q2.  

In hidden Markov models, however, the states are not directly observable, although an 

observation can be made whenever a state is visited that is a probabilistic function of the 

state. In other words, information is observed when each state is visited that can give 

hints as to what that state might be. If there are M possible discrete observations of such 

hints of what the state might be, v1, v2, . . . , vM, then: 

bj(m) = P(Ot = vm | qt = Sj)       (6.26) 

where bj(m) is the emission probability or observation probability that vm is observed in 

state Sj. These emission probabilities can be collected into the matrix B=[bj(m)]. It is 

important to reemphasize that the probabilities are assumed to not depend on t, and that 

the values observed constitute the observed sequence O. The actual state sequence Q 

cannot be observed directly because the model is hidden, but it can be inferred from the 

observed sequence O. It is then useful to calculate the Q that is most likely to have 

generated O. The parameters of a hidden Markov model are thus: 

 λ=(A, B, Π)         (6.27) 

N and M are implicit in these. 

HMMs are usually used to solve three basic kinds of problems: 



 341 

 Given a model λ, what is the probability of a given observed sequence of events? 

In other words, what is P(O|λ)? There is an efficient recursive procedure for 

calculating P(O|λ) called the forward-backward procedure. 

 Given λ and O, what is the most likely state sequence Q? In other words, what is 

the Q* that maximizes P(Q|O,λ)? The Viterbi algorithm can be used to find the 

most likely state sequence using dynamic programming. 

 Given X, a set of k observed training sequences, what is the model λ that 

maximizes the probability of generating X? In other words, what is the λ* that 

maximizes P(X| λ)? The Baum-Welch algorithm can be used to solve this problem. 

A typical approach to using HMMs in classification is to have a set of HMMs, each 

one modelling sequences associated with one class. For example, for a speech recognition 

problem one could train a separate HMM model, λi, for each word of interest, where each 

state would correspond to a different phoneme. Given an unknown word consisting of a 

sequence of phonemes to classify, O, the P(O|λi) could be calculated for each λi. Bayes’ 

rule can then be used to find the posterior probabilities P(λi|O), and O is classified as the 

word associated with the λi with the highest posterior. 

If the input observations to an HMM are continuous rather than discrete, then one 

possibility is to discretize them using a technique such as vector quantization. This 

converts continuous values to discrete units. For example, a continuous sound signal of 

someone speaking can be separated into discrete phonemes by a pre-processing stage, and 

the resulting phonemes can then be processed by an HMM as described above. 

6.2.10 Meta learning 

Meta learning is a term that is overloaded in machine learning. For example, it is 

sometimes used to simply refer to classifier ensembles in general, a usage that is not 

adopted here. Instead, meta learning is used here to refer to the process of automatically 

selecting a good classification methodology or, potentially, combination of classification 

methodologies, to apply to a given classification problem using a data-driven empirical 

process. The choice of classification configuration can be very important decision since, 

as discussed previously in this section, different algorithms make different assumptions 

and are more or less suitable for different kinds of problems. 



 342 

Meta learning is often implemented by automatically performing experiments in the 

given problem domain where each of a variety of classification configurations are trained 

separately and tested comparatively in order to arrive at estimates of how well each 

performs. Different classification configurations can be evaluated with respect to 

classification error, classification consistency, training space and time complexity, 

classification space and time complexity, etc. Preference can also be given to algorithms 

that have desirable qualities for the particular problem domain, such as transparency, for 

example. 

An alternative approach is to either replace or supplement this process of successive 

experimentation with data analysis techniques that can automatically examine feature 

statistics and domain needs in order to form hypotheses about which types of classifiers 

might be a best fit for a problem, given known characteristics of different classification 

algorithms. Van Someren (2001) and Kalousis, Gama and Hilario (2004), for example, 

provide some interesting background relevant to this latter approach. 

Yet another approach to meta learning involves training a machine learning system to 

choose a classification configuration for particular problems, rather than just 

experimentally ranking the estimated performance of different configurations directly. 

Although some ensemble techniques such as stacking or mixture of experts do effectively 

do this, they tend to do so in a very limited sense, as they typically only choose between 

learners that are of the same type but trained differently, or between a few relatively 

simple algorithms. Work has also been done on training more sophisticated specialized 

meta learning coordinators (e.g., Dzeroski, Todorovski and Blockeel 2002). 

Meta learning can be used to select not only different algorithms, but also different 

algorithm hyperparameters and, if one is willing to experiment with classifier ensembles 

as well as individual classifiers, different approaches to combining algorithms into 

classifier ensembles. Meta learning can also be used to select between different pre-

processing or post-processing techniques, such as dimensionality reduction algorithms.  

As noted in Section 6.1.2, there are a number of important advantages to meta 

learning. Perhaps most important among these is that meta learning can make effective 

pattern recognition techniques available to users who might otherwise lack sufficient 

background in machine learning to select appropriate algorithms, and even individuals 
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with significant experience in machine learning can benefit from meta learning. The 

downside of meta learning, of course, is that it can be a computationally intensive and 

time consuming process to perform experiments with a wide variety of classifier 

configurations, particularly if many features and training instances are available to be 

processed. 

As discussed in Section 6.2.4, one must be careful to use statistically valid methods 

when comparing classifiers. A reserved publication set should be used to validate the final 

classification configuration output by the meta learning system in order to help ensure 

that the meta learning system itself is not overfitting the training data. Work has also been 

done on dataset sub-sampling techniques that can be used to partition training data in 

ways that improve meta learning performance (e.g., Fürnkranz et al. 2002). Appropriate 

hypothesis testing methodologies must also be used to verify that performance differences 

between different classification methodologies are actually statistically significant. 

6.3 Existing machine learning software libraries 

6.3.1 General machine learning software 

There are many available implementations of algorithms like those described in 

Section 6.2. Some of these are simple code libraries that may be embedded in external 

applications and some are complete applications with sophisticated user interfaces. 

Although there are far too many implementations to survey with any completeness here, it 

is appropriate to provide an overview of some of the best-known and most flexible pattern 

recognition frameworks.  

RapidMiner, formerly known as YALE (Ritthoff et al. 2001; Klinkenberg, Mierswa, 

and Ritthoff 2005; Mierswa et al. 2006; http://rapid-i.com), is one of the most popular, 

powerful and professional-looking data mining environments. RapidMiner is 

implemented in Java, and comes in an open-source version as well as an expanded 

enterprise edition. RapidMiner’s source code is available under a GNU General Public 

License as well as a proprietary OEM commercial license. It includes powerful graphical 

and command-line interfaces as well as an API.  

MatLab is a particularly popular framework for implementing and distributing 

machine learning implementations, and many of these toolboxes have become quite 
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popular, such as the Neural Network Toolbox.
154

 The disadvantages with all MatLab 

toolboxes, unfortunately, is that one must purchase and use the proprietary Matlab 

software.  

PRTools (van der Heijden et al. 2004) is one particularly appealing MatLab toolbox 

because it includes implementations of many different algorithms. PRTools’ license does 

not permit it to be redistributed freely, however. Octave (Eaton and Rawlings 2003) is a 

free alternative MatLab toolbox that includes a limited number of tools that can be used 

for classification. 

Torch (Collobert, Bengio and Marithoz 2002) provides a MatLab-like environment 

for applying machine learning, although it is implemented in C. It places a particular 

emphasis on efficiency, and is distributed under a BSD license. 

Orange (Demsar et al. 2004) is a set of C++ implementations of machine learning and 

data mining algorithms that also includes flexible data input and manipulation tools. 

Orange’s functionality can be accessed via the Python scripting language or via a visual 

programming environment.  

SciPy
155

 is another open-source software package associated with Python. It may 

certainly be used for machine learning, although its main focus is on mathematical and 

scientific computing in general, not specifically machine learning. 

The R Project (Ihaka and Gentleman 1996) is another alternative. Its particular focus 

is on statistical computing, and it is particularly well-known for its graphing capabilities. 

SEASR, or the Software Environment for the Advancement of Scholarly Research 

(Llorà 2008), is a Java-based framework that is particularly attractive because it facilitates 

distributed processing of computationally intensive tasks and because it provides a 

flowchart-based interface. Although the focus of SEASR tends to be more application 

driven, it can still be used for heavyweight data mining. 

There are many other less well-known machine learning frameworks available, such 

as Java-ML,
156

 MLC++
157

 and Tanagra.
158

 There are also many commercial data mining 
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 www.mathworks.com/products/neuralnet/ 
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 www.scipy.org 
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 java-ml.sourceforge.net 
157

 www.sgi.com/tech/mlc/ 
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 chirouble.univ-lyon2.fr/~ricco/tanagra/index.html 
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frameworks, such as XELOPES,
159

 but these are almost always both proprietary and 

closed source, which significantly limits their academic research potential. 

There are also several excellent frameworks designed with a specific focus on music, 

but they tend to implement only limited data mining functionality relative to general 

purpose systems like RapidMiner. Marsyas (Tzanetakis and Cook 2000), CLAM (Arumi 

and Amatriain 2005), MIRToolbox (Lartillot, Toiviainen and Eerola. 2008) and sMIRk 

(Fiebrink, Wang and Cook 2008b), for example, are particularly well-designed MIR 

frameworks, but tend to focus much more on audio processing and feature extraction than 

on more sophisticated machine learning techniques like ensemble classification and meta 

learning. 

One particularly interesting exploratory system that is both music focused and 

commercial in nature is Sony EDS (Pachet and Aymeric, 2004). This framework has the 

advantages of allowing dynamic construction of audio features and of allowing the use of 

specifiable heuristics. However, Sony’s approach focuses specifically on genetic searches 

rather than on experimenting with a diverse range of algorithms, and emphasizes the tasks 

of similarity and recommendation rather than music classification in general. 

6.3.2 Weka 

Weka (Witten and Frank 2005; http://www.cs.waikato.ac.nz/ml/weka/), or the 

Waikato Environment for Knowledge Analysis, is another well-known Java-based data 

mining package. It is given special attention here because it is the most popular machine 

learning library in the MIR research community and because ACE uses Weka’s classifier 

implementations. Weka is not only useful as a source of off-the-shelf algorithm 

implementations, but also as a platform for developing and distributing new algorithms. 

Weka is entirely open-source and is available under a GNU General Public License. It 

includes implementations of a wide variety of machine learning algorithms and related 

tools, and there is relatively good supporting documentation available for it. Weka reads 

and writes Weka ARFF files, which are essentially enriched delimited text files, and also 

provides access to SQL databases via JDC. 
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Weka provides several user interfaces. The ―Explorer‖ interface, which is intended as 

the main interface, is a GUI that permits users to pre-process data via ―filters,‖ identify 

relationships between features, apply dimensionality reduction algorithms, apply 

supervised classification and regression algorithms, apply clustering algorithms, estimate 

the accuracy of learned models and visualize results. As indicated by its name, the 

Explorer interface is largely intended for exploring and experimenting with data. 

The other Weka user interfaces are perhaps more suited for heavyweight machine 

learning. The command-line interface is particularly powerful, and can be capitalized 

upon by using scripting to automate sequences of tasks. As a visual programming 

alternative to the command-line, the ―Knowledge Flow‖ interface allows Weka’s 

functional components to be accessed via a component-based GUI. The ―Experimenter‖ 

is another graphical interface that is primarily intended for comparing the performance of 

Weka’s machine learning algorithms on collections of datasets. The most useful of 

Weka’s interfaces, from the perspective of embedding Weka’s functionality into other 

software applications like ACE, is Weka’s well-documented API. 

6.3.3 Meta learning software 

There are a few available systems that implement experimental meta learning 

functionality. Many of these are excellent general-purpose systems, and are therefore 

briefly reviewed here, but many of them unfortunately fail to meet the particular needs of 

music classification (see Section 6.4.5). 

Consultant (Sleeman, Oehlman, and Davidge 1990), an ESPIRIT project, is an early 

software tool designed to aid users in selecting appropriate data mining tools by 

comparing different algorithms. ESPIRIT later produced two other meta learning-related 

efforts, namely Statlog (Michie, Spiegelhalter, and Taylor 1994) and METAL (Widmer 

1996). The Data Mining Advisor (Brazdil, Soares and Costa 2003), a descendant of the 

METAL project, is a web-based assistant that outputs a ranked list of algorithms 

according to a weighted combination of parameters such as time and accuracy. 

The Algorithm Selection Tool (Lindner and Studer 1999), or AST, offers a means of 

selecting algorithms using a case-based reasoning approach. Users are given explanations 

for each algorithm recommendation in the form of past experiences that are available for 

the case base. 
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The Intelligent Discovery Electronic Assistant (Bernstein, Provost and Hill 2005), or 

IDEA, can be used to automatically choose appropriate data mining ―processes,‖ 

depending on user needs such as accuracy and time complexity. A process may involve 

data preparation, classification and post-processing. The system generates possible 

processing steps for a specific task and then ranks them according to user specifications. 

The speed estimation is pre-determined based on tests with UCI data and the accuracy 

estimation is ―autoexperimented‖ using a subset of the dataset. 

SwissAnalyst (Povel and Giraud-Carrier 2004) is an open-source Java data mining 

environment built upon Weka. It places a particular emphasis on exploratory business 

research. The GUI is divided into five basic sections: Data Sources (loading datasets), 

Pre-Processing (dataset transformations), Data Exploration (statistics and visualization), 

Model Definition (defining and executing mining models), and Trained Models 

(evaluating and applying models to new datasets). SwissAnalyst can pre-select 

classification schemes based on the type of input data. 

TunedIT (tunedit.org) is a new application for comparing different machine learning 

algorithms. It is designed specifically to evaluate the performance of new machine 

learning algorithms relative to existing ones, but it can potentially be adapted to meta 

learning in general. TunedIT is also associated with a knowledge base to which 

experimental results can be published and a repository where resources such as algorithm 

implementations and data sets can be stored. 

Giraud-Cartier and Keller (2002) provide an excellent historical background on meta 

learning systems. 

6.4 ACE’s functionality 

As noted in Section 6.1.2, ACE is a software application designed to make powerful 

machine learning techniques accessible even to researchers with little or no background in 

machine learning. This includes users such as musicologists, music theorists, librarians 

and psychologists who possess valuable insights into MIR problems but might not have 

training in machine learning. This is important, as experts in pattern recognition rarely 

have specialized knowledge in individual application areas like music, and experts in 

these application areas rarely have expertise in pattern recognition. ACE’s meta learning 
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functionality can be used to automatically experimentally evaluate the effectiveness of 

different machine learning algorithms with respect to any given problem, which means 

that ACE can automatically recommend the specific machine learning algorithms that are 

appropriate for a particular problem to a researcher without the researcher needing to 

understand how the machine learning algorithms actually work. ACE then allows users to 

train a classification model using the chosen algorithm(s), and then use this trained model 

to classify unidentified instances. 

ACE is also intended to be a useful tool for users who do in fact have strong 

backgrounds in machine learning by providing a framework for developing, evaluating 

and applying machine learning algorithms. Of particular interest, expert users can use 

ACE to benchmark and compare the performance of new classifiers and features relative 

to the baseline provided by ACE’s already implemented algorithms and features that can 

be extracted using jMIR’s feature extractors. This process is facilitated by the fact that 

ACE uses Weka classifiers as plug-in modules, something that makes it easy to 

implement new algorithms in the Weka framework and then experiment with them in 

ACE. 

ACE is designed specifically for music classification, and has a number of important 

strengths in this domain relative to alternative general machine learning systems, as 

explained below. However, ACE can certainly also be easily applied to non-musical 

classification problems as well. 

Figure 6.5 provides an overview of ACE and its role in jMIR. The input to ACE 

consists of extracted feature values, ground-truth labels
160

 and an optional structured class 

ontology.
161

 This information can all be represented in ACE XML Feature Value, 

Instance Label and Class Ontology files, respectively (see Chapter 7). This is convenient 

in using ACE with other jMIR components, such as feature values saved in ACE XML 

Feature Value files by jAudio, jSymbolic or jWebMiner, or labelled ground-truth saved in  

                                                 
160

 Ground-truth labels are only needed if a model is to be trained or if cross-validation or meta learning are 

to be performed. They can of course be omitted if ACE is simply being used to classify instances using a 

previously trained model. 
161

 Structured ontologies can be used by certain classification algorithms, such as hierarchical classifiers, 

and can also facilitate weighted training schemes that penalize misclassification into similar classes less 

severely than other types of misclassification. Such algorithms are not yet implemented in ACE, but its file 

formats and data structures are already designed to store and communicate structured class ontologies in 

anticipation of the addition of this functionality in the future. 
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Figure 6.5: The flow of information in and out of ACE. ACE XML (or Weka ARFF) files 

are used to input feature values, ground-truth labels and/or a structured class ontology. 

ACE then automatically partitions the input instances based on whether classification, 

training, cross-validation or meta learning experimentation is to be performed. ACE then 

uses its catalogue of dimensionality reduction and classification algorithms, including 

classifier ensembles, to perform the desired task. It then outputs predicted instance 

labels, trained classification models or algorithm evaluations, depending upon the task 

selected by the user. 
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ACE XML Instance Label files using jMIRUtilities (see Section 8.8). Feature values and 

ground-truth may alternatively be input to ACE via Weka ARFF files
 
(Witten and Frank 

2005), although the use of ARFF instead of ACE XML imposes certain limitations on 

how ACE can be used, as certain types of information that can be taken advantage of by 

ACE cannot be represented in ARFF. 

6.4.1 Core processing performed by ACE 

ACE is designed to perform four basic types of tasks: 

 Training: A classification model is trained and saved based on feature values and 

associated ground-truth class labels provided by the user. The particular 

dimensionality reduction and machine learning algorithms to be used are specified 

by the user, based either on the results of prior meta learning performed with ACE 

or on some other reasons that the user may have. 

 Classification: A previously trained classification model specified by the user is 

used to classify instances based on features that have been extracted from them. 

ACE then outputs the resulting predicted class labels for each instance. 

 Cross-validation: Cross-validation is performed on user-specified feature values 

and ground-truth using dimensionality reduction and classification algorithms also 

specified by the user. This can be useful in evaluating the performance of a 

particular feature set or a particular algorithm, for example. A variety of 

performance statistics are output by ACE. 

 Experimentation: Meta learning is applied to the provided data in order to 

evaluate the appropriateness of different classification approaches to the given 

application domain. ACE experiments with different dimensionality reduction 

algorithms combined with different classification algorithms and, in some cases, 

different algorithm hyperparameters. ACE begins the experimentation process by 

generating several different feature subsets, one for each dimensionality reduction 

algorithm. Cross-validation is then performed once for each candidate 

classification algorithm on each such feature subset. Reports are then generated 

indicating the best performing dimensionality reduction and classification 
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algorithm pairing and providing associated statistics. Information is also provided 

on all other algorithm combinations that were experimented with as well. 

ACE automatically partitions input data in ways that depend on the type of task that is 

to be performed. If only classification or only training is to be performed, then all of the 

input data will simply be processed in a single group. If cross-validation is to be 

performed, then the data is automatically partitioned into folds, such that each fold is 

appropriately divided into training and testing sets. 

If meta learning experimentation is to be performed then, as of ACE 2.0, some of the 

input data is randomly reserved as a final publication set to be used in evaluating the best-

performing dimensionality reduction and classification algorithm pair. The non-

publication data is used in the cross-validation experiments that are performed in order to 

evaluate each algorithm pair. The algorithm pair that has the highest cross-validation 

performance is then used to train a new model that is trained on the entirety of the data 

that was previously used in the cross-validation experiments. Finally, the resulting model 

is validated on the reserved publication set, in order to test for overfitting by the meta 

learning process. 

There are a number of ACE parameters and pre-processing options that may be 

selected by users, including: 

 A maximum may be imposed on the percentage of instances that are permitted to 

belong to any single class in the data used for training and validation. This can be 

useful in helping to ensure that, in cases where far more instances are available 

belonging to one class than another, the classifiers do not train to a local 

performance maximum where instances are never classified to classes that are rare 

in the training data, or that the ability to classify to rare classes is not undervalued 

during evaluation. This option causes excess instances belonging to overly 

common classes to be randomly filtered out from the training, validation and 

publication datasets. 

 A maximum may be imposed on the number of instances that may belong to each 

class in the training data. Instances beyond this number are removed from the 

training data. This can be useful for similar reasons as imposing a maximum on 
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the class ratio, as described above, and can also be advantageous in speeding up 

training when very large datasets are available. 

 The instances may be processed in the order that they appear in the input files, or 

they may be ordered randomly. The order in which training instances are 

processed can have an influence on the models trained by certain classification 

algorithms, such as feedforward neural networks. 

 The number of folds to use during cross-validation. 

 The maximum number of features beyond which exhaustive dimensionality 

reduction searches will not be experimented with. 

 Whether basic or verbose reports are to be generated. 

6.4.2 Information output by ACE 

The output of ACE depends on which of the four basic tasks described in Section 

6.4.1 is requested by the user. If basic training of a model is to be performed using a 

specified classification algorithm, then the output is simply the trained model itself saved 

as a Weka Java serialized object. Although there are long-term portability disadvantages 

with the use of such serialized objects (see Section 7.2.6), the classifier implementations 

used by ACE are all part of the Weka library, and Java serialized objects are the 

methodology used by Weka to save trained models. It is necessary for ACE to conform to 

this practice in order for the models that it trains to be distributable to others who may 

wish to use the trained models directly with Weka. 

Users who wish to use a previously trained model to classify a set of instances may 

have ACE output predicted class labels for each instance to either ACE XML Instance 

Label files or Weka ARFF files. Additional useful information may also be printed to 

standard out. The nature of this additional information depends on whether model 

classifications are provided along with the trained model. If such model classifications are 

available, then the identifier of each instance is specified by ACE along with its predicted 

classes and model classes. Instances whose predicted classes do not correspond to their 

model classes are marked with asterisks, and summary statistics are provided indicating 

the total number of classifications and the percentage of predicted class labels that match 
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the corresponding model class labels. If no model classifications are available, then the 

predicted class labels of each instance are simply listed. This additional information is 

provided primarily for quick and easy access during debugging, however, and it is the 

ACE XML or Weka ARFF files mentioned above that are intended as the primary output. 

The basic output produced when cross-validation is performed consists of the 

classification success rate for each fold and a confusion matrix for each fold. Overall 

statistics are also provided, including the average success rate across folds, the standard 

deviation of the success rates across folds, a confusion matrix averaged across folds, the 

processing time and the name of the dimensionality reduction and classification algorithm 

configuration that were applied at the user’s behest. Users may also select the verbose 

output option, in which case it is also indicated for each fold which instances were used 

for testing and which were used for training, as well as the predicted versus model class 

labels for each test instance. 

As one might expect, the greatest volume of user feedback is produced when meta 

learning experimentation is performed. As noted above, ACE begins the experimentation 

process by generating several different feature subsets, one for each dimensionality 

reduction algorithm. Cross-validation is then performed once for each classification 

algorithm on each such feature subset. ACE generates a separate report for each such 

feature subset, specifying the features selected (or their projections, if appropriate) as well 

as, for each classification algorithm, the cross-validation average success rate, the 

standard deviation of the success rate across folds and the processing time. The best 

performing algorithm for the feature subset is also highlighted, and its confusion matrix is 

provided. If the verbose output option is selected, then detailed information is also 

provided on the he dimensionality reduction, with content that depends on the particular 

algorithm. 

A summary meta learning experimentation report is also generated, indicating the 

classifier and dimensionality reduction algorithm pair that achieved the highest average 

cross-validation success rate. Its cross-validation performance during experimentation is 

repeated from its corresponding feature subset report, for ease of reference. More 

significantly, the classification results of the selected algorithm pair applied to the 

reserved publication set are also reported. A comparison of the classification results on 
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the publication set with the cross-validation results from the meta learning comparison 

experiment can help to indicate if the meta learning algorithm overfitted the available 

data and, if not, what kind of performance can be anticipated on novel instances. If the 

verbose output option is selected, then the predicted and model class labels are indicated 

for each instance in the publication set, along with detailed information regarding the 

dimensionality reduction performed. 

6.4.3 Algorithms used by ACE 

The following algorithms are packaged with ACE: 

 Dimensionality reduction algorithms: 

o Principal component analysis 

o Genetic search 

o Exhaustive search 

 Base classifier algorithms: 

o C4.5 decision tree classifier 

o Naïve Bayes classifier 

o K-nearest neighbour classifier 

o Backpropagation neural network classifier 

o Support vector machine classifier 

 Classifier ensemble algorithms: 

o Adaboost 

o Bagging 

These particular algorithms were chosen because they are all well established and have a 

variety of relative advantages and disadvantages.  

As mentioned above, ACE makes use of the Weka API, so the Weka implementations 

of all of these algorithms are used. It is a relatively simple matter to add additional 

algorithms to ACE once they are implemented in Weka. A reference to a new Weka 
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algorithm need only be added to a single ACE Java class, after which the new algorithm’s 

functionality will automatically become accessible to all other aspects of the software. 

This means that those wishing to experiment with algorithms beyond those already 

packaged with ACE have available to them the extensive library of algorithms already 

implemented as part of Weka. This library is also constantly expanding, as the Weka 

development community is quite active. 

ACE not only performs experiments during meta learning with different classification 

algorithms, but also automatically experiments with different hyperparameterizations of 

some of these algorithms. The particular hyperparameterizations depend on the individual 

algorithms. For example, experiments with k-NN are automatically performed with a 

variety of values of k, as well as versions that are unweighted, weighted by distance and 

weighted by similarity.
162

 To provide another example, the naïve Bayes’ classifier is 

applied using both a basic Gaussian kernel and a kernel density estimator. By default, the 

classifier ensemble algorithms are seeded with decision tree stubs and the genetic search 

dimensionality reduction uses a naïve Bayes’ classifier to evaluate chromosome fitness. 

6.4.4 Administering jMIR projects 

ACE can be used to organize and administrate jMIR projects. ACE includes 

functionality for generating, modifying and accessing jMIR projects via ACE XML 

Project and ZIP files (see Section 7.11.1), as well as for viewing, editing and saving 

component ACE XML Feature Value, Instance Label, Feature Description and Class 

Ontology files. ACE can also be used to translate Weka ARFF files to ACE XML, and 

vice versa. 

jMIRUtilities (see in Section 8.8) is also a useful tool performing administrative tasks 

relating to integrating jMIR components with each other and with external sources of 

data, such as iTunes XML files. jMIRUtilities also automates some tasks that can also be 

performed with ACE as well. For example, the ACE GUI can be used to annotate 

instances with class labels, but jMIRUtilities’ batch instance labelling tool can do so 

much faster if there are many instances to label.  
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 The Weka implementation of these weighting metrics are described at 

weka.sourceforge.net/doc.stable/weka/classifiers/lazy/IBk.html. 



 356 

6.4.5 Advantages of ACE over alternative machine learning frameworks 

As discussed in Section 6.3, there are a number of alternative machine learning 

frameworks, many of which are powerful and high-quality pieces of software. Why, then, 

should one use ACE instead of one of these alternatives? 

One of the most important advantages of ACE is that it is one of the few frameworks 

that implement automated experimental meta learning. A related advantage of ACE is 

that its interface does not presuppose any background in machine learning on the part of 

users. Although several alternative systems do have excellent interfaces, including some 

with attractive and intuitive graphical user interfaces, like RadidMiner, these interfaces 

are typically designed for people who have at least some basic expertise in machine 

learning, and can require significant effort to learn and understand for users without such 

a background. ACE, in contrast, allows users to simply specify input files and have the 

system generate results. There is no need for users to specify variables such as the 

dimensionality reduction algorithms to use, the classification algorithms to use or the data 

partitioning approach to use unless, of course, they wish to. The simplicity of this 

approach helps to make the software much more accessible to general users. 

Furthermore, ACE is implemented entirely in Java and does not require any external 

libraries beyond those that are packaged with it. This platform independence can 

significantly reduce installation difficulties, particularly compared to C or C++-based 

systems, for example, where installation can often entail lengthy and difficult debugging 

in order to resolve linking problems. 

An additional advantage of ACE is that it is open-source, free and does not require 

any proprietary software to run. Although ACE is certainly not the only framework like 

this, many alternatives do in fact require the purchase of proprietary software such as 

MatLab in order to be used even if they are free themselves. 

Perhaps the strongest advantage of ACE, however, is that it is designed to meet the 

particular needs of music information retrieval research. ACE is, in fact, the only meta 

learning framework designed specifically for music research. Music has a number of 

particularities and special problems that often fail to be properly and conveniently 

addressed by general-purpose machine learning frameworks. 
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Many of the limitations of general-purpose frameworks become apparent even at the 

representational level, as the file formats used by many alternative systems are incapable 

of representing types of information that can be essential to music research. The ACE 

XML file formats and the ACE data structures and methods that can be used to process 

the data stored in them are thus among the strongest advantages of ACE relative to 

alternative systems. Although the advantages of ACE XML with respect to representing 

data that is relevant to automatic music classification are discussed in much more detail in 

Chapter 7, some of highlights that are particularly relevant to ACE are listed below: 

 The ability to associate multiple classes with a single instance. This is essential to 

many central MIR research areas, such as genre or mood classification. 

 The ability to represent class labels and feature values for potentially overlapping 

sub-sections of instances as well as for instances as a whole. This is fundamental 

to dealing with audio, which is typically windowed during feature extraction, as 

well as for music segmentation. It can be very useful to maintain the logical 

relationship between a window of features and the recording that it was extracted 

from, rather than simply treating each window as an independent instance, as most 

classification frameworks do. 

 The ability to maintain logical groupings between multi-dimensional features. 

Many important MIR-related features are multidimensional, such as MFCCs and 

beat histograms, and there can be important classification advantages to 

maintaining an association between the values of each such feature. Most 

alternative frameworks, in contrast, simply treat each value of a feature vector or 

array simply as an entirely separate feature. 

 The ability to represent structured class ontologies. This information can be taken 

advantage of by classification algorithms such as hierarchical classifiers, for 

example. This can also be used to improve classifier training by enabling 

misclassifications between dissimilar classes to be penalized more severely than 

misclassifications between similar classes. This ability to take into account the 

seriousness of different misclassification can also be used to more fully compare 
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algorithm evaluations during meta learning. Most alternative frameworks do not 

provide any way of representing relationships between different classes, however. 

 The ability to maintain various kinds of metadata about instances in a way that is 

packaged directly with the instances. 

6.5 ACE’s interface 

ACE’s functionality can be accessed via three different interfaces: 

 Command-line: This is currently the primary means of using ACE as a meta 

learning and classification application. Training, instance classification, cross-

validation and meta learning experimentation functionality can all be accessed via 

the command-line, and a number of settings and parameters, as discussed in 

Section 6.4, can be specified as well. Instructions on how to use the command-line 

are specified in the ACE 2.0 manual, and highlights can also be accessed by 

running ACE with the -help flag. The command-line interface is particularly 

useful for performing batch processing using various scripting tools or for quickly 

repeating experiments, with or without minor parameter variations. Very large 

datasets can take days or even weeks to process, and the automation of batch 

processing removes the need for human supervision during this period. The 

command-line is the only way to access ACE 1.0’s core functionality, and is also 

improved significantly in ACE 2.0. 

 Graphical User Interface: A command-line interface can be an obstacle to less 

technically oriented users, so efforts are ongoing to implement a GUI to facilitate 

access to ACE. As of the time of this writing, ACE 2.0’s GUI may be used to 

display, edit and save ACE XML 1.1 files as well as perform various ACE XML 

Project and ZIP utility functions. It cannot yet be used to access ACE’s core 

machine learning functionality, such as meta learning experimentation, but efforts 

are ongoing to implement this functionality. Figures 6.6 to 6.9 illustrate some of 

the GUI components that are already implemented. More details are available in 

the ACE 2.0 manual. 
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 Java API: ACE 2.0 is designed to be easy to integrate into other software 

frameworks, and its architecture is explicitly formulated to facilitate both this and 

extensibility. The code itself is open-source, and is well documented. As can be 

seen in Figure 6.10, all of ACE 2.0’s functionality can be accessed via a 

Coordinator class. Tasks associated with dimensionality reduction, model 

training, instance classification, cross-validation and meta learning 

experimentation are each modularly segregated into, respectively, the 

DimensionalityReducer, Trainer, InstanceClassifier, CrossValidator, and 

Experimenter classes. Although these can certainly be extended by developers if 

desired, those wishing to simply incorporate ACE as is into their own systems 

never need to directly access them, or even be aware of their existence, as their 

functionality is entirely abstracted into the Coordinator class. More details are 

available in the ACE 2.0 manual and in the code itself. 
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Figure 6.6: Sample genre taxonomy displayed in the Taxonomy Pane of the ACE 2.0 

GUI. Users are able to create, load, view, edit and save class ontologies using this pane. 

 

Figure 6.7: Sample feature metadata displayed in the Feature Descriptions Pane of the 

ACE 2.0 GUI. This information relates to features themselves, not to actual feature 

values extracted from features. Users are able to create, load, view, edit and save 

feature metadata using this pane. 
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Figure 6.8: Sample instance class labels displayed in the Instances Pane of the ACE 2.0 

GUI. Users are able to load, view, edit and save feature class labels and other 

information using this pane. 

 

Figure 6.9: Sample feature values as well as class labels for an audio segmentation task 

displayed in the Instances Pane of the ACE 2.0 GUI. This figure demonstrates how the 

Instances Pane can be used to display feature values and class labels both for overall 

instances and for subsections of instances. 
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Figure 6.10: Highlights of ACE 2.0’s class structure. A number of methods and fields are 

omitted for the sake of brevity, as are all method parameters. All of ACE’s functionality 

can be accessed via the Coordinator class. Arrows indicate interactions between 

classes.  
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6.6 Improvements in ACE 2.0 

It is useful to briefly summarize the differences between ACE 1.0 and ACE 2.0, since 

they are both publicly available, and Sections 6.4 and 6.5 include information relating to 

both versions of ACE. ACE 1.0 is the current stable release and ACE 2.0 is the current 

developer release. ACE 2.0 includes all of the functionality of ACE 1.0, but is not as fully 

tested, and still has certain features under development. ACE 1.0 was designed and 

implemented by Cory McKay, and ACE 2.0 was designed by Cory McKay and Jessica 

Thompson and implemented by Jessica Thompson (Thompson et al. 2009). The essential 

differences between the two versions are: 

 Improved cross-validation: ACE 1.0 relied entirely on Weka’s own classes to 

perform cross-validation. Unfortunately, the portion of the Weka API dealing with 

cross-validation is not designed with the needs of experimental meta learning in 

mind, and hides certain important information, such as the variance of the 

classification success rate across folds
163

, confusion matrices for individual folds, 

details on which instances are assigned training and testing roles in each fold and 

class predictions for individual cross-validation test instances. ACE 2.0 therefore 

has its own cross-validation implementation, with the result that expanded 

statistics are available, including all of the information noted above. ACE 2.0 also 

automatically reserves a publication set for final meta learning validation and 

makes it possible to ensure that multiple cross-validation experiments with 

different classification algorithms can all use the same training and testing data 

partitioning, something that greatly facilitates statistical hypothesis testing. 

 More detailed reports: In addition to the greatly expanded information reported 

in cross-validation reports, as described above, ACE 2.0 also provides expanded 

information in the meta learning reports as well, particularly when the verbose 

option is selected by the user. 

                                                 
163

 Although the Weka Experimenter does in fact calculate the variance, this functionality is not accessible 

from the Weka API. Third-party software using the Weka code base, such as ACE, must rely on the Weka 

Evaluation class, which does not make the variance across folds accessible. 
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 ACE ZIP files: ACE 2.0 includes functionality for creating, parsing, saving and 

processing ACE XML ZIP files (see Section 7.11.1), as well as uncompressed 

ACE XML files. ACE 1.0 is not ACE XML ZIP compatible. 

 Redesigned API: The class structure and API have been completely redesigned in 

order to facilitate the use of ACE in third party software and to improve ease of 

extensibility. 

 Improved command-line interface: The command-line interface has been 

entirely redesigned. It allows users to specify parameters in greater derail, and is 

also clearer and more intuitive. 

 Graphical user interface: ACE 2.0 includes a GUI that can be used to create, 

parse, edit and save ACE XML files and the related data. Ongoing efforts are also 

being made to provide access to ACE’s meta learning functionality as well, which 

is currently only available via the command-line and the API. 

 Manual: A detailed HTML-based manual is available for ACE 2.0 that details the 

command-line interface, the GUI and the code structure. 

6.7 Summary of original contributions 

ACE is a powerful dedicated pattern recognition application and a code library that 

can be embedded in other applications. Although there are a variety of other excellent 

machine learning frameworks, as discussed in Section 6.3, ACE is unique in that it is the 

only dedicated meta learning framework designed to meet the special needs of music 

research, as outlined in Section 6.4.5. 

The meta learning functionality offered by ACE can be particularly useful in 

evaluating the effectiveness of new features or classification algorithms. This is especially 

helpful in the field of music information retrieval, where new techniques are constantly 

being developed, and need do evaluated relative to one another.  

One of the most important characteristics of ACE is that it is designed to help 

overcome usability barriers for users with valuable musical knowledge but little or no 

machine learning background. Such barriers have traditionally largely prevented experts 

such as music theorists, musicologists and music librarians from using machine learning 
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in their research, for example. ACE’s meta learning makes powerful and effective 

machine learning accessible even to researchers with no training in machine learning. 

 Section 6.2 also includes a brief but still relatively detailed introduction to machine 

learning that is intended specifically for researchers who may have no machine learning 

background but who have an interest in learning more about the nuts and bolts of machine 

learning from an applied and not overly technical perspective. Of course, the information 

presented in this section is in no way necessary for using ACE. 

6.8 Future research 

6.8.1 ACE’s interface 

Although the ACE 2.0 GUI is currently functional with respect to parsing, viewing, 

editing and saving jMIR projects and ACE XML files, functionality for performing meta 

learning experiments and other machine learning tasks is currently only accessible via 

ACE’s command-line interface or Java API. One of the highest priority goals for future 

research is to make all of ACE’s functionality accessible via the GUI, including 

functionality for viewing customized result summaries and for using the GUI to specify 

detailed preference settings with respect to both the interface itself and the processing 

back end. 

6.8.2 Additional machine learning and pre-processing algorithms 

Another priority is the addition of further machine learning algorithm 

implementations to ACE. These will include the full range of supervised learning 

algorithms currently available in Weka, as well as Weka implementations of other 

algorithms that are not yet available in Weka. 

Sequential classification algorithms, such as recurrent neural networks and hidden 

Markov models, are of particular interest. Melody, harmony and form, for example, are 

essentially sequential concepts, so the addition of sequential algorithms will open up 

many possibilities for ACE. 

There are also plans to add unsupervised algorithms to ACE, something that will be 

facilitated by the fact that several such algorithms are already implemented in Weka. 

Although unsupervised learning is less ideally suited to tasks such as genre or mood 
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classification than supervised learning, unsupervised learning can be very useful for 

exploratory clustering research or for similarity-based applications like playlist generation 

or music recommendation. Unsupervised learning techniques can also be used to 

automatically generate class ontologies. 

Experimentation with more classifier ensemble variants, beyond the bagging and 

boosting approaches already implemented in ACE, could help improve classification 

performance. Ensembles oriented towards structured learning, such as hierarchical 

learning, could be particularly useful. Tools for constructing blackboard systems could 

also be built into ACE, in particular systems that can integrate expert knowledge about 

problem domains with machine learning.  

Another important improvement would be the addition of more pre-processing and 

post-processing functionality, such as various data thinning algorithms. This could 

improve results and speed up training, as well as to make the nuances of meta learning 

results more apparent to users. 

6.8.3 Distributed processing and long-term projects 

One of the central difficulties that must be overcome in automatic music classification 

is that there can be huge quantities of data to process, especially when many features are 

extracted or when very large data sets are available. The result is that learning models and 

classifying instances can potentially take inconveniently long amounts of time, even on 

the fastest computers. This is particularly problematically when experimental meta 

learning is performed, as it can require many computationally intensive training and 

testing experiments. 

There are therefore plans to utilize distributed computing to spread out the 

computational burden. Meta learning experiments are relatively easy to separate into 

independent tasks that may be performed in parallel, something that makes ACE 

particularly suitable for distributed computing. 

A number of existing distributed computing technologies may be taken advantage of 

in order to achieve this. Grid Weka (Khoussainov et al. 2004) is particularly attractive 

because it is based on the Weka framework used by ACE. The most likely solution, 

however, will be to use ACE with SEASR (Llorà 2008), which includes a Java-based 
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infrastructure for distributed computing. SEASR is a central part of the NEMA
164

 project, 

of which jMIR is a part. Both Grid Weka and SEASR allow computation to be distributed 

amongst either multi-purpose workstations or dedicated machines, and both are 

compatible with a wide range of hardware and operating system configurations, thus 

effectively making distributed computing available to anyone with access to a typical 

computing lab. There are many computers in academic institutions, such as libraries, that 

are often idle. ACE could therefore take advantage of these computers when they are not 

otherwise in use to dramatically and cheaply speed up the processing of large projects. 

Related functionality will also be built into ACE allowing users to specify maxima on 

the total time that ACE has to perform meta learning experiments on a given data set. 

These limits on how long the system has to arrive at a solution will result in ACE initially 

pursuing the most promising approaches, based on past experiments with similar data. 

ACE will then output the best-performing algorithms that it is able to find in the time 

available, and then later revisit the problem passively when no other active projects are 

being processed. 

The first step in implementing distributed computing will simply be to modify ACE 

so that it can assign individual meta learning component experiments to different 

computers. The next step will be to set up an ACE server to keep a record of the progress 

and performance of all ACE experiments run on any given user’s cluster. This 

information could then be used to calculate performance estimates on similar ACE 

experiments run in the future when there is insufficient time tor run all of the experiments 

that might ideally be desired. When no other ACE projects are active, ACE could also use 

this server to reactivate old inactive projects in order to further improve results, as noted 

above. 
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7. ACE XML: File formats for expressing MIR data 

7.1 Overview of MIR data mining file formats and ACE XML 

Much of the cross-institutional efficiency of MIR research hinges on the ability of 

researchers to share data effectively with one another. Information such as ground-truth 

annotations, for example, can be very expensive to produce, and a great deal of repeated 

effort is avoided if researchers are able to share such information efficiently. Similarly, 

training and testing datasets themselves can be expensive to acquire, and since they 

cannot typically be distributed directly because of legal limitations, the ability to share 

representative feature values efficiently can be very valuable. The communication of 

more abstract information, such as class-label ontologies or characteristics of features 

themselves, can also be very useful. 

Well-constructed, flexible and expressive standardized file formats are essential for 

distributing all of these types of information efficiently and fully. Furthermore, in order to 

encourage adoption as a standard, such file formats must be simple for both humans and 

machines to understand, parse and write. The absence of such standardized formats can 

pose an obstacle to the sharing of research information, with the result that each lab has a 

greater tendency to generate its own in house data, which results in both wasteful 

repeated effort and, in general, lower quality data. 

Although there are a variety of widely used general-purpose data mining and 

classification file formats in existence, none of them meet the very specific needs of MIR 

research. The Weka ARFF format (Witten and Frank 2005), for example, is currently the 

de facto standard in MIR research, but as is shown in Sections 7.3.2 and 7.4, it has severe 

restrictions with respect to the requirements of realistic MIR research. Formats such as 

ARFF impose serious limitations on the types of information that can be represented and, 

accordingly, on the quality of research that can be performed based on this information. 

To give just one example, most such formats, including ARFF, only allow instances to be 

labelled with just one class label at a time, something that fundamentally limits the 

sophistication and realism of research in areas such as genre classification. 

Sections 7.2 and 7.3 respectively review existing file format technologies and the 

particular formats that are currently the most prominent in MIR research. Section 7.4 
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presents a critical analysis of the limitations of existing formats, and introduces a 

corresponding list of design priorities that can be used to guide the development of new 

file formats designed specifically for use in music data mining and classification research. 

The primary focus of this chapter is on the original ACE XML file formats. These 

formats were designed based on the design priorities emphasized in Section 7.4, and are 

intended for use in music data mining and classification research of any kind. Possible 

applications of these formats include genre classification, artist classification, track 

segmentation, pitch tracking, instrument identification and so on. The ACE XML formats 

may be used equivalently well with respect to audio, symbolic and cultural data. 

ACE XML will play a role in the NEMA (Networked Environment for Music 

Analysis) project,
165

 a large-scale multinational and multidisciplinary effort to create a 

general music information processing infrastructure. NEMA is funded by the Scholarly 

Communications program of the Andrew W. Mellon Foundation, and involves research 

groups from McGill University, University of Illinois at Urbana-Champaign, University 

of Southampton, University of Waikato and Goldsmiths and Queen Mary at University of 

London. 

ACE XML is the native format used by all jMIR components to communicate with 

one other.
166

 The ACE project also includes a general API for parsing, writing and 

processing ACE XML files so that ACE XML functionality can be easily incorporated 

into other software as well. The ACE GUI prototype also includes functionality for 

manually generating, displaying, editing and saving ACE XML files. 

There are four primary types of ACE XML files, which may be used individually or 

integrated together: 

 Feature Value: These files express feature values extracted from specific 

instances. 

 Feature Description: These files express abstract information about features. To 

give a few examples, this format can be used to express specific details about the 

processes used to extract feature values that are expressed in Feature Value files, 
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 jMIR components can also read and write ARFF for compatibility reasons, although it is recommended 

that ACE XML be used instead. 
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to publish information about the features that can be extracted by a new feature 

extraction application, to express updates to existing feature extraction algorithms, 

and so on. 

 Instance Label: These files express labelled annotations of specific instances. 

This format can be used to notate ground-truth labels or the predicted labels output 

by a classification system, for example. 

 Class Ontology: These files express relationships between different classes. This 

can be used to simply specify candidate class labels, or for more sophisticated 

purposes such as expressing hierarchical taxonomical relationships between 

classes that can be taken advantage of by specialized machine learning techniques. 

There are two versions of ACE XML, namely ACE XML 1.1 and ACE XML 2.0. 

Version 1.1 (McKay et al. 2005) is the stable version that is currently implemented in all 

of the jMIR components, including the ACE API. For the purposes of this publication, 1.1 

is the official version of ACE XML. Section 7.5 describes the four ACE XML 1.1 

formats in general, and Sections 7.6 to 7.9 focus on each of them individually. The ACE 

API is discussed in Section 7.10. 

The newer ACE XML 2.0 is ultimately intended for candidacy as a standardized 

format for MIR research in general, without any inherent links to jMIR. It builds upon the 

ACE XML 1.1 formats to add even more expressivity and functionality. Prototypes for 

the updated versions of each of the four main ACE XML formats are introduced in 

Section 7.11. As discussed in Section 7.11.1, version 2.0 also includes the new ACE 

XML Project file and ACE XML ZIP file types, which can be used to more conveniently 

associate and potentially package different ACE XML files together. Additional potential 

future improvements are also discussed in Section 7.13. 

The ACE XML 2.0 (McKay et al. 2009) formats are presented here for review and 

improvement by the MIR community at large. The final implementation of ACE XML 

2.0 awaits amendment based on community feedback, so the ACE XML 1.1 formats, 

which are presently fully finalized and implemented, continue to serve as the standard 

formats used by the jMIR components at the time of this publication. 
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The on-line sample file appendix
167

 also provides artificially generated samples of 

each of the ACE XML 1.1 and 2.0 formats in order to more clearly illustrate how the file 

formats can be used. 

7.2 Background information 

This section provides background information on the principal fundamental concepts 

and technologies that are relevant to the representation of information related to automatic 

music classification research. The contents of this section are presented in order to ensure 

that the reader is familiar with the concepts that are necessary to fully appreciate and 

compare the ACE XML file formats outlined later in this chapter with the existing 

alternative formats. 

7.2.1 ASCII and Unicode text files 

The term text file refers to a simple kind of computer file that holds basic textual data. 

Text files conform to simple standards for representing text, and are thus highly portable. 

Most text files that are referred to as such are plain text formats, which is to say that they 

do not include any provisions for formatting codes other than very simple markers such as 

end of line, end of file and tab markers. The lack of formatting in plain text files is both an 

advantage and a disadvantage, in that this generally results in smaller files, but also 

results in less expressivity. 

The primary advantage of text files is that they follow a simple standard that can be 

parsed on essentially any computer running essentially any operating system. 

Applications called text editors are typically used to read, write and edit text files, 

although word processors and many other types of applications are compatible with text 

files as well.  

ASCII (American Standard Code for Information Interchange) is perhaps the most 

common text file format. It is widely used enough to be considered platform independent, 

and ASCII files are often given a .txt extension, although this extension is also sometimes 

used for other types of text files as well. ASCII files use one byte to encode each 

character, with one bit reserved as a parity bit to aid in the detection of data corruption. 

This means that 128 characters may be represented in ASCII, 33 of which are mostly 
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obsolete control characters. The remaining 95 characters include the lower-case and 

upper-case letters, numbers and punctuation marks associated mainly with English and 

related European languages, as well as a few mathematical characters, accents and other 

miscellaneous characters. 

This ASCII limit of 95 printable characters is much too small to deal with all of the 

characters that even an English speaker might wish to use, much less someone writing in 

a language that uses a different alphabet. As a result, there are many other standards, 

usually chosen based on the default locale setting on a user’s computer. An example is the 

technically obsolete but still often used ISO 8859-1 encoding used for many European 

languages. 

Limiting the space needed to store a single character to a single byte was reasonable 

in the past when data storage and transmission was expensive. Such rationing is no longer 

as much of a priority, however, and as a result the much more expressive Unicode 

standard is replacing ASCII as the preferred standard. 

The multilingual full Unicode standard includes more than 100,000 characters, and 

has proven to be very valuable in the internationalization of computer software. It has 

been adopted by the XML standard, by Java and by the Microsoft .NET framework, 

among many others.  

There are a variety of Unicode encodings in existence. One of the most common of 

these is the variable-length UTF-8 encoding, which uses one byte for all ASCII characters 

and up to three additional bytes for all other characters. UTF-8 has the significant 

advantage of being backwards-compatible with ASCII. 

UTF-16 is the most common alternative Unicode encoding. UTF-16 is also a variable-

length encoding, and it uses up to four bytes. UTF-16 can sometimes be more space-

efficient than UTF-8, but the reverse can also be true, depending on the particular 

characters that need to be encoded. Both UTF-8 and UTF-16 may be used to encode any 

Unicode character. 

7.2.2 Escape characters and delimiter-separated values  

Some applications make use of reserved combinations of characters to effectively add 

additional characters or formatting instructions to text files that are not directly permitted 

by their encodings. This is often done via the use of escape characters, such as a 
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backslash, that indicate that the following character is to be interpreted in a special way. 

Although files that use this approach are of course still text files, they nonetheless lose 

some portability and human-readability, as the software or individual parsing the files 

must be aware of the rules governing these special codes in order to properly interpret 

them. 

It is often desirable to store data in text files in some structured way, such as in the 

case of tables of values. One simple way of doing this is to use delimiters, which is to say 

special characters that are reserved to separate values, such as a list of names. Commas, 

tabs and end-of-line characters are three of the most commonly used delimiters. This 

approach is useful as a quick and easy solution, but once again involves a loss of 

portability, since it requires that parsing software be aware of the particular delimiters that 

are being used.  

There are a variety of standardized delimited text file formats. The comma-delimited 

CSV standard is perhaps the best-known example. 

7.2.3 XML 

It is often desirable to be able to express textual data in structured ways that are more 

sophisticated and general than is possible with simple delimited text files. XML 

(eXtensible Markup Language) files, which are encoded in UTF-8 by default, provide one 

particularly flexible and convenient way of doing this.  

XML is an example of a markup language, which is to say that it is an artificial 

language that uses annotations to impose structure and formatting on text. HTML is 

perhaps one of the most famous markup languages, due its role as the traditional format in 

constructing web pages. An essential difference between XML and HTML is that XML 

allows users to specify how data is to be structured, whereas HTML requires that data be 

formatted in rigidly pre-defined ways. 

XML attempts to strike a balance between permitting data to be represented in such a 

way that it is conveniently structured for machine processing, and requiring that it be 

stored in simple text files in ways that are relatively easily human readable. The ability 

for humans to read XML files directly is augmented by functionality in many web 

browsing or text editing applications to display data stored in an XML files in an easily 

human-parsible way that is consistent with the structuring specified in the XML file, 
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while at the same time hiding the infrastructure that specifies this structuring. Specialized 

software such as Altova XML Spy
168

 provides even greater functionality in this respect. 

XML data essentially consists of two parts: one that specifies the structuring and 

formatting that stored data must conform to, and the other storing this data using the 

specified infrastructure. The XML specification permits a variety of ways of performing 

this first task, the oldest, least powerful and simplest of which is known as a Document 

Type Definition (DTD). A DTD typically consists of a separate file or header preceding 

the actual data that is stored in an XML file. Alternative XML schemas allow added 

expressivity over DTDs, but at the cost of increased complexity.  

The formatting of the data stored in XML files must conform to the rules laid out in 

the DTD or schema. There are many software packages and web services (e.g., 

validator.w3.org) that can be used to verify that this is the case for any given document. 

This is referred to as checking whether an XML document is well-formed. 

The majority of XML documents consist of clauses of information denoted using 

elements. Each element has a start tag and an end tag as well as, often, some content 

between the tags. The tags indicate the kind of information that the content expresses, 

typically in the form of a field label, and the content indicates the value for the field. 

For example, the element <author_name>Alexander Solzhenitsyn</author_name> 

includes start and end name tags, indicating that the content of the tags is an author’s 

name, and the content itself specifies the name of the specific author, Alexander 

Solzhenitsyn in this case. Start and end tags of elements are always each contained within 

< and > signs, and end tags always have the same name as their matching start tag, but 

have a / sign added at their beginning. 

Elements can be organized hierarchically, which is to say that the content of an 

element can itself contain one or more other elements. The elements that may appear and 

the rules governing their structuring are declared in the DTD or schema of each XML file. 

Figure 7.1 provides an example of how elements can contain other elements. 
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Figure 7.1: Sample hierarchically organized XML elements. This could be used, for 

example, to store a database of the books that one owns. The my_books element could 

be used to hold multiple book elements, each of which refer to one separate book, 

although only one is listed here. The book element contains a title element and an 

author_name element. The author_name element itself contains two further elements. 

One would expect there to be one book element for every book that is owned. The 

names of these particular kinds of elements and the relationships between them must be 

specified in a DTD header or other XML schema. 

 

 

 

 

 

 

 

 

Figure 7.2: A modified version of the book element from Figure 7.1. Two attributes are 

added, namely a status attribute for the book tag and an alive tag for the author_name 

tag. The status attribute could be used to indicate whether the book is owned, read but 

not owned or not read, for example, and the alive attribute would be used to indicate if 

the author is currently alive. 

<my_books> 

<book staus="owned"> 

 <title>Gulag Archipelago</title> 

 <author_name alive="no"> 

  <first_name>Alexander</first_name> 

  <last_name>Solzhenitsyn</last_name> 

 </author_name> 

</book> 

</my_books> 

<my_books> 

<book> 

 <title>Gulag Archipelago</title> 

 <author_name> 

  <first_name>Alexander</first_name> 

  <last_name>Solzhenitsyn</last_name> 

 </author_name> 

</book> 

</my_books> 
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Elements may also contain attributes that provide further information. The rules 

governing the nature of the attributes and which elements may contain particular 

attributes are also specified in the DTD or other XML schema. Attributes are noted in the 

start tag of each element by following the name of the tag with a space, the name of the 

attribute, an equal sign and, finally, the value of the attribute enclosed within double 

quotes. Figure 7.2 shows how attributes might be used in an expanded version of the data 

shown in Figure 7.1. 

In most cases, information expressed in attributes could alternatively be expressed 

using subordinate elements. For example, the alive attribute in Figure 7.2 could just have 

easily been a child element of author_name, just as last_name is. Although which 

approach one uses is mostly a matter of style, a general rule of thumb is to use an attribute 

if only restricted values are possible (e.g., yes or no) and to use an element if arbitrary 

values are possible. To return to the example if Figure 7.2, an alternative architecture 

might be to make status a child element, but leave alive as an attribute, as shown in 

Figure 7.3. 

 

 

 

 

 

 

 

Figure 7.3: Alternative architecture to that of Figure 7.2, where the status field is now a 

field instead of an attribute. 

As noted above, which elements are permitted and how they may be structured is 

defined in a DTD header or other schema. A DTD is essentially a statement that consists 

of <!DOCTYPE fileype […]>, where filetype is a code that is chosen to identify the type 

of XML file that the DTD is defining (e.g., my_books might be used to identify a file 

format being used to store one’s book collection). The […] holds a separate declaration 

for each element and attribute type that is permitted. Each element declaration is a 

statement consisting of <!ELEMENT elementname (elementdeclarationtype)>. The 

<my_books> 

<book> 

 <title>Gulag Archipelago</title> 

 <author_name alive="no"> 

  <first_name>Alexander</first_name> 

  <last_name>Solzhenitsyn</last_name> 

 </author_name> 

 <status>owned</status> 

</book> 

</my_books> 
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elementname variable specifies the text of the start tag of the element and the 

elementdeclarationtype variable specifies which child elements are permitted, if any, 

which attributes are permitted, if any, and what kind of content data (e.g., character data) 

is permitted for the element. The order that the element declarations appear in the DTD 

overall and in each individual element declaration type constrain the order that the tags 

may be used in the document if it is to be well-formed. Figure 7.4 provides an example of 

a sample DTD. 

 

 

 

 

 

 

 

Figure 7.4: A possible DTD for the data formulation used in Figure 7.3. This could be 

stored in an external file or could be included as a header in the same file that stores the 

data about the book(s) themselves. Note that in this particular DTD there must be one or 

more books (because of the + sign), the status element is optional for each author 

(because of the ? sign and the default value for the alive attribute is specified as yes. 

The DTD also specifies how attributes are used, as can also be seen in Figure 7.4. The 

<!ATTLIST elementname attributename1 CDATA "default1" attributename2 CDATA 

default2 …> declaration provides a list of all possible attributes for the elementname 

element, each of which is given the name attributename# and the default value of 

default#, which will be used if a particular entry does not specify a value for the attribute. 

The CDATA code simply means that the value for the attribute will be in the form of 

normal text. 

Note that the <!ATTLIST author_name alive CDATA "yes"> declaration in Figure 7.4 

does not constrain the possible choices that may be used in a well-formed file, so an 

instance of the alive tag might be given reasonable values such as yes, no or unknown as 

well as unreasonable values such as dafdasfd. This flexibility may be desirable in some 

cases, but not in others. It is possible to constrain the valid values for an attribute, such as 

<!DOCTYPE my_books [ 

 <!ELEMENT my_books (book+)> 

 <!ELEMENT book (title, author_name, status?)> 

 <!ELEMENT title (#PCDATA)> 

 <!ELEMENT author_name (first_name, last_name)> 

 <!ATTLIST author_name alive CDATA "yes"> 

 <!ELEMENT status (#PCDATA)> 

 <!ELEMENT first_name (#PCDATA)> 

 <!ELEMENT last_name (#PCDATA)> 

]> 
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in the following example: <!ATTLIST author_name alive (yes | no | maybe) "yes">, 

which requires that the attribute be assigned values of either yes, no, or maybe, with a 

default of maybe if the attribute value is omitted for a particular element. 

As an alternative to specifying default values for attributes, it is also possible to use 

the #IMPLIED keyword in the attribute declaration to make the attribute optional for the 

element, or the #REQUIRED keyword to require that a value for the attribute be specified 

whenever the associated element appears. Alternatively, the #FIXED keyword followed 

by a value in quotation marks may be used to specify that the attribute will always have 

the given value. For example, an <!ATTLIST author_name alive CDATA #IMPLIED> 

statement in a DTD would make the alive attribute optional, and an <!ATTLIST 

author_name alive CDATA #REQUIRED> statement would require that it be specified 

whenever the author_name element is used. 

As is apparent from the discussion above and from Figure 7.4, there are also a number 

of codes that may be used in DTD element declarations. These are explained in Table 7.1. 

 

Element Declaration Code Description 

(#PCDATA) Character data 

(#PCDATA)* Zero or more characters 

(anelementname) One instance of an element 

(anelementname?) Zero or one instances of an element 

(anelementname*) Zero or more instances of an element 

(anelementname+) One or more instances of an element 

(anelementname1, anelementname2) One instance of one element and one 
instance of another element 

(anelementname1 | anelementname2) One instance of one element or one 
instance of another element 

 

Table 7.1: Some of the most common codes used in the element declaration codes of 

DTDs. This data would go in the elementdeclarationtype section of an <!ELEMENT 

elementname (elementdeclarationtype)> declaration. These codes can be combined so 

that, for example, one might have an element declaration code of (#PCDATA, 

anelement1, anelement2?, anelement3+). 

There are many other options offered by XML DTDs, and still more that are made 

available by alternative schemas. This sub-section only describes those parts of XML that 

are specifically used in ACE XML, however. Whitehead, Freidman-Hill and Vander Veer 
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(2002) provide a much more detailed description of XML, with a particular emphasis on 

using Java code to manipulate XML documents. 

It is clear that XML allows simple, human-readable and extremely flexible document 

formats to be constructed. Further adding to its appeal, there is a great deal of free, open-

source and well-documented code that is available for facilitating the structured parsing 

of XML files. Apache Xerces
169

 is an example of such a parsing library that is available 

in a variety of programming languages. Such XML parsers typically provide two types of 

APIs for accessing XML data in convenient ways: SAX APIs allow the data to be 

accessed in a sequentially structured way and DOM APIs allow the data to be accessed in 

a hierarchically structured way. 

When writing XML files, or manually parsing them, it is important to remember that 

single-byte Unicode is the default encoding, and that corresponding codes must be used, 

an issue which is especially important for special characters that do not have ASCII 

equivalents. Fortunately, many programming languages include libraries for 

automatically translating plain text data appropriately. Java, for example, includes the 

java.net.URLEncoder and java.net.URLDecoder core classes, which can be used to 

ensure that all text, including special characters, is appropriately encoded and decoded. 

XML also includes its own special provisions for certain special characters. XML 

parsers all automatically understand basic character substitutions for reserve characters 

that have special meanings in XML, as specified in Table 7.2. 

 

XML Code Corresponding Character 

&lt; < 

&gt; > 

&amp; & 

&quot; “ 

&apos; ‘ 

 

Table 7.2: Default XML character substitutions for characters that have special 

meanings in the XML specification. 

Special characters can also be manually referred to using their decimal or x-prefixed 

hexadecimal Unicode code point preceded by the &# characters and followed by a 
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semicolon. So, for example, the Euro symbol (€) can be referred to in an XML character 

field as &#8364; or &#x20ac;. It is typically preferable to simply pre-process all strings 

read from or written to an XML file by classes such as java.net.URLEncoder and 

java.net.URLDecoder rather than performing such manual encodings, however. 

7.2.4 RDF 

RDF, or Resource Description Framework, refers to a family of W3C
170

 syntax 

specifications for representing relationships between different entities, or resources. In 

essence, RDF provides an abstract model for describing how anything can be related to 

any other thing. The result is effectively a labelled directed multi-graph. 

 RDF uses subject-predicate-object triples to make statements about the relationships 

between resources. The subject denotes a resource and the predicate denotes 

characteristics of the resource and its relationship with another resource, the object. For 

example, the statement So What is a song that belongs to the genre of Modal Jazz is a 

triple specifying that the subject So What is related to the object Modal Jazz by the 

predicate is a song that belongs to the genre. 

Resources are often referred to using Uniform Resource Identifiers, or URIs, to make 

them accessible via the Internet. Further information on individual resources can thus be 

acquired by accessing the data stored at their respective URIs, a process called 

dereferencing in RDF terminology. However, linking to resources using URIs is not an 

obligatory requirement of RDF. Resources can in fact potentially be abstract entities that 

do not actually exist anywhere on the Internet or elsewhere. In order for RDF producers 

and consumers to be in agreement on the semantics of resource identifiers, it is often 

useful to externally define certain controlled vocabularies, such as the Dublin Core
171

 

metadata set, which is partially mapped to a URI space for use in RDF. 

A process called reification can be used to achieve further expressiveness using 

triples, or to deduce measures of confidence about triples. This involves assigning a URI 

to each triple so that it can itself be treated as a resource about which other triples can be 

formulated. 
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There are a variety of specific formats, called serialization formats, that each provide 

different syntaxes for representing RDF data models. XML is often used as one way to 

provide a structured representation of RDF models, but there are also a variety of 

alternative serialization formats as well, such as Notation 3.
172

 There are also several 

query languages designed for use with RDF graphs, the most common of which is an 

SQL-like language called SPARQL.
173

 

A mechanism for describing relationships between resources, such as that offered by 

RDF, is an important component of the Semantic Web. This is because such a mechanism 

allows software to automatically store, exchange and otherwise use machine-readable 

information distributed on the Internet. This direct machine usability of RDF graphs is 

considered to be one of the main goals and advantages of RDF. 

The generality, simplicity and abstract nature of RDF are both its keys strengths and 

its key weaknesses. Although these characteristics allow it to be used to describe a wide 

range of information in flexible ways, it can also introduce computational disadvantages 

and ambiguities. Similarly, the broad structural framework of RDF offers greater 

flexibility and extensibility than a particular given XML schema might, for example, but 

also does not incorporate the ability to quickly and easily define strict and sophisticated 

structures when in might be useful to do so, as one can in unrestricted XML. 

7.2.5 OWL 

OWL,
174

 or the Web Ontology Language, is a family of languages for representing 

ontologies, which is to say formal representations of sets of concepts within some defined 

domain and the relationships between the concepts. Ontologies can be useful in the 

Semantic Web, as well as in other domains like machine learning.
175

 OWL Full, one of 

the variants of OWL, provides partial compatibility with RDF. 

The data contained in an OWL ontology is represented as a set of individuals that are 

related to one another via property assertions. OWL individuals can be collected into 

sets, called classes, whose properties are constrained by sets of axioms. Semantics can be 

inferred from explicitly defined axioms when appropriate.  
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7.2.6 Binary files and serialized objects 

A binary file is a computer file consisting of 1’s and 0’s that may be used to encode 

any type of data. Although computer text files are therefore technically binary files, the 

term binary file is typically used to refer specifically to computer files that are not 

encoded in plain text formats. 

Storing data such as extracted features in binary form can have a number of 

advantages over storing it in text files. For example, storing numbers even in a relatively 

character-sparse format such as ASCII requires at least a full byte per digit, a much 

greater amount of space than if the data were stored in binary. Parsing and processing 

data stored as text can also carry greater processing overhead. 

Storing data in text files can also have important advantages over binary storage, 

however. One of the greatest advantages is that text files are human-readable, something 

that can be very convenient during debugging or other situations where direct human 

inspection of data is appropriate or convenient. Text files can also be parsed in an 

application and platform-independent way, while binary files are generally application-

specific, and therefore much less portable. Furthermore, standard text compression 

techniques can be used to reduce text file sizes significantly. 

Advantages such as these, combined with consistently cheaper storage, data 

transmission and processing power, as well as the popularity of flexible text-based data 

formatting protocols like XML have led to an increasing use of text as the preferred 

choice for data storage. For example, binary file formats in Microsoft Office have 

recently been replaced with compressed XML-based formats. 

Many programming languages, including Java, include functionality for saving any 

objects in memory to files as binary serialized objects. This can be highly convenient for 

programmers, as there is no need to implement any specialized parsing or saving 

functionality. As might be expected, the main disadvantage of serialized objects, aside 

from the lack of human readability, is the common lack of portability once these objects 

are written to disk. Even serialized objects from relatively portable languages such as 

Java can sometimes fail to be properly read when accessed from newer releases of the 

language than they were saved under. For example, serialized Java Swing objects are 

often not portable across different versions of the Java Virtual Machine. 
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7.3 File formats used by existing MIR systems 

Although most MIR research has traditionally used specialized in-house file formats 

for storing information such as feature values and instance labels, most of which have 

been either binary dumps or simple delimited text files, there has been an increasing push 

in recent years to use more standardized file formats so that data can be shared between 

different research groups. This section describes some of the best-known and most 

general file formats in use by the MIR community. Both this section and Section 7.4 

stress some of the strengths and weaknesses of these file formats. 

7.3.1 Matlab binaries and Java serialized objects 

MathWorks Matlab
176

 is a numerical computing environment and programming 

language that is particularly popular among some MIR researchers because of the variety 

of its associated stable and effective toolboxes implementing digital signal processing and 

machine learning functionality. Matlab can easily save information such as extracted 

features and learned models to binary .mat files, with the result that researchers that use 

Matlab tend to favour the .mat file format. 

Unfortunately, .mat binaries suffer from the same limitations as all binaries, as 

discussed in Section 7.2.6. Although there are a variety of scripts written in different 

languages for parsing Matlab binaries, the issue remains that Matlab is commercial 

software that uses a proprietary file format that is subject to the design decisions of 

MathWorks, which may not coincide with the needs of the MIR community. 

Furthermore, .mat files are not directly human-readable, nor do they allow data to be as 

easily structured in useful ways as some of the alternative file formats. 

Any serialized Java object can be saved directly to disk and parsed by the Java Virtual 

Machine. The ease with which this can be done has made the use of Java serialized 

objects attractive to some researchers, just as has been the case with Matlab .mat files, but 

once again, concerns about the portability, stability, structural expressivity and lack of 

human-readability are serious concerns. 
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Nonetheless, one is sometimes forced to use serialized objects when dealing with 

third-party software. An example of this is the saving of trained Weka models.
177

 

7.3.2 Weka ARFF 

Weka (Witten and Frank 2005) is a well-known set of open-source machine learning 

libraries implemented in Java. Weka includes several front ends, including graphical user 

interfaces, as well as the core libraries and their associated APIs. The breadth and ease of 

use of Weka have caused it to be adopted by many MIR research labs and, as a result, its 

ARFF file format is likely the most commonly used format in the MIR community for 

storing extracted feature values and providing them to machine learning algorithms. As 

the closest thing to a standardized file format that there is in MIR, the ARFF format will 

be given special attention here. More information on ARFF is available in Witten and 

Frank’s book as well as on the Weka ARFF Sourceforge page.
178

 

Throughout the description of the ARFF format that follows, several limitations of the 

format may become evident to the reader in relation to the specific domain of MIR 

research, something that is to be expected of any format as generally applicable as ARFF. 

The focus of this particular section is on a purely objective description of the ARFF 

specification, so these issues will not be discussed here explicitly. However, the 

weaknesses of the ARFF format with respect to MIR are discussed in some detail in 

Section 7.4. 

ARFF files are basic text files that specify feature values and class labels associated 

with individual instances. All ARFF files consist of a Header section that outlines the 

available features and class names, followed by a Data section holding the feature values 

and, potentially, class names for each instance. Comments may also be included on lines 

starting with a percentage sign. 

The first non-comment line of an ARFF file must begin with a single @relation 

declaration of the form: 

@RELATION <relation-name> 

The <relation-name> is a string providing a name for the basic relationship or type of 

information that the ARFF file represents. For example, in the case of an artist 
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identification task, it might be artist_classification or artist_identification. As with other 

types of ARFF data, <relation-name> strings with spaces or percent signs in them must 

be enclosed in quotation marks. Also, as with other ARFF keywords, @relation 

statements are case insensitive. 

The rest of the header consists of @attribute declarations of the form: 

@ATTRIBUTE <attribute-name> <datatype> 

<attribute-name> and <datatype> are strings specifying, respectively, the name of a 

feature,
179

 in the form of a string, and the data type of this feature. If a feature value is 

present in one or more instances then it must be declared in an @ATTRIBUTE statement 

in the header. The following data types may be specified for a feature in @ATTRIBUTE 

statements: 

 numeric: Numeric data that may be an integer or a real number. 

 integer: Integer-only numeric data. 

 real: Numeric data that is in the form of real numbers. 

 string: A string of text data. Strings containing spaces or percent signs must be 

wrapped in quotation marks. 

 <nominal-specification>: A string of text data that must, for the feature value of 

any given instance, correspond to one of a set of eligible strings specified for the 

feature in the @ATTRIBUTE declaration. Such declarations are in the form: 

{<nominal_name_1>, <nominal_name_2>, <nominal_name_3>, ...}. 

 date: A date, which may be formatted in a variety of ways. The default is yyyy-

MM-dd'T'HH:mm:ss. 

 relational: A format implemented only in the most recent developer versions of 

Weka that allows a simple hierarchical relationship to be specified for features so 

that multi-instance classifiers can be used. 
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The final @ATTRIBUTE declaration in the header usually specifies the possible class 

names that an instance may have. The <attribute-name> is specified class, and the 

<datatype> must be a list of strings in the <nominal-specification> form. 

The Data section of an ARFF file is specified once all features (and class names) have 

been declared in the Header section. The Data section is begun by placing a single-line 

@DATA statement after the last @ATTRIBUTE statement. 

The feature values for each instance are then specified on a single line for each 

instance. The feature values must each be separated by a comma, and the feature values 

must be listed in the same order that the features were themselves declared in the Header 

with @ATTRIBUTE statements. Unknown feature values may be denoted by using a 

single question mark as a place holder. String and nominal feature values are case 

sensitive, even though Weka keywords are not case sensitive. Figure 7.5 provides a 

complete example of an example Weka file. 

Weka also allows a slightly modified alternative to standard ARFF files called sparse 

ARFF files. These are essentially the same as standard ARFF files, except that they do not 

explicitly specify zero-value feature values,
180

 and feature values are linked with index 

values associating them with particular features. 

As of Weka 3.5.8 (a developer version), weights can be associated with instances. 

This is done by enclosing them in curly braces and appending the weight to the end of the 

line, as in the following example corresponding to the first instance from Figure 7.5: 

0.0,250.0,silence, {4} 

A weight of 4 is assigned here to this particular instance. 

As a final note on Weka data formats, it should be noted that ARFF files cannot be 

used to represent trained models. Weka instead stores these as Java serialized objects.
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Figure 7.5: A complete sample Weka file. The first lines all begin with percentage signs, 

which indicates that they are simply comments. The @RELATION statement indicates 

the beginning of the feature declarations and specifies a name for the relationship 

represented by the Weka file. Three features are specified using @ATTRIBUTE 

statements, namely spectral centroid, duration and class. In practice, class is not really a 

feature, but rather a nominal-specification of the candidate classes that instances can 

have. This is how classes are always declared in Weka. The actual features are listed for 

eight instances after the @DATA declaration, with the class name specified as the last 

attribute for each instance. Note that the class name is not specified for the last instance, 

since it is replaced by a question mark. This convention can be used for feature values 

as well if they are unknown. 

% TITLE: Music, applause, speech, silence discriminator. 

% 

% This artificial data, intended for demonstration purposes, 

% specifies possible feature values extracted from windows of 

% audio that could be used for segmenting the audio into 

% sections of music, applause, speech and silence. 

% 

% Since this is a simple demonstration, only the basic 

% features of spectral centurion and the duration of the 

% recording from which the window was extracted are specified. 

 

@RELATION music_applause_speech_silence_discriminator 

 

@ATTRIBUTE spectral_centroid NUMERIC 

@ATTRIBUTE duration   NUMERIC 

@ATTRIBUTE class   {music, applause, speech, silence} 

 

@DATA 

0.0,250.0,silence 

440.0,250.0,music 

526.0,250.0,applause 

0.0,372.5,applause 

220.0,372.5,music 

115.0,372.5,music 

115.0,372.5,applause 

854.6,960.3,? 
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7.3.3 SDIF 

SDIF (Wright et al. 1999; Schwartz and Wright 2000), or the Sound Description 

Interchange Format, is a standardized file format for describing sound that was jointly 

developed by IRCAM and CNMAT. It is popular in the signal processing community. 

SDIF files consist of a basic fixed framework, and also include an extensible set of 

description types, including time-domain descriptions, frequency-domain models and 

sinusoidal models. SDIF files make use of XML. 

The primary purpose of the SDIF format is the storage of audio for use in signal 

analysis and synthesis. The storage of feature values and other MIR-oriented data mining 

information is not the primary emphasis of the SDIF format, although features can 

certainly be represented as well. For example, one of the most fundamental structures of 

the SDIF format is a series of frames, each consisting of a four-byte Frame Type ID, a 

four-byte integer Frame Size and the frame data itself. Each frame must be a multiple of 

64 bits. It is clear that this sort of structuring is not ideally suited for most MIR-oriented 

tasks, where greater flexibility is preferred. 

Although SDIF can be extended to store features for the purposes of MIR applications 

(Burred et al. 2008), the emphasis is still on efficiently representing audio data, not on 

representing features in ways that are as flexible and clear as would be desirable in an 

ideal MIR-oriented format, nor on dealing with non-audio data such as symbolic or 

cultural features. The SDIF format is also not as convenient as one would ideally like for 

representing other MIR-relevant information such as sophisticated ontological class 

structures. 

So, while SDIF is one of the best formats available for use in the audio signal 

processing research community, it is not as ideally suited for MIR. Although it is true that 

SDIF can be adapted for MIR research, using SDIF to meet the ideal needs of an MIR 

standardized file format, as described in Section 7.4, can be awkward. 

7.3.4 Music Ontology 

Music Ontology (Raimond et al. 2007; Raimond and Sandler 2008; Raimond 2009; 

www.musicontology.com) is a framework designed for dealing with music-related data 

on the Semantic Web, with the particular needs of MIR applications in mind. It is 

designed to be very flexible, and takes advantage of RDF to facilitate connections 
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between resources and to make it possible to access further information about resources 

by dereferencing them. Music Ontology is divided into three main areas that respectively 

deal with editorial information (e.g., track names, musicians, record labels, etc.), 

production workflow information (e.g., arrangements, compositions, etc.) and event 

decompositions, (e.g., specifying that a particular musician played in a particular key at a 

particular time). 

Music Ontology makes use of several existing ontologies, including the Timeline, 

Event and Functional Requirements for Bibliographic Records ontologies. The Timeline 

ontology, which is based on OWL, is used for representing a variety of types of temporal 

information, and can represent instances in time, intervals in time and references to 

defined timelines.  

The Event ontology is used to represent particular musical or other events that can be 

localized in both time and space. Music Ontology Events can also have factors (e.g., a 

musical instrument), agents (e.g., a performer playing the instrument) and products (e.g., 

the physical sound produced by the musician playing the instrument). Complex Events 

can also be related to subordinate Sub-Events, such as a large Event consisting of an 

ensemble of musicians playing music made up of Sub-Events each consisting of a 

particular musician playing particular notes.  

The Functional Requirements for Bibliographic Records ontology includes Works 

(abstract artistic creations such as musical compositions), Manifestations (physical 

embodiments of Works, such as CDs in general) and Items (an instance of a 

Manifestation, such as a particular CD). Music Ontology also makes use of other existing 

ontologies, such as the social networking-oriented FOAF (Friend Of A Friend) ontology 

and its concepts of Persons and Groups. 

Music Ontology is designed using an object-oriented approach that emphasizes 

inheritance. For example, the Key ontology, Instrument taxonomy and Genre taxonomy 

are all sub-classes of Events. 

Of particular interest with relation to machine learning, Music Ontology includes an 

Audio Features ontology
181

 intended for the expression of features extracted from audio 

signals. Events are interpreted in this context to be regions of time corresponding to 
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 motools.sourceforge.net/doc/audio_features.html 
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particular features called FeatureEvents, and each FeatureEvent may have a number of 

Feature factors that each represents a feature such as a musical key or a set of MFCCs. 

A number of data resources have already been converted to Music Ontology, 

including Musicbrainz musical metadata
182

 and data from the DBTune music 

repositories.
183

 Music Ontology is also being used as the main representation format in 

the large OMRAS2 project, and is used by high-quality MIR-oriented software such as 

Sonic Visualiser (Cannam et al. 2006) and some of its associated Vamp plug-ins.
184

 

A number of advantages and disadvantages of Music Ontology relative to ACE XML 

will become apparent to readers as the details of ACE XML are presented later in this 

chapter. Overall, Music Ontology has both the relative strength and weakness that it is 

very general, and is intended for MIR-oriented applications that are much wider in scope 

than the music classification focus of ACE XML. This enables Music Ontology to 

represent a much greater range of information more conveniently than can be done in 

ACE XML, but does not have all of the structural advantages of the ACE XML formats 

that make them particularly useful for music classification. XML in general tends to be 

much better suited to representing well-structured data than RDF. Although the Audio 

Features ontology subclass of Music Ontology does bring a greater focus on the music 

classification domain, this ontology as it is described in 

motools.sourceforge.net/doc/audio_features.html is not as flexible and convenient as 

ACE XML with respect to feature values, instance labels, feature descriptions and class 

interrelationships. Also, the Audio Features ontology is designed particularly with respect 

to audio features, whereas ACE XML treats audio, symbolic and cultural features equally 

and equivalently. Finally, the Audio Features ontology is still in relatively preliminary 

design stages as of the time of this writing. 

Music Ontology has the advantage over ACE XML that it is explicitly designed to 

facilitate the referencing of external resources. Although it is certainly possible to specify 

URIs in ACE XML identifier fields, ACE XML does not have an explicit RDF 

framework that makes it particularly convenient to do so. Furthermore, the RDF 
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framework makes it possible to use existing tools such as SPARQL to query Music 

Ontology data. 

The choice to use basic XML rather than RDF in ACE XML does carry a number of 

advantages, however. For example, ACE XML files are typically much more human 

readable than Music Ontology’s RDF files, which are more oriented towards machine 

readability. ACE XML files are also simpler and more obviously structured, with fewer 

varieties. This makes them very easy for users to learn and write code for. The majority of 

researchers in the MIR community and many of its associated disciplines tend to, in 

general, be much more familiar with XML than they are with RDF, with the consequence 

that they will likely be more willing to adopt an XML-based standard. 

Of course, file parsing and writing code libraries have already been implemented for 

both ACE XML and Music Ontology, but the simple and clear structuring of ACE XML 

makes it easier for MIR researchers to quickly inspect the simple and self-contained ACE 

XML DTDs, learn them and write code for them, something that is essential for file 

formats intended for adoption as standards. This can be particularly true for many key 

areas of MIR research that are more oriented to the humanities than to technical 

applications. A related advantage is that ACE XML only relies on simple XML parsing, 

and does not require the installation of packages for parsing additional standards such as 

OWL, for example. 

Also, although the implicit ease of linking disparate resources offered by RDF can 

certainly be a strong advantage in many contexts, it can also be a disadvantage when 

different linked documents are inconsistent or missing, which can often be an issue in 

MIR, at least in its current state. RDF-based approaches by their nature tend to rely on the 

accessibility of potentially widely distributed network resources. This can be a significant 

disadvantage if one does not have network access at a particular moment, or if a remote 

resource is removed, renamed or moved. If even one resource is eliminated it is possible 

that one will not only lose access to it, but potentially to all of the resources that it refers 

to as well. Self-contained XML files, on the other hand, do not carry this risk.  

Furthermore, the ability to easily store information such as feature values and instance 

labels locally if desired can be an important advantage when dealing with many gigabytes 

of feature values. Limitations such as slow network connections and monthly bandwidth 



 393 

caps can pose serious obstacles when dealing with widely distributed network ontologies, 

but are less of a problem with file types that store the most essential information in a self-

contained way and that can be downloaded or uploaded when convenient, such as ACE 

XML. Although RDF-based ontologies do certainly have additional important advantages 

of their own, they are perhaps better suited to relatively small amounts of textual data 

than to the very large feature associated with many typical MIR use cases and the even 

larger datasets that are likely to arise in the future as MIR research scales up to include 

larger quantities of music. ACE XML 2.0 files can also, of course, be made accessible on 

networks and linked to external ontologies if desired, but the ability to easily use them 

purely locally can be an important advantage. 

ACE XML seeks to reach a compromise between the strong encouragement of 

distributed linked files promoted by RDF and the more conventional approach of having 

all data, including feature values and class labels, contained in a single file. ACE XML 

does this by using four different file formats to express different types of information, and 

makes it relatively easy to merge files of both the same and different types. The ability to 

merge separate files when convenient into single self-contained units when needed for the 

purposes of convenience and robustness is emphasized in the ACE 2.0 ZIP format 

described in Section 7.11.1. 

ACE XML provides a good compromise between the simplicity of ARFF and the 

generality of Music Ontology and RDF as a whole. ACE XML is strongly and 

consistently structured, with a special eye to flexibility, so that features and labels of any 

kind can be specified in well-understood but extensible ways. Much more useful 

information can be represented with ACE XML than is possible with ARFF, but a much 

stronger structure is imposed on the data than in RDF, with the result that all of the data 

that is typically used by music classification researchers or is likely to be used by them in 

the foreseeable future can be represented in ways that can be clearly and consistently 

parsed using simple and standardized software. Furthermore, this diverse information can 

all be expressed in a fully self-contained way, without dependencies on distributed 

resources that are potentially fragile in terms of both their accessibility and longevity.  

With respect to ACE XML 2.0, users have the option of using only the basics of the 

ACE XML specification if they wish. This means that the files are very simple and easy 
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to learn for new users and for those implementing new software that uses ACE XML. 

ACE XML 2.0 also includes the ability to represent more sophisticated information if 

needed, and special attention has been paid to providing handles that can be used to link 

ACE XML 2.0 files to external resources in a variety of ways if this is a particular need, 

including RDF resources, thereby providing accessibility to the benefits of the RDF 

world. 

In general, it can be said that Music Ontology is likely a preferable format for general 

representation and for the linking of musical data on-line, and that ACE XML is likely a 

preferable format in the specific domain of music classification, particularly with respect 

to feature extraction and instance labeling. Music Ontology can certainly be used for such 

purposes as well, however. In the long-term, it is certainly possible that RDF-based 

approaches and the semantic web in general will be able to truly demonstrate and take 

advantage of the power of their generality. This potential has yet to be reached, however, 

despite efforts dating back well over a decade. In the meantime, more strongly structured 

approaches such as ACE XML have significant practical advantages for use cases 

associated with most MIR classification research, both academic and commercial. 

7.3.5 RapidMiner 

RapidMiner (Mierswa et al. 2006), which was formerly known as YALE (Yet Another 

Machine Learning Environment), is an environment for performing machine learning and 

data mining experiments. Such experiments can be defined using nestable operators, 

which can be described in XML files. 

Although the RapidMiner XML files can be very useful in embedding RapidMiner 

functionality in other applications, or in communicating experimental setups to other 

research groups, the particular emphasis is on communicating experimental 

configurations rather than on communicating data itself. This is limiting for MIR 

researchers who might wish to use their own algorithms developed under frameworks that 

are not related to RapidMiner at all. Furthermore, RapidMiner is a general machine 

learning environment that is not intended specifically for music, and as such has many of 

the same weaknesses as Weka ARFF files when applied specifically to MIR-oriented 

data, as described in Section 7.4. 
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7.3.6 M2K and MIREX 

M2K (Downie et al. 2005), or Music-to-Knowledge, is a graphical feature extraction 

and classification framework based on the D2K parallel data mining and machine 

learning system. M2K has most famously been used as the primary framework for 

carrying out the various MIREX
185

 comparisons of different algorithms. Unfortunately, at 

least from the perspective of developing a standardized MIR file format, the individual 

committees of participants organizing each of the MIREX tasks have generally tended to 

choose a range of differing file formats for each task, rather than coordinating to all use 

the same file formats for communicating information such as feature values, instance 

labels and class ontologies. Most of the file formats that have been used have been either 

simple Java serialized objects or delimited text files, and the more sophisticated data 

structuring made possible by frameworks such as XML or RDF has not been taken 

advantage of. 

7.3.7 Marsyas 

Marsyas (Tzanetakis and Cook 2000) is a set of software tools for analyzing and 

processing audio. It was one of the first major open-source MIR systems, and has been 

widely used for feature extraction, among other tasks. Although Marsyas does have a few 

basic text file formats, such as the .mtl Marsyas Timeline files, the main emphasis in 

Marsyas is on interoperability (Tzanetakis et al. 2008), with the result that Marsyas 

promotes the use of existing formats like Weka ARFF files and Matlab files. 

7.3.8 CLAM 

CLAM (Amatrain, Arumi and Ramirez 2002) is another prominent set of signal 

processing software tools which, among other things, can be used to extract audio 

features. Although oriented more towards signal modification than specifically MIR, 

features can be saved to either basic XML files or SDIF files. Although certainly useful 

for the purposes for which CLAM is intended, these files are not sufficiently 

sophisticated, expressive or flexible for the ideal needs of MIR, as specified below. 
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7.3.9 CrestMuseXML 

CrestMuseXML (Kitahara 2008; www.crestmuse.jp/index-e.html) is an extensible 

framework for describing music. CrestMuse XML is part of the CrestMuse project, which 

emphasizes the integration of different XML formats. Although CrestMuse XML remains 

to be widely experimented with by the international MIR community, it does hold 

significant potential for integrating the benefits of different formats. 

7.4 Limitations of existing formats and resultant design priorities 

There are a number of important shortcomings that are each found in all or most of 

the existing file formats that are currently used in MIR classification research. This 

section discusses some of the most significant of these limitations. Taking these problems 

into account, a number of design priorities are then proposed for consideration in the 

implementation of any future file formats intended for MIR-oriented data mining 

applications.  

Since there is insufficient space here to provide a detailed analysis of all file formats 

that have been used in MIR, a special focus will be placed on describing the most 

important shortcomings of the Weka ARFF format (see Section 7.3.2) in particular, as it 

appears to be the most commonly used format in MIR and also illustrates many of the 

common shortcomings of other formats. Note that this is not in any way meant to 

denigrate ARFF files, which are in fact so popular precisely because they are one of the 

best general formats available. ARFF files are intended for general data mining research, 

and as such certainly cannot be expected to meet the special application-specific needs of 

MIR.  

One serious limitation of ARFF files is that there is no convenient way to assign more 

than one class to a given instance.
186

 This is not a serious shortcoming for most pattern 

recognition tasks, which typically require classification into one and only one class. 

However, there are many MIR research domains where the limitation of one class label 
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 There are, however, two possible workarounds. The first is to break one multi-class problem into many 

binary classification problems, so that there is a separate ARFF file for every class, with all instances 
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for every possible combination of classes, with a resulting exponential increase in the total numbers of 

classes. Unfortunately, both of these workarounds are inconvenient, and implicitly require classifier 

configurations that are much less than ideal. 
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per instance is a very problematic limitation. For example, any genre classifier dealing 

with even a moderate genre ontology would be unrealistic if it could not assign multiple 

labels to individual pieces of music. Similarly, a performer classification system should 

be able to assign multiple labels to pieces, particularly in the case of pieces with 

prominent soloists or with musical groups whose members have also had prominent solo 

careers (e.g., Cream songs should likely also be labeled with Eric Clapton, many of the 

pieces on the Kind of Blue albums should be labeled with both Miles Davis and John 

Coltrane, at the very least, etc.). Many MIR areas involve certain inherent ambiguities 

relating to class labels, and the imposition of only one class membership at the 

fundamental file format level is an unacceptable limitation for any realistic MIR 

classification system. 

A second problem with ARFF files is that they do not permit any logical grouping of 

features. ARFF files treat each feature as an independent entity with no relation to any 

other feature. In contrast to this, one often encounters multi-dimensional features in 

music, and it can be useful to maintain logical relationships between the components of 

such features. Power spectra, MFCCs, bins of a beat histogram and a binary list of 

instruments present are just a few examples of music related multi-dimensional features. 

Maintaining a logical relationship between the values of multi-dimensional features 

allows one to perform classifications in particularly fruitful ways that take advantage of 

their interrelatedness, particularly with respect to classifier ensembles. Training one 

neural net on MFCCs, for example, and using another classifier for one-dimensional 

features such as RMS or spectral centroid can prove much more fruitful than mixing the 

MFCCs in with the other features. To give another example, it can also be useful for other 

reasons to group features that are derived from one another, such as in the case of the 

average value, average derivative and standard deviation of a particular feature. 

A third problem is that ARFF files do not allow any labeling or structuring of 

instances. Each instance is stored only as a collection of feature values and a class label, 

with no identifying metadata. In music, it is often appropriate to extract features over a 

potentially overlapping time series of windows for each musical piece, something that 

results in sets of related ordered sub-sections of individual pieces. This is absolutely 

essential in applications such as automatic recording segmentation or structural analysis, 
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and is convenient in a wide variety of MIR-oriented tasks. Furthermore, some features 

may be extracted for each window, some only for some windows and some only for each 

recording as a whole. ARFF files provide no way of associating features extracted from a 

window with the recording that the window comes from, nor do they provide any means 

of identifying recordings or of storing time stamps associated with each window. This 

means that this information must be stored, organized and processed by some external 

software using some additional unspecified and non-standardized file format. 

A fourth problem is that there is no way to provide any metadata about features in 

ARFF files, other than unstructured information in comments. This can be a problem if 

data is to be shared amongst different groups, who may wish to use it to train their own 

systems, for example. In cases such as this, it is necessary to know details about the 

features and the particular parameters with which they were extracted (e.g., the roll-off 

point for the Spectral Roll-Off feature) if features are to be extracted from new instances 

to be classified based on the features provided in the original dataset. 

A fifth problem is that there is no way of imposing a structure on class labels in ARFF 

files. One often encounters hierarchical or other ontological structures in music, such as 

in the cases of genre categories or structural analyses. Weka treats each class as distinct 

and independent. This means that there is no native way to use classification techniques 

that make use of structured ontologies, such as hierarchical tree classifiers, for example. 

This also means that there is no way to use weighted misclassification training strategies 

that penalize misclassifications into dissimilar classes more severely than 

misclassifications into similar classes. 

The following list, based on the above analysis of ARFF files and on additional 

general observations, outlines a set of (sometimes by necessity contradictory) 

requirements that are proposed for consideration in the design of any new standardized 

file formats intended for general MIR classification research: 

 File formats should be as simple and easy to understand as possible. This makes it 

easier for users to learn the formats and adopt them. It also decreases the 

probability of unforeseen conflicts and inconsistencies. 
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 File formats should be as flexible and expressive as possible, within the constraint 

of avoiding excessive complexity and redundancy. 

 The data stored in the files should be easily human readable. This is important for 

purposes of debugging and general utility. It is can also be useful for the purposes 

of allowing humans to write files manually when the design of annotation 

software would be inappropriate or unnecessarily time consuming. 

 The data stored in the files should be easily machine readable. If a file format is 

difficult to write parsers with or is parsed into inconvenient data structures then it 

will be difficult to convince users to adopt it as a standard. 

 The data should be stored as efficiently as possible, in order to avoid excessively 

large files, within the constraint of maintaining human readability. 

 Some widely accepted and well-known existing standard technology, such as 

XML, should be used. This increases the likelihood that new file formats will be 

themselves adopted as standards because they will be based on a proven 

technology, because users are likely to be already be at least somewhat familiar 

with the technology and because parsing libraries will already be available. 

 File formats should rely on as few external technologies as possible. Each external 

technology that is present increases the probability that a given programming 

language used to develop a particular application may not include parsing libraries 

for that technology, that a parsing library does not function under a given 

operating system or that a component of the system will become obsolete in the 

future. 

 The fundamental types of information that need to be represented are: feature 

values extracted from instances, class label annotations of instances, abstract 

descriptions of features and their parameters, and ontological structuring of 

candidate class labels. 

 It should be possible to express features extracted from audio, symbolic and 

cultural sources of information, and treat these features equivalently so that they 

can easily be combined. 
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 It should be easy to reuse files, such as in the case of the same set of audio feature 

values being used for both genre classification and artist identification. Similarly, 

it could be convenient to reuse the same model classifications with different sets 

of features. For example, one could classify a given corpus of audio recordings 

and then later perform the same task on symbolic versions of the same corpus 

using the same model classifications.  

 It is useful to emphasize a clear separation between the feature extraction and 

classification tasks. This is in contrast to formats such as Weka ARFF, which 

combine feature values with class labels. A separation between these two types of 

data is important because individual researchers may have reasons for using 

particular feature extractors or particular classification systems. The file format 

should therefore make it possible to use any feature extractor to communicate 

features of any type to any classification system. This portability makes it possible 

to process features generated by different feature extractors with the same 

classification system, or to use a given set of extracted features with multiple 

classification systems. 

 It should be a simple matter to combine files of the same type, such as in the case 

of features extracted during different feature extraction sessions. 

 It should be a simple matter to package files expressing related types of 

information (e.g., feature values extracted from particular instances and abstract 

information about the features themselves) together when appropriate, but also to 

separate them out when convenient. This helps to ensure data availability, 

integrity and accessibility, as well as flexibility. 

 It should be possible to use files to reference external sources of information, but 

in such a way that doing so does not introduce dependencies on external 

information that may no longer be available in the future or that changes 

unexpectedly. 

 It should be possible to assign an arbitrary number of class labels to each instance. 

It should also be possible to express relative weightings for each of these labels. 
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 It should be possible to group the dimensions of multi-dimensional features and to 

logically associate related features and their values in general with one another. 

 It should be possible to assign identifying metadata to instances (e.g., recording 

titles or time stamps) that will associate meaning and context for the instances so 

that they can be identified, both internally and externally. In general, users should 

be free to specify whatever metadata fields they wish, and the file format should 

not limit them to specific fields. However, it may be useful to supply sample 

templates of particular schemas. 

 It should be possible to specify relationships between specific instances, in both 

ordered and hierarchical ways. In the case of the former, this could be a time 

series of analysis windows, for example. In the case of the latter, it could be a 

hierarchical ranking of, from bottom to top, features extracted from individual 

analysis windows of a recording, compared to features extracted for recordings as 

a whole, compared to features extracted for a performer as a whole, etc. In any 

case, it should be possible to express both feature values and class labels for both 

overall instances and ordered sub-sections of them. 

 For time-series data, it should be possible for analysis windows to overlap with 

one another and for section labels to overlap with one another. 

 For time-series data, it should be possible for analysis windows to have variable 

sizes, rather than requiring them all to be the same size. 

 It should be possible for feature values to be present for some instances and/or 

sub-instances, but not others. For example, some features may be extracted for all 

analysis windows, some only for some windows and some only for each recording 

as a whole.  

 Related to this, it should be possible to abstractly specify the appropriateness of 

different features for different contexts. For example, some features might only be 

appropriate to extract for a whole recording, not its analysis windows, or some 

features might only be possible to extract once one or more windows have already 

been calculated (e.g., spectral flux). 
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 It should be possible to specify general metadata about features, including 

identifying feature names, descriptions and extraction parameters. 

 It should be possible to specify relationships between different class labels, both 

hierarchical and otherwise. This is important for the specification of class 

ontologies that can be taken advantage of by machine learning strategies such as 

hierarchical learning algorithms or weighted misclassification penalization during 

training. It should also be possible to relatively weight the associations between 

class labels. 

7.5 Overview of the ACE XML file formats 

This section provides an overview of the ACE XML 1.1 file formats and provides 

motivations for some of the general design decisions behind them. In all cases, the 

guidelines described in Section 7.4 guided the design of these file formats. The proposed 

ACE XML 2.0 formats, as described in Section 7.11, go further still in meeting the 

Section 7.4 guidelines. 

Sections 7.6 to 7.9 provide more detailed individual descriptions of each of the four 

ACE XML 1.1 formats, including their DTDs. There is also a sample full ACE XML 1.1 

file for each of the four ACE XML file types provided in the on-line sample file 

appendix.
187

 For the sake of comparison, these sample files are constructed such that they 

express the same base data as that described by the sample Weka ARFF file in Figure 7.5, 

but take advantage of the increased expressivity offered by the ACE XML file formats.  

ACE XML 1.1 is the current stable version of ACE XML, and is supported by all of 

the jMIR software components. It is the first published version of ACE XML (McKay et 

al. 2005), and is a minor update over the never published ACE 1.0 test prototype. Section 

7.11 describes ACE 2.0, which is a proposed update of ACE that is not yet finalized or 

implemented in software. 

As implied by their name, ACE XML files are all XML-based. XML was chosen 

because it is not only a standardized format for which parsers are widely available, but is 

also an extremely flexible format. It is a verbose format, with the consequence that it is 
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less space efficient than formats such as ARFF, but this verbosity has the corresponding 

advantage that it allows humans to read and write the files relatively easily. 

It was decided to use XML DTDs rather than another XML schema to specify the 

structures used by ACE XML files. Although other schemas can in general be more 

expressive than DTDs, DTDs are nonetheless sufficiently expressive for the purposes of 

ACE XML. They also have the significant advantages of being simpler and easier to 

understand, thereby making the ACE XML formats more attractive to new users and 

making the work of those implementing custom ACE XML parsers and writers easier. 

This is a particular issue given the wide variety of alternative schemas that are available. 

The average member of the MIR community is much less likely to be familiar with any 

particular one of these schema languages, particularly in the cases of those specialized 

schemas that provide enough increased expressivity to arguably have advantages over the 

simple DTD approach. Furthermore, DTDs tend to be much simpler and straight-forward, 

and are therefore much easier to learn for those users who might not know any XML at 

all. The ACE XML DTDs are specified in each ACE XML file along with the file’s data, 

which means that each ACE XML file is packaged with an explanation of its formatting. 

As briefly discussed in Section 7.1, There are four different types of ACE XML files: 

Feature Value files that express feature values extracted from instances, Feature 

Description files that describe features abstractly, Instance Label files that allow labels to 

be associated with instances and allow the specification of metadata about instances, and 

Class Ontology files that specify relationships between different candidate class labels. 

Each of these four XML file types may be used independently, or they may be 

associated with one another and logically merged in software using unique identifying 

keys, such as matching data_set_id fields found in both Feature Value and Instance Label 

files, for example. Multiple files of the same type can also be merged using the ACE 

software. To give just a few examples: two Feature Value files containing the same 

features for different instances could be merged into one file, two different Feature Value 

files containing different features for the same instances could be merged, an Instance 

Label file containing only sub-section labels and an Instance Label file containing only 

overall instance labels could be merged, etc. 
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It is not in any way necessary to provide all four ACE XML file types for any 

application if this is not appropriate or needed. For example, if a classifier is already 

trained and is to be used to classify unknown patterns, then there is certainly no need for 

an input Instance Label file, although one may be output during processing to express the 

predicted classes. The ACE software and its code libraries will automatically construct 

implied data for missing file types in a way that is effortless and transparent to the user. 

For example, if only a Feature Value file and an Instance Label file are specified, the 

software will automatically construct a flat class ontology based on the labels present in 

the Instance Label file and will also automatically generate feature descriptions based on 

the characteristics of the features present in the Feature Value file (e.g., the 

dimensionality of each of the features).  

The decision to use four different file types rather than the more typical single file 

type is unorthodox, and therefore requires some justification. As discussed in Section 7.4, 

it is useful to incorporate a separation between feature values and instance labels. This is 

important for data reusability, such as in a case where one might extract features once 

from a large number of recordings, and then reuse this single resulting Feature Value file 

for multiple purposes, such as classification of artist, composer, genre and geographical 

point of origin. If there were only one ACE XML file type, then features would have to 

be repeated for each of these applications, but with the multiple file type approach the 

Feature Value file can remain unchanged, and be reused with a different Instance Label 

file for each classification task. Similarly, one can imagine a case where the same model 

classifications contained in one Instance Label file are used for separate sets of features 

extracted from symbolic, cultural and audio data respectively contained in three different 

Feature Value files.  

Feature descriptions and class ontologies are each distributed in separate files as well 

in order to emphasize their independence from particular instances. For example, a 

Feature Description file could be published on its own to demonstrate general features 

that can be extracted by a particular feature extraction application in general, or a Feature 

Description file could be published on its own that contains specific extraction parameters 

that were found to be effective for a particular research domain, or a Feature Description 

file could be packaged with a Feature Value file containing feature values extracted for 
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particular instances, as appropriate. Similarly, class ontologies can be published in a way 

that is independent of particular instances and features, or even of a particular data set. 

Such file type separations emphasize the abstract nature of many types of data that are 

useful in music classification, and allow them to be distributed and used either 

independently or together, as appropriate, rather than artificially forcing links where they 

may not always be appropriate. 

The use of separate file formats also has advantages with respect to data longevity and 

convenience when updating the data. For example, if new features become available after 

a Feature Value file has been generated, it would only be necessary to update the Feature 

Value and Feature Description files since the data stored in the other two file types could 

be reused unmodified. Similarly, if a genre ontology changed over time, it would not be 

necessary to update already existing Feature Value or Feature Description files. 

Overall and most importantly, the separation of different types of data into four 

different file types makes it possible to distribute and use one type of file for arbitrary 

purposes without needing to impose one’s own choices with respect to the types of data 

described by the other three file types. Also, the separation into multiple files types makes 

it easier to conceptualize and represent sophisticated arrangements of information with a 

divide and conquer approach. 

jMIR includes several software tools for facilitating the use of the ACE XML file 

formats in general, including use outside of the scope of the principal jMIR software 

components themselves. Although ACE XML files may certainly be manually read, 

created and edited with text editors or XML editors such as XML Spy, the best way to 

perform such manual operations is to use the prototype ACE GUI, which displays data 

from single or multiple ACE XML files in particularly convenient ways. 

A separate Java application called jMIRUtilities is also included as part of jMIR for, 

among other things, performing a number of functions that facilitate the general use of 

ACE XML files. Aspects of jMIRUtilities include a simple GUI for batch annotating files 

into an Instance Label file, functionality for generating Instance Label files based on 

simple tab delimited text files, functionality for accessing data from iTunes XML files so 

that it can then be imported into ACE XML files, and functionality for merging features 

contained in separate ACE XML Feature Value files.  
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7.6 The ACE XML 1.1 Feature Value file format 

ACE XML Feature Value files are used to express feature values that have been 

extracted from instances and sub-sections of instances. Figure 7.6 specifies the DTD for 

Feature Value files. A sample complete Feature Value file is shown in Code Sample 7.1 

of the on-line sample file appendix.
188

  

 

 

 

 

 

 

 

Figure 7.6: The XML DTD for ACE XML 1.1 Feature Value files. This DTD precisely 

defines the information that may appear in Feature Value files and how it must be 

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on 

this DTD is shown in Code Sample 7.1 of the on-line sample file appendix.189 

It can be seen from the Feature Value DTD that feature values can be expressed for 

overall instances, called data_sets, that are each named using the data_set_id element. 

Each data_set_id refers to a unique identifier, such as a file path or a URI. Each data_set 

may or may not have sub-sections, which are each specified using the section element. 

For example, a data_set might correspond to an audio recording and its sub-sections 

might correspond to analysis windows of the recording, although there is nothing about 

the Feature Value specification that requires this particular arrangement. 

Each data_set sub-section must have start and stop stamps in order to indicate what 

portion of the data_set that it corresponds to. These stamps may or may not overlap and 

they may or may not be of equal sizes. This makes it possible to have, for example, 

overlapping analysis windows of arbitrary and potentially varying sizes. There is nothing 

about the start and stop attributes that requires them to denote time, however, and they 
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<!ELEMENT feature_vector_file (comments, 

                               data_set+)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT data_set (data_set_id, 

                    section*, 

                    feature*)> 

<!ELEMENT data_set_id (#PCDATA)> 

<!ELEMENT section (feature+)> 

<!ATTLIST section start CDATA "" 

                  stop CDATA ""> 

<!ELEMENT feature (name, v+)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT v (#PCDATA)> 
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could just as easily be used to denote a range of pixels in an image of album art, for 

example. 

Features may be expressed for either a data_set as a whole or for individual sub-

sections. In either case, the feature element is used to denote a new feature value or 

feature vector, and the particular feature is named using a name element in each feature 

clause. 

Each data_set or section may have an arbitrary and potentially differing number of 

features in an arbitrary and potentially differing order. This makes it possible to omit 

features from some data sets or sub-sections if appropriate or if they are unavailable. Each 

feature may also have an arbitrary and potentially varying number of values, each denoted 

with a v element, in order to allow multi-dimensional features that may vary in 

dimensionality based on context.
190

 

More information on instances described in a Feature Value files, such as class labels 

or identifying metadata, may be accessed by linking instances in the Feature Value file to 

instances in an ACE XML Instance Label file (see Section 7.8) by using data_set_id 

values that match across the two files. 

Similarly, more information on the features themselves (as opposed to their values) 

can be specified by linking a Feature Value file to an ACE XML Feature Description file 

(see Section 7.7) by using name values in feature clauses in the Feature Value file that 

correspond to name values in feature clauses in the Feature Description file. However, it 

is not necessary to include Feature Description files with Feature Value files, since 

software such as ACE can automatically implicitly deduce information such as the 

dimensionality of features or whether particular features are to be extracted for overall 

instances or their sub-sections. 

As a final note, it should be mentioned that a feature_vector_file tag is used in the 

DTD specification rather than a feature_value_file tag. This is for the purpose of legacy 

compatibility, since Feature Value files were called Feature Vector files in the deprecated 

ACE XL 1.0 specification. 

                                                 
190

 The dimensionality of a given feature type may alternatively be fixed in a Feature Description file, if 

desired. 



 408 

7.7 The ACE XML 1.1 Feature Description file format 

ACE XML Feature Description files are used to express abstract information about 

features themselves. Feature Description files do not specify feature values or other 

information related to specific instances, as this information is instead specified in 

Feature Value files (see Section 7.6). Figure 7.7 specifies the DTD for Feature 

Description files. A sample complete Feature Description file is shown in Code Sample 

7.2 of the on-line sample file appendix.
191

 

Feature Description files make it possible to specify information about features in a 

general sense in a way that is independent from particular feature extractions. This makes 

it possible to publish a self-contained Feature Description file describing the features that 

a particular feature extraction application can extract, for example, or to publish a list of 

features and associated parameters that were found to be useful for different research 

application, such as instrument classification and pitch classification.  

 

 

 

 

 

 

 

 

Figure 7.7: The XML DTD for ACE XML 1.1 Feature Description files. This DTD 

precisely defines the information that may appear in Feature Description files and how it 

must be formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file 

based on this DTD is shown in Code Sample 7.2 of the on-line sample file appendix.192 

It can be seen from the Feature Description DTD that information on each feature is 

expressed in a separate feature clause. Each such clause includes a name element 

uniquely identifying the feature and an optional description element that can be used to 

include textual metadata about the feature. 
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 <!ELEMENT feature_key_file (comments, 

                             feature+)> 

 <!ELEMENT comments (#PCDATA)> 

 <!ELEMENT feature (name, 

                    description?, 

                    is_sequential,  

                    parallel_dimensions)> 

 <!ELEMENT name (#PCDATA)> 

 <!ELEMENT description (#PCDATA)> 

 <!ELEMENT is_sequential (#PCDATA)> 

 <!ELEMENT parallel_dimensions (#PCDATA)> 
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The is_sequential element for each feature specifies whether or not the feature can be 

extracted from sub-sections of an instance. A value of true means that it can, and a value 

of false means that the feature can only be extracted from instances as a whole, not from 

their sub-sections. So, for example, a feature such as Most Common Pitch might have an 

is_sequential value of true for a MIDI file that is broken into analysis windows and the 

most common pitch is calculated for each individual window, but a feature such as 

Overall Key might have an is_sequential value of false because it would only be extracted 

for the MIDI file as a whole. 

The parallel_dimensions element specifies the vector size of extracted features. This 

value will be 1 unless the feature is a multi-dimensional feature. So, for example, a multi-

dimensional Pitch Histogram feature with 128 pitch bins would have a 

parallel_dimensions value of 128, but the one-dimensional Most Common Pitch feature 

would only have a parallel_dimensions value of 1. 

Feature Description files can be linked with Feature Value files if it is desirable to 

describe the features used in a particular feature extraction run on a particular dataset. It 

can often be helpful to do this, as there are often many variable implementation details 

about features that are not apparent from examinations of actual feature values, so the 

distribution of feature details with extracted feature values makes it much easier to extract 

new feature values from new instances in ways that are compatible with earlier feature 

extractions.  

The linking of a Feature Description file and a Feature Value file can be achieved by 

using name elements in feature clauses in the Feature Description file that correspond to 

matching name elements in feature clauses in the Feature Value file. 

As a final note, it should be mentioned that a feature_key_file tag is used in the DTD 

specification rather than a feature_description_file tag. This is for the purpose of legacy 

compatibility, since Feature Description files were called Feature Key files in the 

deprecated ACE XML 1.0 specification. 

7.8 The ACE XML 1.1 Instance Label file format 

ACE XML Instance Label files are used to specify class labels and miscellaneous 

metadata about instances and sub-sections of instances. A typical use of this file type 
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would be to express ground-truth model classifications or predicted classifications, but 

there are certainly other possible uses as well. Figure 7.8 specifies the DTD for Instance 

Label files. A sample complete Instance Label file is shown in Code Sample 7.3 of the 

on-line sample file appendix.
193

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: The XML DTD for ACE XML 1.1 Instance Label files. This DTD precisely 

defines the information that may appear in Instance Label files and how it must be 

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on 

this DTD is shown in Code Sample 7.3 of the on-line sample file appendix.194 

It can be seen from the Instance Label DTD that class labels can be expressed for 

overall instances, called data_sets, that are each named using the data_set_id element. 

Each data_set_id should refer to a unique identifier, such as a file path or a URI. Each 

data_set may or may not have sub-sections, which are each specified using the section 

element. For example, a data_set might correspond to an audio recording and its sub-

sections might correspond to analysis windows of this recording, although there is 

nothing about the Instance Label specification that requires this particular arrangement. 

Each data_set instance may have pieces of metadata associated with it via the 

misc_info element. Each misc_info clause may be associated with an info_type attribute 
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<!ELEMENT classifications_file (comments, 

                                data_set+)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT data_set (data_set_id, 

                    misc_info*, 

                    role?, 

                    classification)> 

<!ELEMENT data_set_id (#PCDATA)> 

<!ELEMENT misc_info (#PCDATA)> 

<!ATTLIST misc_info info_type CDATA ""> 

<!ELEMENT role (#PCDATA)> 

<!ELEMENT classification (section*, 

                          class*)> 

<!ELEMENT section (start, 

                   stop, 

                   class+)> 

<!ELEMENT class (#PCDATA)> 

<!ELEMENT start (#PCDATA)> 

<!ELEMENT stop (#PCDATA)> 
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that specifies the type of metadata (e.g., title, album, composer, etc. field names) that the 

misc_info clause specifies. 

The optional role element can be used to specify the purpose for which an instance is 

to be used. Values such as training, testing and predicted are typically used for this field 

to specify the role of the instance with respect to machine learning, but any string may be 

provided here if desired. This can be useful for purposes such as specifying pre-

determined cross-validation folds, for example, and can be particularly useful for 

bookkeeping when multiple Instance Label files are merged. 

Class labels are assigned to overall instances and/or their sub-sections using the class 

element. Multiple labels may be assigned to each instance or sub-section, or the label may 

be left unspecified if a particular label is unknown. 

Each sub-section of an instance must have start and stop stamps in order to indicate 

the portion of the instance that it corresponds to. These stamps might often be used to 

specify time intervals, although there is nothing requiring that they be related specifically 

to time. The resultant sub-section intervals may or may not overlap and they may or may 

not be of equal sizes. 

This arrangement permits two partially overlapping regions, where each region is 

labelled with a different class name, and the overlapping portion is associated with both 

labels. Such an occasion might occur, for example, in the ground-truth for a 

music/applause discriminator where the applause in a live performance begins before the 

music ends. Such a situation could be expressed as either two sections with one label each 

overlapping in time or as three non-overlapping consecutive sections where the outer 

sections have one label each and the central section has two labels, whichever is more 

convenient. 

Information on specific feature values extracted from instances referred to in an 

Instance Label file may be accessed by linking the Instance Label file to an ACE XML 

Feature Value file (see Section 7.6) by using data_set_id values that match across the two 

files. Similarly, more information on the class labels used to label instances in an Instance 

Label file can be accessed by linking the Instance Label file to a Class Ontology file (see 

Section 7.9) by using class values that match across the two files. 
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As a final note, it should be mentioned that a classifications_file tag is used in the 

DTD specification rather than an instance_label_file tag. This is for the purpose of legacy 

compatibility, since Instance Label files were called Classification files in the deprecated 

ACE XL 1.0 specification. 

7.9 The ACE XML 1.1 Class Ontology file format 

ACE XML Class Ontology files are used to list candidate class labels for a particular 

classification domain and to specify hierarchical structures that connect different classes. 

As discussed in Section 7.11, the ACE XML 2.0 version of the Class Ontology format 

extends the purview of Class Ontology files to general weighted ontologies, but the ACE 

XML 1.1 version only permits extended tree-based taxonomical class structuring,
195

 

which at least is significantly more than the simple flat class structures used in the 

majority of current MIR research. 

Class Ontology files do not specify the class labels of any specific instances, as this 

information is instead annotated in Instance Label files (see Section 7.8). Figure 7.9 

specifies the DTD for Class Ontology files. A sample complete Class Ontology file is 

shown in Code Sample 7.4 of the on-line sample file appendix.
196

 

The ability to specify hierarchical class structuring has several important benefits. 

From a musicological perspective, it provides a simple machine readable way of 

specifying meaningful structuring of classes. From a machine learning perspective, it has 

the dual advantages of enabling the use of potentially very powerful hierarchical 

classification methodologies that take advantage of this structuring (e.g., McKay 2004) as 

well as the use of learning schemes utilizing weighted penalization, such that 

misclassifications during training into related classes are penalized less severely than 

misclassifications into unrelated classes. 

It can be seen from the Class Ontology DTD that flat class structures can be specified 

simply by listing a set of parent_class clauses, each with a class_name element used to 

specify the name of a class. This simple approach can be useful in communicating a list 
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of candidate class labels to an annotator, for example, or for combining a Class Ontology 

file with a set of labelled instances contained in an Instance Label file in order to ensure 

that it does not use any unexpected class labels. 

 

 

 

 

 

 

Figure 7.9: The XML DTD for ACE XML 1.1 Class Ontology files. This DTD precisely 

defines the information that may appear in Class Ontology files and how it must be 

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on 

this DTD is shown in Code Sample 7.4 of the on-line sample file appendix.197 

The structural aspect of Class Ontology files become apparent when the sub_class 

element is used to specify hierarchical structures of class labels under parent_class level 

classes. Each parent_class clause may contain an arbitrary number of sub_classes, and 

each sub_class may itself also contain an arbitrary number of sub_classes, with the result 

that a hierarchical class tree of arbitrary depth can be built under each parent_class. Each 

class with no descendants, be it in a parent_class or sub_class clause, can be referred to 

as a leaf class, and can be used to label instances in Instance Label files. 

A Class Ontology file can be linked to an Instance Label file for use during training, 

or for other reasons, by using class_name values in the Class Ontology file that 

correspond to the class values in the Instance Label file. 

As a final note, it should be mentioned that a taxonomy_file tag is used in the DTD 

specification rather than a class_ontology_file tag. This is for the purpose of legacy 

compatibility, since Class Ontology files were called Taxonomy files in the deprecated 

ACE XL 1.0 specification. 
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<!ELEMENT taxonomy_file (comments, 

                         parent_class+)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT parent_class (class_name, 

                        sub_class*)> 

<!ELEMENT class_name (#PCDATA)> 

<!ELEMENT sub_class (class_name, 

                     sub_class*)> 
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7.10 Using ACE XML with new and existing non-jMIR software 

A key factor in the effectiveness of any effort to encourage researchers to adopt new 

standardised file formats is the ease with which they can parse and write to them in their 

own existing and new software. The simplicity of Weka ARFF files and the ample data 

structures and processing functionality offered by the Weka code base have certainly 

contributed to its broad adoption, for example. Although all jMIR software components 

are of course able to read and write all relevant ACE XML formats, this in itself is not 

sufficient to encourage the use of ACE XML in other software platforms. 

jMIR therefore includes open-source Java libraries in the ACE code package that 

implement parsing and writing functionality for each of the ACE XML file types, as well 

as convenient data structures and general processing methods for dealing with the data 

that is parsed from files. This data can be used and manipulated directly within these 

libraries, or it can be exported to individual developers’ own data structures. ACE’s 

parsing and data structure libraries may be used entirely independently of the ACE meta 

learning software itself if desired. 

Functionality has also been implemented to automatically convert data in ACE XML 

data structures into Weka data structures, and vice versa, in order to take advantage of the 

convenient and well-established functionality built into Weka. This also makes it possible 

to use Weka data structures as intermediaries for conversion to yet other formats. jMIR 

also includes utilities for directly translating back and forth between Weka ARFF and 

ACE XML files, although data that fundamentally cannot be represented in ARFF files is 

lost when doing so. 

As discussed in Section 7.13, there are plans to implement ACE XML parsing and 

processing functionality in other programming languages and to build custom modules 

for other well-established MIR systems. For the moment, however, the Java 

implementation of the ACE XML processing functionality makes these libraries as 

accessible as libraries implemented in any single language can be. Java is platform 

independent, and the only third-party software used by the ACE XML processing 

libraries is the open-source Apache Xerces
198

 XML-parsing library and the Weka 
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library
199

 (and this only if Weka functionality is used), both of which are also 

implemented in Java. This means that the ACE XML libraries can be easily accessed 

under any common operating system, with the further advantage that many systems such 

as Matlab include functionality for accessing Java externals. Furthermore, even if one is 

for some reason unable to access the ACE XML code libraries, general XML parsers are 

available in virtually all modern programming languages. 

For the purpose of clarity, the overall structure of the Java classes used to parse and 

process ACE XML files is briefly outlined here. This is only a basic overview, however, 

and those wishing more details are referred to the ACE API and the well-documented 

code itself, available at jmir.sourceforge.net. 

An important point to note before proceeding to the architectural details of the ACE 

XML Java classes is that the jMIR components themselves make use of the ACE classes 

described below when dealing with ACE XML files. This means that any bug fixes or 

updates to the ACE XML standard only need to be implemented once in these classes to 

be automatically updated in all of the jMIR components as well. 

The parsing code for all ACE XML file formats is contained in the ace.xmlparsers 

Java package. Although changes to the ACE XML standard must be implemented here, 

users in general should never need to reference these classes directly when incorporating 

ACE XML functionality into their own code. This is because all of the parsing 

functionality can be accessed more conveniently from the higher-level classes in the 

ace.datatypes Java package. Having noted this, those users who do wish to have low-level 

access to the parsed data may wish to examine the ParseClassificationsFileHandler, 

ParseDataSetHandler, ParseFeatureDefinitionsHandler and ParseTaxonomyFileHandler 

classes in the ace.xmlparsers package for parsing Instance Label, Feature Value, Feature 

Description and Class Ontology ACE XML files respectively. 

As noted above, the significant majority of users will prefer to use the ace.datatypes 

classes, however, which represent the data parsed from ACE XML files at a higher level 

and include access to file reading, automatic error and consistency checking, file writing, 

file merging, data translation and data processing functionality, as well as access to the 

basic data structures used to hold data once it is parsed from ACE XML files. A number 
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of methods are designed specifically with the intention of making relevant data available 

in forms convenient to external software, and this data can often be simply imported over 

to users’ own software in the form of simple and well-established data structures. 

The overarching Java class in the ace.datatypes package is the DataBoard, which 

provides access to information relating to any of the four ACE XML file types, 

interpreted either independently or in conjunction with one another. The DataBoard also 

provides direct access to the SegmentedClassification, DataSet, FeatureDefinition and 

Taxonomy Java classes, each of which relates specifically to information stored in 

Instance Label, Feature Value, Feature Description and Class Ontology ACE XML files, 

respectively. The ace.datatypes package also contains other Java classes, but these relate 

more to either ACE XML 2.0 functionality, such as ACE ZIP files (see Section 7.11.1), or 

to ACE machine learning functionality that is not directly relevant to accessing data 

stored in ACE XML files. 

7.11 Current developments: Proposed update to ACE XML 2.0  

The ACE XML 1.0 file formats were developed at the beginning of the jMIR project, 

before any of the jMIR software components had themselves been completed. Minor 

changes were introduced in version 1.1, the stable version described in the sections above, 

but the file formats were frozen at this version after the publication of the first jMIR 

component (McKay et al. 2005). This was necessary because ACE XML is intended for 

use as a standard, which precludes the incorporation of changes that would render 

existing software that uses the previous format obsolete. 

Of course, certain areas of potential improvement became apparent as more jMIR 

components were completed. The need for an update to the ACE XML specification also 

became increasingly apparent as the use of ACE XML as a standardised format for use in 

the inter-university NEMA
200

 project became probable, something that would necessitate 

a number of changes for the sake of compatibility with other NEMA systems.  

As a result, it was decided to design an overhauled version of ACE XML called ACE 

XML 2.0, which is described in the following sub-sections. It should be stressed that the 

specified ACE XML 2.0 formats are only proposals, and that the finalization and 
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implementation of these formats is beyond the scope of this document. Given that ACE 

XML 2.0 is proposed as a standardized set of file formats intended for general use, it is 

appropriate to first publish proposed changes to the MIR research community for 

potential modification before finalizing and implementing the changes. ACE XML 1.1 is 

already implemented and established in all jMIR components and is still the ―official‖ 

jMIR format at the time of publication of this document. 

Some of the changes proposed for ACE XML 2.0 are based on the changing needs of 

the MIR community since ACE XML 1.1 was established. Others are simply for the sake 

of improved clarity, simplicity and improved consistency across ACE XML formats. The 

most fundamental changes, however, are based on the needs imposed by the NEMA 

project. The NEMA researchers at Queen Mary, University of London are invested in the 

Music Ontology format (see Section 7.3.4), and the NEMA researchers at the University 

of Illinois at Urbana-Champaign are building the NEMA infrastructure using Meandre,
201

 

both of which require specific modifications to ACE XML for the sake of full 

compatibility. For example, the addition of optional URI and other fields to the ACE 

XML files makes it possible to add RDF handles to ACE XML files if it is necessary to 

integrate them with file formats such as Music Ontology, while at the same time 

maintaining the advantages of essentially self-contained structured XML files. 

As a consequence of these diverse needs, many of the characteristics of ACE XML 

2.0 are the result of compromises between the often competing priorities of different 

researchers and research groups. The changes implemented in ACE XML 2.0 are 

intended to meet both these specific needs as well as the original design philosophy of 

ACE XML as much as possible. The main priority, however, has remained the 

implementation of formats that are as flexible and general as possible within the specific 

sphere of MIR classification research. 

Many of the changes to ACE XML proposed in the sections below result from very 

helpful conversations, criticisms and suggestions from other researchers. These include, 

at McGill University, John Ashley Burgoyne, Rebecca Fiebrink, Ichiro Fujinaga, Daniel 

McEnnis and Jessica Thompson, among others. Jessica Thompson in particular deserves 

special credit for her central role with respect to the ACE ZIP format, as well as for ideas 
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relating to ACE XML in general. John Ashley Burgoyne is also playing an essential role 

in the ongoing implementation of the new software supporting ACE XML 2.0. And, of 

course, Ichiro Fujinaga’s input was essential throughout the process, from beginning to 

end. Many other researchers outside McGill University have also contributed very helpful 

insights, including, Mert Bay, Douglas Eck, Andreas F. Ehmann, Ben Fields, Ian Knopke, 

Amit Kumar, Paul Lamere, Cyril Laurier, Kevin Page, Yves Raimond, Allen Renear, 

Mark Sandler, David Tcheng, Karen Wickett and, especially, J. Stephen Downie and Kris 

West. 

It is important to stress that as much effort as possible needs to be made to keep ACE 

XML 2.0 backwards compatible with ACE XML 1.1, especially in terms of the data 

structures that the file formats support.  

7.11.1 ACE XML 2.0 ZIP files and ACE XML 1.1 and 2.0 Project files 

One of the first problems that became apparent with ACE XML was that large groups 

of XML files associated with a particular research project could be unwieldy to deal with 

collectively, and could potentially be confusing to new users. Since it is undesirable to 

combine the four formats into a single format, for reasons discussed in Sections 7.4 and 

7.5, it was necessary to find a solution that would allow the continued use of multiple 

discrete files while at the same time simplifying the logistics related to using groups of 

them together. 

The first solution was to devise an ACE XML Project file format that could be used to 

associate related files together for a given project. This format allows users of an 

application such as ACE, for example, to simply specify a single Project file, and then 

rely on the application to itself automatically open all of the files referred to by this 

Project file, thus increasing user convenience significantly. 

A prototype Project file format was developed under the ACE XML 1.1 framework 

and implemented in the ACE Java package, but never finalized as a standard or 

implemented in the other jMIR components. The DTD of this prototype ACE XML 1.1 

Project file is shown in Figure 7.10, and a revised ACE XML 2.0 version is shown in 

Figure 7.11. A sample ACE XML 1.1 Project file is shown in Code Sample 7.5 of the on-
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line sample file appendix, and a sample ACE XML 2.0 Project file is shown in Code 

Sample 7.6.
202

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: The XML DTD for the prototype ACE XML 1.1 Project file format. This DTD 

precisely defines the information that may appear in Project files and how it must be 

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on 

this DTD is shown in Code Sample 7.5 of the on-line sample file appendix.203 

The feature_vectors_path, feature_definitions_path, model_classifications_path and 

taxonomy_path elements allow references to be made to external ACE XML Feature 

Value, Feature Description, Instance Label or Class Ontology files, respectively. Zero to 

many files of each type may be referred to, except in the case of Class Ontology files, for 

which only zero or one files may be referenced. Weka ARFF files can also be referred to 

using the weka_arff_path element if ACE XML files are unavailable for a certain dataset.  

Preference files (in as of yet unspecified formats) for the ACE meta learning 

application can also be specified using the gui_preferences_path and 

classifier_settings_path elements. Trained classification models can be referenced via the 

trained_classifiers_path element. 
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<!ELEMENT ace_project_file (comments, 

                            taxonomy_path, 

                            feature_definitions_path, 

                            feature_vectors_path, 

                            model_classifications_path, 

                            gui_preferences_path, 

                            classifier_settings_path, 

                            trained_classifiers_path, 

                            weka_arff_path)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT taxonomy_path (#PCDATA)> 

<!ELEMENT feature_definitions_path (path*)> 

<!ELEMENT feature_vectors_path (path*)> 

<!ELEMENT model_classifications_path (path*)> 

<!ELEMENT gui_preferences_path (#PCDATA)> 

<!ELEMENT classifier_settings_path (#PCDATA)> 

<!ELEMENT trained_classifiers_path (#PCDATA)> 

<!ELEMENT weka_arff_path (#PCDATA)> 

<!ELEMENT path (#PCDATA)> 
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Figure 7.11: The proposed ACE XML 2.0 update to the DTD of the Project file format. 

See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this DTD is 

shown in Code Sample 7.6 of the on-line sample file appendix.204  

As can be seen by a comparison of Figures 7.10 and 7.11, most of the changes are in 

the specific terminology used in the element tags and in the order in which they appear. 

These changes are proposed for purposes of clarity and consistency with other ACE XML 

file formats. One of the few fundamental changes is the removal of the 

ace_preferences_id and classifier_settings_id elements. This was done because it is in 

general desirable to separate the ACE XML file formats from the ACE meta learning 

application or any other particular jMIR components. A new uri element is also added so 

that references can be made to external resources of any type. This uri element includes 

an optional predicate attribute in order to make it possible to specify RDF-like triples, 

such that the contents of the uri clause indicate the object, the clause containing the uri 

sub-clause is the subject, and the predicate attribute specifies the relationship between the 

two. 

Another change that has been considered but rejected, at least for the moment, is the 

ability to list multiple Class Ontology files. The was not done since the merging of 

different ontologies could lead to significant inconsistencies if not supervised carefully, 

and it would probably be safer to require that such rare operations be performed 

manually.  
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<!ELEMENT ace_xml_project_file_2_0 (comments?, 

                                    feature_value_id, 

                                    instance_label_id, 

                                    class_ontology_id, 

                                    feature_description_id, 

                                    weka_arff_id?, 

                                    trained_model_id?, 

                                    uri?)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT feature_value_id (path*)> 

<!ELEMENT instance_label_id (path*)> 

<!ELEMENT class_ontology_id (#PCDATA)> 

<!ELEMENT feature_description_id (path*)> 

<!ELEMENT weka_arff_id (#PCDATA)> 

<!ELEMENT trained_model_id (#PCDATA)> 

<!ELEMENT uri (path*)> 

<!ATTLIST uri predicate CDATA #IMPLIED> 

<!ELEMENT path (#PCDATA)> 
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Although the Project file does make the use of multiple ACE XML files together 

significantly more convenient, it is an imperfect solution. Users must still maintain the 

individual files, and must be careful not to delete, rename or move them without making 

appropriate changes in the Project file. 

In order to fully address this problem, it was decided to devise an ACE XML ZIP file 

format. This format is inspired by the Microsoft Office 2007 Open XML File Format,
205

 

which stores each Microsoft Office ―document‖ as sets of XML files packaged into a 

single ZIP file. Similarly, ACE XML ZIP files consist of sets of ACE XML (or other) 

files that are packaged together into a single ZIP file. 

This approach retains the advantages of maintaining separate files, as discussed in 

Sections 7.4 and 7.5, since each ACE XML file stored in an ACE XML ZIP file remains 

self-contained and can be easily extracted from the ZIP file and used on its own or with 

other projects. At the same time, this approach enables multiple related ACE XML files 

to be packaged into a single ZIP file, so no housekeeping of external files is required. ZIP 

files in particular are an especially appropriate format because there are many free 

applications and code libraries that can be used to access or store data in them. 

Another significant advantage of using ZIP files is that they are compressed formats, 

which means that they can dramatically reduce space and bandwidth requirements. This is 

significant, as ACE XML files can be quite large, particularly in cases when many 

windowed features are extracted from large collections of data. Compression rates as high 

as 83% have been observed when compressing Feature Value files, although the amount 

of compression depends on the particular data that is being compressed. 

Open-source code for using ACE ZIP files has already been implemented by Jessica 

Thompson. This code is integrated into the ACE code package, and can be accessed via 

the ACE command-line interface and general API. Work on incorporating this 

functionality into the ACE GUI as well is also currently underway. 

Each ACE XML ZIP file is associated with a single Project file, which is either 

specified by the user when the ACE ZIP file is created, or auto-generated by the ACE ZIP 

processing code when ACE XML files are added to an existing ACE ZIP file. So, 

although an ACE ZIP file can hold many files of any type, each ACE ZIP file always has 
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exactly one default ACE XML Project file contained within it and only one or zero Class 

Ontology files specified by this Project file. In order for this to work properly, each ACE 

ZIP file has a simple hidden file called project.sp automatically generated and added to it 

that specifies the name of the default ACE XML Project file for the ZIP file. Users do not 

ever interact directly with this file, however, or need to be aware of it. 

An ACE XML ZIP file may be automatically generated from an ACE XML Project 

file using the ACE ZIP processing software. This software automatically packages all 

files referred to in the Project file, along with the Project file itself, into the ZIP file. 

Then, when the ZIP file is later opened, the Project file is automatically decompressed 

and parsed so that the files contained in the ZIP file can themselves be automatically 

accessed, decompressed and properly interpreted by the ACE code. When the project and 

other files contained in the ZIP file are decompressed into a new directory, the ACE zip-

processing software automatically updates the Project file to reflect their new file paths. 

Alternatively, users may specify a list of files or simply a directory containing ACE 

XML files. The ACE software will then automatically package the appropriate files into a 

new ACE ZIP file, along with an ACE XML Project file that is auto-generated based on 

the specified ACE XML files. If desired, the ACE API and command-line can also be 

used to add or extract individual or all files from ACE ZIP files.  

ACE XML ZIP and Project file functionality will be incorporated into the jMIR 

components other than ACE once the ACE XML 2.0 specification is finalized via 

consultation with the NEMA researchers and the MIR community. 

7.11.2 Proposed ACE XML 2.0 updates to Feature Value files 

The DTD of the current ACE XML 1.1 Feature Value file format is shown in Figure 

7.6, and the proposed updated DTD for the ACE XML 2.0 Feature Value format is shown 

in Figure 7.12. A sample ACE XML 2.0 Feature Value file is shown in Code Sample 7.7 

of the on-line sample file appendix.
206

 The comments clause of this sample file provides 

descriptive instructions on how to use the file format. The proposed changes to the ACE 
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XML 2.0 Feature Value format relative to the current ACE XML 1.1 version are as 

follows:
207

 

 The feature_vector_file element is renamed to ace_xml_feature_value_file_2_0 

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions. 

 The data_set element is renamed to instance for the purposes of clarity and 

generality. 

 The data_set_id element is renamed to instance_id for the purposes of 

consistency, clarity and generality. 

 The feature element is renamed to f in order to reduce file size. 

 The name element is renamed to id in order to reduce file size. 

 The section element is renamed to s in order to reduce file size. 

 The start and stop attributes are renamed b and e (abbreviations for beginning and 

end) in order to reduce file size, and are now obligatory in s elements in order to 

enforce proper file construction. 

 Features that correspond to a precise time (or other) coordinate value in an 

instance rather than intervals of time (or other) coordinates or instances as a whole 

can be specified with the new precise_coord element and its associated coord 

attribute. 

 The new optional coord_units element can be used in each instance to specify the 

units used for the coordinate indicators for both sub-sections of and precise 

coordinates in instances.  

 The new optional extractor element can be used to specify the name of the feature 

extraction software used to extract each feature for an instance. A separate 

extractor clause is used for each feature. The contents of an extractor clause 
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indicate the name of the feature extractor, and the obligatory fname attribute 

indicates the name of the feature that is to be associated with this extractor. This 

arrangement allows scenarios where different feature extractors are used to extract 

the same feature for different instances, as well as scenarios where different 

features are extracted by different feature extractors for the same instance. 

 Feature values consisting of arrays with an arbitrary number of dimensions may 

now be expressed, as compared to the ACE XML 1.1 limitation to only one-

dimensional vectors of feature vales. Sparse arrays, or arrays missing some 

entries, are now supported as well, something that can be important for space 

efficient and flexible data representation. ACE XML 2.0 currently supports four 

alternative approaches to representing feature values and arrays, each with its own 

relative strengths and weaknesses with respect to the number of dimensions that 

can be represented, file size, ability to efficiently represent sparse data and human 

readability: 

o In the case of feature values consisting of only one value or feature vectors 

consisting of only one dimension, a methodology similar to the one that 

was used in ACE XML 1.1 (i.e. f clauses containing the v element) may be 

used in ACE XML 2.0 as well. 

o Arrays with any number of dimensions may be expressed using JSON 

(JavaScript Object Notation)
208

 array notation. JSON is a well-established 

and relatively human readable text-based data interchange format for 

representing simple data structures. JSON arrays are expressed using 

simple square bracket notation, enclosed in vj clauses in ACE XML 2.0. 

So, for example, a feature vector of size three consisting of the numbers 

one, two and three would be represented as <vj>[1,2,3]</vj>. JSON 

arrays can be nested in order to represent arrays of arbitrary 

dimensionality. So, for example, a table with two identical rows each 

containing the values one, two and three would be represented as 

<vj>[[1,2,3],[1,2,3]]<vj>. A similar approach could have been achieved 
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by using nested XML elements, but the JSON representation is more 

compact and more human readable for large arrays. There are also JSON 

parsing libraries available in many languages that can parse such arrays 

quickly, which offloads some of the work from that would otherwise need 

to be performed by an ACE XML parser. A disadvantage of the JSON 

approach, however, is that JSON is not ideally suited to efficiently 

representing sparse arrays. Also, JSON is less human readable than some 

of the alternative approaches. Ultimately, however, it is a compromise that 

enables potentially very large arrays to be represented relatively compactly 

while still being relatively readable, at least compared to binary data. 

o Explicitly indexed arrays may be used as an alternative representation in 

the case of feature values consisting of only one number, feature vectors 

consisting of one dimension or feature arrays consisting of two to ten 

dimensions. This approach involves specifying coordinates using the d0 to 

d9 attributes in vd clauses, as an alternative to v clauses. If there is only 

one coordinate (i.e., a feature vector), then only the d0 attribute would be 

used, if there is a three-dimensional array then the d0, d1 and d2 attributes 

would be used, and so on. This approach is moderately space efficient, can 

represent sparse arrays and is easily human readable. There is a limitation 

to only ten dimensions, but each of these may consist of vectors of any 

size, and very few features used in MIR need arrays with more than ten 

dimensions. Although it would be ideal to have such an approach for N 

dimensions, it is not possible to specify an arbitrary number of dimension 

attributes in an XML DTD schema. To give an example, the JSON feature 

vector of [1,2,3] would be represented as <vd d0="0">1</vd><vd 

d0="1">2</vd><vd d0="2">3</vd>, and the JSON array of 

[[1,2,3],[1,2,3]] would be represented as <vd d0="0" 

d1="0">1</vd><vd d0="0" d1="1">2</vd><vd d0="0" 

d1="2">3</vd><vd d0="1" d1="0">1</vd><vd d0="1" 

d1="1">2</vd><vd d0="1" d1="2">3</vd>.  
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o The final option permitted by ACE XML 2.0 is to represent arrays with 

any number of dimensions using vs clauses. Each vs clause contains one d 

element for each dimension, and this d element is used to specify the 

coordinate value its corresponding dimension. Each vs clause also contains 

a single v clause to specify the feature value for the array at the 

corresponding coordinate. To give an example, the element of the JSON 

feature array [[1,2,3],[4,5,6]] with a value of 6 would be represented as 

<vs><d>1</d><d>2</d><v>6</v></vs>. This approach has the 

advantage that it can be used to express arrays with any number of 

dimensions and, unlike the JSON approach, can also efficiently represent 

sparse arrays as well as represent data in a more human readable way. It is 

significantly less compact than the JSON approach for complete arrays, 

however, and the ACE XML encoder must ensure that the correct number 

of d elements are present for each value and that they consistently appear 

in the correct order.  

 Data types may now optionally be explicitly specified for each feature via the 

optional type attribute of the f (formerly feature) element. Types of int, double, 

float, complex and string are permitted. Although this typing is not necessary for 

the jMIR components, it is sometimes necessary for other applications, so it is 

useful to incorporate it into the ACE XML formats so that it can be used when 

needed. The type will typically be assumed to be double if it is not specified in 

any given f clause, but this not an intrinsic assumption of the Feature Value 

format. It is important to note that feature types may also be specified in an 

associated Feature Description file, in which case the feature types in the Feature 

Value file should either correspond to the types specified in the Feature 

Description file or, for the sake of brevity, be omitted in the Feature Value file. 

 The comments element is now optional. 

 It is now possible to specify other files that are related to the Feature Value file 

using the related_resources element. These can either be explicitly referenced 

Feature Value, Feature Description, Instance Label, Class Ontology or Project 
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files, respectively referenced via feature_value_file, feature_description_file, 

instance_label_file, class_ontology_file or project_file elements, or they can be 

resources of arbitrary types referenced with uri elements. Note that references 

referred to via a related_resources element are for informal informational 

purposes only from the perspective of the jMIR components, and are not 

substitutes for references in ACE XML Project (see Section 7.11.1). 

 Optional uri elements (and their associated predicate attributes) may also be used 

within any instance (instance), section (s), precise coordinate (precise_coord) or 

feature (f) clauses. These are not intended for use by the jMIR components, but 

may be used by other software to access external resources whenever appropriate. 

7.11.3 Proposed ACE XML 2.0 updates to Feature Description files  

The DTD of the current ACE XML 1.1 Feature Description file format is shown in 

Figure 7.7, and the proposed updated DTD for the ACE XML 2.0 Feature Description 

format is shown in Figure 7.13. A sample ACE XML 2.0 Feature Description file is also 

shown in Code Sample 7.8 of the on-line sample file appendix.
209

 The comments clause of 

this sample file provides descriptive instructions on how to use the file format. The 

proposed changes to the ACE XML 2.0 Feature Description format relative to the current 

ACE XML 1.1 version are as follows: 

 The feature_key_file element is renamed to ace_xml_feature_description_file_2_0 

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions. 

 The name element is renamed to fid to make it consistent with the Feature Value 

format. 

 The is_sequential element is replaced by the scope element. The old is_sequential 

element could only be used to specify whether a feature could be extracted only 

over a whole instance or only over sub-sections of an instance. The new scope 

element makes it possible to specify that a feature may be extracted for an instance 

as a whole, for sub-sections of an instance, from only a precise point in an 

instance (e.g., a moment in time) or from any combination of these. This  
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Figure 7.12: The proposed ACE XML 2.0 update to the DTD of the Feature Value file 

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this 

DTD is shown in Code Sample 7.7 of the on-line sample file appendix.210 

                                                 
210

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf 

<!ELEMENT ace_xml_feature_value_file_2_0 (comments?, related_resources?, 

                                          instance+)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT related_resources (feature_value_file*, 

                             feature_description_file*, 

                             instance_label_file*, 

                             class_ontology_file*, 

                             project_file*, 

                             uri*)> 

<!ELEMENT feature_value_file (#PCDATA)> 

<!ELEMENT feature_description_file (#PCDATA)> 

<!ELEMENT instance_label_file (#PCDATA)> 

<!ELEMENT class_ontology_file (#PCDATA)> 

<!ELEMENT project_file (#PCDATA)> 

<!ELEMENT uri (#PCDATA)> 

<!ATTLIST uri predicate CDATA #IMPLIED> 

<!ELEMENT instance (instance_id, 

                    uri*, 

                    extractor*, 

                    coord_units?,  

                    s*, 

                    precise_coord*, 

                    f*)> 

<!ELEMENT instance_id (#PCDATA)> 

<!ELEMENT extractor (#PCDATA)> 

<!ATTLIST extractor fname CDATA #REQUIRED> 

<!ELEMENT coord_units (#PCDATA)> 

<!ELEMENT s (uri*, 

             f+)> 

<!ATTLIST s b CDATA #REQUIRED 

            e CDATA #REQUIRED> 

<!ELEMENT precise_coord (uri*, 

                         f+)> 

<!ATTLIST precise_coord coord CDATA #REQUIRED> 

<!ELEMENT f (fid, 

             uri*, 

             (v+ | vd+ | vs+ | vj))> 

<!ATTLIST f type (int | double | float | complex | string) #IMPLIED> 

<!ELEMENT fid (#PCDATA)> 

<!ELEMENT v (#PCDATA)> 

<!ELEMENT vd (#PCDATA)> 

<!ATTLIST vd d0 CDATA #REQUIRED d1 CDATA #IMPLIED d2 CDATA #IMPLIED 

             d3 CDATA #IMPLIED d4 CDATA #IMPLIED d5 CDATA #IMPLIED 

             d6 CDATA #IMPLIED d7 CDATA #IMPLIED d8 CDATA #IMPLIED 

             d9 CDATA #IMPLIED> 

<!ELEMENT vs (d+, 

              v)> 

<!ELEMENT d (#PCDATA)> 

<!ELEMENT vj (#PCDATA)> 
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information is expressed via the overall, sub_section and precise_coord attributes 

respectively, which may each have values of either true or false. This information 

must all be specified for all features. It is possible to enter comment data in the 

scope clause, but this data will have no technical meaning. 

 The parallel_dimensions element is replaced by the dimensionality element in 

order to accommodate the new ability to represent feature value arrays of arbitrary 

dimensionality in ACE XML 2.0 Feature Value files, as opposed to the ACE 

XML 1.0 limitation to one-dimensional feature vectors. The old 

parallel_dimensions element was only used to specify the size of feature vectors, 

but the dimensionality element is used to specify the number of different 

dimensions of the coordinate system for the feature (e.g., one for a feature vector, 

two for a table structure, etc.) as well as the size of each of the dimensions. The 

orthogonal_dimensions attribute indicates the former, and size clauses within the 

dimensionality clause are used to indicate the size of each of these (e.g., one size 

clause each for the number of rows and the number of columns in a table 

structure). The dimensionality element may also be omitted if a particular feature 

can have variable number of coordinate dimensions, and size clauses may be 

omitted as well if they also vary.  

 The optional data_type element and its type attribute are added in order to allow 

the specification of the particular data type for a given feature. Specifically, the 

permitted types are int, double, float, complex and string, and one of these must be 

specified in the type tag. Although this typing is not necessary for the jMIR 

components, it is sometimes necessary for other applications, so it is useful to 

incorporate the option of using it into the ACE XML formats so that it can be used 

when needed. The type will typically be assumed to be double if it is not specified 

in any given feature clause, but this not an intrinsic assumption of the Feature 

Description format. Although data types may be specified in Feature Value files, it 

is preferable to do so in Feature Description files, which take priority. Note that 

comments may be entered in the data_type clause itself, but they do not have any 

technical meaning. 
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 It is now possible to specify feature parameters using the optional parameter 

element and its associated parameter_id, description and value elements. This 

could be used for specifying the roll-off point for the Spectral Roll-off feature, for 

example. A separate parameter clause is used for each parameter of a feature, the 

parameter_id element is used to identify the parameter uniquely, the description 

element can be used to describe the parameter in general, and the value element 

can be used to express numerical parameter values. 

 Global parameters may also be specified for all features in the Feature Description 

file using the global_parameter element. This is useful for specifying overall pre-

processing of audio files before features are extracted, for example, such as down 

sampling or normalization. The mechanics of the global_parameter are the same 

as those of the parameter element. 

 A new optional related_feature clause may be used to specify other features that 

are related to any given feature. This could be used, for example, to note that one 

feature is an alternative implementation of another. The fid element in the related 

feature clause should be used to specify the name of a feature specified in the fid 

clause of another feature. The relation_id element can be used to specify a specific 

externally defined type of relationship, and the explanation element can be used to 

provide a qualitative description of the relationship. 

 The comments element is now optional. 

 It is now possible to specify other files that are related to the Feature Description 

file using the related_resources element. This is implemented in a fashion 

identical to that described for Feature Value files in Section 7.11.2. 

 Optional uri elements (and their associated predicate attributes) may also be used 

within any feature, dimensionality, parameter or related_feature clause. These are 

not used by the jMIR components, but may be used by other software to access 

external resources if appropriate. 
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Figure 7.13: The proposed ACE XML 2.0 update to the DTD of the Feature Description 

file format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on 

this DTD is shown in Code Sample 7.8 of the on-line sample file appendix. 

 

<!ELEMENT ace_xml_feature_description_file_2_0 (comments?, 

                                                related_resources?, 

                                                global_parameter*, 

                                                feature+)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT related_resources (feature_value_file*, 

                             feature_description_file*, 

                             instance_label_file*, 

                             class_ontology_file*, 

                             project_file*, 

                             uri*)> 

<!ELEMENT feature_value_file (#PCDATA)> 

<!ELEMENT feature_description_file (#PCDATA)> 

<!ELEMENT instance_label_file (#PCDATA)> 

<!ELEMENT class_ontology_file (#PCDATA)> 

<!ELEMENT project_file (#PCDATA)> 

<!ELEMENT uri (#PCDATA)> 

<!ATTLIST uri predicate CDATA #IMPLIED> 

<!ELEMENT feature (fid, 

                   description?, 

                   related_feature*, 

                   uri*, 

                   scope, 

                   dimensionality?, 

                   data_type?, 

                   parameter*)> 

<!ELEMENT fid (#PCDATA)> 

<!ELEMENT description (#PCDATA)> 

<!ELEMENT related_feature (fid, 

                           relation_id?, 

                           uri*, 

                           explanation?)> 

<!ELEMENT relation_id (#PCDATA)> 

<!ELEMENT explanation (#PCDATA)> 

<!ELEMENT scope (#PCDATA)> 

<!ATTLIST scope overall (true|false) #REQUIRED 

                sub_section (true|false) #REQUIRED 

                precise_coord (true|false) #REQUIRED> 

<!ELEMENT dimensionality (uri*, 

                          size*)> 

<!ATTLIST dimensionality orthogonal_dimensions CDATA #REQUIRED> 

<!ELEMENT size (#PCDATA)> 

<!ELEMENT data_type (#PCDATA)> 

<!ATTLIST data_type type (int | double | float | complex | string) #REQUIRED> 

<!ELEMENT global_parameter (parameter_id, 

                            uri*, 

                            description?, 

                            value?)> 

<!ELEMENT parameter (parameter_id, 

                     uri*, 

                     description?, 

                     value?)> 

<!ELEMENT parameter_id (#PCDATA)> 

<!ELEMENT value (#PCDATA)> 
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7.11.4 Proposed ACE XML 2.0 updates to Instance Label files 

The DTD of the current ACE XML 1.1 Instance Label file format is shown in Figure 

7.8, and the proposed updated DTD for the ACE XML 2.0 Instance Label format is 

shown in Figure 7.14. A sample ACE XML 2.0 Instance Label file is also shown in Code 

Sample 7.9 of the on-line sample file appendix.
211

 The comments clause of this sample 

file provides descriptive instructions on how to use the file format. The proposed changes 

to the ACE XML 2.0 Instance Label format relative to the current ACE XML 1.1 version 

are as follows: 

 The classifications_file element is renamed to ace_xml_instance_label_file_2_0 

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions. 

 The data_set element is renamed to instance for the purposes of clarity and 

generality. 

 The data_set_id element is renamed to instance_id for the purposes of 

consistency, clarity and generality. 

 The info_type attribute is renamed to info_id for the purpose of consistency with 

other element and attribute identifiers. Also, misc_info clauses now contain 

info_id and info elements, and there are no longer any attributes for the misc_info 

element. This is to enable the addition an arbitrary number of uri annotations to 

misc_info clauses, as noted below. 

 For similar reasons, class labels are now specified within a class_id element 

contained in a class clause. 

 The role element is now an optional attribute of the instance element instead of an 

element itself. This makes it possible to explicitly constrain its possible values to 

training, testing or predicted. 

 A new optional related_instance clause may be used to specify other instances 

that are related to any given instance. This could be used, for example, to note that 

one recording is a cover of another. The instance_id element in the related 
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instance clause should be used to specify the name of an instance specified in the 

instance_id clause of another feature. The relation_id element can be used to 

specify a specific externally defined type of relationship, and the explanation 

element can be used to provide a qualitative description of the relationship.  

 The start and stop elements for denoting coordinate ranges within an instance are 

replaced with the begin and end attributes of the section element. This change is in 

order to maintain consistency with the b and e attributes of ACE XML 2.0 Feature 

Value files. 

 Class labels that correspond to a precise time (or other) coordinate rather than 

intervals of time (or other) coordinates or instances as a whole can be specified 

with the new precise_coord element and its associated coord attribute. 

 The new optional coord_units element can be used in each instance to specify the 

units used for the coordinate indicators for both sub-sections of and precise 

coordinates in instances.  

 The classification element is removed for the sake of improving file simplicity. 

Section labelling and overall instance labelling now simply occur directly within 

an instance clause rather than within a classification clause within an instance 

clause. 

 The class element has a new weight attribute that can be use to specify 

proportional support for a class relative to other classes when more than one class 

apply. So, for example, a given musical recording might be labelled with the Blues 

genre with a specified weight of 2 as well as with the Jazz genre with a specified 

weight of 1. Depending on context, this could be intended to mean either that the 

recording is a member of both the Blues and Jazz genres, but the influence of the 

former is twice that of the latter, or it could mean that a classifier is unsure 

whether the piece is Blues or Jazz, but believes that the former label is twice as 

likely as the latter. If the weight attribute is not specified for a class, it is assigned 

a value of 1 by default. All weight values are proportional, so the absolute value of 
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a weight has no meaning other than its value relative to the weights of other class 

labels with the same scope. 

 The optional source_comment attribute may now be used with the class element. 

This permits the specification of whether an instance was labeled by a machine, 

human expert, survey, etc. 

 The comments element is now optional. 

 It is now possible to specify other files that are related to the Instance Label file 

using the related_resources element. This is implemented in a fashion identical to 

that described for Feature Value files in Section 7.11.2. 

 Optional uri elements (and their associated predicate attributes) may be added to 

any instance, related_instance, misc_info, section, precise_coord or class clause. 

These are not used by the jMIR components, but may be used by other software to 

access external resources when appropriate. 

7.11.5 Proposed ACE XML 2.0 updates to Class Ontology files 

The DTD of the current ACE XML 1.1 Class Ontology file format is shown in Figure 

7.9, and the proposed updated DTD for the ACE XML 2.0 Class Ontology format is 

shown in Figure 7.15. A sample ACE XML 2.0 Class Ontology file is also shown in Code 

Sample 7.10 of the on-line sample file appendix.
212

 The comments clause of this sample 

file provides descriptive instructions on how to use the file format. The proposed changes 

to the ACE XML 2.0 Class Ontology format relative to the current ACE XML 1.1 version 

are as follows: 

 The taxonomy_file element is renamed to ace_xml_class_ontology_file_2_0 for 

the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions. 

 The class_name element is renamed to class_id in order to make it consistent with 

the naming conventions used in the other ACE XML 2.0 formats. 
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Figure 7.14: The proposed ACE XML 2.0 update to the DTD of the Instance Label file 

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this 

DTD is shown in Code Sample 7.9 of the on-line sample file appendix. 

<!ELEMENT ace_xml_instance_label_file_2_0 (comments?, 

                                           related_resources?, 

                                           instance+)> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT related_resources (feature_value_file*, 

                             feature_description_file*, 

                             instance_label_file*, 

                             class_ontology_file*, 

                             project_file*, 

                             uri*)> 

<!ELEMENT feature_value_file (#PCDATA)> 

<!ELEMENT feature_description_file (#PCDATA)> 

<!ELEMENT instance_label_file (#PCDATA)> 

<!ELEMENT class_ontology_file (#PCDATA)> 

<!ELEMENT project_file (#PCDATA)> 

<!ELEMENT uri (#PCDATA)> 

<!ATTLIST uri predicate CDATA #IMPLIED> 

<!ELEMENT instance (instance_id, 

                    misc_info*, 

                    related_instance*, 

                    uri*, 

                    coord_units?, 

                    section*, 

                    precise_coord*, 

                    class*)> 

<!ATTLIST instance role (training | testing | predicted) #IMPLIED> 

<!ELEMENT instance_id (#PCDATA)> 

<!ELEMENT related_instance (instance_id, 

                            relation_id?, 

                            uri*, 

                            explanation?)> 

<!ELEMENT relation_id (#PCDATA)> 

<!ELEMENT explanation (#PCDATA)> 

<!ELEMENT misc_info (info_id, 

                     uri*, 

                     info)> 

<!ELEMENT info_id (#PCDATA)> 

<!ELEMENT info (#PCDATA)> 

<!ELEMENT coord_units (#PCDATA)> 

<!ELEMENT section (uri*, 

                   class+)> 

<!ATTLIST section begin CDATA #REQUIRED 

                  end CDATA #REQUIRED> 

<!ELEMENT precise_coord (uri*, 

                         class+)> 

<!ATTLIST precise_coord coord CDATA #REQUIRED> 

<!ELEMENT class (class_id, 

                 uri*)> 

<!ATTLIST class weight CDATA "1"> 

<!ATTLIST class source_comment CDATA #IMPLIED>  

<!ELEMENT class_id (#PCDATA)> 
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 The parent_classs element is removed because it made an implied hierarchical 

organization of classes obligatory, which is not always appropriate. Information 

about each class is now contained in a class clause, regardless of the presence or 

absence of a hierarchical structure. 

 Since it is sometimes useful to be able to specify hierarchical class structuring, the 

optional sub_class element is repurposed so that it can be used to reference one or 

more other classes that are hierarchical subordinates to the class whose clause 

contains the sub_class element. Such sub-classes must now also be separately 

declared in their own class clauses. Tree structures can be built by referring to 

subordinate classes using sub_class clauses, then referring to further subordinate 

classes at the next depth level of the tree in the sub_class clauses of these classes, 

and so on. 

 As an alternative to hierarchical class structuring, the ACE XML 2.0 Class 

Ontology format now allows more general ontological relationships to be 

specified between classes using the related_class element. A relationship specified 

from one class to another with this element is unidirectional, unless the same 

relationship is explicitly specified from the second class to the first class as well in 

the second class’ declaration. The relation_id element may be used to specify the 

meaning of the relationship using some externally defined keyword if desired. 

 Weights may be assigned to both related_class and sub_class elements using the 

weight attribute, which defaults to 1 unless specified. Relating to this, the global 

weights_relative attribute of the ace_xml_class_ontology_file_2_0 element must 

be specified as either true or false. If it is true, then the weights for each class will 

be normalized upon parsing, if not they will be interpreted as is.  

 The explanation element can be used to provide qualitative explanations of any 

class connections in the class ontology. 

 The misc_info element may now be used to specify miscellaneous metadata about 

each class. Each misc_info clause contains info_id and info elements to specify 
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some externally defined unique keyword for the metadata field and the metadata 

itself, respectively. 

 The comments element is now optional. 

 It is now possible to specify other files that are related to the Class Ontology file 

using the related_resources element. This is implemented in a fashion identical to 

that described for Feature Value files in Section 7.11.2. 

 Optional uri elements (and their associated predicate attributes) may also be used 

within any class, related_class or sub_class clause. These are not used by the 

jMIR components, but may be used by other software to access external resources 

when appropriate. 

7.11.6 Summary abstraction of ACE XML 2.0  

An abstraction of the overall data model and serialisation of ACE XML 2.0 is 

illustrated graphically in Figure 7.16. The following conventions are used: 

 Nodes: 

o Rectangular nodes represent entities. 

o Diamond nodes represent relationships. 

o Oval nodes represent attributes. 

o Exclamation marks close attributes that comprise an entity or 

relationship’s primary key. 

o Question marks close attributes that are optional.
213

 

o Double borders indicate that an entity or relationship may be associated 

with one or more RDF triples. 

                                                 
213

 Mandatory attributes may, however, have default values in the case of null entries. This diagram omits 

this type of information. 



 438 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: The proposed ACE XML 2.0 update to the DTD of the Class Ontology file 

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this 

DTD is shown in Code Sample 7.10 of the on-line sample file appendix.214 
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<!ELEMENT ace_xml_class_ontology_file_2_0 (comments?, 

                                           related_resources?, 

                                           class+)> 

<!ATTLIST ace_xml_class_ontology_file_2_0 weights_relative (true|false) 

                                                            #REQUIRED> 

<!ELEMENT comments (#PCDATA)> 

<!ELEMENT related_resources (feature_value_file*, 

                             feature_description_file*, 

                             instance_label_file*, 

                             class_ontology_file*, 

                             project_file*, 

                             uri*)> 

<!ELEMENT feature_value_file (#PCDATA)> 

<!ELEMENT feature_description_file (#PCDATA)> 

<!ELEMENT instance_label_file (#PCDATA)> 

<!ELEMENT class_ontology_file (#PCDATA)> 

<!ELEMENT project_file (#PCDATA)> 

<!ELEMENT uri (#PCDATA)> 

<!ATTLIST uri predicate CDATA #IMPLIED> 

<!ELEMENT class (class_id, 

                 misc_info*, 

                 uri*, 

                 related_class*, 

                 sub_class*)> 

<!ELEMENT class_id (#PCDATA)> 

<!ELEMENT misc_info (info_id, 

                     uri*, 

                     info)> 

<!ELEMENT info_id (#PCDATA)> 

<!ELEMENT info (#PCDATA)> 

<!ELEMENT related_class (class_id, 

                         relation_id?, 

                         uri*, 

                         explanation?)> 

<!ATTLIST related_class weight CDATA "1"> 

<!ELEMENT relation_id (#PCDATA)> 

<!ELEMENT explanation (#PCDATA)> 

<!ELEMENT sub_class (class_id, 

                     relation_id?, 

                     uri*, 

                     explanation?)> 

<!ATTLIST sub_class weight CDATA "1"> 



 439 

 Edges: 

o Edges define the structure. 

o Solid edges connect relationships to their component entities and are 

labelled with the cardinality of the relationship for each component entity. 

o Arrowed edges point to entities that are defined weakly, which is to say 

that their primary keys include the primary keys of the other entities in the 

relationship (see Pin-Shan Chen 1976). 

o Bold edges indicate relationships of an entity with itself and are labelled 

with both relevant cardinalities. 

o Dotted edges connect entities and relationships to their attributes. 

 Colours (for colour versions of this document) 

o Colours give information related to the serialisation. 

o Dark brown designates entities and relationships that appear in Feature 

Description files only. 

o Medium brown designates entities and relationships that appear in Feature 

Description and Feature Value files. 

o Light brown designates entities and relationships that appear in Feature 

Value files only. 

o Light grey designates entities and relationships that appear in Feature 

Value and Instance Label files. 

o Light blue-green designates entities and relationships that appear in 

Instance Label files only. 

o Medium blue-green designates entities and relationships that appear in 

Instance Label and Class Ontology files. 

o Dark blue-green designates entities and relationships that appear in Class 

Ontology files only. 
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Figure 7.16: An overall visualisation of the proposed ACE XML 2.0 data model and 

serialisation. Conventions are explained in the text. 

7.12 Summary of original contributions 

This chapter provides a critical analysis and overview of existing file formats that are 

used by MIR researchers for data mining and music classification. It also provides an 

original and previously lacking set of design priorities for consideration when devising 

new file formats in this domain. 

The four original ACE XML 1.1 file formats are presented as an implementation of 

these design priorities. The jMIR components can all use these file formats to 

communicate with each other, and a general API is provided as part of the ACE package 
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so that ACE XML functionality can be easily integrated into other software. General ACE 

XML file processing utilities are also provided in the jMIRUtilities software. 

Original prototypes for the four ACE XML 2.0 file formats are also presented to the 

MIR research community for general discussion and comment. These formats expand 

upon the ACE XML 1.1 by adding further expressive power and flexibility, and it is 

hoped that the MIR community will collaborate to improve upon them and eventually 

adopt them. 

7.13 Future research 

The clear priority for future research is to collect input from the MIR community on 

changes and improvements to the ACE XML 2.0 formats.  

One specific issue that needs to be addressed is that Feature Value files can end up 

being very large, particularly when many features are extracted for small windows over 

many instances. Although ACE ZIP packaging does address this issue to an extent, it in 

turn introduces additional processing overhead when compressing and decompressing the 

files. One solution would be to represent feature values, including arrays, in binary rather 

than in text. Unfortunately, this would entirely undermine ACE XML’s design 

philosophy of permitting human readability. Furthermore, there are many alternative 

ways of representing values and arrays in binary, which could cause incompatibilities if 

different users encode binary in different ways and then distribute the Feature Value files 

to others. This could also pose problems with respect to data longevity. One final related 

issue is that XML validation processing cannot be applied to binary representations, 

thereby increasing the work that must be performed directly by ACE XML parsers. All of 

this having been said, it is always desirable to avoid excessively large files, so this is 

something that needs to be considered further. 

The representation of feature values consisting of N-dimensional arrays is another 

issue that needs to be considered further. All of the options supported by ACE XML 2.0 

can require a significant amount of space to represent large N-dimensional arrays, so the 

addition of a binary representation option to the specification might be useful in cases 

where this could be a concern and where human readability is not a priority.  
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Another issue that would be appropriate to pursue would be the design of some 

external file format for specifying a vocabulary that could be defined with respect to units 

that are specified using the coord_units element. This would, for example, provide a way 

to automatically make a recording annotated with times stamps based on milliseconds 

compatible with another annotated based on samples (if the sampling rate is known, of 

course). 

It would also be useful to take advantage of existing metadata standards in general. 

One sample approach might be to integrate Dublin Core RDF functionality into the ACE 

XML formats.
215

  

Complex numbers also represent something that needs to be considered further. Under 

the current implementation, complex numbers can be simply represented as feature 

vectors of size 2. Unfortunately, this does not explicitly distinguish them from any other 

feature vector of size 2. Ideally, one would like to have some way of typing complex 

numbers in the same way that doubles or strings can be typed. Unfortunately, there is no 

complex primitive type in XML, nor is there a complex primitive in many of the most 

common programming languages, including Java. Furthermore, with respect to array 

representation, JSON does not allow the explicit use of complex numbers in arrays, 

beyond the current implicit practice of using general sub-arrays of size 2. This limitation 

of JSON is in itself a strong argument, in particular, against using an explicit complex 

number type. Furthermore, in most cases feature values are simply treated as features 

during machine learning, so it is often not relevant if a complex feature value is explicitly 

typed as such. Nevertheless, it could be important to more sophisticated learning 

techniques to have an explicit complex data type, so further though needs to be put into 

incorporating explicit complex typing into ACE XML Feature Value and Feature 

Description files, in both Cartesian and polar forms. 

Another issue to address is multilingual support. XML is generally Unicode-based, so 

there is built-in support for many character sets, but testing of the ACE XML processing 

software to date has focused on English and French data, a scope that needs to be 

expanded to ensure that the file formats are ready for wide international use. Further 

thought is needed in this area. 
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It would also be helpful to define specific standards for setting unique keys for the 

ACE XML ID fields that are used to merge data stored in the four different file formats. 

The onus is currently on the data encoder to ensure uniqueness, something that could 

potentially result in missed correspondences and conflicts. One possible solution might be 

to use something such as MusicBrainz
216

 IDs as primary keys, for example, but solutions 

like this tend to focus only on specific types of data, namely audio in this particular case. 

Extracting MusicBrainz IDs for something like MIDI files is not tenable. Further thought 

is needed in this area as well. 

There would also be advantages to writing versions of each of the ACE XML DTDs 

using an alternative XML schema that would specify the same formats using an 

alternative methodology. Such schemas would co-exist with the current DTDs, due to the 

advantages of DTDs expressed in Section 7.5 with respect to accessibility to new ACE 

XML users. The main advantage offered by the use of an alternative more expressive 

schema format is the offloading of some of the file validation load from the ACE XML 

parsers to the general XML parsing libraries, since constraints on what could validly be 

contained in XML clauses could be more precisely defined. 

Once the ACE XML 2.0 file formats are finalized, the next step will be to update the 

ACE parsers, processing utilities and data structures. The ACE API is ready as is for the 

porting of ACE XML 1.1 functionality to external software, but significant updates will 

be necessary to make it ACE XML 2.0 ready. 

The implementation of reading, writing and processing ports for specific existing 

widely used MIR systems like Marsyas and CLAM and for general programming 

environments like Matlab and C++ will likely do much to encourage the wide adoption of 

the ACE XML formats by making them more easily accessible. Translation software will 

also be needed to translate information stored in existing formats, including ACE XML 

1.1, into ACE XML 2.0. 

Another area for future research is the development of a standardized way of storing 

lyrics for processing. Lyrics represent a potentially very rich source of information that is 

currently underexploited in MIR, and it might be useful to develop a new ACE XML 
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format specifically designed for storing lyrics and making it easy to extract various kinds 

of features from them.  

It would also be helpful to develop a standardized file format for specifying queries 

that could be applied to data stored in ACE XML files. There are many general possible 

sources of inspiration, such as SQL, Z39.50
217

 and FRBR.
218
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8. jMusicMetaManager, the Bodhidharma MIDI dataset, 

Codaich, SAC and jMIRUtilities: Building, managing and 

using music research datasets  

8.1 Overview and background information 

8.1.1 Introduction 

Labelled musical datasets play an essential role in almost all research on automatic 

music classification. The models that are built by supervised machine learning algorithms 

are all learned from such datasets, and even the best algorithm is ultimately limited by the 

quality of this data. Furthermore, different algorithms are evaluated and compared using 

test data drawn from such datasets, with the consequence that poorly labelled or non-

representative datasets can result in inaccurate evaluations of trained models. Even 

outside the realm of research on automatic music classification, high-quality datasets can 

provide valuable resources for empirical musicological and music theoretical studies of 

many kinds. 

For the purposes of this document, the term labelled musical dataset is used to refer 

specifically to any collection of musical recordings, which may be either audio or 

symbolic, each of which is annotated with one or more metadata labels that specify model 

classifications of some kind. Examples include collections of MP3 or MIDI recordings 

that are each labelled with labels specifying information such as artist, mood, genre, etc. 

The metadata labels may also be more directly content-related, such as time-stamped 

annotations of section divisions or note onsets in audio files. 

Musical datasets were often treated almost as an afterthought in early MIR research, 

with the bulk of the emphasis placed on feature extraction and classification algorithms. It 

was not unusual for labs to construct training and testing datasets simply by combining 

the personal music collections of a few graduate students, with all labelling done as 

quickly as possible by a single individual. 

Fortunately, as the MIR field matures, researchers are increasingly realising the 

limitations of such simplistic datasets, and are beginning to perform more expansive 

studies that require much larger, more varied and carefully labelled collections. Such 
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approaches are ultimately necessary in order to develop and validate MIR tools that can 

be applied to the vast and varied universe of music that exists outside of the lab. 

Developing effective frameworks for building and maintaining large musical databases is 

also becoming increasingly important as libraries digitize their collections and on-line 

commercial databases continue to grow. 

The need for high-quality datasets that can be shared between research labs has 

become particularly evident during the design and implementation of MIREX (Music 

Information Retrieval Evaluation eXchange) (Downie 2006), a yearly event where 

different MIR algorithms are evaluated against each other in a variety of research 

domains. Although the training and testing datasets that have been used in MIREX have 

varied across years and task categories, the general approach has been to either have 

researchers submit their own datasets, often with questionable legality and with varying 

quality, or to use in-house datasets at the University of Illinois at Urbana-Champaign, 

where MIREX is held, that are not distributable outside researchers. 

The controversy that has occasionally broken out over the reliability of algorithm 

rankings based on such datasets has helped to cause the MIR community to begin to 

recognize that training and testing datasets deserve much more attention than they have 

traditionally received. Serious thought is now being given to issues such as attaining 

realistic collection sizes and diversity, arriving at and taking advantage of ontological 

class structuring, dealing with serious problems with metadata quality and consistency, 

developing good instance labelling and selection methodologies and overcoming 

limitations on sharing datasets imposed by copyright laws. 

Such issues are discussed in some detail in Section 8.2, which ends with a list of 

recommended general guidelines for building research datasets and overcoming many of 

the problems that have to date hindered efforts to build, use and share high-quality 

research datasets. Section 8.3 reviews a number of MIR research datasets that have been 

published by others, and briefly discusses some of their strengths and weaknesses. 

This chapter also describes two jMIR software components for managing, improving 

and processing datasets, and three original MIR research datasets. jMusicMetaManager 

(Section 8.4) is a tool for statistically profiling and inventorying music collections, as 

well as automatically finding metadata errors, inconsistencies and redundancies in them. 
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jMIRUtilities (Section 8.8) is a set of utilities for performing miscellaneous tasks such as 

labelling instances and merging features extracted from different datasets.  

The Bodhidharma MIDI dataset (Section 8.5) is a collection of 950 MIDI files 

belonging to 38 different genres of music. Codaich (Section 8.6) is a collection of 26,420 

MP3s belonging to 55 different genres that has had its metadata carefully reviewed both 

manually and using jMusicMetaManager. OMEN, a proposed framework for legally 

distributing features extracted from collections such as Codaich, is briefly reviewed in 

Section 8.6. Finally, SAC (Section 8.7) is a matched collection of 250 MIDI recordings, 

250 MP3 recordings and 250 sets of metadata tags that can be used as a basis for cultural 

feature extraction using software such as jWebMiner (Chapter 5). SAC is intended for 

research that combines and compares features extracted from audio, symbolic and cultural 

sources. 

These three datasets were originally collected for training and evaluating the jMIR 

components and for performing experiments such as those described in Chapter 9. They 

were, however, all conceptualized, designed and collected with the long-term goal of 

potentially being shared among different MIR research groups for use in a much wider 

range of research projects.  

8.1.2 Central concepts and terminology 

Before continuing, it is useful to first briefly review or introduce certain key terms 

and concepts.  

Musical datasets typically consist of one or more types of data: audio data, symbolic 

data and cultural data. Audio data refers to digital sound samples stored in files (e.g., 

MP3s, AACs, WAV files, etc.), symbolic data consists of sets of instructions that can be 

used by a computer synthesizer or human to approximately reconstruct music (e.g., MIDI 

files, printed scores, Humdrum files, etc.) and cultural data refers to information about 

pieces of music other than the actual sound itself (e.g., listener playlists, album reviews, 

Billboard sales statistics, etc.). 

Metadata plays an essential role in most datasets. Metadata is essentially data about 

data. For example, if one is building a system for classifying audio recordings, then the 

audio samples themselves would be the central data of interest, and all other information 

about them would be considered to be metadata. So, to continue this example, the 
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composer, year of recording and mood of each recording would all be considered 

metadata, to give just a few examples.  

Each category of metadata is called a field, and the particular value or values of a field 

for a particular recording is called an entry. For example, Musical Genre and Recording 

Title are two common fields, and the particular title of a single recording would be the 

entry for that field for that recording. 

Metadata is not limited to text data. The album art associated with a recording or a 

musical score providing a transcription of a piece are just two examples of other kinds of 

metadata. Even features extracted from audio samples are technically metadata, although 

these are typically treated separately as a matter of organizational convenience. 

The labelled datasets that are used in machine learning are often referred to as 

ground-truth. This means that their labels are effectively considered to be the accepted 

truth which is used to train and test classifiers. Each separate unit of ground-truth, such as 

an individual recording, is known as an instance. Each instance is typically labelled with 

a model category name, such as a particular mood or genre, that it is hoped a classifier 

will learn to map features to. Each such category is commonly referred to as a class. 

There are often certain relationships that exist between classes. For instance, if one is 

dealing with genres, then some genres are often sub-genres of other genres (e.g., 

Nashville is a sub-genre of Country). Structures that indicate relationships between 

different classes are often referred to as ontologies or taxonomies. Although these two 

terms have been used with a variety of different meaning in different publications, and 

have sometimes been used interchangeably, it is useful to distinguish between them in a 

precise way for the sake of clarity. It has been decided to base the use of the terms in this 

document on observations made by Van Rees (2003), namely that a taxonomy is a strictly 

hierarchical structuring of classes, while an ontology is any general structuring of 

classes.
219

 A taxonomy is thus a special type of ontology.  

During the training and testing of a classifier the ground-truth is typically divided into 

a training set, which is used for training the algorithm, and a test set, which is used to test 

the quality of the trained model in order to ensure that overtraining has been avoided. If 
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multiple classifiers are to be compared, then two test sets are needed, namely a validation 

set that is used to test and compare each individual classifier after training and a 

publication set that is used to retest the classifier that is selected as the best based on 

performance on the validation set. There must not be any overlap between any of these 

sets, as this would leave vulnerabilities to overtraining untested. 

Sets of ordered text characters are referred to in computer science as strings. The title 

of a recording is thus a string, for example, as is this sentence, any word in it and the 

period ending this sentence. As this makes evident, strings can be broken into sets of 

substrings, each of which is also a string. These substrings are sometimes called tokens. A 

string that does not contain any characters is referred to as an empty string. 

8.1.3 Essentials of copyright law 

Copyright law plays a controlling role in defining the extent to which and the 

circumstances under which music can legally be copied or transferred between 

individuals and organizations. As such, copyright laws have a large impact on the sharing 

and reuse of musical research datasets. It is therefore useful to briefly review some of the 

central aspects of musical copyright law and associated legislated intellectual property 

rights before proceeding. 

Unfortunately, the legislation governing musical intellectual property rights tends to 

vary widely between jurisdictions. Although many countries are signatories to a range of 

World Intellectual Property Organization (WIPO) treaties that, in theory, attempt to 

standardize copyright laws across international borders as much as possible, there is in 

practice a great deal of diversity between countries in terms of both how permissive their 

laws are and the extent to which they enforce those laws. So, for example, the United 

States of America has adopted a relatively restrictive stance on music since the Digital 

Millennium Copyright Act (DMA) was passed in 1998, and has attempted to enforce it 

fairly vigorously. In contrast, pirates in Vietnam are permitted to copy and sell 

copyrighted music with relative impunity. 

Further complicating matters, the rights associated with musical compositions, 

individual performances and actual recordings of performances are treated separately by 

many countries. Not only do different administrative bodies typically govern each of 



 450 

these rights, even within a single county, but they often do so based on entirely different 

legislative documents. 

Unfortunately, copyright legislation can be particularly ambiguous with respect to 

music. The fundamental legislative frameworks administering intellectual property rights 

were designed with printed materials in mind, and were conceptualized long before 

recorded music became commercially available, to say nothing of digitized music. 

Some jurisdictions have frameworks providing academic institutions with special 

rights, while others do not. For example, the United States of America and Israel 

incorporate the notion of fair use into their legislation, which is to say that limited use 

may be made of copyrighted material without explicit permission from rights holders 

under certain conditions. Certain common law jurisdictions have a similar notion, known 

as fair dealing. Such exceptions can be extremely important from the perspective of MIR 

research, since the task of acquiring permission from individual rights holders, especially 

from all three types rights holders, can be overwhelming if it must be performed for every 

recording in a dataset. Unfortunately, interpretations of how such laws apply to digital 

media can vary widely, and in many cases remain untested in the courts. The consequence 

of this is that many universities are reluctant to risk allowing the transfer of musical 

research datasets, even if in some cases they may arguably be legally permitted to do so. 

There are also a number of legal details that can have a significant impact. For 

example, it is illegal under the DMA to bypass technological barriers (known as Digital 

Rights Management, or DRM) put in place to prevent the copying of music, even when it 

would fully be within one’s legal rights to copy the music in question if DRM protection 

were absent. Such legislation can impose serious limitations on the sources from which 

the contents of research datasets can be collected. 

Canada, where the datasets described in this chapter were assembled, has no such 

limitations at the time of this writing. On-line file sharing of music was actually explicitly 

legal in Canada for a brief period in 2004 and 2005, following a ruling in Federal Court 

on the case of BMG Canada Inc. v. John Doe.
220

 This decision was set aside by the 

Federal Court of Appeal in May 2005, however, and the file sharing of music is now 
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neither conclusively legal nor illegal in Canada. Some legal analysts interpret Canada’s 

Copyright Act as indicating that it is legal to download music but not to upload it, 

provided that the downloaded content is not used in any for-profit ventures. This is a 

controversial interpretation that remains unproven in court, however. In any case, 

Canada’s federal police force has stated that it does not currently intend to attempt to 

prosecute those sharing music or video for personal use (Deglise 2007). Canada’s 

governments have tried twice since 2005 to introduce legislation that would explicitly 

prohibit the file sharing of music, but were unsuccessful both times due to procedural 

issues. 

There are a number of general instances where music may be used and distributed 

legally by anyone without specific permission from rights holders and without any 

financial recompense. Such music is said to be in the public domain. Music is placed in 

the public domain if a rights holder chooses to waive his or her intellectual property 

rights, and music also usually enters the public domain following the expiration of its 

copyright. In the case of Canada, this happens fifty years after the death of the last rights 

holder. Caution must be exercised here, however, since this applies to both the 

performance and the composition. So, for example, even though Bach’s 1741 

composition The Goldberg Variations is in the public domain, Glenn Gould’s 1981 

recording of it is not. 

There are also a number of frameworks that have been set up to facilitate the process 

of choosing to waive certain intellectual property rights but not others. This is helpful, for 

example, to individuals who wish to allow anyone to download their recordings for free, 

but still wish to retain licensing rights controlling the use of their music in advertising. 

Some of these are formulated with particular types of content in mind, such as the various 

GNU public licenses
221

 that are oriented towards software, and others are more general, 

such as the Creative Commons licenses.
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8.2 Fundamental issues 

8.2.1 Overview of problems to overcome 

As discussed in Section 8.1.1, individual MIR research labs have traditionally 

assembled their own musical datasets for training and testing algorithms, an 

understandable approach in the past given the lack of available alternatives at the time. 

This approach is ultimately flawed, however, since collections assembled in this manner 

tend to be limited in size and variety, and are often biased in ways relating to the 

characteristics of the particular system being developed and the musical backgrounds of 

the individuals assembling the dataset. 

Furthermore, such datasets typically contain copyrighted material preventing them 

from being legally distributed to other research centers for refinement, expansion and 

comparison. Although such datasets have sometimes been ―unofficially‖ shared amongst 

researchers in the past, this quasi-legal distribution is not viable in the long term. The 

ability to legally share datasets between MIR research labs is essential, not only for 

making it possible to comparatively evaluate different algorithms designed to perform a 

given task by testing them on the same data, but also for providing sufficient motivation 

and resources to develop large, varied, carefully chosen and well-labelled datasets. 

Some of the most problematic aspects of dataset construction relate to the assignment 

of ground-truth labels to individual recordings, as discussed in Section 8.2.3. There are 

significant problems with metadata quality not only in MIR research datasets, but with 

respect to the music industry as a whole (Freed 2006). The labelling of subjective fields 

such as genre or mood is particularly problematic, as multiple interpretations may be 

equally valid. Such fields are nonetheless important when constructing a dataset, as many 

researchers and end users are interested in them. Furthermore, one must not only consider 

an appropriate methodology for labelling individual recordings, but also the choice of 

candidate classes and the relationships between these classes, as discussed in Section 

8.2.2. 

Even assuming that one does have a good ontology of labels and a reliable and 

consistent methodology for assigning these labels to the ground-truth recordings, the 

problem of choosing which particular recordings to include in a dataset remains. Ideally, 

one would like to have extensive examples of music of all types for which the algorithms 
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at hand might reasonably be applied. This is necessary if one wishes to produce software 

that is flexible enough to deal with the real-world needs of end users who could 

potentially wish to apply the software to any music that one might find in the full universe 

of extant music. 

In practice, however, there are a number of significant limitations that researchers 

must deal with. To begin with, research labs do not typically have access to anywhere 

approaching the entire universe of music of interest, for both financial and infrastructural 

reasons, including technological limitations that become apparent when dealing with huge 

collections of music. Not only are there very real limitations on how many recordings can 

be used to train and test a system because of the computational time that it takes to 

process each recording and the space or bandwidth needed to store or transfer them, but 

even the most recent algorithms are still often incapable of dealing with large class 

ontologies. For example, even as few as 38 genre classes can be too many for current 

genre classifiers to learn to reliably classify (McKay 2004). 

Even if one were to be given access to all of the music ever recorded, the selection of 

the particular pieces to include in a dataset is certainly non-trivial. For example, even if 

one could reasonably limit oneself in a particular research project to Hip-Hop music, 

there are many styles of Hip-Hop, and many thousands of recordings belonging to each of 

these styles. Given the limitations discussed above on acquiring and processing huge 

datasets, one must devise some methodology for selecting a particular subset of all Hip-

Hop recordings to include in the dataset. One must ideally include all styles of the music 

under consideration, which can be no easy mater. For example, if primarily American 

Hip-Hop is included in a dataset, this would mean that a system trained on it might not be 

able to properly process British Grime music. Furthermore, while one must certainly be 

sure that one’s system is able to deal with prototypical examples of the types of music 

under consideration, at the same time the system must also be able to deal with outliers. 

This means that sufficient numbers of both prototypical and outlying exemplars must be 

included for all styles of music under consideration, while still conforming to limitations 

on the size of the dataset and the availability of particular pieces of music. 

In the past, these issues could be glossed over to a certain degree, since many MIR 

research was more oriented towards achieving exploratory proofs of concept than 
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building practically useful finished products fit for general use. Now that reasonably good 

results have been achieved in many MIR areas in ideal lab conditions, however, the 

importance of being able to deal with realistically diverse and extensive ranges of music 

is becoming increasingly apparent. Correspondingly, the construction of datasets that take 

the issues discussed above into account are becoming increasingly important, since high-

quality realistic datasets will not only result in systems that perform better because they 

have been provided with a better basis for learning effective models during training, but 

will also result in more realistic evaluations of competing systems. 

8.2.2 Formulating class ontologies 

In many cases, some form of structure can reasonably be said to exist that delineates 

various kinds of organizational relationships between class labels. For example, in the 

case of mood classification, the Gloomy class could arguably be said to be a more specific 

sub-class of the Sad class, Sad and Unhappy are perhaps equivalent classes, Ecstatic 

might be said to be a stronger version of Joyful, and Happy is related to Joyful, but in 

some way that is not as hierarchical in nature as Gloomy and Sad or Ecstatic and Joyful. 

These examples illustrate the variety that can exist in the types of relationships between 

classes, and correspondingly in their ontological structuring. This variety certainly offers 

intriguing possibilities for study, but it also provides in indication of the many difficulties 

associated with building realistic class ontologies. 

There have been a few preliminary studies exploring the possibility of using machine 

learning algorithms to form structured clusters of music in a representational space, 

usually related to research on similarity and/or visualizations (e.g., Lamere and Eck 

2007). Ontological class structures could potentially be automatically derived from such 

approaches. 

Unfortunately, there have been no serious attempts to date to use such clusters to form 

class ontologies that could then be used as a basis for organizing and labelling MIR 

datasets, probably because automatically generated class clusters often have little clear 

correspondence with the class labels that are actually used by humans beyond the coarsest 

level. Similarly, researchers in automatic music classification have for the most part 

avoided putting more than passing efforts into manually building realistic ontologies. As 

a result, the great majority of published MIR research has made use of either purely flat 
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or very simple hierarchical class structures. There are only a few cases where more 

sophisticated ontologies have been used, such as Bodhidharma’s genre ontology (Section 

8.5.2), which is still little more than an extended taxonomy. This reliance on simple and 

unrealistic ontologies is probably due to the fact that manually constructing ontologies 

that are more than artificial constructions of convenience can be very difficult, as will 

soon be made apparent. 

Nonetheless, this general failure to utilize realistic ontological class structuring is 

unfortunate, as such organizations can impart important advantages. From a purely 

practical perspective, non-flat ontologies can be taken advantage of by certain powerful 

technical classification methodologies, such as the hierarchical classification algorithm 

that was used by McKay (2004) to significantly improve genre classification performance 

compared to standard flat classification. Non-flat ontologies also make it possible to use 

weighted training strategies that penalize misclassifications to very dissimilar classes 

more harshly than misclassifications to more similar classes, an approach that can also 

ultimately improve the classification performance of final trained models. 

From a more general perspective, sophisticated ontologies reflect the structuring that 

humans often informally use to associate classes with one another, and can thus be useful 

in musicological, music theoretical or psychological research. Furthermore, the process of 

forming such structures can force one to reconsider and improve the quality and 

consistency of the basic class labels that one is using, since constructing structures 

relating classes can quickly make it apparent that certain classes are missing or that 

certain classes that are being used should be split into sub-classes, for example. 

This sub-section therefore discusses some of the key issues that should be considered 

when building musical class ontologies. When appropriate, possible solutions are 

proposed or reviewed. The particular case of genre ontologies is used in this discussion as 

a case study, since genre can be one of the most problematic types of ontologies and thus 

brings to light many important issues. Genre labels are widely used and understood by 

music consumers, yet most classes remain poorly defined. Many of the issues raised with 

respect to genre are equally applicable to other types of class ontologies, such as in tasks 

like mood classification or even artist identification (e.g., Thom Yorke could arguable be 

said to be a sub-class of Radiohead). 
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The lack of a commonly accepted set of clearly defined genre labels makes it 

tempting to simply devise one’s own artificial ontology consisting of genre labels chosen 

out of convenience based on the music that one is the most familiar with and has the 

easiest access to. For the sake of simplicity, one might also be drawn towards designing 

an ontology where the genre classes are well-defined, independent and consistent, with a 

simple and logical structure based on obvious class similarities. A further temptation is to 

omit some of the more problematic genres from the ontology, such as Worldbeat or Indie. 

The genre labels in common use are often inconsistent, illogical and seemingly 

haphazard, and someone designing an automatic classifier would certainly ideally like to 

have an ontology that does not suffer from these problems.  

Giving into such temptations would, of course, be a mistake, as any attempt to 

artificially impose an unrealistic genre ontology on the public is doomed to failure. The 

Canadian Content radio genre categories used by the Canadian government are an 

example of such a failure (Frith 1996). 

One must instead use class labels and relationships between them that are meaningful 

to real people who listen to the real universe of music if one wishes to design an ontology 

that is actually meaningful and useful to them. So, genre class ontologies used in MIR 

research must at least be consistent with those that individuals with moderate musical 

knowledge might use to perform their own categorizations.  

An additional factor to consider is that genre labels are constantly being created, 

forgotten and modified by musicians, retailers, music industry public relations 

departments, DJs, critics and audiences as musics develop. A static, ideal system is 

therefore ultimately not sustainable. Genres are not defined using strictly objective and 

unchanging qualities, but are rather the product of dynamic cultural processes. One must 

therefore be careful to avoid thinking of genres in terms of immutable snapshots, as both 

their membership and their definitions change with time. 

For example, the genre labels attached to a particular recording can change, even 

though the audio in recording itself, of course, remains static. The Bob Marley recordings 

that we recognise as Reggae today were once classified as Folk Music in most Canadian 

record stores, for example, and the changes in what has been considered to be Rock in 

each decade from the 1950’s to today provides further illustration of this. In order for a 
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genre ontology to have true practical utility, it must therefore be possible to bring it up to 

date as it changes. 

Genre ontologies should ideally still include historical music, since such music is still 

listened to, or could be listened to in the future, and it should not be forgotten that even 

historical genres can change with time. Of course, some might argue that historical genres 

tend to be at least somewhat more static and codified than current genres, with the results 

that they easier to describe and their membership is fairly set. There is, for example, a 

large amount of literature on Baroque music theory and practice, and there is not any 

significant quantity of new Baroque-style pieces being composed that might cause this 

genre to mutate. Although there is of course some truth to this, historical genres can 

nonetheless still evolve to a significant degree, as is demonstrated by a comparison of the 

relatively Romantic recordings of Baroque music from the early 20th century with 

modern Baroque recordings that emphasize period instruments and stylings. 

Syncretic music, which is to say music that combines characteristics of multiple 

genres, introduces a further set of issues to consider. Although syncretic music can often 

lead to the creation of new sub-genres, there is generally at least a transitional stage where 

such music does not definitively fit into any of its parent genres, but does not yet have a 

genre of its own.  

So, how does one approach the design of an effective and realistic genre ontology? 

One approach would be to look at the genre labels used by the music industry, such as in 

music sales charts published in Billboard or awards shows like the Grammies. 

Unfortunately, there are a number of problems with this approach. Such ontologies often 

only reflect the current trends in music to the exclusion of older or lesser known genres, 

and the categories that are used tend to reflect the labelling system that the music industry 

would ideally like to see used for commercial reasons, rather than the type of ontologies 

actually used by the public. Negus (1999) offers an intriguing analysis of the effects of 

business interests on musical genres and their development. 

Specialty shows on radio, television and the Internet offer a somewhat better source of 

genre labels, as they have a greater tendency to reflect realistic classes in order to attract 

real listeners who are interested in particular genres. They do still often suffer from the 

influence of commercial biases, however, and their content tends to be influenced as 



 458 

much by the interests of advertisers as by the musical preferences of listeners. Although 

university radio stations do not suffer from this problem in the same way, they are often 

limited in scope and by the variable expertise and knowledge of their DJs. 

Music retailers, particularly Internet retailers, such as the Apple iTunes Store
223

 or 

AmazonMP3,
224

 may perhaps be some of the best sources of genre labels. They use genre 

classes that are likely the closest to those used by most people, as their main goal is to use 

an ontology that makes it easy for customers to navigate to music that they are looking 

for. Retailers also tend to respond relatively quickly to changes in genre usage, as adding 

new genres and keeping existing genres up to date allows them to draw customers into 

focused sales areas that contain other music that customers may wish to buy, thereby 

increasing sales. 

Although one might argue that it would be preferable to base genre labels on the 

views of concert goers, clubbers, musicians, DJs, music reporters and others who are at 

the front lines of genre development, doing so can have the disadvantage that genres at 

this stage of development may be unstable. Additionally, favouring the genre labels used 

by specialists may result in confusion for non-specialists. Waiting for retailers to 

recognize a genre and thus make it ―official‖ is perhaps a good compromise in that one 

can hope to keep relatively abreast of new developments while at the same time avoiding 

excessive ontological specialization and associated overhead in terms of data collection 

and training. 

The problem of inconsistency remains, unfortunately, even with the ontologies used 

by retailers. Employees of different record companies, distributors and retailers may not 

only classify a given recording differently, but may also make selections from entirely 

different sets of candidate genre labels or emphasize different identifying features. This 

is, unfortunately, an unavoidable problem, as there are no widely accepted labelling 

standards or classification criteria, and individual consumers also use varying genre 

ontologies and instance labelling.  

So, in the end, one has little choice but to adopt one or several of the imperfect 

labelling systems that are in use. This can be done either manually or by automatically 

                                                 
223

 www.apple.com/itunes/store/ 
224

 www.amazon.com 



 459 

mining information from the Internet. The former approach can certainly be effective, as 

long as one is careful to avoid personal biases and the temptations discussed earlier, but 

the latter option has the significant advantage of making it possible to constantly update 

ontologies automatically as genres change, with relatively little human overhead. 

Aucouturier and Pachet (2003) provide an excellent theoretical discussion on the 

relative advantages of these two approaches to constructing ontologies, and ultimately 

argue strongly in favour of a variant of the automatic approach that they call the emergent 

approach. Specifically, they suggest using similarity measurements based on audio 

content as well as on cultural information gleaned from applying data mining techniques 

to text documents. They also propose the use of collaborative filtering to search for 

similarities in the taste profiles of different individuals as well as the application of co-

occurrence analysis to the play lists of radio programs and the track listings of CD 

compilation albums. 

Unfortunately, this approach remains untested, and would be very difficult to 

implement. Furthermore, there is no guarantee that the recordings that get clustered 

together would be consistent with groupings that humans use in reality or that humans 

would find convenient to use. There is also no obvious provision for defining the types of 

ontological structuring that humans find useful when browsing through categories. 

Nonetheless, the emergent approach certainly does warrant further investigation.  

It also possible to automatically harvest existing ontologies found on the Internet in 

ways that retain existing structure. There are two general philosophical approaches to 

doing this. The first is to selectively harvest data from particular sources where the 

ontologies are known to have been constructed by individuals with at least some degree 

of musical expertise, whether this construction was performed in a closed framework 

(e.g., the All Music
225

 genres) or is the result of collaborative editing (e.g., Wikipedia 

genre classes
226

). The second approach is to harvest information from the wisdom of the 

crowds in general, which can be done either by mining the Internet as a whole or by 

extracting data from particular sources where any user may tag music (e.g., Last.fm’s 

ontology of tags
227

). 
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Of course, even if one chooses to base one’s ontology on information that is mined 

automatically from the Internet, one must still ultimately make the final decision as to 

whether or not an ontology is appropriate for use, and it may be necessary to perform 

some degree of manual tweaking or correction. In order to do this properly, one must 

consider the particular kind of perspective that one would like the ontology to provide on 

music at a fundamental level, as well as the dimensions of organization that are most 

appropriate for the ontology. 

Pachet and Cazaly (2000) provide an interesting discussion of related issues. The 

authors observe that brick and mortar retailers tend to use a four-level hierarchy for 

organizing their music. From broadest to most specific, these are: global genres (e.g., 

Classical, Jazz, Rock), sub-genres (e.g., Opera, Dixieland, Heavy Metal), artist names and 

album titles. Although this ontology is effective when navigating a physical record store, 

the authors argue that it is inappropriate from the viewpoint of establishing a major 

musical database, since the different levels are organized using different dimensions. In 

other words, a genre like Classical is fundamentally different from the name of an artist. 

Pachet and Cazaly continue on to note that Internet companies, such as Amazon, tend 

to build tree-like ontologies, with broad categories near the root level and specialized 

categories at the leaves. The authors suggest that, although this is not in itself necessarily 

a bad approach, there are some problems with it. For instance, the level that a category 

appears at in the hierarchy can vary from taxonomy to taxonomy. Reggae, for example, is 

sometimes treated as root-level genre, but at other times is considered to be a sub-genre of 

World Music. 

A further problem is that there is a lack of consistency in the types of hierarchical 

relationships between a parent and its children. For example, sometimes this relationship 

is genealogical (e.g., Rock is a parent of Hard Rock), sometimes it is geographical (e.g., 

Africa is a parent of Algeria) and sometimes it is at least partially based on historical 

periods (e.g., Baroque is a parent of Baroque Opera). Although these inconsistencies are 

not necessarily significant obstacles for people manually browsing through catalogues, 

they could potentially be problematic for automatic classification systems or data miners. 

To provide another example, many users tend to organize the Popular music in their 

digital collections based on performer names, with relatively little attention provided to 
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composer or instrumentation tags. With Classical music, however, the composers’ names 

are often judged to be more important from an organizational perspective than the 

performers’ names. Classical music is also often organized based on instrumentation 

(e.g., symphony, string quartet, opera, etc.), whereas one rarely sees Popular music 

organized this way (e.g. power trio, ska quintet, rap crew, etc.) 

Pachet and Cazaly ultimately suggest the use of a tree-based taxonomy organized 

based on genealogical relationships, where only leaves would contain musical examples. 

They further propose that each node should indicate its parent genre and the differences 

between its own genre and that of its parent. 

A similar approach is implicitly proposed by Cumming as well, who has adapted 

Ludwig Wittgenstein’s general ideas about the family resemblance between genres 

specifically to music (Cumming 1999). She uses this theoretical basis as justification for 

favouring an exclusively genealogical organization of classes, much like Pachet and 

Cazaly. She argues that, since lists of simple and well-defined binary features are 

insufficient to distinguish between sometimes amorphous genres, it would be wise to 

consider genres in terms of the similarities that they share with the features of genre 

families that they have descended from. 

Although a hierarchical and exclusively genealogical approach does in some ways 

make the best of a bad situation, ultimately caution should be exerted before exclusively 

conforming to it. Doing so ultimately forces one to sacrifice the flexibility that is both the 

greatest strength and the most problematic aspect of ontologies, and also limits the extent 

to which one can model the way that people actually construct genre structures. 

It seems apparent that some modifications are needed to Pachet and Cazaly’s 

approach if a more accurate model of real ontologies is to be achieved. For example, an 

extended version of a hierarchal tree-based taxonomy certainly does have appeal and, if 

designed cleverly, could encompass more sophisticated and realistic genre structures. It is 

for this reason that such an extended taxonomy is used in the Bodhidharma MIDI dataset, 

as described in Section 8.5.2. 

There are a number of additional arguments supporting the incorporation of some 

level of hierarchy in genre ontologies. For example, Fabbri (1982) suggests that most 

individuals, when faced with the prospect of describing a genre to a person who is 
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unfamiliar with it, will do so by defining the genre as an intersection of other similar 

genres with labels known to both parties, by using a broader label under which the genre 

in question might fall, or by explaining the genre using familiar terms such as definitions 

and emotive meanings. The former two methodologies are certainly consistent with a 

hierarchal structure where a genre’s parents and siblings are visible. 

A related issue to consider is the variable degree to which different genres branch out 

into sub-genres. Considered from a tree-based perspective, this variability applies to both 

the depth and breadth of various branches. Some genres have many very specialized sub-

genres, such as Electronica (e.g., House, Ambient, Jungle, etc.). Others, such as Pop-

Rock, tend to have fewer, broader and less well-specified sub-genres. For the purposes of 

creating a genre hierarchy, one must be careful to accept these inconsistencies rather than 

imposing unrealistically broad or narrow categories in order to avoid messy dissymmetry 

in the genre structure. 

An additional issue of some controversy is whether ontologies should be designed in 

such a way as to accommodate the classification of artists by genre or the classification of 

individual recordings by genre. Aucouturier and Pachet (2003), for example, suggest that 

one should in fact use ontologies oriented towards classifying artists as a whole rather 

than individual recordings, as the classification of individual recordings would involve 

too many instances to practically classify and would result in categories that are overly 

narrow and have contrived boundaries.  

The problem with this approach, however, is that many musicians, such as Neil 

Young and Miles Davis, for example, write and perform music in entirely different genres 

throughout their careers. Such genre variations for a given artist can even occur on the 

same album or, in rarer cases, in different sections of the same piece. It seems clear that 

choosing to classify musicians rather than individual recordings is problematic in some 

cases. 

Such problems can be partially addressed by allowing multiples classes to be assigned 

to the same instance (e.g., allowing Miles Davis to be assigned classes of Bebop, Cool 

Jazz and Jazz Fusion all at once). Practically speaking, however, this still leaves certain 

problems unresolved if one is attempting to train an automatic music classifier to classify 

artists as a whole by genre. For example, training a learning algorithm on a particular 
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Miles Davis piece that happens to be purely Cool Jazz will confuse the classifier if the 

only available ground-truth is a broad Miles Davis genre label that indicates that it is Jazz 

Fusion as well as Cool Jazz, two styles that are very different. Nonetheless, at least the 

errors that would result from such situations would not be as bad as those that would 

result if only one label were permitted per artist. 

Ultimately, the separate classification of each recording seems to be the wiser path to 

take, despite the additional work required to assign model labels to all of the recordings in 

the ground-truth individually before training. Even if one is only interested only in broad 

artist classifications, these can easily be extrapolated from the aggregate of the labels 

assigned to the individual recordings associated with each artist  

Even if one chooses to take this approach of classifying individual recordings rather 

than artists as a whole, one should still allow multiple class labels per recording. This is 

necessary in order to take into account the reality that there can be significant overlap 

between different genres, and only allowing one genre label per recording could 

essentially involve arbitrarily choosing one genre label over others. Allowing multiple 

labels per instance therefore allows more accurate simulations of the amorphous 

boundaries between genre classes and of the varying levels of similarity between them. 

Many of the problems discussed throughout this sub-section lack ideal solutions, 

partly because of the nature of the problem: the inherently incompatible goals of, on the 

one hand, forming well-organized and reasonable ontologies while, on the other hand, 

attempting to accurately simulate the often disorganized and illogical ontologies that one 

encounters in the real world. Ultimately, the building of ontologies will likely remain as 

much of an art as it is a science, at least until improved and more easily accessible data 

mining techniques make emergent approaches more viable. It should certainly be noted 

that, at least until this can be done, those building ontologies should incorporate an 

understanding of the psychology of human classification and categorical organization, as 

this is at the root of what they are attempting to model. Lakoff’s book (1987), for 

example, is an often cited source on this topic. 

One general (albeit difficult to implement) solution to many of the issues described in 

this sub-section would be to develop a super-ontology such that multiple parallel and 

potentially independent (or dependent, as appropriate) ontological class structures could 
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co-exist side by side. Each sub-ontology in such a framework could incorporate those 

potentially differing class labels and relationships between them that are meaningful to 

different types of listeners, potentially based on dimensions such as time, musical 

expertise, cultural background, etc.  

8.2.3 Labelling individual instances 

Even given an appropriate ontology from which to draw class labels, the assignment 

of good ground-truth labels to individual recordings can be an area that is particularly 

problematic in some cases. This is a significant issue, considering the essential role that 

these ground-truth labels play in training and testing. 

The easiest way to acquire ground-truth labels is to simply make use of pre-existing 

label annotations. These can be extracted from the metadata packaged with recording 

files, such as the ID3 tags associated with MP3 recordings, or they can be automatically 

downloaded from existing metadata databases, such as the Gracenote CD Database
228

 or 

fingerprinting services such as MusicBrainz.
229

 

Unfortunately, the metadata that one typically acquires from such sources is often at 

best noisy and inconsistent, and at worst entirely incorrect. Such sources typically make 

use of metadata collaboratively entered by many most often unqualified individuals, with 

the result that at least some of the annotators are likely to have made errors, and different 

annotators, even when well-qualified, may use incompatible labelling methodologies.  

Although manual metadata proofreading by individual MIR research labs after 

preliminary labelling using such sources is certainly an option, this can be extremely time 

consuming, and even the most conscientious proofreaders can miss errors when dealing 

with huge collections of music. Furthermore, even if a lab decides to do all or most of the 

metadata annotation themselves, a number of problems remain. Both significant amounts 

of time and extensive musicological knowledge are typically needed to properly label 

recordings, both of which can be lacking in labs that are performing technical MIR 

research where dataset collection is only a small part of a larger project. For example, 

carefully labelling the note onsets of even a relatively simple monophonic piece by hand 

with any reasonable degree of precision will easily take at several times the duration of 
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the piece. In addition, even well-trained annotators who spend appropriate amounts of 

time on each recording can still make somewhat different annotations in some cases. This 

can be very problematic if different algorithms are to be evaluated and compared based 

solely on how well they agree with such ground-truth annotations, which may not agree 

with each other, and may even contain annotations that are simply incorrect. 

Various techniques for automatically mining data from the Internet can be helpful for 

labelling ground-truth. Such automatic labelling has the important advantages of saving 

the time and resources needed to manually label recordings, of taking advantage of the 

collective wisdom of the crowds and of using information that by definition largely 

consists of the types of annotations that consumers find to be useful. However, 

simplistically or naively mining information such as user assigned tags from the Internet 

can result in labels that are even noisier than those found in ID3 tags, for example.  

Fortunately, more sophisticated techniques can result in much better labels. The work 

of Hu, Bay and Downie (2007) is a good example of some very practical efforts in this 

direction. They harvested mood labels from Last.fm
230

 user tags for use as ground-truth in 

the MIREX 2007 mood classification evaluation, utilizing strategies for dealing with 

noisy raw tagging data such as text pre-processing, clustering and principal component 

analysis, with some good results. There is still, however, certainly still a need for 

refinement and improvements in methods for cleaning such raw data. Interestingly, 

Geleignse, Schedl and Knees have found experimentally that there is a correlation 

between the Last.fm tags annotated by users and general artist similarity (2007). 

Another approach for acquiring collaboratively generated ground-truth labels is to 

take user surveys, as Ellis and his colleagues have done with respect to similarity 

judgements (Ellis et al. 2002). A particularly effective way of doing this can be to create 

web labelling games to motivate participants not only to think carefully about the labels 

that they are assigning, but also to encourage them to attempt to label in ways that they 

feel others will also label rather than simply labelling in ways that might only be 

meaningful to themselves. The ESP Game for labelling images (von Ahn and Dabbish 

2004) was a ground-breaking move in this direction, and similar but expanded approaches 
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have been adapted to music in games such as MajorMinor (Mandel and Ellis 2007) and 

ListenGame (Turnbull et al. 2007). 

Manually annotating recordings of course still remains as an option, assuming the 

annotators have sufficient time and expertise to perform the task properly. This can be 

done exclusively by hand or can be done after the harvesting of preliminary labels using 

one of the techniques described above. Ideally, manual labelling should be done by a 

committee rather than entirely by a single individual, and the committee members should 

have a wide and diverse perspective on music. Not only does this help to at least 

minimize individual bias, it also makes it possible for the committee to discuss 

particularly problematic instances when needed.  

Jones, Downie and Ehmann (2007) have performed an excellent statistical study of 

categorical judgement data generated by human evaluators with respect to judgement 

stability, inter-grader reliability and patterns of disagreement. This information was 

acquired during data collection for MIREX using the Evalutron 6000 web-based tool for 

capturing human similarity judgments. Although there was some significant disagreement 

between individual raters, results were still generally good, and the authors present 

several good recommendations for use in future data collection. 

8.2.4 Guidelines for building successful datasets 

The previous sections of this chapter have discussed in some detail many of the 

problematic issues associated with the design and construction of MIR research datasets, 

as well as emphasized the importance of high-quality datasets. Unfortunately, the 

construction of a realistically large and varied ideal dataset with excellent ontological 

organization and reliable ground-truth labelling is beyond the resources of most MIR 

research labs, with the possible exception of a few commercial labs that have access to 

the necessary manpower and musical catalogues. 

There are, however, certain general guidelines that can help to improve the quality of 

datasets collected by even those research labs with very limited resources. The following 

list of proposed guidelines for building research datasets combines summaries of some 

the essential ideas discussed in previous sub-sections with a number of new suggestions: 
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 Data should be freely and legally distributable to researchers. This includes both 

metadata and, ideally, sufficient information about the music itself for other 

researchers to use it in their own work. This could be in the form of actual 

samples when legally permissible, or researchers could be provided with the 

opportunity to remotely extract custom features. 

 Information on entire recordings should be accessible, not just short excerpts. 

Each researcher should be able to choose how much and what parts of recordings 

they wish to utilize.  

 Given that different audio compression methods can influence extracted feature 

values (see Section 3.2.5), the audio format(s) most commonly used by the public 

should be adopted in order to reflect realistic conditions. This is important for 

many types of end user oriented research, although uncompressed audio is also 

useful for some theoretical research. A variety of encoders and bit rates should be 

used for similar reasons. 

 The dataset should contain many different types of music. It should not only 

include music belonging to many different genres, but also a sufficient number of 

examples illustrating as full a range of styles within each genre as possible. 

 Examples from as many different performers and composers as possible should be 

included for each style of each genre of music in the dataset, and both prototypical 

examples of each type of music and stylistic outliers should be included as well. 

 The dataset should include a significant amount of commercial music, although 

independent music should certainly be included as well. The vast majority of the 

public is interested primarily in professionally produced music, so MIR systems 

must demonstrate that they are able to deal with such music. 

 The dataset should include many thousands of recordings. This is important not 

only in order to allow sufficient variety, but also to avoid research overuse of a 

relatively small number of recordings, which could result in overtraining. 

Furthermore, even good-quality metadata annotations will inevitably contain some 

errors, and a large dataset helps to average out such noise in the ground-truth. 
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 Each recording should be annotated with as diverse a range of metadata fields as 

possible in order to make the dataset usable as ground-truth for as wide a range of 

MIR research areas as possible. 

 It should be possible to assign multiple independent labels to a single field so that, 

for example, a recording could be classified as belonging to both the Swing and 

Blues genres, or a Beatles song classified as being composed by both Paul 

McCartney and John Lennon, rather than one non-existent songwriter named Paul 

McCartney and John Lennon. 

 It should ideally be possible to label segments of recordings as well as recordings 

as a whole.  

 Annotations of subjective fields such as genre or mood should include a wide 

range of candidate class labels, since only allowing an artificially small number of 

classes is unrealistic. 

 Candidate class labels should be organized with appropriate ontological 

structuring when appropriate. Such structures should reflect the types of 

ontologies that are actually used by the public, not ontologies that are chosen 

based on the convenience of those constructing the dataset. Also, these structures 

should be easy to modify as cultural conditions change. Ontologies can be 

constructed using either manual or automatic techniques, and in many cases the 

ideal situation may be to have multiple ontologies co-existing with each other with 

respect to the same data. 

 Whenever possible, multiple sources should be consulted for the labelling of each 

recording. Labelling can be performed by panels of experts, metadata repositories 

available on-line and surveys of the public, ideally using a game-oriented interface 

to improve results, as discussed in Section 8.2.3. Whichever approach is used, a 

standardized methodology should be adopted so that the annotations of individual 

recordings are as correct, complete and as consistent as possible. 

 Metadata should be made available to users in formats that are easy to both 

manually browse and automatically parse. 
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 Automatic tools should be available to error-check metadata and generate profiles 

of datasets. 

 It should be easy to add new recordings and their metadata to the dataset. 

This chapter includes presentations of three sample datasets, namely the Bodhidharma 

MIDI dataset (Section 8.5), Codaich (Section 8.6) and SAC (Section 8.7). Each of these 

datasets illustrate several ways in which at least some of the guidelines outlined above 

can be followed in practice, and insights are provided on the solutions that were used to 

address specific problems that were encountered during dataset design, collection and 

annotation.  

8.3 Existing music information retrieval research datasets 

As discussed in the preceding sections, individual MIR research labs have 

traditionally assembled their own simple musical datasets for training and testing their 

algorithms. However, as also described in detail above, there are a number of important 

drawbacks to this approach, and there is a strong need for large high-quality datasets that 

can be used by a variety of labs to compare the effectiveness of different algorithms. This 

section reviews existing datasets that were designed with the specific goal of being used 

by MIR researchers at a variety of research institutions or that have been widely used by 

many researchers. 

The USPOP2002 dataset (Berenzweig et al. 2004) is a dataset that was very often 

used in early MIR research. It is a collection of 8764 MP3 recordings of popular music 

from the U.S. at a bitrate of 128 kbps. This music was extracted from 706 albums by 400 

artists. The metadata includes artist and album labels as well as style tags harvested at the 

time from the All Music Guide. Although it was an extremely valuable contribution at the 

time, from a contemporary point of view it suffers from a number of problems, including 

limited diversity and, most significantly, the lack of a legal way to share it between 

research labs. 

A more recent but comparable dataset is the Latin Music Database (Silla, Kaestner 

and Koerich 2007), which consists of 3160 MP3 recordings belonging to ten different 

genres of Latin dance music. Although this is a well-annotated and high-quality dataset, it 
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is, of course, limited to specific styles of music, and the legality of its distribution is 

questionable. 

One approach to building datasets that are legally distributed is to make use of 

recordings that are in the public domain, such as the recordings found on sites like 

GarageBand
231

 and Jamendo.
232

 Homburg and his colleagues (2005) have explored such 

an approach, and have also incorporated multiple views and high-quality annotations. 

Unfortunately, this approach generally restricts one to a limited number of recordings that 

are usually either very old, are by amateur musicians or consist of only short low-quality 

extracts. These limitations are demonstrated by Homburg et al.’s database, which, despite 

its many advantages, contains only 1886 recordings, each of which is only a 10-second 

extract. 

Some improvement can be achieved by utilizing music protected under more limiting 

but still relatively lenient legal frameworks, such as those offered under the Creative 

Commons. Web merchants such as Magnatune
233

 and Epitonic,
234

 for example, allow the 

public to preview recordings for free, and entire music collections can sometimes be 

licensed for research purposes at little or no cost. Unfortunately, size can still be an issue, 

as such merchants tend to have very small catalogues compared to commercial 

distributors. Also, the music available on such sites usually excludes those artists that are 

contracted to major record labels and are the most visible to the public eye, which is the 

music that most listeners are interested in. In addition, the metadata contained in the ID3 

tags of music sold by such sites is generally not entirely reliable, with problems such as 

multiple spellings of genre names and strange treatment of special characters, problems 

that one would expect to be absent given that each of these sites has complete control 

over the metadata encoded in their catalogues. Finally, there can still be legal restrictions 

on distributing music downloaded from such sites to other researchers, even if one is 

permitted to access and store entire recordings for free oneself.  
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Of particular note, Edith Law, Olivier Gillet and John Buckman have produced the 

Magnatagatune dataset.
235

 This dataset consists of Magnatune audio recordings combined 

with human annotations resulting from the TagATune game (Law et al. 2007) and audio 

analyses produced by Echo Nest
236

 code. 

Another option is to contract arrangers and musicians to produce original recordings 

for use in research, as was done in the construction of the RWC database (Goto et al. 

2002; Goto 2006). This approach has the important advantages of overcoming copyright 

limitations, since the copyrights are owned by the responsible research institution, and of 

generally including high-quality metadata. Unfortunately, costs prevent such datasets 

from scaling to any reasonably large number of recordings. There can also be doubts as to 

how well such original music simulates what one encounters in the real world. 

There are, of course, many other datasets that have been used in individual research 

projects or that are available for sale in contexts not specifically oriented towards MIR. 

Donald Byrd is maintaining a partial listing of many such collections at 

www.informatics.indiana.edu/donbyrd/MusicTestCollections.HTML. 

8.4 jMusicMetaManager: A tool for profiling musical datasets and 

detecting metadata errors in them 

8.4.1 Overview of jMusicMetaManager 

jMusicMetaManager (McKay, McEnnis and Fujinaga. 2006) is an open-source 

software package that is designed to profile and manage large collections of music. It 

emphasises functionality for detecting metadata errors and inconsistencies and for 

generating a variety of reports that analyze, statistically describe and summarize the 

contents of music collections. 

As discussed in Section 8.2, the metadata available from sources such as the ID3 tags 

of MP3 recordings or the Gracenote CD Database is often unreliable. This is an important 

issue if one wishes to apply machine learning to collections of music that are too large to 

conveniently and effectively correct by hand, since the consistency and correctness of 

ground-truth can play an essential role in the ultimate efficacy of any learned model. 
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jMusicMetaManager was therefore developed with a particular emphasis on detecting 

errors in the metadata that is used to train and test learning algorithms. As such, 

jMusicMetaManager has been used to manage the Codaich music research database (see 

Section 8.6). It is important to note, however, that jMusicMetaManager is in no way 

limited to MIR projects, and can be a useful tool for users ranging from individuals who 

simply want to organize their own personal music collections to employees of libraries or 

other large institutions wishing to profile their music databases. 

Users need a convenient interface for viewing and editing the metadata associated 

with individual recordings in music collections. Although jMusicMetaManager does 

include a GUI (described in Section 8.4.5) that provides users with a large degree of 

control over which reports are generated and what parameters are used during error 

detection, it does not provide functionality for editing metadata. It was decided to instead 

take advantage of existing software by making jMusicMetaManager compatible with the 

Apple iTunes software, which is not only free, well-designed, and commonly used for 

editing metadata, but also includes a relatively easily parsed XML-based file format. 

iTunes has the important advantage of saving metadata directly to the ID3 tags of MP3s 

as well as to its own files, which means that the recordings can easily be disassociated 

from iTunes if needed. iTunes can also automatically access Gracenote’s metadata. 

jMusicMetaManager can therefore extract metadata from iTunes XML files as well as 

directly from MP3 ID3 tags.
237

 Since MIR systems do not typically read these formats, 

jMusicMetaManager can also be used to generate ground-truth data by transferring 

metadata stored in these formats to ACE XML or Weka ARFF (Witten and Frank 2005) 

files.  

Once jMusicMetaManager has extracted metadata from iTunes XML files or ID3 

tags, it then checks this metadata for probable errors. The error detection algorithms focus 

on detecting differing metadata values for the same field that should in fact be the same 

(e.g., entries of Stravinski and Stravinsky in the artist field) and on detecting redundant 

duplicates of the same recordings. Many different approaches to finding errors are used, 
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as described in Section 8.4.2, since no one approach is likely to detect all errors. Section 

8.4.4 provides further details on the specific algorithms that are used. 

jMusicMetaManager can generate 42 different kinds of reports in HTML format. 

These describe both probable metadata errors and statistical profiling information about 

music collections. This latter set of reports includes, among other things, multiple data 

summary views and breakdowns of co-occurrences between recording titles, artist names, 

composer names, album titles and genres. Such reports allow one to easily publish music 

collection profiles on-line and review the contents of collections from a variety of 

perspectives. Section 8.4.3 describes each of the different types of reports that 

jMusicMetaManager can generate 

Like all jMIR components, jMusicMetaManager is written in Java in order to 

maximize portability. It is also designed to be easily extensible so that additional error-

checking functionality, types of reports, metadata input sources and other types of 

functionality can be added to the software. 

The jMusicMetaManager compiled Java bytecode, the associated source files, the 

jMusicMetaManager manual and other documentation are freely available at 

jmir.sourceforge.net/index_jMusicMetaManager.html. jMusicManager makes use of two 

freely distributable third-party Java libraries, namely the Apache Xerces
238

 XML parser 

and the de.vdheide.mp3
239

 package for parsing ID3 tags from MP3 files. 

8.4.2 Error-checking operations 

One of the primary functions of jMusicMetaManager is to detect different metadata 

values for the same field (e.g., artist name) that should in fact be the same. Such 

differences could be due either to spelling mistakes, as in the case of misspellings of 

Lynyrd Skynyrd, for example, or to multiple valid spellings, such as in the name of certain 

Russian composers. 

Failure to detect metadata inconsistencies can be highly problematic from a machine 

learning perspective. For example, a system designed to classify music by composer that 

is trained on ground-truth where some pieces are marked as being by Tchaikovsky and 

others are marked as being by Tchaikovski will erroneously treat the two as entirely 
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different classes. Aside from simple incorrectness, such an increase in the overall number 

of classes will likely have the consequence of increasing the difficulty of learning an 

effective model, and could thus lower classification performance overall. Such problems 

are compounded if a large ground-truth training dataset is used that contains multiple 

labelling inconsistencies. An additional issue is that differently labelled duplicate copies 

of the same recording could contaminate evaluation results by being placed in both 

training and testing subsets. 

Even outside of the realm of machine learning, such labelling inconsistencies can be 

inconvenient for general usage of music collections, such as in cases of searches that only 

return a subset of the actual recordings in the collection that correspond to a particular 

metadata label. 

The following four sub-sections of this section describe in some detail the four 

different overall types of error detection processing that are used by jMusicMetaManager. 

Further details on how these different types of processing are implemented and combined 

are provided in Section 8.4.4. 

8.4.2.1 Edit distance thresholding 

The edit distance (Levenshtein 1966) between two strings, also known as Levenshtein 

distance, can be a convenient tool for detecting the types of metadata inconsistencies 

described above. Edit distance is a measure of the similarity between two strings that is 

often used in information theory and computer science. It is defined as the minimum 

number of operations needed to transform one given string into another given string. Each 

of the following is considered one operation: 

 Deletion of a single character in one string 

 Insertion of a single character in one string 

 Replacement of a single character in one string 

Edit distance provides one of the core metrics used in jMusicMetaManager’s error 

detection functionality (after significant pre-processing, as described in Section 8.4.2.2). 

In essence, the software calculates the edit distance between each pair of entries for a 

given metadata field. So, for example, the edit distance is calculated for all possible pairs 

of unique strings in the artist field. The resulting edit distances are then compared to 
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thresholds in order to determine whether two entries are likely to in fact correspond to the 

same true value. This is done separately once each for the title, artist, composer, album 

and genre fields. The three types of edit distance thresholds that jMusicMetaManager can 

apply are as follows: 

 Absolute threshold: A fixed number of edit operations that is independent of the 

nature of the particular pair of strings being compared. A pair of strings are 

flagged as being probable different spellings of the same thing if their edit 

distance is below or equal to this threshold.  

 Proportional threshold: This threshold is varied dynamically based on the length 

of the longer of the two strings being compared. The threshold will thus be higher 

for longer strings than for shorter strings, because the probable number of 

erroneous characters increases with the length of a string.  

 Subset threshold: This threshold is used to account for cases where one string 

might be a subset of another. For example, the artist names Stevie Ray Vaughan 

and Steve Vaughan likely refer to the same person, but there is a relatively high 

edit distance of 5 between them. If, instead, Steve Vaughan and Stevie Vaughan 

are compared, then the edit distance is reduced to one. Steve Vaughan is 

effectively a modified subset of Stevie Ray Vaughan, without the Ray and missing 

the i in Stevie. Subsets such as these tend to appear often in musical datasets, such 

as in cases where long recording titles have had their endings cut off by the 

limitations on field length in early ID3 tags. The availability of an edit distance 

threshold that takes this into account is therefore important. The subset threshold 

used by jMusicMetaManager subtracts the difference in length between the pair of 

strings from the edit distance measurement that is used in the threshold 

comparison. The threshold is also weighted by the length of the shorter string. 

The user may choose which of these thresholds are applied, as well as each of their 

numerical values. These choices will, in practice, depend on the musical dataset under 

consideration and on the contrasting balance of priorities between false negatives and 

false positives. Edit distances are calculated after find/replace operations (see Section 

8.4.2.2) and after reordered word subset operations (see Section 8.4.2.3). This ordering 
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was chosen in order to reduce the edit distances of field entries that have specific types of 

erroneous differences that have commonly been observed in field values that are intended 

to refer to the same entity. The pre-processing operations applied prior to the 

measurement of edit distances thereby reduce certain edit distances in a targeted way that 

will increase the probability of the detection of errors using edit distance metrics. 

For example, REM and R.E.M. have an edit distance of three, a value that is too high 

to fall within typical error detection thresholds, particularly considering that the length of 

the longer string is only six characters long. Pre-processing that removes periods would 

reduce the edit distance to 0, and thus result in a detected correspondence using even the 

most selective thresholds. 

8.4.2.2 Find/replace transformations 

Although edit distance calculations can be very effective at detecting certain kinds of 

spelling inconsistencies, there are certain kinds of differences that will typically be 

missed if appropriate pre-processing is not applied, such as in the case of the R.E.M. 

example above. jMusicMetaManager can therefore apply a range of pre-processing 

transformations to all strings for which edit distances will be compared, with the intent of 

removing certain selectively chosen differences between strings and thereby reducing edit 

distances and helping to prevent appropriate inconsistent spellings from being missed. 

These pre-processing transformations essentially consist of searching all strings under 

consideration and modifying them in ways that are likely to reduce the number of false 

negatives while not increasing the number of false positives 

For example it can be common for the titles of certain types of music to sometimes 

end words with in‟ instead of ing. This is something that can increase edit distances by a 

value of one. jMusicMetaManager can therefore replace all occurrences of in‟ with ing 

before edit distances are calculated. Note that these types of modifications are only 

performed internally by jMusicMetaManager, and the actual metadata itself is not altered. 

Since the particular choice of modifications that are likely to be appropriate can 

depend on the particular musical datasets under consideration, the user is able to choose 

which to apply to the title, artist, composer, album and genre fields. The options are as 

follows: 



 477 

 Treat upper/lower case as identical: Whether or not all upper case letters are 

converted to lower case letters (e.g., Set the Controls for the Heart of the Sun 

should match set the controls for the heart of the sun). Since some metadata 

annotators typically omit capital letters from their labels, this option reduces the 

edit distance between such annotations and annotations by labellers who observe 

the proper use of case.  

 Remove numbers and spaces at beginning of titles: Whether or not all spaces 

and/or numbers before the first non-space and non-number character of a string 

are removed (e.g., Sour Times should match 02 Sour Times). This is done because 

some annotators commonly include track numbers at the beginnings of track titles 

while others do not, and because spaces at the beginnings of titles are a common 

error that can be difficult to detect visually. 

 Convert in’ to ing: Whether or not all occurrences of in‟ are converted to ing 

(e.g., Breakin‟ Down should match Breaking Down). 

 Convert personal titles to abbreviations: Whether or not the following 

replacements are made: Mister to Mr., Doctor to Dr. and Professor to Prof. This is 

done because these types of contractions are common in certain types of music 

(e.g., Professor Longhair should mach Prof. Longhair). 

 Remove all periods: Whether or not all periods are removed (e.g., REM should 

match R.E.M.). 

 Remove all commas: Whether or not all commas are removed.  

 Remove all hyphens: Whether or not all hyphens are removed.  

 Remove all colons: Whether or not all colons are removed.  

 Remove all semicolons: Whether or not all semicolons are removed.  

 Remove all quotation marks: Whether or not all quotation marks are removed.  

 Remove all single quotes and apostrophes: Whether or not all apostrophes and 

single quotes are removed.  
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 Remove all brackets: Whether or not all parentheses, square brackets and curly 

braces are removed.  

 Convert and to &: Whether or not all occurrences of and are converted to & 

(e.g., Simon and Garfunkel should match Simon & Garfunkel). 

 Remove all occurrences of the: Whether or not all occurrences of the are 

removed (e.g., The Police should match Police). 

 Remove all spaces: Whether or not all spaces are removed. Their occasional 

omission or the erroneous usage of multiple consecutive spaces instead of one is a 

common typo in many metadata annotations. 

All of the operations in this section are performed in the order that they are listed 

above and are cumulative. Any fields that become newly identical after these 

transformations are applied are noted and merged (as described in Section 8.4.4) before 

reordered word subset operations are applied, as described below. 

8.4.2.3 Reordered word subset operations 

It is often the case that some annotators label performer or composer names using 

differing word orderings than other annotators. One annotator might label a recording as 

being written by Johnny Cash, for example, while another might label it as being by 

Cash, Johnny. These two strings have very high edit distances, and would therefore not 

be detected as probable matches by any of the edit distance metrics described in Section 

8.4.2.1. However, if word ordering is ignored, the edit distance is only one (the comma), 

which is low enough to indicate a probable match. There are many other musical 

annotation scenarios where similar word reorderings would thwart naïve edit distance-

based error detection, such as in the case of Django Reinhardt & Stéphane Grappelli 

compared to Stéphane Grappelli & Django Reinhardt. 

Another common type of difference than can be problematic when naïve edit distance 

approaches are used concerns shortened versions of strings that refer to the same entity. 

The difference between Duke Ellington and Duke Ellington & His Orchestra is one 

example of this word subset problem, since recordings of Duke Ellington with his various 

orchestras are often found annotated with either of these labels. 
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Although the more sophisticated version of the edit distance that uses the subset 

threshold edit distance (described in Section 8.4.2.1) can sometimes detect such simple 

examples, it is not effective in cases where the word reordering and subset problems are 

combined. An example of such a case is Hendrix, Jimi compared to The Jimi Hendrix 

Experience.  

jMusicMetaManager can therefore perform two additional types of error-detection 

processing independently of edit distance in order to deal with the reordered word and 

word subset problems, either individually or combined. To summarize, reordered word 

subset operations are designed to deal with cases where one field value should likely be 

identical to another, but where the words in one field value are a subset of the words in 

the other and/or the words are in a different order. 

Reordered word subset operations operate by first tokenizing each string in the title, 

artist, composer, album and genre fields into words by partitioning using whitespace 

characters. This is to say that every metadata label string is converted into a set of shorter 

strings, each of which is called a token, where each token consists of a word in the parent 

string. A word is defined to be any portion of the parent string that has a space to its left 

and/or right in the original string. Two kinds of operations can then be applied to these 

tokens by jMusicMetaManager: 

 Word ordering analysis: This operation checks whether two labels are likely 

intended to refer to the same entity, but do not because the words are out of order. 

The percentage of tokens that match, regardless of order, is calculated and 

compared to a user defined threshold. The denominator used in the calculation of 

this percentage is the number of words in the field with the largest number of 

words. If 100% is selected, for example, any two labels will be marked as 

probable matches if and only if they contain exactly the same words, but in any 

order. More lenient percentages allow matches to still be reported even if some 

words do not match.  

 Word subset analysis: This operation checks whether two labels are likely 

intended to refer to the same entity, but do not because the words in one are a 

subset of the words in the other, and are also potentially out of order. The user 
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specifies a minimum percentage of tokens that must match between the two field 

values, regardless of order, in order for the labels to be considered likely to refer 

to the same entity. The denominator used in the calculation of this percentage, 

unlike the denominator used in the word ordering analysis processing described 

above, is the number of words in the field with the fewer number of words.  

These two operations are performed after all find/replace operations described in 

Section 8.4.2.2 have been performed, in order to facilitate matches between appropriate 

tokens. A notable exception to this is the removal of spaces option, which is performed 

immediately after the reordered word subset operations, since spaces are needed for 

tokenization to be performed. 

The token matching that is used requires tokens that are fully identical in order for 

them to be marked as matching, and would therefore, for example, mark Charles Mingus 

as corresponding to Mingus Charles, but not to Mingus Charlie, unless a very permissive 

threshold of 50% were used. The reordered word subset operations are performed 

separately from edit distance calculations, which are later applied to detect probable 

matches such as Charlie compared to Charles that can occur within word tokens. The 

separate and sequential application of processing that treats words as fixed units and 

processing that treats each character separately makes jMusicMetaManager more flexible 

from the user’s perspective, and has also been found during informal experimentation to 

result in fewer false positives than processing that simultaneously applies token matching 

and edit distance matching. 

8.4.2.4 False-positive filters 

The choice of the particular error detection parameterization to use when processing a 

music collection with jMusicMetaManager can sometimes be a balancing act between 

minimizing the probability that an error will be missed while at the same time minimizing 

false positives, which is to say field values that are marked as likely corresponding to the 

same entity that in fact refer to different entities (e.g., Corelli and Torelli). These two 

goals are often at odds because making the various detection thresholds more lenient 

tends to reduce the number of false negatives, or differing field values that in fact refer to 

the same entity but are not detected as such, but at the cost of sometimes increasing the 

number of false positives. 
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Recording titles are particularly vulnerable to false positives. This is partly because 

music collections tend to contain many more unique title labels than labels in other fields 

(because the same artist, composer, album and genre label are typically used in multiple 

recordings) and partly because it is common for legitimately different recordings to have 

the same or very similar titles. Two recordings might correctly have the same title but be 

performed entirely differently, for example, such as in the case of an original Led 

Zeppelin song compared with a Dread Zeppelin cover, or in the case of live and studio 

versions of the same song both performed at different times by Led Zeppelin. Although it 

is essential that redundant versions of the same recordings be detected, in order to avoid 

overlap between training and testing or validation sets as well as to avoid wasted space in 

general, it is also important not to highlight many recordings that are legitimately 

different. 

jMusicMetaManager therefore includes filters to reduce the number of false positives 

in the title field. The input to these filters are the sets of recordings with the same or 

similar titles that are produced by edit distance and reordered word subset processing. The 

filters selected by the user then remove those recordings that are likely to in fact be 

legitimately different. The filters offered by jMusicMetaManager are as follows: 

 Filter by duration: Recordings with similar titles are eliminated from 

consideration as redundant duplicates if they have durations whose difference is 

less than some percentage of their lengths that is specified by the user.  

 Filter by artist: Recordings with similar titles are eliminated from consideration 

as redundant duplicates if they have different artist field values.  

 Filter by composer: Recordings with similar titles are eliminated from 

consideration as redundant duplicates if they have different composer field values.  

 Filter by genre (at least one common): Recordings with similar titles are 

eliminated from consideration as redundant duplicates if they do not have at least 

one genre field value in common.  

 Filter by album: Recordings with sufficiently similar titles are eliminated from 

consideration as redundant duplicates if they have the same album field values. 
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This option is useful for dealing with situations such as extended albums 

containing both studio and live versions of a piece, for example. 

These filters are applied after all selected find/replace, reordered word subset and edit 

distance operations have been performed. 

Some of these filters are more appropriate for certain types of music collections than 

others, and should thus be used only with informed caution. While the Filter by duration 

option, for example, is typically appropriate for most music collections, the Filter by 

genre option is only suitable for collections where the recordings have been reliably and 

consistently been labelled by genre. 

8.4.3 Reports generated 

jMusicMetaManager can generate a variety of reports after analyzing a music 

collection, including reports that statistically profile and analyze the collection, reports of 

probable metadata errors and inconsistencies, and processing reports that can be used for 

debugging jMusicMetaManager or acquiring detailed technical information. The sub-

sections below describe each of the reports that can be generated. 

All reports generated by jMusicMetaManager can be viewed directly in 

jMusicMetaManager and can also be saved to disk as a set of frames-based HTML files 

that can be published on-line and viewed using any web browsing software. The user may 

specify which reports to generate, and is only permitted by the interface to select those 

reports that are appropriate given the user-selected processing options. 

8.4.3.1 Music collection profiling reports 

The reports described in this sub-section provide descriptive details about music 

collections. This information can be useful for purposes such as statically profiling, 

cataloguing, planning expansions to, organizing and otherwise examining music 

collections and publishing information on them. The corresponding reports that 

jMusicMetaManager can generate are as follows: 

 All recordings: This report consists of a table describing all available metadata 

for each recording sorted in alphabetical order by title.  
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 Artist breakdown: This report lists the names of all artists found in the music 

collection, along with the number of recordings by each artist and the percentage 

of the total recordings in the collection that this represents. The numbers of unique 

composers, albums and genres that have at least one recording associated with 

each artist are also reported.  

 Composer breakdown: This report is similar to the Artist breakdown report, but 

with each unique composer listed instead of each unique artist. 

 Genre breakdown: This report is similar to the Artist breakdown report, but with 

each unique genre listed instead of each unique artist. 

 Artists listed by genre: This report lists all genres found in the music collection. 

A table is generated under each genre that includes a line for each artist that has at 

least one recording belonging to the corresponding genre. Each line in each table 

includes the artist’s name, the number of recordings that the artist has in the 

collection that belong to the genre under consideration and the percentage of the 

total number of recordings in the genre that this represents.  

 Composers listed by genre: This report is similar to the Artists listed by genre 

report, but with the tables listing composer names rather than artist names. 

 Albums listed by artist: This report lists the names of all artists found in the 

music collection. A table is generated under each artist’s name that consists of a 

line for each album that includes at least one recording by the corresponding artist. 

Each line includes the album’s name, the number of tracks by the given artist on 

the album, the total number of tracks on the album in total, the percentage of the 

tracks in the album that are be the artist under consideration (marked in bold if not 

100%) and whether the album is tagged as being a compilation album. 

 Albums listed by composer: This report is similar to the Albums listed by artist 

report, except that the albums are broken down by composer rather than artist. 

 Incomplete albums: This report consists of a list of all albums that are missing 

tracks. The percentage of tracks that are actually present in the music collection, 

whether the album is marked as being a compilation album and the artist name(s) 
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corresponding to the recordings on the album are also provided. If the music 

collection includes fewer than a user specified percentage of the tracks on the 

album then the album is marked in bold. A second list is also generated that 

indicates all albums that do not include metadata on the total number of tracks in 

the album, and for which whether or not the album is present in the collection in 

completion could therefore not be determined. 

 Artists with few recordings: This report lists all artists with fewer recordings in 

the music collection than some threshold specified by the user. Artists with fewer 

than half this number of recordings are listed in bold.  

 Composers with few recordings: This report is similar to the Artists with few 

recordings report, but it is generated based on the number of composers present in 

the collection rather than the number of artists. 

 Comment statistics: This report alphabetically lists all unique comment tags 

found in the recordings, as well as the number of recordings marked with each 

comment and the percentage of all recordings that this represents. The numbers of 

unique artists, composers, albums and genres that have at least one recording 

tagged with each comment are also reported.  

 Exactly identical recording titles: This report lists all recordings that have 

exactly the same title, before any processing such as find/replace operations have 

been applied. Both a summary list of all titles that occur more than once and sets 

of tables describing each individual recording making up a cluster of recordings 

with the same title are provided. This report can provide a useful indication of the 

number of versions of the same piece existing in the music collection, although it 

is at this point unknown whether these duplicates are duplicates of the same 

recording or are different versions of the same piece or different pieces with the 

same name. The Probable duplicates of the same recording report described in 

Section 8.4.3.2 can be useful for resolving this ambiguity. 
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Note that none of the reports described above indicate probable metadata errors. This 

is because normal practice would be to generate these reports only after metadata errors 

have first been detected using the reports described in Section 8.4.3.2 and then corrected. 

8.4.3.2 Reports of probable errors and inconsistencies 

The reports referred to in this section indicate probable metadata errors that have been 

detected by jMusicMetaManager. These reports in general each indicate one of four main 

types of problems: redundant duplicate recordings, metadata fields that should likely be 

the same but are not, recordings missing important metadata or containing logically 

contradictory metadata and inconsistencies between iTunes XML files and actual MP3 

files. The user can use this information to manually correct the metadata using software 

such as Apple iTunes.  

Most of these reports report errors in the form of clusters of related errors. It is 

possible that the errors in each cluster may have been detected using different kinds of 

error detection, such as both reordered word subset processing and edit distance 

calculations. For example, Jackson Mahalia, Mahalia Jackson and Mahal Jackson would 

all be reported together in the same cluster.  

Under its default settings, jMusicMetaManager has a tendency to err on the side of 

caution, and has a bias towards avoiding false negatives at the expense of some false 

positives. The user may adjust this balance as desired by changing jMusicMetaManager’s 

user settings. Such adjustments can also be useful for reducing overly large clusters of 

errors. More details on such user configurations are available in jMusicMetaManager’s 

manual.  

The error detection reports that jMusicMetaManager can generate are as follows: 

 Summary: This report provides key overview statistics on the music collection 

and probable metadata errors detected in it. The statistics include the number of 

MP3s parsed from a user specified directory structure, the number of recordings 

for which metadata was extracted from a user specified iTunes XML file, the 

number of unique recordings when the two sources were combined and the total 

number of unique title, artist, composer, genre and album labels present in the 

collection. The number of recordings missing metadata labels for each of these 

fields is also provided. This report also indicates how many clusters of probable 
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errors were found in each of these fields, how many recordings were implicated in 

total in the clusters for each field and the number of probable duplicate recordings 

found. 

 Probable duplicates of the same recording: This report lists recordings that are 

likely to be redundant duplicates of the same recording. All recordings whose title 

fields are judged to be sufficiently similar based on any selected find/replace, 

reordered word subset and/or edit distance processing are grouped together into 

clusters. False-positive filters are then applied to each such cluster to eliminate 

inappropriate candidates. Only the surviving clusters of probable duplicates are 

listed in this report. Metadata on each surviving recording, including artist, album, 

track number, duration, etc., is also reported to help the user make his or her own 

evaluations as to whether the recordings truly are duplicates.  

 Probable errors in title field: This report lists probable metadata errors in the 

title field of the music collection under consideration. All recordings whose title 

fields are judged to be sufficiently similar based on any selected find/replace, 

reordered word subset and/or edit distance processing are grouped together into 

clusters and listed in this report. Each such cluster indicates a set of differing yet 

sufficiently similar metadata values. Additional metadata on each recording in 

each of these clusters is reported, including its artist, album, track number, 

duration, etc. Details on the specific processing operations that resulted in the 

detected similarities are also provided. Note that this report differs from the 

Probable duplicates of the same recording report in that no false-positive filters 

are applied. This is useful since, even if two recordings are in fact different 

versions of the same piece (e.g., live and studio recordings) and are thus filtered 

out from the Probable duplicates of the same recording report, one title may still 

be mistakenly spelled different from the other, and thus should be highlighted in 

this report for correction.  

 Probable errors in artist field: This report lists probable errors in the artist field 

of the music collection under consideration. It is generated in a very similar way 
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to the Probable errors in title field report, except that processing and reported 

errors correspond to the artist field rather than the title field. 

 Probable errors in composer field: This report is similar to Probable errors in 

title field report, except that processing and reported errors correspond to the 

composer field rather than the title field. 

 Probable errors in album field: This report is similar to Probable errors in title 

field report, except that processing and reported errors correspond to the album 

field rather than the title field. 

 Probable errors in genre field: This report is similar to Probable errors in title 

field report, except that processing and reported errors correspond to the genre 

field rather than the title field. 

 Report on compilation albums: jMusicMetaManager uses the notion of 

compilation albums that is most consistent with that used by iTunes, which is to 

say that an album should be marked as a compilation if and only if not all of its 

component recordings have the same value in the artist field. Three different 

sections are included in this report. The first simply lists all unique albums that 

contain at least one recording marked as a compilation or with an unknown 

compilation status. Albums where some recordings are marked as compilations 

and others are not are marked in bold, since all tracks in an album should have the 

same compilation marking. The second part lists all albums that contain 

recordings with different values in their artist fields but are incorrectly not marked 

as compilations. The third section lists albums that contain only recordings that 

have the same artist field value but are incorrectly marked as compilations. 

 Albums with duplicate or unknown track numbers: This report consists of a 

list of all albums with the same name that contain more than one recording with 

the same track number or that contain one or more recordings that do not have a 

track number specified.  
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 Recordings missing key metadata: This report lists all recordings that have 

empty title, artist, composer, album and/or genre fields. A separate table is 

produced for each of these fields.  

 Albums with unspecified year: This report lists all albums that have one or more 

recordings that do not have the recording year annotated.  

 Files in iTunes XML but not at specified path: This report lists all recordings 

that are parsed from the user specified iTunes XML file for which there are no 

valid readable audio files at the specified paths. The user may of course choose 

not to generate this report if he or she wishes to process an iTunes file without 

access to the corresponding audio files. 

 Recordings in one source but not the other: This report lists any recordings that 

were found in the user specified iTunes XML file but for which corresponding 

MP3 files were not found in the user specified audio directory structure, and vice 

versa. This differs from the Files in iTunes XML but not at specified path report in 

that this other report only checks to see if files referred to in the iTunes file 

actually exist, and does not also check to see if other audio files that might be in 

the user specified directories are also in the iTunes file. 

 MP3 files found that could not be parsed: This report lists all files with an MP3 

extension that were found but whose ID3 tags could not be parsed.  

 Non-MP3 files found: This report lists all files in audio directories specified by 

the user that do not have an MP3 extension. This can be useful for detecting files 

that were erroneously placed in audio directories. 

 Fields that do not correspond between sources: This report lists any differences 

in significant fields in the metadata for each recording parsed from the iTunes 

XML file and its corresponding MP3 file.  

8.4.3.3 Technical reports 

The reports described in this section are not intended directly for use in music 

collection profiling or error checking. Rather, they are useful for tracking the intermediate 

processing stages for the purpose of debugging existing and new functionality and for 
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comparing processing using different settings. Although some of these reports do indicate 

probable metadata errors, the same information is summarized in a more easily 

consumable form in the reports described in Section 8.4.3.2. The technical reports that 

can be generated are as follows: 

 Options selected: This report indicates the types of processing selected by the 

user, their selected parameters and the names of the reports chosen to be 

generated. This can be useful for maintaining a record of the settings that resulted 

in a given set of processing results. 

 Processing time log: This report indicates the duration of each type of processing 

performed by jMusicMetaManager. 

 All recordings parsed (before merge): This report lists the path, title and artist 

of all recordings for which metadata was extracted, before any processing was 

performed. Up to two separate lists are produced, one for the metadata extracted 

from ID3 tags and one for the metadata extracted from an iTunes XML file.  

 All post-iTunes and ID3 merge metadata: This report lists all available 

metadata for each recording immediately after metadata has been extracted from 

an iTunes file and/or the ID3 tags of MP3 files. If both sources are used, the report 

is generated after the metadata for each file referred to in the iTunes XML file has 

been merged with the metadata extracted from the tags of the MP3 file with the 

corresponding path, so that there is only one combined set of metadata for each 

unique file path.  

 Fields starting with a space: This report separately lists all title, artist, composer, 

album and genre field values that start with a space. This report is useful in 

immediately highlighting this particularly common error that is difficult to detect 

visually.  

 Fields differing only in case: Entries listed in this report indicate metadata values 

that are identical between any two recordings in all ways except letter case (e.g., 

reggae and Reggae). This is done before any other find/replace, reordered word 



 490 

subset or edit distance processing has been performed. One list is produced for 

each of the title, artist, composer, genre and album fields.  

 Detailed replacements made: This report provides details on all changes that 

were made during find/replace operations after lowercase conversion (if 

requested) and before any other processing.  

 Newly identical fields after find and replace: This report lists all metadata 

values that were made newly identical after find/replace operations were applied  

 Fields with scrambled word orderings: This report lists metadata values that 

contain identical words, but in any order, and where sometimes the words in one 

field are a subset of the words in the other. For example, occurrences of both 

Martha Wainwright and Wainwright Martha would be reported here. This is a 

summary of some of the processing described in Section 8.4.2.3.  

 Fields whose words are subsets of another: This report lists metadata values 

that contain at least some matching words, and where the words may be in any 

order. For example, occurrences of both The Royal Philharmonic Orchestra and 

The Royal Philharmonic might be reported here. This is a summary of some of the 

processing described in Section 8.4.2.3. Items that might have otherwise been 

listed here may be included in the Fields with scrambled word orderings report 

instead if this report is also set to be generated.  

 Edit distances: This report lists the actual edit distances between metadata values 

from all pairs of different recordings for each of the title, artist, composer, album 

and genre fields. One table is generated for each field. The tables provide up to 

three edit distance values, depending on the preferences selected by the user, 

namely the absolute, proportional and the subset edit distances, as described in 

Section 8.4.2.1. Any distances that fall below the thresholds set by the user are 

marked in bold. The reported edit distances are calculated after any selected 

find/replace and/or reordered word subset operations have been performed and 

any resulting merging of recordings has occurred.  
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 Filtered candidate duplicate recordings: This report lists all recordings that 

were found to have sufficiently similar titles to be marked as likely corresponding 

to the same piece, but were in the end rejected as being duplicate recordings 

because of the selected filters of the type described in Section 8.4.2.4. 

8.4.4 Overview of the error detection algorithms 

The list that follows provides a step-by-step outline of the essential processing 

performed by jMusicMetaManager when searching for metadata errors. This list revisits 

the operations described in the subsections of Section 8.4.2, but from an integrated 

implementation perspective. This implementation-level detail is included here because 

some of the processing algorithms are original. The list is still only a broad overview, 

however, as there are far too many details to cover here in completion. The algorithms 

used to generate the reports themselves are omitted entirely because of space limitations. 

Much more detail is available in the code documentation, particularly in the 

AnalysisProcessor class. Note that some of the operations described below may 

sometimes be omitted during processing, depending on the options selected by the user. 

1) Parse metadata from the user specified iTunes XML file and/or ID3 tags from 

MP3 files in the user specified directory and its sub-directories. 

2) If both of the metadata sources from Step 1 are being used, then the metadata is 

merged for corresponding iTunes references and MP3 ID3 tags, so that there is 

only one set of metadata per unique file path. Inconsistencies and omissions 

between the two sources are noted. The metadata extracted from the iTunes file is 

used by default in further processing when there is a disagreement between the 

two sources for a field. An exception to this is when a field is empty in the iTunes 

file but present in the ID3 tags, in which case the value from the ID3 tag is used. 

3) The metadata for each recording is stored in a separate RecordingMetaData object 

that has a field for each type of metadata processed by jMusicMetaManager as 

well as methods for, among other things, comparing, organizing, importing and 

exporting the metadata. 
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4) The five main metadata fields (recording title, album title, artist name, composer 

name and genre names) are treated specially, as follows: 

 The value for each such field is stored in a separate Entry object for each 

recording. There are five Entry objects per recording, one for each of the five 

main fields. Each Entry holds an identifying string (e.g., a recording title or a 

composer name) as well as a vector of references pointing to the unique 

recording(s)
240

 that it is associated with. 

 All Entry objects for a given field are stored in an Entries object. There are 

five Entries objects, one for each main metadata field. This arrangement 

makes it possible to efficiently simultaneously independently sort and 

otherwise organize recordings differently for different metadata fields. 

5) All of the Entry objects in each of the five Entries objects (corresponding to 

recording title, album title, artist name, composer name and genre name) are 

sorted alphabetically based on their identifying string. 

6) Entry objects with identical text fields in each Entries object are merged. This is a 

different kind of merge than that described in Step 2, and all merging referred to 

in the remaining steps of this section refer to this second type of merging.  

 In this new type of merging, all Entry objects with an identical string in a 

given Entries object are merged into one new Entry object, and the original 

source Entry objects are then deleted. 

 The new Entry object maintains references to all of the recordings that were 

referred to by the source Entry objects, which were merged into the new Entry 

object. Since only Entry objects with identical strings are merged, the new 

Entry object stores the same string as each of the source Entry objects did. 

 In order to do this processing, it is only necessary to compare each Entry 

object’s string with that of the Entry object that immediately follows it. This is 

because all Entry objects were alphabetically sorted in Step 5. 

                                                 
240

 In this step, there is always only one recording referred to per Entry. However, multiple recordings can 

later be referred to by an Entry object via Entry merging, as described in Step 6. 
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 This overall approach has the advantages of conceptually simplifying later 

processing (similar merging occurs in many of the following steps), 

maintaining links between clusters of similar strings (e.g., The Zoobombs, 

Zoobombs and Zoobomb) and speeding up processing by reducing the number 

of strings to be processed. 

 For example, consider a case where there are ten recordings with ten unique 

titles, all by one artist. In this case, let us say that each recording belongs to 

one or more of a set of three genres. There would originally be ten 

RecordingMetaData objects, ten title Entry objects, ten artist Entry objects and 

ten genre Entry objects. The following would result after merging: 

o There would still be ten RecordingMetaData objects, since it is only the 

Entry objects that are merged. 

o There would be one artist Entry objects, since all ten of the original artist 

Entry objects referred to the same artist, and were thus merged. This Entry 

object would include ten references to recordings, one for each of the ten 

recordings. 

o There would be three genre Entry objects, since there are three unique 

genres. Each of these Entry objects would refer to one to ten recordings, 

depending on how many are annotated as belonging to the given genre. 

o There would still be ten title Entry objects, each with a reference to one 

recording, because there are ten unique titles. However, even if there had 

been multiple recordings with the same title, they would not have been 

merged at this point, as recording titles are a special case that are not 

merged until Step 8 (unlike artist names, composer names, album titles and 

genres). The exception is in place in order to facilitate the generation of 

certain reports. 

 As will soon become apparent, Entry merging is often used in 

jMusicMetaManager as an essential way of detecting and cataloguing errors. 

Vectors of MergeReport objects that hold details about all merges that occur 
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are stored in each Entries objects. These MergeReport objects can be used to 

generate various reports 

7) Fields starting with spaces are detected, if this find/replace operation is selected 

by the user. This is performed separately from other find/replace operations for 

the purpose of generating a specialized report. 

8) Title Entry objects with identical titles are merged, as in Step 6.  

9) If this option is selected, Entry object strings are all converted to lowercase and 

then re-merged, as in Step 6. The MergeReports that result therefore indicate all 

fields that differ only in case (e.g., van Morrison vs. Van Morrison). 

10) All selected find/replace operations are performed (see Section 8.4.2.2) and 

associated reports are generated in order to detect strings that differ but are likely 

meant to refer to the same entity in one of a number of common ways (e.g., Dr. 

John vs. Doctor John). 

  These operations involve searching all of the Entry object strings to check if 

they contain as a sub-string one of a set of specified strings. If they do, this 

sub-string is replaced with another specified string, or deleted, as appropriate.  

 The Entry objects in each Entries object are then resorted and remerged, as 

described in Step 6. MergeReport objects resulting from these merges then 

indicate those strings that were different before a find/replace operation was 

performed and then became identical after the replacement was made.  

11) All selected word ordering and subset operations are performed (see Section 

8.4.2.3) and associated reports are generated. This is done in order to detect 

strings that refer to the same entity but use different word orderings (e.g., Billie 

Holiday vs. Holiday Billie) or contain a string that is a subset of another string 

(e.g., Stevie Ray Vaughan and Stevie Ray Vaughan and Double Trouble). 

Processing occurs as follows: 
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 All words in the string stored in each Entry object are tokenized based on 

whitespace characters. This means that a separate token is stored for each 

word in each string. 

 The tokens for the string in each Entry object are compared to the tokens for 

each other Entry object in the same Entries object. The number of identical 

tokens, regardless of order, is calculated for each pair of Entry objects.  

 The percentages of matching tokens between Entry pairs are compared to the 

threshold percentage chosen by the user for the word ordering analysis option, 

as described in Section 8.4.2.3. Entry objects with percentages falling within 

the specified range are merged, as described in Step 6. The post-merge Entry 

string is assigned the value of the source Entry object that had the longer 

string.  

 The previous step is repeated for all Entry objects, but this time using the word 

subset analysis percentage. 

12) All selected edit distance calculations and comparisons are performed (see Section 

8.4.2.1) and associated reports are generated in order to detect strings that are 

spelled differently but are likely intended to refer to the same entity (e.g., Sibelius 

vs. Sibellius). 

  jMusicMetaManager calculates the edit distances between all pairs of Entry 

object strings in each Entries object. 

 Each pair of Entry objects is merged, as described in Step 6, if the edit 

distance is equal to or less than one of the three user-defined thresholds. 

13) Error filtering (see Section 8.4.2.4) is applied to all MergeReport objects 

associated with titles. This is done in order to filter out titles that have sufficiently 

similar titles to have been detected by earlier inconsistency detection steps, but are 

in fact not likely to be redundant identical copies of the same recording (i.e., one 

might be a live recording compared to another which is studio recording). 

Recordings with the same or similar titles are therefore reported as probable 
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duplicates unless one or more of the conditions described in Section 8.4.2.4 is 

true. 

8.4.5 jMusicMetaManager’s interface 

Like all of the jMIR components, jMusicMetaManager has been designed to be easy 

to use for researchers with a wide variety of technical backgrounds. This can range from 

MIR researchers to casual users who simply wish to catalogue their personal music 

collections to librarians dealing with major music collections to developers who wish to 

add functionality or modify the code to meet their own needs. 

jMusicMetaManager is also designed to be applicable to many different kinds of 

music. The types of metadata errors that are common in popular music collections can be 

very different from those encountered in classical music collections, for example, and an 

error detection parameterization that is suitable for one type of collection can be 

ineffective for another. 

jMusicMetaManager is therefore designed to be highly customizable, and allows the 

user to set 74 different parameters controlling error detection, music collection analysis 

and report generation. Since this number of options can be overwhelming for novice 

users, the default settings have been chosen such that reasonably good quality results can 

be achieved on reasonably large and diverse personal music collections. 

For those wishing to perform customized processing, the user options are well-

documented in a detailed HTML manual (Figure 8.1) that also includes general guidelines 

on choosing effective settings, a step-by-step tutorial and general reference information. 

This manual can be viewed either using a web browser or via jMusicMetaManager’s 

built-in help functionality. 

The jMusicMetaManager GUI is divided into two main panels. The first, the Options 

Panel, (Figure 8.2), allows the user to choose the source(s) of the metadata to be 

processed and the settings to be use when doing so. The second panel, the Report Panel, 

is used to display generated reports, which can alternatively be saved to disk and viewed 

using a web browser (Figure 8.3). There is also a menu bar that can be used to perform 

miscellaneous tasks such as restoring the default options, exporting metadata to Weka 

ARFF or ACE XML files, and accessing help functionality. 
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Figure 8.1: The tutorial portion of jMusicMetaManager’s user manual, which can be 

viewed either via the software itself or, as shown here, through a web browser. 
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Figure 8.2: jMusicMetaManager’s Options Panel, which allows the user to choose which 

types of processing to apply, which reports to generate and what parameters to use 

during processing. 
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Figure 8.3: A sample report generated by jMusicMetaManager after analyzing a music 

collection. The Summary Report is shown here in particular. Additional reports can be 

accessed from the frame on the left. 

8.5 The Bodhidharma MIDI dataset: A symbolic dataset 

8.5.1 Overview  

The Bodhidharma MIDI dataset is a collection of 950 MIDI files intended for use as 

training and testing data in MIR research. It was originally assembled in order to evaluate 
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the Bodhidharma MIDI genre classifier (McKay 2004), and has since also been used by 

others doing research in musical genre classification (e.g., DeCoro, Barutcuoglu, and 

Fiebrink 2007). However, the Bodhidharma MIDI dataset can also certainly be used for 

types of MIR research other than genre classification. 

The Bodhidharma dataset includes recordings belonging to 38 different musical 

genres, with 25 recordings per genre. These genres are organized into a relatively 

sophisticated ontology, as described in Section 8.5.2. Details on the approaches used to 

collect and select the particular recordings that make up the Bodhidharma dataset are 

provided in Section 8.5.3. 

Although 950 recordings is a smaller number of recordings than one would ideally 

prefer, the Bodhidharma dataset is to the best of the author’s knowledge the largest and 

most diverse non-commercial MIDI collection that has been used to date in MIR research. 

This is likely because of the difficulty associated with acquiring reliable MIDI recordings 

representing a sufficiently diverse range of musical styles and artists. Although there is no 

shortage of MIDI recordings in many Classical styles, for example, it can be much harder 

to find more than a few recordings in many other genres, such as Rap. This problem is 

particularly emphasized if one wishes to avoid amateur compositions that may not be 

representative of the sorts of music that most listeners consume. 

Details on the particular recordings that comprise the Bodhidharma MIDI dataset can 

be obtained by contacting Cory McKay at cory.mckay@mail.mcgill.ca. 

8.5.2 Genre ontology used  

This section describes the specialized ontological structuring that was used to 

organize the Bodhidharma dataset’s genre classes, and specifies the motivations behind 

its development. 

A good genre ontology should include coarse classes that are meaningful to the 

average, potentially relatively musically illiterate music consumer. At the same time, 

however, it is also desirable that the ontology provide the option of making classifications 

into finer classes that may be more useful to music specialists. A hierarchal tree-based 

structure fulfils these dual requirements. Broad classes, such as Classical or Jazz, are 

found at the root of the tree (topmost level of the tree), and classes become increasingly 

fine as one progresses towards the leaves (i.e. nodes in the tree without children). 
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As discussed in Section 8.2.2, utilizing such a hierarchical organization of classes can 

also have a number of machine learning benefits, including the ability to take advantage 

of hierarchical classification algorithms and the ability to used weighted training 

methodologies that penalize misclassifications between very dissimilar classes more than 

misclassifications between more similar classes. 

A strictly hierarchical class structure can be somewhat limiting, however, which is 

why a modified tree structure is used in the Bodhidharma dataset. This ontological 

structure has two important differences from traditional tree structures: 

 A given recording can be associated with more than one leaf genre. 

 A sub-genre can be a direct descendant of more than one parent genre (e.g., Blues 

Rock is a descendant of both the Blues and Classic Rock parent genres in Figure 

8.4). 

These two modifications do complicate the organizational simplicity offered by 

traditional trees, but such modifications are necessary if one is to deal with certain 

fundamental realties: the boundaries between different genres are often vague, sub-genres 

are often the result of a complex amalgamation of potentially disparate parent genres and 

many recordings do not fall unambiguously into single genre classes. 

The various branches of the modified tree used in the Bodhidharma dataset are 

permitted to vary in terms of both depth and breadth. This was necessary in order to 

accommodate the different degrees to which some real-life genres can be split into narrow 

sub-genres and others simply exist as undivided broad categories.  

The particular genres included in the Bodhidharma dataset are shown in Figure 8.4, 

along with the structuring interrelating the classes This ontology includes 38 unique leaf 

genres, 9 root genres and eight intermediate genres, for a total of 55 unique genre labels. 

A number of sources of information were consulted when designing this ontology. 

The final ontology is an amalgamation of the genre classes used by on-line and brick and 

mortar retailers, information found in scholarly writings on popular music, popular music 

magazines, music critic reviews, schedules of radio and video specialty shows, fan web 

sites and the personal knowledge of the author. 
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Particular use was made of the All Music Guide,
241

 an excellent on-line resource, and 

of the Amazon on-line store.
242

 These sites are widely used by people with many different 

musical backgrounds, and their ontologies provide among the best available 

representations of the types of genres that people actually use. These two sites are also 

complimentary, in a sense. The All Music Guide contains detailed and well-researched 

information, but does not establish clear relationships between genres. Amazon, in 

contrast, has a clear genre structure, but no informative descriptions of individual genres. 

Given the limitations on the number and types of music that have been encoded into 

MIDI and made available on-line, it was unfortunately only practical to use a subset of 

the classes that would have ideally been included in the Bodhidharma dataset’s ontology. 

The amount of time needed to manually find, download and classify recordings 

individually also imposed limitations on the number of classes that could be included. 

This ontology is, however, significantly larger and more diverse than that used by any 

other MIR research dataset known to the author, with the exception of Codaich (Section 

8.6). 

The ontology shown in Figure 8.4 is not always perfectly logical or consistent. This is 

necessary in order to truly evaluate MIR systems, as the types of genre structures that 

humans actually use are also usually illogical and inconsistent. The Bodhidharma 

ontology is not presented as perfect or as complete, but rather as a structuring that is 

useful for realistic research evaluations. The ontology encapsulates many of the 

difficulties, ambiguities and inconsistencies inherent to any realistic genre ontology, and 

is large and sophisticated enough that it provides a significantly more difficult and 

realistic test bed than is used in most past of contemporary MIR classification research. 

In practice, much MIR research has involved only ten or so genre classes. Although 

such ontologies do not in general give a true representation of how well a system deals 

with a realistically diverse range of music, it can be useful to have access to a genre 

ontology of a similar size to that used in other research for the purpose of roughly 

comparing the performance of one’s own system with published results on similarly sized 

ontologies. A subset of the Bodhidharma dataset has therefore been used in a smaller 9-

                                                 
241

 www.allmusic.com  
242

 www.amazon.com 
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class ontology, as shown in Figure 8.5. This reduced dataset includes only 225 of 

Bodhidharma’s 950 recordings. The choice of the particular genres to include in this 

reduced ontology was made such that both relatively similar and dissimilar genres would 

be included, so that one might evaluate how well a system can make both relatively easy 

and relatively difficult classifications. 
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Figure 8.4: The genres of music found in the Bodhidharma MIDI dataset and their 

associated ontological structuring. 
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Figure 8.5: The Bodhidharma MIDI dataset’s reduced genre ontology. 
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8.5.3 Methodology used to collect and select recordings  

This section describes the methodology that was used to acquire and select the 

particular recordings that make up the Bodhidharma dataset. Fortunately, there is a large 

community of individuals that encode commercially released music of many types into 

MIDI files and post them on-line, thus making it possible to harvest them for inclusion in 

this dataset. Although the quality of these encodings can vary widely, there are 

fortunately many encoders who take the time to generate good encodings. There are also 

a number of MIDI files that are professionally produced and sold, although these are 

much fewer in number and tend to be limited primarily to certain genres of music, such as 

Classical. 

The first step towards assembling the Bodhidharma MIDI dataset was the compilation 

of a catalogue of web sites from which MIDI files could be downloaded. Although an 

emphasis was placed on sites that individually focused on particular genres, such sites 

were insufficient in number to meet the demands of Bodhidharma’s large 38-genre 

ontology, so a number of general purpose sites and MIDI search engines were utilized as 

well.  

The sites in this catalogue were then surveyed manually, and all MIDI recordings that 

sounded like they belonged to the genre classes in the ontology were downloaded. These 

collected recordings were then supplemented by searches for specific recordings chosen 

as prototypical examples of their genres. This was done by constructing lists of ten to 

twenty pieces that were particularly typical of each genre according to the All Music 

Guide web site and the experience of the author. At this point, 30 to 45 MIDI recordings 

were available for most of the leaf genres. Deficits in any individual genres were 

remedied by performing further searches for model recordings. 

It was decided to use a combination of prototypical examples as well as more general 

examples in order to make it possible to evaluate how well MIR systems could deal with 

both typical examples and outliers. Using only prototypical examples would have risked 

biasing a trained models towards the author's potentially erroneous perception of genre 

classes, and would also have risked training models that would be unable to deal with 

recordings that are somewhat atypical of genres that they nonetheless clearly belong to. 
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Care was also taken to include examples of a range of different styles within each 

genre. So, for example, the Baroque genre includes recordings that are examples of 

operas, keyboard music, orchestral music, chamber music, etc. Of course, this approach 

can significantly increase the difficulty of classification, particularly since there are only 

25 recordings per class to be divided into disjoint training, testing and validation sets, but 

it is necessary to achieve realistic success rates and avoid overtraining classifiers so that 

they are unable to recognize the full range of musical styles that one might find in any 

particular genre. 

A number of past music classification experiments have taken the step of ensuring 

that their datasets do not include multiple recordings by the same artist in a given genre, 

in order to avoid deceptive success rates influenced by artist classification rather than 

genre classification. Flexer (2007), for example, provides experimental justification for 

such artist filters. The Bodhidharma MIDI dataset goes further by including some pieces 

by the same artists in different genre classes when pieces by artists who have performed 

in different genres are available. So, for example, the Bodhidharma MIDI dataset includes 

one song by Tupac Shakur in the Pop Rap genre as well as another in the Hardcore Rap 

genre. This approach is important for ensuring that a genre classification system is able to 

deal correctly with musicians who perform multiple genres of music, as often happens in 

practice. 

The MIDI files for each genre were taken from a variety of sources whenever 

possible. This was done in order to even out any encoding particularities, as recordings 

from a single source might have encoding characteristics that a machine learning system 

could use as a basis for classification rather than actual musical characteristics. This could 

potentially artificially inflate classification performance and compromise the generality of 

leaned models. 

All of the downloaded files were then re-reviewed one by one by the author, and 

classified based on the author’s experience, the All Music Guide and the genre label of 

the piece on the site that it was downloaded from, if available. Recordings were rejected 

if they were of a poor technical quality. Twenty-five pieces were then selected from the 

available pool for each leaf genre. Single pieces were permitted to belong to more than 

one genre, when appropriate. 
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The particular ceiling of twenty-five recordings per leaf genre was selected because of 

the time requirements involved in manually finding, downloading and classifying 

recordings, particularly given the large number of genres. An additional problem was that 

MIDI files are much harder to find in some genres than others. It was decided to use an 

equal amount of recordings for all leaf genres, as failure to stratify the dataset in this way 

could cause pattern recognition systems to find local minima in the solution space by 

simply ignoring genres with few recordings.  

As a side note, many MIDI files contain metadata indicating genre. This metadata is 

not universally present, however, and there is not any consistent set of genre labels or 

classification standards that are used. When present, these labels tend to be far noisier 

even than the contents of the ID3 tags of MP3s found on the Internet. Genre 

identifications stored in MIDI files were therefore largely ignored during ground-truth 

labelling.  

8.6 Codaich: An audio dataset 

8.6.1 Overview  

Codaich is a very large collection of carefully labelled MP3 recordings intended for 

use in MIR research. The term Codaich is both the Gaelic word for share and a 

combination of the first names (COry, DAniel, ICHiro) of the authors of the paper in 

which Codaich and jMusicMetaManager were originally published (McKay, McEnnis 

and Fujinaga 2006). Codaich was assembled both for testing the jMIR components and as 

a prototype implementation of many of the design principles presented in Section 8.2.4. 

Section 8.6.2 describes Codaich in some detail and provides background on how it 

was designed and assembled. Section 8.6.3 describes OMEN, a proposed system for 

legally sharing audio datasets among research groups. It is hoped that OMEN will 

eventually be used to make features extracted from Codaich available to the MIR 

community at large. Finally, Section 8.6.4 informally describes some of the most 

common types of metadata errors that were observed while assembling Codaich. 

Those wishing to download metadata on the recordings that make up Codaich may do 

so by accessing jmir.sourceforge.net/index_Codaich.html. The information posted there 
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includes the iTunes XML file for the collection and a number of profiling inventory 

reports generated by jMusicMetaManager. 

8.6.2 Details of Codaich and the methodology used to assemble it 

Codaich exists in two versions: the release version and the current version. Codaich is 

constantly growing, and this is reflected in the current version. Although efforts are made 

to keep Codaich’s metadata correct and consistent as recordings are added, it is inevitable 

that some errors will initially be missed due to human fallibility, so the metadata in the 

current version is not always perfect. The release version, on the other hand, is that 

version of Codaich that has most recently had its metadata checked by 

jMusicMetaManager and then been correspondingly corrected. The release version is 

therefore more reliable for research purposes, and it is the metadata for this version that is 

posted on jmir.sourceforge.net. All of the statistics on Codaich that are reported in this 

section therefore refer to the release version, rather than to the current version, even 

though the current version is significantly larger.
243

 

The release version of Codaich consists of 26,420 MP3 recordings belonging to 55 

different leaf genres of music. This includes tracks by 2213 performing artists from 2036 

different albums.
244

 Codaich consists primarily of commercially produced music, since 

this is the type of music consumed by most listeners, but it also includes a significant 

number of recordings from independent labels. 

The MP3 audio format in particular was chosen because it is by far the most popular 

digital audio file format in use among contemporary listeners. In order to realistically 

reflect the variety of file encodings found in practical use cases and the related difficulties 

from the perspective of automatic music classification (see Section 3.2.5), Codaich 

includes music digitized using a variety of encoders at many different bit rates. 

The motivations, principles, rationales and techniques used to build Codaich’s genre 

ontology and choose the kinds of recordings to include for each genre were similar to 

those used in constructing the Bodhidharma MIDI dataset, as described in Sections 8.5.2 

and 8.5.3. One essential difference between the two datasets, however, is that audio files 

                                                 
243

 There are 32,066 recordings in the current version of Cocaich at the time of this writing, compared to 

26,420 recordings in the release version. 
244

 Mutli-volume albums are only counted once in this statistic. Also, 144 of these albums are compilation 

albums that each include tracks by multiple artists. 
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are much more widely and easily available than MIDI files. This means that many more 

recordings belonging to a greater variety of classes could be harvested for inclusion in 

Codaich than was possible for the Bodhidharma MIDI dataset. 

As a result, an entirely different genre ontology was designed for Codaich, as 

illustrated in Figures 8.6 and 8.7. There are 55 unique leaf genres of music in Codaich, as 

opposed to 38 in the Bodhidharma dataset. Although there is certainly some overlap in 

the genre classes found in the two datasets, many of the individual classes also differ. The 

genres are structured differently as well, in order to more accurately conform to the 

particular music that is included in Codaich. 

Much like the Bodhidharma MIDI dataset, Codaich is designed to be as realistically 

difficult as possible. This means that, for example, there are cases where pieces that 

belong to different genres but are recorded by the same artist are included in Codaich. 

The greater availability of audio recordings meant that this approach could be taken a step 

further with Codaich than was possible with the Bodhidharma dataset, however. For 

example, Codaich also includes some different versions of the same piece in different 

genres performed by different performers. So, for example, there is one Modern Blues 

performance of Key to the Highway by Derek and the Dominoes and another Traditional 

Blues performance by Brownie McGhee. 

Codaich includes an unequal amount of recordings per genre, another thing that 

differentiates it from the Bodhidharma MIDI dataset. This was reasonable because the 

comparatively large number of audio files available in many genres made it possible to 

have a fairly large number of recordings in even the smallest genres in the Codaich 

ontology. Such unbalanced class sizes have the advantage of accommodating researchers 

who might wish to use only certain subsets of all of the genres available, and would not 

wish to have the number of recordings per genre limited by the number of recordings 

available in genres in which they may not be interested. Having said this, it is of course 

possible, and recommended for many scenarios, that stratified learning be used during 

actual training.  

Codaich was originally seeded with an early version of the in-house music database of 

Douglas Eck’s lab at the Université de Montréal and with the personal music collections 

of several graduate students at McGill University’s Schulich School of Music. Lists were 
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then drawn up of particularly desired recordings belonging to each of Codaich’s genres, 

including recordings representing a range of styles within each genre as well as both 

prototypical examples of each genre and outliers. This was done in ways similar to those 

used in the building of the Bodhidharma dataset, as described in Section 8.5.3. As many 

of these recordings as possible were then harvested from both the extensive collection of 

the Marvin Duchow Music Library and resources that are available on the Internet. 

In their original state after being imported into Codaich, all recordings were labelled 

with metadata based on either the Gracenote
245

 labels accessed by iTunes, in the case of 

tracks imported from CDs, or, in the case of digital music files, based on pre-existing ID3 

tags. In the case of tracks digitized from analog sources, such as cassette tapes or LPs, the 

tags were entered manually. 

Of course, as discussed previously, such pre-existing tags tend to be very noisy and 

inconsistent. All tags from all recordings were thus manually checked and corrected by 

the author, using a number of sources, the most significant of which was the All Music 

Guide. Any relevant metadata fields that were originally empty were also filled in, so that 

at the end of this process, the following metadata fields were annotated for all recordings 

(when available): 

 Recording Title 

 Performer/Artist Name 

 Composer Name
246

 

 Genre(s) 

 Recording Year
247

 

 Album Title 

 Track Number 

 Total Tracks in Album 

 Disc Number 

 Discs In Set 

 Compilation Status 

                                                 
245

 www.gracenote.com 
246

 Composer Names have to date only been consistently annotated for the Classical portion of Codaich. 

The composer labeling of the remainder is an ongoing process. 
247

 The Recording Year field is not yet fully annotated for all recordings in Codaich. 
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 Bit Rate 

 Track Comments 

 Recording File Path 

Finally, this metadata was all processed by jMusicMetaManager in order to detect 

probable errors and inconsistencies. Appropriate corrections were then made. 

 

Blues 
 Contemporary Blues 
 Country Blues 
 Urban Blues  
 
Country 
 
Dance Pop 
 
Electronica 
 
Hip Hop / Rap 
 
Instrumental Pop 
 
Modern Folk 
 Alternative Folk 
 Singer / Songwriter 

R&B 
 Contemporary R&B 
 Funk 
 Gospel 
 Rock & Roll 
 Soul 
 
Reggae 
 
Rock 
 Alternative Pop / Rock 
 Alternative Metal / Punk 
 Classic Rock 
 Metal 
 Roots Rock 
 
Spoken 

 

Figure 8.6: Popular Music genres included in the Codaich audio dataset. 
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Figure 8.7: Classical, Jazz and World Music genres included in the Codaich audio 

dataset. 
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8.6.3 OMEN: A framework for overcoming copyright limitations 

As discussed in Section 8.2, legal restrictions on distributing audio data pose a serious 

obstacle to the sharing of musical datasets between research labs. Such limitations can 

greatly increases the work needed to build new systems, since each lab must assemble its 

own training and testing dataset. Legal obstacles to dataset distribution also make it much 

more difficult to comparatively evaluate different MIR systems, since doing so properly 

requires that they be trained and tested on the same datasets. 

The On-Demand Metadata Extraction Network (OMEN) (Fujinaga and McEnnis 

2006; McEnnis 2006; McEnnis, McKay and Fujinaga 2006b) offers a framework that can 

provide one possible solution to these problems. OMEN, which was implemented entirely 

by Daniel McEnnis, essentially proposes the notion of a networked infrastructure that 

allows researchers to submit custom feature extraction requests to sites that have local 

legal access to the particular digitized musical recordings that are desired. Examples of 

such sites include libraries with digitized music collections and MIR research centres. 

These sites can then locally extract the requested features and return the resulting feature 

values to the user. This can all be done without explicitly violating copyright laws, since 

users are never provided with access to the audio samples themselves. 

Since feature values and metadata are essentially what many MIR researchers are 

interested in, publicly distributing this data rather than the music itself is a useful way of 

legally circumventing copyright limitations. The motivation behind copyright laws is not 

to hinder research, but rather to protect intellectual property and prevent pirating. 

Discussions with legal experts at past ISMIR conferences have indicated that there is 

likely no legal obstacle to the distribution of information extracted from recordings, as 

long as such information cannot be used to reconstruct the music itself with a listenable 

degree of fidelity. This means that many of the features that are typically extracted form 

music in MIR research can in fact be publicly distributed, even when the music itself 

cannot. Even features such as MFCCs can only be used to reconstruct a very poor 

facsimile of the originals under typical feature parameterizations. 

It is important to note that simply extracting and publicly posting stock features would 

be an insufficiently flexible approach, since an important part of MIR research involves 

developing new and specialized features. Furthermore, different researchers will want 
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features extracted using different feature and pre-processing parameters, such as window 

size, window overlap, downsampling, amplitude normalization, etc. 

OMEN addresses these issues through integration with the jAudio audio feature 

extractor (see Chapter 3). jAudio not only allows users to customize the parameters of the 

features that are extracted, but also allows new features to be added remotely as plug-ins 

without the need for recompiling jAudio itself. Each site providing access to music via 

OMEN would therefore have copies of jAudio installed locally, and would allow users to 

set extraction parameters and add features as needed as part of their feature extraction 

requests. 

Extracting features from audio can be a computationally intensive task. The load on 

any one OMEN site is diminished by the likelihood that multiple sites will hold copies of 

at least some recordings from which features are to be extracted, so extraction tasks can 

be divided up between sites. Additionally, libraries in particular have the special 

advantage of owning large networks of computers around the world that go unused 

outside of opening hours, and that typically use only a small percentage of their 

processing capability even during business hours. Such networks of underutilized 

computers could be taken advantage of using grid computing to speed up feature 

extraction. 

OMEN’s architecture consists of three different types of nodes, each of which 

communicates with other nodes using web services: 

 Master node: A centralized server that coordinates all OMEN feature extraction 

requests. It maintains a regularly updated directory of which recordings are 

available at which sites and has searchable access to their metadata. The master 

node also provides users who wish to extract features with an interface allowing 

them to specify and parameterize the features that they wish to extract and choose 

the recordings that they want to extract them from, but hides the actual locations 

of the recordings. 

 Library nodes: The coordinating server at each site that has legal access to audio 

samples. Library nodes receive feature extraction requests from the master node, 

coordinate the actual extraction of features by their subordinate worker nodes and 
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communicate extracted feature values to users via the master node. Each library 

node distributes recordings from which features are to be extracted among worker 

nodes as appropriate.  

 Worker nodes: The individual computer or computers that perform the actual 

work of feature extraction at each site that has legal access to audio samples. This 

is done by running jAudio to extract features from the audio recordings that are 

assigned by a library node. 

OMEN provides a framework that can potentially be used to effectively make 

Codaich available to all MIR researchers. However, although McEnnis has informally 

tested OMEN on Codaich using resources available at McGill University, there are a 

number of efficiency and security issues that remain to be addressed before Codaich can 

be made available to the public via OMEN. 

8.6.4 Informal observations on common metadata errors 

As mentioned previously, Codaich’s metadata was originally seeded with information 

extracted from the contents of ID3 tags and from the Gracenote database. This seed 

metadata was then all checked for errors, both manually and using jMusicMetaManager, a 

process that quickly revealed certain common types of errors in the seed metadata. 

Although a systematic study of these errors was beyond the scope of the work being done, 

informal records were kept for the purpose of determining if additional kinds of error 

checking needed to be added to jMusicMetaManger. Some of the most common errors are 

briefly summarized
248

 here in order to serve as a potential starting point for more formal 

studies in the future, and as a list of particularly common problems errors to be cautious 

of when manually correcting metadata found in the ―wild‖: 

 Inappropriate spaces at the beginning of strings. 

 Inappropriate use of all caps. 

 Track titles missing entirely, or replaced by entries such as Track 01 rather than 

actual recording titles. 

                                                 
248

 Additional types of common errors are implicit in the jMusicMetaManager error detection options. 
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 Track numbers included in the beginning of otherwise correctly annotated 

recording titles (e.g., 07 Mercy). 

 Titles cut off after an insufficient number of characters. 

 Placement of artist names in the Title field as one combined string with titles 

instead of separately in the Artist field. 

 Inclusion of guest artist names in the Title field, even when the Artist field 

specifies the name of the main artist(s). This is particularly common in Hip-Hop 

and R&B. 

 Use of Various Artists or other such labels in the Artist field of compilation 

albums. 

 Particularly unreliable composer annotations in Popular music. 

 Use of composers’ names in the Artist field of Classical music. 

 Variable spelling of non-English names, particularly with respect to the use of 

non-English accents and characters.  

 General confusion over whether the Year field should specify the year of 

recording or the year of album release (e.g., in compilations or posthumous 

releases). 

 Disc numbers often included in the Album field rather than in the Disc Number 

field. 

 Track numbers often missing. 

 Great inconsistency in the Genre field. Interestingly, many recordings that are 

obviously not Blues recordings are annotated with the Blues label, likely because 

it corresponds to the first ID3 code and is often the default choice supplied by 

audio encoding software. 

 Accidental and non-systematic spelling errors of all kinds. 
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8.7 The SAC dataset: Combining symbolic, audio and cultural 

musical data 

The SAC (Symbolic Audio Cultural) dataset (McKay and Fujinaga 2008) was 

assembled in order to provide matching symbolic, audio and cultural data that could be 

analyzed and studied together, such as in the experiments described in Section 9.4. SAC 

consists of 250 MIDI recordings, 250 matching MP3s, and metadata for each of these 

recordings (e.g., Title, Artist, Genre, etc.). This metadata is stored in an iTunes XML file 

that can be parsed by jWebMiner in order to extract cultural features from the web. 

The combination of the MIDI files, MP3 files and the iTunes XML file therefore 

provide sufficient information for extracting features from matching symbolic, audio and 

cultural sources for each of the 250 different pieces of music. jMIRUtilities, described in 

Section 8.8, can be used to facilitate the combination of such different feature types, each 

extracted using jSymbolic, jAudio and jWebMiner, respectively. 

It should be noted that the MIDI and audio recordings were acquired separately, rather 

than simply synthesizing the audio files based on the MIDI recordings. Although this 

made acquiring the dataset significantly more difficult and time consuming, it was 

considered necessary in order to truly test the value of combining symbolic and audio 

data, since audio generated from MIDI by its nature does not include any additional 

information other then the very limited data encapsulated by synthesis algorithms. 

The Bodhidharma MIDI dataset and Codaich were using as starting points for 

building SAC. Unfortunately, there was insufficient overlap between the recordings in 

these two source datasets to build SAC to an acceptable size using a reasonable genre 

ontology. It was therefore necessary to acquire some new recordings in order to attain a 

sufficient amount of music in each of the desired genres. The process of finding MIDI 

files of a sufficient quality that met the constraints of the problem was a very time 

consuming task, and it is for this reason that SAC currently contains only 250 pieces of 

music.  

SAC is divided into 10 genres, with 25 pieces of music per genre. These 10 genres 

consist of 5 pairs of similar genres, as shown in Figure 8.8. This arrangement has the 

advantage of making it possible to perform both 10-class and 5-class genre classification 

experiments simply by combining the instances in each pair of related genres into one 
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class. It is therefore possible to experimentally evaluate how good a classification system 

is at distinguishing between relatively dissimilar classes as well as relatively similar 

classes. An additional advantage is that it becomes possible to measure an indication of 

how serious misclassification errors are in 10-class experiments by examining how many 

misclassifications are in an instance’s partner genre compared to how many are in one of 

the other 8 genres. These two characteristics of SAC’s genre ontology were taken 

advantage of in the experiments described in Section 9.4. 

The particular total of 10 genres was chosen for the purpose of making rough 

comparisons with the performance of the many previously published genre classification 

systems that have used genre ontologies of a similar size, probably because of the 

influential early work of Tzanetakis and Cook (2002). Also, the most recent audio genre 

classification MIREX evaluation
249

 involved 10 genres, and the most recent symbolic 

genre classification MIREX evaluation
250

 involved 9. As emphasized in Section 8.2, 

however, in the long term it will be necessary to significantly expand the number of 

genres in SAC in order to perform evaluations whose results are meaningful in the 

context of practical applications. 

The basic methodologies used in devising SAC’s particular genre ontology, choosing 

appropriate pieces and labelling them were based on those used in constructing the 

Bodhidharma MIDI dataset, as described in Sections 8.5.2 and 8.5.3, with the obvious 

difference that it was possible to take advantage of some of the recordings already in the 

Bodhidharma dataset and Codaich. As was the case with these two source datasets, steps 

were taken to make SAC particularly difficult and realistic, such as including multiple 

versions of the same pieces in different genres and including examples of different pieces 

in different genres by the same artist. 

Those wishing to acquire more specific details on the SAC dataset should contact 

Cory McKay at cory.mckay@mail.mcgill.ca. 
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Figure 8.8: The genres of music found in the SAC dataset. 

8.8 jMIRUtilities: Tools for labelling, linking and pre-processing 

musical data 

jMIRUtilities is a set of tools for performing miscellaneous tasks relating to preparing 

musical data for processing by the jMIR components. Although there are plans to expand 

jMIRUtilities to have a much larger range of functionality, at the time of this writing it 

may only be used to perform the following tasks: 

 Manual instance labelling: A simple GUI is provided for quickly batch labelling 

sets of audio, MIDI or other files and generating a corresponding ACE XML 

Instance Label file (see Chapter 7). 

 Automatic instance labelling: An ACE XML Instance Label file may be 

automatically generated based on a tab-delimited text file containing labelled 

instances. This is convenient for model classifications that are stored in a 

Microsoft Excel table, for example, which may easily be exported to such a tab-

delimited text files. 

 Extract labels from iTunes files: An iTunes XML file may be parsed and a 

delimited text file generated that lists the File Path, Recording Title, Artist Name, 

Composer Name, Album Title and/or Genre Names for each recording in the file, 

as requested by the user. This can be a useful pre-processing step for generating 

ACE XML Instance Label files from iTunes XML files via jMIRUtilities’ 

automatic instance labelling functionality.  

 Feature merging: ACE XML Feature Value files (see Chapter 7) that contain 

different features for the same instances may be merged into a single ACE XML 
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Feature Value file. ACE XML Feature Description files that correspond to these 

Feature Value files may also be merged. This might be used, for example, to 

combine feature values extracted by jAudio with feature values extracted by 

jWebMiner for the same pieces of music. 

jMIRUtilities is, like all jMIR components, implemented in Java, open-source and 

free. The development and expansion of jMIRUtilities is an ongoing project, but a 

prototype version may be acquired by contacting Cory McKay at 

cory.mckay@mail.mcgill.ca. 

8.9 Summary of original contributions 

8.9.1 Datasets 

Section 8.2 presents an original theoretical discussion of essential issues that should 

be considered when designing, building and labelling musical datasets that are to be used 

as ground-truth in MIR research. Among other important issues, this discussion 

emphasises in particular the design of effective and realistic class ontologies. Many of the 

issues raised in this section are vital, considering the poor quality of the datasets that are 

used in much of the published MIR research, and given the essential role that ground-

truth plays in the training and testing of classification algorithms. Section 8.2.4 consists of 

an original list of proposed guidelines to follow when building MIR research datasets. 

The Bodhidharma MIDI dataset, Codaich and SAC are presented as three different 

original datasets designed for general use in MIR research. They are each alternative 

prototype implementations of many of the music research dataset design principles 

proposed in Section 8.2.4. These three datasets are each designed to be particularly 

difficult to classify in order to increase the realism of evaluations experiments that are 

performed with them. 

Codaich is a large, carefully labelled and diverse collection of MP3 recordings. The 

Bodhidharma MIDI dataset is the largest and most diverse research collection of MIDI 

files known to the author. The SAC dataset combines matched audio recordings, MIDI 

recordings and cultural metadata for the purpose of performing research on combining 

features extracted from audio, symbolic and cultural sources. 
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jMIRUtilities offers a set of miscellaneous tools for facilitating the labelling and 

merging of musical data. 

8.9.2 jMusicMetaManager 

jMusicMetaManager is an original powerful automatic music metadata error detection 

tool. Although there are a number of services that attempt to correct metadata by 

identifying recordings by matching them to their own databases and then replacing the 

recordings’ metadata with the metadata stored in these databases, the metadata on these 

databases itself tends to be error-prone and inconsistent. jMusicMetaManager is fully 

self-sufficient and does not rely on any external sources of information that could 

themselves be erroneous. 

jMusicMetaManager includes a number of novel error-detection methodologies and 

implementation algorithms. These include original variants of classic edit distance 

thresholding, the use of specialized find/replace operations for reducing potential edit 

distances in ways that are particular to music, novel reordered word subset strategies and 

the use of false-positive filters specifically designed for music. The merge-based 

algorithms described in Section 8.4.4 that provide the central error-detection 

infrastructure are also themselves entirely novel. 

Finally, many of the profiling reports generated by jMusicMetaManager for 

organizing music collections and publishing information about them present such 

information in novel ways. 

8.10 Future research 

8.10.1 Datasets 

This chapter includes a reasonably extensive theoretical discussion on constructing 

MIR research datasets, including a number of general guidelines. There is a need for 

empirical studies on many of the issues that are raised here, such as on the comparative 

reliability of ground-truth labels derived from different types of sources or on the relative 

incidences of different types of metadata errors. The data resulting from such studies 

would be very helpful in ultimately formulating more concrete and specific guidelines for 

building musical datasets. 
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Although the Bodhidharma MIDI dataset, Codaich and SAC are very high-quality 

datasets relative to the norm in MIR research, there is still certainly potential for further 

improvement. For example, although Codaich is fairly large and is constantly growing, 

both SAC and the Bodhidharma dataset remain much smaller. A priority in the future will 

thus be to increases their size and, particularly in the case of SAC, diversity. 

As noted in Section 8.5, collecting research-appropriate MIDI files can be a very 

work intensive prospect. Efforts will therefore be made in the future to study the viability 

of generating MIDI files by automatically transcribing audio files. Although transcription 

technology has traditionally been quite error-prone when dealing with polyphonic audio, 

improvements continue to be made. There have been some promising recent 

developments, such as Celemony Software’s Melodyne Direct Note Access
251

 technology, 

although the performance of this software remains to be publicly verified. In any case, if 

reliable transcription technology were to become available then the Bodhidharma dataset 

and SAC could easily be dramatically expanded to include all of the recordings in 

Codaich. 

There are also certain improvements that can be made to Codaich’s metadata. 

Specifically, Codaich’s Composer field remains poorly annotated for non-Classical 

recordings, and the Recording Year field has not yet been annotated for all recordings. 

Some of the improvements to jMusicMetaManager suggested in Section 8.10.2 could also 

help to detect potential metadata errors in Codaich that have not yet been detected. 

The addition of more metadata fields for at least some of the recordings would help to 

extend the range of MIR research areas to which Codaich could be applied. Such 

additions could include general labels such as mood or listening scenario, for example, as 

well as more content-oriented metadata such as sectional divisions or note onsets. 

Relating to this, the integration of multiple parallel ontologies into Codaich, as 

discussed in Section 8.2.2, is an additional area for further research. The development of 

web-mining software for automatically and reliably acquiring both ontologies themselves 

and the labels to apply to individual instances would be very useful in this respect. 

Readying OMEN for public release is another priority. Although OMEN’s developer, 

Daniel McEnnis, is currently involved in other projects, work on it could be continued by 
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others. Particular priorities include testing the framework using truly distributed remote 

locations and the incorporation of security to prevent features from being extracted that 

could be used to reconstruct music at a listenable level of quality. 

There are also plans to add a significant amount of additional functionality to 

jMIRUtilities so that it can be used for a diverse range of data pre- and post-processing 

tasks. 

8.10.2 jMusicMetaManager 

Perhaps the most useful type of functionality that could be added to 

jMusicMetaManager would be the ability to automatically apply corrections to iTunes 

XML files and MP3 ID3 tags. This is not as simple a task as it might sound, however, as 

an interface would be needed to allow users to approve changes before they are made so 

that false positives do not corrupt metadata, as well as to resolve cases where there might 

be ambiguity as to what the appropriate correction would be to a detected error. 

One intriguing way to address such issues would be to have jMusicMetaManager 

access audio fingerprinting services such as MusicBrainz. This would make it easy to 

acquire good recommendations for the correct metadata values to use when errors are 

detected. This would also have the further advantage of providing default tags for 

recordings that lack metadata labels in the original collection. 

The use of such fingerprinting services would also provide an entirely new way of 

detecting errors, namely by simply comparing metadata entries in the dataset being 

analyzed with the tags suggested by MusicBrainz for each recording. There are a number 

of potential problems with this approach, such as metadata errors in the MusicBrainz 

database itself, rare recordings that may not be in the MusicBrainz dataset, erroneous 

fingerprinting identifications and dramatically increased processing times due to the 

necessity of processing audio to extract fingerprints. Nonetheless, this approach does also 

have significant potential advantages, and certainly warrants investigation. 

There are also other resources that could be consulted by jMusicMetaManager to 

derive model tags that could be used to detect additional errors or propose appropriate 

corrections. These include simple dictionaries, data mined from on-line sources like the 

All Music Guide and library authority controls (DiLauro 2001), such as that provided by 
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the U.S. Library of Congress. Potential metadata corrections could also be ranked by 

comparing hit counts for different candidates using search engines such as Google. 

There are also additional new types of music collection profiling reports that could 

usefully be added to jMusicMetaManager. Further variants of the error-checking 

algorithms already in use could also be added, such as new find/replace transformations. 

For example, jMusicMetaManager does not yet transform diacritical markings like 

umlauts. jMusicMetaManager is also not yet capable of correctly dealing with non-

European alphabets, such as Hiragana. A number of default error detection 

parameterizations could also be distributed with the software, each suited to different 

types of musical datasets. 

Improvements could also be made to some of jMusicMetaManager’s low-level 

processing. A number of optimizations could decrease processing times, for example. It 

would also be preferable to use a better ID3 parser if one becomes available, since all of 

the open-source ones that were available at the time of jMusicMetaManager’s 

implementation were unable to parse some of the MP3 files in Codaich. 

Another useful addition would be to make jMusicMetaManager able to parse 

metadata from file formats other than MP3s. Although such metadata can currently be 

accessed by jMusicMetaManager indirectly by parsing iTunes XML files, the software 

should ideally also be able to parse formats such as AAC recordings directly. 

Also, the iTunes software itself has a number of limitations with respect to the kinds 

of metadata that it can be used to edit. These limitations include a limited number of 

fields, only one genre allowed per recording,
252

 no functionality for representing 

ontological structuring and a lack of segmented annotation of recordings, all types of 

information which may be freely expressed in ACE XML files. A useful addition to 

jMusicMetaManager in the future would therefore be a GUI that could be used to edit 

metadata in ways that are more expressive and structured than permitted by iTunes. 

A final priority is the design a sleeker jMusicMetaManager API so that researchers 

can access its functionality from their own software more easily. Although 

jMusicMetaManager is already open-source and is implemented using well-documented 
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and modular code, the architectural emphasis was originally on providing functionality 

via a GUI rather than through third-party software. 
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9. Evaluations and experiments 

9.1 Overview of evaluations 

This chapter describes several sets of evaluations that were conducted using the jMIR 

software suite. These experiments were designed with the intention of verifying the 

suite’s ability to effectively perform music classification tasks, both as separate modules 

and as units operating together linked by the ACE XML file formats. Comparative 

experiments were also performed investigating the potential for increasing classification 

performance by combining features extracted from audio, symbolic and cultural 

information sources. 

It is important to note that all of the experiments described in this chapter were 

performed without any special fine tuning or custom modifying of the jMIR components. 

Such modifications were avoided in order to more accurately simulate use cases where 

users with limited technical backgrounds might wish to use jMIR simply as is. It is likely 

that improved experimental results could have been attained with task-specific 

parameterizations, but such an approach would have been inconsistent with this chapter’s 

goal of attempting to evaluate jMIR’s general applicability to MIR classification research.  

The experiments described in Section 9.2 were performed in the early stages of 

jMIR’s development, and involved applying jAudio and ACE to a number of different 

MIR and general classification tasks in order to verify that good results could be attained. 

Results were compared to results on the same datasets published by other researchers 

when possible. 

Section 9.3 describes the submission of the Bodhidharma system (McKay 2004) to 

the MIREX Symbolic Genre Classification competition for comparison with systems 

made by other research groups. Bodhidharma is the original framework that jSymbolic is 

built upon.  

A set of exploratory experiments with the release version of jMIR are described in 

Section 9.4. These experiments investigated the classification utility of combining 

features extracted from audio, symbolic and cultural sources of musical information by 

performing a series of genre classification experiments using all seven possible 

combinations and subsets of the three corresponding types of features. The results are 
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presented and discussed in detail. These experiments also served as validation of the 

ability of the different jMIR components to be effectively used together. 

9.2 Preliminary experiments 

Four sets of experiments were performed during the early development of the jMIR 

software in order to roughly evaluate the performance of ACE and jAudio. These 

experiments were designed simply to verify that jMIR could perform at least as well as 

other published research when applied to MIR-related tasks. The results of the first three 

sets of experiments are shown in Table 9.1. 

 

Experiment Previous Research Success Rate 

(Previous Research) 

Success Rate 

(jMIR) 

Drum stroke Tindale et al. 2004 94.9 96.3 

Beatboxing -- -- 95.6 

Speech/music Scheirer & Slaney 1997 94 98 
 

Table 9.1: jMIR’s classification success rates on various MIR datasets. All values are 

percentages, and they are all averages calculated across cross-validation folds. 

The first experiment consisted of repeating Tindale et al.’s (2004) snare drum stroke 

identification experiment, using Tindale’s data but replacing the feature extraction and 

classification software that he used with jAudio and ACE, respectively. This dataset 

encompassed seven drum stroke classes, namely centre, half centre, halfway, halfedge, 

edge, rimshot and brush. jMIR achieved a success rate of 96.3%, as compared to Tindale 

et al.’s best rate of 94.9%, a proportional reduction in error rate of 27.5%. 

The second experiment involved using jMIR to perform five-class beat-box 

classification (Sinyor et al. 2005). The five classes were kick, open, closed, k-snare and p-

snare. Although no other research has been published based on this data that could be 

used for comparison, jMIR achieved a success rate of 95.6%, a value approaching a level 

of accuracy usable in performance scenarios.
253

 

The third experiment consisted of two-class speech/music discrimination based on 

Scheirer and Slaney’s classic data set (1997). jMIR achieved a success rate of 98% at this 
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task, a proportional decrease of 67% in error rate compared to Scheirer and Slaney’s 

success rate of 94%. 

The fourth set of experiments involved running ACE on ten UCI feature sets (Blake 

and Merz 1998) from a variety of research domains. This served as a test of ACE’s meta 

learning approach. The results, along with a baseline taken from previously published 

machine learning research on some of the same datasets (Kotsiantis and Pintelas 2004), 

are shown in Table 9.2 and Figure 9.1. 

It can be seen that ACE performed very well, particularly given the difficulty of some 

of these feature sets. This is emphasized by ACE’s excellent performance relative to the 

results published by Kotsiantis and Pintelas, which were themselves shown by the authors 

to be better than a wide variety of alternative algorithms. Although statistical uncertainty 

makes it impossible to claim that ACE’s results are inherently superior, it does show that 

ACE can achieve results as good as or better than relatively recent sophisticated state-of-

the-art algorithms. 

Furthermore, in this last experiment, ACE was forced to restrict each of its learning 

algorithms to one minute or less for both training and testing on a now relatively obsolete 

desktop computer (a 2.8 GHz single core Pentium 4). The time limit was imposed in 

order to investigate ACE’s ability to rapidly evaluate a wide variety of classifiers. 

Although even higher success rates could likely have been achieved with more training 

time, the performance achieved by ACE in this limited time demonstrates its efficiency in 

exploratory research. 

Table 9.2 is also revealing in that it demonstrates how a variety of different classifiers 

can perform best given a variety of feature sets. Furthermore, the AdaBoost algorithm 

was selected by ACE four times out of ten, demonstrating the efficacy of the ensemble 

classification approaches that are incorporated into ACE. 

The results of all four of these sets of experiments, which demonstrated that similar or 

better than published results could be achieved by jMIR, were encouraging, and served as 

the initial validation justifying the further development of the software. It is important to 

re-emphasize that these results were all achieved without any manual tuning applied 

based on each particular application under consideration, as is consistent with jMIR’s  
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UCI Data Set ACE’s Selected 
Classifier 

Kotsiantis’ 
Success Rate 

ACE’s 
Success Rate 

anneal AdaBoost -- 99.6 

audiology AdaBoost -- 85.0 

autos AdaBoost 81.7 86.3 

balance scale Naïve Bayes -- 91.4 

diabetes Naïve Bayes 76.6 78.0 

ionosphere AdaBoost 90.7 94.3 

iris FF Neural Net 95.6 97.3 

labor k-NN 93.4 93.0 

vote Decision Tree 96.2 96.3 

zoo Decision Tree -- 97.0 
 

Table 9.2: ACE’s classification success rate on ten UCI feature sets compared to a 

published baseline (Kotsiantis and Pintelas 2004). All values are percentages, and they 

are all averages calculated across cross-validation folds. 
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Figure 9.1: Comparison of ACE’s performance with that of Kotsiantis and Pintelas 

(2004) on six UCI feature sets. Based on the results described in Table 9.2. 
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design priority of providing software that can be applied immediately to MIR research 

problems without the need for user customization, unless desired. 

9.3 MIREX evaluation of Bodhidharma 

The Music Information Retrieval Evaluation eXchange (MIREX) (Downie 2006) is a 

yearly competition associated with the ISMIR conference. It provides an opportunity for a 

variety of MIR algorithms and approaches to be independently evaluated and compared 

using the same data sets. Evaluation areas (e.g., artist identification, audio onset detection, 

beat tracking, etc.) are proposed by the community, and evaluations are performed 

independently and objectively at the International Music Information Retrieval Systems 

Evaluation Laboratory (IMIRSEL). 

The 2005 edition of MIREX included a Symbolic Genre Classification category, and 

the Bodhidharma system was submitted to it for evaluation. Bodhidharma (McKay 2004) 

consists of a symbolic feature extraction system combined with an ensemble machine 

learning classification system. The feature library used by jSymbolic was originally 

identical to the feature library implemented in Bodhidharma, although the jSymbolic 

library has since been improved. Bodhidharma also served as the basic framework that 

jSymbolic was built on, although Bodhidharma’s machine learning component was 

excluded. The evaluation of Bodhidharma was therefore equivalent to an evaluation of 

the prototype version of jSymbolic combined with Bodhidharma’s machine learning 

algorithms. 

The 2005 MIREX Symbolic Genre Classification competition involved evaluations 

on two hierarchical genre taxonomies, one consisting of three parent classes and nine leaf 

classes, and the second consisting of nine parent classes and thirty-eight unique leaf 

classes. Each recording was assigned exactly one leaf genre label.  

A separate experiment was performed for each of the two taxonomies, with each 

experiment using stratified cross-validation. Two different classification success rates 

were calculated for each experiment: 

 Raw accuracy: Each system was given a full point for each correct leaf genre and 

zero points for each incorrect classification. This evaluated the ability of the 

systems to make precise classifications. 
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 Hierarchical accuracy: Each system was given a full point for each correct leaf 

genre. Partial points were given if the selected leaf genre was incorrect, but was in 

a correct branch of the taxonomy tree. This approach therefore included a measure 

of whether the systems made minor mistakes or major mistakes when they were 

incorrect. 

A total of five systems were submitted to IMIRSEL for MIREX evaluation. The 

results are shown in Tables 9.3 and in Figure 9.2. The detailed results are reported at 

http://www.music-ir.org/evaluation/mirex-results/sym-genre/index.html. 

These results demonstrate excellent performance by the Bodhidharma system and, by 

extension, jSymbolic. Bodhidharma placed first in all four evaluation categories. 

Although some of the other submissions achieved success rates that were statistically 

comparable to those of Bodhidharma on the 38-class taxonomy, Bodhidharma performed 

significantly better than any of the other systems on the 9-class taxonomy, with a raw 

accuracy 12.4% higher than the second place system and a hierarchical accuracy 8.4% 

higher. 

Although Bodhidharma’s results on the small taxonomy were arguably good enough 

for some practical application, none of the submissions achieved practically viable results 

on the larger taxonomy. So, while it is certainly encouraging that results far better than 

chance
254

 were attained by all of the systems, it was clear that there was still much work 

to be done before automatic symbolic genre classification could be used in a real-world 

context involving large taxonomies. 

There has not been another Symbolic Genre Classification Evaluation at MIREX 

since 2005, so it is difficult to say for certain if superior results have since been attained 

by an alternative system. However, based on a review of the literature, the best symbolic 

genre classification results to date appear to have been achieved by DeCoro, Barutcuoglu 

and Fiebrink (2007). Using the same dataset as the one used in MIREX 2005, they 

achieved a raw classification accuracy of 60.1% on the 38-class taxonomy, an 

improvement of 14.0% over Bodhidharma’s performance. This improvement was 

achieved by using a Bayesian Aggregation approach to perform the classification as an 
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taxonomy. 



 

 531 

 

 Raw 
Accuracy 
9-Class 

Hierarchical 
Accuracy 

9-Class 

Raw 
Accuracy 
38-Class 

Hierarchical 
Accuracy 

38-Class 

Bodhidharma 84.4 90.0 46.1 64.3 

Basili et al. (NB) 72.0 81.6 45.0 62.6 

Li 72.0 80.2 41.0 57.6 

Basili et al. (J48) 65.3 76.7 39.8 54.9 

Ponce de Leon 37.8 50.7 15.3 24.9 
 

Table 9.3: MIREX 2005 Symbolic Genre Classification results. All values are 

percentages, and they are all averages calculated across cross-validation folds. 
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Figure 9.2: MIREX 2005 Symbolic Genre Classification results.  
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alternative to the neural net and k-nearest neighbour ensemble approach used by 

Bodhidharma. What is encouraging from the perspective of jMIR is that DeCoro, 

Barutcuoglu and Fiebrink used Bodhidharma/jSymbolic’s feature library as the input to 

their classification algorithms. 

The combination of the MIREX results and the work of DeCoro, Barutcuoglu and 

Fiebrink demonstrate that jSymbolic’s feature library has achieved higher symbolic genre 

classification success rates than any other symbolic feature libraries,
255

 both at the most 

recent MIREX Symbolic Genre Classification Evaluation and in the general research 

published to date. 

9.4 Experiments on combining feature types 

9.4.1 Goals and overview 

The final set of experiments consisted of using the release version of jMIR to classify 

music by genre using features extracted from audio, symbolic and cultural sources. 

Classifications were performed using each feature type individually, all three possible 

pairs of feature types and all three feature types together. These experiments were 

performed with three goals in mind: 

 To verify the ability of the mature jMIR components to effectively perform music 

classification. 

 To verify the intercompatibility of the jMIR components. 

 To perform exploratory research investigating the potential benefits of combining 

features extracted from audio, symbolic and cultural sources. 

In the past, MIR research has tended to focus on studying either audio, symbolic or 

cultural sources of musical information. In recent years, as described in Section 9.4.2, 

MIR researchers have increasingly begun to study these sources of information in 

combination, with a particular emphasis on research combining audio and cultural sources 
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of data. However, there has yet to be a systematic study investigating the relative levels of 

automatic classification efficacy corresponding to all three feature types operating 

together, or of each of the seven possible combinations of the three feature types. 

The experiments described in this section
256

 were therefore devised to fill this gap. In 

essence, this research is intended to address the degree of orthogonal independence of the 

three feature types. If the feature orthogonality is high, then significant performance 

boosts can potentially be attained by combining feature types. If it is low, and there is 

therefore significant redundancy between the feature types, then combining the different 

sources of musical information may be wasted effort. 

As noted above, this investigation was performed via sets of automatic genre 

classification experiments. Genre classification in particular was chosen because it is a 

complex and difficult task that combines diverse musical variables and requires 

classification systems to successfully deal with problematic labelling and ground-truth 

issues (McKay and Fujinaga 2006b), thereby serving as an appropriately difficult test 

case. The experiments could just as easily have been performed using other types of 

classification, however, such as mood or artist classification. The essential question being 

investigated remains the degree of utility attained by combining features extracted from 

the three types of musical data. 

Before proceeding to the details of the experiment, it is appropriate to first briefly 

discuss the three types of musical data. Features extracted from all three can arguably 

provide valuable information for use in music classification and similarity research. 

Audio is clearly useful because it corresponds to the essential way that music is 

consumed, and cultural data external to musical content is musicologically well-known to 

be highly influential on our interpretations and experiences of music (e.g., Fabbri 1981). 

Symbolic data has recently been receiving less attention from MIR researchers than it 

did in the past, with the obvious exception of music theoretical researchers. The value of 

symbolic data should not be overlooked, however, as much of the information relating to 

high-level musical abstractions that can be relatively easily extracted from such formats is 
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currently poorly encapsulated by the types of features that are typically extracted from 

audio, which tend to focus primarily on timbral information  

Symbolic formats can thus, at the very least, be a powerful representational tool in 

automatic music classification. This characteristic will become increasingly valuable as 

polyphonic audio to symbolic transcription algorithms continue to improve. The end 

result of successful transcription technology may well be that symbolic formats in essence 

become important intermediate data structures. Even though such transcription 

technologies are still error-prone, it has been found (e.g., Lidy et al. 2007) that 

classification systems can be relatively robust to such errors. Also, the advance material 

promoting Celemony Software’s Melodyne Direct Note Access
257

 technology seems to 

indicate that fairly high-quality audio-to-symbolic transcription will soon become 

available, although the performance of the technology remains to be publicly verified. 

The usefulness of combining features extracted from all three sources of musical 

information therefore seems intuitively apparent. However, as stated above, this remained 

to be experimentally verified prior to the experiments described in this section. These 

experiments also provided an excellent test scenario for combining the jAudio, 

jSymbolic, jWebMiner and ACE jMIR components, as well as validating the 

intercompatibility of the ACE XML file formats, thereby meeting all three goals outlined 

at the beginning of this section.  

9.4.2 Related research 

There has been a significant amount of research on combining audio and cultural data. 

Whitman and Smaragdis (2002) and Baumann, Klüter and Norlien (2002) performed 

some particularly important early work on combining audio features with cultural data 

mined from the web, and achieved substantial performance gains when doing so. Ellis 

and his colleagues (2002) also combined audio and cultural data, but with an emphasis on 

acquiring ground-truth. Dhanaraj and Logan (2005) took a more content-based approach 

by combining information extracted from lyrics and audio. Knees and his colleagues 

(2006) combined audio and cultural data for the purpose of generating a music browsing 

space, as did Pampalk and Goto (2007). Aucouturier and Pachet (2007) combined audio 
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features with cultural metadata in order to achieve improved genre classification 

performance. Research has also been done on using audio data to generate or make 

correlations with cultural labels, which can in turn improve other kinds of classification 

(e.g., Eck, Bertin-Mahieux and Lamere 2007; Reed and Lee 2007). 

There has been much less work on combining symbolic data with audio data. One of 

the exceptions is the outstanding work of Lidy and his colleagues (2007), who reported 

improvements in three different sets of experiments when audio and symbolic data were 

combined, compared to when only audio data was used. 

Much of the research on combining audio and symbolic data has simply involved 

MIDIstration, which is to say the synthesis of audio files based on MIDI files. Although 

this can be useful for some purposes, it is nonetheless much less powerful than separately 

acquired audio and symbolic data, since the only additional information attained via 

MIDIstration is the timbral information stored in the synthesis algorithms used. 

MIDIstration is in general less useful than audio to symbolic transcription, even though 

the transcription process arguably does not add any information that is not already in the 

audio signal, since the transcription process has the advantage of making high-level 

features much more accessible than they are in raw audio. 

To the best knowledge of the author, no previous research has been performed on 

combining symbolic and cultural features or on combining all three. 

The literature on automatic genre classification is far too large to cite with any 

completeness here, but the work of McKay and Fujinaga (2006) and McKay (2004) 

include citations of some of the most influential research in the field as well as 

discussions of essential issues. 

9.4.3 Experimental procedure 

The experiments were performed using the SAC (Symbolic Audio Cultural) dataset, 

which is described in detail in Section 8.7. This dataset was assembled for the specific 

purpose of performing these experiments, although it can of course be used for other 

research as well. The most pertinent aspects of SAC are reviewed in the following 

paragraphs.  
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The SAC dataset consists of 250 MP3 files, 250 MIDI files matched to each audio file 

and cultural metadata
258

 associated with each piece. Each matching MIDI file was 

downloaded from the Internet independently, and was not transcribed from the audio, nor 

was the audio derived from the MIDI via MIDIfication. Although this made acquiring the 

dataset significantly more difficult and time consuming, it was considered necessary in 

order to truly test the value of combining symbolic and audio data, since audio generated 

from MIDI by its nature does not include any additional information other then the very 

limited data encapsulated by the synthesis algorithms, as discussed is Section 9.4.2. 

The pieces of music making up SAC are divided into ten different genres, and each 

piece is assigned a ground-truth genre label. These ten genres consist of five pairs of 

similar genres, as shown in Figure 9.3. This arrangement has the advantage of making it 

possible to perform both 10-class and 5-class genre classification experiments simply by 

combining the instances in each pair of related genres into one class. 

This arrangement also makes it possible to experimentally evaluate how good a 

classification system is at distinguishing between relatively dissimilar classes as well as 

relatively similar classes. A related advantage is that it also becomes possible to measure 

an indication of how serious misclassification errors are in 10-class experiments by 

examining how many misclassifications are in an instance’s partner genre compared to 

how many are in one of the other eight genres. 

 

Blues Classical Jazz  Rap Rock     
Modern Blues Baroque Bop  Hardcore Rap Alternative Rock 
Traditional Blues Romantic Swing Pop Rock Metal 

 

Figure 9.3: The ten musical genres in the SAC dataset. The columns demonstrate how 

the genres can be grouped into pairs in order to result in a 5-genre parent taxonomy.  

The first part of the experiment was to use jMIR’s feature extractors to acquire 

features from each matched audio recording and MIDI recording, as well as from the 

Internet, using the cultural metadata associated with each piece. To provide a clarifying 

example, features might be extracted from a Duke Ellington MP3 recording of Perdido, 

from an independently acquired MIDI encoding of the same piece, and from automated 
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search engine queries based on recording metadata such as Artist, Title and candidate 

genres. Three types of features, one corresponding to each data type, were therefore 

extracted for each piece.  

These three types of features were then grouped into all seven possible combinations 

and subsets using jMIRUtilities.
259

 This was done once for each of the two genre 

taxonomies. This resulted in a total of fourteen sets of features,
260

 as shown in Table 9.4. 

These fourteen sets of features were used to perform fourteen corresponding automatic 

genre classification experiments. 

 

Feature Type 5-Genre Code 10-Genre Code 

Symbolic S-5 S-10 

Audio A-5 A-10 

Cultural C-5 C-10 

Symbolic + Audio SA-5 SA-10 

Audio + Cultural AC-5 AC-10 

Symbolic + Cultural SC-5 SC-10 

Symbolic + Audio + Cultural SAC-5 SAC-10 

 

Table 9.4: The identifying codes used for each of the fourteen experiments performed.  

ACE was trained on and used to classify each of these fourteen feature type 

combinations in fourteen independent 10-fold cross-validation experiments. This resulted 

in two classification accuracy rates for each of the seven feature type combinations, one 

for each of the two genre taxonomies. 

It should incidentally be emphasized that ACE includes dimensionality reduction 

functionality, which is essential in overcoming the curse of dimensionality, an important 

consideration given that most of the feature sets included well over one hundred features. 

ACE was therefore able to effectively choose only those features that were most 

orthogonal or showed the most discriminatory power from all of the available features 

when training its actual classifiers. 
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 jMIRUtilities is a set of tools designed for coordinating the jMIR components and for performing 

miscellaneous tasks described in Section 8.8. 
260

 Although the symbolic and audio features were the same regardless of which of the two genre 

taxonomies were used, the cultural features differed between the two taxonomies. This variance was due to 

the fact that jWebMiner queries incorporated the names of the candidate genres. So, even though A-5 and 

A-10 used the same features, they are assigned different experiment codes for the sake of clarity. 
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It was desirable not only to determine how effective each of the feature type 

combinations was at achieving correct classifications, but also how serious 

misclassifications were. Two classifiers with similar raw classification accuracy rates can 

in fact be of very different values if the mistakes made by one are much more serious than 

those made by the other. A normalized weighted classification accuracy rate was 

therefore calculated for each of the 10-genre experiments in order to provide insights on 

error types. This was calculated by weighting a misclassification within a genre pair (e.g., 

Alternative Rock instead of Metal) as 0.5 of an error, and by weighting a misclassification 

outside of a pair (e.g., Swing instead of Metal) as 1.5 of an error. This contrasts with the 

simple classification accuracy rate, where both types of errors counted simply as 1 error. 

It is important to note that this weighting approach avoided simply inflating the 

accuracy rates because ―bad‖ misclassifications were overweighted by just as much as 

―good‖ misclassifications were underweighted. This normalized approach contrasts with 

the approaches used in the past in some MIREX evaluations, for example, which just 

reduced the weight of ―good‖ errors without increasing the weight of ―bad‖ errors. 

9.4.4 Results  

The average classification accuracy rates across cross-validation folds for each of the 

fourteen experiments outlined in Table 9.4 are shown in Table 9.5. Both weighted and 

unweighted results are included. Figures 9.4 and 9.5 illustrate the unweighted results for 

the 5-genre and 10-genre classifications respectively. These results are summarized in 

Table 9.6 and Figure 96, which show the average results for all experiments using one 

feature type, all experiments using two feature types and all experiments using three 

feature types. 
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 S A C SA AC SC SAC 

5-UW 86.4 82.8 87.2 92.4 95.2 94 96.8 

10-UW 66.4 67.6 61.2 75.6 78.8 75.2 78.8 

10-W 66.4 67.4 66.6 78.6 84.6 81.2 84.2 
 

Table 9.5: The unweighted classification accuracy rates for the 5-genre taxonomy (5-

UW) experiments and both the unweighted (10-UW) and weighted (10-W) accuracy rates 

for the 10-genre taxonomy experiments. Results are reported for each feature type 

combination, as described in Table 9.4. All values are percentages, and they are all 

averages calculated across cross-validation folds. 
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Figure 9.4: The classification accuracy rates for the 5-genre taxonomy, as described in 

Tables 9.4 and 9.5. 
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Classification Performance on 10-Genre Taxonomy
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Figure 9.5: The unweighted classification accuracy rates for the 10-genre taxonomy, as 

described in Tables 9.4 and 9.5.  

 

 1 Feature Type 2 Feature Types 3 Feature Types 

5-UW 85.5 93.9 96.8 

10-UW 65.1 76.5 78.8 

10-W 66.8 81.5 84.2 
 

Table 9.6: The average classification accuracy rates for all experiments employing just 

one type of feature (S, A and C), two types of features (SA, AC and SC) or all three 

types of features (SAC). Results are specified for the 5-genre taxonomy (5-UW), the 

unweighted 10-genre taxonomy (10-UW) and the weighted 10-genre taxonomy (10-W). 

All values are percentages, and are calculated as simple mean averages from Table 9.5.  
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Average Classification Performance Based on 
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Figure 9.6: The average classification accuracy rates for all experiments employing just 

one type of feature (S, A and C), two types of features (SA, AC and SC) or all three 

types of features (SAC). The three trend lines refer to the 5-genre taxonomy (5-UW), the 

unweighted 10-genre taxonomy (10-UW) and the weighted 10-genre taxonomy (10-W). 

This data corresponds to Table 9.6.   

9.4.5 Discussion of the effects of combining feature types on classification 

accuracy 

As can be seen in Figures 9.4 and 9.5, all combinations of two feature types 

performed better than all single feature types classified independently. Furthermore, 

combining all three feature types for the most part resulted in better performance than all 

pairs of feature types, although this increase was less dramatic. 

These results are illustrated in Figure 9.6, which shows strong average increases in 

performance when feature types are combined. On average, combining all feature types 

resulted in an increase in performance of 11.3% in the 5-genre taxonomy and 13.7% in 

the 10-genre unweighted case compared to the average performance of each of the single 

feature types classified individually. Considered in terms of proportional reductions in 
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error rate, this corresponds to decreases of 78.0% and 39.3% for the 5 and 10-genre 

taxonomies respectively. 

The Wilcoxon signed-rank test indicates that, with a significance level of 0.125, the 

improvements in performance of two or three feature types over one type were 

statistically significant in all cases. However, the improvements when three feature types 

were used instead of two were not substantial enough to conclude with a high degree of 

statistical certainty that three feature types are always better than two, although this may 

still be the case. The corresponding average increases in performance were only 2.3% and 

2.7% for the 5 and 10-genre taxonomies, respectively. What is clear, however, is that both 

two and three feature types consistently resulted in better classification success rates than 

only one feature type. 

All of this provides a strong indication that the three different types of features 

contain orthogonally independent information, and can therefore be fruitfully combined 

for a variety of purposes. This helps to confirm the intuitively reasonable suspicions that 

cultural features hold useful information not accessible from either symbolic or audio data 

and that audio files contain information that MIDI files do not. 

What may be more surprising to some, however, is that the symbolic data appears to 

contain information that is not accessed by the features extracted from the audio files. 

This is implied by the facts that the AS feature set performed 9.6% better than the A 

feature set in 5-UW, and 8% better in 10-UW. This is potential confirmation of the 

suspicions expressed above that symbolic data has important representational advantages 

over raw audio data with respect to making some types of information more conveniently 

accessible to machine learning algorithms. This, in turn, implies that mappings from 

audio to MIDI resulting from improved audio transcription technology could result in 

substantially improved classification performance as a side benefit. 

As an additional point, it is interesting to note that the standard deviation across single 

feature types was only 2.3 for the 5-genre taxonomy and 3.4 for the 10-genre taxonomy, 

and would have been even lower if not for the relatively low performance of the cultural 

features on the 10-genre taxonomy. This may indicate that the three types of features are 

roughly equivalent in terms of their genre distinguishing ability when considered 

individually. 
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9.4.6 Discussion of types of misclassification 

As described in Section 9.4.3, normalized weighted classification accuracy rates were 

calculated for the experiments on the 10-genre taxonomy in order to evaluate the 

seriousness of the particular misclassifications that were made. The results, and how they 

compare to the unweighted classification accuracies, are shown in Table 9.5 and Figure 

9.7. 
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50

55

60

65

70

75

80

85

90

95

100

S-10 A-10 C-10 SA-10 AC-10 SC-10 SAC-10

Feature Set

C
la

s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y
 (

%
)

Unmodified

Weighted

 
 

Figure 9.7: The difference between the unweighted and weighted classification 

accuracies on the 10-genre taxonomy for each of the seven feature type combinations 

(Table 9.4). This data correspond to the last two rows of Table 9.5. 

As can be seen in Figure 9.7, the weighted and unweighted accuracies were not 

significantly different when the audio and symbolic features were processed individually. 

However, the weighted performance was 3% higher than the unweighted performance 

when the two feature types were combined. Although this is not a dramatic increase, it is 

an indication that combining these feature types may make those misclassifications that 
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do occur less serious in addition to increasing classification accuracy overall. Recall, also, 

that the normalized weighting does not artificially inflate results, as very different 

misclassifications are overpenalized just as much as not too different misclassifications 

are underpenalized. 

The differences between the weighted and unweighted classification accuracies were 

greater in all feature sets that included cultural features. These weighted rates were higher 

than the unweighted rates by an average of 5.7%, a difference that, based on Student’s 

paired t-test, is statistically significant with a significance level of 0.005. This indicates 

that the types of misclassifications that occur when cultural features are used are likely 

less serious than when audio or symbolic features are used alone. Quite encouragingly, it 

also appears that this improvement in error quality carries through when cultural features 

are combined with both audio and symbolic features, as the SAC-10 weighted success 

rate was 5.4% higher than the unweighted success rate. 

One interesting note is that many of the classification errors in general occurred in the 

two Rap genres. These genres were correctly classified with only a 68% success rate for 

the SAC-10 experiment, for example, compared to 81.5% for recordings belonging to the 

other eight genre classes. This relatively poor performance on Rap was for the most part 

consistent across feature types and experiments, and the was emphasized by the relatively 

similar classification success rates on average for the other eight genre classes. This is 

surprising, given that Rap would intuitively seem particularly easy to distinguish from 

other genres. This is an intriguing result, and bears further investigation. 

9.4.7 Discussion of absolute genre classification performance  

In order to put the experimental results presented here in context, it is appropriate to 

compare them with classification accuracies achieved by alternative high-performing 

specialized genre classification systems. It is important, however, to keep in mind the 

essential caveat that different classification systems can perform dramatically differently 

on different datasets, so direct comparisons of classification accuracies calculated on 

different datasets can give only a very rough indication of comparative performance. The 

size and depth of the genre taxonomy, the particular genre labels chosen as candidates, 

the quality of the labelling of the ground-truth, the particular instances chosen to include 
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in the dataset and the relationships between them are just some of the many factors that 

can have a deep impact on the difficulty of a dataset.  

The MIREX evaluations offer the best benchmarking reference points available. 

Although no evaluations of genre classification based on cultural data have been carried 

out yet at MIREX, both audio and symbolic genre classification evaluations have been 

held, most recently in 2009 and 2005, respectively. The highest classification accuracy 

attained in audio classification was 73.3%, achieved by Cao and Li on a 10-genre 

ontology.
261

 The highest accuracy for symbolic classification was 84.4%, attained on a 9-

genre taxonomy by McKay and Fujinaga’s Bodhidharma system.
262

 

The experiments described in this thesis achieved classification accuracies of 67.6% 

using only features extracted from audio and 66.4% using only features extracted from 

symbolic data. This is at least comparable to the best MIREX audio result of 73.3%, but 

significantly lower than the best MIREX symbolic result of 84.4%, which were achieved 

on a taxonomy only smaller by one class. 

This latter result is intriguing, as jSymbolic uses the same features and feature 

implementations as Bodhidharma. The difference is likely due at least in part to the 

specialized and sophisticated hierarchical and round robin learning classification 

ensemble algorithms used by Bodhidharma (McKay 2004), whereas ACE only 

experiments with general-purpose machine learning algorithms. This offers strong 

support for future research experimenting with sophisticated classification schemes such 

as Bodhidharma’s. 

When all three feature types were combined, the jMIR experiments described in this 

paper achieved a success rate of 78.8% which was still lower than Bodhidharma’s 

performance, but significantly better than the best audio MIREX results to date. 

 Even though 78.8% is still much too low for practical applications, these results are 

particularly encouraging given the particular difficulty of the SAC dataset compared to 

datasets used in many other genre classification experiments. SAC consists of pairs of 

closely related genres, includes different versions of the same pieces performed in 

different genres, includes different pieces by the same artist in different genres, includes a 
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diverse variety of subtypes within each genre, etc., all in order to more closely 

approximate realistic genre conditions. These aspects of SAC that make it a particularly 

difficult dataset to correctly classify are discussed in more detail in Section 8.7. 

Furthermore, only 25 recordings were available per genre in SAC, and these needed to be 

divided into training, testing and validation sets, which left only relatively few recordings 

for classifiers to train on.  

Taken in the context of the particular difficulty of the SAC dataset, and considering 

that the accuracy on the 10-genre taxonomy improves to 84.2% when weighted, the 

results attained here are encouraging, and may be an indication that the ultimate ceiling 

on performance (Aucouturier and Pachet 2004) might not be as low as some have 

worried. It may well be that the use of more sophisticated machine learning approaches, 

such as those used by Bodhidharma or by DeCoro, Barutcuoglu and Fiebrink (2007), 

combined with the development of new features, could significantly improve 

performance further. 

9.4.8 Conclusions 

The results of these experiments indicate that it is indeed substantively beneficial to 

combine features extracted from audio, symbolic and cultural data sources, at least in the 

case of automatic genre classification. Further research remains to be performed 

investigating whether these benefits generalize to other areas of music classification and 

similarity research, although the outlook seems good. 

All feature groups consisting of two feature types performed significantly better than 

any single feature types classified alone. Combining all three feature types resulted in still 

further improvements over the feature type pairs on average, but these additional 

improvements were not as uniformly dramatic. 

The results also indicated that combining feature types tends to cause those 

misclassifications that do occur to be less serious, as the misclassifications are more likely 

to be to a more similar class. Such improvements were particularly pronounced when 

cultural features were involved. 

Encouragingly high genre classification accuracy rates were attained. The results of 

the experiments as a whole provide hope that any ultimate performance ceiling on genre 

classification performance might not be as low as has been worried. 
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In terms of meeting the first two experimental goals outlined in Section 9.4.1, the 

jMIR software suite was demonstrated to be an effective and convenient tool for 

performing feature extraction and classification research and for effectively combining 

information extracted from the different musical data sources. Although results were 

clearly improved when feature types were combined, it was also shown that each of the 

jMIR feature extractors was able to produce features that could be used individually to 

perform classifications with success rates over six times better than chance in all 10-genre 

classification experiments.  

9.5 Summary of original contributions 

The empirical evaluations in this chapter demonstrated the utility of ACE, jAudio, 

jSymbolic and jWebMiner as tools that can be used to produce excellent classification 

results when applied a variety of MIR research areas. It was also shown that the jMIR 

components could be used together effectively in order to combine features extracted 

from audio, symbolic and cultural sources and build corresponding combined 

classification models using ACE. 

The preliminary experiments described in Section 9.2 demonstrated that jAudio and 

ACE can be used without customization or specialized parameterization to quickly and 

easily achieve similar or better than previously published classification success rates 

when applied to both MIR and general classification tasks. The independently evaluated 

MIREX results discussed in Section 9.3 demonstrate that jSymbolic’s features are the 

most effective to date at classifying symbolic recordings by genre to date. 

To the best knowledge of the author, the experiments described in Section 9.4 are the 

first to combine features extracted from all three sources of musical data for the purpose 

of automatic music classification. They are also the first to systematically compare the 

performance of all possible combinations and subsets of the feature types. 

These experiments provided strong evidence that combining features extracted from 

audio, symbolic and cultural information sources can substantively improve classification 

results compared to only using one type of data. Classification accuracies of 96.8% and 

78.8% were attained respectively on 5- and 10-class genre taxonomies when all three 

feature types were combined, compared to average accuracies of 85.5% and 65.1% when 
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features extracted from only one of the three sources of data were used. It was also found 

that combining feature types decreased the seriousness of those misclassifications that 

were made, on average, particularly when cultural features were included. 

9.6 Future research 

Now that symbolic and audio data have been found to be capable of providing at least 

partially orthogonal features, an important next step is to supplement the experiments 

performed in Section 9.4 by repeating them with MIDI files transcribed from audio, in 

order to investigate more practically significant use cases where MIDI files do not have to 

be manually harvested. This would also enable experiments on much larger audio 

datasets, such as Codaich, rather than limiting one to the much smaller universe of MIDI 

files. Preliminary investigations of existing and forthcoming audio transcription 

technologies will be the first step towards this goal. Although less directly useful from a 

practical value, it would also be interesting to investigate the relative classification 

performance when audio files are synthesized from MIDI files, in order to attain a 

comparative baseline. 

There are also plans to perform experiments where feature types are combined in 

more sophisticated ways, such as by segregating them among different specialist 

classifiers collected into blackboard ensembles. Further experiments with more 

sophisticated classification techniques in general, such as those utilized in Bodhidharma 

(McKay 2004) or by DeCoro, Barutcuoglu, and Fiebrink (2007), also bear further 

investigation, and could fruitfully be incorporated into ACE. 

Since one of the essential goals of the jMIR package is to provide a framework 

applicable to a wide variety of MIR applications with little or no fine tuning being 

necessary, a key priority in the future is to perform experiments with the mature jMIR 

release in a variety of MIR research areas relating to both classification and similarity. 

Submitting jMIR to future editions of the MIREX competitions in a number of different 

areas would be an excellent opportunity to gain feedback on its performance relative to 

state-of-the-art specialized approaches. 
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10. Conclusions and future research 

10.1 Summary of dissertation and original contributions 

This dissertation presented a suite of software applications called jMIR that are 

intended for use in performing research involving automatic music classification. jMIR is 

the only existing unified music information retrieval research toolset that includes 

software for performing symbolic, audio and cultural feature extraction; meta learning 

software for selecting, training and applying machine learning algorithms; large and well-

labelled musical research datasets; software for profiling and detecting errors in musical 

metadata; and standardized file formats for representing feature values, instance class 

labels, class ontologies and associated metadata in flexible and expressive ways. 

Certain essential objectives are emphasized in the design and implementation of each 

of the jMIR components, especially: 

 Providing software that may be used to apply automatic music classification to 

research problems in ways that are accessible to researchers from a diverse range 

of music-related research disciplines. 

 Providing a framework for researchers to develop, test and share new automatic 

music classification algorithms, particularly new features and machine learning 

strategies. 

 Facilitating research that combines information extracted from different types of 

musical data. 

The jMIR components are designed such that users may utilize them either as separate 

independent units or as an integrated whole, as they prefer. The jMIR components are as 

follows: 

 jAudio: A feature extractor for extracting information from audio files. 

 jSymbolic: A feature extractor for extracting information from MIDI files. 

 jWebMiner: A feature extractor for extracting cultural information from the 

Internet. 
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 ACE: Meta learning software for experimenting with, selecting, training and 

applying pattern recognition algorithms. 

 ACE XML: A set of standardized file formats that can be used to store 

information such as extracted feature values, feature metadata, class labels 

associated with instances, miscellaneous instance metadata and class ontologies. 

 jMusicMetaMangaer: A tool for profiling large musical datasets as well as 

automatically detecting metadata errors, inconsistencies and redundancies. 

 Codaich, Bodhidharma MIDI and SAC: Three labelled musical datasets for use 

in debugging, validating and benchmarking new automatic music classification 

technologies and for performing general exploratory computational musical 

research. 

 jMIRUtilities: A set of tools for performing miscellaneous tasks associated with 

jMIR. 

The provision of these jMIR software tools to music researchers is itself a substantial 

contribution to the field of music information retrieval, as there is currently no other 

toolset designed specifically for automatic music classification research with anything 

approaching the breadth and scope of jMIR. The jMIR project has resulted in the 

implementation of a great deal of functionality. The software consists of over 95,000 lines 

of original code
263

 at the time of this writing, not including the original Bodhidharma 

code or the work currently underway on the ACE XML 2.0 support libraries. Moreover, 

this code is based around a carefully designed architecture that emphasizes extensibility 

and modularity. 

All of the jMIR code is also open-source, so the processing and analysis functionality 

that it implements can be examined directly and extended by those inclined to do so. 

jMIR thus performs the dual roles of providing music researchers in general with ready-

to-use tools and of providing algorithm developers with a framework for implementing 

new approaches and then testing and distributing their work to other researchers. 
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A number of important additional contributions to the field of music information 

retrieval have also been produced during the course of the jMIR project, beyond simply 

the essential functionality offered by the software itself. Certain highlights are 

summarized below, with more detailed information available in the individual chapters of 

this dissertation: 

 General limitations and problems associated with the current state of automatic 

music classification research are discussed, and guidelines are proposed for 

addressing these concerns and moving past them.
264

 

 Automatic music classification is considered in the context of theoretical and 

experimental insights from the fields of music psychology, music theory and 

musicology. This contrasts with the more typical MIR approach of simply viewing 

automatic music classification as an engineering and machine learning problem. 

From the perspective of the author, it is essential that MIR researchers move past 

this view, as music classification is fundamentally associated with the human 

understanding of music, not raw audio data devoid of context. It therefore seems 

intuitively clear that automatic music classification should best be approached 

with a musically and psychologically informed awareness.
265

 

 Although all jMIR components are designed to be extensible and modular, jAudio 

is presented as a particularly developed example of how such design goals can be 

fully expressed in the context of music classification software. This is exhibited by 

jAudio’s metafeatures, aggregagators, automatic handling of feature dependencies, 

automatic extraction scheduling, full feature plug-in support and functionality for 

generating audio for the purpose of testing and debugging new features.
266

 

 A number of important principles associated with the design and choice of new 

high-level musical features are discussed. This analysis and the resultant 
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suggestions can be of use to those designing high-level musical features of their 

own.
267

 

 The jSymbolic feature catalogue is much larger than any other existing set of 

high-level musical features. Moreover, many of these features are entirely 

original. Taken together, these 111 implemented features and 42 additional 

proposed features provide a solid basis for extracting musically meaningful 

statistical information from music. This feature catalogue has only begun to be 

taken advantage of in music classification research, and it also holds the potential 

to be applied to more analytically oriented work.
268

 

 The jMIR components are designed to have interfaces that make them accessible 

to music researchers in general, including researchers with little or no experience 

in computational research. The jMIR interfaces and the design principles behind 

them are therefore themselves useful contributions to MIR research. For example, 

jWebMiner and ACE respectively implement data mining and machine learning 

algorithms that have largely already been used previously by others, but package 

this functionality in ways that make it useful and accessible specifically to music 

researchers in ways that it previously was not.
269

 

 A relatively detailed introduction to and overview of machine learning is 

provided. Although this particular section of the dissertation certainly does not 

describe original research, it is presented in such a way as to make it accessible 

even to music researchers with only a minimal background in statistics and 

computer science. It also places a particular emphasis on how machine learning 

techniques can be applied to music research. Most existing machine learning texts, 

in contrast, tend to presume a significant mathematical and computational 

background on the part of the reader, and also tend to focus more on detailed 

theoretical aspects of machine learning that are useful when designing new 

algorithms and less on the practical problems that one encounters when actually 

using machine learning. This is precisely the wrong focus from the perspective of 
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the typical music researcher, who lacks the expertise necessary for developing 

new algorithms, and who simply wishes to use existing algorithms effectively. 

The consequence of this is that existing machine learning texts tend to be 

alienating to the majority of music researchers who, as a consequence, have a 

tendency to simply blindly use existing off-the-shelf implementations without a 

true understanding of the algorithms that they are choosing or of whether they are 

in fact well-suited to their particular problems. The machine learning summary 

presented in this dissertation is a useful contribution because it provides music 

researchers with an accessible quick-and-easy yet still reasonably in-depth 

introduction to machine learning that focuses on the particular practical issues that 

one actually encounters in automatic music classification research. This will 

hopefully allow music researchers in general to approach machine learning a little 

less naïvely and more effectively. ACE itself also still provides the option of 

automatically selecting algorithms to use via meta learning based on empirical 

evidence.
270

 

 A theoretical discussion is provided of problems and issues to consider when 

choosing or designing data representation formats associated with automatic 

music classification. This includes the proposal of an original list of related design 

principles.
271

 

 ACE XML is an entirely original standard for representing information 

specifically related to automatic music classification. It is presented to the MIR 

community as a general standard for storing and communicating such information 

between different music software applications and research groups, not just as the 

native format used by the jMIR components.
272

 

 A number of algorithms are proposed (and implemented in jMusicMetaManager) 

for detecting metadata errors and redundancies in musical collections. These 

include both purely original algorithms, such as the reordered word subset 

operations and the merge-based coordination algorithm, as well as original 
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variants of established edit distance-based techniques. For example, the 

find/replace transformations facilitate the detection of certain types of errors that 

are particularly prevalent in musical metadata. The jMusicMetaManager 

algorithms do not rely upon fingerprinting, as do most musical metadata systems, 

and can in fact be used to clean the often inconsistent metadata provided by 

fingerprinting services.
273

 

 A reasonably extensive theoretical discussion is provided of problems and 

concerns relating to MIR research datasets, and a number of general guidelines are 

proposed for designing, building and using such datasets effectively. A particular 

emphasis is placed on classes and class ontologies.
274

 

 The Codaich, SAC and Bodhidharma MIDI datasets provide diverse, well-labelled 

and clean musical data in both audio and symbolic forms. These musical datasets 

have already been used in research at McGill University, where there is legal 

access to them, and it is hoped that the datasets will be made accessible to the 

MIR research community in general once OMEN or some other system like it 

allows features extracted from the data to be distributed legally.
275

 

The experiments
276

 performed as part of the jMIR project also provide a useful 

general contribution to MIR research, particularly the results of those experiments 

involving features extracted from multiple different types of musical data. More details 

are provided below in Section 10.2. 

It is hoped that the jMIR components will be used and extended by a wide variety of 

music researchers in the future. Both the software and its associated documentation may 

be freely downloaded from jmir.sourceforge.net. As of 23 April 2010, there have been 

3897 logged downloads of jMIR components from the jMIR site, and jMIR components 

have also been used in several research projects performed independently of the author.
277

 

It therefore appears that the first of these hopes has begun to be realized. Unfortunately, 
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the only jMIR development work to date has been performed by the author and his 

research collaborators at McGill University.
278

 It is therefore clear that additional work 

remains to be done on promoting jMIR as a development framework, an issue that is 

discussed further in Section 10.3. 

10.2 Conclusions drawn from experimental results 

The experiments described in Chapter 9 have, to begin with, demonstrated that that 

the jMIR components may serve as useful and effective tools with respect to a variety of 

automatic music classification research projects. In particular, the winning submission of 

Bodhidharma to the MIREX Symbolic Genre Classification contest, as described in 

Section 9.3, demonstrated that jMIR technology can perform favourably when compared 

to other systems. 

The experiments on combining features extracted from different types of musical 

data, as described in Section 9.4, also helped to demonstrate the effectiveness of jMIR. 

Not only were good classification results achieved on the hard SAC dataset when various 

jMIR components were used separately, but significantly improved results were achieved 

when features were extracted and combined using two or three jMIR feature extractors 

together. This demonstrated the ability of the jMIR components to work well both 

individually and together. 

The results from the experiments described in Section 9.4 also have an importance 

beyond just the scope of jMIR itself. It was found that combining features extracted from 

audio, symbolic and cultural sources of musical data in any combination significantly 

improved results compared to when features were only extracted from one type of data. 

Moreover, it was found that combining features extracted from either audio or symbolic 

data, or both, with features extracted from cultural data decreased the seriousness of those 

misclassifications that did occur, in addition to reducing the number of misclassifications 

overall. 

These results support the utility of producing a framework specifically designed to 

facilitate the combination of data extracted from multiple types of musical information, 

which was one of the core design principles underlying jMIR. These results also suggest 
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that work should continue on finding effective ways of combining information extracted 

from diverse sources. Although it remains to be determined whether combining additional 

types of musical data will improve classification performance still further, this is an area 

that bears further investigation. Ideas for future research related to this are discussed in 

Sections 10.3.9 and 10.3.10. 

10.3 Future research 

This section proposes only areas of future research and development that are related 

to jMIR as a whole. Future work that is specifically relevant to particular jMIR 

components is not included here, as Chapters 3 through 9 each contain their own sections 

proposing research of this kind. 

10.3.1 Adding functionality to the existing jMIR components 

As noted in the individual Future Research sections of Chapters 3 through 9, there are 

a number of important types of functionality that could be added to each of the jMIR 

components. Moreover, it is certain that still further types of useful functionality will 

become apparent in the future as MIR research progresses. The addition of functionality 

of both kinds is therefore a priority of future jMIR development. 

The development of new features and machine learning algorithms are two areas of 

particular interest, as jMIR has been designed to make it especially easy to add 

functionality of this kind. As noted above, it is hoped that many researchers in MIR-

related fields, not just the author, will eventually use the jMIR framework to develop such 

technologies and distribute them communally so that they may be added to the jMIR 

distributions used by others. Approaches to accomplishing this are discussed below. 

10.3.2 User studies and interface improvements 

One of the core goals of jMIR is to make sophisticated automatic music classification 

technologies available to researchers of all kinds, including both users with extensive 

backgrounds in computational research and researchers with little or no background of 

this kind. Although efforts have certainly been made to help achieve this via the current 

jMIR interfaces, these efforts have ultimately been limited by the scope of a single 

dissertation research project with many varied facets. 
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The next step towards fully realizing this goal will involve performing detailed user 

studies of diverse groups of music researchers. Such users will not only be able to 

highlight how the current jMIR interfaces succeed and fail to meet each of their particular 

needs, but will also likely be able to propose new ideas that can be incorporated into 

jMIR.  

10.3.3 Software testing and support 

Efforts have certainly been made to test the jMIR components extensively, both 

individually and together. Such tests have involved standard software engineering 

methodologies, such as unit testing, as well as actual use of the jMIR components in 

research, as described in Chapter 9.  

Having noted this, it is inevitable in any reasonably large-scale and complex software 

development project such as jMIR that some problems will evade initial detection, as they 

will only become evident under specific conditions that can be difficult to anticipate. 

Such problems can be particularly difficult to discover exhaustively in cross-platform 

software like jMIR. Furthermore, as time goes by many changes can occur in the 

computing environments in which software operate, such as changes to the Java Runtime 

Environment or to operating systems. Even as a problem is detected, the changes made to 

correct the issue can potentially themselves lead to other new unanticipated problems, 

even if one is very careful. Such problems are a common general issue in modern 

application development, and can be particularly evident in academic projects where just 

one or a very few developers are responsible for all design, implementation and testing. 

An important area of further work is therefore the continuing support and updating of 

jMIR. User studies such as those discussed in Section 10.3.2 will be helpful in 

discovering potential bugs, as will the general use of jMIR in research projects. Many 

users have already downloaded jMIR components from the jMIR SourceForge page and 

used them in their own work, and correspondence with several of them has helped to 

reveal bugs that could then be corrected. Work will continue on addressing issues as they 

are reported, as well as on performing further formal error testing as jMIR is expanded. 

There are also plans to use jMIR to submit entries to the annual MIREX annual MIR 

competition in as broad a range of categories as possible. This will help to further validate 
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jMIR’s performance in a variety of research applications, and will also help to highlight 

potential areas of weakness resulting in poor performance, which can then be addressed.  

10.3.4 Diversifying ways of accessing jMIR’s functionality 

As noted previously, extensive efforts have already been made to make jMIR’s 

functionality as accessible as possible, in terms of both jMIR’s code base and the direct 

usability of its components as a set of ready-to-use applications. There are, however, a 

number of additional steps that can be taken to increase jMIR’s accessibility still further. 

For example, jMIR in its current state is intended specifically for use in research 

applications. Much of its functionality could also be usefully adapted in the future to 

more casual applications, however. 

One of the most effective ways of making jMIR’s functionality accessible to casual 

users would be to port aspects of jMIR to various popular plug-in formats. This would 

allow users of all kinds to access this functionality via software applications that they 

already have access to and are already familiar with. For example, jAudio and 

jSymbolic’s feature extraction functionality might be made available in the form of VST 

plug-ins so that it could be accessed from any of the many digital audio software systems 

with VST compatibility. Even systems without direct VST compatibility, such as 

Audacity,
279

 could make use of such jMIR VST plug-ins via a VST shim. 

It would also be useful to implement some aspects of jMIR in the form of plug-ins for 

common media players, such as iTunes,
280

 Winamp
281

 or Windows Media Player.
282

 For 

example, many users might find it useful to access aspects of ACE and 

jMusicMetaManager’s functionality to predict and correct metadata associated with their 

music collection. jAudio, jSymbolic and/or jWebMiner feature extraction functionality 

could also be added to media players via plug-ins. 

Although the jMIR code is very well documented, and is designed to be as modular 

and extensible as possible, some developers might prefer to access jMIR’s functionality 

without needing to access the jMIR code directly. It would therefore be useful to embed 

the jMIR components in a web services wrapper so that jMIR functionality could be 
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accessed over a network connection without the need to install jMIR libraries locally. 

McEnnis has already begun work on such an approach as part of the OMEN project 

(McEnnis 2006), and it would be valuable in the future to complete this work and expand 

its scope.  

10.3.5 Public algorithm repository 

One of the most effective ways of encouraging researchers to share their algorithm 

implementations with others is to provide simple and effective ways of allowing 

researchers to access and use these implementations. jMIR’s plug-in oriented architecture 

provides a first step in this direction, as researchers can implement algorithms in the jMIR 

framework in such a way that that others can then add these implementations to their own 

jMIR distributions relatively easily. It would be even more helpful, however, if 

researchers also had a common data space to which they could publish such jMIR 

algorithm implementations. 

The creation of such a repository on-line is an important part of the planned future 

development of jMIR. This would allow developers to upload their original jMIR 

algorithm implementations to the repository, including the original Java source code, 

compiled Java bytecode, associated documentation and any other relevant information. 

Others could then download the algorithm implementations that they are interested in, 

plug them into their jMIR distribution and use them in their own research. It will also be 

important to add a version control framework to the repository, in order to make it easier 

for researchers to work collaboratively on algorithms if they wish to. 

10.3.6 Distributed computing 

Many of the tasks associated with automatic music classification can be 

computationally expensive, thereby limiting the amount of data that can be processed 

quickly.
283

 Furthermore, as noted in Chapter 8, there are legal barriers limiting the extent 

to which musical datasets can be shared amongst researchers. Both of these issues can 

significantly impact the ability of different research groups to compare the effectiveness 

of their solutions to MIR problems with solutions found by others. This is because proper 

comparative evaluations require that different approaches be applied to the same data, and 
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that a large amount of data be processed in order to verify the musical scope of different 

approaches and achieve sufficient statistical certainty. 

Distributed computing can help solve these problems. The computational problem is 

addressed simply by having many computers process different aspects of a problem at 

once, so that a solution is achieved sooner. The problem of overcoming legal barriers in 

order to test one’s approach on the same musical data used by others is addressed by 

allowing features to be extracted on-site at those potentially geographically distributed 

locations that do have legal access to the music, and then communicating only the 

extracted features, not the actual music itself. This is exactly the approach taken by 

OMEN (McEnnis 2006). 

The incorporation of distributed computing functionality into each of the jMIR 

components is therefore a priority for future development. Initial work in this direction 

has already begun with respect to jAudio and ACE, and the framework begun as part of 

the OMEN project specifically with respect to jAudio could be helpful in continuing it. 

Modifying the jMIR components to take advantage of distributed computing in such a 

fashion would also mesh well with the plans to implement a web services wrapper for 

jMIR and create a shared public algorithm repository, as discussed above in Sections 

10.3.4 and 10.3.5, respectively. The resources used to run the repository could also be 

used to coordinate a cloud of participating computers, each ideally with legal access to 

musical data, and distributed experiments could be initiated on this cloud using web 

services. 

10.3.7 NEMA integration 

Work is currently underway on integrating jMIR into the Networked Environment for 

Music Analysis (NEMA)
284

 project for the express purpose of achieving the objectives 

discussed in Section 10.3.6. The goal of NEMA is to create an open and extensible web 

services-based framework that facilitates the integration and use of music data and 

processing tools by the global MIR communities on a basis that is independent of 

location. This framework is being built by taking advantage of the Software Environment 
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for the Advancement of Scholarly Research (SEASR)
285

 project’s distributed computing 

and application integration infrastructure. 

Additional general improvements to jMIR are also continuing as part of the NEMA 

project. Significant work has already been done on developing ACE 2.0 and ACE XML 

2.0 thanks to NEMA funding, and NEMA-related work on jMIR will continue on past the 

publication of this dissertation. 

10.3.8 New jMIR components 

There are several potentially important types of music classification-related tasks that 

are not yet addressed by any of the jMIR components. There are therefore plans to 

implement additional components that will broaden the scope of jMIR: 

 jLyrics: A feature extractor for extracting information from song lyrics. jLyrics 

will extract features consisting of simple statistics, such as word frequency counts 

and word transition probabilities, as well as more sophisticated features, including 

both original features and features published as part of the rich existing literature 

on text mining. An additional goal of jLyrics is to include functionality for 

automatically acquiring the lyrics from the Internet based on metadata like song 

and artist names. This latter task will be performed via web services offered by 

existing lyrics repositories and, if necessary, via web scraping functionality. Hu, 

Downie and Ehman (2009) have already achieved good results when using lyrical 

features alone and in combination with audio features, and it will be interesting to 

investigate this area further. 

 jImage: A feature extractor for extracting information from images, with a 

particular focus on album covers. This software will provide the ability to extract 

both standard features from the image processing literature and features 

customized for the particularities of musical images. jImage will also include 

functionality for extracting images of album art from various sources available on 

the Internet based on identifying metadata. 
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 jVideo: A feature extractor for extracting information from music videos, as well 

as for mining the videos themselves from the Internet based on identifying 

metadata. 

 jStructure: Software for automatically segmenting audio streams in time, both in 

terms of partitioning entire pieces of music within a single stream and in terms of 

structural divisions within individual pieces. The software will also attempt to 

classify the overall form of each piece and label each segment with the appropriate 

corresponding structural labels. 

 jTags: A feature extractor that will take advantage of web services offered by a 

variety of on-line resources in order to extract listener tags of various kinds from 

data on the Internet. This software will also include functionality for combining 

tags from different sources and removing noise from these tags. 

 jMusicVisualiser: Software for visually examining and exploring relationships 

between musical instances, features and classes in either two or three dimensional 

spaces. Users will be able to fully customize what is to be plotted along each axis 

and how data points are to be colour coded in order to allow them to view the data 

in the ways that are the most convenient to them. jMusicVisualiser will also 

provide users with the ability to explore music that has been automatically 

clustered once unsupervised learning functionality is incorporated into ACE.  

 jClassOntology: An application for mining class ontologies from the web. As 

noted in Chapter 8, the class ontologies used in many automatic music 

classification experiments tend to be unrealistic and simplistic. jClassOntology 

will use data mining techniques to empirically build candidate class ontologies 

from both information available on the Internet in general and from particular 

selected sources of information. 

All of these proposed new jMIR components will, of course, follow the same design 

principles of jMIR as whole, and will use ACE XML as a means of storing and 

communicating data. 
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10.3.9 Further experiments on combining different types of data 

jAudio, jSybmolic and jWebMiner currently extract features from the types of 

musical data that have received the most attention from the MIR research community, 

which is to say, respectively, audio, symbolic and general textural information available 

on-line. There are, however, many other types of musical data from which potentially 

useful features can be extracted, including lyrics, still images and video. Moreover, these 

kinds of information are readily accessible on-line. As can be observed from an 

examination of the proposed new jMIR components described in Section 10.3.8, there are 

plans to build jMIR tools for extracting features from just these kinds of data sources. 

The next step once such features are accessible will be to perform the same types of 

experiments described in Section 9.4, but this time examining the relative performance of 

features extracted from all possible combinations of matching audio, symbolic, cultural, 

lyrical, visual and video data for each musical instance. It is hoped that this will help find 

the best types of data to combine for solving various types of automatic music 

classification problems and, consequently, increase performance.  

10.3.10 Automatic mining and integration of data sources 

In practice, it can be very difficult and time consuming to manually acquire matching 

instances belonging to different types of musical data in order to perform the types of 

experiments described in Sections 9.4 and 10.3.9. Collecting the matching audio, 

symbolic and metadata information for the SAC dataset was very time consuming, and 

manually adding additional types of data like lyrics, images and video would compound 

this issue further. 

A successful multimodal approach to automatic music classification will therefore 

likely require that the harvesting of different types of data for each given musical instance 

be automated. Ideally, it should be possible to provide a successful multimodal system 

with just one type of data, such as just audio or just lyrics, and then have the system 

automatically acquire the corresponding data of other kinds, such as symbolic data or 

album art. However, since one cannot in practice assume that one will have a priori 

identifying information about a given musical instance, one must therefore have a way of 

acquiring the necessary data without presupposing that one begins with this identifying 

knowledge. 
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The solution to this problem may actually be closer than one might think. Let us 

consider, for example, a scenario where one is given a set of audio recordings to classify, 

but where one does not have any other additional explicit information about the 

recordings. One could begin by using fingerprinting technology such as MusicBrainz
286

 to 

acquire metadata such as Title and Artist Name from the audio. This metadata could then 

be used to extract cultural features from the Internet using software such as jWebMiner. It 

would also be possible to use this metadata to automatically download information such 

as lyrics, album art and music videos using web services offered by, respectively, 

LyricWiki,
287

 Amazon
288

 and YouTube,
289

 for example. Indeed, there are also a number 

of web services that could be used to access the audio itself using identifying metadata if 

one is in fact originally provided with this metadata rather than the audio. 

Although automatically acquiring a symbolic version of each audio recording is not 

quite as simple as accessing the other kinds of musical information, advances in 

automatic music transcription technology are bringing the state of the art ever closer to 

the point where symbolic recordings can be automatically transcribed from audio with 

error rates that are low enough at least for the purposes of feature extraction, if not actual 

musical performance. Technologies such as Celemony Direct Note Access,
290

 for 

example, seem to offer the promise of effective transcription algorithms, although they 

remain to be proven in a research context. 

Of course, there can be certain limitations with solutions of the type discussed above, 

in terms of both accuracy and robustness to services going off-line. However, this 

example does illustrate a methodology that could be fruitful to pursue further if 

experiments of the type discussed in Section 10.3.9 do in fact indicate that combining 

features extracted from different types of musical data does have a significant positive 

impact on classification performance. If this is the case, then an important future step in 

the jMIR project will be the implementation of a framework for automatically acquiring 

and extracting features from a variety of different types of musical data. 
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10.4 Using jMIR 

The jMIR project has SourceForge pages located at jmir.sourceforge.net and 

sourceforge.net/projects/jmir/. Each of the jMIR components may be downloaded from 

SourceForge, including both fully compiled and ready to use Java bytecode as well as the 

source code itself. Extensive documentation is also available at this site, including 

manuals, Javadoc APIs and copies of published papers. Basic installation and user 

instructions are also packaged with each component. All of the jMIR code is fully open-

source, and is distributed under a GNU General Public License.
291

  

As noted previously, jMIR is intended not just as a set of applications to be used as is, 

but also as a framework to be expanded and a platform for building new technologies. 

Contributions and improvements to jMIR from other researchers and developers are 

appreciated and encouraged. 
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