

Automatic Music Classification with jMIR

Cory McKay

Music Technology Area

Department of Music Research

Schulich School of Music

McGill University, Montreal

Submitted January 2010

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Doctor of Philosophy.

© Cory McKay 2010

 2

 3

Abstract

Automatic music classification is a wide-ranging and multidisciplinary area of inquiry

that offers significant benefits from both academic and commercial perspectives. This

dissertation focuses on the development of jMIR, a suite of powerful, flexible, accessible

and original software tools that can be used to design, share and apply a wide range of

automatic music classification technologies.

jMIR permits users to extract meaningful information from audio recordings,

symbolic musical representations and cultural information available on the Internet; to

use machine learning technologies to automatically build classification models; to

automatically collect profiling statistics and detect metadata errors in musical collections;

to perform experiments on large, stylistically diverse and well-labelled collections of

music in both audio and symbolic formats; and to store and distribute information that is

essential to automatic music classification in expressive and flexible standardised file

formats.

In order to have as diverse a range of applications as possible, care was taken to avoid

tying jMIR to any particular types of music classification. Rather, it is designed to be a

general-purpose toolkit that can be applied to arbitrary types of music classification. Each

of the jMIR components is also designed to be accessible not only by users with a high

degree of expertise in computer-based research technologies, but also by researchers with

valuable musical expertise, but perhaps less of a background in computational research.

Moreover, although the jMIR software can certainly be used as a set of ready-to-use tools

for solving music classification problems directly, it is also designed to serve as an open-

source platform for developing and testing original algorithms.

This dissertation also describes several experiments that were performed with jMIR.

These experiments were intended not only to verify the effectiveness of the software, but

also to investigate the utility of combining information from different types of musical

data, an approach with the potential to significantly advance the performance of

automatic music classification in general.

 4

Sommaire

La classification automatique de la musique est un vaste domaine de recherche,

multidisciplinaire par nature, et qui donne lieu à des avancées significatives tant du point

de vue scientifique que du point de vue des applications commerciales. La présente

dissertation s’articule autour d’un thème central qui est la conception et le développement

de jMIR, une suite originale de logiciels qui sont à la fois puissants, flexibles et

accessibles. Ces outils peuvent être utilisés pour concevoir, partager et appliquer une

grande variété de technologies de classification automatique de la musique.

jMIR permet à l’utilisateur d’extraire de l’information significative des

enregistrements audio, des représentations musicales symboliques et des informations

culturelles disponibles sur l’Internet; de se servir des technologies d’apprentissage

automatiques afin de construire des modèles de classification, de compiler

automatiquement des profils statistiques, de détecter les erreurs de métadonnées dans les

collections de pièces musicales; d’effectuer des expériences sur de larges corpus de

musique; et enfin de répertorier et distribuer de l’information essentielle à la classification

automatique de la musique sous des formats expressifs, standardisés et flexibles.

jMIR est plutôt conçu comme une boîte à outils d’usage général pouvant être

appliquée à n’importe quel type de classification de la musique. Chaque élément de jMIR

est aussi conçu pour être accessible autant à des utilisateurs experts en technologies de

l’information qu’à des, chercheurs dont l’expertise musicale précieuse ne serait pas

doublée d’une formation en technologies de l’information. Bien que jMIR intègre un jeu

d’outils prêts à résoudre directement des problèmes de classification de la musique, il

permet également de s’en servir comme d’une plate-forme ouverte de développement

logiciel ainsi que de validation de nouveaux algorithmes.

Enfin, la présente dissertation décrit plusieurs expériences réalisées au moyen de

jMIR. Ces expériences avaient non seulement pour but de vérifier la pertinence de cet

environnement logiciel, mais également d’investiguer les bénéfices qu’apportent

l’utilisation conjointe d’informations musicales de nature diverse, cette dernière approche

ayant le potentiel de faire avancer de façon significative la classification automatique de

la musique en tant que discipline de recherche.

 5

Table of Contents

Abstract ___ 3

Sommaire __ 4

Table of Contents ___ 5

List of Figures ___ 11

List of Tables __ 15

Acknowledgements ___ 16

1. Introduction and background __ 17

1.1 General overview __ 17

1.1.1 Introduction __ 17

1.1.2 Essential concepts in automatic music classification _________________________ 21

1.1.3 Overview of the jMIR components ______________________________________ 24

1.2 Structure of this dissertation ___ 30

1.3 Context and background information __ 32

1.3.1 Music information retrieval (MIR) _______________________________________ 32

1.3.2 Advantages of automatic music classification ______________________________ 36

1.3.3 Applications of automatic music classification _____________________________ 40

1.3.4 Applying automatic music classification technologies to musicology and music theory

 ___ 44

1.3.5 Comparing musical classification and similarity measurement _________________ 50

1.3.6 Existing non-academic systems ___ 55

1.3.7 Existing academic systems ___ 64

1.4 jMIR’s core objectives and characteristics ____________________________________ 67

1.4.1 Bridging the gaps between the MIR-related disciplines _______________________ 67

1.4.2 Facilitating the effective combination of different types of musical data _________ 69

1.4.3 Accessibility and ease of use ___ 71

1.4.4 Longevity and extensibility __ 74

1.4.5 Providing a framework for developing new approaches ______________________ 76

1.4.6 Facilitating and promoting inter-institution collaboration _____________________ 79

1.5 Highlights of research contributions ___ 83

2. Related research from psychology and the humanities ______________________ 87

2.1 Chapter overview __ 87

2.2 General psychological classification models and research ________________________ 88

2.2.1 Classical classification theory __ 88

2.2.2 Exemplar-based classification theory _____________________________________ 90

2.2.3 General recognition theory ___ 93

2.2.4 Assumptions and evaluation of classification models ________________________ 94

2.2.5 Additional issues in classification theory __________________________________ 94

2.3 Insights from music psychology __ 96

2.3.1 Music classification __ 96

2.3.2 Musical similarity ___ 101

 6

2.4 Musicological and music theoretical insights __________________________________ 106

3. jAudio: Extracting features from audio ________________________________ 113

3.1 Overview of audio feature extraction and jAudio _______________________________ 113

3.1.1 Introduction __ 113

3.1.2 Iterative feature development __ 114

3.1.3 Contributions to jAudio ___ 116

3.1.4 Downloading jAudio ___ 117

3.2 Background information __ 117

3.2.1 Digital audio ___ 118

3.2.2 Fourier analysis ___ 120

3.2.3 Windowing functions___ 124

3.2.4 Pre-processing __ 127

3.2.5 File formats and associated problems ____________________________________ 129

3.2.6 Common low-level features extracted using the DFT ________________________ 133

3.2.7 Common low-level features extracted in the time domain ____________________ 136

3.2.8 High-level information that can be usefully extracted from audio signals ________ 138

3.3 Previous music information retrieval research _________________________________ 140

3.3.1 The development and cataloguing of features ______________________________ 140

3.3.2 Alternative MIR audio feature extractor applications ________________________ 142

3.4 jAudio’s functionality __ 144

3.4.1 Fundamental functionality ___ 144

3.4.2 Pre-processing options __ 145

3.4.3 Implemented features___ 146

3.4.4 Multidimensional features ___ 147

3.4.5 Platform for developing new features ____________________________________ 148

3.4.6 Automatic feature extraction dependency resolution and scheduling ____________ 150

3.4.7 Metafeatures ___ 151

3.4.8 Feature aggregators __ 153

3.4.9 Additional functionality ___ 155

3.5 jAudio’s interface ___ 156

3.6 Summary of original contributions __ 166

3.7 Future research ___ 167

4. jSymbolic: Extracting features from symbolic music _____________________ 171

4.1 Introduction __ 171

4.1.1 Overview of symbolic feature extraction and jSymbolic _____________________ 171

4.1.2 Benefits of extracting features from symbolic data __________________________ 173

4.1.3 Chapter outline ___ 178

4.2 Background information __ 178

4.2.1 Symbolic music file formats ___ 178

4.2.2 The MIDI specification ___ 180

4.2.3 Reasons for choosing MIDI as the format from which to extract features ________ 186

4.3 Existing software related to symbolic feature extraction _________________________ 187

4.4 Considerations when designing and choosing features ___________________________ 192

4.5 The jSymbolic feature catalogue __ 204

 7

4.5.1 Features based on instrumentation ______________________________________ 206

4.5.2 Features based on musical texture ______________________________________ 209

4.5.3 Features based on rhythm ___ 211

4.5.4 Features based on dynamics ___ 219

4.5.5 Features based on overall pitch statistics _________________________________ 220

4.5.6 Features based on melody and melodic intervals ___________________________ 226

4.5.7 Features based on chords and vertical intervals ____________________________ 229

4.5.8 Examples ___ 233

4.6 jSymbolic’s functionality___ 235

4.7 jSymbolic’s interface __ 236

4.8 Summary of original contributions ___ 237

4.9 Future research __ 238

5. jWebMiner: Extracting cultural features from the Internet ________________ 243

5.1 Overview of community metadata, cultural features and jWebMiner _______________ 243

5.2 Background information ___ 244

5.2.1 Screen scraping and web services ______________________________________ 244

5.2.2 Search engines ___ 245

5.2.3 Sources of community metadata _______________________________________ 245

5.2.4 Collaborative filtering and co-occurrence analysis _________________________ 248

5.2.5 More sophisticated text processing techniques ____________________________ 251

5.3 Previous music information retrieval research ________________________________ 252

5.4 jWebMiner’s functionality__ 258

5.4.1 Fundamental functionality __ 258

5.4.2 Web services utilized __ 259

5.4.3 Features extracted and statistical processing ______________________________ 260

5.4.4 Synonyms ___ 261

5.4.5 Filter strings ___ 261

5.4.6 Source selections and weightings _______________________________________ 262

5.4.7 Other configurable options __ 262

5.4.8 Input and output __ 263

5.5 jWebMiner’s interface ___ 264

5.6 Summary of original contributions ___ 265

5.7 Future research __ 272

6. ACE: Applying machine learning to music ______________________________ 275

6.1 Introduction to ACE and machine learning ___________________________________ 275

6.1.1 Why use machine learning? ___ 275

6.1.2 Overview of ACE and meta learning ____________________________________ 277

6.1.3 Chapter outline ___ 280

6.2 Overview of machine learning ___ 280

6.2.1 Fundamentals of machine learning ______________________________________ 280

6.2.2 Automatic classification paradigms _____________________________________ 283

6.2.3 Classification error and common difficulties that must be overcome ___________ 289

6.2.4 Validating and comparing classification models ___________________________ 292

6.2.5 Dimensionality reduction ___ 298

 8

6.2.6 Commonly used machine learning algorithms _____________________________ 306

6.2.7 Ensemble learning ___ 329

6.2.8 Ontological learning and blackboard systems ______________________________ 337

6.2.9 Sequential learning __ 338

6.2.10 Meta learning __ 341

6.3 Existing machine learning software libraries __________________________________ 343

6.3.1 General machine learning software ______________________________________ 343

6.3.2 Weka ___ 345

6.3.3 Meta learning software ___ 346

6.4 ACE’s functionality ___ 347

6.4.1 Core processing performed by ACE _____________________________________ 350

6.4.2 Information output by ACE __ 352

6.4.3 Algorithms used by ACE __ 354

6.4.4 Administering jMIR projects ___ 355

6.4.5 Advantages of ACE over alternative machine learning frameworks _____________ 356

6.5 ACE’s interface ___ 358

6.6 Improvements in ACE 2.0 __ 363

6.7 Summary of original contributions __ 364

6.8 Future research ___ 365

6.8.1 ACE’s interface ___ 365

6.8.2 Additional machine learning and pre-processing algorithms __________________ 365

6.8.3 Distributed processing and long-term projects _____________________________ 366

7. ACE XML: File formats for expressing MIR data _______________________ 369

7.1 Overview of MIR data mining file formats and ACE XML _______________________ 369

7.2 Background information __ 372

7.2.1 ASCII and Unicode text files ___ 372

7.2.2 Escape characters and delimiter-separated values ___________________________ 373

7.2.3 XML ___ 374

7.2.4 RDF __ 381

7.2.5 OWL ___ 382

7.2.6 Binary files and serialized objects _______________________________________ 383

7.3 File formats used by existing MIR systems ___________________________________ 384

7.3.1 Matlab binaries and Java serialized objects ________________________________ 384

7.3.2 Weka ARFF __ 385

7.3.3 SDIF__ 389

7.3.4 Music Ontology ___ 389

7.3.5 RapidMiner __ 394

7.3.6 M2K and MIREX ___ 395

7.3.7 Marsyas ___ 395

7.3.8 CLAM __ 395

7.3.9 CrestMuseXML ___ 396

7.4 Limitations of existing formats and resultant design priorities _____________________ 396

7.5 Overview of the ACE XML file formats _____________________________________ 402

7.6 The ACE XML 1.1 Feature Value file format _________________________________ 406

 9

7.7 The ACE XML 1.1 Feature Description file format ____________________________ 408

7.8 The ACE XML 1.1 Instance Label file format ________________________________ 409

7.9 The ACE XML 1.1 Class Ontology file format________________________________ 412

7.10 Using ACE XML with new and existing non-jMIR software ____________________ 414

7.11 Current developments: Proposed update to ACE XML 2.0 _____________________ 416

7.11.1 ACE XML 2.0 ZIP files and ACE XML 1.1 and 2.0 Project files _____________ 418

7.11.2 Proposed ACE XML 2.0 updates to Feature Value files ____________________ 422

7.11.3 Proposed ACE XML 2.0 updates to Feature Description files________________ 427

7.11.4 Proposed ACE XML 2.0 updates to Instance Label files ____________________ 432

7.11.5 Proposed ACE XML 2.0 updates to Class Ontology files ___________________ 434

7.11.6 Summary abstraction of ACE XML 2.0 _________________________________ 437

7.12 Summary of original contributions __ 440

7.13 Future research ___ 441

8. jMusicMetaManager, the Bodhidharma MIDI dataset, Codaich, SAC and

jMIRUtilities: Building, managing and using music research datasets __________ 445

8.1 Overview and background information ______________________________________ 445

8.1.1 Introduction ___ 445

8.1.2 Central concepts and terminology ______________________________________ 447

8.1.3 Essentials of copyright law__ 449

8.2 Fundamental issues ___ 452

8.2.1 Overview of problems to overcome _____________________________________ 452

8.2.2 Formulating class ontologies __ 454

8.2.3 Labelling individual instances ___ 464

8.2.4 Guidelines for building successful datasets _______________________________ 466

8.3 Existing music information retrieval research datasets __________________________ 469

8.4 jMusicMetaManager: A tool for profiling musical datasets and detecting metadata errors in

them __ 471

8.4.1 Overview of jMusicMetaManager ______________________________________ 471

8.4.2 Error-checking operations __ 473

8.4.3 Reports generated ___ 482

8.4.4 Overview of the error detection algorithms _______________________________ 491

8.4.5 jMusicMetaManager’s interface __ 496

8.5 The Bodhidharma MIDI dataset: A symbolic dataset ___________________________ 499

8.5.1 Overview ___ 499

8.5.2 Genre ontology used ___ 500

8.5.3 Methodology used to collect and select recordings _________________________ 504

8.6 Codaich: An audio dataset __ 506

8.6.1 Overview ___ 506

8.6.2 Details of Codaich and the methodology used to assemble it _________________ 507

8.6.3 OMEN: A framework for overcoming copyright limitations __________________ 511

8.6.4 Informal observations on common metadata errors _________________________ 513

8.7 The SAC dataset: Combining symbolic, audio and cultural musical data ____________ 515

8.8 jMIRUtilities: Tools for labelling, linking and pre-processing musical data _________ 517

 10

8.9 Summary of original contributions __ 518

8.9.1 Datasets ___ 518

8.9.2 jMusicMetaManager ___ 519

8.10 Future research __ 519

8.10.1 Datasets __ 519

8.10.2 jMusicMetaManager __ 521

9. Evaluations and experiments ___ 525

9.1 Overview of evaluations __ 525

9.2 Preliminary experiments __ 526

9.3 MIREX evaluation of Bodhidharma ___ 529

9.4 Experiments on combining feature types _____________________________________ 532

9.4.1 Goals and overview __ 532

9.4.2 Related research ___ 534

9.4.3 Experimental procedure ___ 535

9.4.4 Results __ 538

9.4.5 Discussion of the effects of combining feature types on classification accuracy ___ 541

9.4.6 Discussion of types of misclassification __________________________________ 543

9.4.7 Discussion of absolute genre classification performance _____________________ 544

9.4.8 Conclusions __ 546

9.5 Summary of original contributions __ 547

9.6 Future research ___ 548

10. Conclusions and future research _____________________________________ 549

10.1 Summary of dissertation and original contributions ____________________________ 549

10.2 Conclusions drawn from experimental results ________________________________ 555

10.3 Future research __ 556
10.3.1 Adding functionality to the existing jMIR components _____________________ 556

10.3.2 User studies and interface improvements ________________________________ 556

10.3.3 Software testing and support __ 557

10.3.4 Diversifying ways of accessing jMIR’s functionality _______________________ 558

10.3.5 Public algorithm repository ___ 559

10.3.6 Distributed computing ___ 559

10.3.7 NEMA integration __ 560

10.3.8 New jMIR components __ 561

10.3.9 Further experiments on combining different types of data ___________________ 563

10.3.10 Automatic mining and integration of data sources ________________________ 563

10.4 Using jMIR ___ 565

11. Bibliography ___ 567

 11

List of Figures

Figure 1.1: A workflow of the tasks that must be performed in a typical automatic music

classification scenario. ___ 25

Figure 1.2: The relationships between the different components of the jMIR software

suite. ___ 29

Figure 3.1: Sampling of one period of an analog sine wave (the continuous curve) into a

digital signal (the step function).___ 118

Figure 3.2: Power spectrum of a 440 Hz sinusoid lasting 0.5 seconds, followed by a 4400

Hz sinusoid lasting 0.5 seconds. ___ 123

Figure 3.3: Spectrogram of the same signal analyzed in Figure 3.2. _______________ 123

Figure 3.4: Rectangular, or Dirichlet, windowing function. _____________________ 125

Figure 3.5: Blackman-Harris windowing function. ____________________________ 126

Figure 3.6: Hamming windowing function. __________________________________ 126

Figure 3.7: Hann windowing function. _____________________________________ 127

Figure 3.8: An illustration of how metafeatures work. _________________________ 154

Figure 3.9: jAudio’s manual, which can be accessed via jAudio’s Help menu. ______ 158

Figure 3.10: jAudio’s main window. _______________________________________ 159

Figure 3.11: jAudio windows allowing aggregators to be selected and configured. ___ 160

Figure 3.12: jAudio window allowing the user to see various types of information about

individual recordings as well as apply some basic processing operations to them. ____ 161

Figure 3.13: jAudio windows for displaying waveforms and power spectra for all or parts

of audio files. ___ 162

Figure 3.14: The jAudio window for selecting or changing encoding settings for

individual audio files. ___ 163

Figure 3.15: jAudio window allowing the user to record sound from a microphone or

from the system sound in order to facilitate the testing of new features. ____________ 164

Figure 3.16: jAudio window allowing the user to perform rudimentary additive sound

synthesis in order to facilitate the testing of new features. _______________________ 165

Figure 4.1: Beat histogram for I Wanna Be Sedated by The Ramones. ____________ 215

Figure 4.2: Beat histogram for ‟Round Midnight by Thelonious Monk. ____________ 215

Figure 4.3: Basic pitch histogram for Sophisticated Lady by Duke Ellington. _______ 222

Figure 4.4: Basic pitch histogram for Forgot About Dre by Dr. Dre. ______________ 223

Figure 4.5: Folded fifths pitch histogram for The Four Seasons (Spring) by Vivaldi. _ 223

Figure 4.6: Folded fifths pitch histogram for a piano miniature from Sechs Kleine

Klavierstücke by Schoenberg. ___ 224

 12

Figure 4.7: First two measures of Fryderyk Chopin’s Nocturne in B, Op. 32, No. 1, from

which the features in Table 4.1 were extracted. ______________________________ 235

Figure 4.8: Measures 10 and 11 of the first movement of Felix Mendelssohn’s Piano

Trio No. 2 in C minor, Op. 66, from which the features in Table 4.1 were extracted. _ 235

Figure 4.9: A screen shot of the jSymbolic GUI interface. _____________________ 237

Figure 5.1: jWebMiner’s HTML manual. __________________________________ 266

Figure 5.2: Query terms for a sample co-occurrence feature extraction that will measure

the similarity between four musical artists. __________________________________ 267

Figure 5.3: Query terms for a sample cross tabulation feature extraction that will measure

class membership of six artists in three musical genres. ________________________ 267

Figure 5.4: Sample results from the queries from Figure 5.3. ___________________ 268

Figure 5.5: The jWebMiner Required Filter Words Panel with one pattern-based filter

string and two basic filter strings designed for measuring performer / composer

relationships. ___ 268

Figure 5.6: The jWebMiner Site Weightings Panel with both the whole network and

specifically the AllMusic and Pitchfork web sites selected to be individually searched

separately. ___ 269

Figure 5.7: Additional ways of customizing jWebMiner feature extractions offered by the

Options Panel. __ 270

Figure 5.8: The jWebMiner Network Search Dialog Box, which allows users to see

results of test queries in addition to hit counts themselves. _____________________ 271

Figure 6.1: Pseudocode for a simple expert system designed to distinguish between the

music of Guillaume de Machaut and Giovanni Pierluigi da Palestrina. ____________ 286

Figure 6.2: An example of supervised learning. _____________________________ 287

Figure 6.3: An example of unsupervised learning. ___________________________ 288

Figure 6.4: An artificial example demonstrating one type of scenario where k-NN

classifiers are particularly advantageous. ___________________________________ 317

Figure 6.5: The flow of information in and out of ACE. _______________________ 349

Figure 6.6: Sample genre taxonomy displayed in the Taxonomy Pane of the ACE 2.0

GUI. __ 360

Figure 6.7: Sample feature metadata displayed in the Feature Descriptions Pane of the

ACE 2.0 GUI. __ 360

Figure 6.8: Sample instance class labels displayed in the Instances Pane of the ACE 2.0

GUI. __ 361

Figure 6.9: Sample feature values as well as class labels for an audio segmentation task

displayed in the Instances Pane of the ACE 2.0 GUI. _________________________ 361

Figure 6.10: Highlights of ACE 2.0’s class structure. _________________________ 362

 13

Figure 7.1: Sample hierarchically organized XML elements. ____________________ 376

Figure 7.2: A modified version of the book element from Figure 7.1. _____________ 376

Figure 7.3: Alternative architecture to that of Figure 7.2, where the status field is now a

field instead of an attribute.___ 377

Figure 7.4: A possible DTD for the data formulation used in Figure 7.3. ___________ 378

Figure 7.5: A complete sample Weka file. __________________________________ 388

Figure 7.6: The XML DTD for ACE XML 1.1 Feature Value files. _______________ 406

Figure 7.7: The XML DTD for ACE XML 1.1 Feature Description files.. _________ 408

Figure 7.8: The XML DTD for ACE XML 1.1 Instance Label files. ______________ 410

Figure 7.9: The XML DTD for ACE XML 1.1 Class Ontology files. _____________ 413

Figure 7.10: The XML DTD for the prototype ACE XML 1.1 Project file format. ___ 419

Figure 7.11: The proposed ACE XML 2.0 update to the DTD of the Project file format.

 ___ 420

Figure 7.12: The proposed ACE XML 2.0 update to the DTD of the Feature Value file

format. ___ 428

Figure 7.13: The proposed ACE XML 2.0 update to the DTD of the Feature Description

file format. __ 431

Figure 7.14: The proposed ACE XML 2.0 update to the DTD of the Instance Label file

format. ___ 435

Figure 7.15: The proposed ACE XML 2.0 update to the DTD of the Class Ontology file

format. ___ 438

Figure 7.16: An overall visualisation of the proposed ACE XML 2.0 data model and

serialisation. __ 440

Figure 8.1: The tutorial portion of jMusicMetaManager’s user manual, which can be

viewed either via the software itself or, as shown here, through a web browser. ______ 497

Figure 8.2: jMusicMetaManager’s Options Panel, which allows the user to choose which

types of processing to apply, which reports to generate and what parameters to use during

processing. ___ 498

Figure 8.3: A sample report generated by jMusicMetaManager after analyzing a music

collection. __ 499

Figure 8.4: The genres of music found in the Bodhidharma MIDI dataset and their

associated ontological structuring. ___ 503

Figure 8.5: The Bodhidharma MIDI dataset’s reduced genre ontology. ____________ 503

Figure 8.6: Popular Music genres included in the Codaich audio dataset. __________ 510

Figure 8.7: Classical, Jazz and World Music genres included in the Codaich audio

dataset. __ 510

Figure 8.8: The genres of music found in the SAC dataset. _____________________ 517

 14

Figure 9.1: Comparison of ACE’s performance with that of Kotsiantis and Pintelas

(2004) on six UCI feature sets. ___ 528

Figure 9.2: MIREX 2005 Symbolic Genre Classification results. ________________ 531

Figure 9.3: The ten musical genres in the SAC dataset. _______________________ 536

Figure 9.4: The classification accuracy rates for the 5-genre taxonomy, as described in

Tables 9.4 and 9.5. __ 539

Figure 9.5: The unweighted classification accuracy rates for the 10-genre taxonomy, as

described in Tables 9.4 and 9.5. __ 540

Figure 9.6: The average classification accuracy rates for all experiments employing just

one type of feature (S, A and C), two types of features (SA, AC and SC) or all three types

of features (SAC). ___ 541

Figure 9.7: The difference between the unweighted and weighted classification

accuracies on the 10-genre taxonomy for each of the seven feature type combinations

(Table 9.4). __ 543

 15

List of Tables

Table 4.1: Comparison of twenty sample features extracted from the first two measures

of Fryderyk Chopin’s Nocturne in B, Op. 32, No. 1 and from measures 10 and 11 of the

first movement of Felix Mendelssohn’s Piano Trio No. 2 in C minor, Op. 66. _______ 234

Table 7.1: Some of the most common codes used in the element declaration codes of

DTDs. ___ 379

Table 7.2: Default XML character substitutions for characters that have special meanings

in the XML specification. __ 380

Table 9.1: jMIR’s classification success rates on various MIR datasets. ___________ 526

Table 9.2: ACE’s classification success rate on ten UCI feature sets compared to a

published baseline (Kotsiantis and Pintelas 2004). _____________________________ 528

Table 9.3: MIREX 2005 Symbolic Genre Classification results. All values are

percentages, and they are all averages calculated across cross-validation folds. ______ 531

Table 9.4: The identifying codes used for each of the fourteen experiments performed.

 ___ 537

Table 9.5: The unweighted classification accuracy rates for the 5-genre taxonomy (5-

UW) experiments and both the unweighted (10-UW) and weighted (10-W) accuracy rates

for the 10-genre taxonomy experiments. ____________________________________ 539

Table 9.6: The average classification accuracy rates for all experiments employing just

one type of feature (S, A and C), two types of features (SA, AC and SC) or all three types

of features (SAC). __ 540

 16

Acknowledgements

First and foremost, I would like to thank Professor Ichiro Fujinaga for his invaluable

ideas, insights and advice regarding all aspects of this research. I would also like to thank

those with whom I have co-authored publications relating to various parts of this research,

including John Ashley Burgoyne, Professor Philippe Depalle, Rebecca Fiebrink, Beinan

Li, Daniel McEnnis, Elliot Sinyor and Jessica Thompson. Daniel McEnnis in particular

played an essential role in co-designing and co-implementing jAudio, and was entirely

responsible for OMEN. The valuable work of Jessica Thompson and John Ashley

Burgoyne on the implementation of ACE 2.0 and ACE XML 2.0, respectively, have been

essential in helping jMIR continue to grow beyond the original scope of this dissertation.

I would also like to thank Mark Zadel for facilitating the development of jWebMiner

by providing the implementation details of his own web mining research, Professor

Douglas Eck for providing access to his lab’s audio research database and the staff of the

Marvin Duchow Music Library for their help in providing CDs to be included in the

Codaich audio dataset. Thanks also to Madeleine McKay for designing the jMIR logo,

and to Professor Philippe Depalle and Donald McKay for their help with the French

version of this dissertation’s abstract. I would also like to thank the faculty, staff and

students of the McGill University Music Technology Area, who have provided an ideal

environment for discussion, collaboration, creativity, research and learning.

This research would not have been possible without the generous financial support of

the Social Sciences and Humanities Research Council of Canada (SSHRC). I would also

like to thank the Fonds Québécois de la recherche sur la société et la culture (FQRSC)

for their financial support during my master’s research, which served as the basic

foundation upon which this dissertation was built. Thanks also to the McGill Alma Mater

Fund and The Centre for Interdisciplinary Research in Music Media and Technology

(CIRMMT) for providing travel funding, and thanks to the Canada Foundation for

Innovation for providing the funds to purchase computing equipment. Special thanks also

to the Andrew W. Mellon Foundation for funding continuing jMIR development as part of

the Networked Environment for Music Analysis (NEMA) project.

Finally, above all, I am grateful for the invaluable love and support of Deanna Regan

Toews, Madeleine McKay, Erin McKay, Donald McKay and Thérèse d’Amour.

 17

1. Introduction and background

1.1 General overview

1.1.1 Introduction

Automatic music classification is a process that consists of computers automatically

mapping musical information of some kind to categories of interest. A few examples of

relatively low-level, although certainly far from trivial, types of music classification

include the identification of particular instruments, pitches and rhythmic patterns in audio

signals. On a somewhat higher level, one might identify chords, chord progressions,

melodies, structural segmentations and so on. It is also possible to design systems that can

map pieces of music to still higher-level categories, such as in the cases of classification

by composer, performer, genre, style, mood, listening scenario or preference profile.

These are just a few examples of the many possible types of music classification that can

be performed, of course, but they do help to illustrate the variety and scope of

applications that can be addressed by automatic music classification and the range of

benefits that can be reaped from the successful implementation of accurate and consistent

classification software.

Research on automatic music classification has significant value from both academic

and commercial perspectives. Not only can the results of various types of classification be

very useful in and of themselves, such as in helping to label and organize large music

collections, but automatic music classification can also play an essential role in

accomplishing component parts of many large and wide-ranging tasks. For example, a

successful system for automatically transcribing audio signals to symbolic musical scores

would likely consist of numerous sub-systems that each perform automatic classification

in order to solve related sub-problems, such as voice segmentation, note onset detection,

pitch tracking, tempo induction and so on.

In practice, many types of music classification are very difficult to perform

consistently and accurately. This is often the case both for human classifiers and for

computers programmed with pre-defined classification heuristics. In cases such as

classification by genre or mood, for example, there are very few precise, clear and

 18

consistent rules delineating the musical qualities and characteristic of each category.

Indeed, it can sometimes be difficult even to come up with a generally accepted set of

categories to categorize pieces of music into.

Fortunately, automated pattern recognition techniques provide a very useful empirical

way of dealing with such issues by learning to recognize statistical regularities in

collections of music, and thus effectively building categorization models that can map

musical data to appropriate categories. Tools that can allow researchers to quickly, easily

and effectively apply such approaches could prove to be very valuable to researchers

involved in diverse areas of musical inquiry.

The overall goal of this dissertation is thus the provision of powerful, flexible,

accessible and original tools that can be used to develop, share and apply techniques

associated with automatic music classification. A suite of software tools called jMIR has

been produced in fulfillment of this goal. The jMIR components enable users to extract

meaningful information from audio recordings, symbolic musical representations and

cultural information relating to music that is available on the Internet; to automatically

build classification models capable of mapping music to categories that are meaningful

for particular research applications; to automatically collect profiling statistics and detect

metadata errors in musical collections; to perform experiments on a large, stylistically

diverse and well-labelled collections of music in both audio and symbolic formats; and to

store and distribute information that is essential to automatic music classification in

expressive and flexible standardised file formats.

In order to have as diverse a range of applications as possible, jMIR is very

purposefully not tied to any particular type of music classification, but is rather designed

to be a general-purpose toolkit that can be applied to arbitrary types of music

classification. Each of the jMIR components is also designed to be accessible not only to

users with a high degree of expertise in computer-based research technologies, such as

researchers in electrical engineering and machine learning, but also to researchers with

very valuable musical expertise but less of a background in computational research, such

as some musicologists, music theorists and music psychologists.

It is hoped that providing music researchers with sophisticated empirical tools for

studying music in traditionally unorthodox ways will help them to glean important new

 19

insights into music. An important advantage of software such as jMIR is that it allows

researchers such as musicologists and music theorists to perform empirical research on a

much wider range of art, folk and popular musics of the world than is typically possible

using the type of heuristics-based computational approaches traditionally used in music

informatics. Furthermore, these tools also facilitate the automated extraction and

processing of information from audio and cultural information sources, an important

break from the symbolic emphasis of traditional music informatics. It is also hoped that

the insights and needs made apparent by these types of research will in turn help to

expand the scope of current research in automatic music classification.

It is important to note that jMIR is intended as more than just a set of to ready-to-use

tools that can be used to solve classification problems directly, although this is certainly

an important intended use of jMIR. The software is also designed to serve as an open-

source standardized platform for developing and testing original algorithms that can be

used to diversify and improve automatic music classification in the future. It is hoped that

this will help to facilitate the rapid spread of new approaches as they are developed,

reduce redundant duplication of work, facilitate the integration of approaches contributed

by researchers in diverse fields, help to promote inter-institutional research collaboration

in general and aid in the development of technologies allowing researchers to exceed the

performance of existing automatic classification systems.

The jMIR development process involved the design of novel data extraction and

processing algorithms; the collection, standardization and implementation of existing

algorithms; the design and implementation of original infrastructure and interfaces for

performing and researching diverse types of automatic music classification; and the

analysis, design and refinement of new and existing research methodologies. The jMIR

components were also used in several experiments, as described in Chapter 9. These

experiments were intended not only to verify the effectiveness of jMIR, but also to

investigate the utility of combining information from different types of musical data

sources.

Each of the jMIR components may be used independently, or they may be used

together as an integrated whole, depending on the needs of individual users. This

independence is reflected in the structure of this dissertation, with the result that each of

 20

the jMIR components is presented in its own chapter, from Chapter 3 to Chapter 8. The

multidisciplinary nature of the jMIR project involved elements of many disciplines,

including digital signal processing, music theory, web-based data mining, machine

learning, musicology and knowledge management. Each of the chapters therefore

provides background information from the fields that are the most relevant to its

particular jMIR component.

Chapter 2 provides a brief review of psychological and musicological research on

human music classification. Although this chapter does not deal directly with any specific

jMIR components, it is included in this dissertation because many automatic music

classification applications essentially involve the simulation and prediction of the types of

classifications produced by humans. It is helpful to have some fundamental insights into

how humans perform such classifications in order to accomplish this, even if the actual

processes used by computers to arrive at corresponding classifications may be entirely

different.

This first chapter is intended to provide an overview of and context for the jMIR

project, as well as to present appropriate background information relevant to the project

as a whole. It also provides more details on many of the issues raised in this introductory

Section 1.1.1. Section 1.1.2 introduces certain basic vocabulary and fundamental concepts

that are essential to understanding automatic music classification. Section 1.1.3 then

provides a brief overview of each of the jMIR components, and Section 1.2 details the

chapter by chapter structure of this dissertation.

Section 1.3 provides a general introduction to music information retrieval, a field of

which automatic music classification is a sub-discipline, and then continues on to provide

a relatively detailed discussion of the nature, types, applications and advantages of

automatic music classification. The differences and similarities between music

classification and similarity measurement are also discussed, an issue that is revisited in

Chapter 2. Of particular significance, Sections 1.3.6 and 1.3.7 summarize other systems

that have been developed for performing automatic music classification research.

Section 1.4 discusses the overall design principles that motivated the development of

jMIR. This section also provides an overview of how the jMIR components as a whole

fulfill these design principles.

 21

Section 1.5 reviews some of the essential theoretical and research contributions of this

dissertation. This is done in order to highlight them against the backdrop of the

engineering aspects of the jMIR project.

1.1.2 Essential concepts in automatic music classification

It is useful to briefly explain the core procedures and terminology associated with

automatic music classification before proceeding to describe jMIR in more detail, as a

familiarity with these essential aspects of automatic music classification will greatly

facilitate this description. The information provided in this sub-section is very much a

high-level overview, and more detailed information is available in Section 1.3 and, to an

even greater extent, in the individual chapters of this dissertation that pertain to the

various aspects of automatic music classification.

Most automatic music classification systems make use of machine learning to at least

some extent, and it is a central aspect of many systems. Machine learning involves using

computer algorithms to automatically build, or learn, a model that can be used to perform

some task. From the perspective of automatic music classification, this model allows

different entities of interest, called instances, to be classified by the system into the

categories of interest, called classes. Classes could be, to give just a very few examples,

names of composers, types of musical genres or musical pitches. These classes may be

treated as unrelated entities, or they may be organized into a class ontology. Instances can

be many different things, depending on the application domain, such as musical pieces,

short musical excerpts, the collected works of a musician or composer, etc.

The essential advantage of machine learning is that it enables computers to

automatically learn solutions to very difficult problems, even when there is no pre-

existing knowledge of the solution to a given problem. Machine learning also eliminates

the difficult and time-consuming need to explicitly formalize and implement potentially

very complex solutions even when they are known. Machine learning can thus provide an

excellent solution for many music classification problems, since effective classification

models are both often poorly understood and very complex.

There are many varieties of machine learning, but in general a class of techniques

called supervised learning tend to be the most appropriate for most music information

 22

retrieval problems.
1
 Supervised learning requires first acquiring a set of instances, called

ground-truth data, that have been labelled with model class labels that are known to be

correct. The machine learning algorithm that is being used is then trained on this data,

thereby automatically learning to associate particular characteristics of ground-truth

instances with the classes that they are labelled with. This is, at least from a very high-

level perspective, similar in concept to how a human might be trained to classify

instances by observing exemplars that he or she is told belong to particular categories.

If all goes well, the classification model built by the machine learning algorithm will

have learned associations between the characteristics of the ground-truth training

instances and their labelled classes that may be generalized so that it can classify new

unlabelled instances correctly based on their own characteristics. Ground-truth data is

typically divided into training, testing and validation sets in order to attempt to verify that

such generalization has occurred.

The labelling of ground-truth data with correct class labels is essential to the training

of successful models. The association of ground-truth instances with various other kinds

of data can also be helpful as well. The term metadata, which can be defined as data

about data, is used to refer to any kind of data that instances are annotated with.

Unfortunately, metadata annotations mined from the Internet tend to be inconsistent and

error prone, so it is often necessary to correct them before they can be used in machine

learning problems.

There are three primary types of musical information that traditionally serve as

instances in automatic music classification:

 Audio data: Digital representations of physical audio signals. These are typically

stored in formats such as MP3s, WAVs and FLACs.

 Symbolic musical representations: Representations of sound based on abstract

symbols that are musically meaningful, such as the music notation used in scores.

File formats such as MIDI, OSC, Music XML and Humdrum store symbolic data.

1
 The reasons for this, alternative approaches and exceptions to this general rule of thumb are discussed in

Chapter 6.

 23

 Cultural data: Information that is related to the music of interest, but is not a

direct representation, abstract or otherwise, of the actual sound comprising the

music. The Internet provides the most commonly exploited source of cultural data,

as it makes available resources such as edited metadata repositories, unedited

listener tags, playlists and searchable web pages in general. Other potential

sources of cultural data include expert writings such as album reviews, statistics

such as sales statistics, surveys, the results of psychological experiments and

images of album art.

As noted above, machine learning algorithms must be provided with characteristics of

instances that encapsulate sufficient information to learn and apply classification models.

Such measurable characteristic pieces of information that can be extracted from instances

and provided as the percepts of machine learning algorithms are called features, and the

particular choice of features to extract from instances can be essential to the success of

the learned classification model. The use of too many features can pose problems, as

described in Chapter 6, so it is often necessary to apply dimensionality reduction

algorithms in order to effectively reduce the size of large feature sets while minimizing

the consequent loss of relevant information.

It can be useful to group features into the three following classes:

 Low-level content-based features: Spectral or time-domain information

extracted directly from audio signals. Most features of this type do not provide

information that seems intuitively musical, but they can have significant

discriminating power when processed by computers, and they can also sometimes

have psychoacoustic significance. Mel-Frequency Cepstral Coefficients, Zero

Crossings and Signal RMS are examples of such features.

 High-level content-based features: Information extracted from symbolic or

audio data that is formulated in such a way that it is meaningful to musically

trained humans. Measures of the amount of chromatic motion, the amount of

rubato, the instruments present and information associated with song lyrics are

examples of such features.

 24

 Cultural features: Sociocultural information outside the scope of the musical

content itself. In practice, the most commonly used cultural features tend to

consist of statistics that can be automatically mined from the web, such as playlist

cooccurrences of various musical tracks or sales statistics.

Not coincidentally, these feature types roughly coincide to the three types of data

described above.

The basic procedures involved in a typical automatic music classification task are

summarized in Figure 1.1.

1.1.3 Overview of the jMIR components

As noted above in Section 1.1.1, jMIR is a suite of software tools and resources

developed for use in research associated with automatic music classification. jMIR is

designed not only to be used directly for performing automatic music classification-

related tasks like feature extraction, pattern recognition and experimental validation and

investigation, but also as a platform for developing and sharing new technologies, such as

new features or machine learning techniques.

Each of the various jMIR components is designed to address a particular task or set of

tasks related to automatic music classification:

 ACE XML: A set of standardized file formats that can be used to store

information such as extracted feature values, feature metadata, class labels

associated with instances, miscellaneous instance metadata and class ontologies.

These file formats allow information to be transferred between the jMIR software

components,
2
 and are also proposed as a general standard for use in storing and

communicating data associated with automatic music classification beyond the

context of jMIR.

2
 For the sake of general compatibility the jMIR software components can also read and write Weka ARFF

(Witten and Frank 2005), the current de facto file format standard in the MIR community, but ACE XML is

strongly recommended as an alternative due to its many relative advantages, as discussed in Chapter 7.

 25

Figure 1.1: A workflow of the tasks that must be performed in a typical automatic music

classification scenario. The first step involves collecting the ground-truth data. This

collected musical data must then be labelled with metadata or, if the metadata is already

present, then it must be validated. Features must then be extracted from the ground-truth

data. These extracted features must be capable of sufficiently characterizing the

differences between the classes that the ground-truth instances are to be classified into.

The features are then input to the machine learning algorithm(s) that are to classify the

music, typically using training and validation subsets of the ground-truth data. Once the

classifiers are trained and validated, new unlabelled instances can then have their

features input to the trained classification model, which in turn will output predicted class

labels.

Ground-Truth Collection
Audio recordings

Symbolic recordings

Cultural information

Basic Tasks in Automatic

Music Classification

Feature Extraction
Low-level content-based features

High-level content-based features

Cultural features

Machine Learning
Supervised learning

Dimensionality reduction

Metadata

Metadata
Annotation

Error detection

Error correction

Classification Results

Music

Classifier Training
Segmented training

and validation sets

 26

 jAudio: An audio feature extractor that includes implementations of 26 core

features, including both features proven in MIR research and more experimental

perceptually motivated features. jAudio places an even greater emphasis on

extensibility than the other jMIR components, and includes implementations of

metafeatures and aggregators that can be used to automatically generate many

more features from core features (e.g., standard deviation, derivative, etc.). A

number of tools to facilitate the development and testing of new features are also

included, such as time and frequency domain visualization tools; audio recording

functionality; test data synthesis; audio file format conversion; and MIDI to audio

conversion functionality. Feature extraction parameters such as window size,

overlap, downsampling and normalization can also be set by the user.

 jSymbolic: An application for extracting features from MIDI files. jSymbolic is

packaged with a very large collection of 111 features, many of which are original.

A further 42 features are proposed for implementation in the jSymbolic feature

library. These features all fall into the broad categories of instrumentation, texture,

rhythm, dynamics, pitch statistics, melody and chords.

 jWebMiner: A cultural feature extractor that, at its most basic level, operates by

using web services to measure relative hit counts for sets of query strings

submitted to search engines. jWebMiner then processes these hit counts to

calculate feature values denoting classifications or similarity measurements based

primarily on co-occurrence. Search results are processed statistically by

jWebMiner in a variety of ways in order to improve results. Further processing

options include the abilities to specify search string synonyms; to filter out sites

containing specified strings; to require that sites contain certain strings in order to

be counted; and to weight results from different on-line sources differently.

jWebMiner can also automatically access a variety of sources in order to acquire

the strings needed to build queries. Such sources include Apple iTunes XML

files,
3
 delimited text files, ACE XML files and Weka ARFF files (Witten and

Frank 2005).

3
 support.apple.com/kb/HT1660

 27

 ACE: Meta learning software for experimenting with, selecting and applying

pattern recognition algorithms. Given a set of extracted features, ACE experiments

with a variety of machine learning algorithms, algorithm parameters, classifier

ensemble architectures and dimensionality reduction techniques in order to arrive

at a good configuration for the problem at hand. This can be very helpful, as a

particular algorithm can be more or less appropriate for a given problem in terms

of considerations such as classification accuracy, training speed and classification

speed. ACE can also be used simply to build and apply pre-selected classification

models if desired. ACE is based upon the well-known Weka (Witten and Frank.

2005) Java pattern recognition library, so new classification algorithms

implemented in Weka can be easily incorporated into ACE.

 jMusicMetaMangaer: A tool for statistically profiling large musical datasets as

well as automatically detecting metadata errors, inconsistencies and redundancies.

Such dataset analysis and metadata error checking are essential tasks, as the

success of ground-truth training and evaluation data is contingent upon the quality

of the musical datasets from which they are drawn and the accuracy of the

associated metadata, especially class labels. jMusicMetaManager implements a

wide variety of metadata error detection operations, including general edit-

distance and word ordering/subset operations as well as customized operations

designed to detect specific common errors. A total of 42 different HTML reports

can be automatically generated to help profile and publish musical datasets.

jMusicMetaManager can parse iTunes XML files and MP3 ID3 tags as well as

ACE XML and Weka ARFF files in order to access the metadata that is to be

analyzed.

 Codaich, Bodhidharma MIDI and SAC: Three different labelled datasets for

use in debugging, validating and evaluating automatic music classification

technologies and for performing general exploratory computational musical

research.

o Codaich is an audio dataset consisting of over 25,000 MP3 recordings

belonging to 55 genres of music. The recordings in Codaich are labelled

 28

with a variety of metadata that has been carefully checked for errors and

inconsistencies both manually and with jMusicMetaManager. Information

about Codaich is available in the form of iTunes XML files and

jMusicMetaManager reports.

o The Bodhidharma MIDI dataset is a collection of 950 MIDI recordings

belonging to 38 genres.

o The SAC dataset consists of matched MP3 recordings, MIDI encodings

and cultural data for 250 pieces of music belonging to 10 genres of music.

This dataset is specifically designed for research comparing the relative

utility of features extracted from audio, symbolic and cultural sources of

information, both individually and in combination.

 jMIRUtilities: A set of tools for performing miscellaneous tasks associated with

jMIR. These tools include a GUI for batch-associating class labels with instances,

utilities for merging various kinds of information, and utilities for extracting

useful information from iTunes XML files or delimited text files.

The jMIR components are designed so that they may be used either together, as an

integrated whole, or separately as individual and isolated applications, as the user prefers.

The relationships between and the various jMIR components are illustrated in Figure 1.2.

The jMIR software is all open-source and is implemented in Java in order to promote

platform independence. Both the source code and compiled user versions of each of the

jMIR components may be downloaded for free from jmir.sourceforge.net. This website

also includes detailed manuals and other documentation. Further information on each of

the jMIR components is also provided in the various chapters of this dissertation, as

detailed below in Section 1.2. Each of these chapters also includes references to various

jMIR-related publications, and there is also a paper by McKay and Fujinaga (2009b) that

summarizes the jMIR software suite as a whole. Section 1.4 also includes an overview of

the core design priorities and characteristics of the jMIR project as a whole.

 29

Figure 1.2: The relationships between the different components of the jMIR software

suite. Audio recordings, symbolic recordings and/or cultural data available on the Internet

can all provide input to jMIR. The various components of jMIR can be used to extract

features from this data and check the metadata associated with it. Extracted features

may also be processed such that the relative appropriateness of various pattern

recognition algorithms to the problem are compared, a classification model is trained on

the features or predicted class labels are output for instances. It is important to note that,

for the sake of legibility and simplicity, this figure only demonstrates how ACE XML files

can be used to store extracted feature values, when in fact other information, including

feature metadata, instance metadata, class labels associated with instances and class

ontologies can also all be stored in ACE XML files.

jAudio
Feature extractor

jSymbolic
Feature extractor

jWebMiner
Feature extractor

The jMIR Components

Codaich
Audio dataset

jMusicMetaManager
Metadata manager

Bodhidharma MIDI
Symbolic dataset

Audio Music Symbolic Music Internet Data

ACE XML Files
Standardized file formats

ACE
Metalearner and classification engine

Classification
Output

Algorithm
Evaluation

Trained
Classifiers

OR OR

 30

1.2 Structure of this dissertation

This first chapter provides an overview of the jMIR project and places it in context.

Section 1.3 provides relevant background on music information retrieval in general and

automatic music classification in particular, as well as an overview of prominent software

systems that have been designed to perform or facilitate automatic music classification.

Section 1.4 then describes the primary design priorities and corresponding characteristics

of jMIR, and Section 1.5 highlights some of the primary research contributions of this

dissertation.

Chapter 2 provides insights from the fields of psychology, musicology and music

theory relating to how humans classify music and measure musical similarity. Although

automatic music classification systems can and have been implemented without explicitly

taking such research into account, the position is taken here that an understanding of how

humans classify music can help to more accurately simulate their behaviour using

computers.

Chapter 3 presents jAudio, the jMIR application that extracts features from audio

data. Aside from a detailed description of the software itself, this chapter also provides

relatively substantial background information associated with digital audio and audio

feature extraction, as one of the goals of jAudio is to encourage and facilitate the

development of new and useful features that can be extracted from audio data.

Chapter 4 introduces jSymbolic, the jMIR application that extracts features from

symbolic musical data. An essential aspect of jSymbolic is its extensive library of 111

implemented features and 42 further proposed features, as this is by far the most

extensive library of symbolic classification features to date. Each of these 153 features is

described in this chapter, along with guidelines for designing symbolic features and other

associated background information.

Chapter 5 describes jWebMiner, the jMIR application that extracts cultural features

from the Internet. Techniques that can be used to extract further cultural features from the

Internet are also discussed, as are particular problematic issues to consider.

Chapter 6 presents ACE, the jMIR meta learning application that can be used to train

classification models, perform classifications using trained models and perform

experiments evaluating and facilitating the selection of classification algorithms that are

 31

well suited to individual problems. Although ACE is designed to make powerful machine

learning algorithms available to users with little or no background in such techniques, it is

also designed to be a tool for experts in machine learning and a platform for applying and

evaluating new algorithms. This chapter therefore includes relatively extensive

background information on machine learning problems, techniques and algorithms.

Chapter 7 introduces ACE XML, a set of standardized file formats for representing,

storing and distributing feature values, feature metadata, instance class labels, instance

metadata and class ontologies. ACE XML is the default format for communicating

information between the jMIR components, and is also proposed as a standard for more

general use. This chapter includes a critical review of alternative approaches to storing

information important to music classification, and proposes a set of design principles that

should be taken into account when designing or selecting particular file formats for use in

MIR-related tasks.

Chapter 8 presents the three datasets that were assembled as part of the jMIR

framework, namely the Codaich audio dataset, the Bodhidharma MIDI dataset and the

SAC mixed symbolic, audio and cultural dataset. This chapter also introduces

jMusicMetaManager, the jMIR application for statistically profiling and detecting

metadata errors in large music collections, as well as jMIRUtilites, the jMIR application

for performing various miscellaneous tasks. A discussion of approaches and priorities to

consider when building, selecting and using ground-truth data collections and associated

class ontologies is also included in this chapter.

Chapter 9 describes several experiments that have been performed using jMIR in

order to validate it and demonstrate its usefulness. Particular emphasis is placed on two

sets of experiments, one involving a winning entry of the jSymbolic feature library
4
 in the

MIREX Symbolic Genre Classification competition, and the other involving an

experimental investigation of the benefits of combining features extracted from matching

audio, symbolic and cultural data sources.

Chapter 10 provides a summary of the jMIR project. This chapter also outlines key

areas of future development and research. Chapters 3 to 9 also include more detailed

4
 The jSymbolic feature library was submitted as part of the Bodhidharma symbolic genre classifier, the

predecessor of jSymbolic and ACE.

 32

ideas for future research that are more specifically related to each of their respective

topics.

Finally, the bibliography for this dissertation is found in Chapter 11.

1.3 Context and background information

1.3.1 Music information retrieval (MIR)

Music information retrieval, or MIR, is a field of research associated with the

computational extraction of information from music, and with making this information

accessible to users of different kinds in ways that are useful to them. MIR overlaps with

and is enriched by many other disciplines, including but not limited to machine learning,

data mining, digital signal processing, music theory, musicology, music psychology,

music education, human computer interaction and the library sciences. As is made clear

below, not only is automatic music classification an essential component of many aspects

of MIR, but it is the central goal of several of its sub-disciplines.

Some particularly common sub-disciplines of MIR, both past and present, include:

 Score following: Tracking the position in a known score of an audio rendition of

the score. This is sometimes associated with automatic accompaniment systems.

 Optical music recognition: The generation of symbolic scores from optical scans

of physical scores.

 Automatic transcription: Producing a symbolic representation of music from an

audio signal. This can involve monophonic audio, which contains only one audio

source and is typically relatively easy to transcribe automatically, or it can involve

polyphonic audio, which contains more than one audio source and can be very

difficult to transcribe.

 Source segmentation: Separating out the components of audio signals originating

from different sources.

 Onset detection: Identifying the beginnings of individual notes.

 Pitch tracking: Identifying the pitch of notes.

 33

 Chord identification: Segmenting and identifying harmonic units.

 Key identification: The identification of the key of a piece including, sometimes,

modulations to other keys.

 Tempo induction: Identifying the tempo and, sometimes, the meter of an audio

signal.

 Beat tracking: Identifying and following the beat of an audio signal.

 Instrument identification: Identifying the type of instrument or instruments

contained in an audio signal.

 Song segmentation: The identification of the points in time where musical pieces

start or end in a continual audio signal.

 Structural analysis: The breaking apart of a musical piece into structurally

discrete segments. This can involve high-level structures (e.g., verses and

choruses) as well as lower-level structures (e.g., melodic segmentation).

 Automatic musical analysis: The automatic analysis of music using high-level

musical models.

 Fingerprinting: The identification of musical pieces by matching data extracted

from unknown songs to data extracted from known songs. These extracted

―fingerprints‖ should ideally be invariant to acoustic listening environment and

audio compression.

 Artist identification: The identification of musical performers.

 Composer identification: The identification of composers.

 Genre classification: The classification of music based on musical genre, as well

as the study of appropriate genre ontologies to use.

 Mood classification: The classification of music based on mood or emotion.

 Tag prediction: Automatic textual annotation of music with tags of various kinds

that listeners would likely use or find helpful.

 34

 Digital Rights Management (DRM): Various kinds of digital protection applied

to audio files for the purpose of listeners’ ability to copy and/or transmit the

music. Watermarking, or the embedding of traceable perceptually hidden data in

audio signals, has been a particular area of past MIR interest.

 Cover song detection: The identification of different versions of the same

musical piece. This sub-discipline is sometimes also associated with investigations

of potential copyright violations.

 Hit prediction: The identification of musical pieces that are likely to become

commercially successful.

 Music recommendation: Automatic recommendation of music that individual

listeners are likely to enjoy based on their personal tastes.

 Playlist generation: Automatic formulation of playlists consisting of pieces that

are considered to be particularly suitable to be played together. Such playlists are

often, but not always, associated with particular listening scenarios, such as while

reading, working out, driving, performing chores, etc. The particular ordering of

the pieces can be an important consideration, not just the selection of the pieces

themselves.

 Musical similarity: Strongly related to a number of the tasks listed above, such as

music recommendation, playlist generation and hit prediction, the measurement of

musical similarity involves the study and prediction of perceived similarity

between different pieces of music along various dimensions.

 Feature extraction: The design of features that can be extracted from musical

data and gainfully used for various useful purposes, such as classification,

similarity measurement or visualisation.

 Internet-based data mining: The extraction of useful music-related information

from the Internet. There are many possible sources of data, with web services

offered by various organizations serving as particularly useful resources.

 35

 Music archives, libraries and digital collections: Issues relating to collecting,

annotating, organizing, archiving and making musical data accessible.

 Standards: Standardized formats and methodologies for storing, annotating and

making music-related data available.

 Metadata collection and annotation: Methodologies for acquiring reliable

metadata, correcting faulty metadata, determining the types of metadata that are

appropriate to use for different purposes and finding good ways to store metadata

and make it available. There has been a particular focus on the semantic web in

recent years.

 Musical querying: This can consist of traditional symbolic or textual queries, or

it can involve query by humming or query by tapping, which involve,

respectively, searching music collections based on sung or tapped queries.

Automatic query correction is sometimes necessary.

 Visualization and interfaces: This can involve anything from forming visual

representations of aspects of individual pieces to visualizing large music

collections as a whole. There are many possible reasons for doing so, such as

annotating music, editing music or facilitating music browsing.

 Music perception and cognition: Studies and models of how, for example,

listeners evaluate musical similarity, classify music, organize music and perceive

various musical parameters.

 User behaviour: Studies of how individuals consume and would like to consume

music.

 Sociology, economics and law of digital music: Issues relating to the production,

marketing, distribution and consumption of music. This is often associated with

intellectual property rights.

 MIR evaluation and information exchange: Methodologies for comparatively

evaluating the performance of different MIR systems and algorithms, as well as

for sharing data and algorithms efficiently and effectively.

 36

Foote (1999a), Byrd and Crawford (2001), Downie (2003), Fingerhut (2004) and

Casey et al. (2008) have each written excellent overviews of music information retrieval

research. The International Society for Music Information Retrieval Conference (ISMIR),
5

an annual conference that focuses specifically on MIR and publishes its proceedings

online free of charge, is an excellent source of cutting edge MIR research. Also of

particular interest, the Music Information Retrieval Evaluation eXchange (MIREX)
6
 is an

annual competition associated with ISMIR where various approaches and algorithms are

independently compared using the same data. Due to its highly multidisciplinary

character, MIR research is also published in a wide variety of other conferences and

journals.

1.3.2 Advantages of automatic music classification

As noted above, automatic music classification involves using computers to

automatically label musical instances with appropriate class labels of some kind.

Automatic music classification has many advantages relative to manual human

classification. To begin with, computers can perform classifications much faster than

humans. A human must listen to music in real-time if she or he is to classify it, whereas a

powerful computer can effectively ―listen‖ to music by extracting features from it much

more quickly. Once this is done, computers can process these features through a trained

classification model and store classification results almost instantaneously in most cases,

whereas humans need seconds or even minutes to arrive at a classification and then store

this classification. The consequence of this is that computers can classify music many

times faster than humans, something that is very significant when dealing with the

potentially immense size of modern music collections.

Automatic classification is also much cheaper than manual classification. For

example, consider the case of a large library that wishes to classify its music collection by

genre. Accomplishing this task manually with any degree of reliability would require

hiring several highly trained musical experts, each of whom must be remunerated

appropriately based on their expertise. Furthermore, each recording should probably be

classified by more than one human expert in order to minimize individual bias and

5
 www.ismir.net

6
 www.music-ir.org/mirex/2009/

 37

increase consistency. These experts would also need to be trained to use the particular

genre class ontology under consideration consistently, something that requires still further

expenditure. Each of these experts would also require a computer and an appropriately

quiet facility to work in, which also costs money.

Performing this task using an automatic classification system would require only one

computer, although more could increase the speed even further, and could indeed be

performed without purchasing new computers by using the same computers that the

library provides to the public while the library is closed or when there is no demand for

them. No human intervention is needed, other than beginning the process. Once provided

with the data, the system could train itself within a matter of minutes to, at most, a week

or two, and could then likely classify music at rates between several recordings a second

to one recording every few minutes, per computer, depending on the algorithms used and

the power of the computers.

An additional advantage of automatic classification is that classification models can

be updated relatively easily. For example, to continue the library genre classification use

case scenario, automatic classification models can be easily updated or retrained if a

decision is made to add new genres to the class ontology. So, for instance, perhaps all

Jazz music was simply labelled as Jazz in the original ontology. A decision is later made

to also label it with sub-genres, such as Dixieland, Swing, Bebop, etc. If manual

classification were being performed, then it would be necessary for new experts to be

hired to go through all of the Jazz recordings. If automatic classification were being used,

in contrast, then all that would be needed would be some ground-truth data to train a more

detailed Jazz classification model, and then this could be used to quickly and

economically update all of the appropriate labels automatically.

The techniques developed for a particular type of classification can also be relatively

easily adapted to other types of classifications. So, for example, the same feature

extraction and machine learning software used to classify music by genre could also

likely be used to classify music by artist or mood, for example. The only modifications

needed would be a new class ontology and ground-truth dataset to train the new

classification model, with quite possibly no changes at all being necessary in the software

itself or the computer(s) running it.

 38

It is clear that automatic classification is dramatically cheaper and faster than manual

classification. Indeed, it is cheap enough that it can be used for free or with minimal

expenditure even by individuals who may have little or no music training on their own

personal music collections for purely recreational purposes, something that is entirely out

of the question for high-quality manual classification.

Of course, automatic classification is only useful if it can classify recordings at least

as reliably as musical experts. In order to determine whether this is the case, it would be

helpful to establish a baseline for human classification. Unfortunately, there is very little

experimental evidence establishing such a baseline, and even if there were, it would be

hard to generalize, since human performance is likely highly dependent on the type of

classification, the particular class ontology, the particular instances to be classified and

the expertise of the human classifiers.

Genre classification is one area where two relatively widely cited studies have been

performed. The first found that a group of undergraduate students made classifications

agreeing with those of record companies only 72% of the time when classifying among

ten genres (Perrot and Gjerdingen 1999). Listeners in these experiments were only

exposed to 300 ms of audio per recording, however, and higher agreement rates could

quite possibly have been attained had longer listening intervals been used.

Another study involving longer thirty second listening intervals found inter-

participant genre agreement rates of 76% (Lippens et al. 2004). However, one of the six

categories used in this study was ―Other,‖ an ambiguity that could lead to substantial

disagreement due to degree of membership and category coarseness issues rather than to

entirely divergent classification perspectives.

So, although these two studies do provide useful insights, neither involved true

musical experts, and there are some problematic experimental aspects with respect to

determining an accurate classification baseline.
7
 There is therefore clearly a need for

more experimental evidence before definitive conclusions can be drawn regarding expert

human genre classification performance. In any case, the best evidence we have to date

seems to indicate that non-expert classification rates seem to lie roughly in the seventieth

7
 These problematic aspects are in no way an indication of poor research quality, as these studies are both of

a very high quality. The issue is simply that the experiments were designed to address research questions

that are only obliquely related to those being considered here.

 39

percentile. Considering that this is undesirably low, it seems reasonable to hope that

automatic classification systems can perform at least well as this, if not better. This is

substantiated by the experimental results achieved with jMIR, as described in Section 9.4,

where instances were classified automatically into a ten-class genre ontology with a

success rate of 78.8%, a value slightly better than the human performances described

above. Although this is still much lower than desirable for practical purposes, it does

support the potential viability of automatic classification systems relative to manual

classification in terms of classification reliability.

An additional advantage of automatic classification systems relative to manual

classification systems is that they are arguably more likely to be able to perform

classifications consistently. Multiple human classifiers, as are unavoidably necessary if

large quantities of music must be classified manually in a reasonable amount of time, are

each likely to have varying internal models of the class ontology under consideration, and

as a result are each likely to vary somewhat in their classifications, even if they are all

experts in the types of music in question. There is, for example, experimental evidence

that even highly experienced adjudicators at music competitions can display a high degree

of variability with one another, even when they are internally consistent (McWilliams

2005). Furthermore, individual classifiers are often not always even consistent with

themselves, as their classifications can vary depending on their mood and other factors.

Computers, in contrast, will typically use the same consistent model once it is trained

without variation, so a given trained model will output the same classification for a

feature set corresponding to a given musical instance no matter when or by which

computer it is classified. Although it is often possible to update the model if desired when

new training data or features become available, this can be limited to circumstances

where it is intended and desirable. Also, although one certainly wishes to have perfectly

classified data, it is at least preferable to have misclassified data that is misclassified in

similar ways when it is misclassified, as this makes it easier to detect and deal with the

misclassifications. Automatic classification thus holds advantages over manual

classification in terms of consistency, with respect to both correct classifications and

incorrect classifications.

 40

Automatic classification also has the advantage that computers can analyze and

classify music in novel and non-intuitive ways that might not occur to human classifiers

or researchers. Computer classifiers can thus avoid the preconceptions and biases that

humans typically have, no matter how objective they try to be, which means that

computer classifiers may find effective ways of classifying music that might not occur to

human classifiers, and can also avoid contaminating experimental procedures and

evaluations with such preconceptions. Furthermore, the development and application of

automatic classification systems can result in insights and revelations that inspire new

research ideas and directions that might not otherwise have been considered.

Of course, the labelling of the ground-truth data itself is still typically sensitive to

human bias, which can, unfortunately, influence the quality of a model trained on it. It is

therefore necessary to take special care when labelling ground-truth, and ideally multiple

experts should label each instance and consult with each other in order to achieve as

much consistency and correctness as possible. Although such a process can be expensive,

labelling a small ground-truth dataset carefully is much less expensive than labelling an

entire musical collection by hand.

Machine learning algorithms are also ultimately limited to the data provided to them,

and human preconceptions can result in the failure to extract potentially useful features if

care is not taken. This issue is one of the reasons why it is often best to extract many

features and then automatically, and therefore objectively, reduce them to a manageable

number using dimensionality reduction techniques, as described in Chapter 6.

Automatic music classification techniques can also have a number of important

advantages with respect to musicological and music theoretical research. This is discussed

in Section 1.3.4 below.

1.3.3 Applications of automatic music classification

Automatic music classification can be applied to a wide variety of tasks, both

academic and commercial in nature. Correspondingly, there are many ways in which one

can classify music, for many different purposes. For example, automatic music

classification techniques can be of great use to: libraries and other institutions that archive

music; composers and musicians who wish to make use of these technologies in their

creative works; educational institutions that can use automatic classification techniques in

 41

pedagogically useful teaching software; courts making decisions on potential copyright

violations; recording studios and record companies; music vendors; listeners who wish to

improve and customize their listening experiences and personal music collections; and

researchers in both music technology-oriented disciplines as well as in more traditional

fields, such as musicology and music theory. This sub-section provides highlights of

some of the ways in which automatic music classification can be of value to such users.

To begin with, automatic music classification is an essential part of many types of

MIR research, as is made clear by an examination of the sub-disciplines of MIR outlined

in Section 1.3.1. Indeed, many important areas of MIR research can be formulated

directly as automatic music classification problems. Tasks such as genre, mood, artist and

composer classification are all examples of this, as are tag prediction and classification by

time period or geographical place of origin.

Many of the MIR research areas associated with musical similarity also use very

similar techniques to those used in automatic music classification. For example, tasks

such as playlist generation, music recommendation, cover song detection and hit

prediction all typically involve many of the same features used in automatic music

classification. Such tasks also typically require the collection and labelling of ground-

truth data and application of machine learning algorithms, albeit sometimes using

unsupervised rather than supervised approaches. The distinction between and relative

advantages of classification-based and similarity-based systems are discussed below in

Section 1.3.5.

Automatic music classification is also essential to many important sub-tasks

associated with a variety of other MIR research areas. Many optical music recognition

systems use classification-based approaches to identify qualities such as the pitch and

rhythmic duration of notes, for example. Automatic music classification techniques are

also often applied to the sub-tasks of automatic transcription, including areas such as

pitch, chord, instrument, tempo, meter and key identification, as well as areas such as

onset detection and segmentation.

Individuals can use a variety of tools based on automatic music classification to

improve their personal musical experiences. For example: music recommendation

systems can help them discover music that they might not otherwise know of; playlist

 42

generation software can customize their music consumption to particular listening

scenarios and moods, as well as reacquaint them with portions of their music collections

that they have unknowingly neglected; visualizations and music interfaces in general can

help them browse their musical collections in new and interesting ways; sophisticated

querying technologies can help them find music that they are looking for but having

difficulty locating; and auto-tagging and classification systems can help them organize

and annotate their music collections.

Musicians and composers can also use automatic classification technology in a variety

of ways. Optical music recognition and automatic transcription software, for example, can

reduce the work required to annotate, arrange, store and publish their compositions.

Interactive accompaniment systems can also be used in concerts, and automatic

classification techniques can open interesting opportunities in the implementation of

artificial intelligence-based composition systems.

These technologies can also have significant pedagogical value when incorporated

into music education software. Such software can detect and track errors in a student

performer’s pitch or rhythm, for example, and can automatically provide them with

custom exercises to improve upon their particular weaknesses. Automatic analysis

systems can also detect errors in student compositions or music theory exercises in order

to help them improve. Score following and interactive accompaniment software can also

accompany student musicians so that they can gain experience playing with other

―musicians‖ when human musicians are unavailable to accompany them. Such systems

can accompany a musician in a much more flexible and adaptive way than simply playing

along with a recording. Automatic transcription systems can also help students annotate

and learn music if they are unable to locate a score for it and have not yet acquired the

skills or do not have the time to do so by ear.

Automatic music classification technologies can also be of great use to audio

engineers and producers, both amateur and professional. The integration of functionality

for tracking pitch and detecting note onsets and track segmentations, for example, have

already significantly facilitated the use of digital editing software, and further

improvements to related automatic transcription-related technologies could help to even

further facilitate the process of editing and mixing music. Source separation functionality

 43

can also be extremely helpful when remixing music or making mashups when multitrack

masters are not available.

Music vendors and producers have long recognized the potential of automatic music

classification-related software, particularly with respect to similarity-related technologies,

and have played an important role in funding much of the early research in this field.

Software that can automatically label their music with various tags greatly decreases costs

associated with hiring people to label their catalogues with metadata. These labels, along

with visualisation technologies, can be essential in helping users search for and browse

on-line music catalogues, particularly as these catalogues have grown in size.

Fingerprinting technology has also been very useful in helping consumers identify music

that they are interested in. Music recommendation technologies have drawn particular

interest in recent years, as they can potentially be very useful in influencing customers to

buy music that they might not otherwise have considered purchasing. There are also

hopes that hit prediction technology can help record companies focus their resources on

developing artists who are the most likely to be commercially successful.

There has been significant interest in similar technologies with respect to intellectual

property rights. Cover song detection, artist identification, automatic music analysis and

similarity analysis systems in general hold potential for use in, and in fact have been used,

in legal cases attempting to determine if copyright infringements have occurred.

Fingerprinting and watermarking technologies have also been proposed for use in

detecting and tracking music piracy.

Libraries and other institutions that archive music have also long been interested in

automatic classification technologies. Software that can automatically classify and label

music with metadata quickly, accurately and consistently can be of particularly great

value to them given their sometimes immense music collections and often limited

budgets. Sophisticated musical querying functionality can also be of significant value, as

it can permit queries based on sung pitches or tapped rhythms, for example, and also

improve the results from queries entered symbolically, such as melodic themes or chord

progressions. Optical music recognition and automatic transcription software can be

especially useful, as it can be used to generate scores in digital form that can be easily

accessed and distributed digitally.

 44

1.3.4 Applying automatic music classification technologies to musicology

and music theory

The use of automatic music classification and musical similarity measurement

technologies in musicological and music theoretical research is something that warrants

special attention. As convincingly argued by Huron (1999), musicological insight and

scientific empiricism can greatly complement one another. It is particularly hoped that

jMIR and other MIR-related technologies and software will help to bridge the gap

between music information retrieval and the musicological and music theoretical research

communities by placing powerful tools for performing large-scale automated feature

extraction and machine learning at the latter’s disposal. Musicologists and music theorists

can in turn apply these tools to their research and provide feedback that can be used to

enrich and improve these tools based on their musical expertise and experience.

An important factor contributing to the general relevance of MIR tools to music

research in the humanities is the increasing availability of musical source materials in

digital form. Libraries and archives are continually digitizing both scores and audio

recordings, and are increasingly making the results and the related metadata available to

researchers online. As noted by Huron (1999), the discipline is going from a ―data-poor‖

field to a ―data-rich‖ field. This is making wide-ranging empirical studies possible to an

extent that was not previously feasible.

Although an expert human can certainly analyze one or several musical pieces with

far more insight and understanding than a computer, such experts are limited in the

number of pieces that they can analyze in a reasonable amount of time and in the range of

musics that fall within the scope of their individual expertise. A computer, in contrast, can

process huge quantities of diverse music many times faster than a human with perfect

consistency. More specifically, feature extraction and pattern recognition techniques can

successfully be applied to many varieties of art, popular and folk musics from various

parts of the world, including those musics that do not have established theoretical

frameworks.

The musical breadth permitted by research software that can very quickly process

many thousands of musical works can reveal hidden musical insights and regularities that

might not be apparent from studying just a few pieces, and can additionally allow one to

 45

empirically verify the validity of existing theoretical frameworks (e.g., Gingras and

Knopke 2005). This can lead to important theoretical refinements and corrections, as well

as inspire entirely new approaches and perspectives. Although traditional manual

musicological or theoretical studies involving only a few pieces of music are certainly

worthwhile and can be of value in increasing one’s understanding of those specific pieces,

the validity of generalized conclusions drawn from such research must of necessity

remain in doubt until verified using much larger collections of music. The practice of

making effectively unverified generalizations based on only a few musical examples was

understandable in the past, given the lack of alternatives due to the relatively limited

access to musical literature and the time constraints imposed by manual analysis.

Computers and digitized music collections have now removed these constraints, however,

making scientifically and statistically valid studies feasible and, one might argue,

imperative to the advancement and validation of musicological and music theoretical

scholarship.

Software utilizing sophisticated feature extraction and pattern recognition techniques

and technologies can help to greatly expand upon the research benefits offered by more

conventional music analysis software tools, such as Humdrum (Huron 2002). Analysis

tools like Humdrum essentially serve as aids simply allowing theorists and musicologists

to automate the types of tasks that they have traditionally performed manually, rather than

allowing the application of fundamentally new approaches. Also, the application of

traditional analysis software has typically incorporated assumptions that, whilst

appropriate for the limited studies for which they were intended, nonetheless ultimately

limit the types of music to which they can be applied. Of course, this is in no way meant

to diminish the worth of such tools and approaches, as they are of proven value. They

offer a number of benefits that pattern recognition tools do not, just as pattern recognition

tools offer advantages that traditional analysis software tools do not.

Ideally, one would like to have a single software system that could be applied to

classical music, jazz and a wide variety of popular and traditional musics, including

cross-disciplinary studies that span diverse types of music. Furthermore, one would like

to be able to use this software without needing to make any manual adjustments or

adaptations in order to deal with different types of music. The types of feature extraction

 46

and pattern recognition techniques associated with automatic music classification make

this possible. As noted above, musical research involving modern machine learning

algorithms has the benefit of providing researchers with a fresh perspective on music, as

models learned by such algorithms can avoid the potentially misleading ingrained

assumptions and biases that humans invariably develop, despite their best efforts. Human

researchers might unconsciously reject potentially valuable paths of inquiry because of

such prejudices, whereas a computer would not.

In order to demonstrate the potential benefits of automatic music classification and

similarity measurement-related technologies to musicological and music theoretical

research, it is helpful to begin with a simple example. Consider a feature that measures

the prevalence of parallel fifths in a piece. This feature could be input to a clustering

algorithm, which would organize compositions into groups based on how often parallel

fifths occur. One would expect the music of J. S. Bach, for example, to be clustered into a

group with few or no parallel fifths, and the music of Green Day to be clustered into a

group with many parallel fifths. If the clustering algorithm consistently segments musical

examples along these lines, then this would confirm certain theoretical models concerning

the differences between Baroque counterpoint and the types of chord progressions and

voicings found in Punk music. If not, then this would lead one to question these same

models. Additional types of music, such as Jungle electronic dance music, Romantic

symphonies or Irish jigs, for example, could also be input to the model to see how they

compare to other types of music with respect parallel fifths.

This example is, of course, very simplistic, and conventional analysis tools such as

Humdrum could just as easily be used to perform equivalent tasks. However, the

usefulness of such automatic music classification and similarity-based approaches

becomes apparent when one considers less trivial examples where one considers hundreds

of musical features and the potentially very complex ways in which they interrelate with

one another, rather than just one feature. One will no longer have such clear expectations

of how different types of music will be clustered or classified when many different

features and types of music are under consideration, nor will it likely be practically

feasible to manually formalize relationships between musically meaningful features and

 47

particular groups of music using conventional analysis techniques with any empirically

verifiable validity.

It is clear that considerations relating to harmony, rhythm, melody, texture, dynamics,

instrumentation and other factors are all essentially intertwined. A certain melody in a

given harmonic context might be appropriate only when certain notes are played softly,

for example, or perhaps only when certain notes fall on weak beats. A certain chord

voicing might sound better using a particular instrumentation than another. Skilled

musicians and composers clearly intuitively incorporate such knowledge into their work,

but it is rarely clearly and unambiguously specified in formal theoretical models, largely

because of the difficulties discussed above. Any attempt to isolate one set of musical

parameters from all others, while traditionally necessary to make possible any meaningful

analysis at all, nonetheless comprises the completeness, scope and validity of the resultant

theoretical models due to the associated failure to consider music in its full holistic sense.

It is also important to consider the issue of how one might represent and analyze the

output of a feature extraction system that includes dozens or hundreds of dimensions.

Even traditional statistical co-occurrence and correlation-based analyses are limited in

how well they can represent such data in ways that are musically meaningful when

compared to what can be achieved by the more sophisticated statistical techniques

associated with machine learning-related dimensionality reduction, classification and

clustering. Such techniques allow high-dimensional information to be meaningfully and

conveniently represented in low-dimensional spaces as self-organized clusters or

specifically labelled categories. Some machine learning techniques, such as decision tree

algorithms, also allow empirically learned rules and dependencies to be examined

directly.

Of course, traditional manual and computer query-based analysis techniques have not

typically involved hundreds of features such as this, perhaps precisely because of these

problems. As a consequence, ultimately undesirable simplifications have often been

unavoidable in the past with respect to the number of musical characteristics considered

simultaneously. As noted above, however, this past necessity does not mean that such

simplifications should be propagated now that more powerful alternatives are made

available by pattern recognition-based technologies.

 48

So, it is clear that approaches based on machine learning techniques have a number of

important advantages over manual or conventional computer-aided analyses: the ability to

consider many musical variables and the dependencies between them at once; the

elimination of the necessity of explicitly formalizing, often subjectively, the types of

relationships between musical characteristics that one wishes to compare ahead of time;

the avoidance of potentially invalid theoretical assumptions and simplifications; the

ability to very quickly study huge and diverse collections of music; and the ability to

represent the results of sophisticated processing in relatively simple and easy to

understand ways. It is particularly important to reemphasize that machine learning

algorithms can help to avoid the biases that humans inevitably develop, despite their best

efforts to remain objective. The fresh perspective offered by machine leaning-based

processing can thus provide human researches with valuable ideas, insights and

inspiration that they can then build on.

It is important to stress once again that it is recognized here that machine learning is a

substitute neither for human researchers nor for traditional analysis software like

Humdrum. It is highly improbable that a computer will independently evolve any perfect

musical model on its own. The great amount of generalized musical knowledge,

experience and understanding that human experts have available to them, as well as their

human intuition, certainly allows them to achieve results in musicological and music

theoretical studies that would be missed by computers. Furthermore, the human

perception of music is really the only fundamental truth of significance when one is

considering music, and this is ultimately what machine learning-based systems should

model, even if indirectly.

The arguments above do, however, demonstrate the very significant value of machine

learning-based musicological and music theoretical research as an important supplement

to manual human research, particularly with respect to exploratory research and

verification of theoretical models on larger and potentially broader musical datasets than

could feasibly be studied by a human expert. Pattern recognition techniques can reveal

insights that might otherwise be obscured, and can perturb human researchers out of

ideological ruts that they may have fallen into.

 49

It is also possible to use data generated by automatic classification systems to perform

research into how we construct the notion of musical similarity and form musical

groupings. Automatically generated feature weightings can be used as experimental data

providing some indication of the relative importance of different features in

distinguishing between particular classes. Genre classifiers, for example, can be used to

gain experimental insights into what characteristics are important in distinguishing

between particular genres and how these characteristics vary (McKay and Fujinaga

2005a). Classification results can be used to support sociological and psychological

research into how humans construct the notion of musical similarity and form musical

groupings, and how this compares to the ―objective‖ truth produced by computer-based

classifiers.

There are also a number of more specific ways in which automatic music

classification-based technologies can be useful to music researchers. To provide a

practical example, such technologies can provide more effective and sophisticated

querying software that can be very useful in helping researchers find particularly pertinent

musical material even when performing manual analyses or studies.

Optical music recognition and automatic transcription technologies also allow digital

symbolic representations of music to be made available to them in cases where physical

scores may be rare and hard to come by or, in the latter case, if only audio recordings are

available. This can be particularly useful when studying types of music with no written

tradition as well as for analyzing performance practices that are not typically encapsulated

by traditional symbolic representations.

There are also a number of very direct applications of automatic music classification

in musicology and music theory. One might, for example, train classifiers to recognize the

work of particular composers, and then use the trained classifiers to attempt to determine

if compositions whose authorship is unknown are in fact likely to belong to be the work

of one of these composers. One could also use such systems to detect and classify

particular musical devices and stylistic characteristics in association with particular

composers, time periods, geographical locations, styles and so on.

 50

1.3.5 Comparing musical classification and similarity measurement

Automatic music classification and musical similarity measurement are sometimes

treated as entirely separate sub-disciplines in the music information retrieval literature,

and are sometimes treated very similarly. This emphasizes the varying opinions as to the

links between these two approaches and the relative appropriateness of each of them to

various types of tasks. It is therefore useful to clarify the differences between them, as

well as to discuss their relative strengths and advantages.

In the case of classification, the essential problem is to fit each instance into one or

more appropriate classes found in a pre-existing class ontology. Similarity, in contrast,

does not make any a pirori assumptions about the existence of such a class ontology, or

even necessarily of classes at all. Similarity-based research attempts to arrive at some

measurement of similarity between instances that indicates how strongly each instance is

related to each other instance, without reference to an external structure.
8

For example, genre and artist identification are clearly classification problems, as

pieces of music are classified into pre-existing genre or artist classes, respectively. In

order to perform such tasks, one must first have candidate genre or artist classes to which

each instance can be mapped. Applications like music recommendation and playlist

generation, in contrast, are typically posed as similarity problems. One must respectively

recommend music to a listener based on its similarity to what he or she is known to like

or choose music that would go well together because it is sufficiently similar or, in the

case of playlists that emphasize variety, dissimilar. The decision of whether to

recommend a particular piece or place it on a particular playlist is thus typically made

based on its similarity with other pieces music, not on what classes it belongs to.

Having noted this, it is possible to pose certain problems as either classification or

similarity problems. For example, mood extraction could be treated either as a

classification problem, where the mood of a piece is associated with one or more

candidate mood classes or, less commonly, as a similarity-based clustering problem,

where features are chosen such that the music is grouped based on mood-related

considerations. To give another example, even though playlist generation is typically

8
 It is certainly possible, however, to derive class or other structures from similarity measurements. For

example, one can derive discriminants separating classes defined by groups of similar instances that are

well clustered in similarity space.

 51

posed as a similarity problem, as noted above, it could also be treated partially as a

classification problem where piece is classified into listening scenario and/or mood

classes. An appropriate listening scenario or mood could then be chosen for the playlist,

and then only pieces with appropriate scenario or mood labels would be considered for

inclusion on the playlist. Even music recommendation could theoretically be treated as a

classification problem with two classes, where one class is recommend and the other is

not recommended.

Indications have been found in some psychological research that there may be a very

strong link between the processes used by humans to measure similarity and to classify

instances. As noted in Chapter 2, exemplar-based models of human classification in

particular are generally based upon the assumption that humans classify each instance that

they observe by measuring its similarity to exemplars that they have stored in an

internalized similarity space.

There is often a significant overlap in the techniques and technologies used in

automatic classification and in similarity measurement. For example, similar features are

often extracted and used for both. Machine learning techniques are often used for both as

well, although classification research usually involves supervised learning and similarity

is more likely to involve unsupervised learning.

Having noted there are certainly important links between automatic classification and

similarity measurement, there can also be important differences between them. One may

not have any good-quality class ontology, for example, or it may be impossible or

inappropriate to apply one to a given problem, in which case a similarity-based approach

is clearly appropriate. Alternatively, one might be interested in associating instances with

particular labels, in which case a classification-based approach would be much better.

jMIR is designed specifically to perform automatic music classification. This

emphasis on classification is a bit of a deviation from the general momentum of MIR

research, which has in recent years tended to emphasize similarity research over

classification research, although a significant amount of research on the latter is certainly

still performed.

Commercial software has also tended to focus more on similarity in recent years,

particularly as the industry has come to place more importance on tasks such as music

 52

recommendation, playlist generation and hit production over more traditional

classification tasks. Part of this is because such similarity-related applications most

strongly facilitate the ultimate goal of commercial software, which is to sell music; part of

it is because some classification problems have essentially been solved, such as

fingerprinting; part of it is due to the fact that that problems such as genre or artist

classification have turned out to be more difficult to perform successfully and to scale

than initially anticipated; and part of it is because there seems to be a common belief in

industry that similarity-based music selection and browsing have a greater appeal to

listeners than more classification-oriented querying approaches to retrieving music.

It is argued here that, contrary to this recent tendency to emphasize similarity over

classification, classification does in fact have a number of important benefits over

similarity with respect to a variety of important research tasks and domains. It is also, of

course, recognized that similarity can also have its own advantages with respect to other

tasks and research domains. In essence, research in both areas can be very helpful, and

can each be more or less applicable to different problems. Since it has been proposed by

some strong proponents of similarity research that classification research should be

abandoned in favour of similarity, however, it is appropriate to briefly emphasize some of

the relative strengths of classification.

Genre classification in particular serves as a good example to center this discussion

around,
9
 as it is one of the most difficult and inherently ill-defined kinds of classification,

and thus particularly subject to criticism with respect to its usefulness. It has been

suggested by some that genre is a hopelessly ambiguous and inconsistent way to organize

and explore music, and that users’ needs would be better addressed by abandoning it in

favour of more general similarity-based approaches. Those adhering to this perspective

generally hold that genre classification is only a subset of the broader and, to them, more

meaningful similarity problem, and that genre classification is only worth pursuing as an

initial stage of research where features and pattern recognition algorithms can be

developed, compared and refined in preparation for a more general similarity-based

approach.

9
 McKay and Fujinaga (2006) present a more detailed discussion of the relative strengths and weaknesses of

genre classification and more similarity-based approaches.

 53

Although it is certainly true that genre classification is related to similarity in a variety

of ways, genre has a strong association with culturally determined and defined classes, as

discussed in Chapter 2. This association to external classes suggests that there is more to

genre than simple similarity. Even similarity measurements that involve cultural features

such as playlist co-occurrence tend to be based on individual preferences rather than

genre’s more formal and general cultural characteristics. In essence, the query ―find me

something like this (relatively small) set of recordings‖ is intrinsically different from

―find me something in this generally understood genre category,‖ which could encompass

a potentially huge set of recordings and that is based on culturally determined categories

rather than more content-oriented or individually defined notions of similarity.

Furthermore, although browsing and searching by genre is certainly not perfect—and

alternatives are always worth researching—end users are nonetheless already accustomed

to browsing both physical and on-line music collections by genre, and this approach is

proven to be at least reasonably effective. A relatively recent survey, for example, found

that end users are more likely to browse and search by genre than by recommendation,

artist similarity or music similarity, although these alternatives were each popular as well

(Lee and Downie 2004). Resources such as the AllMusic Guide,
10

 which use labelled

fields such as genre, mood and style, are also commonly used, while alternative

similarity-based interfaces have yet to be as widely adopted by the public, despite the

significant research and commercial attention that they have been given. MIR researchers

and software developers should avoid adopting a patronizing approach where they insist

that end users abandon a form of music retrieval for which they have a demonstrated

attachment and which they find to be useful.

Categories such as genre also have significant importance beyond simply their utility

in organizing and exploring music, and should not be evaluated solely in terms of

commercial viability. For example, classification-oriented labels such as genre and mood

have the important advantage that they provide one with a vocabulary that can be used to

easily, efficiently and effectively discuss musical categories. Conversations concerning

more general notions of similarity, in contrast, are quickly limited by the lack of such a

vocabulary and the necessity of making frequent references to musical examples in order

10

 www.allmusic.com

 54

to make oneself understood. Moreover, such discussions can be unclear in terms of which

dimensions of similarity are being considered with respect to the musical examples that

are used.

Furthermore, many individuals actively identify culturally with certain genres of

music, as can easily be observed in the divergent ways in which many fans of Death

Metal, Classical Music or Rap dress and speak, for example. Genre is so important to

listeners, in fact, that psychological research has found that the style of a piece can

influence listeners’ liking for it more than the piece itself (North and Hargreaves 1997).

Additional psychological research has also indicated that categorization in general plays

an essential role in both music appreciation and cognition (Tekman and Hortacsu 2002).

Research in classification can also provide valuable empirical contributions to the

fields of musicology and music theory in ways that are distinct from the also valuable

contributions offered by similarity research. Research that forms correlations between

particular cultural and content-based characteristics and particular categories and

ontological structures, for example can have important musicological and music

theoretical significance.

Once one accepts the usefulness to listeners and music consumers of categories such

as genres, then the advantages of automatically classifying recordings stored in large

music databases becomes clear. This is particularly true given the difficulty and time

requirements associated with manually labelling the huge and rapidly growing musical

databases that are becoming increasingly common, as noted above.

One of the most common criticisms of genre classification systems, and classification

systems in general, is that high-quality ground-truth can be difficult and expensive to

label properly, with the consequence that the quality of trained classification models and

the metrics used to evaluate them is compromised. However, it is important to point out

that similarity measurement has many of its own problems related to ground-truth

ambiguity and subjectivity, particularly when it comes to evaluating systems and

comparing their performance. Indeed, problems in objectively and consistently evaluating

the quality of similarity measurements are probably even greater than those associated

with classification. It is therefore inconsistent to promote similarity as a superior

 55

alternative to categorical classification specifically because of problems relating to

ground-truth.

Ultimately, research in both classification and similarity can be very useful, and

neither should be neglected. Furthermore, as noted in above, there is a strong

correspondence between the component tasks that must be addressed in order to perform

either automatic music classification or similarity measurement. These include areas such

as ground-truth collection and labelling; feature design and selection; and the application

and training of machine learning algorithms, be they supervised or unsupervised.

The jMIR applications are thus very much applicable to certain aspects of similarity

research as well as to classification research. For example, jAudio, jSymbolic and

jWebMiner can be used to extract features from datasets such as Codaich, SAC and

Bodhidharma MIDI, which have had their metadata validated by jMusicMetamanager,

and these extracted features can serve as the basis for similarity research just as much as

they can for classification research.

1.3.6 Existing non-academic systems

This section highlights prominent commercial and other non-academic software

systems and services that utilize or provide technologies associated with automatic music

classification. A particular emphasis is placed on systems providing APIs that can be used

in research projects. A great many companies have designed systems associated with

various aspects of similarity and automatic music classification, so for the sake of brevity

this section focuses only on systems that are particularly well-established or have

significant value with respect to performing original automatic music classification

research. More details on other more specialized systems are presented in the chapters of

this dissertation that are the most directly related to them.

As noted above, commercial systems in general have tended to focus more on

similarity-based tasks than on more structured classification problems. This is likely

because music recommendation in particular has long been seen as an area with

significant potential profitability because of its ability to increase electronic music sales

by making the long tail
11

 accessible to consumers and to promote music in general. This

11

 In the context of music, the ―long tail‖ refers to types of music that each have a small market share, but

which are significant in aggregate (Anderson 2006).

 56

has also helped to motivate work in other similarity-related areas, such as playlist

generation, which can be useful in generating advertising revenue and subscription fees

from personalized Internet radio stations. A number of companies have also used their

services as a tool for collecting extensive valuable data associated with their users’

listening and tagging behaviour.

Fortunately for the MIR research community, several commercial entities have been

kind enough to make their data and/or tools available for free via web services.
12

Unfortunately, very few of these companies publish open-source code, with the result that

developers may use their tools only as ―black boxes.‖ Although there are therefore no

guarantees as to how long these resources will continue to be available, they have already

been used to great benefit by many MIR researchers and music developers in general.

Amazon
13

 was one of the first companies to provide automated recommendation

services to the public at large. In addition to offering basic search functionality, this on-

line retailer provides two primary tools that users can use to access music. The first

involves browsing through hierarchically organized genre or ―subject‖ categories, and the

second involves recommendations based on music that other customers with similar

buying histories have purchased. The former approach involves manually classified

music, and is thus not directly relevant to automatic music classification. The latter

approach essentially consists of collaborative filtering, a strategy that has a number of

significant weaknesses, as discussed in Section 5.2.4. Nonetheless, the huge wealth of

data available to Amazon has made this feature at least somewhat effective, and at the

very least it is likely good at promoting impulse purchases. Amazon provides access to

much of its data via web services.
14

MoodLogic was one of the first recommendation engines dedicated specifically to

music. Unfortunately, it has been inactive since 2003, although it has been absorbed by

the Rovi Corporation,
15

 who may integrate its technology into the All Music Guide.
16

 The

original MoodLogic approach consisted of building a database of song profiles based on

12

 ―Web services‖ are resources available on-line that can be accessed by software via standardized

interfaces.
13

 www.amazon.ca
14

 aws.amazon.com
15

 www.rovicorp.com
16

 www.allmusic.com

 57

the ratings of users that could then be used to classify and recommend music. In

particular, class types such as genre, mood and ―perceived energy‖ played an important

role. Fingerprinting was used to identify songs in users’ collections so that metadata could

be downloaded from the MoodLogic database. Each user was provided with a certain

number of ―credits‖ that they could use to access song profiles, and further credits could

be obtained by profiling songs themselves or by paying.

Pandora
17

 is a well-known Internet radio station that integrates automatic music

recommendation technology. Unfortunately, Pandora no longer allows access to its

services outside of the U.S.A. due to licensing constraints. Pandora is built upon the

Music Genome Project (Joyce 2006), which was an effort to describe music with vectors

consisting of hundreds of ―genes‖ or ―musical attributes‖ describing each song. Each

gene describes some characteristic of the music, such as ―gender of lead vocalist,‖ ―level

of distortion on the electric guitar‖ or ―type of background vocals.‖ These genes can then

be used to rank similarity using a distance function. Although the process of

recommendation is fully automated, the manual annotation of each song can be a very

expensive process.

Users of Pandora can either listen to general genre-based stations, or they can seed

their own station with songs or artists of their choice. Listeners can respond to each song

presented to them negatively or favourably, which helps refine their station and allows

Pandora to collect additional information that can be used to integrate a collaborative

filtering element into their recommendation algorithm.

Last.FM
18

 is another high-profile Internet radio station that is integrated with a music

recommendation engine. Unlike Pandora, Last.FM focuses on a collaborative filtering

approach. Although this does suffer from the same problems of all collaborative filtering,

Last.FM has the significant advantages over Amazon’s approach of focusing on detailed

listening behaviour rather than on purchasing behaviour; of focusing on song-by-song

data rather than album-based data; and of using social networking functionality to

facilitate the collection of valuable user data, such as personal recommendations and user

tags. Last.FM has been particularly proactive and helpful in providing access to their data

17

 www.pandora.com
18

 www.last.fm

 58

through a powerful web services API.
19

 This API has been used by many MIR

researchers in their own work.

Musicovery
20

 is another interactive web radio station that also provides interesting

visual musical maps. It allows users to search for stations by entering artist names as well

as by entering filtering metadata relating to mood, tempo, danceability, genre and time

period.

Apple incorporated an automatic playlist generator called the ―Genius‖ into its iTunes

media player,
21

 iPods and iPhone in 2008. This feature received a great deal of publicity,

although responses to it have been mixed. Although the details of the algorithm have not

been publicly released, it appears that individual pieces in a user’s music collection are

identified based on audio fingerprints, and collaborative filtering oriented information

such as user ratings and skip counts are then used to generate short playlists from the

user’s collection based on a single seed song provided by the listener. iTunes can also

generate ―Genius Recommendations‖ consisting of songs that are judged to be similar to

a seed song by the Genius but are not in the user’s music library.

Sun Microsystems has been involved in a number of research projects associated with

music browsing and recommendation, namely the Search Inside the Music project

(Lamere and Eck 2007) and the Music Explore FX.
22

 Both of these allows users to

explore music based on similarity, with the former emphasizing graphical browsing

spaces and the latter presenting music in more conventional clusters that incorporate the

notion of ―hotness‖ and ―familiarity.‖

The now inactive Sony Cuidado (Pachet et al. 2006) system also focused on providing

users with convenient browsing interfaces, although with more of an emphasis on

traditional metadata-based filtering than the Sun systems. Cuidado collected metadata

from users and also extracted and predicted it using automatic music classification

technology.

The above examples are just a few of the many commercial browsing,

recommendation and playlist generation systems that have been released, some of which

19

 www.last.fm/api
20

 musicovery.com
21

 www.apple.com/itunes/
22

 blogs.citytechinc.com/sanderson/?p=105

 59

are no longer active, and some of which have proven themselves to be commercially

successful. Many of these are excellent systems, and most operate on some combination

of collaborative filtering, manually edited metadata and content-based audio analysis.

Most also operate using the same basic business models, which is to say they typically

offer some combination of Internet radio, musical social networking and personal music

collection filtering and organization to gain revenue from advertising, relayed music sales

and data collection. Additional examples of such systems include Audiobaba,
23

 Critical

Metrics,
24

 ExploreMusic,
25

 The Filter,
26

 Grooveshark,
27

 MediaUnbound,
28

 MusicStation
29

and Slacker Personal Radio.
30

The types of software tools mentioned above present users with many new and

powerful ways of accessing and discovering music. Although the public at large has not

yet taken full advantage of such tools, they do have a great deal to offer and can

potentially have a significant impact on listening behaviour and music consumption. It is

worth noting that a number of scholars have provided important and insightful

observations on related social, cultural and commercial issues, such as Anderson (2006),

Jennings (2007) and Moscote Freire (2007).

As noted above, there are a number of commercial systems that make musical data or

processing functionality available to developers and researchers via web services.

Last.FM and Amazon have already been credited for the valuable services that they

provide to the MIR community, and there are certainly others as well.

The Echo Nest
31

 has been particularly proactive in providing powerful tools via their

API.
32

 Although the processing itself is closed source, as are almost all of the systems

discussed in this section, it does provide extensive functionality for analyzing, retrieving

metadata, and processing music. Several useful third-party libraries and tools have also

been developed using the Echo Nest API.

23

 www.audiobaba.com
24

 criticalmetrics.com
25

 www.exploremusic.com
26

 www.thefilter.com
27

 listen.grooveshark.com
28

 www.mediaunbound.com
29

 www.omnifone.com
30

 www.slacker.com
31

 echonest.com
32

 developer.echonest.com

 60

Yahoo! Music
33

 provides access to a huge amount of musical information via their

Music API.
34

 Yahoo! also offers many other APIs
35

 that may be used for musical data

mining, including the Yahoo! Search Web Services,
36

 which provides access to general

Yahoo! search functionality, and Flickr Web Services,
37

 which may be used to access

images relating to music. Google
38

 also offers several APIs
39

 that may be adapted to

musical applications, including a YouTube API.
40

MusicBrainz
41

 offers a fingerprinting service that allows users to access its huge

recording metadata database using web services.
42

 Of particular interest, MusicBrainz

takes the rare step of making some of its developer tools open-source. MusicBrainz is

associated with FreeDB,
43

 a database of CD track listings, which also has its own API.
44

Gracenote
45

 also offers access to a huge quantity of recording metadata via fingerprinting,

but its developer API
46

 offers limited benefits relative to MusicBrainz if one does not

purchase a commercial licence from Gracenote.

There are also several sites that make lyrics available via web services. Of particular

interest, Lyrcisfly
47

 and LyricWiki
48

 allow developers to download lyrics and associated

metadata via, respectively, URL querying
49

 and a SOAP-based API.
50

Discogs
51

 is a community-built database of musical metadata. Although the range of

fields that it offers are somewhat limited, its data is extensive and consistently formatted.

33

 new.music.yahoo.com
34

 developer.yahoo.com/music/
35

 developer.yahoo.com/everything.html
36

 developer.yahoo.com/search/
37

 developer.yahoo.com/flickr/
38

 www.google.com
39

 code.google.com/more/
40

 code.google.com/apis/youtube/overview.html
41

 musicbrainz.org
42

 wiki.musicbrainz.org/Products
43

 www.freedb.org
44

 www.vbaccelerator.com/home/VB/code/vbMedia/Audio/CD_Tracklistings/article.asp
45

 www.gracenote.com
46

 doors.gracenote.com/developer/
47

 lyricsfly.com
48

 lyrics.wikia.com
49

 lyricsfly.com/api/
50

 lyrics.wikia.com/LyricWiki:SOAP
51

 www.discogs.com

 61

More significantly from an MIR perspective, it also makes this data available via an

API.
52

Billboard
53

 has made information associated with their historical sales charts available

to developers as well.
54

The BBC
55

 has made a significant amount of musical information available, in their

case via a RESTful framework.
56

 Of particular interest, they have integrated their

information with MusicBrainz and Wikipedia. In the U.S.A., National Public Radio
57

 has

made information associated with their radio stations available via an API.
58

 YES.com
59

also tracks playlist information from commercial radio stations in the U.S.A. and makes

this information via an API.
60

Gigulate
61

 is a music news aggregator, with a particular emphasis on tracking concert

dates. This data is made available via an API.
62

 Songkick
63

 also has an API
64

 that gives

one access to information on live performances. Idiomag
65

 provides access to musical

articles, as well as multimedia content, via an API.
66

There are also a number of more general-purpose sites that have useful APIs from the

perspective of MIR. For example, Wikipedia has an API,
67

 although it is relatively under-

documented. Freebase
68

 also makes its data available via web services.
69

 Although the

data available through Freebase is not as extensive as that accessible via Wikipedia

directly, it is more structured and its API provides better access to it. DBPedia
70

 also

provides structured access to Wikipedia data.

52

 www.discogs.com/help/api
53

 www.billboard.com
54

 developer.billboard.com
55

 www.bbc.co.uk
56

 www.bbc.co.uk/music/developers
57

 www.npr.org
58

 www.npr.org/api/
59

 www.yes.com
60

 api.yes.com
61

 gigulate.com
62

 gigulate.com/api/
63

 www.songkick.com
64

 developer.songkick.com
65

 www.idiomag.com
66

 www.idiomag.com/api/
67

 en.wikipedia.org/w/api.php
68

 www.freebase.com
69

 www.freebase.com/docs/web_services
70

 dbpedia.org

 62

Some general social networking sites also offer powerful APIs that can be used to

access music-related data, even though they do not focus on musical applications in

particular. Examples of such APIs include MySpace,
71

 Twitter,
72

 and Facebook,
73

 with

MySpace’s API in particular offering some specialized musical functionality. iLike
74

 also

has a Facebook application for sharing musical information, and it has an API.
75

BLIP.fm
76

 is a more specialized social service that allows users to register as ―DJs.‖

Each DJ may submit songs packaged with short textual comment, known collectively as a

―blips.‖ DJs may also submit a limited number of ―props‖ to other DJs who they feel have

submitted good blips. Those DJs who receive many props gain prestige as well as the

ability to issue additional props. From an MIR perspective, this process produces rich

data that BLIP.fm has made available via an API.
77

PeoplesMusicStore
78

 is an on-line retailer that allows users to serve as ―storekeepers‖

who each promote artists of their choosing via metadata entries and recommendations to

others. Users can purchase music by discovering it through the promotional efforts of

storekeepers, with the result that the recommending storekeeper receives points earning

prestige and credit with which they can purchase music themselves. This generates useful

data from an MIR perspective, which can be accessed via the PeoplesMusicStore API.
79

Although popular music is available at the PeoplesMusicStore, the focus is on lesser-

known music. SoundCloud
80

 and its API
81

 also emphasize music that is not as well

known. Music released under Creative Commons licensing can also be accessed from the

Free Music Archive
82

 and its API.
83

71

 developer.myspace.com/community/
72

 apiwiki.twitter.com
73

 developers.facebook.com
74

 www.ilike.com
75

 www.ilike.com/developer/signup
76

 blip.fm
77

 api.blip.fm
78

 peoplesmusicstore.com
79

 wiki.github.com/peoplesmusicstore/api
80

 soundcloud.com
81

 soundcloud.com/api
82

 freemusicarchive.org
83

 freemusicarchive.org/api/docs/

 63

Spotify
84

 is a music streaming service that provides APIs
85

 that allow developers to

access both streamed audio and metadata. Listiply
86

 also provides a way of accessing

Spotify playlists. Rhapsody
87

 is a subscription-based streaming on-demand music service

that also offers an API
88

 providing access to some of its data. 7digital
89

 is another

company that focuses on selling and delivering multimedia content, including music. It

has an API
90

 that can be used to access its catalogue, including tags, although it does not

promote it strongly for public use.

Playdar
91

 is a system allowing users to search various locations for music based on

metadata tags. It has a simple HTTP API,
92

 and it is possible to write plug-ins for it.

As noted above, only a few commercial systems have focused specifically on music

classification, and when they do it tends to be only in combination with similarity-based

methods, such as in the case of Cuidado. This is unfortunate, as many music consumers

still do seek music using categories like genre and artist name (Lee and Downie 2004). As

a consequence, music retailers continue to organize their music by category, whether they

are brick and mortar stores like HMV or Walmart, or on-line stores like Amazon and

iTunes. This requires a significant amount of overhead, due to the costs of manual

classification and metadata entry. Similarity-oriented services based on manually edited

data, such as Pandora, could also benefit from classification technology that could predict

appropriate tag values automatically.

Fortunately, significant work has been done in academic contexts that is more directly

related to music classification, and less exclusively focused on similarity-based tasks.

Moreover, many academic systems have the significant advantage from a research

perspective of being open-source.

84

 www.spotify.com
85

 developer.spotify.com
86

 www.listiply.com
87

 www.rhapsody.com
88

 webservices.rhapsody.com
89

 ca.7digital.com
90

 www.7digital.com/api
91

 www.playdar.org
92

 www.playdar.org/api.html

 64

1.3.7 Existing academic systems

This section highlights existing academic software tools that have been developed for

performing research in automatic music classification. There are a great many tools that

have been developed for specialized types of music classification, or for performing

specific sub-tasks associated with music classification, so this section focuses only on

those tools that are intended for general-purpose music classification or are particularly

well-established. More details on these systems and on more specialized systems that are

omitted here can be found in the chapters of this dissertation that are most directly related

to them.

Some of the earliest audio analysis systems were developed for application to speech

rather than music. Nonetheless, some of these tools do have a number of analysis,

visualization and statistical tools that can be usefully applied to certain MIR research

tasks. WaveSurfer (Sjölander and Beskow 2000) is an open-source tool that can be used

to visualize audio and extract simple features from it. Praat (Boersma and Weenink 2009)

is another system originally intended for speech that allows one to analyze, synthesize

and manipulate audio.

Marsyas (Tzanetakis and Cook 2000) is a pioneering C++ system that played an

essential role in popularizing automatic music classification in general and audio analysis

in particular in the MIR community. Marsyas emphasizes audio information extraction

and processing, and also includes machine learning functionality.

Music-to-Knowledge, or M2K (Downie, Futrelle and Tcheng 2004), is a graphical

patch-based system implemented in Java. It is designed to be applied to a broad range of

applications, including machine learning and feature extraction, and is a powerful tool for

prototyping new systems or integrating existing systems.

M2K makes use of the D2K distributed processing framework, something that is both

a strength and a weakness. D2K allows M2K to process tasks using many computers

simultaneously, and also provides good classification libraries and a flexible GUI

framework. Unfortunately, D2K’s licence can make it complicated for researchers outside

of the U.S.A. to gain legal access to it, and D2K still has a number of unresolved bugs,

something that can be particularly problematic since not all of D2K is open-source.

 65

Fortunately, a descendant of M2K is currently being implemented using SEASR, or

the Software Environment for the Advancement of Scholarly Research (Llorà 2008), as

an alternative to D2K. SEASR offers more functionality, is more reliable and is less

limiting than D2K. This is being done as part of the NEMA project.
93

MIDIToolbox (Eerola and Toiviainen 2004) and MIRToolbox (Lartillot, Toiviainen

and Eerola 2008) are powerful modular Matlab toolboxes for visualising, extracting

information from and processing symbolic and audio data, respectively. These systems

include cognitively inspired analytical tools relating to melodic contour, similarity, key-

finding, meter-finding, segmentation and other high-level musical analysis. These tools

can be very useful for rapidly prototyping new systems, but can pose a barrier to users

without a strong signal processing and coding background, or who do not have access to

Matlab.

CLAM (Amatrain, Arumi and Ramirez 2002; Amatriain and Pau 2005; Arumi and

Amatriain. 2005) is a well-known audio analysis system implemented in C++. It includes

extensive functionality for processing, synthesizing and visualizing audio, as well as for

extracting certain features. Although the software can pose initial obstacles to non-

specialist users who wishes to quickly extract features or design new features, its

powerful functionality makes it worth the effort, and it can be an effective tool for

application building.

Sonic Visualiser (Cannam et al. 2006) is a system for visualizing audio data in a

variety of ways, and also allows one to extract certain features from the audio. This

software can be applied to a wide variety of MIR tasks, including automatic music

classification. Sonic Annotator
94

 is an associated command-line program that can be used

to batch extract features from audio files and publish them to the semantic web in RDF

form. One of the important advantages of Sonic Visualiser and Sonic Annotator is their

incorporation of Vamp
95

 plug-in functionality. Vamp is an external API that can be used

to add functionality to compatible software for processing audio in various ways. Sonic

Visualiser, Sonaic Anotator and the Vamp plug-in format are all implemented using C++,

although it is also possible to implement Vamp plug-ins in Python.

93

 nema.lis.uiuc.edu
94

 www.omras2.org/SonicAnnotator
95

 www.vamp-plugins.org

 66

Work has also been done on adding embedded feature extraction and machine

learning functionality to the ChucK audio programming language (Wang, Fiebrink and

Cook 2007; Fiebrink, Wang and Cook 2008a). This has the potential to result in a very

flexible environment for quickly implementing feature extraction and analysis tools that

can be used in real-time, although the available functionality is still somewhat limited at

the time of this writing.

The Humdrum toolkit (Huron 2002) is perhaps the best-known symbolic analysis

toolkit, with a variety of query tools and specialized high-level musical representations.

Although feature extraction is certainly not the software’s primary intended purpose,

Humdrum data has at times had features extracted from it, such as in the work of Sapp,

Liu and Selfridge-Field (2004). Knopke (2008) has written new implementations of much

of the Humdrum software that makes it more useful from an MIR perspective, including

functionality such as MIDI-compatible file format translation.

Although it is neither a specialized MIR system nor an academic system, some

researchers choose to perform research directly in MatLab.
96

 MatLab is a powerful

general framework with a variety of well-developed and well-tested machine learning and

signal processing toolboxes. The disadvantages of MatLab are that it is a proprietary

closed-source framework, and can also suffer from efficiency and extensibility issues.

Nonetheless, it can be very useful for rapid prototyping.

Despite the many benefits of the systems described above, none of them are designed

to deal with the full range of tasks associated with general-purpose automatic music

classification. To the best of the authors’ knowledge, jMIR is the only unified automatic

music classification framework that addresses all, or even most of, the essential tasks of

symbolic, audio and cultural feature extraction; meta learning-based machine learning;

metadata management; dataset collection; and standardized file format design.

Furthermore, most but not all of the systems described above suffer from limitations with

respect to extensibility and usability. Most of these systems also focus on specific

problems and limited types of data, and do not integrate easily with one another. These

limitations, among others, have led to the design priorities underlying jMIR, as described

below.

96

 www.mathworks.com

 67

1.4 jMIR’s core objectives and characteristics

Although some very important gains have been achieved recently in automatic music

classification-related technologies, it has become evident that the pace of progress has

slowed in recent years. An examination of results of the annual MIREX
97

 competition, for

example, will demonstrate that relatively few improvements have been made in the best

success rates from year to year in various classification-related evaluation tasks. Such

limitations have been anticipated and observed for a number of years, such as by

Berenzweig and his colleagues (2004) or by Aucouturier and Pachet (2004). There are a

number of problems with the ways in which automatic music classification software and

techniques have traditionally been designed, implemented and distributed that are likely

contributing to the recent failure to achieve significant classification performance gains,

or at least hampering the MIR community’s ability to progress past this apparent ―glass

ceiling‖ on performance.

These problems served as motivators for the development of jMIR, and played an

important role in guiding its design principles. This section describes the overall goals

and design priorities of the jMIR project, and how these goals and priorities address some

of the factors currently limiting automatic music classification systems in general. This

section also describes the corresponding characteristics shared by all of the jMIR

components. The particular implementation of jMIR’s design objectives in any given

individual jMIR component, however, is explained in that component’s chapter, as are

any additional design characteristics particular to that component.

1.4.1 Bridging the gaps between the MIR-related disciplines

Music is a multi-faceted area of inquiry, with the many factors that influence any

individual’s experiences of music leading to many different ways of considering music.

Given the consequent diversity of approaches to studying music, researchers sometimes

have a tendency to focus their attentions on limited types of music or on particular

specialized approaches to studying music.

As noted in Section 1.3, MIR is greatly enriched by contributions from researchers

from fields as diverse as machine learning, data mining, digital signal processing, music

97

 www.music-ir.org/mirex/2009/

 68

theory, musicology, music psychology, music education, human computer interaction and

the library sciences. Of course, no single individual can reasonably be expected to have

true expertise in more than one or a few of these fields, so there is a need for ways to

facilitate the integration of knowledge, insights and methodologies from each of these

fields. For example, an electrical engineer might have invaluable expertise with respect to

extracting information from digital audio signals, but might lack the music theoretical and

psychological background to design features that would be the most musically

meaningful or effective for a given task. To give another example, musicologists and

music theorists have extremely valuable musical knowledge but do not necessarily have

the background to fully take advantage of machine learning or digital signal processing

technology in their research.

jMIR is designed specifically to help break down these kinds of barriers between

research disciplines. jSymbolic, jAudio and jWebMiner, for example, allow even users

with limited or no knowledge in, respectively, symbolic music, digital signal processing

and web-based data mining to utilize powerful techniques from each of fields. Moreover,

ACE may be used by researchers with little or no background in machine learning to

automatically build powerful classification models using such features. Furthermore,

ACE XML allows all of this information to be expressively and flexibly stored and

communicated so that it can be used in combination with still other tools and techniques

that may be of interest to individual researchers.

Another important advantage of jMIR is that it is designed to facilitate research using

different types of music, something that is important in investigating the generality of any

given research approach or perspective. For example, Codaich and the Bodhidharma

MIDI dataset both contain examples of music from many different genres of music,

thereby providing researchers with a diverse set of musical data that can be used to carry

out or validate their research. Furthermore, jMusicMetaManager helps to manage and

verify the metadata associated with these or other large collections of music. ACE and the

jMIR feature extractors are also designed to extract useful information from as many

different types of music as possible. All of this allows jMIR to aid researchers in

performing research involving large and diverse collections of music, something that can

help to overcome the scientific and statistical weaknesses of the approach that one

 69

sometimes encounters of investigating the applicability and validity of various approaches

and perspectives on only a few relatively similar musical examples.

Finally, jMIR is not specifically tied to any particular kind of classification. This

means that it can be applied agnostically to the diverse range of musical classification

problems described in Section 1.3. The jMIR components can thus be used to accomplish

goals in many different MIR sub-disciplines, whether these sub-disciplines have

traditionally focused on automatic classification or not.

1.4.2 Facilitating the effective combination of different types of musical data

A cross-disciplinary approach not only has benefits with respect to taking advantage

of diverse types of expertise, but also with respect to the types of data that can be studied.

For example, an engineer at a commercial lab with access to a large audio research

database, a computer scientist at an on-line social music service with access to valuable

listener data and a musicologist associated with an academic library with a large

collection of scores each have access to very different types of musical data.

Traditionally, individual music researchers have each tended to focus on only one

type of musical data, depending on their particular backgrounds. Unfortunately, research

with a limited scope such as this risks missing out on valuable complementary sources of

information. Audio is clearly useful because it represents the essential way in which

music is consumed; cultural data is well-known to be highly influential on our

interpretation and experience of music; and symbolic data incorporates valuable high-

level musical abstractions. Features extracted from each of these types of data sources

have an increased likelihood of orthogonal independence, which can significantly

increase classification performance compared to cases where one is limited to extracting

information from only one of these types of data sources. The experiments described in

Section 9.4, for example, provide empirical evidence supporting the benefits of

combining different types of musical data in this way.

jMIR is designed not only to facilitate the integration of information extracted from

symbolic, audio and cultural data sources, but also to encourage it. Firstly, it includes

feature extractors that can extract features from all three types of data. Secondly, it allows

these features to be combined cleanly, consistently and transparently via the ACE XML

file formats. Thirdly, ACE can be used to process features in a way that is indifferent to

 70

the type of musical data from which they have been extracted. Finally, Codaich and the

Bodhidharma MIDI dataset provide researchers with audio recordings, symbolic

recordings and metadata that can be used to extract cultural features. In particular, the

SAC dataset is specifically designed for carrying out research using all three types of

musical data.

As a matter of related interest, it can be argued that it is particularly important at the

moment to promote MIR research on symbolic music, a type of data that has become

somewhat unfashionable amongst MIR researchers in recent years in comparison to audio

and cultural data. The value of symbolic data is clear: it is relatively easy to extract

features from symbolic data that incorporate high-level musical knowledge, something

that can be particularly valuable in performing many kinds of musical classification. For

example, it can be very difficult to detect cover songs if one does not have access to high-

level musical features providing insights on information such as chord progressions or

melodies, as lower-level features will likely obscure the essential musical invariances of

different arrangements of the same piece.

Although there is currently relatively little commercial interest in studying or

collecting and annotating symbolic data, an individual taking a long-term perspective will

note that automatic transcription technology is continuing to move ever closer to being

able to produce symbolic transcriptions from audio recordings that are of a sufficiently

high quality for automatic classification purposes. Even if resultant transcriptions are too

error-prone for use in performance contexts, for example, it has been found that

classification systems in particular can be relatively robust to errors (e.g., Lidy et al.

2007).

Once transcription systems that are sufficiently accurate for feature extraction become

available it will then become a simple matter to extract high-level features from the

resultant intermediate symbolic representations. For example, one might implement an

intermediate transcription layer to generate a MIDI file from audio analyzed by jAudio,

which could in turn have features extracted from it by jSymbolic. The high-level features

output by jSymbolic, as well as the original low-level jAudio features, could then all be

processed together by ACE, without the need for any original musical data other than the

audio itself. It is therefore useful to put effort into research on high-level features now so

 71

that it can be immediately taken advantage of as transcription technologies improve. Such

research can easily be performed now using existing symbolic recordings. Furthermore,

there is certainly a great deal of valuable music theoretical and psychological research

that can be performed directly on symbolic musical representations, without any reference

to audio recordings.

1.4.3 Accessibility and ease of use

Software that is overly technical or difficult to learn can pose significant and

alienating barriers to potential users. This can be a particularly important issue with

respect to software that is intended for users with backgrounds in diverse disciplines, as is

the case in MIR, since such users share only a limited common knowledge base. If a

designer wishes such users to adopt and gainfully use his or her software tools, then he or

she must place a special emphasis on making the software widely accessible.

Unfortunately, much of the software produced for and by MIR research tends to

emphasize essential functionality at the expense of usability. Although this is certainly

understandable given researchers’ limitations with respect to manpower and the pressure

to meet publication deadlines before technologies become obsolete, it nonetheless has had

the consequence of making much MIR software inaccessible to casual users and, in some

cases, to effectively all but the developers of the software themselves. For example, the

researchers running the annual MIREX
98

 MIR competition have found that systems

submitted to MIREX rarely work in their originally submitted form, even when required

by the evaluators to meet set basic interface requirements, a minimal step towards

usability that is itself not required of published systems in general.

jMIR, in contrast, is designed with the goal of making it as easy to use as possible for

researchers from the full range of MIR-related disciplines, with a particular emphasis on

making the software accessible to researchers with little or no training in areas directly

related to engineering and computer science. As noted above, researchers such as

psychologists, musicologists and music theorists have essential expertise and insights that

are invaluable to MIR research, but not all such researchers have strong backgrounds in

computer-related fields. Such researchers may thus be easily alienated by software

98

 www.music-ir.org/mirex/2009/

 72

requiring extensive computer skills or backgrounds in areas such as machine learning and

signal processing. Indeed, software with steep learning curves can be discouraging even

to users with extensive backgrounds in such areas, so maximizing accessibility and

usability are in fact important in increasing the likelihood that users of all backgrounds

will take advantage of the software.

In order to accomplish this, it is necessary to at once limit the exposure of users to

overly technical details and terminology in the software interface when such content is

unlikely to be necessary, while at the same time allowing highly technical and detailed

options to be available when the user is in fact interested in them. One way of

accomplishing this is to give users a choice of interfaces. For example, users with only a

limited technical background might be very uncomfortable using non-graphical

interfaces, but other users might prefer to use a command-line interface in order to

facilitate batch processing. Alternatively, users with computer programming backgrounds

might be more interested in well-developed APIs that allow them to integrate the

software’s functionality into their own code.

The jMIR components were produced with this in mind. Each of the jMIR

components therefore has a clear and easy to use API, and all of the components also

include a GUI. ACE and jAudio also provide users with the option of accessing their

functionality via command-line interfaces if desired.

The jMIR software also hides technical details from users when they do not need to

be aware of them. For example, the jMIR feature extractors auto-schedule feature

extraction based on feature dependencies, and automatically extract features that are not

explicitly requested by users but are necessary for calculating other features that have

been requested, all without requiring any knowledge on the part of the user of this

processing or of the corresponding feature dependencies. These dependencies are made

very clear in the code itself, however, so that this information is easily available to

developers who do need to be aware of it.

Customizability is also an important priority to pursue when maximizing the usability

of software, as different users will want to use software in different ways to perform

different tasks under different conditions. The jMIR components are each designed with

this principle in mind. To provide a few examples, the jMIR feature extractors allow users

 73

to select which specific features they want to extract; jAudio allows users to customize

pre-processing options as well as individual feature parameters; jWebMiner and

jMusicMetaManager allow users to customize the types of processing to be performed

and the information to be included in generated reports; and ACE allows users to select

different machine learning options, such as whether to order instances randomly during

training, which of several variations on stratified or unstratified cross-validation to use

and so on.

Documentation is also essential to making software accessible, with respect to both

code documentation and user manuals. In terms of the former, all of the jMIR code is

very well-documented with detailed Javadoc-formatted comments. In terms of the latter,

ACE, jAudio, jWebMiner and jMusicMetaManager all have detailed HTML frames-

based user manuals, and jSymbolic includes a helpful README document. Most of the

jMIR components also include menu accessible help functionality.

It is also important to make software easy to install and use on the operating system of

the user’s choice. For example, requiring users to recompile code in order to install it, and

potentially adjust make files and resolve linking problems when doing so, will

immediately render the software completely inaccessible to users with limited computer

backgrounds, and can very well irritate even expert computer programmers to the point

that they choose not to use the software. jMIR is therefore implemented entirely in Java,
99

with the consequence that it benefits from Java’s platform independence. All third-party

libraries used by jMIR are also implemented in Java and are packaged and installed with

jMIR, so there is no need to acquire or install any additional technologies or resources.

Although it can be very difficult to avoid all conceivable installation difficulties,

jMIR is designed to make the process as simple as possible. Each of the jMIR

components is contained in a simple and self-contained folder
100

 that may be copied to the

directory of the user’s choice, and the software can be run directly from a Java JAR file.

Each jMIR component also includes a detailed README file that provides easy-to-

follow instructions clearly describing the simple installation process. For developers who

99

 java.sun.com
100

 jAudio is the exception to this, as decoding MP3s requires that a third-party file be placed in the Java

extensions folder. However, the jAudio software is distributed with installation software to perform this

task automatically for the user.

 74

wish to extend jMIR, development versions of the jMIR components have been packaged

as NetBeans
101

 projects, and the source code may also be easily compiled outside of

NetBeans if desired using standard Java development tools.

It is also ideally preferable to avoid requiring that users have access to proprietary

software or libraries in order to use one’s software, as this limits the accessibility of the

software. jMIR is available free of charge, and none of its components require the use or

installation of any closed software or libraries. jMIR and the third-party libraries used by

it may also be freely redistributed. This means that both the jMIR software and future

software utilizing its functionality will remain accessible even to users with very limited

budgets.

1.4.4 Longevity and extensibility

There are many examples of excellent music software packages that were essentially

abandoned after their initial development and publication. An unfortunate by-product of

the academic process is that the publication of new research tends to be rewarded but the

support, refinement and incremental improvement of existing software tends to be more

difficult to use as a means of acquiring funding and publications. Furthermore, the

graduate students who develop the majority of academic software systems typically move

on to other pursuits after graduating, often without the opportunity or incentive to

continue working on the software that they developed. The consequence of this is that

even software with excellent potential often falls out of use as technologies progress and

improve but the software is not kept up to date.

The solution to this is two-fold. Firstly, it is important for research labs, peer-review

committees and granting agencies to invest in long-term software support so that good

systems stay up to date and continue to improve. Secondly, it is essential to design

software such that it is easily extensible both by the original developers and by others.

Although the first of these solutions is of course largely out of the control of

individual developers, the second is certainly not. The original developers of a given

software system will be more likely to support and expand the software themselves in the

long-term if doing so is relatively easy to do. Even more importantly, other users will

101

 netbeans.org

 75

themselves contribute improvements and updates to the software if they find this to be

easy and useful to them. Emphasizing extensibility is therefore one of the most important

contributions that developers can make towards improving the probable longevity of their

software. Of course, this is easier said than done, as writing extensible code requires

significantly more thought and time, but the long-term dividends make it worth the effort.

This is demonstrated by the long-term success and growth of existing software projects

such as Gamera (MacMillan, Droettboom and Fujinaga 2001), for example.

jMIR emphasizes extensibility in a variety of ways. Most essentially, it is entirely

open-source, which means that developers can see exactly how the jMIR code works,

without having to deal with any ―black box‖ code. The code is also all clearly formatted

and documented, as noted in Section 1.4.3. The prioritization of extensibility is also

evident in the jMIR class structure and organization, which reflect both good object

oriented design principles and a general cognizance of how future users are likely to want

to use and expand the code.

An additional important point is that jMIR does not utilize any external technologies

other than the very well established Java language. In addition to the advantages

associated with Java’s platform independence, this avoids the risk associated with the

possibility that external technologies will become obsolete or difficult to find, thereby

compromising the longevity of all software built using them. jMIR uses only a few third-

party libraries, and they are all purely Java-based as well.

The ACE XML file formats are also designed to be extensible, especially the ACE

XML 2.0 formats. These file formats provide a variety of optional and highly flexible

modes of data expression, and are not specifically tied to any of the jMIR components.

The jMIR components are also themselves decoupled, so that they can be used either

independently or together, as is convenient for any given user. For example, the jMIR

audio feature extraction code is in no way dependent on machine learning code. This has

important advantages, since users interested in particular jMIR components do not need

to consider or even be aware of how the other jMIR components work if they do not wish

to, thereby significantly reducing the learning curve associated with extending individual

jMIR components. For those developers who do wish to extend multiple jMIR

 76

components, however, each of the components are designed using common conventions

and design practices, which facilitates learning in their case as well.

There are a number of additional aspects of the jMIR code that favor extensibility,

such as its use of portable modular components and of metafeatures and aggregators for

auto-generating new functionality. Details are provided below in Section 1.4.5.

1.4.5 Providing a framework for developing new approaches

The jMIR components are designed so that they can be used directly as distributed,

which is to say as ready-to-use MIR software applications allowing researchers to utilize

automatic music classification technologies in their own work. This aspect of jMIR is

essential to fulfilling the goals described in Sections 1.4.1, 1.4.2 and 1.4.3. This, however,

only reflects one of the primary use cases for which jMIR is designed. The ability to use

jMIR as a framework for developing new technologies and approaches also figures very

prominently in jMIR’s design.

The development, deployment and evaluation of new MIR research assets such as

features, pattern recognition methodologies and metadata annotation strategies often

requires a significant amount of infrastructural investment. Once a given lab has

developed this infrastructure, the expenditures associated with its creation often make the

lab reluctant to move away from it. The consequence of this is that time and resources are

taken away from original research while the infrastructure is being implemented and,

once that infrastructure is complete, it is typically not compatible with infrastructures

used by other labs.

jMIR is designed to address this problem by, in addition to providing a set of ready-

to-use applications, also providing a framework for developing, testing and distributing

new techniques and algorithms. This allows jMIR to be used to implement and

experiment with new technologies, not just apply existing ones. This can be very helpful

in eliminating the need for each lab to develop its own infrastructure, as much of the

infrastructure needed to perform MIR research involving automatic music classification is

already implemented in jMIR. The extensive documentation and emphasis on

extensibility associated with jMIR, as described in Sections 1.4.3 and 1.4.4, help to

facilitate the accessibility of this infrastructure.

 77

The jMIR components are each designed to have a generally modular structure

overall. In particular, most of the jMIR components allow new functionality to be added

via a simple and standardized plug-in architecture. For example, each of the features

extracted by jAudio or jSymbolic are implemented as independent classes that extend a

common superclass. New features can be added simply by extending this class and

following its clear and simple conventions. A dependency on another feature, for

instance, can be implemented simply by adding a reference to the name of that feature to

one of the superclass’ inherited fields. As noted above, the jMIR feature extractor will

then automatically extract the value of the associated feature and provide it to the new

feature at runtime. The implementation of a new feature therefore requires little more than

the implementation of the processing associated with the new feature itself, since a

complete extraction infrastructure is already provided by the jMIR feature extractor. Only

a very minimal knowledge of the overall architecture of the jMIR feature extractor is

necessary to add new features.

Other jMIR components also incorporate similar modular architectures. For example,

ACE uses Weka (Witten and Frank. 2005) machine learning algorithm implementations.

Weka is also open-source and Java-based, and it is supported by a very active

development community. It is very easy to add additional Weka algorithm

implementations to ACE so that they will be automatically used in meta learning trials.

New machine learning algorithms can thus be implemented using the Weka framework,

and then added to ACE, as can new algorithms added to the Weka distribution by others.

The error-detection algorithms used by jMusicMetaManager are also relatively modular.

jAudio in particular goes especially far in facilitating the addition of new algorithms

through metafeature and aggregator functionality. In essence, these automatically

implement features based on other features, such as calculations of the variance of a

feature or feature histograms. Metafeatures and aggregators are each described in more

detail in Sections 3.4.7 and 3.4.8, respectively.

One of the essential advantages of jMIR’s modular approach is that it facilitates the

iterative development of new algorithms that build upon other algorithms, and that can

then themselves be used as a building blocks for implementing still further algorithms.

This makes it possible to utilize a design approach that incorporates ever increasing levels

 78

of abstraction. To provide a simple example, one could extract the RMS (Root-Mean-

Square) feature from each of a series of analysis windows, perform an auto-correlation on

this data to produce a beat histogram and then use this histogram to extract higher-level

information on tempo and meter.

The widespread use of a common MIR development platform such as jMIR would not

only allow individual researchers to build upon their own work in this manner, but also to

add new jMIR algorithm implementations created by others to their own jMIR

distributions and distribute their own new algorithms so that others may do the same with

their work. This aspect of jMIR is discussed further in Section 1.4.6.

There is also further infrastructure built into jMIR that facilitates its use as a

development platform. For example, ACE XML allows valuable data and metadata to be

stored and communicated between applications in flexible ways. jMIRUtilities automates

various useful administrative tasks. Also, the jMIR datasets are useful in providing data

that can be used to test and validate new algorithms.

This last point emphasizes the particularly important advantage offered by jMIR of

facilitating experimental comparisons of newly implemented algorithms with alternative

pre-existing approaches. The performance of a new feature or machine learning strategy,

for example, can be easily compared with other features or machine learning strategies

already implemented in jMIR or previously added to it by using ACE’s meta learning

functionality to perform comparative experiments. This issue is also discussed in further

detail in Section 1.4.6.

These characteristics of jMIR contrast with what one finds when using most

alternative music research software. Most such software is poorly documented; difficult

to install and use; difficult to extend; and not characterized by the modularity necessary to

facilitate its use as a shared development platform. In particular, feature extraction code is

often tightly coupled to pattern recognition and analysis code, something that hampers the

reuse of the code in other contexts, especially in the case of researchers who wish to

develop features and machine learning algorithms independently. Such software is also

often tied in to specific types of applications and research goals, which limits its general

usefulness. Finally, many music research systems suffer from dependencies on particular

 79

platforms or proprietary technologies, which limits their usability for other researchers

who cannot or do not wish to develop code using these platforms or technologies.

1.4.6 Facilitating and promoting inter-institution collaboration

As noted above in Section 1.4.5, many MIR research groups have had a tendency to

develop their own in-house software tools and musical datasets, an approach that has a

number of important disadvantages in addition to those described above:

 The implementation of a full in-house MIR research framework requires a very

substantial amount of effort. Since this framework itself is typically essentially

secondary to the research that it is intended to support, researchers will have a

tendency, and understandably so, to compromise functionality, documentation and

testing of the framework when resources and time become scarce in favour of

devoting them to the primary research. This results in support infrastructure that is

likely not as well developed and tested as it would be if the infrastructure itself

were the primary goal of those implementing it.

 Each research group tends to specialize in one or a few MIR sub-disciplines, yet

the work required to develop a full in-house MIR research software framework

often requires work associated with additional disciplines in which the lab

members do not have expertise. For example, an MIR lab in an electrical

engineering department that develops its own in-house system will likely need to

collect and annotate ground-truth datasets, but will probably lack members with

the musicological training to do so properly.

 Different implementations of the same algorithm may in fact differ subtly in ways

that are not always apparent or well documented in publications, but that can

impact results. For example, one implementation of genetic algorithms might use

islands but another might not, or two different implementations of the Spectral

Roll-off Point feature might use different values for the fractional parameter (e.g.,

0.85 or 0.95).

 Each research group will typically develop their framework in a way that is

convenient to their own available resources and research goals, with the result that

 80

core infrastructure such as data structures and file formats, as well as the

technologies used to implement them, are often incompatible with those used by

other research groups.

The end result of this is that the quality of in-house MIR research frameworks tends to

be compromised in certain respects and, at the very least, requires a substantial initial

investment of time and resources that is often a redundant and wasteful duplication of

work already done by others. Even more importantly, the lack of standardization makes it

very difficult to share resources and data conveniently and efficiently between different

research groups. This is a very serious problem, as the success of any field is dependent

upon the ability of different researchers to evaluate the performance of their approaches

relative to those developed by others, and their ability to incorporate successful

approaches used by others into their own work.

The facilitation of and promotion of inter-institution collaboration is therefore one of

the core goals of jMIR. This is tied in closely to the qualities of jMIR discussed in

Sections 1.4.4 and 1.4.5, since the implementation of this goal is dependent on the ability

of researchers to extend jMIR and use it as a development platform.

If researchers implement new features and pattern recognition algorithms in the jMIR

framework, for example, this then means that they can immediately distribute their jMIR

implementations to other researchers. These other researchers can then easily plug these

implementations into their own jMIR installations and use them in their own research, or

even extend them. This means that powerful new algorithms can immediately be used by

the entire jMIR-using community in their own research without any difficulties or delays

associated with resolving incompatibilities or implementation ambiguities. Even more

importantly, it also greatly facilitates the iterative development of increasingly

sophisticated approaches that build upon one another, not only by individual researchers,

but by the entire jMIR-using community.

One particularly helpful step in facilitating such sharing of implementations would be

to build a common repository of algorithms implemented under a standardized framework

such as jMIR. Such a repository would have important advantages for developers, as it

would allow them to easily distribute and publish their implementations, as well as for

users, as it would provide them with an easily accessible and up to date set of tools that

 81

they could expect to operate consistently for all users who have added them to their jMIR

distributions. This would also allow researchers from diverse backgrounds to easily take

advantage of the work of researchers from other disciplines, an important advantage for

the reasons discussed in Section 1.4.1.

The use of a single development environment like jMIR by a large segment of the

MIR community would also have important advantages with respect to the validation and

comparison of different approaches to solving MIR problems. Modern scientific research

methods are predicated on the ability of different research groups to independently verify

and evaluate each other’s work. This is essential in ensuring research transparency and in

allowing researchers to build upon each other’s work. If software incompatibilities and

inconsistencies make it difficult for one group to verify the results of another group or to

fairly compare their approaches to solving a given problem with those used by another

group, then the consequence is that the merits of one approach relative to another become

ambiguous, and the progress of the field is slowed down by uncertainty as to which

solutions are the best to use and build upon. Even when one approach can be

demonstrated to be better than another, a given research group may still be reluctant to

adopt it if its implementation in their own potentially incompatible research infrastructure

would involve significant time and effort.

These problems would be eliminated if the competing algorithms were each

implemented in a single framework, such as jMIR. Any researcher could then simply add

the jMIR implementations of the various algorithms to their jMIR installation and

perform evaluative experiments using them. The dimensionality reduction and meta

learning implemented by ACE are particularly useful in this respect, as the performance

of these tasks implicitly involves comparisons of different features and machine learning

algorithms. One can also use jMIR to perform more traditional comparative experiments

as well, of course. The jMIR datasets also provide a large, diverse and ready-to-use

collection of ground-truth data that can be used as a basis for such experiments.

The annual Music Information Retrieval Evaluation eXchange (MIREX)
102

competition has played an invaluable role in facilitating the comparison of different

approaches. Unfortunately, MIREX is only run once a year, and only systems that are

102

 www.music-ir.org/mirex/2009/

 82

submitted to it by their authors can be evaluated. Furthermore, as indicated above, it has

been noted by the MIREX organizers that submitted systems rarely work in their

originally submitted form even when required by the organizers to meet specific basic

interface requirements. This has necessitated a significant amount of work on the part of

the organizers in order to perform the evaluations. A shared infrastructure would be very

helpful in addressing such problems, since algorithms to be evaluated could simply be

submitted as jMIR classes, for example, and installed without needing compatibility

modifications on the part of either the submitters or the evaluators.

Such an approach is an important part of the Networked Environment for Music

Analysis (NEMA)
103

 project, which will include jMIR components in a distributed

processing and data infrastructure framework that will allow users to automatically and

independently submit algorithms and processing requests. A very significant advantage of

shared infrastructures like jMIR and NEMA in general is that they allow individual

researchers to run large-scale evaluations of their new approaches relative to other

existing approaches at any time.

jMIR also has additional advantages with respect to the promotion of inter-

institutional collaboration beyond its extensible plug-in architecture. The ACE XML file

formats are particularly important in this respect, as they allow users to store extracted

feature values, ground-truth labels and a diverse range of metadata in expressive, flexible

and clear ways. This means that different research groups who do not have access to the

same datasets or who are using different infrastructures can still share essential

information using ACE XML as a standardized format.

As a final point, it is important to note that too wide a range of tools intended for

general MIR research use can have the unintended consequence of placing barriers

between different user groups, just as too few tools can have the same effect by

encouraging the use of specialized in-house tools. For example, users who have adopted

jMIR might be unwilling to take advantage of some of the useful tools described in

Sections 1.3.6 and 1.3.7, and vice versa. Such a scenario would certainly be

counterproductive from the perspective of promoting inter-institutional collaboration.

Although it might be stated here that jMIR is the best choice and that it should be adopted

103

 nema.lis.uiuc.edu

 83

by all MIR researchers, the developers of other tools might very well make the same

claim, with the result that each researcher in the MIR community will make their own

choices, and different tools will be adopted by different institutions.

This potential problem is one of the key motivators behind the ACE XML file

formats, as they are designed to facilitate data communication across diverse toolsets.

Another important step is for the developers of each toolset to provide simple and well-

documented APIs to facilitate the porting of new algorithms to multiple toolsets. This has

been another motivating factor for jMIR’s emphasis on extensibility and documentation,

as described in Sections 1.4.3 and 1.4.4, and it also provides a strong argument in favor of

an overall distributed processing umbrella such as that proposed by NEMA.

1.5 Highlights of research contributions

Much of this dissertation places significant emphases on the engineering work

associated with each of the jMIR components and on background knowledge that will be

useful in helping music researchers new to the various fields touched on by jMIR

understand them better. This is done in order to provide as much information as possible

to readers about why and how they can use the software effectively to perform music

research, and it is in keeping with the overall goal of the jMIR project of facilitating

effective cross-disciplinary original research by others.

It is important to emphasize, however, that the jMIR project was not simply an

engineering project, and that it also involved significant theoretical work and

experimental research as well. A considerable amount of exploratory work was done

during the design phase of each of the jMIR components, for example. It was not possible

to include all of the associated details in this already lengthy document, however, due to

space constraints. The purpose of this sub-section is to highlight those portions of this

work that it was possible to include, and to summarize the results of some of the

experiments that have been performed with jMIR.

One of the most important theoretical contributions of the jMIR project is the library

of high-level features outlined in Section 4.5, many of which are original. Just as

important is the theoretical discussion presented in Sections 4.1.2 and 4.4 of how one

should approach the problem of designing and choosing high-level features. This is an

 84

important area that is rarely touched on in the literature, as those designing computational

features rarely have extensive music theoretical or musicological knowledge, and music

scholars very rarely consider music in terms of features intended for processing by pattern

recognition algorithms.

Another area of significant theoretical interest is the discussion of fundamental issues

associated with the collection and labelling of ground truth data, including concerns

related to class ontologies. These issues are treated rather carelessly in too much MIR

research, a problem that is explored in Section 8.2, along with proposed guidelines for

addressing these problems in a responsible way. These guidelines played an important

role in methodology used to assemble the jMIR datasets, as described in Sections 8.5.2

and 8.5.3 in relation to the Bodhidharma MIDI dataset, for example.

An additional important theoretical contribution is the discussion of the limitations of

existing file formats associated with representing data relevant to automatic music

classification, and the proposal of design priorities to consider when creating new

formats, as discussed in Sections 7.3 and, especially, 7.4. This theoretical work was

essential in the design of ACE XML and ACE XML 2.0, as described in Sections 7.5 to

7.11, which was itself an important research contribution.

This first chapter has also already presented an analysis of some of the current

problems in the current state of automatic music classification research. Several general

solutions have also been proposed in order to move past these problems.

A number of original algorithms have also been developed during the course of the

jMIR project, such as the automatic feature extraction scheduling and dependency

resolution algorithm used by jAudio and jSymbolic, as discussed in Section 3.4.6. The

novel accessible approaches to metafeatures and feature aggregators, as described in

Sections 3.4.7 and 3.4.8, are also helpful new contributions.
104

 A series of new metadata

error and redundancy detection algorithms were also developed as part of

jMusicMetaManager, as described in Section 8.4.

A significant amount of experimental research has been performed during the course

of the jMIR project. Space and time constraints made it impossible to include all of it in

104

 It is important to emphasize that the co-developer of jAudio, Daniel McEnnis, was chiefly responsible

for the software’s metafeatures and aggregators.

 85

detail in this dissertation, which is why only brief overviews are presented of some of the

results, such as the exploration of the kinds of metadata errors common to music found

on-line (Section 8.6.4) or the types of high-level features that are most effective in

classifying music by genre (referred to briefly in Section 4.5.1). Other experiments, such

as those described in Section 9.2, or the MIREX 2005 winning performance of the

jSymbolic features on symbolic genre classification described in Section 9.3, were more

associated with evaluating system performance than with revealing musical insights.

An experiment that was particularly important in revealing meaningful information

about music, however, was that described in Section 9.4. This experiment explored

whether classification performance gains could be realized by combining multi-modal

information, specifically features extracted, for each piece of music, from audio

recordings, symbolic recordings and cultural data available on-line. The results indicate

that there are indeed statistically significant performance gains when features extracted

from two or three of these types of data are combined, compared to when only one type of

data is used. It was also found that features extracted from cultural data are not only

helpful in improving classification performance, but also in reducing the seriousness of

those misclassifications that do occur.

More details on these and other theoretical and experimental contributions of this

dissertation are provided in each of the remaining chapters. Sections 10.1 and 10.2 also

provide more detailed general summaries than that provided here, albeit ones that include

novel engineering contributions as well as research contributions. In addition, summaries

of the particular contributions of Chapters 3 to 9 are presented near the end of each of

these chapters.

 86

 87

2. Related research from psychology and the humanities

2.1 Chapter overview

This dissertation as a whole focuses primarily on technical procedures and tools for

automatically classifying music in various ways. Strictly speaking, it is not necessarily to

imitate the processes used by humans in order to perform such classifications, as entirely

different process can potentially be used by computers to simulate human classification

behaviour. Computers process information in ways that are intrinsically different from the

mechanisms used by the human brain, and the best approaches to modelling human

behaviour with computers may well be very different than those actually used by humans

themselves.

Having noted this, automatic music classification is, at least from the perspective of

most currently conceptualized applications, still very much a problem of modelling

human behaviour. The particular musical categories that humans use as well as the

particular classifications that they make are often subjective from a purely data-driven

perspective, and sometimes even irrational. Since most automatic classification

applications require simulating the subjective and potentially irrational classification

judgements that humans may make, it is therefore useful to gain as much of an

understanding as possible about the mechanisms used by humans to make classifications.

This can help in implementing automatic classification systems that anticipate and imitate

human behaviour as well as possible, regardless of whether the systems actually

implement similar mechanisms.

This chapter is therefore presented in order to provide a basic grounding in some of

the research in psychology and in the humanities on human music classification and

similarity judgement. Such research is rarely given the attention that it deserves in the

music information retrieval literature, and it is presented here in order to help address this

shortcoming. Research in psychology and the humanities can be essential not only in

providing inspiration for techniques that are implemented in automatic music

classification systems, such as the choice of features to extract, but can also be essential

in designing as well as evaluating the relevance and significance of automatic music

classification evaluation experiments.

 88

The material in this chapter is intended only to present particularly significant

highlights of the relevant literature in psychology and the humanities, however, and is

certainly not a comprehensive survey. This chapter is intended primarily to provide

context and background for the rest of this dissertation, which focuses more specifically

on using computers to perform automatic music classification. More detailed coverage of

research on human music classification is well beyond the scope of this dissertation and is

outside of the author’s area of expertise. The works of Lakoff (1987), Ashby (1992),

Nosofsky and Zaki (2002) and Smith and Medin (1981) provide broad overviews of

established research, and there are many other excellent sources as well, including many

that highlight more recent approaches and results. Many more details are available in the

works referred to in this chapter and in the psychological, musicological and music

theoretical literature at large.

Section 2.2 describes the psychological models that have been developed with respect

to human categorization and classification in general, without particular respect to music.

This includes explanations of both classical models and exemplar-based models, which

are the two most commonly espoused general models for human classification, as well as

a few other models and miscellaneous relevant psychological insights.

Section 2.3 focuses on psychological research that has been done specifically on

music classification. The topic of similarity is emphasized here as well because it is

essential to most exemplar-based models of classification and because it has been a

particular focus of research in music psychology.

Section 2.4 presents insights drawn from the musicological and music theoretical

literature as a complement to the psychological research presented in the previous two

sections. A particular, although certainly not exclusive, emphasis is placed on genre

classification, as this is one of the hardest and most interesting kinds of music

classification, and because it is particularly emphasized in the literature.

2.2 General psychological classification models and research

2.2.1 Classical classification theory

The oldest known theory of classification, known as the classical theory, dates back

to Aristotle. It is based upon the idea that, in order to be considered a member of a

 89

particular category, an entity must fulfill each of a set of necessary and sufficient

conditions required by the category in question. The details of the classical theory are

well documented in the literature (e.g., Smith and Medin 1981).

To provide an example of how the classical theory works, one might consider an

equilateral triangle. Such a triangle is defined as a closed figure with three sides of equal

length, where each side must be a line segment. If all of these conditions are met, then an

entity may be considered to be an equilateral triangle. Failure to meet any of these

conditions, however, would mean that the entity would fail to qualify as an equilateral

triangle.

There are a number of problems with the classical theory, as famously noted by

Wittgenstein (1953) and verified both experimentally and theoretically by many others.

For example, different entities belonging to the same category can have some

fundamentally different key characteristics. Not all games can be said to meet the same

requirements, for instance, as some involve competition and some do not.

An additional problem is that classifications can often be context-dependent, and can

depend on one’s current state of mind as well as background. The classical theory

incorrectly assumes absolute rules in all cases.

Yet another problem is that numerous experiments have demonstrated that people

often consider some entities to be better, or more typical, examples of a category than

others. This is called centrality, and is associated with membership gradience, or the

notion that categories can have degrees of membership as well as unclear boundaries. For

example, a robin can be considered to be a better example of a bird than a peacock, or a

chair can be considered a better example of furniture than a shoe rack.

There have been a number of attempts to modify the classical theory in order to

account for such problems. One modification permits an entity to be considered a member

of a category if it successfully meets some but not all of its membership rules (e.g.,

Wittgenstein 1953). This approach allows some entities to be better members of a

category than others because they fulfill more rules than other lesser members. Different

rules may also be given different weightings. Another modification allows categories to

incorporate diversity by allowing them to be defined in terms of a union of other smaller

categories each with their own rules which may differ from one another.

 90

It is interesting to note that the classical model is in some ways similar to expert

system approaches to computer-based classification (see Section 6.2.2).

2.2.2 Exemplar-based classification theory

The classical theory waned in popularity as evidence mounted against it. One of the

most influential alternative theories to be proposed was based on the notion that

categories, rather than being defined by rules, are defined based on prototypical

exemplars, and classifications are made by comparing probe entities with these

prototypical exemplars (Poser and Keele 1968, 1970; Reed 1972; Rosch 1973a, 1973b;

Rosch, Simpson and Miller 1976). A probe entity can thus be considered, under many

variants of such a model, to belong to the same category as that of the prototype to which

it is the most perceptually similar. Members of a category may also be thought of as being

connected by a series of overlapping similarities, something that is referred to in the

literature as family resemblance (Wittgenstein 1953).

The prototype model overcomes many of the inconsistencies in the classical theory.

For example, it is no longer necessary for each and every entity belonging to a category to

share certain properties with all other entities belonging to the same category, as

categories are not defined by such properties under the prototype model. Furthermore,

entities may have differing amounts of typicality, based on their relative similarity to a

prototypical exemplar, and boundaries between categories can be fuzzier and more

flexible. The prototype theory can also help account for category ambiguity, such as

encountered when subjects are asked to classify a tomato as a fruit or as a vegetable.

A number of experiments support this prototype-based approach. It was found, for

example, that prototypes were the first exemplars learned by children (Mervis 1980;

Rosch 1973b), that prototypes are the most likely to be named when subjects are asked to

list all members of a category (Mervis, Catlin and Rosch 1976) and that, when asked to

verify whether a probe entity is a member of a category, the fastest yes responses are to

category prototypes (Rips, Shoben and Smith 1973; Rosch 1973b).

A vertical hierarchical structure of categories is typically associated with exemplar-

based models. The basic categories are those categories at the level that is most

commonly processed by humans, and consist of categories that have common attributes

but are not variants of one another (e.g., skirt, coat, pants, etc.). Broader superordinate

 91

categories are above these basic categories, and are defined by their function (e.g., clothes

cover people). More specific categories, called subordinate, are below basic categories,

and consist of categories that are variants of the basic categories (e.g., parkas, rain coats,

wind breakers, etc.). To provide an additional example, animal→bird→robin is an

example of the superordinate→basic→subordinate structure. Exemplar-based models also

typically have a horizontal aspect to them as well.

Basic categories are considered to be of particular importance, a notion referred to as

basic-level primacy. As summarized by Lakoff (1987), they are:

 The highest level at which a single mental image can reflect the entire category.

 The highest level at which a person uses similar motor actions when interacting

with category members.

 The level at which subjects are fastest at identifying category members.

 The level with the most commonly used labels for category members.

 The first level named and understood by children.

 The level at which most of our knowledge is organized.

The earliest exemplar-based models assumed that each category has only one

prototype, and that each category is distributed normally around its prototype.

Classifications can thus be made by calculating the distance between an entity and each

prototype in psychological space and then choosing the category whose prototype is

closest to the entity. The closer an entity is to a prototype, the better an example of the

category it is under this model. Essentially, degree of category membership is evaluated

based on the similarity of an entity to a category’s prototype.

Experimental evidence soon began to demonstrate that this model was too simplistic,

however (Smith and Medin 1981). For example, the assumption that similarity is

inversely related to psychological distance is not always correct (Tversky and Gati 1982),

and it has been found that categorization performance can be affected if exemplars

possess correlated properties (Ashby and Maddox 1990). It has also been repeatedly

demonstrated experimentally that internalized exemplars beyond just the prototype can

have an effect on categorization (e.g., Brooks 1978).

 92

Exemplar-based models were therefore modified to allow categories to be defined by

multiple prototypes rather than just one (Rosch 1975; Rosch 1978). For example, the bird

category might have both robins and sparrows serving as prototypical exemplars. Some

versions of this theory hold that there is still a single prototype that is more influential

than other exemplars, while other versions allow multiple exemplars to be equally

important, with no single central prototype. In either case, classification of a probe entity

still involves comparing it with all stored exemplars of all categories and choosing the

category that has the prototype that is the most similar to the probe entity.

The Generalized Context Model (GCM) (Nosofsky 1986) provides a variant of the

exemplar-based model that, as usual, assumes that classifications are made by making

comparisons between probe exemplars and prototype exemplars. However, special

attention is given to the role of selective attention in the GCM. The similarity of two

stimuli is assumed to be probabilistically related to psychological distance between the

stimuli in perceptual space, with the implication that a given subject may respond

differently to the same stimulus at different times.

There has been a break between exemplar-based models that assign particular

significance to prototypical exemplars and models that assume that humans store and use

many exemplars in a more equitable fashion that does not give primacy to prototypes.

The first approach assumes that classification decisions are made based on similarity

comparisons between probe entities and the various prototypes. The second approach

assumes that classification is performed based on similarity comparisons with all stored

exemplars. In the literature, variants of the former approach are often referred to as

prototype-based models, and variants of the latter as exemplar-based models. However,

the term exemplar-based models is also sometimes used to refer to both approaches

collectively, so there is some ambiguity in the terminology. Contemporary supporters of

prototype-based models include Minda and Smith (2001), for example, and supporters of

exemplar-based models include Nosofsky and Zaki (2002).

One problem with most exemplar-based models is that they typically assume that

humans perform similarity comparisons between an entity and every exemplar of each

category when we are making classifications. Ashby (1992) questions this because of the

large computational load required.

 93

There are also a number of questions with respect to exemplar-based models that

remain to be definitively resolved. For example, for models that include prototypes, how

exactly are these prototypes determined? More precisely, how does one find the

prototypes of a category if it is assumed that categories are defined by the prototypes?

Although there are certainly possible solutions to such problems of category formation,

such as the potential for a bottom-up clustering method (e.g., Cambouropoulos 2001),

such models can be difficult to verify.

It is interesting to note that exemplar-based models have similarities to nearest

neighbour computer classification algorithms (see Section 6.2.6.4). The similarity

measurements that are part of exemplar-based models can also be said to have

resemblances to stochastic local search techniques that are used in machine learning to

optimize feature selections and measure distances in feature space appropriately (see

Section 6.2.5).

2.2.3 General recognition theory

General recognition theory (GRT) (Ashby 1989; Ashby 1992) is a modified version

of exemplar-based models that does not require the large number of mental similarity

comparisons required by most unmodified exemplar-based models. The essential idea

behind GRT is that humans divide perceptual space into regions and associate a category

label with each region. Each region is separated by a decision boundary given by some

function, and each probe entity is assigned the category of the region into which it falls.

Each classification therefore involves first mapping the probe entity to the appropriate

region in perceptual space and then assigning the category corresponding to this region.

The linking of categories to abstract regions of perceptual space makes it unnecessary to

compute similarity with all exemplars every time that a probe entity is presented.

In GRT, the decision regions in perceptual space are formed based on the union of,

typically, multivariate normal probability density regions surrounding each exemplar.

Each category can therefore be represented perceptually as the probability mixture of its

stored exemplars.

One implication of GRT is that the similarity of two categories can be viewed as the

proportion of each category’s decision region that falls in the other’s decision region,

something that fits well with a vertical approach to categorization. For example, apples

 94

and oranges have little or no intersection as they are unlikely to be confused with each

other, but they both overlap with the fruit category’s decision region. Apples and oranges

can therefore be said to be more similar to fruit than to each other.

Proponents of GRT (e.g., Perrin 1992) note that GRT is particularly successful in

uniting similarity and preference in a way that does not falsely assume that similarity is

symmetrical. This approach therefore arguably allows a deeper exploration of the

relationship between identification, similarity, preference and categorization, while at the

same time avoiding some of the weaknesses of other approaches.

It is interesting to note that decision-boundary models such as GRT have similarities

to discriminant-based classification algorithms (see Section 6.2.6.6).

2.2.4 Assumptions and evaluation of classification models

Ashby (1992) has usefully noted that classification models tend to make three types of

assumptions:

 Representation assumptions: These assumptions describe how contrasting

categories and the stimuli are represented internally. Most categorization models

assume that a stimulus can be represented as a point in multidimensional space,

but differ in other respects.

 Retrieval assumptions: These assumptions describe the information that must be

collected before a response can be made. For example, exemplar-based models

assume that subjects compute similarities between stimuli and exemplars.

 Response assumptions: These assumptions describe how subjects select the

particular category or categories to assign to stimuli.

Ashby provides a detailed description of each of the assumptions made by the different

models and notes that, in practice, it can be difficult to accurately and precisely evaluate

different classification models and the assumptions that they make in experiments.

2.2.5 Additional issues in classification theory

The issue of determinism is an important area of continuing debate in classification

theory. Deterministic models assume that a subject given the same stimulus multiple

times will classify the stimulus in the same way each time, whereas probabilistic models

 95

permit variation based on factors such as perceptual noise, cognitive noise, attention and

experience. Probabilistic models typically incorporate perceptual noise and/or cognitive

noise and use probability density functions in order to evaluate similarity and make

classifications.

In practice, it seems that classification is often probabilistic if inter-category similarity

is high (Ashby 1990; Ashby 1992). This can be the result of both perceptual noise and

noise in one’s internal model, something called criterial noise. One’s memory can vary

with time, just as one’s internalized model of categories can change as one is exposed to

new stimuli over time.

An additional area of debate is whether or not entities can in fact be represented as

points in a multidimensional space, as assumed by exemplar-based models and GRT. It

has been suggested that such a numerical representation of entities may be inappropriate

(Sattath and Tversky 1977; Tversky 1977). The assumption of a geometric model

imposes boundaries on the number of nearest neighbours that any point may have, based

on the dimensions of the model. For example, a point in a one-dimensional space may

only have up to two nearest neighbours. Although this upper bound does not appear to be

problematic in perceptual space, it may be significant in conceptual space (Tversky and

Hutchinson 1986).

The possibility of category overlap is another essential issue. This overlap can

manifest itself in situations where an entity can be said to truly be a member of multiple

categories at once, as well as in situations where the entity is in fact only a member of a

single category, but differentiation is difficult or impossible with the given set of

percepts. As pointed out by Ashby (1992), it is very unlikely that an individual will

confuse vegetables and cars, but it is much more likely that a non-wine drinker will

confuse similar grapes. Any successful model of classification should therefore account

for category overlap.

There have been a number of proposals on how to accommodate entities that belong

to various categories to varying degrees. Fuzzy set theory, for example, assumes that

entities can be given a number from 0 to 1 indicating how much they belong to each

category.

 96

There are many other variants of the models discussed above, as well as several

entirely different classification models. There is still no absolute consensus as to precisely

which model most accurately reflects human behaviour, although some experiments have

found that a number of different models perform similarly when applied to classification

problems (e.g., Cohen 1992).

2.3 Insights from music psychology

The information presented above in Section 2.2 describes psychological models and

research relating to classification and categorization in general. This section describes

research that is specific to music classification and musical similarity.

The various classification models described above can certainly be applied to music

classification. For example, an adherent to one of the variations of the classical model

might argue that we compare musical properties that we perceive, such as rhythmic

patterns or the particular instruments being played, with our existing knowledge,

conscious or unconscious, of the characteristics of a particular musical category. An

adherent of an exemplar-based model, in contrast, might argue that we perform

classifications by measuring the musical similarity of the music that we hear with the

prototypical exemplars of various musical categories. As one might expect, most

approaches to music classification are based upon variants of these two dominant overall

models.

2.3.1 Music classification

Deliege (1996; 2001a; 2001b), for example, approaches music classification from the

perspective of exemplar-based models. She does emphasize certain differences between

music classification and other types of classification, however, such as the particular

importance of time in musical classification relative to various visual classification tasks.

She suggests that we abstract cues from music, by which she means salient
105

 properties

that are useful for making classifications. Deliege emphasizes the role of abstracted cues

in categorization, and the underlying role that categorization plays in the progressive

development of a mental schema for a musical piece.

105

 The salience of a property can be understood as the relative importance and relevance of the property

with respect to performing a particular type of classification.

 97

Deliege also suggests that imprints occur when cues are repeated and stressed. These

imprints serve as landmarks that help humans perceive structure in music, and are

strengthened and refined after repeated listening. Since human memory cannot store all

cues over a long piece, it is therefore necessary either to average some of them out or to

choose to remember only the ones judged to be the most significant. Deliege argues that

imprints are essential in this respect, and that imprints can serve as prototypes such that

we compare the similarity of future cues to previously formed imprints in order to

measure similarity and perform classifications.

Deliege notes that it is known that melodies retain a degree of similarity if contour

and rhythmic organization remain unchanged, even if the tempo, key or size of the

intervals are altered. Since melodies can still be recognized even after such

transformations, it would seem that transformations that leave the abstracted cues that are

relevant to a particular kind of classification intact do not tend to interfere with that

particular kind of classification. However, if transformations are made that do

significantly change abstracted cues that are relevant to a given type of classification,

such as melodic contour or rhythmic organization in the case of melody recognition, then

the ability to recognize the melody is impaired.

Deliege suggests that we automatically segment music by looking for changes in

adjacent cues. Segmentation of sections is likely to occur when abstracted cues start to

differ from what was just heard previously, and musical phrasing and rests may help this

segmentation process.

Once this segmentation is complete, we can then perform similarity measurements by

comparing the abstracted cues from different sections of the music in such a manner that

both the similarity and the dissimilarity between different sections can reinforce or

inhibit, respectively, the overall sense of similarity. This allows us to perform tasks such

as thematic recognition.

Although music theorists often consider musical structure from a perspective that

encompasses each musical piece in its entirety, Deliege argues that human memory is

limited, and that it is unlikely that human classification in fact emphasizes musical

properties that develop over the long term. Furthermore, humans have been shown

experimentally to be able to segment and classify music after hearing only very short

 98

segments (Perrott and Gjerdingen 1999). It therefore seems much more likely that

listeners form cue abstractions and groupings in the short term as they listen.

Lerdahl and Jackendoff (1982) have also formed a model of how musical groupings

are made, based on gestalt principles of proximity, similarity, common fate, closure and

good continuation. Other research emphasizes the role of rhythm (Cooper and Meyer

1960) and of melodic contour (Deutsch 1999) in forming groupings.

Research seems to indicate that different musical backgrounds can cause certain

properties to be emphasized over others when forming groupings. Non-musicians, for

example, tend to focus more on intensity and register, while musicians are more likely to

focus on motivic aspects (Pollard-Gott 1983). Thorisson (1999) also found that novices

base categorization of Romantic and Classic piano on texture more than chord

progressions. Deliege and Thorisson also both note that perceived similarity and

categorization may be dependent on culture and personal experience.

Overall, Deliege draws a parallel between Rosch’s approach to categories and her

own abstracted cues and imprints. Horizontality can be associated with the variations

developed from a single cue, such as the variations of a motif, where these variations

generate an imprint that is analogous to a prototype. Various types of cues, in turn, can be

organized vertically into hierarchies.

Ockelford (2004) has modified and built upon Deliege’s approach using an approach

that is informed by both psychological research and music theory. He puts a particular

emphasis on the notion of derivation and on the importance of mental links we form

between chunks of music. He also notes that, when observing themes and variations,

listeners must notice sufficient difference in order to tell differences in parts of piece, but

there must still be enough similarity for the piece to have coherence.

Ockelford models music as being conceptually divided into frames, or slices of time,

each with their own set of perspects, or properties. Any frame may be compared with any

other frame using each of their associated perspects. We can also form mental

relationships between different perspect values in different frames, something Ockelford

calls interperspective relationships. If enough perspects match for any two frames, then

they can be judged to be similar and, if all perspects deemed to be salient are the same,

 99

then the frames are perceptually identical. Ockelford notes that such judgments can vary

with attention, context and experience.

Ockelford suggests modifying Deliege’s model by introducing the notion that one

musical element can be considered to derive from another element. If one perspective

value is thought to be an imitation of another, then the second is considered to be a

derivative of the first. Ockelford calls the interperspective relationships that can indicate

derivation zygonic relationships. Zygons linking perspect values that are perceived to be

identical are perfect and zygons linking similar values are imperfect. A sense of imitation

can occur even if the derivative is only similar but not identical to the original. Under this

system, the strength of the sense of derivation varies based on the perceptual salience of

the values concerned.

Ockelford argues that such an understanding of derivation makes it possible to form

larger mental models of structure, and that zygonic relationships can be used to describe

how perceptual groupings relate to one another. He notes that, based on Ockham’s razor,

it may be best to assume that music is modeled in cognition using the simplest and fewest

possible mental processes.

Cambouropoulos (2001) provides a good summary of categorization theory applied to

music. In particular, he emphasizes the position that cue abstraction, similarity and

categorization are inextricably bound together. He also stresses that issues of property

salience are particularly important with respect to music classification. It is interesting to

note that the salience of various properties with respect to different kinds of classification

can also be an important issue in automatic computer-based classification systems.

Unfortunately, the psychological study of salience is often complicated by context-

dependence.

Cambouropoulos also points out that expectation can potentially play an important

role in music classification. For example, if one is hearing music performed by a musician

who is known for performing Classical music, one may be more likely to classify the

music that is actually heard as Classical than if this a priori knowledge of the performer

were absent.

Cambouropoulos also emphasizes a number of issues that further complicate matters.

For example, although all members of a category may arguably be said to be similar, not

 100

all similar entities will necessarily share a category. It also seems likely that we

constantly update our notions of similarity, our ontology of categories and the properties

that are salient when performing classifications. Furthermore, the perceived similarity of

entities can depend upon the contexts in which they are found, just as other aspects of

similarity and classification can also be context-dependent.

Cambouropoulos proposes a model for category formation that is intended to address

such issues. This model is based upon a clustering algorithm called unscramble that

generates a set of categorizations given a set of entities. Two entities are defined as

similar if the perceptual distance between them is below some threshold, and a category is

defined as a set of entities where all entities are pair-wise similar. This approach permits

overlapping classes, although it has the disadvantage that it does not account for

categories that encompass several distant discrete clusters in perceptual space.

In order to address salience, the unscramble algorithm assigns weights representing

salience to properties. Higher weights are also given to properties that are unique to a

category, and lower weights are given to properties that are shared by multiple categories.

Prototypes are calculated once clusters are formed by the unscramble algorithm, and

these prototypes are then used to perform classifications, as normally assumed by

examplar-based approaches. Cambouropoulos reports that this algorithm performed well

in simulating human behaviour, although he acknowledges that this does not necessarily

prove that humans perform operations similar to the unscramble algorithm.

Although there is convincing evidence that music categorization cannot be explained

by a purely classical model (e.g., Deliege 2001a.; Ziv 2007; Volk et al. 2008), it has been

suggested by some (e.g., Lamontand and Dibben 2001) that perhaps some researchers

have been a little too hasty to concentrate only on exemplar-based models of musical

classification. It has been suggested that perhaps it would be best to consider both

perceptual and conceptual elements and to use models of categorization that incorporate

elements of both classical models and exemplar-based models.

For example, some cognitive psychologists argue that similarity may be too

unconstrained to ground categories (Thorisson 1999), as is required by most purely

exemplar-based models. Furthermore, similarity judgment and classification may each

involve different properties and different weightings. Although similarity judgments

 101

based on differences in lists of properties likely do play a potentially important role in

classification, it is also possible that classifications are performed partly based on higher-

level analytical knowledge as well. Additionally, classification may also potentially affect

similarity, as noted above, such as in the case of a listener who can identify the genre of a

given piece and then use this information as part of future similarity judgments between

this piece and others.

 There is some empirical basis for such a hybrid approach, such as the experiment by

Hortaçsu and Tekman (2002) that indicated both that style categories seem to be defined

more by casual principles than by lists of properties, which supports a classical approach,

and that style categories follow a hierarchical organization, which is more indicative of an

exemplar-based approach. Another study found that listeners provided with some basic

analytical knowledge were able to classify music into categories better than listeners

without the same analytical knowledge (Thorisson 1999). So, even though it seems clear

from the large body of experimental evidence that a purely classical model is unlikely, it

is also seeming increasingly likely that a purely exemplar-based model may not be correct

either.

2.3.2 Musical similarity

Exemplar-based classification models typically fundamentally assume that humans

base classifications upon judgements of the similarity between probe entities and

exemplars. As emphasized by McAdams and Matzkin (2003), similarity judgements also

underlie other essential musical operations, including perceived invariance under musical

transformation, music recognition and the perception of familiarity in music.

There are many perceptual cues that one could potentially use to judge musical

similarity, including statistical properties extracted from the auditory data, structural

information collected during the course of listening to a piece of music and judgments of

how well the music matches one’s expectations of the grammar that the music is

understood to have.

There is some debate on the relative importance of surface properties (e.g., melodic

contour, statistical pitch distribution, dynamics, accents, note durations, rhythm, timbre

and performance techniques such as trills, vibrato and portamento) and deep properties

(e.g., harmonic structure, metric structure and thematic variations). Related to this,

 102

McAdams and Matzkin (2003) have postulated three types of potentially overlapping

types of similarity:

 Statistical distribution of surface properties, their derivatives, the relations

between them and, potentially, transitional probabilities.

 Figural similarity, which is to say patterns of properties that provide perceptual

landmarks within long pieces of music. These landmarks will be perceived as

invariant even after limited transformation of the audio signal. This idea is

somewhat similar to Deliege’s imprints.

 Structural similarity, which relies on the abstraction of structural invariants. This

may be based on underlying harmonic and metric templates.

Although it is certainly possible that both surface properties and deep properties play

some role, there is some evidence that seems to minimize the role of deep properties. For

example, Bigand and Tillmann (1996) performed an experiment where recordings were

divided into sections that were then played in reverse order. It was found that there was

little perceived difference in expressivity or coherence by test subjects. In contrast,

surface properties such as loudness, duration and pitch contour were found

experimentally to have a significant role in influencing similarity judgments. In

particular, chromatic pitch alterations and changes to note durations seem to be

particularly important in creating a sense of dissimilarity (McAdams and Matzkin 2003).

Eerola and his colleagues (2001) found that properties based on the frequency of musical

events played a moderate role in influencing similarity judgements, and descriptive

variables such as the number of tones, rhythmic variability and melodic predictability

were more significant.

It has generally been noted that transposition and tempo changes have relatively little

effect on perceived similarity (McAdams and Matzkin 2003). Even a few small interval

changes do not interfere too much with the perception of similarity if certain prominent

intervals that maintain melodic contour are maintained (McAdams and Matzkin 2003).

Having noted this, such changes can still play some role in perceived similarity, which

has led Hoffman-Engl (2001) to suggest the use of melotons, which are experimentally

 103

determined by studying pitches perceived by subjects, rather than pitches defined by

physical frequencies when studying melodic similarity.

It also seems that the more changes to salient properties are made, the more dissimilar

two musical segments will sound. Experiments have found that a change to both pitch and

rhythm creates a greater sense of dissimilarity than a change to just one or the other

(McAdams and Matzkin 2003).

Potentially related to this, issues relating to auditory streaming (Bregman 1990) can

also be very important. If a segment of music is altered enough so that it is broken

perceptually into multiple streams, such as by varying the timbre of every note, then the

perceived dissimilarity is likely to increase significantly (McAdams and Matzkin 2003).

Another important issue is that the perception of similarity between two musical

excerpts can depend on what is heard between them. If intervening audio information that

is similar itself to the first excerpt is played in between the two excerpts then this may

degrade the perception of similarity between the first and final excerpts. This effect

appears to be modular in that, even if some dimensions of the intervening material are

similar, if other dimensions are different then the perception of similarity between the

first and final excerpt will not be degraded as significantly as would be the case if all

dimensions of the intervening material were similar (McAdams and Matzkin 2003).

This issue of modularity (Fodor 1983), which is to say whether or not the dimensions

of perception are processed independently, is itself an important issue in general with

respect to music. According to Fodor’s modularity thesis, the cognitive system contains

multiple specialized subsystems. The central processing system is specialized in

association, symbolization and metaphorization and other subsystems specialize in the

detection of invariants and the formation of percepts and gestalts. Although it is not

entirely clear whether music perception follows this model (Leman 1995), the results

referred to by McAdams and Matzkin do seem to indicate some level of modularity with

respect to pitch and duration processing, albeit not complete independence.

Several experiments have been performed relating to comparisons of the similarity

judgments made by musicians and non-musicians, just as experiments have been

performed on their respective categorization behaviours, as described in Section 2.3.1.

Several of these similarity experiments have indicated that listeners of both types tend to

 104

make similar similarity judgements (e.g., Lamont and Dibben 2001), although sometimes

for different reported reasons. There is some experimental evidence that musicians tend to

consider structural properties such as motivic and harmonic relationships more than non-

musicians, whereas non-musicians focused more on surface properties such as dynamics,

articulation, texture and contour (Pollard-Gott 1983; Lamont and Dibben 2001). This may

indicate that there are parallel approaches using different properties that can be used to

arrive at the same similarity judgments.

Somewhat different results have been found in a sequence of experiments with

musician and non-musician children between ten and eleven years old (Koniari, Predazzer

and Mélen 2001). It was found that musician children performed better classifications

than non-musician children on one piece but not on another piece. It was further found

that similarity evaluations were made based on both surface and deep properties, and that

different children segmented differently from each other, although each child tended to

segment music in a way consistent with him or herself, particularly in the case of the

musician children. The fact that even the musicians in this group were still relatively

young children may account with the contrast with other studies.

It can be difficult to determine which properties are being used by a particular listener

at a particular time, as these properties can be dependent on the listener’s experience, the

type of music that he or she is listening to, his or her mood, the situation that he or she is

in and where his or her attention is focused. Salience is a core issue here, as different

listeners may judge different properties to be salient at different times. Personal

preference must also be considered, as a study of Turkish undergrads found that subjects

tended to find different pieces more similar if they liked them than if they did not like

them (Hortaçsu and Tekman 2002).

Lamont and Dibben (2001) have noted that experiments have revealed four ways in

which context can affect how listeners perceive similarity and perform classifications:

 Experience: Children focus on factors such as loudness, whereas adults focus

more on melody-based properties. Sensitivity to rhythm also increases with age.

 105

 Familiarity: Surface properties such as melodic contour, loudness and texture

dominate when a listener is unfamiliar with a piece. Structure is more important

when users are more familiar with a piece, however.

 Complexity: The types of properties that are salient depend on the complexity of

the music. Structure is more easily perceivable for simple music, for example.

 Task complexity: Thematic relationships are more easily extracted in less

cognitively demanding situations

A further complication that must be recognized by a successful model is that

similarity is not symmetric (Tversky 1977). For example, a contemporary composer

might decide to write a piece that can be said to be very much like Beethoven’s Symphony

No. 5 in C minor, for example, but Beethoven’s symphony would not be said to be like

the new composition to the same degree. In addition, musical similarity can violate the

triangle equality (Tversky 1977). For example, Dave Grohl is like Nirvana and is also like

the Foo Fighters, but Nirvana and the Foo Fighters are not as similar with one another.

Tversky suggests that such asymmetries may be addressed by using a measure of the

similarity between two entities based on a function of their shared properties minus the

properties that are distinctive to either of them.

One can also take the approach that similarity can be viewed as the distance between

two entities in perceptual space, which ties in with exemplar-based classification models.

Perceptual salience can be accounted for by weighting different properties differently

when making similarity judgments. If two entities have a perceptual distance between

them under some threshold, then they can be said to be similar. If all salient properties are

the same, then they can be judged to be identical. As noted by Krumhansl (1978), issues

of asymmetry can be addressed if one sees similarity from this perspective and takes the

density of entities in one’s cognitive space into account. Two points in a dense region of

entities could be said to have a smaller similarity than two points equally far apart in a

less dense region of cognitive space.

As a final note, it is to important to note that the vast majority of the psychological

experiments upon which the models discussed above are based have been performed on

North American or European listeners who are accustomed to listening primarily to

 106

Western music. It may well be that the properties that have been found to be dominant in

judging musical similarity are influenced by musical culture and training, and that

listeners trained primarily in non-Western musical traditions may emphasize different

properties in their similarity judgements and classification decisions.

2.4 Musicological and music theoretical insights

The research and models described in Sections 2.2 and 2.3 are largely based upon

experimental data and relatively low-level models that are supported by this data.

Musicological and music theoretical research, in contrast, tends to take a higher-level

approach that is less based on controlled experiments with human subjects and more

based on direct studies of music itself and on more general sociological research, such as

the reception of music. Although there has been relatively little musicological and music

theoretical research performed directly on the mechanisms used by humans to classify

music, at least compared to the scope of the psychological literature, there is nonetheless

some very useful work that touches on the subject, and it useful to highlight some of it

here.

Another important distinction between the psychological research and research in the

humanities is that a significant proportion of psychological research has focused, often of

necessity, on classification behaviour and similarity judgements in response to small and

carefully controlled groups of audio signals. There has been much less psychological

research on musical classification behaviour and similarity judgements on a greater scale

and with a greater scope. For example, how do humans classify and measure the

similarity between different performers’ playing styles, between different albums by the

same performer or between different genres of music? Such judgments each require

decisions that span multiple pieces of music, and thus may potentially operate on entirely

different levels and using different mechanisms than comparisons between just a few

well-controlled audio signals. Internalized abstracted symbolic and cultural

representations and models, for example, may be just as significant here as relatively

short-tem perceptual and cognitive representations of audio signals. Fortunately, there is

some musicological and music theoretical research that has been performed that may help

to fill in the gaps.

 107

Lerdahl and Jackendoff (1982) suggest that listeners perform a reduction of music

based on their well-formedness rules. It might be argued that this reduction serves as the

mechanism by which we store information about music, since there is too much

information in the raw audio signal for it to be stored in its entirety over the long term.

This reduction could then provide the information about music that is used for performing

classifications and similarity comparisons, whether one prefers classical or exemplar-

based models.

Temperley (2001) has proposed preference rules that are in some sense an expansion

on Lerdahl and Jackendoff’s well-formedness rules. Temperley proposes these preference

rules as a way of reducing representations of music and as a way of evaluating the

goodness of various possible analyses of music. He further suggests that perhaps humans

have internalized such rules and can judge the similarity between pieces based on how

well they each meet the requirements of various preference rules. Different genres of

music will have different preference rules, and how well the particular preference rules

for a given genre are fulfilled by a given musical piece could provide a basis for

classifying the piece. Although this approach does seem intuitively reasonable, and could

certainly be experimented with as a tool for computer-based classification, Temperley

acknowledges that there is only limited experimental support for this model.

Related to this, Fabbri (1981) has suggested that we form hyper rules to create

different hierarchies of importance associated with different discriminants that depend on

the particular characteristics of the music under consideration. For example, if one

recognizes that a certain song is by a certain performer who is associated with certain

styles and genres, this may affect subsequent similarity and classification judgments. This

ties in with the importance of expectation, as emphasized by Cambouropoulos (2001) and

others, as described in the sections above.

This reemphasizes the importance of not focusing exclusively on sonic cues when

considering how humans classify music. Cultural and social characteristics of music

beyond the scope of audio signals can also be of as much or more importance.

Musical genre represents one of the most fundamental ways in which humans

categorize music, and serves as in interesting case study. Genre is strongly linked to the

social, economic and cultural backgrounds of both musicians and listeners. Both of these

 108

groups tend to identify with and associate themselves with certain genres, with the result

that their behaviour is influenced by their preferences. Or, viewed from a different

perspective, many people have strong identifications with social and cultural groups that

are associated with certain musical genres. In either case, there is often a strong

correlation between musical genre preferences and personal appearance and behaviour.

One need only see a photo or watch an interview with a musician, without ever having

heard his or her music, to be almost certain whether the musician plays rap, heavy metal

or classical music, for example.

The style of the album art, web pages and music videos of musicians all provide non-

sonic cues that humans can use to classify music. Similarly, as noted above, a performer’s

appearance and actions on stage (facial expressions, ritual gestures, types of dancing, etc.)

provide further cues, as do an audience’s demographics, dress and behaviour (clapping,

shouting, sitting quietly, dancing, etc.). The fine musical distinction between some sub-

categories may well be related to such social and cultural properties more than musical

content itself.

The writings of Franco Fabbri are particularly influential with respect to these types

of issues, particularly in relation to musical genre. Fabbri discusses the links between

genre and social, economic and cultural factors and how genres come into being in one of

his early papers (Fabbri 1981). Fabbri continues this discussion in a slightly later paper

(Fabbri 1982). He also presents a discussion of the issues related to musical categories,

how the mind processes them and their importance in general in a more recent paper

(Fabbri 1999). Of particular interest, Fabbri (1981) argues that musical genres, and by

extension, perhaps, musical categories in general, can be characterized using the

following types of rules, of which only the first is related strictly to musical content:

 Formal and technical: Content-based practices that are typically followed by

members of the genre.

 Semiotic: Abstract concepts that are communicated (e.g., emotions or political

messages). These can also relate to information conveyed by ways of dressing and

acting and what they symbolize.

 Behaviour: How composers, performers and audiences appear and behave.

 109

 Social and ideological: The links between musical categories and demographics

such as age, race, sex and political viewpoints.

 Economical and juridical: The laws and economic systems supporting a musical

category, such as record contracts or performance locales (e.g., cafés or

auditoriums).

In particular, Fabbri suggests that if one views categorization according to the

classical theory then it can be said that musical discriminants are learned as part of

enculturation and education. If one espouses exemplar-based models, then one might say

that individuals also learn prototypical exemplars via supervised learning provided, again,

via enculturation and education. So, Fabbri suggests, in either case each culture provides

its members with the general bases for performing musical classification, although there

can be some variance in rules or exemplars from individual to individual. This means that

one should not see categories and the rules or exemplars that define them as static and

absolute, but rather as constantly shifting products of culture. In addition, as we

collectively adapt our conceptions of categories based on our cultural surroundings, our

society also collectively updates itself based on changes in individuals’ conceptions, a

bidirectional feedback process (Fabbri 1982; Fabbri 1999). Fabbri also suggests that new

musical genres are originally formed as rules of existing genres begin to become

consistently broken in consistent ways over time (Fabbri 1981).

Fabbri builds upon Umberto Eco’s contention that categories do not tell us what a

thing is, but how to put it into a system of concepts. Our awareness of the kind of music

that we are listening to thus influences how we listen to it, something that underlines the

importance of musical classification to musical experience in general (Fabbri 1999).

Frith (1996) explores related topics by presenting a discussion of the types of social

and cultural factors that can affect how category distinctions are formulated and what

their meaning is. Toynbee (2000) provides an interesting discussion of how genres inform

musicians, of the influences of identifications with different communities and of the

music industry.

Brackett has also done some very interesting work on musical genre, including a

discussion of how the ways in which particular genres are constructed and grouped can

 110

vary in various charts, radio formats and media fan groups, and of issues relating to

recordings crossing over from one set of groupings to another (Brackett 2002). Brackett

has also written a good resource for those trying to deal with the task of characterizing

genres (Brackett 1995).

It is important to emphasize that a great deal of theoretical work has been done on

genre in fields other than musicology. Much of this work provides insights that are not

only applicable to musical genre, but to musical classification in general. The collections

of works edited by Duff (2000) and Grant (2003), for example, are excellent resources on

literary genre and film genre, respectively.

Lyrics are another type of cue that can be particularly important in classifying music.

Although lyrics are of course contained in sonic audio signals, they are often treated

separately from more ―musical‖ cues in the literature, and are often given relatively little

attention by musicologists. Nonetheless, lyrics can be very important to many listeners.

Content (e.g., love, political messages, etc.), rhyming scheme, vocabulary, use of clichéd

phrases and use of characteristic slang, for example, all likely provide useful indications

of genre.

It is for the reasons outlined above that jWebMiner (see Chapter 5) is included in

jMIR. It is able to extract cultural information not stored in sonic cues, and complements

the more traditional types of features extracted by jAudio (see Chapter 3) and jSymbolic

(see Chapter 4). There are also plans in the future to write further jMIR tools to access

even more of the information that can be useful for classification, such as a jLyrics

feature extractor that will extract features from textual lyrics, and a jAlbumArt, which

will extract features from images of album art.

There is a significant amount of additional relevant musicological and music

theoretical research that is presented in other chapters of this dissertation. An area of

particular interest, from both theoretical and practical perspectives, is the ways in which

humans form, interrelate and organize categories. These issues are discussed in Section

8.2, as they are particularly relevant to the formulation and organization of musical

collections.

The particular sonic cues that humans use to classify music have also been considered

in the humanities as well as in psychological research. From the point of view of

 111

automatic music classification, this is something that is directly pertinent to feature

extraction. These issues are consequently discussed in Section 4.4.

 112

 113

3. jAudio: Extracting features from audio

3.1 Overview of audio feature extraction and jAudio

3.1.1 Introduction

Audio feature extraction is the process of automatically extracting characteristic

information about audio files which can then be used for purposes such as classifying and

analyzing audio. As discussed in the various sub-sections of Section 3.2, this involves a

number of steps, including parsing and potentially decompressing the audio samples from

the file in which they are stored, pre-processing the samples so that they are appropriately

prepared for the particular features to be extracted and, finally, extracting the features

themselves, which may be calculated based on the basic samples, other features that have

already been extracted, or both.

jAudio is the jMIR component devoted to extracting features from audio data, and it

performs all of these steps. It is designed to be used directly as a simple audio feature

extraction software application as well as a platform for iteratively developing new

features that can then be shared amongst researchers.

Audio feature extraction has to date commanded significantly more attention in the

MIR community than either symbolic or cultural feature extraction. As a consequence,

there are already several well-established audio feature extraction software systems

designed for use in MIR research, as is discussed in Section 3.3.2. Reasons for this

emphasis on audio feature extraction include, among other factors, strong commercial

interest in technology for processing digital audio and, as discussed in Section 3.3.1, a

large body of existing related research in speech recognition.

MIR researchers have been quick to make use of existing and easily accessible

applied work in non-music related areas of audio research, something that has in many

ways benefited MIR research. Unfortunately, this has, in some cases, been done without a

full awareness of the relevant digital signal processing theory. Although quick and

encouraging early results have been achieved in many cases, using approaches that are

not fully informed can have the ultimate consequence of limiting long-term performance.

 114

To give one example, many MIR researchers have been quick to use Hamming

windows (see Section 3.2.3) when extracting frequency domain information from audio

signals, likely because this is a common approach in speech analysis applications.

However, although appropriate when dealing with signals such telephone speech, for

example, this may not always be the best approach when dealing with musical audio. To

give another example, relatively little attention has been paid to the potentially critical

issue of feature dependence on audio encoding schemes, as discussed in Section 3.2.5.

This chapter therefore places a greater emphasis on background information than

some of the other chapters. Although naïve approaches to signal processing can produce

acceptable results in some cases, performance will ultimately be improved if one has the

necessary background knowledge to properly parameterize feature extractions and design

effective new features.

The wealth of existing work on audio feature extraction has also influenced the design

priorities of jAudio. Much of the work in producing jWebMiner and jSymbolic was

devoted to developing a basic framework for analyzing data and designing and

implementing specific features.

The existing research and software relating to audio feature extraction made it

possible to more fully develop jAudio than some of the other jMIR components. In

particular, this involved adding functionality for testing new features, including basic

recording, sound synthesis and visualization tools, as discussed in Section 3.4.9. It also

made it possible to put an even greater emphasis on making it easy for developers to

design and implement features within the jAudio framework, as discussed in Sections

3.4.5 to 3.4.8. jAudio also provides users with a particularly broad range of interface

choices for extracting features, including a simple and easy-to-use GUI, a command-line

interface for batch processing and an API for embedding jAudio’s functionality in other

applications. This GUI is described in Section 3.5.

3.1.2 Iterative feature development

Designing new features to extract from audio signals can be a particularly problematic

task. A typical, or even musically trained, person might have difficulty expressing a

precise list of characteristics when asked to distinguish between two different sounds,

even if he or she can easily differentiate between the sounds. Even when one is able to

 115

describe audio characteristics, these features are likely to be abstractions that are difficult

to quantify and scientifically extract from audio signals. For example, a musician asked to

describe the differences between two genres of music is likely to use terms that require

the ability to extract information based on pitches, rhythms and timbres.

Unfortunately, high-level information such as this is currently difficult or impossible

to reliably extract from general music signals. This difficulty means that one must at least

start with low-level signal processing-oriented features. Determining which such low-

level features are best-suited for any particular task can be difficult, as humans do not

tend to think about sound in terms that are meaningful in a low-level signal processing

sense.

Fortunately, there are successful approaches to dealing with this problem. One can

take an iterative approach to feature extraction, where low-level features derived directly

from audio signals are used to derive mid-level representations, which can in turn be used

to derive increasingly high-level features that are musically meaningful to humans. For

example, basic spectral and amplitude features can currently be used to track note onsets

and pitch in the special case of monophonic music, which can in turn be used to generate

MIDI transcriptions, which can then be used to generate high-level features relating to

rhythmic patterns and melodies. It is important to note that the degree of accuracy needed

for automatic transcription is not necessarily required for features intended for

classification. Individual incorrect notes, for example, can be averaged out through the

construction of intermediate data structures such as beat histograms or pitch histograms.

Furthermore, although low-level features are not usually intuitive to humans directly, an

individual well-trained in signal processing and in auditory perception can use his or her

expertise to gain insights into when certain low-level features can be useful even on their

own.

An additional important point is that, even though it might be the case that some low-

level feature is not generally used by humans to perform a given type of classification,

this does not necessarily mean that this feature cannot effectively be used by a computer

to perform the same type of classification. Feature selection techniques, which are

statistical procedures for eliminating unpromising features for the purpose of improving

 116

classifier speed and accuracy, can be used to experimentally determine which features are

useful and which are not in a given context.

Such an explorative approach is particularly important with respect to music

classification. Although a great deal of research has been done on features that are useful

for speech recognition, music has received much less attention. Experimental research on

which features work well with respect to different kinds of music in different contexts

could be of theoretical interest in and of itself, in addition to improvements in

classification success rates that might also result.

In any case, it is clear that the acquisition of a large number of low-level features can

be very useful, for the purposes of theoretical research, direct applied classification and

constructing more abstract higher-level features. Software that can easily do this is

therefore essential for audio classification, as is a good platform for iteratively designing

new features.

A consequence of the past emphasis on low-level features in audio feature extraction

is that tasks such as tempo extraction or chord identification are often treated as discrete

MIR goals. In actuality, it can be appropriate to also think of the results of such

processing simply as features that can themselves be used for other tasks, such as song

identification or playlist generation, once again with the goal of iteratively developing

increasingly high-level features. Indeed, although one certainly prefers perfectly reliable

feature values, many machine learning-based approaches can deal with a certain amount

of input noise, so such tasks/features can potentially be used effectively in higher-level

tasks even before they are fully perfected.

A key design goal behind jAudio is to provide an infrastructure for facilitating these

kinds of approaches to iterative feature development and reuse. An approach developed

specifically for note onset detection, for example, could also be distributed and used by

other researchers interested in audio transcription. So, while the majority of the features

packaged with jAudio are in fact low-level features, it is hoped that they will be used to

develop other more high-level features.

3.1.3 Contributions to jAudio

The work in both designing and implementing jAudio was shared with Daniel

McEnnis. jAudio originated as two independent projects, one by the author of this thesis

 117

and the other by McEnnis. These two projects were merged into a collaboration prior to

either of the original publications on jAudio (McEnnis, McKay, Fujinaga and Depalle

2005; McEnnis, McKay and Fujinaga 2006a).

McEnnis has been responsible for the significant majority of the work in improving,

maintaining and supporting jAudio since these initial publications.

Most of the audio processing performed by jAudio is custom-implemented. However,

jAudio does make use of four existing freely distributable third-party libraries to perform

certain tasks, namely audio file parsing, sample rate conversion, calculation of MFCCs,

calculation of LPCs and XML file parsing. These libraries, some of which are used to

perform more than one of these tasks, are the Tritonus Open Source Java Sound library,
106

Ocvolume,
107

 Sun’s Java MP3 Plugin
108

 and the Xerces XML Parser.
109

3.1.4 Downloading jAudio

The jAudio Java bytecode and the associated source files are freely available at

jaudio.sourceforge.net and at jmir.sourceforge.net/index_jAudio.html. Note that a number

of independent changes may have been made by Daniel McEnnis to the most recent

versions of jAudio that are not incorporated into this chapter.

The original jAudio prototype that was designed independently by the author of this

thesis before it was merged with McEnnis’ work is also available for historical reasons,

although it lacks much of the functionality described in this chapter.

3.2 Background information

This section is intended to provide background information on digital audio, digital

signal processing (DSP) and specific features that are often extracted from audio files.

Readers who are already knowledgeable in DSP may wish to skip directly to sub-sections

3.2.6 to 3.2.8, which deal directly with features that can be extracted from audio.

For readers less familiar with DSP, sub-section 3.2.1 provides a quick basic

introduction to digital audio. Sub-section 3.2.2 then proceeds to describe Fourier analysis

and the frequency domain, which is to say that it discusses digital audio from the

106

 tritonus.org
107

ocvolume.sourceforge.net/ocvolume.php
108

 java.sun.com/products/java-media/jmf/mp3/download.html
109

 xerces.apache.org

 118

perspective of its frequency content. Sub-section 3.2.3 discusses windowing functions,

which are an important tool in performing effective Fourier analysis, and sub-section

3.2.4 covers other types of pre-processing that can be usefully applied to audio before

extracting features. Sub-section 3.2.5 then provides a brief overview of some different

audio formats and compression schemes, and discusses related problems relevant to

feature extraction.

3.2.1 Digital audio

For the purposes of MIR research, features are typically extracted from audio in

digital form rather than in analog form, as the vast majority of music consumed in the

West is distributed in digital formats. It is therefore useful to briefly provide some

pertinent background on digital audio.

A continuous analog signal can be represented in digital form by measuring the signal

level of the analog signal at regular time intervals. This results in a sequence of discrete

numbers that approximate the original analog signal, as shown in Figure 3.1. Each of

these discrete numbers is known as a sample, and the value of each sample effectively

represents the average of the signal level over the duration of the sample.

Figure 3.1: Sampling of one period of an analog sine wave (the continuous curve) into a

digital signal (the step function).110

110

 This image belongs to the Wiki Commons and is included here under the GNU Free Document License

and Creative Commons Attribution ShareAlike License. It was obtained from

http://en.wikipedia.org/wiki/File:Pcm.svg.

 119

It is appropriate to clarify the notation used in this chapter. The instantaneous signal

strength of an analog signal is notated as a function where the input variable of time, t, is

enclosed in parentheses (e.g., f(t)). Digital signals, in contrast, are represented by

enclosing the input variable (be it t or the sample number, x) with square brackets (e.g.,

f[t] or f[x]).

Sampling involves a number of parameters, two of the most significant of which are

the sampling rate and the bit depth. The sampling rate refers to how many samples are

measured per second during digitization. The bit depth indicates how many bits are used

to represent each sample. Higher sampling rates and bit depths generally result in better

quality audio, but also result in the need for more sensitive instruments and greater

storage space. To provide context, CD audio has a sampling rate of 44.1 kHz and a bit

depth of 16 bits.

Based on what is known as the Nyquist Theorem, a digital signal can only represent

frequencies that are no larger than one half of the sampling rate. Digitizing a signal with

frequencies higher than half of the sampling rate results not only in the failure to encode

these frequencies, but also in the addition of undesirable artefacts of the sampling

process, referred to as aliasing. Low-pass filters are therefore typically applied before

sampling occurs in order to remove any problematic high frequencies.

It is often assumed that sampling rates as low as 44.1 kHz produce acceptable quality

audio because frequencies above approximately 20 kHz are outside of the range of human

hearing. Some, however, have argued that higher sampling rates nonetheless result in

perceptibly improved audio quality.

The choice of bit depth influences the dynamic range of a digital audio signal as well

as the amount of signal distortion, known as quantization error. The greater the number

of bits, the greater the number of signal levels that can be represented per sample. For

example, a bit depth of 3 bits only allows 2
3
=8 different signal levels to be represented,

whereas bit depths of 16 bits and 24 bits (DVD quality audio) permit 65,536 and

16,777,216 values, respectively. These discrete signal levels must be spread over a

dynamic range defined by each particular audio format.

Any input signal that is stronger than the largest value that can be represented results

in a form of signal distortion known as clipping, something that provides reason for

 120

choosing a high dynamic range. However, a larger dynamic range with a fixed bit depth

results in larger spacing between each of the representation levels, with a corresponding

larger average rounding error when analog levels are translated to digital levels, the

essence of quantization error. Many audio formats use non-linear mappings to optimize

perceptual audio quality with a given bit rate.

3.2.2 Fourier analysis

With the exception of artificially generated sound waves, all audio waves contain a

spectrum of many different frequencies, each with its own amplitude and phase. It is

possible to use a process known as Fourier analysis (which uses the Fourier transform)

to decompose a wave into its component frequencies and phases. This allows signals to

be considered in the frequency domain. A wave represented in the frequency domain can

also be transformed into the time domain (via a process known as the inverse Fourier

transform), which is the more generally familiar representation of a wave’s instantaneous

signal strength as a function of time.

Fourier analysis makes it possible to extract a great many useful features, and is

therefore an essential part of any audio feature extraction system. There is no loss of data

or signal corruption when the Fourier transforms or inverse Fourier transforms are

applied.

It is possible to apply Fourier transforms to waves represented digitally via a process

known as the discrete Fourier transform (DFT). A DFT results in a frequency histogram

and a phase histogram. The phase histogram is most often not given significant attention

in the extraction of audio features, but is essential for reconstructing the time domain

representation from the frequency domain representation. The frequency histogram

essentially consists of a set of bins, each corresponding to a different range of

frequencies. The value corresponding to each histogram bin corresponds to either the

combined magnitudes or the combined powers of all sinusoidal components of the wave

in question with frequencies that fall within the bin’s limits. In essence, a DFT outputs a

vector of relative frequency strengths that is the same as a vector output by a filter bank

consisting of a set of bandpass filters with regularly increasing center frequencies.

 121

DFT and inverse DFT operations can be expressed mathematically as follows.

Consider a set of N complex numbers, x0,. . . , xN-1, that are to be transformed into a

sequence of complex numbers, X0, . . . , XN-1. The DFT is then:

1

0

2

][][
N

n

kn
N

i

enxkX

 k=0, . . . , N-1 (3.1)

The inverse DFT is:

1

0

2

][
1

][
N

k

kn
N

i

ekX
N

nx

 n=0, . . . , N-1 (3.2)

The complex numbers Xk each represent the amplitude and phase of the binned

frequency components of the input signal represented by the samples xn. This can be seen

by writing Xk in polar form, where the binned sinusoidal amplitudes are | Xk | and the

phases correspond to the complex argument. The vector of calculated relative amplitudes

of each range of sinusoidal components output by the FFT is referred to as the magnitude

spectrum, or, alternatively, the power spectrum, which is the square of the magnitude

spectrum.

In practice, when extracting features from audio, one must deal with nonstationary

signals, which is to say signals that change over time. A DFT taken over 5 seconds of

audio during which 12 different pitches are played, for example, will provide vectors of

amplitudes and phases that are the averages of all spectral content over the entire 5

seconds. This means that the frequency contents of all 12 notes are smudged together,

making it impossible to determine the spectral characteristics of the notes individually. It

therefore seems reasonable to take DFTs of very short segments of the signal, called

windows or frames, so that details of each of the 12 notes, and how they each evolve

spectrally, can be captured.

Unfortunately, taking the DFT of shorter segments of sound comes with a

mathematical consequence, namely the loss of frequency resolution. In other words, the

fewer the number of samples used to calculate the DFT (and, correspondingly, the shorter

the amount of time under consideration), the broader the frequency range of each bin

output by the DFT. This means that each bin spans a wider range of frequencies, and one

therefore loses frequency precision as one reduces the number of samples processed by

the DFT. One must therefore balance the competing needs of time localization and

 122

spectral resolution, a trade-off that is physically analogous to the Heisenberg Uncertainty

Principle.

It is useful to note that a consequence of the tradeoff between time localization and

spectral resolution is that audio with a high sampling rate can be better analyzed

spectrally than audio sampled at a lower sampling rate, because there are more samples to

work with per unit time. Additionally, it is common to use overlapping windows in order

to, in a sense, increase the time localization. The distance between the starts of

overlapping windows is sometimes referred to as the hop size.

In practice, 256-sample, 512-sample, 1024-sample or 2048-sample windows are most

often used for audio applications, depending on the time vs. frequency resolution

priorities of the application and the sampling rate. In terms of time duration, windows of

10 ms to 30 ms are usually used, with overlap step sizes ranging from 5 ms to 20 ms.

Much longer windows can be appropriate if trying to gather information on large-scale

structure, for example. Window sample sizes are typically powers of 2, for reasons of

computational efficiency.

Graphs of the magnitude spectrum or power spectrum vs. frequency bin are often used

to provide visual representations of the frequency content of a signal over the duration of

the samples processed by a single DFT window. This visual representation has the

disadvantage, as might be expected, that it provides no indication of how the spectrum

evolves over time. Spectrograms provide an alternative for viewing this evolution by

graphing the results of a sequence of DFTs consecutively. Spectrograms thus graph

frequency bin vs. time, with colour used to represent magnitude or power. Figures 3.2 and

3.3 respectively provide examples of graphs of the power spectrum and the spectrogram

of the same signal.

Optimized versions of the DFT, running in O(N log N) time, as opposed to the O(N
2
)

performance of the basic DFT, are known as Fast Fourier Transforms, or FFTs. There

are a number of such algorithms, the most common of which is known as the Cooley-

Tukey algorithm.

 123

Figure 3.2: Power spectrum of a 440 Hz sinusoid lasting 0.5 seconds, followed by a

4400 Hz sinusoid lasting 0.5 seconds. The sampling rate was 44.1 kHz and Hann

windows of 16,384 samples were used. Note that there is no way to tell when each tone

occurred in time. Note also that, although the peaks corresponding to the two

frequencies are clear, there is still low-level spectral leakage at other frequencies.

Figure 3.3: Spectrogram of the same signal analyzed in Figure 3.2. The vertical axis

represents frequency, the horizontal axis represents time and the colour represents

power. Note that the two frequencies of the sinusoids are still clear, and that the location

in time of the two sine tones is now also clear as well. There is still spectral leakage,

however.

As a side note, it is useful to note that an alternative to the DFT exists, namely the

discrete wavelet transform (DWT). From the perspective of audio feature extraction, the

essential difference between the two relates to frequency and time resolution. The DFT

provides uniform time resolution for all frequencies. The DWT, in contrast, provides

 124

higher time resolution and lower frequency resolution for high frequencies, and lower

time and higher frequency resolution for low frequencies. This is closer to the way that

human perception operates than the uniform resolution of the DFT.

3.2.3 Windowing functions

As mentioned in Section 3.2.2, breaking audio samples into shorter windows is a

common technique for obtaining a degree of time localization when performing Fourier

analyses. Although it is possible to use simple rectangular windows (also called Dirichlet

windows), where each sample in a window is left unmodified, better results can be

achieved in some cases by using windowing functions that give higher weightings to

samples in the center of windows. In particular, alternative windowing functions can be

used to reduce the problem known as spectral leakage, which refers to power that is

assigned to frequency components that are not actually in the signal being analyzed.

Although simple rectangular windows do have good resolution characteristics when

applied to signals containing spectral components of comparable strength, they perform

poorly when there are spectral components with disparate amplitudes (a problem known

as low dynamic range). At the other extreme, windowing functions with high dynamic

range, such as Blackman-Harris windows, tend to result in lower frequency resolution and

tend to be poorer with respect to sensitivity, which is to say that weak spectral

components can be overwhelmed by random noise. In general, high dynamic range

windowing functions are preferable when dealing with signals expected to contain

spectral components of significantly varying strengths, and low dynamic range

windowing functions are preferable when dealing with signals where components are

expected to have similar amplitudes. Harris (1978) provides an excellent overview of

windowing functions applied to the DFT, and only some of the most pertinent details are

described below.

Two of the most commonly used windowing functions are Hamming windows and

Hann windows, which are both moderate with respect to dynamic range. Their popularity

is due to their applicability to a wide variety of wave types. They are particularly

appropriate for applications associated with moderate bandwidth signals, such as

telephone channels. There are also many other windowing functions, each with its own

strengths and weaknesses.

 125

The following equations and their associated figures describe each of the windowing

functions discussed above. The variable w represents the windowing function, N

represents the width in samples of one window and n represents the sample index. Each

of these equations is applied to all samples in a frame, and it is the output that is

processed by a DFT.

1)(tan nw gularrec (3.3)

1

6
cos

1

4
cos

1

2
cos)(3210

N

n
a

N

n
a

N

n
aanw HarrisBlackman

01168.0;14128.0;48829.0;35875.0 3210 aaaa (3.4)

1

2
cos46164.053836.0)(min

N

n
nw gHam

 (3.5)

1

2
cos1

2

1
)(

N

n
nwHann

 (3.6)

Figure 3.4: Rectangular, or Dirichlet, windowing function.111 This window leaves the

original samples in the window unchanged. The image on the left corresponds to the

shape of the windowing function, as described in Equation 3.3, and the image on the

right demonstrates the type of spectral leakage that results when a window of a simple

sinusoidal signal is processed by a DFT after being transformed this windowing function.

111

 This image has been released into the public domain by its creator. It was obtained from

http://en.wikipedia.org/wiki/File:Window_function_%28rectangular%29.png.

 126

Figure 3.5: Blackman-Harris windowing function.112 The image on the left corresponds to

the shape of the windowing function, as described in Equation 3.4, and the image on the

right demonstrates the type of spectral leakage that results when a window of a simple

sinusoidal signal is processed by a DFT after being transformed this windowing function.

Figure 3.6: Hamming windowing function.113 The image on the left corresponds to the

shape of the windowing function, as described in Equation 3.5, and the image on the

right demonstrates the type of spectral leakage that results when a window of a simple

sinusoidal signal is processed by a DFT after being transformed this windowing function.

112

This image has been released into the public domain by its creator. It was obtained from

http://en.wikipedia.org/wiki/File:Window_function_%28blackman-harris%29.png.
113

 This image has been released into the public domain by its creator. It was obtained from

http://en.wikipedia.org/wiki/File:Window_function_%28hamming%29.png.

 127

Figure 3.7: Hann windowing function.114 The image on the left corresponds to the shape

of the windowing function, as described in Equation 3.6, and the image on the right

demonstrates the type of spectral leakage that results when a window of a simple

sinusoidal signal is processed by a DFT after being transformed this windowing function.

3.2.4 Pre-processing

Audio samples are often pre-processed in a variety of ways before features are

extracted from them. This is done to improve efficacy when features are processed by

machine learning algorithms, among other reasons.

One common technique is to normalize samples based on amplitude. There are a

variety of approaches that can be used to normalize signals, but one simple approach is to

take the highest absolute sample value in a signal and then multiply all samples in the

signal by the highest representable signal value (as determined by the bit depth) divided

by the highest sample value present. In effect, this amplifies the signal such that it is as

strong as it can be without clipping. If the original signal is clipped, then normalization

simply leaves the signal unchanged by effectively multiplying all samples by 1.

Such normalization can be beneficial if multiple signals (or, equivalently, multiple

audio files) are to be processed, as it causes all signals to take advantage of the full

available dynamic range. This can be helpful when applying machine learning algorithms,

since it helps to remove noise for the learners by controlling for variability in recording

114

 This image has been released into the public domain by its creator. It was obtained from

http://en.wikipedia.org/wiki/File:Window_function_%28hann%29.png.

 128

levels unrelated to the patterns being studied. However, normalization can in some cases

destroy useful information, such as in cases where variability in recording levels is in fact

a useful indicator in the application under consideration. So, for example, normalization

might be a good idea if features are to be extracted for the purpose of genre classification

applied over a diverse corpus of musical recordings. Using normalization might be a poor

choice if one is interested in classifying the work of different sound engineers, however,

as recording levels might be indicative of their styles.

Another common pre-processing technique is known as downsampling, where the

sampling rate of a digital signal is reduced. This can be useful in cases where it is

important to reduce data size, which could, for example, speed up feature extraction and

machine learning.

Downsampling can also be useful for the purpose of making feature vectors for

different audio files correspond to the same bandwidth. Consider the case of one file

sampled at 44 kHz and another sampled at 11 kHz. If the power spectrum is extracted for

the two signals, the 44 kHz signal will contain frequencies up to 22 kHz, but the 11 kHz

signal will only contain frequencies up to 5.5 kHz. It would be difficult to train machine

learning algorithms on such non-matched power spectra, as the frequency bins would

cover different domains. Downsampling the 44 kHz signal to 11 kHz would have the

benefit of making the domains of the power spectra of the two signals match, and

therefore be easier to process.

Of course, downsampling a signal involves throwing away potentially useful

information. Since files are typically all downsampled to the sampling rate of the file with

the lowest sampling rate, this means that audio quality is reduced to that of the lowest

quality audio file, at least in terms of sampling rate. Although there is the alternative of

upsampling the files with the lower sampling rates, this does not add any useful

information to the files that had lower sampling rates originally, but it does increase their

size and corresponding required processing times.

The ideal is to start off with files that are all encoded using the same sampling rate,

but this is a luxury that one does not always have. In any case, it is generally believed that

the most important information in musical signals tends to be at lower frequencies, so

sampling rates as low as 22 kHz or even 11 kHz can preserve much of the information

 129

useful for MIR tasks, despite the loss of audio quality for listening purposes when files

are downsampled to such sampling rates.

Channel merging is also sometimes performed, which is to say that all channels in

stereo or multi-channel audio are combined into one track (and usually attenuated and

normalized to avoid clipping that could result from simple signal addition). Although

panning information can be very useful for some MIR-oriented tasks, such as producer

identification, it is generally felt that for most MIR tasks it is not significant, and that the

data reduction achieved by channel merging is worth the loss of this data. It should be

noted, however, that merging channels can introduce problems related to phase

interference, in which case it might be better to simply choose one channel if channel

reduction is necessary for the purpose of data reduction.

Signals are also sometimes rectified in order to remove the negative components of

signals. This can facilitate some types of feature calculations. Two types of rectification

can be applied to a signal x[n], namely full wave rectification and half wave rectification,

as described by the following two equations:

][][nxnx fullwave (3.7)

xhalfwave[n] = x[n] if x[n] ≥ 0, else xhalfwave[n] = 0 (3.8)

3.2.5 File formats and associated problems

As discussed in Section 3.2.1, different audio files can be encoded with different

parameters, such as sampling rates and bit depths. Such inconsistencies can cause

problems when features are extracted, by influencing feature values in ways that are

unrelated to the essential musical content being analyzed. It is possible to at least partially

address some of these inconsistencies using pre-processing techniques such as

downsampling, but there are, unfortunately, a variety of differences in encoding strategies

and parameters that can vary across file formats for which such relatively easy solutions

are not available. Before proceeding to discuss these, it is useful to first provide some

brief background on audio compression and some of the most common digital audio file

formats.

A driving force behind much of the past two decades of research in digital audio files

has been to reduce audio size. Raw, uncompressed audio has a size corresponding to the

 130

duration of the audio multiplied by the number of channels, the sampling rate and the bit

depth, which can result in very large files. This can be inconvenient due to the need for

correspondingly large storage space and network bandwidth, although these resources are

now much less expensive than they were in the past. A variety of methods have been

developed for reducing file size, including both lossless techniques to lossy techniques.

Lossless techniques take advantage in data redundancies to reduce the space needed to

represent audio samples, without losing the ability to exactly reproduce original audio

samples. Lossy techniques, in contrast, eliminate some information in ways such that it

cannot be recovered, in the hopes that the lost information will not significantly affect

perceptible audio quality. Downsampling is a simple example of lossy compression,

although most lossy encoding schemes use much subtler and more sophisticated

techniques. Perceptual encoding compression techniques take advantage of human

physiological and psychological auditory limitations in order to remove only that data, it

is hoped, whose absence will not have an important perceptual impact on listeners. Lossy

techniques have in the past decade become very popular because of the much larger

compression ratios than they can achieve relative to lossless compression.

Any software application using file formats associated with either lossless or lossy

compression requires software components known as codecs to read or write audio in the

appropriate formats. Codecs can be either embedded in the software or distributed as

plug-ins. Sometimes a single format can have multiple codecs.

There are a variety of different file formats for losslessly encoding audio, some of

which also allow the option of applying lossy compression as well. Below are some of the

most common lossless formats:

 FLAC: A format widely supported by the open-source community.

 WAVE: The standard format promoted for use with Windows PCs.

 AIFF: The standard format promoted for use with Macintosh computers.

 AU/SND: Developed for UNIX computers.

There are also a variety of formats that emphasize lossy compression. Most of these

formats allow music to be encoded using different bitrates (degrees of compression), and

 131

there are also multiple implementations of some of their compression algorithms. Further

complicating matters, variable bitrate encoding is also sometimes used to dynamically

vary the bitrate in a single encoding to optimize both audio quality and space efficiency.

Below are some of the most commonly used lossy formats:

 MP3: The most popular lossy format, currently. The compression algorithm is not

included in the MP3 standard, and there are a wide variety of proprietary

algorithms that are used, each of which applies different perceptual encoding

techniques, and each of which can therefore have different effects on feature

values. There are therefore multiple different encoding codecs, each with their

own strengths and weaknesses, although the output of any of these can be

successfully parsed by any decoding codec.

 OGG: An open-source container that supports a variety of codecs. The most

popular of these is Vorbis, which is often said to perform better than MP3 codecs,

but is nonetheless much less popular.

 AAC/MP4: A format based on the MPEG2 and MPEG4 standards that is

considered an improvement over MP3s. Apple uses a proprietary version that can

include built-in digital rights management (DRM).

 WMA: Microsoft’s Windows Media Audio format that emphasizes DRM.

 RA: The Real Audio format, originally designed for streaming audio over the

Internet.

Sound files that use lossless compression pose no special challenge to feature

extraction systems, as the original pre-compression audio signal can be reconstructed

exactly. Lossy algorithms can be much more problematic, however, as the extent to which

a given compression algorithms affects various features can vary, and depends largely on

the particular compression algorithms and the particular features.

Some features are invariant to certain compression schemes, which is to say that

feature values are not significantly affected by whether or not the compression is applied.

Many features are not invariant in this way, however, which is problematic, as in general

it is desirable to have features that are dependent on the music itself, not on the

 132

particularities of how it was encoded. This can pose serious problems in real-world

situations, such as users extracting features from their libraries of MP3s, which could be

encoded using a variety of encoders and bitrates.

 The problems of determining which combinations of algorithms and features are

vulnerable and of developing corrective processing are exacerbated by the fact that there

can be many different compression algorithms even for a single file format, and a variety

of compression parameters can be used even for a single algorithm. Furthermore, these

algorithms are often proprietary, so it can be very difficult to determine exactly how they

operate.

Lossy compression algorithms are developed with the intent of making them as

invariant as possible to human hearing. If the features being extracted are similar to the

features effectively being extracted by humans and if the models developed by machine

learning systems based on these features operate similarly to human processing, then

perhaps the features themselves could be argued to be relatively invariant to compression,

something that would be good news for feature extractors. However, there is no guarantee

that this is in fact the case, since models built by machine learning algorithms can well

operate in entirely different ways than the human auditory system.

The dependence of feature values on compression schemes is in many ways an

elephant in the room of MIR audio feature extraction research. Most published MIR

research either assumes, whether correctly or not, that the features extracted are invariant

to compression algorithms, or sidesteps the problem entirely by using only losslessly

compressed audio or audio compressed using only one algorithm and bitrate. This latter

approach is not an accurate simulation of how audio is consumed in the real world.

In one of the few studies to methodically study these issues with respect to music,

Sigurdsson, Petersen and Lehn-Schioler (2006) found that, at least for the special case of

MFCCs (see Section 3.2.6) extracted from MP3s encoded using different parameters,

MFCCs are robust at bitrates equal to or higher than 128 kbits/s, but not at lower bit rates.

This is at least somewhat encouraging from a practical perspective, given that most MP3s

are encoded at 128 kbits/s or above. However, it must be kept in mind that these results

only apply to one specific type of feature, and that all of the MP3s that were

experimented with were encoded with the same codec, namely the LAME 3.96.1 encoder.

 133

In any case, these results are discouraging from a general perspective, since they show

that there can be significant feature dependence on encoding methodology at least in

special cases.

There is a pressing need for further study on the vulnerability of each feature to each

compression algorithm, but for the moment this remains an unresolved issue. There is no

immediate and easy solution in sight, even if comprehensive data on feature/compression

variance were to become available.

3.2.6 Common low-level features extracted using the DFT

This section briefly presents some of the low-level spectral features that have often

been used in MIR research. Note that the descriptions below have in many cases been

expressed in terms of either the power spectrum or the magnitude only as a matter of

convention, and many of these features can be calculated in terms of either. Mt[n] refers

to the magnitude spectrum at bin n, out of N bins, for the Fourier analysis frame

corresponding to index t. Similarly, Pt[n] refers to the power spectrum.

 Power Spectrum: A histogram derived directly from a DFT indicating the

relative amounts of energy contained in various regions of the frequency spectrum

over a window of time, as discussed in Section 3.2.2. The power spectrum is

calculated by, for each bin, summing the square of the imaginary output of a DFT

with the square of the corresponding real output of the DFT. The power spectrum

and magnitude spectrum are rarely used directly as features, since they are often

considered to contain too much raw information to be effectively processed

directly by machine learning algorithms. Many spectral features are derived from

either the power spectrum or the magnitude spectrum, however.

 Magnitude Spectrum: A histogram where the value for each bin is the square

root of the value for the corresponding bin of the power spectrum. The magnitude

spectrum is often used rather than the power spectrum when one wishes to pay

closer attention to the lower energy spectral activity, and the power spectrum is

used when it is desirable to emphasize the strong peaks.

 134

 Strongest Partial: The center frequency of the bin of the magnitude or power

spectrum with the greatest strength. Can provide a primitive form of pitch

tracking.

 Spectral Variability: The standard deviation of the bin values of the magnitude

spectrum. Provides an indication of how flat the spectrum is and if some

frequency regions are much more prominent than others.

 Spectral Centroid: The centre of mass of the power spectrum. Perceptually, this

feature gives an indication of how ―dark‖ or ―bright‖ a sound is, roughly speaking.

The spectral centroid, SC, is calculated for a window as follows:

N

n t

N

n t

t

nP

nnP
SC

1

1

][

*][
 (3.9)

 Partial-Based Spectral Centroid: Based on a variation of the spectral centroid

proposed where the spectral centroid is calculated only using bins of the power

spectrum that are peaks rather than all bins in the power spectrum, as is done in

the traditional spectral centroid. A related feature is used in MPEG-7, where it is

referred to as the harmonic spectral centroid.

 Partial-Based Spectral Smoothness: Based on McAdams’ (1999) spectral

smoothness algorithm, this algorithm operates on a set of M spectral peaks, Tt[m],

found by some peak picking algorithm applied to the power spectrum

corresponding to the analysis frame with index t. The peak-based spectral

smoothness, SS, is calculated as follows:

1

2 3

])1[log(])[log(])1[log(
])[log(

M

m

ttt
t

mTmTmT
mTSS (3.10)

Note that if M < 3 then this feature does not generate a value. This feature gives

an indication of how smooth the power spectrum is.

 Compactness: This feature is also based on McAdams’ (1999) spectral

smoothness algorithm. The difference between the compactness and the partial-

based spectral smoothness is that the compactness is calculated based on the

 135

magnitude spectrum in general instead of a vector of selected partials.

Compactnes, C, is calculated as follows:

1

2 3

])1[log(])[log(])1[log(
])[log(

N

n

ttt
t

nMnMnM
nMC (3.11)

 Spectral Roll-off Point: The frequency below which some fraction, k (typically

0.85 or 0.95), of the cumulative spectral power resides. This provides a measure of

the skewness of the power spectrum, and provides an indication of how much of

the energy of the signal is in the lower frequencies. This feature is especially

useful in speech analysis for differentiating between voiced and unvoiced speech.

The spectral rolloff, SRt, is defined as follows:

N

n

t

SR

n

t nPknP
t

11

][][(3.12)

 Spectral Flux: A measure of the amount of spectral change in a signal from frame

to frame. The spectral flux, SF, is found by calculating the change in the

normalized magnitude spectrum, Nt[n], from frame to frame.

N

n

ttt nNnNSF
1

2

1][][(3.13)

 Partial-Based Spectral Flux: Similar to the spectral flux, but calculated using a

vector of peaks found in the magnitude spectrum that are tracked across frames

rather than simply using the magnitude spectrum as a whole.

 Method of Moments: A feature vector consisting of the first five statistical

moments of the magnitude spectrum. These consist of the area (0
th

 order), mean

(1
st
 order), spectral density (2

nd
 order), skew (3

rd
 order), and kurtosis or

―peakedness‖ (4
th

 order). Although some of these components are individually

redundant with some of the other features described in this section, as a unified

feature vector the method of moments can provide a compact statistical

representation of the magnitude spectrum.

 136

 Area Method of Moments: Similar to the simple method of moments feature

described above, but this feature analyzes a series of frames of spectral data rather

than only one frame. A matrix is constructed consisting of the magnitude spectrum

in one dimension and the frame number in the other, which is then analyzed using

the two-dimensional method of moments (Fujinaga 1997). This provides a

relatively compact statistical representation of a spectrograph encompassing a

brief period of time.

 Mel-Frequency Cepstral Coefficients (MFCC): A feature vector that is

analogous to the magnitude transformed into perceptually motivated bins. This

feature vector is calculated by taking the log-amplitude of the magnitude spectrum

and then grouping and smoothing the bins based on the perceptually motivated

Mel-frequency scale. A discrete cosine transformation is applied. Traditionally, 13

coefficients have been used in much speech-oriented research, but other

dimensionalities can certainly be experimented with. Rabiner and Juang (1993)

provide more details.

3.2.7 Common low-level features extracted in the time domain

Features calculated from the time domain are typically calculated directly from the

sequence of samples representing the digital signal. These features are typically extracted

over windows of samples of a fixed width, called analysis windows, ranging from a few

milliseconds to seconds or even minutes. For the purpose of symmetry, it is common to

choose analysis windows spanning the same number of samples as the frames used to

calculate discrete Fourier transforms. Although this is convenient for combining features

from both the time and frequency domains, it is not compulsory.

Some features extracted in the time domain are calculated from collections of

consecutive analysis windows in order to capture an indication of how a signal changes

over time. In the feature formulae described below, x[n] refers to value of the signal x at

sample n, for an analysis window consisting of N samples.

 Zero Crossings: The number of times that a signal passes the 0 midpoint of the

signal range. ―Crossing zero‖ is defined as (x[n-1] < 0 and x[n] > 0), (x[n-1] > 0

and x[n] < 0) or (x[n-1] ≠ 0 and x[n] = 0). This feature provides an indication of

 137

signal noisiness, as noisy signals with no DC component will have a tendency to

cross the midpoint often. There is also a correlation between zero crossings and

the spectral centroid of clean (non-noisy) signals.

 Strongest Frequency via Zero Crossings: A primitive measure of dominant

frequency based on zero crossings, ZC, and sampling rate, SR, as follows.

N

SRZC
SFZC

2

))((
 (3.14)

This feature can provide a primitive form of pitch tracking for non-noisy

monophonic signals.

 Root Mean Square (RMS): A measure of the average energy of a signal

calculated over an analysis window:

N

n

nx
N

RMS
1

2][
1

 (3.15)

 Relative Difference Function: A measure of the amount of change in a signal

relative to its signal level. This feature, proposed by Klapuri (1999), can be useful

in detecting significant changes in a signal, such as note onsets. The relative

difference function, RDF, is calculated as follows:

][

][

nA

nA
dt

d

RDF (3.16)

A[n] is an amplitude envelope function of the input signal, x[n]. RDF is set to 0 if

x[n] falls below the audible threshold.

 Fraction of Low Energy Frames: The fraction of analysis window within a set

of consecutive windows that have an RMS below some threshold. A common

variation is to set this threshold dynamically to be the average RMS for the set of

frames under consideration. This feature gives an indication of the proportion of

silence or near silence in the portion of a signal under consideration.

 138

 Linear Predictive Coding (LPC): A methodology developed for analyzing

speech signals. LPC can be used to analyze a speech signal by estimating formants

(spectral bands corresponding to resonant frequencies in the vocal tract), filtering

them out, and estimating the intensity and frequency of the residual ―buzz‖ that is

assumed to be the original excitation signal. The result is a vector of values that

can be used to estimate the formants and the residue. This is often used as an

efficient way of representing a speech signal, as the vector can be used to create a

source signal based on the residue that can then be filtered based on the formants.

With respect to music, LPC can be useful in that the relationships between the

formants and the nature of the residue can be helpful in identifying instrument

types, for example. There are a variety of ways of implementing LPC. These are

in general based on the idea of using a difference equation to represent each

sample of a signal as a linear combination of previous samples. The coefficients of

the difference equation are typically calculated by minimizing the mean-square

error between the actual signal and the predicted signal, which can be done my

computing a matrix of coefficient values and finding a solution to the

corresponding set of linear equations. Approaches such as autocorrelation,

covariance and recursive lattice formulation have been used to efficiently

converge to a unique solution. Whatever the implementation, the resulting

coefficients can be used as an audio feature vector.

3.2.8 High-level information that can be usefully extracted from audio

signals

One would ideally like to be able to reliably extract high-level features such as pitches

present, chords present, precise rhythmic patterns, etc. Unfortunately, it is not currently

known how to reliably automatically extract such high-level information from general

signals. Nonetheless, some useful high-level information can still sometimes be extracted,

if one operates under the assumption that enough imperfections in the extracted

information will be averaged out in broad high-level representations. So, for example,

while it may not currently be possible to reliably calculate the precise timing of all note

onsets in a complex signal, it still might be possible to construct a reasonably accurate (on

average) histogram of time intervals between note onsets that gives some overall

 139

information about the rhythmic patterns in the signal as a whole. This section reviews

some of the most common ways of representing such high-level information as usable

features. Tzanetakis and Cook’s work (2002) has been particularly influential in

promoting this approach, and Brown’s (1993) proposed use of autocorrelation to calculate

rhythmic information about music has been widely adopted.

Autocorrelation is a technique that involves comparing a signal with versions of itself

delayed by successive intervals, which yields the relative strength of different

periodicities within the signal. In terms of musical data, autocorrelation allows one to find

the relative strength of different rhythmic pulses. In the case of audio, this can be

calculated based on some representation of the strength of a signal consisting of N

samples, Y[n], at various points in time:

N

n
lagnYnY

N
lagationautocorrel

1
][][

1
][(3.17)

where lag is the number of samples of delay. Autocorrelation is calculated for all integer

values of lag, subject to 0 ≤ lag < N.

Note that the function Y, may be something as simple as the RMS, or may involve

more complex processing, such as a sophisticated onset detection algorithm. Y usually

involves pre-processing such as full wave rectification, low-pass filtering, downsampling

and removal of any DC components to center the signal at zero before autocorrelation is

applied.

The calculation of autocorrelation results in a histogram where each bin corresponds

to a different lag time. Since the sampling rate is known, such a histogram provides an

indication of the relative importance of the time intervals that pass between strong peaks,

which is to say probable note onsets. The histogram can thus reasonably be called a beat

histogram.

Simple statistics can be calculated from beat histograms in order to extract useful

high-level rhythmic information, particularly after the application of peak picking

algorithms. The periods of the highest peaks, for example, provide good candidates for

the tempo of the signal. The ratios between the highest peaks, in terms of both amplitude

and period, can give metrical insights and an indication as to whether a signal is likely

polyrhythmic or not. The proportional collective strength of low-level bins can give an

indication of degree of rubato or rhythmic looseness, as can the width of peaks. The sum

 140

of the histogram as a whole can give an indication of beat strength. The number of strong

peaks can provide some measure of rhythmic sophistication. And so on.

Histograms can also used to represent useful pitch information. Although there is

currently no general polyphonic pitch tracker reliable enough for performing audio to

symbolic transcription, there are a wide variety of algorithms that can be used to provide

somewhat noisy pitch information that can nonetheless be sufficiently accurate on

average for the purpose of providing useful features when the output is collected into a

histogram over a period of time.

A variety of different pitch histograms can be constructed, as proposed by Tzanetakis

and Cook (2002). Examples include large simple pitch histograms with one bin for each

possible (usually discrete) pitch, smaller histograms where pitches separated by integer

octave intervals are collected so that there is one bin for each pitch class and folded pitch

classes, where there is also one bin for each pitch class, but consecutive bins are separated

by perfect fifths rather than semitones.

Once again, there are many useful features that can be calculated from such

histograms. The difference between the lowest pitch and the highest pitch in a pitch

histogram can indicate range, for example. The bin label of the pitch class histogram with

the highest amplitude may indicate the primary key of the piece, or perhaps its dominant.

The interval between the two strongest pitches of the folded pitch class histogram can

give an indication of the centrality of tonality in the piece. And so on.

As the reliability of pitch detection technology improves, additional histograms of

greater complexity could be constructed. Examples include melodic or harmonic

histograms.

3.3 Previous music information retrieval research

3.3.1 The development and cataloguing of features

Many of the audio features that have been used in MIR research were originally

developed for use in areas of digital signal processing not directly related to music.

Research in speech processing and recognition in particular had a strong influence on

much of the early audio MIR research, with the result that many of the audio features still

used today in MIR date back directly to decades-old speech research.

 141

The influence of speech recognition research certainly had a positive initial influence

in providing an excellent starting point for MIR audio research, both in terms of a well-

developed and well-tested set of features known to be effective at least in the realm of

speech processing, and in terms of a set of pattern recognition-oriented methodologies

that could be applied to these audio features. The excellent work of Scheirer and Slaney

(1997) and of Cary, Parris and Lloyd-Thomas (1999) was particularly important in

pioneering the application of speech-oriented approaches to music, and the very

influential work of Tzanetakis and Cook (2002) played an essential role in bringing

related approaches to the mainstream of the MIR community.

The unfortunate consequence of the easy availability of features originally developed

for application to speech is that many researchers have come to rely on them rather than

concentrate on developing new features specifically suited to music. Although excellent

results can and have been achieved in some cases using primarily speech-oriented

features, such features nonetheless fail to fully explore the full range of information

available in audio signals that can be particularly pertinent to music. One of the primary

goals of jAudio is to provide a platform for easily developing new music-specific

features.

Having said this, there is still certainly much to be learned from speech and other

audio processing technologies that can be applied to music. Rabiner and Juang (1993) and

Gold and Morgan (2000) provide excellent summaries of the early work on speech

analysis and processing, in terms of both history and techniques. McClellan, Schafer and

Yoder (1999) and Oppenheim, Schafer and Buck (1999) also both provide good

backgrounds on digital signal processing in general. The work of Mierswa and Morik

(2005) is particularly helpful in discussing general issues and strategies relating to

extracting features for use in classifying large collections of audio data in a relatively

formalized fashion.

There has also been some important work done with music specifically in mind.

Researchers in sound source and instrument identification have made important

contributions (e.g., Fujinaga 1998; Kotek 1998; Martin and Yim 1998; Kashino and

Murase 1999; Eronen 2001; Herrera, Peeters and Dubnov 2003; Essid, Richard & David

2004). Musical genre classification research has also often emphasized audio features,

 142

particularly in the research inspired by the work of Tzanetakis (Tzanetaks, Essl and Cook

2001; Tzanetakis 2002; Tzanetakis and Cook 2002). There has also been important work

done on comparing different feature sets and audio parameterizations, such as that by

McKinney and Breebaart (2003) and West and Cox (2004). Further relevant general

research has been published by Jensen (1999), Park (2000), Verfaille (2003) and by Pope,

Holm and Kouznetsov (2004). Works such as these include references to several features

that hold potential but have yet to be widely adopted by the MIR community.

Although most of the aforementioned works each present the reader with background

on a significant number of features, there has been relatively little published work on

collecting features into a unified library to avoid duplication of effort and undocumented

discrepancies in the ways that features are implemented. One of the goals of jAudio is to

provide a framework for developing and distributing such a collection of features so that

they can be shared between researchers as new features are developed.

Lerch, Eisenberg and Tanghe (2005) have begun some promising work on developing

the FEAPI API for feature extraction that could be standardized and shared between

researchers, serving a role similar to that served by VST in the field of audio effects

processing. Unfortunately, no work has since been published on widely adopting or

further developing this API. It is hoped that this will change, as the API is well thought

out and could facilitate cooperative work and comparative testing between research

groups. Some very promising work has also been done by Pope and Kouznetsov (2004)

on the FASTLab Music Analysis Kernel Library (FMAK), but the details of this work

remain proprietary and unpublished in the academic literature.

3.3.2 Alternative MIR audio feature extractor applications

There are a number of existing MIR-oriented standardized audio feature extractors

that present alternatives to jAudio. Perhaps the best known of these is Marsyas

(Tzanetakis and Cook 2000), a pioneering system that has strongly influenced much of

the MIR audio classification research since its release and which is still widely used

today. Marysyas is an open-source system that is implemented in C++ and which can

save extracted features in Weka’s ARFF format, a de facto MIR standard. Although there

were some initial hurdles with respect to usability, Marsyas has since been updated so

that it can be configured using a scripting language that makes it relatively easy to control

 143

which features are selected for extraction, and it also now supports distributed feature

extraction (Bray and Tzanetakis 2005). Despite these improvements, there can still be

something of a learning curve for new users of Marsyas, particularly with respect to the

implementation of new features.

CLAM (Amatrain, Arumi and Ramirez 2002; Amatriain and Pau 2005; Arumi and

Amatriain. 2005) is another well-known system that, like Marsyas, is implemented in

C++. Although CLAM certainly can be used to extract audio features, much of its

emphasis is on signal processing and synthesis functionality. The consequence is that the

software’s interface and development framework can pose initial obstacles to the non-

specialist user who wishes to quickly extract features or design new features.

M2K (Downie, Futrelle and Tcheng 2004) is a patch-based system implemented in

Java. This system provides a powerful tool for prototyping new approaches or integrating

different systems. Like CLAM, it is designed to be applied to a broad range of

applications, and is not specifically designed for feature extraction, although it certainly

does provide relatively easy access to feature extraction functionality. It also provides a

good environment for developing new features.

M2K makes use of the D2K distributed processing framework, something that is both

a strength and a weakness. D2K allows M2K to process tasks using several computers

simultaneously, and also provides good classification libraries and a powerful GUI

framework. The most significant problems associated to D2K are related to its legal

status. D2K’s licence not only sometimes makes it complicated for researchers outside

the U.S.A. to gain legal access to the software, but forbids its use in commercial

applications. This means that any system that uses D2K cannot itself be used for any non-

research-based tasks. In addition, D2K itself still has a number of unresolved bugs,

something that can be particularly problematic since not all of D2K is open-source.

Maaate (Pfeiffer and Parker 2001) was produced by the Commonwealth Scientific

and Industrial Research Organization. While it has a GUI front end, this GUI is geared

towards visualization rather than controlling the feature extraction process. Also,

maintenance and system development appear to have been inactive for several years.

MIRtoolbox (Lartillot and Toiviainen 2007) is a set of modular Matlab functions for

extracting audio features. This system can be very useful for rapidly prototyping new

 144

systems, but poses a significant barrier to users without a strong signal processing and

coding background or who do not have access to Matlab.

Sonic Visualiser (Cannam et al. 2006) is a system for visualizing audio data in a

variety of ways, and also allows one to extract certain features from audio. Sonic

Annotator
115

 is an associated command-line program that can be used to batch extract

features. One of the important advantages of Sonic Visualiser and Sonic Annotator is

their incorporation of Vamp
116

 plug-in functionality. Vamp is an external API that can be

used to add functionality to compatible software for processing audio in various ways.

Sonic Visualiser, Sonaic Anotator and the Vamp plug-in format are all implemented

using C++, although it is also possible to implement Vamp plug-ins in Python.

Work has also been done on adding embedded feature extraction and machine

learning functionality to the ChucK audio programming language (Fiebrink, Wang and

Cook 2008a). This has the potential to result in a very powerful environment for

implementing feature extraction tools that can be used in real-time, although only a few

rudimentary features are available to date.

The Chroma Toolbox
117

 extracts features specifically designed for deriving

information associated with pitch. Although these features are a little too specialized for

general-purpose automatic music classification, they are an excellent contribution to

pitch-oriented MIR research, and can provide a useful supplement to other more general

feature libraries.

3.4 jAudio’s functionality

3.4.1 Fundamental functionality

The essential functionality offered by jAudio is the ability to extract features from

audio files. jAudio can currently extract features from MP3, WAVE, AIFF, AIFC, AU

and SND files. Extracted features can be saved in either Weka ARFF files or as ACE

XML files. The latter formats can also include feature metadata (via ACE XML Feature

115

 www.omras2.org/SonicAnnotator
116

 www.vamp-plugins.org
117

 www.mpi-inf.mpg.de/~mmueller/chromatoolbox/

 145

Description files) as well as the actual feature values themselves (via an ACE XML

Feature Value files).

Users may choose to save feature values for each individual window, or may choose

to save only the mean value and standard deviation over all windows for each feature.

The former option is useful if one wishes to retain information on how a feature changes

over time or wishes to only look at particular moments in time. The latter option is

preferable if one wishes to reduce the feature data that needs to be stored and processed or

is only interested in acquiring an overview of an audio file as a whole. Users may also

choose to save both types of information if they prefer.

As discussed previously in this chapter, jAudio places an even greater emphasis on

providing a platform for the development of new features than do the other jMIR

components. The details are described in Sections 3.4.5 to 3.4.8.

Another important aspect of jAudio is that it is integrated with McEnnis’ OMEN

system (McEnnis 2006; McEnnis, McKay, and Fujinaga 2006b). As described in Section

8.6.3, OMEN allows the sharing of extracted audio feature values among different

research groups without violating copyright laws by performing feature extractions on-

site and only distributing feature values, not audio samples themselves. A centralized

network interface is used to coordinate extraction requests and feature distribution, with.

jAudio as the default tool used by OMEN to extract the features on-site.

3.4.2 Pre-processing options

jAudio allows users to choose among the following settings prior to feature

extraction:

 Whether or not to apply amplitude normalization

 Downsampling or upsampling all audio to a specified sampling rate

 Window size

 Window overlap

Many of the features implemented in jAudio have their own specialized

parametrizations, each of which can be individually set in jAudio. jAudio automatically

converts multi-channel audio to mono.

 146

3.4.3 Implemented features

All together, jAudio is packaged with 26 core implemented features, which are listed

below. The details of these features are described in Sections 3.2.6 to 3.2.8. When

metafeatures (see Section 3.4.7) are taken into account, jAudio is able to extract a total of

136 features. Even more features can be extracted when jAudio’s already implemented

aggregators (see Section 3.4.8) are applied to any of the existing features.

There are also two additional ―features‖ that can be extracted by jAudio, but that are

in fact only useful as intermediates for calculating other features, not as features

themselves. These are FFT Bin Frequency Labels and Beat Histogram Bin Labels. So,

while technically jAudio extracts 28 core features, for the purposes of practical usability

only 26 are typically used.

The core features implemented and distributed with jAudio are:

 Power Spectrum

 Magnitude Spectrum

 Magnitude Spectrum Peaks

 Spectral Variability

 Spectral Centroid

 Partial-Based Spectral Centroid

 Partial-Based Spectral Smoothness

 Compactness

 Spectral Roll-off Point

 Spectral Flux

 Partial-Based Spectral Flux

 Method of Moments

 Area of Moments

 MFCC

 147

 Zero Crossings

 RMS

 Relative Difference Function

 Fraction of Low-Energy Frames

 LPC

 Beat Histogram

The following features based on the beat histogram feature are also implemented and

packaged with jAudio:

 Strongest Beat

 Beat Sum

 Strength of Strongest Beat

Finally, the following rudimentary features for estimating fundamental frequency are

also included:

 Strongest Frequency via Zero Crossings

 Strongest Frequency via Spectral Centroid

 Strongest Frequency via FFT Maximum

3.4.4 Multidimensional features

It should be noted that many of the features referred to in Section 3.4.3 are

multidimensional features, which is to say that each feature ―value‖ in fact consists of a

vector of associated values rather than a single value. MFCCs or a beat histogram, for

example, are multidimensional features, while RMS and spectral centroid are one-

dimensional features.

Some multidimensional features, such as the magnitude spectrum, have

dimensionalities that vary and are automatically calculated by jAudio based on factors

such as sampling rate and window length. Others, such as MFCC and LPC, have

 148

dimensionalities that can be selected by the user. Others, such as the method of moments,

have fixed dimensionalities.

jAudio allows the components of multidimensional features to be grouped together

into logically related vectors, unlike most alternative audio feature extraction systems,

which typically treat each dimension simply as a separate one-dimensional feature when

it is saved. The logical grouping functionality offered by jAudio only works when

features are saved to ACE XML files, however, as the Weka ARFF format does not

permit this type of representation.

A separation between single and multi-dimensional features can be useful because it

makes it possible to use classifier ensembles that capitalize on the particular relatedness

of the components of multi-dimensional features. An example of this would be an

ensemble constructed by training a separate classifier on each multi-dimensional feature,

an approach that was experimentally found to be effective for genre classification

(McKay 2004).

The maintenance of a clear and distinct logical relationship between the components

of multidimensional features is also important when applying metafeatures and

aggregators, as it allows dimensional consistency. It is also useful in facilitating the

implementation of new features based on existing multidimensional features.

3.4.5 Platform for developing new features

The iterative approach to feature development emphasized in the design of all jMIR

feature extractors is particularly important with respect to audio features, where low-level

features can be combined to build increasingly high-level and musically meaningful

features. jAudio therefore takes special steps to facilitate the iterative development and

implementation of new features.

Features in jAudio are each implemented as a separate Java class. The class for each

feature extends the existing FeatureExtractor superclass, which provides a simple,

convenient and consistent framework for implementing new features. The new feature

can specify any other features that it needs in order to be calculated (e.g., spectral centroid

is calculated based on the power spectrum), any time offsets for each of these

dependencies (in case the feature depends on past or future windows) and metadata

describing the feature and its dimensionality. It is then only necessary to implement a

 149

method for calculating the feature value(s), called extractFeature, which will be called by

jAudio during feature extraction. jAudio automatically passes this method an array of

sample values, the sampling rate and any other feature values that were specified as

needed by the new feature.

This approach has many advantages with respect to minimizing the learning curve and

effort needed to implement new features. An additional advantage is that it does not

require any knowledge of the details of how existing features are implemented in order to

use them in calculating a new feature. For example, a new feature could output the pitch

of detected note onsets based on multiple other features, such as MFCCs and onset

detection features, which could in turn be based on features such as power spectrum and

RMS. In other words, it is possible to implement increasingly high-level features using

lower-level features while maintaining full abstraction on the part of the implementer if

desired.

Individuals implementing new features in jAudio do not need to do anything beyond

the steps described above. It is not necessary to make any changes anywhere in jAudio’s

code, as the feature will automatically be detected, called and provided with any data that

it needs by jAudio. It is also not necessary to take any action to ensure that a new

feature’s extraction will be scheduled after that of any other features that it needs, as such

scheduling is performed automatically by jAudio, as described in Section 3.4.6.

It is not even necessary for the implementer of a new feature to recompile jAudio

after adding a new feature. The new feature class file just needs to be added to a plug-in

directory and a reference added to it in jAudio’s XML configuration file. This not only

simplifies the process of implementation, but is extremely helpful in enabling new

features to be distributed to other users of jAudio, who will not need to recompile their

jAudio installations. This is especially useful for making new features available to users

with limited technical proficiency and for facilitating the use of new features in the

context of OMEN. It is even possible to remotely access new features by placing a URL

pointing to a feature’s class file in the XML configuration file. Features are also

automatically detected by jAudio if they are in the Java Classpath.

jAudio also greatly simplifies the process of dealing with audio for those

implementing new classes. By automatically interpreting and pre-processing audio files

 150

(see Section 3.4.2), jAudio automatically eliminates a great deal of legwork on the part of

implementers by simply providing features with an already processed array of samples.

The default Java Core Libraries provide only very basic audio functionality, and

jAudio helpfully abstracts away many low-level implementation details for those wishing

to implement new features so that they do not need to concern themselves directly with

issues such as buffering and format conversions. jAudio is packaged with a number of

custom-implemented low-level audio libraries, which users are free to use for performing

audio processing tasks, either inside or outside the jAudio framework.

3.4.6 Automatic feature extraction dependency resolution and scheduling

A difficulty encountered by any platform designed for iteratively building features

that can be calculated based on other feature values is that extraction must be scheduled

in the proper order so that feature calculation dependencies are properly resolved. If not

treated with care, this difficulty could lead to significant difficulties as users select at

runtime which features to extract for a particular task.

jAudio therefore includes functionality for automatically dynamically scheduling

feature extraction at runtime such that features that are needed to calculate any other

feature will automatically be extracted first. In other words, just before extraction begins,

jAudio dynamically orders the execution of feature calculations based on the features

selected by the user such that every feature’s calculation is executed only after all of the

features upon which it depends have been calculated.

Because jAudio calculates feature dependencies and orderings specifically at runtime,

it becomes possible to efficiently perform custom extractions that save only a desired

subset of all available features. jAudio’s scheduling algorithm automatically notes if there

are any features that have not been requested for extraction by the user but are in fact

needed to calculate one or more other features that have been requested. In such a case,

jAudio will automatically extract values for the intermediate features, use them in the

appropriate calculations, but not save the intermediate feature values unless specifically

requested to do so. Users might thus choose to extract many features calculated from the

power spectrum, for example, but not to save the power spectrum itself. They would not

need to know that these features depend on the power spectrum or intervene to have it

extracted, since jAudio takes care of these details automatically. So, in addition to its

 151

benefits with respect to increasing the ease of adding new features to jAudio, jAudio’s

automatic scheduling also reduces the knowledge needed on the part of users of jAudio.

jAudio’s scheduling algorithm also has advantages with respect to efficiency, both by

enabling users to extract only those features that they are interested in, and by avoiding

the recalculation of intermediate features each time that they are needed for a new feature.

This is done by reusing previously calculated values while at the same time saving space

by only saving those values that are explicitly needed.

The dependency resolution algorithm has two distinct steps, namely determining

which features to extract and determining the order in which they are to be extracted.

jAudio begins by making a list, A, of all features whose values are to be saved. Another

list, B, is then built that will eventually contain a list of all features to be extracted. These

two lists can differ, as a user may not wish to save a given feature, but this feature may

nonetheless be needed in order to calculate another feature that the user does in fact want

to save.

Initially B is set to be identical to A. jAudio then loops through each feature in B and

adds each feature’s dependencies to the end of B if they are not already in B. The loop

terminates when an iteration is completed without adding any new features.

Once the features to be extracted have been identified, jAudio orders these features to

ensure that every feature is calculated only after its dependencies have been calculated.

To accomplish this, jAudio creates an ordered list of features to extract, C. jAudio then

cycles through all the features in B. If all of the dependencies of a given feature in B are

in C, then this feature is added to the end of C. This loop terminates once all features in B

have been added to C.

3.4.7 Metafeatures

It can often be useful to calculate certain types of statistical information about a

feature. For example, one might wish to calculate the change of a feature’s value from

window to window, or one might wish to calculate its standard deviation over a series of

windows. Such information can often be useful with respect to a wide range of features.

Having to implement such statistical information as a separate individual feature for

each relevant feature would be needlessly complex and time consuming. For example, if

one is interested in finding the standard deviation over a series of windows for 20

 152

different features, such as spectral flux, spectral centroid, RMS, etc., one would not want

to have to implement 20 new functions, namely spectral flux standard deviation, spectral

centroid standard deviation, RMS standard deviation, etc.

Metafeatures offer a convenient solution to this problem. Metafeatures are feature

templates that can be applied to all features to automatically create new derivative

features. So, for example, an implementation of a standard deviation metafeature could be

used to automatically extract the standard deviation of any other feature, including new

features that have yet to be implemented, without needing to explicitly implement it for

each feature. Metafeatures are output by jAudio exactly like any other features.

jAudio automatically gives users the option at runtime of extracting each metafeature

for every feature that is present in the jAudio feature catalogue. The option of applying

existing metafeatures to new features is automatically added to the jAudio interface once

a new feature is added to jAudio, and the option of applying new metafeatures to all

existing features is automatically given to the user once the new metafeature has been

added to jAudio.

jAudio is packaged with implementations of three basic metafeatures:

 Derivative: The change in the value of a feature from window to window.

 Running Mean: The mean of a feature across a set of adjacent windows. This can

be useful in smoothing noisy features, assuming that sufficient time resolution is

available.

 Standard Deviation: The standard deviation of a feature across a set of adjacent

windows. Standard deviations have been found to be particularly useful in a

number of informal experiments, as they provide a relatively compact

representation of how audio signals change with time.

jAudio also makes it possible to chain metafeatures together. jAudio includes

implementations of two such chained metafeatures:

 Derivative of Running Mean: The change in the running mean metafeature from

one set of windows to another. This can be useful in tracking overall trends in

noisy data.

 153

 Derivative of Standard Deviation: The change in the standard deviation

metafeature from one set of windows to another. This can be useful in tracking

changes in the variability of a feature.

jAudio therefore includes a total of five metafeatures. The software is designed to

make it simple to implement and add further metafeatures in the future, as it is only

necessary to extend the MetaFeatureFactory class to implement a new metafeature.

Adding new metafeatures to jAudio is much like adding new features, as described in

Section 3.4.5.

To further illustrate how metafeatures work, consider the example of a researcher who

has implemented an imagined feature named tonal energy and has added it to jAudio.

Users would then automatically have the option at runtime of whether or not to extract

each metafeature (i.e., derivative, running mean, standard deviation, etc.) for this new

feature, without the implementer of tonal energy needing to implement any code for

calculating these quantities. Figure 3.8 provides another illustration of how metafeatures

work.

It should be noted that the metafeature aspect of jAudio was designed, implemented

and tested entirely by Daniel McEnnis.

3.4.8 Feature aggregators

A feature aggregator is a jAudio function for collapsing some sequence of feature

vectors into a smaller sequence of vectors or into a single vector. This idea is very similar

to the aggregate features proposed by Bergstra et al. (2006). Aggregators in jAudio take

as input the output of a selected subset of the available features over all windows in an

audio file and produce a single output for the entire file. In essence, aggregators collapse

information on how a feature or set of features vary with time into a single representation.

Aggregators can be very helpful in attempting to come to terms with the curse of

dimensionality when dealing with potentially huge amounts of feature data.

 154

Figure 3.8: An illustration of how metafeatures work. This example shows three windows

of an audio signal. The MFCC and zero crossings features are extracted from these

windows, with dimensionalities of 13 and 1, respectively. The derivative metafeature is

then calculated for each window and for each feature, with dimensionalities of 13 and 1,

corresponding to the dimensionalities of the MFCC and zero crossings features

respectively. This graphic is taken from the poster presented by McEnnis at ISMIR 2006

(McEnnis, McKay and Fujinaga 2006a).

Aggregators in jAudio come in two varieties, namely general aggregators and

specific aggregators. General aggregators are functions that, if they are selected by the

user, will automatically be applied individually to every feature extracted. For each

feature, per-window feature output is collapsed into a single vector. If a feature that a

general aggregator is applied to is multidimensional, then the aggregator function will be

applied to each dimension separately. jAudio includes implementations for the following

general aggregators:

 Mean: Calculates the mean value of a feature over all windows in a file.

 Standard Deviation: Calculates the standard deviation of a feature over all

windows in a file.

Metafeature Example

13D

13D

1D

13D

1D

1D

Windowed Input
Signal

Zero Crossings
Feature

MFCC Feature

Derivative
Metafeature

1D

1D

13D

13D

1D 13
D

13
D

1D 13
D

1D 1D 13
D

13
D

1D

 155

 MFCC: This aggregator treats the value of the feature that it is applied to for each

window as if it were a sample in a digital signal. The MFCC is then calculated for

this ―signal.‖

Specific aggregators are functions that target only one or more specific features

instead of all features. The features to which they are to be applied must therefore be

specified when specific aggregators are chosen to be extracted. Specific aggregators can

be very useful for representing in a low-dimensional way how different features change

together. jAudio implements the following specific aggregators:

 Area of Moments: This aggregator combines the values for all selected features

into a single array for each window, which results in a two-dimensional matrix,

with one row for each window and one column for each feature. This matrix is

then treated as a two-dimensional image, and the two-dimensional statistical

moments (Fujinaga 1997) are calculated and output for this image.

 Multiple Feature Histogram: An aggregator that constructs a histogram

indicating in how many windows various feature values fall within various bins of

value ranges. This can be useful in tracking concurrent changes between features

over an input signal.

As is the case with features and metafeatures, users can implement their own

aggregators relatively easily. This is done by extending the Aggregator class.

It should be noted that the aggregator aspect of jAudio was designed, implemented

and tested entirely by Daniel McEnnis.

3.4.9 Additional functionality

jAudio is intended to be used not only as a feature extractor, but also as a platform for

developing new features. As such, it includes additional functionality to assist the testing

of new functions, as follows:

 Sound Synthesis: Basic additive sound synthesis functionality is included that

allows sine waves, complex tones, white noise, FM sweeps, decay pulses, etc. at

various specified frequencies and amplitudes to be combined and saved.

 156

 Recording: jAudio can record audio from microphones. The system sound can

also be recorded, if permitted by the sound card and operating system.

 Playback: Audio and MIDI files can be played.

 MIDI to Audio Conversion: The recording and playback functionality can be

combined to perform rudimentary real-time MIDI to audio conversion.

 Format Conversion: Sampling rate, bit depth, signing, byte order and file

encoding format can all be varied.

 Audio Processing: Gain, normalization and channel combination can be

performed on a file-by-file basis. This is in addition to jAudio’s pre-processing

functionality, which can automatically apply such operations to groups of files.

 Display Functionality: Audio waveforms and power spectra can both be graphed

for any file or portion of a file. Individual sample values can also be listed by time.

 Batch and Configuration Files: jAudio includes a configuration file format that

allows feature extraction and pre-processing settings to be saved between jAudio

sessions. Batch files can also be saved that include this information as well as sets

of files to extract features from. This facilitates the repetition of experiments after

changes have been made to the software as well as the performance of multiple

experiments with similar parameters.

 Installation Utility: Automatically installs jAudio, taking into consideration each

user’s particular operating system and Java installation.

3.5 jAudio’s interface

Like all of the jMIR components, jAudio has been designed to be easily usable by

researchers with a wide range of technical backgrounds, from users who want to use it

simply as a dedicated feature extraction application, to developers who wish to add

functionality or modify the code to meet their own research needs. jAudio therefore

includes several different interfaces, namely a GUI, a command-line interface and an API

for embedding jAudio’s functionality in other applications. The ability to embed jAudio

 157

in other applications was designed with the particular needs of the OMEN project in

mind, although jAudio can certainly be embedded in other applications as well.

The command-line interface is designed to enable users to quickly extract features

from batches of audio files. Although all of the functionality provided by the command-

line interface is also accessible via the GUI, some users prefer the speed of access offered

by a command-line interface. In any case, the best way to use the command-line interface

is typically to save batch files via the GUI interface, and then simply load these files via

the command-line. Of course, some settings can be set directly via command-line

arguments, and batch files can be modified manually using a text editor if preferred.

The GUI makes all of the user-oriented functionality described in Section 3.4

available to users. This functionality will not be explicitly repeated in detail here, but the

details of how some of the highlights can be accessed via the GUI will be discussed.

More details are available in jAudio’s documentation, particularly in its embedded

manual (Figure 3.9).

jAudio’s fundamental functionality is accessible via the Feature Extraction Window

(Figure 3.10). The left side of this window lists all audio files that the user has selected to

have features extracted from. The right side of this window lists all features and

metafeatures that are detected by jAudio at runtime. The basic features are listed in bold,

and available metafeatures are automatically generated under each such feature. The user

may select which features and metafeatures to extract using the checkboxes presented

here, and parameters for individual features and metafeatures, as well as identifying

descriptions, can be accessed by double clicking on feature names. Aggregators may be

accessed and configured via separate windows (Figure 3.11).

The Feature Extraction Window also provides direct access to some of jAudio’s most

commonly used functionality, including the ability to add or delete recordings, set feature

save paths and set window settings. jAudio’s other functionality can be accessed via its

various menus.

All of the user settings relating to features, metafeatures, aggregators and selected

recordings can be saved to configuration or batch files, as can certain other settings

relating to pre-processing audio. Loading these will restore the appropriate settings on the

GUI.

 158

jAudio also includes functionality for viewing information on audio files and applying

basic processing operations to them, as shown in Figure 3.12. This includes the ability to

display time indexed sample values, waveforms and spectral analyses for all or parts of

audio files (Figure 3.13). A separate window (Figure 3.14) also allows users to change the

encoding settings for individual files.

In order to facilitate the testing of new features, jAudio also allows users to record

audio from a microphone or from the system sound (Figure 3.15) or to perform

rudimentary additive sound synthesis (Figure 3.16).

Figure 3.9: jAudio’s manual, which can be accessed via jAudio’s Help menu.

 159

Figure 3.10: jAudio’s main window. This window allows the user to choose both the

recordings to extract features from and the particular features and metafeatures to

extract, as well as to specify other settings.

 160

Figure 3.11: jAudio windows allowing aggregators to be selected (top) and configured

(bottom).

 161

Figure 3.12: jAudio window allowing the user to see various types of information about

individual recordings as well as apply some basic processing operations to them.

 162

Figure 3.13: jAudio windows for displaying waveforms (top) and power spectra (bottom)

for all or parts of audio files.

 163

Figure 3.14: The jAudio window for selecting or changing encoding settings for

individual audio files.

 164

Figure 3.15: jAudio window allowing the user to record sound from a microphone or from

the system sound in order to facilitate the testing of new features.

 165

Figure 3.16: jAudio window allowing the user to perform rudimentary additive sound

synthesis in order to facilitate the testing of new features.

 166

3.6 Summary of original contributions

jAudio is designed to be a dedicated audio feature extraction application, a code

library that can be embedded in other applications and a feature development platform.

There are, as discussed in Section 3.3.2, already a number of existing alternative high-

quality audio feature extraction applications designed for use in MIR research. jAudio

does, however, have a number of characteristics that distinguish it from these alternatives.

Many, but not all, of these advantages are associated with jAudio’s emphasis on

providing a platform for developing, testing and sharing new features. The highlights of

jAudio’s distinguishing characteristics are as follows:

 Functionality facilitating the use of multidimensional features in a logically

natural way, including features with variable dimensionalities, both in terms of

using them to derive other features and in terms of maintaining a logical

relationship between the values of multidimensional features that facilitates their

use with specialized classifier ensembles.

 The ability to save extracted feature values in ACE XML files. This has many

advantages over alternatives such as Weka ARFF (a format that jAudio can also

save to if required). These benefits include the ability to store the specific

relationships between analysis windows and audio files as a whole, the ability to

preserve the relationship between the dimensions of multidimensional features, the

ability to save features for files overall in combination with features only extracted

from portions of these files and the ability to automatically store metadata about

recordings as well as features themselves. ACE XML files are discussed in more

detail in Chapter 7.

 The ability to implement features as plug-ins using a simple API and distribute

compiled new features to other users without requiring these new users to

recompile their jAudio installations.

 Automatic feature dependency resolution and scheduling.

 Metafeatures.

 Feature aggregators.

 167

 Functionality facilitating feature testing, including the ability to record audio,

sonify MIDI files, synthesize audio, convert between audio formats and graph

audio waveforms and spectral analyses. The ability to save configuration settings

and batch files also facilitates retesting after implementing bug fixes.

 Easy-to-use GUI making the software usable by non-technically oriented

researchers. An installation utility is also included.

3.7 Future research

The primary emphasis in future research will be to develop, test and share new

features. The features that are distributed with jAudio provide a good basis for developing

higher-level features, which can then in turn be used to implement increasingly high-level

features. Research in music theory, of the type discussed in Chapter 4 with respect to

jSymbolic, could provide useful inspiration for developing such high-level features.

Psychological research in audio perception and cognition could also be helpful, such as

the general work described by Moore (2003) or the grouping principles outlined by

Bregman (1990). Such research, as discussed in Chapter 2, could help to provide an

understanding of what basic types of information humans extract from audio signals.

There are also a number of existing and as-of-yet unthought-of low-level features that

remain to be implemented. Examples include spectral flatness measure and spectral crest

factor (Jayant and Noll 1984), as well as chroma vectors (Goto 2003). Features derived

from the discrete wavelet transform rather than the FFT could also be useful. Additional

metafeatures and aggregators could also prove helpful, especially ones designed for

extracting various statistical characteristics from histogram-based features.

 As discussed in Section 3.2.5, much research remains to be done on the extent to

which various features are dependent on audio file format and associated representational

parameters. jAudio would provide an excellent platform for carrying out such research.

With respect to improvements to the jAudio software itself, a priority is to increase

jAudio’s processing speed. Although fast enough as is for many practical MIR purposes,

it would ideally be nice to have jAudio be fast enough to extract features in real-time.

Features could then be broadcast to real-time applications for purposes such as interactive

 168

performance systems (e.g., McKay 2005). Faster feature extraction would also make

jAudio more generally applicable to rapid processing of very large audio collections.

There are also a number of low-level optimizations that could improve jAudio’s

performance. In particular, more efficient techniques and representations could be used to

generate the array of samples that serve as the basic input to individual features. Minor

improvements could also be made that would reduce the small amount of rounding error

currently found in jAudio’s sample calculations. jAudio also currently requires a large

amount of memory during processing, particularly when applied to long audio files,

something that could be ameliorated in the future.

There are also several useful types of functionality that could be added to jAudio. For

example, it would be helpful to have more flexible control over windowing. Being able to

extract features from only a subset of all windows of a recording could be useful for some

tasks, such as genre classification or music recommendation. It could be helpful for users

to be able to either choose where in a recording such a subset of windows are to be

selected, or to be able to instruct jAudio to choose the locations randomly.

Another potential improvement would be to incorporate functionality for representing

extracted features more sparsely, for the purposes of conserving space and machine

learning processing time as well as, potentially, increasing performance of classification

by removing feature noise. One way of doing this would b to allow users to extract

buckets of windows, where ten or so sets of windows, each spanning a few dozen or so

milliseconds, are selected at random points in a recording. Since each such bucket spans

only a small amount of time, the features for all windows in a bucket could reasonably be

averaged together. This approach would dramatically reduce the data that would need to

be stored and then processed by machine learning algorithms, but still provide hopefully

representational probes at various points in each recording.

It would also be useful to provide users with a choice of windowing functions when

calculating FFTs, as jAudio currently automatically applies a Hann window.

Functionality could also be added to jAudio for parsing additional audio file formats.

Ogg Vorbis, AAC/MP4, FLAC and SDIF would be particularly useful choices. It could

also be useful to incorporate functionality into jAudio allowing it to extract features from

live audio streams.

 169

There also plans to make minor improvements to the GUI interface, particularly with

respect to the ways that aggregators are accessed and with respect to expanding the details

covered by jAudio’s manual. jAudio is easy-to-use and well-documented compared to

most existing MIR software, but there is still certainly room for improvement.

 170

 171

4. jSymbolic: Extracting features from symbolic music

4.1 Introduction

4.1.1 Overview of symbolic feature extraction and jSymbolic

Symbolic musical file formats represent musical information in a fundamentally

different way than audio files. As discussed in Chapter 3, audio files store actual sound

signals by digitally approximating the signals themselves. Symbolic files, in contrast,

store higher-level abstractions about music rather than direct representations of the sound

itself. So, while an audio file such as an AIFF file would store an approximation of the

actual sound waves produced by a bass and alto sax duet, for example, a symbolic file

would store information such as the pitch of each note, which instrument played each

note and the start and stop times of each note. Examples of symbolic musical

representations range from sheet music written by composers and read by musicians to

the holes punched in player piano rolls to modern digital file formats such as MIDI,

Humdrum and MusicXML.

jSymbolic is the jMIR software application devoted to extracting features from

musical data stored symbolically, specifically in MIDI files. As is the case with jAudio,

jSymbolic is designed to be used directly as a feature extraction application as well as a

platform for iteratively developing new features that can then be shared amongst

researchers. jSymbolic also shares many of the design characteristics of jAudio that

emphasize feature extensibility. This includes a modular design that facilitates the

implementation and incorporation of new features, automatic provision of all other

feature values to each feature and dynamic feature extraction scheduling that

automatically resolves feature dependencies. Unlike jAudio, however, jSymbolic does not

yet have functionality for automatically generating metafeatures and aggregators.

As is the case with all of the jMIR components, jSymbolic is designed to be

accessible to users with a variety of technical skill levels, and has a simple and easy-to-

use GUI. Also like all of the jMIR components, jSymbolic is implemented in platform-

independent Java, and is entirely open-source and freely available.

 172

jSymbolic includes a library of 111 implemented features that may be extracted from

symbolic files. A further 42 features that remain to be implemented are also proposed in

this document, for a total catalogue of 153 features, including both single-value features

and multi-dimensional features. These features can be loosely divided into the following

categories:

 Instrumentation: Which instruments are present, and which are emphasized

relative to others? Both pitched and non-pitched instruments are considered.

 Texture: How many independent voices are there and how do they interact (e.g.,

polyphonic or homophonic)? What is the relative importance of different voices?

 Rhythm: Features are calculated based on the time intervals between note attacks

and the durations of individual notes. What meter and what rhythmic patterns are

present? Is rubato used? How does rhythm vary from voice to voice?

 Dynamics: How loud are notes and what kinds of variations in dynamics occur?

 Pitch Statistics: How common are various pitches relative to one another, in

terms of both absolute pitches and pitch classes? How tonal is the piece? What is

its range? How much variety in pitch is there?

 Melody: What kinds of melodic intervals are present? How much melodic

variation is there? What can be observed from melodic contour measurements?

What types of phrases are used and how often are they repeated?

 Chords: What vertical intervals are present? What types of chords do they

represent? How much harmonic movement is there, and how fast is it?

The 153 jSymbolic features were originally developed through extensive analysis of

publications in the fields of music theory, musicology and MIR as part of the

Bodhidharma symbolic genre classification project (McKay 2004). The features have

since been refined. Most of these features had not previously been applied to MIR

research, and many of them are entirely novel.

The effectiveness of these features has been experimentally demonstrated by the fact

that Bodhidharma placed first in all four categories of the MIREX 2005 Symbolic Genre

 173

Classification Contest (McKay and Fujinaga 2005b; www.music-ir.org/evaluation/mirex-

results/), the most recent MIREX symbolic genre evaluation. The refinement and porting

of these features to jSymbolic now allows these features to be used for a range of MIR

tasks beyond only genre classification.

A special emphasis was placed on ensuring the diversity of the features in the

jSymbolic feature catalogue, which is part of the reason why so many features were

implemented. General-purpose suites such as jMIR must be able to deal with many

different types of music, and the features that might be relevant to certain types of music

might be useless with respect to others. jSymbolic thus presents researchers with a large

palette of features from which to choose, based on either their own musical expertise or

ACE’s automatic feature selection functionality (see Chapter 6).

The jSymbolic Java bytecode and the associated source code are freely available at

jmir.sourceforge.net/index_jSymbolic.html. The software makes use of the Xerces XML

Parser,
118

 which is also freely available. There is also some initial published work

available on jSymbolic (McKay and Fujinaga 2007b; McKay and Fujinaga 2006a;

McKay and Fujinaga 2006c).

4.1.2 Benefits of extracting features from symbolic data

There has, at least to date, been much more MIR research performed on features that

can be extracted from audio data than from symbolic data. This is to be expected, given

that most commercial MIR applications and users in general are much more interested in

processing audio files than symbolic files such as MIDI.

One must not underestimate the advantages offered by symbolic file formats,

however. In stark contrast to the majority of MIR researchers, musicologists and music

theorists have focused, and continue to focus, on symbolic musical representations,

namely printed or written scores. There is therefore an immense existing body of

knowledge that can be taken advantage of to design features that can be extracted from

symbolic data and, correspondingly, many potential applications for such features.

Furthermore, the information represented by features extracted from audio data

generally have little intuitive meaning to humans. So, for example, while spectral centroid

118

 xerces.apache.org

 174

and spectral flux values extracted over a sequence of audio windows can certainly be of

potential use to an automatic classification system, they are unlikely to give a music

theorist or composer any musical insights or inspiration. These types of features can be

referred to as low-level features, as they represent information about musical signals at a

relatively low level of abstraction.

The features extracted from symbolic data, on the other hand, can be much more

directly meaningful to humans. Features directly related to tempo or key, for example,

can prove helpful in providing humans with meaningful insights on music. Such features

can be referred to as high-level features, because they incorporate high levels of musical

abstraction.

Symbolic data by its nature already fundamentally includes a high level of musical

abstraction. While the fundamental unit of an audio representation is typically a sample,

the fundamental unit of a symbolic representation might be a note, for example. This

means that it is much easier to extract high-level musical features from symbolic

representations than from audio representations. Despite ongoing efforts, few high-level

features can currently be reliably extracted from arbitrary audio data. It is for this reason

that one might argue that the MIR research community has made a misstep by focussing

so much more on audio features than on symbolic features. Symbolic data yields much

more immediate and reliable access to musically meaningful research.

It is also important to point out that research in the fields of audio feature extraction

and symbolic feature extraction will likely be much more linked in the future than they

are at the moment. Research on automatic transcription, which is essentially the task of

generating symbolic representations from audio representations, is an important area that

receives significant research interest. If future advances allow audio to symbolic

transcription to be reliably performed, then existing research on symbolic feature

extraction could be profitably applied to symbolic transcriptions extracted as intermediate

data structures from audio files. A strong body of research on symbolic feature extraction

now could thus pay dividends in the future by providing immediate access to a wide

range of high-level features that could be indirectly extracted from audio data.

Although general polyphonic transcription is still very much an unsolved problem,

significant achievements have already been made in areas such as monophonic

 175

transcription or piano-only transcription, and general improvements continue to be made

(Klapuri and Davy 2006). Furthermore, automatic music classification tends to be much

more noise tolerant than other applications of automatic audio transcription. While an

audio transcription, where 10% of the notes are incorrect, might be entirely unacceptable

to a human performing an automatically transcribed score, for example, such an error

level would not necessarily prove to be a serious detriment to automatic classification

algorithms, many of which are specifically designed to deal with such noisy data. In

addition, the averaging out of features during the feature aggregation process could also

effectively smooth out much of this transcription noise. So, research on high-level

features performed now using symbolic data could be of significant use in the future with

respect to audio data as well, perhaps even in the very near future.

Of course, feature extraction from symbolic musical data is an important area of

research in and of itself, even without reference to audio feature extraction, as there are

already many existing symbolic musical recordings. There is a large and active

commercial and volunteer MIDI encoding community, researchers have encoded a large

amount of music in other symbolic formats (see Section 4.2.1), and there is also music

available in the formats used by commercial score editors such as Finale and Sibelius.

Existing optical music recognition techniques can also be used to process printed or

written scores into symbolic file formats from which features can then be extracted. Most

academic music libraries have many more scores than audio recordings, thus making free

and legal access to the music cheaper and easier, and there are also many scores for which

audio recordings do not exist or are hard to acquire. Extracting high-level features from

processed scores can in fact be in some ways preferable from a musicological perspective

to processing audio data, as it removes potential performance biases and errors, and

focuses entirely on the artifact provided by the composer.

High-level features can also have important musicological and music theoretical

research value outside the specific context of automatic music classification. For

example, research has found that instrumentation is of particular importance when

distinguishing between genres (McKay and Fujinaga 2005a), a conclusion that would be

difficult to achieve if one were using only low-level features.

 176

There is great potential that has barely begun to be tapped for automated research

using high-level features in fields such as empirical musicology and music theory.

Researchers in these fields typically currently use relatively primitive kinds of computer

processing, when they use computers at all, and almost never use sophisticated machine

learning tools. Software such as jSymbolic, potentially combined with pattern recognition

software such as ACE, makes it possible to process much greater quantities of music than

previously possible in order to search for regularities or to prove or disprove theoretical or

musicological hypotheses. jSymbolic could therefore be of significant use to music

researchers in the humanities as well as in MIR, and it is one of the goals of jSymbolic to

encourage just such research.

Having noted all of this, it is important to recognize some of the important general

limitations of symbolic data with respect to musical representation and feature extraction.

One of the most significant of these limitations is that timbral data is usually only

represented symbolically in a relatively coarse manner, usually via instrument identifiers.

Although some additional information can in principle be represented using information

such as MIDI Channel Pressure messages (see Section 4.2.2), for example, such encoding

practices are not standardized, with the consequence that they are effectively meaningless

if features are extracted from files coming from multiple sources. Timbral information

plays an important role in human hearing, so this is a potentially serious issue.

A symbolic recording of a human performance will almost always sound significantly

worse than an audio recording of the same performance. This is partly because it is

impossible to properly record the full range of control parameters for most instruments,

which is significant from the perspective of analytical feature extraction, and partly

because of synthesizer limitations, which is less significant from this perspective.

An additional problem is that most symbolic formats were devised primarily with

Western musical models in mind. This can limit their applicability to certain non-Western

musics, although certainly not all. For example, MIDI cannot represent instruments that

are not specified in General MIDI in a standardized way, although MIDI can represent

microtonal pitch intervals.

Despite all of this, the increased accessibility of high-level features in symbolic

formats, as discussed above, remains a very significant asset. Symbolic formats such as

 177

MIDI also have a number of additional advantages over audio recordings. For example,

they are typically much more compact, which in turn makes them easier to store or

transmit, and much faster to process and extract features from. Symbolic recordings are

also usually relatively simple to visualize in human-meaningful ways, such as via

standard sheet music notation (as opposed to audio waveforms or spectrograms), and they

can also be edited entirely non-destructively.

Symbolic data also makes it easier to extract meaningful features relating to entire

recordings, such as key or meter, for example. Audio data, in contrast, typically has to be

segmented into analysis windows prior to feature extraction, as explained in Chapter 3.

This results in an explosion of data and processing complexity, where features extracted

from individual windows may be overly noisy because of their short duration, and

averaging out these features over many windows may smooth out some potentially

meaningful information.

As an additional note, the loss of timbral data beyond instrumentation in symbolic

formats may not be as significant as it may seem at first. For example, Aucouturier and

Pachet (2003) suggest that the relationship between timbral features and musical genres

may not be as strongly correlated as one might imagine. It is, of course, true that timbre

clearly does play a role in many kinds of human auditory classification, but Aucouturier

and Pachet’s work still provides an indication that the importance of timbre may have

been overemphasized in past research, and that other types of musical information may

well make timbre unnecessary for some kinds of automatic classification. The fact that

timbre-based features have played a sometimes overwhelming role in many of the

existing audio classification systems may have even potentially impaired their

performance.

Overall, one can say that audio encodings have certain significant advantages over

symbolic encodings, and that symbolic encodings likewise have certain significant

advantages over audio encodings. This is precisely why jMIR includes both jSymbolic

and jAudio, so that the advantages offered by both approaches to encoding musical

information may be taken advantage of, whether one searches out matching symbolic and

audio versions of a particular piece, or whether transcription technology or synthesis

technology is respectively used to generate one type of encoding based on the other.

 178

4.1.3 Chapter outline

Section 4.2.1 of this document provides a brief overview of some of the most relevant

symbolic musical file formats. Section 4.2.3 includes justifications for the particular

choice of MIDI as the format from which jSymbolic extracts features. A relatively

detailed description of the MIDI specification is also provided in Section 4.2.2, in order to

ensure that the reader is fully prepared for the feature descriptions provided in Section

4.5.

Existing software that can be used for symbolic feature extraction is reviewed in

Section 4.3. The main focus in this section is on software specifically designed for feature

extraction, although some particularly pertinent tangential research is also mentioned.

Section 4.4 reviews and integrates research from several fields in order to arrive at

general principles to consider when designing and choosing features to extract from

symbolic data. The focus of this section is primarily on theoretical research in disciplines

related to music theory and musicology, although this is not exclusively the case.

The features that are proposed as part of the jSymbolic feature catalogue are described

individually in Sections 4.5.1 to 4.5.7. These features are grouped into the categories

described above in Section 4.1.1 for the purpose of clarity, and include both the 111

features that are implemented in jSymbolic as well as the 42 features that remain to be

implemented. For the purpose of illustration, Section 4.5.8 includes two short musical

excerpts and examples of some of actual feature values extracted from these excerpts.

Section 4.6 outlines the basic functionality offered by jSymbolic, while the software’s

interface itself is described in Section 4.7. A summary of the original research

contributions of this chapter is presented in Section 4.8, and some final ideas for future

research in symbolic feature extraction and expansion of jSymbolic’s functionality are

provided in Section 4.9.

4.2 Background information

4.2.1 Symbolic music file formats

It is generally possible to divide digital symbolic file formats into three broad

categories: formats intended to communicate performance information between gestural

controllers, computers and synthesizers; formats intended to represent musical scores and

 179

associated visual formatting information; and formats intended to facilitate theoretical and

musicological analysis.

MIDI (MIDI Manufacturers Association. 2001; Rothstein 1995), which falls primarily

into the first of the three categories described above, is the symbolic file format that is by

far the best known by the general public. As a result, there is a very large quantity of

music of many kinds that has been encoded in MIDI. Ironically, MIDI was originally

intended as a real-time protocol for communication between instrumental controllers and

synthesizers, and did not originally have any file format specification. Nonetheless, its

relatively early arrival and wide industry adoption has led to its broad popularity as a

format for storing symbolic musical data. More details on MIDI are provided in Sections

4.2.2 and 4.2.3.

Open Sound Control (Wright and Freed 1997), or OSC, is another real-time

performance-oriented symbolic file format, and was designed specifically as a successor

to MIDI. It is widely recognized as technically superior to the essentially obsolete MIDI

protocol, but the wide industry penetration of MIDI has prevented OSC from making

significant progress in replacing MIDI. Some of the advantages of OSC include explicit

compatibility with modern networking technology and improved general flexibility and

organization, as well as technical advantages such as improved time resolution.

The most commonly used file formats for representing formatted musical scores are

likely the native file formats of the two dominant score editing applications, namely the

Sibelius
119

 .SIB format and the Finale
120

 .MUS formats. Unfortunately, these are closed

formats, which means that the details of how they represent scores are not openly

published, so one must buy the associated software in order to read or write these formats.

Furthermore, even if reverse engineered, the file standards may be changed unilaterally at

any time by the software developers, something that Finale in particular is notorious for

doing between versions of their score editing application. Problems such as these

significantly limits the research value of these file formats.

119

 www.sibelius.com
120

 www.finalemusic.com

 180

Fortunately, there are a variety of more research-oriented formats that can be used to

represent musical scores, including GUIDO (Hoos et al. 2001) and Lilypond (Nienhuys

and Nieuwenhuizen 2003), two relatively well-known text-based formats.

MusicXML (Guess 2001), an open XML-based format, has achieved a relatively high

profile, particularly due to its adoption by a variety of commercial music notation

programs, including Finale, Sibelius and the Steinberg Cubase
121

 music sequencer. The

use of MusicXML as an intermediate file format is currently the best approach available

for transferring data between .SIB and .MUS files.

In the realm of music analysis, the file formats associated with the Humdrum Toolkit

(Huron 2002) are particularly prominent. These formats include the fairly general **Kern

format (Huron 1997) as well as formats intended to represent more specialized types of

music, such as the **Hildegard
122

 neume encoding or the **Koto
123

 format for koto

tablature.

There are many other symbolic file formats that have been developed, as well as a

number of published guidelines for developing such formats. Although there is

insufficient space to go into more detail here, Dannenberg (1993) and Selfridge-Field

(1997) have provided excellent overviews of the classic symbolic formats.

4.2.2 The MIDI specification

MIDI is an encoding system that is used to represent, transfer and store symbolic

musical information. As mentioned above, the MIDI standard was originally developed as

a real-time communication protocol between instruments and synthesizers. However,

even though the notion of a MIDI file was not part of the original MIDI specification,

MIDI files are now very much part of the standard and are broadly used.

Only those parts of the MIDI specification that are relevant specifically to symbolic

feature extraction are discussed in any kind of detail in this section. Those aspects of

MIDI that are only relevant to live performance and not to MIDI files are for the most

part omitted here due to the breadth of the MIDI specification. There are many books on

MIDI, such as that by Rothstein (1995), which can be consulted for further information

121

 www.steinberg.net
122

 www.humdrum.org/Humdrum/representations/hildegard.rep.html
123

 koto.sapp.org/kotospec/

 181

on MIDI if desired. The complete MIDI specification is published by the MIDI

Manufacturers Association (2001).

Like all symbolic file formats, MIDI files store abstract representational instructions

that can be sent to synthesizers or score editing software, and not actual sound samples.

The quality of the sound that is produced when a MIDI file is played is therefore highly

dependant on the particular synthesizer that the MIDI instructions are sent to.

MIDI essentially consists of sequences of instructions called MIDI messages. Each

MIDI message corresponds to an event or change in a control parameter. MIDI messages

each consist of one or more bytes of data, which fall into two types: status bytes and data

bytes. The status byte is always the first byte of a MIDI message, always starts with a 1

bit and specifies the type of MIDI message and, implicitly, the number of data bytes that

will follow to complete the message. Data bytes always start with a 0 bit, which means

that each data byte has 7 remaining bits to specify values with ranges between 0 and 127.

MIDI allows the use of up to sixteen different channels on which different types of

messages can be sent. Each channel operates independently of the others for most

purposes. Channels are numbered from 1 to 16. There is no channel 0.

There are two important classes of MIDI messages: channel messages and system

messages. The former influence the behaviour of only a single channel and the latter

affect the MIDI system as a whole. Channel voice messages, a type of channel message,

are the only type of messages that are relevant to symbolic feature extraction. The four

least significant bits of the status byte of all channel voice messages indicate the channel

number (0000 is channel 1 and 1111 is channel 16). Note On, Note Off, Channel

Pressure, Polyphonic Key Pressure, Program Change, Control Change and Pitch Bend

messages are all channel voice messages, as described below.

A Note On messages instructs a synthesizer to begin playing a note. This note will

continue playing until a matching Note Off message is received. The four most significant

bits of the status byte of all Note On messages must be 1001 and, as with all channel

voice messages, the four least significant bits specify the channel on which the note

should be played. Note On messages have two data bytes: the first specifies pitch, from 0

to 127, and the second specifies velocity, also from 0 to 127. Pitch is numbered in

semitone increments, with note 60 being designated as middle C. Equal temperament

 182

tuning is used by default, although synthesizers can be instructed to use alternate tunings

if desired. The velocity value specifies how hard a note is struck, which most synthesizers

map to loudness.

A Note Off message has an identical format to a Note On message, except that the

four most significant bits of the status byte are 1000. The pitch value specifies the pitch of

the note that is to be stopped on the given channel and the velocity value specifies how

quickly a note is to be released, which is generally mapped to the fashion in which the

note dies away. Many synthesizers do not implement Note Off velocities, however. A

Note On message with velocity 0 is equivalent to a Note Off message for the given

channel and pitch.

Channel Pressure messages specify the overall pressure for all notes played on a

given channel. This can be mapped by synthesizers in a variety of ways. Aftertouch

volume (the loudness of a note while it is sounding) and vibrato are two common

mappings. The status byte of Channel Pressure messages has 1101 as its four most

significant bits, and there is one data byte that species the pressure (between 0 and 127).

Polyphonic Key Pressure messages are similar to Channel Pressure messages, except

that they contain an additional byte (the one immediately following the status byte) that

specifies pitch, thus restricting the effect of the message to single notes rather than to all

notes on the channel. The most significant bits of such a status byte are 1010.

Program Change messages allow one to specify the instrumental timbre that is to be

used to sonify all future notes played on the specified channel until a new program

change message is received for it. Program, patch and voice are all terms that can be used

equivalently in reference to the instrumental timbres specified by Program Change

messages. The most significant bits of the status byte are 1100, and there is a single data

byte specifying the patch number, from 0 to 127.

The particular 128 instrumental timbres and sound effects corresponding to particular

patch numbers are specified by the MIDI Program Table, which is part of an addendum

to the MIDI specification called General MIDI. The MIDI Program Table is relevant to

all channels except channel 10. All notes played on channel 10 are considered to be

percussion notes, and General MIDI includes a separate Percussion Key Map specifying

47 percussion timbres that are always used for notes sent to channel 10. The timbre that is

 183

used for each note played on channel 10 is determined based on the pitch value of its

corresponding Note On message, not by Program Change messages. The pitch value of

Note On messages on all other channels specifies pitch, and has nothing to do with

instrumental timbre. Rothstein (1995) provides copies of both the MIDI Program Table

and the General MIDI Percussion Map.

Control Change messages affect the sound of notes that are played on a specified

channel in various ways. Volume and modulation are two parameters that are often

controlled via Control Change messages. In total, there are 121 different MIDI controllers

that may be accessed via Control Change messages, including some that are unspecified

in the standard. However, many synthesizers do not implement most, or even any, of

these controllers. The four most significant bits of the status byte of Control Change

messages are 1011. The first data byte specifies the controller that is being referred to,

from 0 to 120. There is a second data byte that specifies the setting of the controller,

which can range from 0 to 127.

If a greater resolution is required, a second Control Change message may be sent to

supplement the first, resulting in a control resolution of 16,384, as opposed to the

standard resolution of 128. Controllers 0 to 31 represent the most significant byte in this

case, and controllers 32 to 63 represent the least significant byte. Two Control Change

messages can thus cause a single change to be implemented with much greater resolution

than a single Control Change message. Rothstein (1995) provides details on particular

Control Change messages.

Control Change messages are generally intended for use with continuous gestural

instrumental controllers, and are only standardized to a limited extent. Control Change

messages are often absent in MIDI files, and their lack of standardization could cause a

good deal of noise in extracted feature values. They are therefore only utilized by

jSymbolic in a very limited capacity.

Pitch Bend messages allow microtonal synthesis. The four most significant bits of the

status byte of such messages are 1110. There are two data bytes, the first of which

specifies the least significant byte of the Pitch Bend and the second of which specifies the

most significant byte. Maximum downward bend corresponds to data byte values of 0

followed by 0, centre pitch (no bend) corresponds to values of 0 followed by 64 and

 184

maximum upward bend corresponds to values of 127 followed by 127. General MIDI

specifies that the default Pitch Bend range is plus or minus two semitones. This setting

can be altered on individual synthesizers, however, so one must be careful to ensure that

the Pitch Bend range that is actually played corresponds to what is desired.

MIDI timing is controlled by a clock that emits ticks at regular intervals. Clock rates

are usually related to temporal note durations in terms of parts per quarter note, or ppqn.

A greater ppqn corresponds to a greater rhythmic resolution, which allows the

representation of notes that push or lag the beat a little. A greater resolution also allows

one to represent complex tuplets with a greater precision. The most commonly used

resolution is 24 ppqn, which allows sufficient resolution to permit 64th note triplets. At

24 ppqn, a half note corresponds to 48 ticks, a quarter note to 24 ticks, an eighth note to

12 clicks, at sixteenth note to 6 clicks, etc. It should be noted that the actual speed of

playback of quarter notes is controlled by tempo change meta-events (see below).

MIDI also permits an alternative to the ppqn representation of time, namely the

SMPTE time code (Society of Motion Picture and Television Engineers 1994), which is

divided into hours, minutes, seconds and frames. This is very useful when synchronizing

MIDI to visual media such as film or video. There are variations of SMPTE for different

frame rates. Thirty frames per second is the rate that is most commonly used by MIDI.

Although there are a variety of proprietary file formats that were used in the early

history of MIDI to store MIDI data, nowadays MIDI is almost always encoded in one of

the three open standard MIDI file formats, numbered 0, 1 and 2 (MIDI Manufacturers

Association 2001). The main difference between these three formats is the manner in

which they deal with tracks, which can be used by sequencers to segment different

voices. Format 0 files consist of a single multi-channel track, Format 1 files have

multiple tracks that must all have the same meter and tempo (the first track contains the

tempo map that is used for all tracks), and Format 2 files have multiple tracks, each with

its own tempo and meter. Format 1 files are the most commonly used format today, and

Format 2 files are still rarely used.

Each of the three standard MIDI file types consist of groups of data called chunks,

each of which consist of a four-character identifier, a thirty-two bit value indicating the

 185

length in bytes of the chunk and the chunk data itself. There are two types of chunks:

header chunks and track chunks.

Track chunks contain all of the information and MIDI messages specific to individual

tracks. The header chunk is found at the beginning of the file and includes the type of file

format (0, 1 or 2), the number of tracks and the division. The division value can mean one

of two things, depending on whether it specifies the use of either ppqn timing or SMPTE.

In the former case, it specifies the timing resolution of a quarter note. In the latter case, it

specifies the SMPTE frame rate and the number of ticks per SMPTE frame.

Time intervals between MIDI events are notated using delta times, which specify the

amount of time that has elapsed between the current event and the previous event on the

same track. This approach is used because it requires less space than simply listing the

absolute number of MIDI ticks that pass before an event occurs.

MIDI messages stored in files and their associated delta times are called track events.

Track events can involve both MIDI events and meta-events. Meta-events provide the

ability to include information such as lyrics, key signatures, time signatures, tempo

changes and track names in files.

Key signature meta-events include two pieces of information: sf and mi. sf indicates

the number of flats (negative number) or sharps (positive number) in the key signature.

For example, C major and A minor are represented by 0 (no sharps or flats), 3 represents

3 sharps (A major or F# minor) and -2 represents 2 flats (Bb major or G minor). mi

indicates whether the piece is major (0) or minor (1).

Time signature meta-events contain four pieces of information: nn, dd, cc and bb. nn

and dd are the numerator and denominator of the time signature respectively. It should be

noted that dd is given as a power of 2, so a dd of 3 corresponds to 2^3 = 8. Thus, a time

signature of 5/8 corresponds to nn = 5 and dd = 3. cc is the number of MIDI ticks in a

metronome click and bb is the number of 32nd notes in a MIDI quarter note.

Tempo change meta-events consist of three data bytes specifying tempo in

microseconds per MIDI quarter note. If no tempo is specified then the default tempo is

120 beats per minute.

 186

4.2.3 Reasons for choosing MIDI as the format from which to extract

features

Ideally, one would prefer to have a feature extractor that could extract features from

music encoded in any symbolic file format. Unfortunately, the development of parsing

functionality for each format can be a labour intensive process. Furthermore, certain

formats cannot represent information as well as other formats, or at all. For example, one

format might be able to represent dynamics, but not another format, or one format might

be able to represent precise time values while another format might only be able to

represent strictly quantized rhythmic values. Issues such as this can cause significant

variations in extracted feature values that are dependent only on the encoding format, not

the music itself, something that can be problematic during machine learning.

It was therefore decided to only implement parsing functionality for a single file

format in jSymbolic, although one of the long-term development goals of jSymbolic is to

develop functionality for parsing more formats. Specifically, the MIDI format was

chosen.

At first glance, the particular choice of MIDI may seem an odd one. MIDI is in many

ways an obsolete format with a number of established fundamental weaknesses that has

survived only because it is a widely supported standard. There is a relatively low

threshold on the amount of information that MIDI can encapsulate, for example, and it

uses grossly outdated transmission protocols. Furthermore, it can be difficult and time

consuming to properly record sophisticated synthesis instructions in MIDI, with the result

that many encoders do not bother to do so. Many of the formats described in Section 4.2.1

have important advantages over MIDI, and OSC in particular is generally accepted as

technically superior in almost every way.

So, why choose MIDI for jSymbolic? The answer lies principally in the fact that

MIDI is still the most generally popular and widely used format. A good feature extractor

should be able to extract features from the format that is the most used and in which the

most music is encoded, not in a format that one might ideally prefer to be the most

popular. There is more music encoded in MIDI than in any other symbolic format,

including music in a wide range of popular, art and folk genres. Such variety is essential

 187

if a feature extractor like jSymbolic is to be widely applicable. Most other symbolic

formats tend to only have music belonging to a few specific genres encoded in them.

MIDI also has the advantage that it is a performance-oriented format, and can thus

encode information such as relatively precise timings and dynamics as well as microtonal

pitches. This is not true for all symbolic formats, in particular those intended primarily for

representing sheet music or for performing theoretical analyses, since these kinds of

precise representation are not as significant in these domains. This makes it more

appropriate to write translation algorithms to generate MIDI from other formats, since the

reverse could result in the loss of feature-relevant information.

Having noted this, it is also true that the popularity of MIDI has been slowly waning

in the past decade. There were large and very active MIDI encoding communities in the

1980’s and 1990’s that encoded a broad range of music into MIDI. Although these

communities still exist and are still active, one now sees less new music encoded into

MIDI than was previously the case.

Also, the emphasis of symbolic feature extraction will likely switch to machine

generated files as polyphonic transcription technology improves in the future. It will be

appropriate to work with a file format that is superior to MIDI at that point, such as OSC,

since format popularity will no longer be an overriding concern if human encoders are

removed from the equation. A goal for future development will therefore be the

implementation of parsing libraries for additional file formats as recordings of many

different kinds of music encoded in them become available.

4.3 Existing software related to symbolic feature extraction

Most MIR feature extraction research to date has focused on audio data rather than

symbolic data, as mentioned above. Although there is a significant amount of existing

software designed for processing symbolic musical data, a relatively small proportion of

it has emphasized feature extraction in particular, or the specific needs of MIR. Most of

the existing systems emphasize either musical performance or automated search or

analysis algorithms designed to assist very specific kinds of musicological or music

theoretical research. Unfortunately, most of these systems generate only a relatively small

amount of information that can be adapted for use as features in pattern recognition

 188

systems, and most of them also make musical assumptions that are only appropriate for

certain types of music, such as classical music. Such systems also tend to emphasize

search-oriented tasks and basic string comparisons rather than the broader types of

information extraction processing that are most relevant to MIR research. Nonetheless,

there are a few standout systems of this type that should be discussed before discussing

work more directly related to symbolic feature extraction.

The Humdrum toolkit (Huron 2002) is perhaps the best-known of these systems, with

its variety of query tools and its specialized musical representations. Although feature

extraction is certainly not the software’s primary intended purpose, Humdrum data has at

times been used specifically for the purpose of feature extraction, such as in the work of

Sapp, Liu and Selfridge-Field (2004). Knopke (2008) has written new implementations of

much of the Humdrum software that makes it more usable for MIR applications,

including functionality such as MIDI-compatible file format translation functionality.

The Melisma Music Analyzer (Temperley 2001) is another important analysis-

oriented software system, with its tools for extracting information relating to meter,

phrasing, contrapuntal structure, harmony, pitch spelling and key.

The RUBATO system (Mazzola and Zahorka. 1994) is a platform that was developed

for extracting information from MIDI and other symbolic files. Although this relatively

early system is based on the obsolete NEXTSTEP environment, and oriented towards

music analysis rather than feature extraction, it nonetheless extracts some high-level

information that could be used as features.

The MIDI Toolbox (Eerola and Toiviainen 2004) is one of the few systems that offers

standardized and easily accessible symbolic processing software oriented towards MIR

research. It includes tools for visualizing and processing MIDI files, including filtering

functions and cognitively inspired analytical tools relating to melodic contour, similarity,

key-finding, meter-finding and segmentation. Although this software is an excellent tool

in general, it is not ideally adapted specifically for feature extraction. It is also a Matlab

toolbox, which carries the advantage of making it directly compatible with all of Matlab’s

associated functionality, but also the disadvantage of requiring that the user have access

to the Matlab platform, which can be expensive, and which requires familiarity with a

fairly technical platform.

 189

There are also a number of software systems that have been developed for use in

specific research experiments, rather than for general application, but which nonetheless

contain implementations of a number of useful features. Aarden and Huron (2001), for

example, have performed an interesting study where corresponding characteristics of

European folk songs were studied in terms of spatial location. A potentially very useful

catalogue of sixty high-level features was used, although the system was limited to

monophonic melodies. To give another example, Towsey et al. (2001) developed a

system for compositional purposes that uses 21 high-level melodic features that have

application beyond the aesthetic fitness judgements that they were used for in the original

study.

Some of the most significant software directly related to symbolic feature extraction

has been developed as part of genre, style, mood or other classification projects. Although

the feature extraction software systems used in many of these research projects are not

publicly available, or are not designed to be used easily outside of the particular projects

for which they were designed, some excellent features have been developed as part of

these projects. Since these features have actually been implemented in software and

successfully applied experimentally to music, it is appropriate to provide highlights of

this research here.

Some of the most relevant work of this kind is Ponce de León and Iñesta’s (2002)

system for processing MIDI tracks in order to extract melodic, harmonic and rhythmic

features. The system used these features to form distinguishable categories using self-

organising maps. This work has since been expanded (Ponce de León and Iñesta 2007;

Rizo et al. 2006).

Ruppin and Yeshurun (2006) developed several features relating specifically to

melodic contour. Of particular interest, these features were designed to be invariant to

some of the transformations that one commonly finds in music, such as transpositions and

rhythmic prolongation.

Twenty features were implemented by Backer and van Kranenburg (2005) in the

context style classification. These features are for the most part only meaningful with

respect to polyphonic compositions with clearly separated voices, however.

 190

Basili, Serafini and Stellato (2004) used only five features, but were also among the

earliest researchers, along with McKay (2004), to use instrument information extracted

from symbolic data in their features. Some of these features are multi-dimensional. The

five features are Melodic Intervals, Instruments, Instrument Classes and Drumkits,

Meter/Time Changes and Note Extension.

Lin and his colleagues (2004) performed genre classification experiments by

transforming sequences of MIDI data into intermediate representations based on rhythm

and pitch that can also be treated as features. The authors then processed this data to

break it into repeating patterns. Karydis, Nanopoulos and Manolopoulos (2006) also

made the notion of repeating patterns an essential part of their feature extraction

approach, with respect to pitch and duration information in particular.

Shan and Kuo (2003) extracted features based exclusively on melodies and chords for

the purpose of automatic genre classification. This research is particularly valuable in

terms of the ways in which melodic and chordal features were extracted.

Chai and Vercoe (2001) used hidden Markov models to classify monophonic

melodies belonging to one of three different types of Western folk music (Austrian,

German and Irish). They were able to achieve 63% accuracy in three-way classifications

that used only melodic features. Interestingly, to include a machine learning note, they

found that the number of hidden states had only a relatively minor effect on success rates,

and that simple Markov models outperformed more complex models.

Dannenberg, Thom and Watson (1997) designed a real-time system to classify

performance styles. Improvisations were classified as lyrical, frantic, syncopated,

pointillistic, blues, quote, high and low. The system was trained with MIDI recordings of

trumpet performances. The following features were extracted from the MIDI data:

averages and standard deviations of MIDI key numbers, durations, duty factors (the ratio

of duration to inter-onset interval), pitches (which differ from key number in that Pitch

Bend information is included) and volume levels, as well as counts of notes, Pitch Bend

messages and volume change messages.

Lartillot et al. (2001) used two types of unsupervised learning to classify recordings

based on musical style. This was done using analyses of musical sequences in terms of

rhythm, melodic contour and polyphonic relationships.

 191

Anagnostopoulou and Westerman (1997) also applied unsupervised learning to

symbolic music. They used features based on melodic shape, rhythmic movement,

interval patterns and instrument register.

Some of the earliest research on automatic genre classification was published by

Gabura (1965). This paper only deals explicitly with classical music, however, which

limits its applicability. Despite this, and the its age, this paper nonetheless offers some

interesting ideas that appear to have been overlooked in many later publications,

particularly in regard to the use of relatively sophisticated statistics and theoretical models

to derive features.

Research has also been done in other specific areas of MIR that incorporated

interesting features that can be adapted for other purposes. To give one relatively early

example, Blackburn and De Roure (1998) implemented a system for classifying the

musical parts of MIDI files, with a focus on pitch class methods.

Maxwell and Eigenfeldt (2008) implemented a symbolic query system that includes a

number of searchable type parameters that could also be used as features in classification

tasks. Bergeron and Conklin (2008) also developed an approach that they applied to

retrieval from symbolic music that includes a number of useful simple features. Kirlin and

Utgoff (2005) have also extracted simple features as part of query research, and Conklin

and Bergeron (2008) have published associated research that is more specifically related

to feature extraction.

Volk et al. (2008) considered a large number of features in the context of evaluating

musical similarity. These features could also be adapted for other purposes, although

some of them are subjective. Meudic (2003) has also proposed some important similarity-

related measures that could also be used for other purposes.

There is also a significant body of work that is highly relevant to symbolic feature

extraction, particularly from a high-level perspective, that has not involved actual

software implementations of feature extraction algorithms. Such work is discussed in

Section 4.4 below.

 192

4.4 Considerations when designing and choosing features

This section reviews and integrates research from several fields in order to arrive at

general principles to consider when designing and choosing features to extract from

symbolic data. The focus of this section is primarily on theoretical research in disciplines

related to music theory and musicology, although research from other disciplines is

discussed as well.

There has been some important applied work done in more technical disciplines that

has involved not only designing features, but actually implementing automatic extraction

algorithms. Such work is reviewed in Section 4.3. It should be noted that most of the

corresponding publications do not provide theoretical support or motivations for the

features that they use, and almost none of them provide guidelines for implementing new

features, unlike the majority of the work reviewed in this section. Chapter 2 also reviews

some general research in psychology and the humanities that relates to how humans form

categories and make classifications, some of which is relevant to symbolic feature design.

People often claim that they ―do not know what to listen to‖ when they are first

exposed to an unfamiliar type of music. This demonstrates how listening methodologies

that apply to one type of music may be of little value when applied to another type of

music, and how difficult basic listening tasks can be in terms of feature extraction in such

situations. Consequently, it seems reasonable that it would be useful for feature extraction

software to make a broad range of features available, in order to at least have reasonably

sized feature subsets that will be applicable to each of as many different types of music as

possible.

This is one of the reasons that so many features are implemented in jSymbolic, as

described in Section 4.5. Although machine learning issues relating to the curse of

dimensionality (see Section 6.2.3) generally make it unwise to provide pattern recognition

systems with too many features, having a very large feature catalogue available makes it

possible to choose those particular features that are meaningful and relevant to both a

specific given task and to the specific types of music that are under consideration. This

selection of the particular features to use for a particular project may either be made by

humans with expert musical knowledge, or by automatic dimensionality reduction

algorithms (see Chapter 6.2.5). Conversely, having too few features implemented by the

 193

feature extraction software could make it impossible for pattern recognition software to

achieve adequate success rates, because there might simply not be sufficient information

encapsulated in the features that are available to discriminate properly between classes.

Providing a large catalogue of features from which to choose also makes features

available for future applications whose feature needs might not currently be understood or

anticipated.

Nonetheless, having presented the case that it is useful to design many features, it is

also important to point out that care should still be taken to avoid features that are

unlikely to be useful. Too many features can overwhelm even sophisticated feature

selection methodologies, be they manual or automatic, and only finite time and

computational resources are available for feature development and extraction. It is

therefore reasonable to prioritize those features that are likely to be the most promising,

with the understanding that one would ideally like features that encapsulate as much

information as possible that is relevant to as many types of music and to as many

classification applications as possible. Features that represent information in ways that are

easy for pattern recognition algorithms to process should also be prioritized.

It is clear that even people with little formal musical knowledge can perform

sophisticated pattern recognition tasks like artist identification or the recognition of

stylistically ―wrong‖ notes. It might therefore be argued that music classification systems

should pay special attention to features that are meaningful to the average, musically

untrained listener, and that features based on more technical or sophisticated musical

properties may be overkill.

It could also be argued, however, that the ultimate goal of a classification system is to

produce a correct classification, and that whatever readily available features help to do

this should be used, whether or not they are perceptible or meaningful to the average

human listener. The fact that some expert musical skills, such as the ability to precisely

and consciously perceive detailed rhythmic or harmonic characteristics, may not be

necessary to distinguish between musical categories does not mean that such information

might not be helpful to both humans and computers. In addition, pattern recognition

systems operate using significantly different mechanisms than their human analogs, so

there is no reason to assume that the types of percepts suited for one are necessarily best

 194

suited to the other. Since moderately high-level musical information is relatively readily

available from symbolic formats such as MIDI, it might as well be taken advantage of.

Having said this, it is also of course very important to take advantage of the kinds of

information that the average human listener can in fact use, since ―unskilled‖ listeners are

demonstrably able to use it to perform successful classifications.

A related issue is the question of exactly how high level one’s features should be.

Although it seems reasonable that one could glean meaningful features from fairly high-

level information like chord progressions or melodic arcs, for example, should one also

consider even higher-level musical concepts based on sophisticated analytical

frameworks? There is a great deal of existing literature on music theory that could be

used to design such features. The books of Cook (1987) and LaRue (1992), to give just

two of many examples, provide good complementary surveys of analytical methods that

could potentially be of use.

Ideally, one would like to have a grand unified analytical methodology that could be

used to extract meaningful features from any type of music. Unfortunately, there is no

generally accepted process of this sort. However, even though no single analytical system

is complete, and most are only applicable to a limited range of musical genres, several

systems could nonetheless be used in a complementary or parallel way. For example,

Schenkerian analysis could be used to analyze harmony if other features indicate a

significant degree of tonality in a recording, complimented perhaps by a set theory

analysis to deal with non-tonal music. To extend this example, techniques such as those

of Cooper and Meyer (1960) could also be used to analyze rhythm and melody, and the

techniques of Reti (1951) could be used to gain insights by looking at motivic patterns.

Semiotic analysis (Tarasti 2002) could also potentially be useful, although somewhat

difficult to implement automatically from a content-based perspective. Analytical

approaches that take advantage of insights from fields such as cognitive science and

linguistics, such as the work of Lerdahl and Jackendoff (1983), could also be used.

Multi-purpose existing automatic analysis systems, such as some of those described in

Section 4.3, could be taken advantage of in order to facilitate this process. Even though

these types of analyses are intrinsically different and typically built on disjoint or even

 195

incompatible musical assumptions, they could nonetheless each be used to generate

individual features that could prove to be complementary.

There are, unfortunately, a number of disadvantages with using such an approach of

combining sophisticated analytical systems for use in feature extraction. To begin with,

many of these techniques require a certain amount of intuitive subjective judgement, as

the rules specified in analytical models are sometimes vague or ambiguous. This is

demonstrated by the inconsistencies that one often encounters between analyses of a

single piece by different people using the same analytical system. Another problem is that

sophisticated theoretical analyses are often computationally expensive, thus making their

use inappropriate for very large musical collections or real-time classification

applications.

In addition, most analysis techniques have been designed primarily from the

perspective of Western art music, which limits their applicability to popular and non-

Western musics. For example, feature sets based too heavily on chord progressions could

incorporate too many assumptions relating to tonal harmony to be applicable to types of

music that do not operate on a tonal basis. This general problem, however, may be less

crippling than it seems, as analyses could still be generated that are internally consistent,

even if the analytical systems themselves may not be fundamentally meaningful to a

given type of music. Future experimentation is necessary to investigate whether features

based on such theoretically compromised analyses could nonetheless be useful for

performing classifications.

In any event, a generally accepted software system capable of quickly performing a

wide range of sophisticated theoretical analyses has yet to be implemented. One must

therefore make do, at least for the moment, with occasionally taking simple and

incomplete concepts from a range of analytical systems, of necessity somewhat

haphazardly, and combining them with intuitively derived musical characteristics in order

to arrive at suitable features. Features that are used for classification purposes need not be

consistent or meaningful in any overarching theoretical sense. All that matters for the

purpose of classification is that each feature helps to distinguish between relevant classes,

which is to say that they need only represent characteristics that consistently differ

statistically between classes. It is certainly nice if one can also use features to derive

 196

musically meaningful insights, but this is by no means a necessity from the perspective of

applied automatic classification.

In any case, as discussed above, most humans are certainly unable to perform

sophisticated theoretical analyses, but are nonetheless able to perform sophisticated

classification tasks like genre recognition. It is therefore clear that such analyses are not

strictly necessary in order to implement a successful automatic classification system.

Furthermore, a study of how well children of different ages can judge the similarities of

music belonging to different styles found that there was almost no difference between the

success rates of eleven-year olds compared to college sophomores, despite the fact that,

unlike the college students, the eleven-year olds displayed almost no conscious

knowledge of musical theory or stylistic conventions (Gardner 1973). To provide an

additional supporting experimental finding, Perrott and Gjerdingen (1999) found that

humans with little to moderate formal musical training are able to make genre

classifications agreeing with those of experts 72% of the time (among a total of 10

genres) based on only 300 milliseconds of audio. This is far too little time to perceive

musical form or structure, which are key aspects of most sophisticated analytical systems.

This suggests that there must be a sufficient amount of information available in very short

segments of music to successfully perform classifications, and that more sophisticated

analyses may not be strictly necessary. Of course, this does not necessarily mean that

features based on sophisticated analytical systems might not eventually be useful to an

automated classification system, but it does appear that they are not absolutely necessary,

which is fortunate, given the difficulty that is currently involved in extracting them.

In the case of jSymbolic, it was decided to emphasize simple features that could

arguably be immediately perceptible to musically well-trained humans, but would not

require them to make extended analyses. Well-trained humans are more likely to be

skilled music classifiers, so the features that they use are therefore more likely to be

useful in general. This does not mean that other features were ignored in the jSymbolic

music library, however, as there are very likely other important discriminating

characteristics of music that musical experts are not consciously aware of. This approach

provides a good compromise between music theoretical simplicity and sophistication that

permits the development of many potentially useful features, while helping to avoid the

 197

development of features that would be too computationally expensive to extract, or of

irrelevant features that would introduce unproductive noise into classification systems.

Once such a design philosophy is decided upon, the next step is to consider relevant

research by musicologists and music theorists in order to search for inspiration for

features that might be of particular use. Ethnomusicologists in particular have done

significant work on comparing the musics of different cultures, something that is

important to consider if one wishes to make features available that are likely to have a

high discriminating power outside the limited scope of Western art music. An additional

advantage of ethnomusicological research is that it tends to focus more on empirical

observation than other musicological or music theoretical disciplines, something that is

very helpful from the perspective of feature design. Empirical ethnomusicological

research also tends to be less likely to be intrinsically tied to specific types of music or to

limiting theoretical assumptions.

Perhaps the most extensive work in this vein was performed by Alan Lomax and his

colleagues as part of the Cantometrics project (Lomax 1968). Although this work has

been criticized on a number of political fronts (Nattiez 1990), it remains valuable from

the perspective of feature design for automatic classification systems. This project

compared several thousand songs from hundreds of different cultural groups based on

thirty-seven features that were extracted from audio recordings by hand:

 Leader chorus: the importance of the lead singer relative to the chorus.

 Relation of orchestra to vocal part: importance and independence of the

orchestra relative to the vocal part.

 Relation within orchestra: relative independence of the different parts of the

orchestra.

 Choral musical organization: texture of the choral singing.

 Choral tonal integration: degree to which the chorus blends singing together to

create the perception of unity and resonance.

 Choral rhythmic organization: degree of rhythmic coordination of the chorus.

 Orchestral musical organization: texture of the orchestra.

 198

 Orchestral tonal concert: degree to which the orchestra blends together to create

the perception of sonority.

 Orchestral rhythmic concert: degree of rhythmic coordination of the orchestra.

 Text part: whether singers tend to use words or other sounds. Also measures

amount of repetition of text.

 Vocal rhythm: complexity of meter used by singers.

 Vocal rhythmic organization: degree to which singers use polyrhythms.

 Orchestral rhythm: complexity of meter used by orchestra.

 Orchestral rhythmic organization: degree to which orchestra uses polyrhythms.

 Melodic shape: melodic contour of most characteristic phrases.

 Melodic form: complexity of form.

 Phrase length: temporal length of phrases.

 Number of phrases: average number of phrases occurring before full repeats.

 Position of final tone: position of the final pitch relative to the range of the song.

 Range of melody: pitch interval between the lowest and highest notes of the song.

 Average interval size: average melodic interval.

 Type of vocal polyphony: type of polyphony present, ranging from a drone to

counterpoint.

 Embellishment: amount of embellishment used by the singer(s).

 Tempo: speed of song from slow to very fast.

 Volume: loudness of song.

 Vocal rhythm: amount of rubato in the voice part.

 Orchestral rhythm: amount of rubato in the orchestral part.

 Glissando: degree to which voice(s) slide to and from notes.

 199

 Melisma: number of pitches sung per syllable.

 Tremolo: amount of undulation on held notes.

 Glottal effect: amount of glottal activity present.

 Vocal register: whether singers are singing near the bottom, middle or top of their

ranges.

 Vocal width and tension: degree to which voice(s) sound thin or rich.

 Nasalization: how nasal the singing sounds.

 Raspy: amount of raspiness in singing.

 Accent: strength of attack of sung tones.

 Consonants: precision of enunciation in singing.

There are a number of difficulties in implementing automatic extraction algorithms

for some of these features. Some of these features, such as nasalization, require somewhat

subjective judgements, and others require information that is not typically stored in

symbolic formats, such as glottal effect. Nonetheless, some of these features can currently

be extracted relatively easily from symbolic data, and future advances might make many

of the remaining features accessible via audio/symbolic hybrid systems. Lomax did find a

good correlation between these features and cultural patterns, and they intuitively seem as

if they might perform well, so the work necessary to automatically extract these features

may well be worth the effort. Many of these features might be of particular utility to

automatic classification projects focussing on non-Western music.

One feature of particular interest is Lomax’s melodic shape feature, which relates to

the overall shape of individual melodies or phrases, something that is commonly referred

to as melodic contour or melodic arc. This is an area in which a significant amount of

research has been done, and it is worthy of special attention. Charles Adams, for example,

found that examining melodic contour can allow one to differentiate successfully between

different musics (Adams 1976). Adams based his analyses on only the initial note, highest

note, lowest note and final note of melodies, a simplicity of approach that is intuitively

appealing from the perspective of automatic feature extraction.

 200

There are, unfortunately, some complications encountered in automatically applying

Adams’ approach to typical MIDI recordings. To begin with, automatically isolating the

individual melodies of a piece can be difficult when dealing with music with multiple

voices, as the melodies can involve notes contained in only one or in many voices. In the

case of polyphonic music, one must deal with simultaneous melodies. One solution would

be to implement a specialized melodic segmentation pre-processing system. Although

some research has been done on such systems, none of have yet been successfully

developed that could be applied to arbitrary types of music. Fortunately, it is possible to

extract at least some features related to melodic contour using relatively simple

assumptions and pre-processing. Section 4.5.6 specifies several features in the jSymbolic

catalogue that were inspired by the work of Adams and others.

A number of writers have emphasized certain broad areas that they suggest would be

particularly useful to concentrate on for the purpose of musical classification. Nettl

(1990), for example, has proposed the following feature areas as having significance to a

range of different cultures:

 Sound and singing style

 Form

 Polyphony (texture)

 Rhythm and tempo

 Melody and scale

Cumming (1999) has suggested a number of features in relation to motets in

particular. With the understanding that ―voices‖ can be adapted to mean voices or

instruments, a number of these features appear to have a good deal of general

applicability:

 Texture

 Number of voices

 Voice ranges

 201

 Melodic behaviour (leaps, steps)

 Relative speed of voices

 Coordination of phrases between voices

 Use of rests

 Length

 Complexity

 Tone

Philip Tagg has proposed the following ―checklist of parameters of musical

expression‖ that can be used as a basis for designing features for both symbolic and audio

extraction systems:

1. Aspects of time: duration of analysis object and relation of this to any other

simultaneous forms of communication; duration of sections within the analysis

object; pulse, tempo, meter, periodicity; rhythmic texture motifs.

2. Melodic aspects: register; pitch range; (melodic) motifs; tonal vocabulary;

contour; timbre.

3. Orchestration aspects: type and number of voices, instruments, parts;

technical aspects of performance; timbre; phrasing; accentuation.

4. Aspects of tonality and texture: tonal centre and type of tonality (if any);

harmonic idiom; harmonic rhythm; type of harmonic change; chordal

alteration; relationship between voices, parts, instruments; compositional

texture and method.

5. Dynamic aspects: levels of sound strength; accentuation; audibility of parts.

6. Acoustical aspects: characteristics of (re-)performance „venue‟; degree of

reverberation; distance between sound source and listener; simultaneous

„extraneous‟ sound.

7. Electromusical and mechanical aspects: panning, filtering, compressing,

phasing, distortion, delay, mixing, etc.; muting, pizzicato, tongue flutter, etc.

(Tagg 1982, 45-46).

 202

Although this checklist was designed with the analysis of Western music in mind, many

of the ideas embedded in it have a more general applicability. Another useful list of

parameters has been suggested by David Cope (1991b), although this list also emphasizes

parameters specific to Western art music.

Once one decides upon the general types of information that should be emphasized in

features, it is then necessary to define more specifically the form that the features

themselves will take. As a general principle, it is best to concentrate primarily on features

that can be represented by simple numbers.

Continuous numerical values, as opposed to strings or discrete numbers, have the

advantage that they generally allow a more precise representation of degree. For example,

a numerical feature used to represent the key of a tonal piece could indicate not only its

key, but also how strongly the piece can be said to belong to that key. This could be used

to indirectly encapsulate information about the amount of chromaticism, for example, in a

way that a discrete letter value cannot. Even in the case where discrete feature values are

the most appropriate, integer representations are typically a better choice than string

representations, as they can be most naturally and consistently processed by the majority

of machine learning algorithms.

Based on informal experience gleaned from developing jSymbolic and other feature

extractors, it was found that the easiest to use and, often, most effective features consist of

either a single numerical value or a vector of numerical values. Larger feature arrays can

also be useful at times as well, although not all machine learning algorithms can process

them directly.

Vectors and arrays tend to be best suited to information that consists of a set of related

values that have limited significance when considered individually, but can reveal

meaningful patterns when considered together. For example, the average duration of

melodic arcs in a piece would be a good example of a feature that is best represented as a

single value, and the bin magnitudes of a histogram indicating the relative frequency of

different melodic intervals might be a good feature vector. Although the individual bin

frequencies could certainly each be represented as a separate feature, combining them

into a vector highlights their particular interrelatedness. This division into single-value

 203

features and feature vectors is useful from the perspective of machine learning because it

makes it possible to use classifier ensembles that capitalize on the particular relatedness

of the components of each multi-dimensional feature, such as an ensemble constructed by

training a separate classifier (e.g., a neural net) on each multi-dimensional feature and a

single nearest neighbour classifier on all single-value features. This particular approach

was used successfully in genre classification experiments (McKay 2004).

Simple statistical techniques can be useful in capturing overall characteristics of a

piece, as well as how these characteristics change as the piece progresses. The calculation

of metafeatures like the mean or variance of a feature across windows of a piece are good

examples of this. With this in mind, it is important to point out that one would prefer to

avoid feature noise due to non-representative local characteristics of a piece, while at the

same time not ignoring characteristic local behaviour by smudging feature values over

large analysis windows. For example, one would not want melodic ornamentations to

obscure a feature that is measuring melodic structure, but might still want to measure the

overall amount or type of ornamentation in a separate feature, as this itself could be

characteristic of a class.

Histograms can serve as a particularly useful and convenient tool for dealing with the

problem of wanting to encapsulate both local and overall behaviour, and statistical tools

such as peak picking can be applied to histograms in order to derive further features from

them. Examples of statistics often calculated from histograms include the number of

strong peaks, the relative strengths of the highest peaks, the locations and harmonicity of

peaks, the local spread around peaks and the relative contribution of bins not associated

with peaks. Histograms can thus be used directly as feature vectors, or they can be used as

intermediate representations for deriving other features. jSymbolic includes a variety of

histogram-based features, as described in Section 4.5.

As a final point, it is desirable not only to have features that effectively partition

recordings into different classes, but also to have features that can arguably be perceived

by humans and are of musicological interest, at least when possible. Although this is by

no means a requirement for systems with purely practical or commercial goals, it is

certainly advantageous to research projects designed to provide insights on how humans

 204

process and consume music, and a good feature catalogue should have at least some

features that can be used in such a fashion.

4.5 The jSymbolic feature catalogue

Sections 4.5.1 to 4.5.7 describe the features that make up the jSymbolic feature

catalogue. These features were all designed in the context of the research described in

Sections 4.3 and 4.4. Some of these features are very similar or identical to features that

have been used in previous MIR research, others are formulated as features for the first

time but are based on existing theoretical or musicological work, and still others are

entirely original.

It was not possible to correctly implement all 153 of the features proposed in this

section within the time constraints of this project. A total of 111 features were

nonetheless implemented in the jSymbolic software, a much larger number of features

than have been implemented in any other existing symbolic music classification system.

The particular choice of which features to omit in the current implementation was based

on a combination of the author’s judgement of how useful each feature would be and of

how time-consuming it would be to implement it, an important concern given the size and

scope of the jMIR software. All of the features described in Sections 4.5.1 to 4.5.7 are

implemented, except for T-11, T-14, T-16, T-17, T-18, T-19, R-16, R-26, R-27, R-28, R-

29, P-26, M-16, M-20 and C-1 to C-28.

The cultural origins and training that inform any person’s knowledge about music can

lead them to give too much weight to some characteristics of music and too little to

others. Correspondingly, the reader will notice a bias towards Western tonal music in

examining the jSymbolic features, as one might expect given the background of

jSymboloic’s author and the research upon which many of the jSymbolic features are

based. This particular emphasis is also partly due to the current dominance of Western

genres in MIR research in general, and to the limitations of MIDI and other symbolic

formats, which tend to be more oriented towards Western music. Despite this, efforts

were certainly still made to include features that might not be obvious to one accustomed

only to Western music whenever possible. The addition of more diversely representative

 205

features is certainly a priority for future research, and the jSymbolic feature catalogue is

intended as a work in continual progress that can always be expanded and refined.

The reader will also notice that there is a small amount of redundancy in the

jSymbolic feature catalogue, in the sense that one feature occasionally emphasizes a

particular aspect of another feature. This was done in order to ensure that features are

available that provide an overview of certain musical aspects as well as features that

provide more focused information that might be particularly salient for some types of

classification. The jSymbolic feature catalogue is intended as a catalogue or palette from

which different feature subsets can be selected for different research projects, not as an

indivisible feature set that must always be extracted in its entirety. Some features may be

appropriate for certain tasks but not others. The feature catalogue was designed to give

musical experts and/or feature selection algorithms as wide a range of features as possible

from which to choose for any given research application. The redundancy in the features

was consequently purposely included to facilitate this choice by making it possible to

meet subtle musical classification needs.

Efforts were made when possible to utilize features that could be easily adapted to a

variety of symbolic music representations, not just MIDI. Of course, MIDI is the format

actually processed by jSymbolic, so the features are described in the following sub-

sections using MIDI terminology. This allows the feature definitions to be more precise,

but it does not mean that many of the features could not still easily be adapted to other

symbolic formats. For example, one could substitute the MIDI term velocity for some

other measure of loudness. The reader may wish to consult Section 4.2.2 if he or she is

unfamiliar with MIDI terminology.

Unfortunately, from the perspective of standardized feature extraction, there are many

different ways of encoding MIDI data. MIDI recordings can be produced by writing out

music by hand in score writing software like Finale, or by performing actual real-time

recordings using MIDI instruments, for example, and each of these approaches can result

in significant differences in the encoded music. Rhythmic quantization is one common

example of a common resulting difference. Differences in MIDI encoding styles or even

in the particular choice of sequencer or score writing software can also result in

differences in the encoded music. Such differences can result in feature noise that can be

 206

potentially problematic for certain types of classification. A composer classification

system, for example, should be insensitive to the encoding style. Care was therefore

taken, when possible, to use features that had as little sensitivity as possible to such

differences in encoding style.

One will notice that there are a few ―magic numbers‖ in the descriptions of some of

the features. The values of these constants are based on intuition and informal

experimental experience, and magic numbers are only used when the nature of a

particular feature necessitates it, and are avoided whenever possible.

A number of intermediate representations of the MIDI recordings, including

histogram-based representations, were constructed in order to derive some of the features

described below. The most interesting of these representations are explicitly mentioned in

the following sub-sections, particularly in cases where the intermediate representations

were themselves used as features as well.

4.5.1 Features based on instrumentation

Although there is a significant amount of literature on instrumentation with respect to

composing and arranging, very few music analytical systems take instrumentation into

consideration. This is a shame, as information on instrumentation can in fact be very

helpful in discriminating between certain types of classes. One study, for example,

indicated that features based on instrumentation were the most effective type of features

when classifying symbolic music by genre (McKay and Fujinaga 2005a).

The jSymbolic software capitalizes on the fact that the General MIDI (level 1)

specification allows MIDI files to include 128 different pitched-instrument patches, and

the MIDI Percussion Key Map permits a further 47 percussion instruments. Although

these MID instruments are certainly much fewer in number than the full range of extant

instruments, particularly with respect to non-Western musics, they are nonetheless diverse

enough for a reasonable variety of musical types.

MIDI instrumentation notation can be somewhat sensitive to encoding inconsistencies

between different MIDI authors in some cases. In a few fortunately rare cases, authors fail

to specify patch numbers, with the result that all notes are played using a piano patch by

default. Another problem is the inconsistency in the choice of patches that are used to

represent sung lines, since there is no good General MIDI patch for solo vocal lines.

 207

Despite these occasional problems, however, features based on instrumentation can still

be highly characteristic of various musical categories, and the complementary use of

other types of features can help to counterbalance inconsistencies in individual authors’

choices of patches.

The jSymbolic feature catalogue includes the following instrumentation-related

features:

 I-1 Pitched Instruments Present: A feature vector with one entry for each of the

128 General MIDI Instruments. Each value is set to 1 if at least one note is played

using the corresponding patch, or to 0 if that patch is never used.

 I-2 Unpitched Instruments Present: A feature vector with one entry for each of

the 47 MIDI Percussion Key Map instruments. Each value is set to 1 if at least one

note is played using the corresponding patch, or to 0 if that patch is never used.

 I-3 Note Prevalence of Pitched Instruments: A feature vector with one entry for

each of the 128 General MIDI Instruments. Each value is set to the number of

Note Ons played with the corresponding MIDI patch, divided by the total number

of Note Ons in the piece.

 I-4 Note Prevalence of Unpitched Instruments: A feature vector with one entry

for each of the 47 MIDI Percussion Key Map instruments. Each value is set to the

number of Note Ons played with the corresponding MIDI patch, divided by the

total number of Note Ons in the piece.

 I-5 Time Prevalence of Pitched Instruments: A feature vector with one entry

for each of the 128 General MIDI Instruments. Each value is set to the total time

in seconds in a piece during which at least one note is being sounded with the

corresponding MIDI patch, divided by the total length of the piece in seconds.

 I-6 Variability of Note Prevalence of Pitched Instruments: Standard deviation

of the fraction of total notes in a piece played by each General MIDI instrument

that is used to play at least one note.

 208

 I-7 Variability of Note Prevalence of Unpitched Instruments: Standard

deviation of the fraction of total notes played by each MIDI Percussion Key Map

instrument that is used to play at least one note.

 I-8 Number of Pitched Instruments: Total number of General MIDI patches that

are used to play at least one note.

 I-9 Number of Unpitched Instruments: Total number of MIDI Percussion Key

Map patches that are used to play at least one note.

 I-10 Percussion Prevalence: Total number of Note Ons belonging to percussion

patches divided by total number of Note Ons in the recording.

 I-11 String Keyboard Fraction: Fraction of Note Ons belonging to string

keyboard patches (General MIDI patches 1 to 8).

 I-12 Acoustic Guitar Fraction: Fraction of Note Ons belonging to acoustic

guitar patches (General MIDI patches 25 and 26).

 I-13 Electric Guitar Fraction: Fraction of Note Ons belonging to electric guitar

patches (General MIDI patches 27 to 32).

 I-14 Violin Fraction: Fraction of Note Ons belonging to violin patches (General

MIDI patches 41 or 111).

 I-15 Saxophone Fraction: Fraction of Note Ons belonging to saxophone patches

(General MIDI patches 65 to 68).

 I-16 Brass Fraction: Fraction of Note Ons belonging to brass patches, including

saxophones (General MIDI patches 57 to 68).

 I-17 Woodwinds Fraction: Fraction of Note Ons belonging to woodwind patches

(General MIDI patches 69 to 76).

 I-18 Orchestral Strings Fraction: Fraction of Note Ons belonging to orchestral

string patches (General MIDI patches 41 to 47).

 I-19 String Ensemble Fraction: Fraction of Note Ons belonging to orchestral

string ensemble patches (General MIDI patches 49 to 52).

 209

 I-20 Electric Instrument Fraction: Fraction of Note Ons belonging to electric

non-―synth‖ patches (General MIDI patches 5, 6, 17, 19, 27 to 32, 34 to 40).

4.5.2 Features based on musical texture

Although the term texture is associated with several different musical meanings, the

features falling into this category of the jSymbolic catalogue relate specifically to the

number of independent voices in a piece and how these voices relate to one another.

jSymbolic takes advantage of the fact that MIDI notes can be assigned to different

channels, thus making it possible to segregate the notes belonging to different voices.

Although it might seem natural to use MIDI tracks instead of channels to distinguish

between voices, since only a maximum of sixteen MIDI channels are available, this is an

ineffective approach in practice. Using MIDI tracks would mean that it would be

impossible to extract texture-based features from all Type 0 MIDI files, since this format

only allow permits a single track to be represented. Even in the case of Type 1 files,

which do allow tracks to be specified, it is still not unusual to find all MIDI data saved on

a single track in practice. Almost all MIDI files do use different channels for different

voices, however, and it is possible to take advantage of Program Change messages to

multiplex multiple voices onto a single channel in order to avoid being restricted to only

sixteen voices. It was therefore decided to use MIDI channels in order to distinguish

between voices rather than MIDI tracks.

This approach is not perfect, as it is possible to use a single channel to hold multiple

voices even without regular program change messages. A piano could be used to play a

four-voice chorale, for example, with all notes occurring on one MIDI channel. This

problem is unavoidable, unfortunately, unless one implements a sophisticated voice

partitioning pre-processing module to automatically segregate voices prior to feature

extraction, something that is beyond the current scope of this work. Fortunately, this

problem does not occur all that often in MIDI files.

The jSymbolic feature catalogue includes the following texture-related features:

 T-1 Maximum Number of Independent Voices: Maximum number of different

channels in which notes are sounded simultaneously.

 210

 T-2 Average Number of Independent Voices: Average number of different

channels in which notes are sounded simultaneously. Rests are not included in this

calculation.

 T-3 Variability of Number of Independent Voices: Standard deviation of

number of different channels in which notes are sounded simultaneously. Rests are

not included in this calculation.

 T-4 Voice Equality – Number of Notes: Standard deviation of the total number

of Note Ons in each channel that contains at least one note.

 T-5 Voice Equality – Note Duration: Standard deviation of the total duration of

notes in each channel that contains at least one note.

 T-6 Voice Equality – Dynamics: Standard deviation of the average volume of

notes in each channel that contains at least one note.

 T-7 Voice Equality – Melodic Leaps: Standard deviation of the average melodic

leap distance for each channel that contains at least one note.

 T-8 Voice Equality – Range: Standard deviation of the differences between the

highest and lowest pitches in each channel that contains at least one note.

 T-9 Importance of Loudest Voice: Difference between the average loudness of

the loudest channel and the average loudness of the other channels that contain at

least one note, divided by 64 (128 / 2).

 T-10 Relative Range of Loudest Voice: Difference between the highest note and

the lowest note played in the channel with the highest average loudness divided by

the difference between the highest note and the lowest note in the piece overall.

 T-11 Relative Range Isolation of Loudest Voice: Number of notes in the

channel with the highest average loudness that fall outside the range of any other

channel divided by the total number of notes in the channel with the highest

average loudness.

 211

 T-12 Range of Highest Line: Difference between the highest note and the lowest

note played in the channel with the highest average pitch divided by the difference

between the highest note and the lowest note in the piece overall.

 T-13 Relative Note Density of Highest Line: Number of Note Ons in the

channel with the highest average pitch divided by the average number of Note Ons

in all channels that contain at least one note.

 T-14 Relative Note Durations of Lowest Line: Average duration of notes (in

seconds) in the channel with the lowest average pitch divided by the average

duration of notes in all channels that contain at least one note.

 T-15 Melodic Intervals in Lowest Line: Average melodic interval in semitones

of the line with the lowest average pitch divided by the average melodic interval

of all lines that contain at least two notes.

 T-16 Simultaneity: Average number of notes sounding simultaneously.

 T-17 Variability of Simultaneity: Standard deviation of the number of notes

sounding simultaneously.

 T-18 Voice Overlap: Number of notes played within the range of another voice

divided by total number of notes in the piece overall.

 T-19 Parallel Motion: Fraction of all notes that move together in the same

direction within 10% of the duration of the shorter note.

 T-20 Voice Separation: Average separation in semi-tones between the average

pitches of consecutive channels (after sorting based on average pitch) that contain

at least one note, divided by 6.

4.5.3 Features based on rhythm

Several scholars have expressed the view that rhythm plays a very important or even

dominant role in many types of music. Richard Middleton (2000), for example, stresses

the importance of rhythm in characterising music in a discussion of ways to approach

creating a widely applicable method for music analysis. It is unfortunate that the majority

of traditional analytical frameworks, with a few exceptions like the work of Cooper and

 212

Meyer (1960), tend to give rhythm less attention than it deserves. Rhythmic features are

often used successfully in audio analysis systems, in contrast, and they are

correspondingly included in the jSymbolic feature catalogue in order to address the

traditionally limited role of rhythm in traditional symbolic analysis.

The two elementary pieces of information from which most rhythmic features can be

calculated are the times at which notes begin (called note onsets) relative to one another,

and the durations of notes. Note onsets can be extracted relatively reliably from audio

data, at least in cases where note density is not too high, but durations are more difficult

to extract reliably. In the case of symbolic data, however, both note onsets and durations

are easily and precisely available. As one might expect, several of the rhythmic features

that are based on note onsets in the jSymbolic catalogue are very similar to features that

are often used in audio feature extraction systems. Duration-based features, in contrast,

are very rarely currently used by audio feature extraction software, but can easily be

extracted from symbolic data, and are thus included in the jSymbolic feature catalogue in

order to allow their utility to be empirically evaluated.

Before proceeding to discuss the details of the jSymbolic rhythmic feature catalogue,

it is important to emphasize a detail of how MIDI encodes rhythmic information that must

be considered when designing rhythmic features, whether for jSymbolic or for some other

MIDI software. MIDI timings are affected by both the number of MIDI ticks that go by

between Note On events and by tempo change meta-events that control the rate at which

MIDI ticks go by. Tempo change meta-events must therefore be monitored by the feature

extraction software, something which jSymbolic does of course do.

One disadvantage of symbolic data is that some important rhythmic features are

related to performance characteristics that are not always available in symbolic data, or

available in only a very coarse sense. For example, musical scores may indicate that a

piece should be played rubato or with a swing rhythm. There is a great deal of variety in

the ways in which these rhythmic performance styles can be implemented, however,

something that can be of essential importance for tasks such as performer identification.

Although formats such as MIDI certainly can represent precise note onset timings, and

many recorded MIDI performances do indeed take advantage of this, MIDI files that are

generated using score writing software are often strictly quantized, which means that

 213

performance timing information is not always consistently available with the precision

that would ideally be preferred.

Nonetheless, even quantized rhythms can still result in very useful feature values. One

of the nice things about MIDI is that it allows one to access timing information in terms

of raw time of note onsets as well as in terms of rhythmic note values (i.e., half notes,

quarter notes, etc.), thus providing both low-level and high-level rhythmic information.

This information, along with time signature and tempo change meta-events, can

potentially provide features with a high discriminating power.

Of course, as mentioned above, MIDI rhythmic information is somewhat sensitive to

MIDI encoding style. This inconsistency is precisely the reason why the jSymbolic

feature catalogue places a particular emphasis on rhythmic features derived from beat

histograms, as described below. This approach helps to statistically smooth over some

inconsistencies due to encoding style.

Beat histograms are an approach that was first applied to MIR research by Brown

(1993), and was later publicized and used for automatic genre classification by Tzanetakis

and his colleagues in a number of papers (Tzanetakis, Essl & Cook 2001; Tzanetakis &

Cook 2002; Tzanetakis 2002). A slightly modified version of Tzanetakis’ histogram is

used by jSymbolic to derive a number of rhythmic features. Although Section 3.2.8

explains how beat histograms are calculated by jAudio, the concept is briefly described

again below from the specific perspective of symbolic MIDI data.

It is necessary to have some understanding of how autocorrelation works in order to

understand how beat histograms are constructed. Autocorrelation essentially involves

comparing a signal with versions of itself delayed by successive intervals. This technique

is often used to find repeating patterns in signals of any kind, as it yields the relative

strengths of different periodicities within a signal. In terms of musical data,

autocorrelation allows one to find the relative strengths of different rhythmic pulses.

jSymbolic constructs its rhythmic histograms by processing sequences of MIDI Note

On events, with MIDI ticks comprising the time scale. The autocorrelation function is:

N

n
lagnYnY

N
lagationautocorrel

1
][][

1
][(4.1)

where Y is the sequence of MIDI data, n is the input sequence index (in MIDI ticks), N is

the total number of MIDI ticks in the sequence and lag is the delay in MIDI ticks (0 ≤ lag

 214

< N). The value of Y[n] is calculated to be proportional to the velocity of Note Ons in

order to ensure that beats are weighted based on the strength with which notes are played.

This autocorrelation function is applied iteratively to each MIDI sequence, once for each

value of lag within the domain 0 ≤ lag < N. The values of lag correspond to both

rhythmic periodicities as well as, after processing, the bin labels of the beat histogram,

and the autocorrelation values provide the magnitude value for each bin.

Once the histogram is populated using all permissible values of lag for a given MIDI

sequence, jSymbolic then downsamples and transforms it so that each bin corresponds to

a rhythmic periodicity with units of beats per minute. The histogram is then normalized

so that different MIDI sequences can be compared. The end result is a histogram whose

bins correspond to rhythmic pulses with units of beats per minute and whose bin

magnitudes indicate the relative strength of each such rhythmic pulse. In effect, a beat

histogram portrays the relative strength of different beats and sub-beats within a piece.

Consider, for example, the beat histograms extracted from MIDI representations of I

Wanna Be Sedated, by the punk band The Ramones, and ‟Round Midnight, by the jazz

performer and composer Thelonious Monk, as shown in Figures 4.1 and 4.2 respectively.

It is clear that I Wanna Be Sedated has significant rhythmic looseness, as demonstrated by

the spread around each peak, each of which represents a strong beat periodicity. I Wanna

Be Sedated also has several clear strong beats, including ones centred at 55, 66, 82, 111

(the actual tempo of the song) and 164 beats per minute, the latter two of which are

harmonics of 55 and 82 beats per minute. ‟Round Midnight, in contrast, has one very

strong beat at 76 beats per minute, the actual tempo of the piece, and a wide range of

much lower-level beat strengths. This indicates that, as might be expected, ‟Round

Midnight is more rhythmically complex and is also performed more tightly.

This type of information can be very representative of different musical classes, such

as genre. Techno, for example, often has very clearly defined beats, without any

surrounding spread, because the beats are precisely generated electronically. Much

modern Classical music, to provide a contrasting example, often has much less clearly

defined beats.

 215

Beat Histogram: I Wanna Be Sedated by The Ramones

0.00

0.05

0.10

0.15

0.20

0.25

0.30

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

1
1
2

1
2
0

1
2
8

1
3
6

1
4
4

1
5
2

1
6
0

1
6
8

1
7
6

1
8
4

1
9
2

2
0
0

Beats per Minute

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4.1: Beat histogram for I Wanna Be Sedated by The Ramones.

Beat Histogram: 'Round Midnight by Thelonious Monk

0.00

0.05

0.10

0.15

0.20

0.25

0.30

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

1
1
2

1
2
0

1
2
8

1
3
6

1
4
4

1
5
2

1
6
0

1
6
8

1
7
6

1
8
4

1
9
2

2
0
0

Beats per Minute

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4.2: Beat histogram for ’Round Midnight by Thelonious Monk.

 216

Part of the challenge of histogram-related features is that one must find a way to

represent the information embedded in them as useful features. Although beat histograms

certainly can be used directly as feature vectors, and they sometimes are in jSymbolic,

experience has shown that machine learning algorithms can sometimes have trouble

learning to extract useful information from them in this raw form if they are too large.

Beat and other feature histograms are, however, very useful in providing an intermediate

data structure from which other features can be extracted. Experience has shown

informally that the two highest peaks of beat histograms tend to be of particular

importance in extracting such information, as they are the most likely to represent the

main beat of the music or one of its multiples or factors.

The jSymbolic feature catalogue includes the following rhythm-related features:

 R-1 Strongest Rhythmic Pulse: Bin label of the bin of the beat histogram with

the highest magnitude.

 R-2 Second Strongest Rhythmic Pulse: Bin label of the beat histogram peak

with the second highest magnitude.

 R-3 Harmonicity of Two Strongest Rhythmic Pulses: Bin label of the higher (in

terms of bin label) of the two beat histogram peaks with the highest magnitude

divided by the bin label of the lower.

 R-4 Strength of Strongest Rhythmic Pulse: Magnitude of the beat histogram bin

with the highest magnitude.

 R-5 Strength of Second Strongest Rhythmic Pulse: Magnitude of the beat

histogram peak with the second highest magnitude.

 R-6 Strength Ratio of Two Strongest Rhythmic Pulses: Magnitude of the

higher (in terms of magnitude) of the two beat histogram bins corresponding to the

peaks with the highest magnitude divided by the magnitude of the lower.

 R-7 Combined Strength of Two Strongest Rhythmic Pulses: The sum of the

magnitudes of the two beat histogram peaks with the highest magnitudes.

 217

 R-8 Number of Strong Pulses: Number of beat histogram peaks with normalized

magnitudes over 0.1.

 R-9 Number of Moderate Pulses: Number of beat histogram peaks with

normalized magnitudes over 0.01.

 R-10 Number of Relatively Strong Pulses: Number of beat histogram peaks

with magnitudes at least 30% as high as the magnitude of the peak with the

highest magnitude.

 R-11 Rhythmic Looseness: Average width of beat histogram peaks (in beats per

minute). Width is measured for all peaks with magnitudes at least 30% as high as

the highest peak, and is defined by the distance between the points on the peak in

question that have magnitudes closest to 30% of the height of the peak.

 R-12 Polyrhythms: Number of beat histogram peaks with magnitudes at least

30% of the highest magnitude whose bin labels are not integer multiples or factors

(using only multipliers of 1, 2, 3, 4, 6 and 8, and with an accepted error of +/- 3

bins) of the bin label of the peak with the highest magnitude. This number is then

divided by the total number of bins with frequencies over 30% of the highest

magnitude.

 R-13 Rhythmic Variability: Standard deviation of the beat histogram bin

magnitudes (excepting the first 40 empty ones).

 R-14 Beat Histogram: A feature vector consisting of the bin magnitudes of the

beat histogram described above.

 R-15 Note Density: Average number of notes per second.

 R-16 Note Density Variability: The recording is broken into windows with 5

second durations. The note density is then calculated for each window, and the

standard deviation of these windows is then calculated.

 R-17 Average Note Duration: Average duration of notes in seconds.

 218

 R-18 Variability of Note Duration: Standard deviation of note durations in

seconds.

 R-19 Maximum Note Duration: Duration of the longest note (in seconds).

 R-20 Minimum Note Duration: Duration of the shortest note (in seconds).

 R-21 Staccato Incidence: Number of notes with durations of less than 0.1

seconds divided by the total number of notes in the recording.

 R-22 Average Time Between Attacks: Average time in seconds between Note

On events (regardless of channel).

 R-23 Variability of Time Between Attacks: Standard deviation of the times, in

seconds, between Note On events (regardless of channel).

 R-24 Average Time Between Attacks For Each Voice: Average of the

individual channel averages of times in seconds between Note On events. Only

channels that contain at least one note are included in the average.

 R-25 Average Variability of Time Between Attacks For Each Voice: Average

standard deviation, in seconds, of time between Note On events on individual

channels that contain at least one note.

 R-26 Incidence of Complete Rests: Total amount of time in seconds in which no

notes are sounding on any channel divided by the total length of the recording.

 R-27 Maximum Complete Rest Duration: Maximum amount of time in seconds

in which no notes are sounding on any channel.

 R-28 Average Rest Duration Per Voice: Average, in seconds, of the average

amounts of time in each channel in which no note is sounding (counting only

channels with at least one note), divided by the total duration of the recording.

 R-29 Average Variability of Rest Durations across Voices: Standard deviation,

in seconds, of the average amounts of time in each channel in which no note is

sounding (counting only channels with at least one note).

 R-30 Initial Tempo: Tempo in beats per minute at the start of a recording.

 219

 R-31 Initial Time Signature: A feature vector consisting of two values. The first

is the numerator of the first occurring time signature and the second is the

denominator of the first occurring time signature. Both are set to 0 if no time

signature is present.

 R-32 Compound Or Simple Meter: Set to 1 if the initial meter is compound

(numerator of time signature is greater than or equal to 6 and is evenly divisible by

3) and to 0 if it is simple (if the above condition is not fulfilled).

 R-33 Triple Meter: Set to 1 if numerator of initial time signature is 3, set to 0

otherwise.

 R-34 Quintuple Meter: Set to 1 if numerator of initial time signature is 5, set to 0

otherwise.

 R-35 Changes of Meter: Set to 1 if the time signature is changed one or more

times during the recording.

4.5.4 Features based on dynamics

The ways in which musical dynamics are used in a piece can also be characteristic of

different types of musical classes. Once again, however, this information is only rarely

used in traditional analytical systems, and is generally notated only very coarsely in

musical scores. Fortunately, MIDI velocity values make it possible to annotate dynamics

much more precisely, even though MIDI encodings generated by score editing software

admittedly generally fail to take full advantage of this.

One important point to consider with respect to MIDI dynamics is that, while MIDI

velocities are generally used to indicate the strength with which notes are sounded, this is

not the only way in which loudness is controlled. MIDI channel volume can also be

changed independently. jSymbolic takes this into account by using the following formula

to find loudness values used to calculate the features described in this sub-section:

loudness = note velocity x (channel volume / 127) (4.2)

 220

It should also be noted that all of the jSymbolic features related to dynamics use relative

measures of loudness rather than absolute measures because the default volume and

velocity values set by sequencers can vary.

The jSymbolic feature catalogue includes the following features related to dynamics:

 D-1 Overall Dynamic Range: The maximum loudness value minus the minimum

loudness value.

 D-2 Variation of Dynamics: Standard deviation of loudness levels of all notes.

 D-3 Variation of Dynamics in Each Voice: The average of the standard

deviations of loudness levels within each channel that contains at least one note.

 D-4 Average Note To Note Dynamics Change: Average change of loudness

from one note to the next note in the same channel.

4.5.5 Features based on overall pitch statistics

The majority of traditional analytical systems place a particular emphasis on

information related to pitch, and this type of information certainly has value with respect

to symbolic features as well. The pitch-related features in the jSymbolic catalogue are

divided into three groups: Section 4.5.6 deals with melody and features based on

sequences of pitches in general, Section 4.5.7 deals with chords and features based on

vertical intervals in general, and this section deals with overall statistics on the pitches

used in pieces as a whole. Unlike the features in Sections 4.5.6 and 4.5.7, the features in

this section do not take into account the temporal locations of notes.

Just as beat histograms are useful for calculating a variety of rhythmic features, there

are several histograms which can be used to calculate features related to pitch statistics.

The jSymbolic feature catalogue uses slightly modified versions of the three pitch

histograms implemented by Tzanetakis and his colleagues (Tzanetakis and Cook 2002;

Tzanetakis, Ermolinskyi and Cook 2002; Tzanetakis 2002).

The first type of histogram is a basic pitch histogram. It consists of 128 bins, one for

each MIDI pitch. The magnitude of each bin is first set to the number of Note On

messages in the piece with the corresponding pitch, and the histogram is normalized after

 221

all Note On messages have been accounted for. This type of histogram gives particular

insights into the range and variety of pitches used in a piece.

To provide practical examples, Figure 4.3 shows the basic pitch histogram for a Duke

Ellington jazz piece and Figure 4.4 shows the histogram for a Dr. Dre rap song. A number

of genre-typical differences are immediately apparent from even a rough visual

comparison of these two histograms, such as the fact that the rap song uses far fewer

pitches than the jazz piece, for example.

The second type of histogram is called a pitch class histogram. It has one bin for each

of the twelve pitch classes, which means that it is essentially a version of the basic pitch

histogram where octaves are collapsed for each of the pitch classes. The magnitude of

each bin is set to the number of Note On messages with a MIDI pitch that can be wrapped

to this pitch class, with enharmonic equivalents assigned to the same pitch class number.

The histogram is normalized, and the bins are translated so that the first bin corresponds

to the pitch class with the highest magnitude, with the successive bins ordered

chromatically in semitone increments. This type of histogram provides insights into areas

such as the types of scales used and the amount of transposition that is present, for

example.

The third type of histogram is called a folded fifths pitch histogram, and is derived

directly from the pitch class histogram. This histogram is calculated by reordering the

bins of the original unordered pitch class histogram such that adjacent bins are separated

by perfect fifths rather than semitones. This is done using the following equation

)12mod()7((4.3)

where is the folded fifths pitch histogram bin and is the corresponding pitch class

histogram bin. The number seven is used because this is the number of semitones in a

perfect fifth, and the number twelve is used because there are twelve pitch classes in total.

This histogram is useful for measuring dominant tonic relationships and for looking at

types of transpositions.

The utility of the folded fifths pitch histogram can be seen by comparing Figure 4.5,

which shows the folded fifths pitch histogram for a Baroque Vivaldi concerto, and Figure

4.6, which shows the folded fifths pitch histogram for an atonal Schoenberg piano

miniature. The Vivaldi piece never or rarely uses five of the twelve pitch classes, and the

 222

pitch classes that are used are clustered around one section of the circle of fifths. These

are characteristics that one would typically expect of basic tonal music without many

tonally distant modulations or significant use of chromaticism. In contrast, all of the pitch

classes are used to a significant degree in the Schoenberg piece, and the most frequently

used pitch classes are not clustered together on the circle of fifths, both of which are

characteristics that one would expect of such an atonal piece.

All three of these histogram types are included directly as features in the jSymbolic

feature catalogue, and are also used to calculate a number of other features.

It should be mentioned that all notes occurring on MIDI channel ten are ignored for

all of the features described in this section. This is because the ―pitch‖ values on channel

ten correspond to (mostly unpitched) percussion patches, not to pitches.

Some of the features in this section are based on MIDI Pitch Bends. Although the use

of Pitch Bends is somewhat variable from MIDI encoder to MIDI encoder, and therefore

not entirely dependant on the music itself, features relating to Pitch Bends can

nonetheless have a high discriminating power, so they are included here. Efforts were

made to use features with as limited a sensitivity to non-musical factors as possible.

Basic Pitch Histogram: Sophisticated Lady by Duke Ellington

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0
5

1
1
2

1
1
9

1
2
6

MIDI Pitch

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4.3: Basic pitch histogram for Sophisticated Lady by Duke Ellington.

 223

Basic Pitch Histogram: Forgot About Dre by Dr. Dre

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0
5

1
1
2

1
1
9

1
2
6

MIDI Pitch

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4.4: Basic pitch histogram for Forgot About Dre by Dr. Dre.

Fifths Pitch Histogram:

Four Seasons (Spring) by Vivaldi

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11

Folded Pitch Class

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4.5: Folded fifths pitch histogram for The Four Seasons (Spring) by Vivaldi.

 224

Fifths Pitch Histogram:

Sechs Kleine Klavierstücke by Schoenberg

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11

Folded Pitch Class

R
e
la

ti
v
e
 F

re
q

u
e
n

c
y

Figure 4.6: Folded fifths pitch histogram for a piano miniature from Sechs Kleine

Klavierstücke by Schoenberg.

The jSymbolic feature catalogue includes the following features related to overall

pitch statistics:

 P-1 Most Common Pitch Prevalence: Fraction of Note Ons corresponding to the

most common pitch.

 P-2 Most Common Pitch Class Prevalence: Fraction of Note Ons corresponding

to the most common pitch class.

 P-3 Relative Strength of Top Pitches: The magnitude of the second most

common pitch divided by the magnitude of the most common pitch.

 P-4 Relative Strength of Top Pitch Classes: The magnitude of the second most

common pitch class divided by the magnitude of the most common pitch class.

 P-5 Interval Between Strongest Pitches: Absolute value of the difference in

semitones between the pitches of the two most common pitches.

 P-6 Interval Between Strongest Pitch Classes: Absolute value of the difference

in semitones between the pitches of the two most common pitch classes.

 225

 P-7 Number of Common Pitches: Number of pitches that account individually

for at least 9% of all notes.

 P-8 Pitch Variety: Number of pitches used at least once.

 P-9 Pitch Class Variety: Number of pitch classes used at least once.

 P-10 Range: Difference in semitones between the highest and lowest pitches.

 P-11 Most Common Pitch: MIDI pitch value of the most common pitch divided

by the number of possible pitches.

 P-12 Primary Register: Average MIDI pitch.

 P-13 Importance of Bass Register: Fraction of Note Ons between MIDI pitches

0 and 54.

 P-14 Importance of Middle Register: Fraction of Note Ons between MIDI

pitches 55 and 72.

 P-15 Importance of High Register: Fraction of Note Ons between MIDI pitches

73 and 127.

 P-16 Most Common Pitch Class: Bin label on the pitch class histogram of the

most common pitch class.

 P-17 Dominant Spread: Largest number of consecutive pitch classes separated

by perfect 5ths that accounted for at least 9% each of the notes.

 P-18 Strong Tonal Centres: Number of peaks in the fifths pitch histogram that

each account for at least 9% of all notes.

 P-19 Basic Pitch Histogram: A feature vector consisting of the bin magnitudes

of the basic pitch histogram described above.

 P-20 Pitch Class Distribution: A feature vector consisting of the bin magnitudes

of the pitch class histogram described above.

 P-21 Fifths Pitch Histogram: A feature vector consisting of the bin magnitudes

of the fifths pitch histogram described above.

 226

 P-22 Quality: Set to 0 if the key signature indicates that a recording is major, set

to 1 if it indicates that it is minor and set to 0 if the key signature is unknown.

 P-23 Glissando Prevalence: Number of Note Ons that have at least one MIDI

Pitch Bend associated with them divided by the total number of pitched Note Ons.

 P-24 Average Range of Glissandos: Average range of MIDI Pitch Bends, where

―range‖ is defined as the greatest value of the absolute difference between 64 and

the second data byte of all MIDI Pitch Bend messages falling between the Note

On and Note Off messages of any note.

 P-25 Vibrato Prevalence: Number of notes for which MIDI Pitch Bend messages

change direction at least twice divided by total number of notes that have Pitch

Bend messages associated with them.

 P-26 Prevalence of Micro-Tones: Number of Note Ons that are preceded by

isolated MIDI Pitch Bend messages as a fraction of the total number of Note Ons.

4.5.6 Features based on melody and melodic intervals

Although features based on overall pitch statistics are often meaningful and useful,

they do not reflect information relating to the order in which pitches occur. Melody is a

very important part of how many humans hear and think about music, so features based

on such sequential information are needed to complement features based on overall pitch

statistics. Fortunately, ample theoretical work has been done that can be taken advantage

of when designing melodic features, ranging from compositional resources like manuals

on writing Baroque counterpoint, to more analytically formulated ideas like melodic

contour. Section 4.4 highlights several relevant resources.

Unfortunately, the tasks of detecting and partitioning musical phrases and melodies,

and of determining which notes belong to which phrases, are not trivial. Although expert

humans can perform such tasks relatively easily, automatic systems for performing them

have still achieved only limited general success, particularly in cases where the notes in a

phrases are shared across voices. So, although a phrase detection pre-processing system

would make many potentially useful melodic features accessible, such a system is not

currently available.

 227

What one can do fairly easily, however, is collect basic statistics about melodic

intervals and melodic motion. Although such statistics may be relatively rudimentary

compared to expert melodic analyses, they can still potentially be very effective in

performing classifications. One can also extract somewhat more sophisticated features

related to melodic contour by making a few naïve but often effective basic assumptions,

such as the assumptions that all notes belonging to a phrase will be on the same MIDI

channel and that phrases will each follow the overall shape of a basic concave or converse

arc. Although such assumptions are clearly false, and certainly not acceptable for any

wide-ranging analytical framework, they do make it possible to extract some potentially

discriminating higher-level melodic features without a sophisticated phrase detection

system.

A melodic interval histogram is proposed here as a way of facilitating the extraction

of certain basic features relating to melodic intervals. Each bin of this histogram

represents a different melodic interval, and is labelled with a number indicating the

number of semitones in the interval. The magnitude of each bin is set to the number of

Note On messages in the piece that have a pitch interval from the preceding Note On

message on the same MIDI channel corresponding to the bin label. The direction of the

interval (i.e., up or down in pitch) is ignored in this histogram. The histogram is then

normalized, so that the magnitude of each bin indicates the fraction of all melodic

intervals that correspond to the melodic interval of the given bin.

This histogram clearly has a few limitations. It treats all voices equally, for example,

even though the highest line of a piece often carries the most significant melodic

information. It is also problematic for polyphonic instruments such as pianos that can play

harmonies or multiple melodies simultaneously. It is, however, a quick and easy approach

that has been found experimentally to often be helpful in discriminating between classes.

Another intermediate data structure is also used to help calculate some of the features

listed below. This consists of an array where each indice corresponds to a MIDI channel

and each entry consists of a list of all melodic intervals, in semitones, for the associated

channel. The numbers representing the intervals in this second intermediate data structure

are set to negative for downward motion and to positive for upward motion.

 228

Once again, all notes occurring on MIDI channel ten are ignored for all of the features

described in this section. This is because the ―pitch‖ values on channel ten correspond to

percussion patches, not to pitches.

The jSymbolic feature catalogue includes the following features related to melody and

melodic intervals:

 M-1 Melodic Interval Histogram: A feature vector consisting of the bin

magnitudes of the melodic interval histogram described above.

 M-2 Average Melodic Interval: The average melodic interval, in semitones.

 M-3 Most Common Melodic Interval: The most frequently occurring melodic

interval, in semitones.

 M-4 Distance Between Most Common Melodic Intervals: Absolute value of the

difference between the most common melodic interval and the second most

common melodic interval, in semitones.

 M-5 Most Common Melodic Interval Prevalence: Fraction of melodic intervals

that belong to the most common interval.

 M-6 Relative Strength of Most Common Intervals: Fraction of melodic

intervals that belong to the second most common interval divided by the fraction

of melodic intervals belonging to the most common interval.

 M-7 Number of Common Melodic Intervals: Number of melodic intervals that

represent at least 9% of all melodic intervals.

 M-8 Amount of Arpeggiation: Fraction of melodic intervals that are repeated

notes, minor thirds, major thirds, perfect fifths, minor sevenths, major sevenths,

octaves, minor tenths or major tenths.

 M-9 Repeated Notes: Fraction of notes that are repeated melodically.

 M-10 Chromatic Motion: Fraction of melodic intervals that correspond to a

semitone.

 229

 M-11 Stepwise Motion: Fraction of melodic intervals that correspond to a minor

or major second.

 M-12 Melodic Thirds: Fraction of melodic intervals that are major or minor

thirds.

 M-13 Melodic Fifths: Fraction of melodic intervals that are perfect fifths.

 M-14 Melodic Tritones: Fraction of melodic intervals that are tritones.

 M-15 Melodic Octaves: Fraction of melodic intervals that are octaves.

 M-16 Embellishment: Fraction of notes that are surrounded on both sides by

Note Ons on the same MIDI channel that have durations at least three times as

long as the central note.

 M-17 Direction of Motion: Fraction of melodic intervals that are rising rather

than falling.

 M-18 Duration of Melodic Arcs: Average number of notes that separate melodic

peaks and troughs in any channel.

 M-19 Size of Melodic Arcs: Average melodic interval separating the top note of

melodic peaks and the bottom note of melodic troughs.

 M-20 Melodic Pitch Variety: Average number of notes that go by in a channel

before a note is repeated. Notes that do not recur after sixteen notes are not

counted.

4.5.7 Features based on chords and vertical intervals

Chords in general, and tonal harmony in particular, are the areas that have typically

received the most attention in traditional Western analytical systems. As a result, there is

a great deal of background information that can be taken advantage of in designing

features based on chords. Section 4.4 highlights some relevant references that were used

to design many of the features in this section. In particular, some of the techniques for

chord analysis discussed by Rowe (2001) were particularly useful.

 230

It is essential to point out that the existing theoretical frameworks based on tonal

harmony do not apply to many kinds of music, as they were developed primarily with

respect to Western classical music. As a consequence, most of the chord-based features

proposed as part of the jSymbolic feature library are not based on harmonic function, and

emphasize instead basic statistical information about the vertical intervals between

pitches that sound simultaneously. Having recognized this, it is once again important to

recall that features are useful simply if they help to differentiate between classes

statistically, even if they are inspired by theoretical assumptions that do not apply to some

of the music under consideration. There are therefore a few features in the jSymbolic

catalogue that make use of certain basic concepts that are specific to Western harmonic

theory.

Two new histograms are proposed as intermediate data structures for calculating

chord-based structures. The first, called a vertical interval histogram, consists of bins

associated with different vertical intervals and labelled with the number of semitones in

the corresponding interval. The magnitude of each bin is found by going through a MIDI

recording tick by tick and noting all vertical intervals that are sounding at each tick. This

is done exhaustively, so that multiple vertical intervals will be noted per tick if there are

more than two pitches sounding simultaneously. The histogram is then normalized. The

end result is a histogram that indicates which vertical intervals are most common relative

to one another, with a weighting based on duration rather than simply the number of notes

sounded corresponding to each interval. This is reasonable, since long notes often have

greater harmonic significance than short notes. This histogram does not incorporate any

tonal assumptions, although it does require quantization into the twelve standard pitch

classes.

It is also potentially useful to have a histogram that can be used to extract features

more directly related to tonal harmony, since many music classification projects do

involve music based on the basic chord ontologies of Western music. A chord type

histogram is proposed with this need in mind. This histogram has bins labelled with types

of chords: vertical intervals consisting of two pitch classes, minor triads, major triads,

other triads, diminished chords, augmented chords, dominant seventh chords, major

seventh chords, minor seventh chords, other chords with four pitch classes and chords

 231

with more than four pitch classes. The bin magnitudes are calculated by going through

MIDI ticks one by one and incrementing the counter for the bin that corresponds to the

chord, if any, that is present during a given tick. All inversions are treated as equivalent

and octave doubling is ignored in the calculation of this histogram. The histogram is

normalized and is weighted based on chord duration, just like the vertical interval

histogram.

Neither of these histograms provides any information about arpeggiation,

unfortunately, but some information related to this is collected during the melodic feature

extraction. A more sophisticated system in the future could integrate vertical statistics

with arpeggios, and could also collect information about inversions as well as chord

transitions in order to obtain more sophisticated and accurate features.

Once again, all notes occurring on MIDI channel ten are ignored for all of the features

described in this section. This is because the ―pitch‖ values on channel ten correspond to

percussion patches, not to pitches.

The jSymbolic feature catalogue includes the following features related to chords and

vertical intervals:

 C-1 Vertical Intervals: A feature vector consisting of the bin magnitudes of the

vertical interval histogram described above.

 C-2 Chord Types: A feature vector consisting of the frequencies of each of the

bins in the chord type histogram discussed above.

 C-3 Most Common Vertical Interval: The interval in semitones corresponding

to the vertical interval histogram bin with the highest magnitude.

 C-4 Second Most Common Vertical Interval: The interval in semitones

corresponding to the vertical interval histogram bin with the second highest

magnitude.

 C-5 Distance Between Two Most Common Vertical Intervals: The difference

between the bin labels of the two most common vertical intervals.

 C-6 Prevalence of Most Common Vertical Interval: The fraction of vertical

intervals corresponding to the most common vertical interval.

 232

 C-7 Prevalence of Second Most Common Vertical Interval: The fraction of

vertical intervals corresponding to the second most common vertical interval.

 C-8 Ratio of Prevalence of Two Most Common Vertical Intervals: The

fraction of vertical intervals corresponding to the second most common vertical

interval divided by the fraction of vertical intervals corresponding to the most

common vertical interval.

 C-9 Average Number of Simultaneous Pitch Classes: Average number of

different pitch classes sounding simultaneously.

 C-10 Variability of Number of Simultaneous Pitch Classes: Standard deviation

of the number of different pitch classes sounding simultaneously.

 C-11 Minor Major Ratio: Number of minor vertical intervals divided by number

of major vertical intervals.

 C-12 Perfect Vertical Intervals: Fraction of all vertical intervals that are perfect

intervals.

 C-13 Unisons: Fraction of all vertical intervals that are unisons.

 C-14 Vertical Minor Seconds: Fraction of vertical intervals that are minor

seconds.

 C-15 Vertical Thirds: Fraction vertical intervals that are thirds.

 C-16 Vertical Fifths: Fraction of vertical intervals that are fifths.

 C-17 Vertical Tritones: Fraction of vertical intervals that are tritones.

 C-18 Vertical Octaves: Fraction of vertical intervals that are to octaves.

 C-19 Vertical Dissonance Ratio: Total number of vertical 2nds, tritones, 7ths

and 9ths divided by the total number of vertical unisons, 4ths, 5ths, 6ths, octaves

and 10ths.

 C-20 Partial Chords: Fraction of simultaneously sounding pitch groups that

consist of only two pitch classes.

 233

 C-21 Minor Major Triad Ratio: Number of minor triads divided by number of

major triads.

 C-22 Standard Triads: Fraction of all chords that are either major or minor

triads.

 C-23 Diminished and Augmented Triads: Fraction of all chords that are either

diminished or augmented triads.

 C-24 Dominant Seventh Chords: Fraction of all chords that are dominant

sevenths.

 C-25 Seventh Chords: Fraction of all chords that are dominant seventh, major

seventh or minor seventh chords.

 C-26 Complex Chords: Fraction of all chords that contain more that four pitch

classes.

 C-27 Non-Standard Chords: Fraction of all simultaneously sounding pitches

that consist of more than two pitch class chords and are not major or minor triads

or seventh chords.

 C-28Chord Duration: Average duration of a chord in seconds.

4.5.8 Examples

For the purpose of illustration, Table 4.1 shows the values of twenty sample features

extracted from two measures each of a Chopin nocturne and a Mendelssohn piano trio

(Figures 4.7 and 4.8, respectively). A comparison of the two examples and their features

makes it apparent how such features can be useful in distinguishing between pieces and

musical categories of various kinds. For example, the Average Note To Note Dynamic

Change (D-4), Overall Dynamic Range (D-1) and Variation of Dynamics (D-2) features

demonstrate the greater range in dynamics of the nocturne, the Note Density (R-15)

feature demonstrates the greater number of notes per second of the trio, the Orchestral

Strings Fraction (I-18) feature indicates that strings play roughly half the notes in the trio

but are absent in the nocturne, and the Variability of Note Duration (R-18) feature shows

that this portion of the nocturne has more rhythmic variety than the trio. More

 234

traditionally-oriented features are also present, such as the Chromatic Motion (M-10)

feature, which demonstrates that this portion of the trio has more chromatic motion, or the

Range (P-10) feature, which shows that the lowest and highest notes of this section of the

nocturne span a greater interval. Although such features are not necessarily significant

when considered individually, pattern recognition systems can simultaneously examine

many of them in order to find meaningful patterns and discriminate between classes. Of

course, the features would typically be extracted over the entire pieces, not just two

measures.

Feature Name Nocturne Piano Trio

Average Note To Note Dynamics Change (D-4) 6.03 1.46

Chromatic Motion (M-10) 0.0769 0.244

Dominant Spread (P-17) 3 2

Harmonicity of Two Strongest Rhythmic Pulses (R-3) 1 1

Importance of Bass Register (P-13) 0.2 0.373

Interval Between Strongest Pitch Classes (P-6) 3 7

Most Common Pitch Class Prevalence (P-2) 0.433 0.39

Note Density (R-15) 3.75 29.5

Number of Common Melodic Intervals (M-7) 3 6

Number of Strong Pulses (R-8) 5 6

Orchestral Strings Fraction (I-18) 0 0.56

Overall Dynamic Range (D-1) 62 22

Pitch Class Variety (P-9) 7 7

Range (P-10) 48 39

Relative Strength of Most Common Intervals (M-6) 0.5 0.8

Size of Melodic Arcs (M-19) 11 7.27

Stepwise Motion (M-11) 0.231 0.439

Strength of Strongest Rhythmic Pulse (R-4) 0.321 0.173

Variability of Note Duration (R-18) 0.293 0.104

Variation of Dynamics (D-2) 16.4 5.98

Table 4.1: Comparison of twenty sample features extracted from the first two measures

of Fryderyk Chopin’s Nocturne in B, Op. 32, No. 1 (Figure 4.7) and from measures 10

and 11 of the first movement of Felix Mendelssohn’s Piano Trio No. 2 in C minor, Op. 66

(Figure 4.8).

 235

Figure 4.7: First two measures of Fryderyk Chopin’s Nocturne in B, Op. 32, No. 1, from

which the features in Table 4.1 were extracted.

Figure 4.8: Measures 10 and 11 of the first movement of Felix Mendelssohn’s Piano Trio

No. 2 in C minor, Op. 66, from which the features in Table 4.1 were extracted.

4.6 jSymbolic’s functionality

The essential functionality offered by jSymbolic is the ability to extract features from

MIDI files, including files in Format 1 as well as Format 0. Extracted features can be

saved as ACE XML files (see Chapter 7), which may then be converted to Weka ARFF

files or to other formats. Both the actual feature values and metadata about the features

can be saved by jSymbolic, in ACE XML Feature Value files and ACE XML Feature

Description files, respectively.

As is the case with all jMIR components, jMIR is designed to serve not only as a

feature extraction application, but also as a platform for developing new features. As

such, jSymbolic has a modular and extensible architecture with well-documented code.

New features can be implemented simply by extending the MIDIFeatureExtractor class.

The jSymbolic software then automatically provides the new features with the MIDI data

 236

for each file, a library of MIDI processing tools and any other needed feature values, in

case a new feature is calculated based on other existing features. As is the case with

jAudio, feature extraction order is automatically scheduled dynamically, so all feature

dependencies are handled automatically. This approach makes it unnecessary for

developers of new features to have any knowledge of how jAudio’s interface or control

structures work, thereby allowing them to focus directly on feature development itself.

The mechanisms used by jSymbolic to do all of this are very similar to those used by

jAudio, as described in Sections 3.4.5 and 3.4.6. However, although jSymbolic does

include a number of explicitly implemented metafeatures and aggregators, it does not

include automatic metafeature and aggregator feature generation like jAudio, and

jSymbolic must still be recompiled when new features are added. Like all jMIR

components, jSymbolic’s Java implementation is open-source and platform-independent.

The MIDIIntermediateRepresentations and MIDIMethods classes offer developers a

variety of MIDI data representation and processing tools. This means that a great variety

of features can be implemented at a high level, without actually working directly with the

MIDI data, unless, of course, one wishes to.

4.7 jSymbolic’s interface

jSymbolic is designed for users with varying levels of computer expertise. It is

particularly targeted towards musicologists and music theorists who might not currently

be using computer technology in their research, so the interface is a simple and easy-to-

learn graphical user interface, as shown in Figure 4.9.

This GUI is very simple relative to the other jMIR components, and consists of only a

single window. The left side of the window holds an area displaying the MIDI files that

have been selected for feature extraction, and the right side includes a list of all features

that may be extracted. Individual features may be selected or deselected for extraction. In

cases where one feature is selected that requires another feature that is not selected in

order to be calculated the software automatically simply extracts the feature that is not

selected, uses it in the calculation of the selected feature and then discards its value

without saving it.

 237

Basic functionality is also offered for playing MIDI files and viewing metadata about

them. There is also a section of the GUI for entering preferences related to windowed

feature extraction, but it is currently greyed out, as this functionality is not yet

implemented.

Unlike jAudio and ACE, jSymbolic does not yet include a command interface or API

designed specifically for integration into external software. The jSymbolic features

themselves are very modular, however, and there is a general well-documented API, so

jSymbolic’s functionality certainly can still be integrated into other software with

relatively little work.

Figure 4.9: A screen shot of the jSymbolic GUI interface.

4.8 Summary of original contributions

jSymbolic is both a dedicated symbolic feature extraction application and a platform

for feature development. It is the only application currently available designed

specifically for MIR-oriented symbolic feature extraction that is intended for general use.

 238

jSymbolic also includes 111 implemented features, far more than any other existing

software that can be used for symbolic feature extraction.

The jSymbolic feature catalogue, as described in Section 4.5, is also an important

contribution. It includes 153 features, including features relating to instrumentation,

texture, rhythm, dynamics, pitch statistics, melody and chords. These features, as an

aggregate, are designed to be relevant to a wide variety of musics, and can be adapted for

use in areas such as analytical theoretical research and empirical musicological research,

not just MIR and automatic music classification. This feature catalogue is, to the best of

the author’s knowledge, the largest and most diverse high-level musical feature catalogue

currently available. This catalogue includes many original features.

Section 4.4 also offers important contributions by discussing important issues relevant

to feature design and selection, and by offering guidelines for developing new high-level

features. This discussion takes into account insights from a variety of disciplines, and can

serve as a useful resource if expanding the jSymbolic feature catalogue or designing an

entirely new catalogue of high-level features. The topics dealt with in this sub-section are

particularly significant to MIR research in automatic classification, as most research in

this field has been technically motivated, and has often failed to take into account highly

relevant insights offered by disciplines such as musicology and music theory.

4.9 Future research

As mentioned above, jSymbolic is intended not only as a tool for extracting features

from music stored in symbolic music files, but also as a platform for iteratively

developing new features. Correspondingly, an important part of future research will focus

on designing and implementing new features. The first priority will be the

implementation of the 42 remaining unimplemented features in the current jSymbolic

feature catalogue, so that all 153 features will be implemented. Once this is done, the

catalogue itself can be expanded, with special attention paid to features that represent

increasingly higher-level information.

The implementation of pre-processing functionality of various kinds could also be

very useful. For example, automatic voice partitioning algorithms could help detect and

correct MIDI files where voices are multiplexed on a single channel or track using a

 239

single patch. Phrase detection pre-processing would also make it possible to extract

features relating to melodic contour more reliably.

An important design priority of the current jSymbolic feature catalogue was to ensure

that the majority of features could be applied to a broad range of musics. As a result, the

catalogue contains only a limited number of features that are designed for specific types

of music, such as Western tonal music, for example. New features and pre-processing

functionality related specifically to harmonic analysis, for example, could be of particular

utility to researchers only interested in such particular types of music.

It could be useful to build even a relatively rudimentary automatic harmonic analysis

pre-processing system into jSymbolic if sophisticated analytical techniques are too

difficult to implement automatically. Work such as that by Raphael and Stoddard (2003)

or the techniques used by Rowe (2001) could be useful in this respect. Features derived

from simple Roman numeral analysis and chord voicings could be extracted, for example.

Although such automatically generated analyses would very likely contain errors due to

the difficulty and subjectivity of harmonic analysis, and would have limited value in and

of themselves, features derived from such analyses could still provide rough but effective

information that could help distinguish between classes. The ability to intelligently take

arpeggios into account as well as vertical chords would also be valuable.

More sophisticated statistical analyses could also be applied to the jSymbolic’s

different histogram features. The calculation of higher-order moments, skew, scatter and

excess, for example, could all be useful. Gabura’s work (1965) provides a good starting

point for such an approach. A more in-depth study of the techniques used by

ethnomusicologists to compare different types of music could also provide additional

ideas. It might also be beneficial to use alternative ways of representing pitch, as

suggested by Chai and Vercoe (2001).

Further research on more sophisticated features based on sequential information could

be useful as well. Phrasing and repetition, in terms of melodies, chord progressions and

rhythms, can be very important musically. The degree and regularity with which such

patterns are repeated, as well as their general character, length and register, could all

furnish useful features. It could also be helpful to collect features related specifically to

transposition, decoration and inversion of motifs.

 240

There has been some interesting research done on models of how humans code

sequential musical information and on applications of generative grammars to music.

Stevens and Latimer (1997) present relevant references on both the strengths and

weaknesses of such approaches. Research on detecting and processing repeating musical

patterns, such as that by Hsu et al. (2001), Typke et al. (2003) or Lartillot (2003), could

be worthwhile. Work such as that by Tseng (1999) or Foote (1999b) could also be

valuable in devising a system to extract melodies and segment recordings. An alternative

and potentially very interesting approach to extracting features from phrases would be to

characterize melodies by fitting them to functions, as was done by Laine and

Kuuskankare (1994), in order to search for patterns and then apply functional data

analysis techniques.

Existing research on query-by-humming systems could also provide a useful resource

for the extraction of features based on sequences and phrases. Features could be extracted

by collecting and analyzing n-grams based on melodies, rhythms and chord progressions.

There are a number of resources that could be beneficial in this respect (Agrawal and

Srikant 1995; Hsu, Liu and Chen 2001; Selfridge-Field 1998; Uitdenbogerd and Zobel

1998). The work of Shan and Kuo (2003) could also be of particular use, as it considers

the problem in the context of style classification. The work of Yip and Kao (1999) also

provides some helpful background on melody-based features.

It would also be convenient if jSymbolic could extract features from other symbolic

file formats, such as Humdrum **Kern, MusicXML or OSC. Functionality could be built

into jSymbolic to either extract features from such formats directly, or at least to

automatically translate them into MIDI streams from which features could then be

extracted.

The ability to extract features over small windows of time instead of only for files as a

whole could also be advantageous. This includes the use of disjoint as well as overlapping

windows. The musical characteristics of different parts of a piece can vary significantly,

with the consequence that feature values that are the average of such dissimilar sections

may in fact not be representative of any of the sections. Windowed feature extraction is

also a requirement for automatically segmenting pieces or performing general structural

 241

analyses. The infrastructure for such windowed feature extraction is already in place in

jSymbolic, and has already been implemented in jAudio.

jAudio also includes other useful functionality that could be ported to jSymbolic. This

includes automatic metafeature and feature aggregator generation, as well as the ability to

add new features as plug-ins without recompiling the software. The ability to save feature

values as ARFF files directly would also be a helpful addition

Additional ways of accessing jSymbolic’s functionality will also be implemented. A

command-line interface would facilitate simple batch processing, and the jSymbolic API

could be improved to even further facilitate the ability to incorporate jSymbolic’s

functionality into other software. The jSymbolic user documentation could also be

improved to the level of jWebMiner and jMusicMetaManager, although jSymbolic’s

documentation is already at least as good as most academic software systems.

 242

 243

5. jWebMiner: Extracting cultural features from the

Internet

5.1 Overview of community metadata, cultural features and

jWebMiner

There is psychological and musicological reason to believe that cultural factors

beyond the content of music itself play an essential role in how humans interpret and

organize music. Fabbri (1981), for example, has argued that content-based aspects of

music represent only one of five ways in which musical genres can be characterized, and

North and Hargreaves (1997) found experimentally that the style of a piece can influence

listeners’ liking for it more than the piece itself. Cano and Koppenberber (2004) also

found experimentally that the nature of cultural data accessible on the Internet has

intriguing potential for MIR research.

Although there are many sources of cultural information that bear eventual targeted

investigation, ranging from social networking data to critical writings to sales statistics,

the decision was made for the purpose of jMIR to focus on the largest source of

information available: text data on the web, which will be referred to here as community

metadata. Rather than attempting to specialize in extracting features from only one or a

few types of data sources, it was decided that it would be more profitable to make use of

the functionality offered by search engines to extract information from the web as an

amalgamated whole. In addition to the huge scope and diversity of information that may

be mined, this approach has the additional significant advantage that the information on

the web constantly self-updates.

In order for cultural data of any kind to be beneficial for the purposes of jMIR, or

machine learning in general, it is necessary to first find ways of automatically extracting

useful information in a systematic way and then, ideally, formulating it so that it can be

expressed in the form of simple numerical features. Such features are referred to here as

cultural features.

The jMIR software component developed to perform this cultural feature extraction

has been named jWebMiner (McKay and Fujinaga 2007a). The details of its operation and

 244

interface are described in Sections 5.4 and 5.5. The Java bytecode, the source files and the

manual are freely available at jmir.sourceforge.net/index_jWebMiner.html.

5.2 Background information

5.2.1 Screen scraping and web services

The most direct way of extracting data from the web is called screen scraping. In

essence, this involves downloading pages from a web site as if they were to be viewed on

a web browsing application and then parsing them in some way to extract meaning. This

can work well if the structuring and formatting of pages on the web site consistently

conform to a set template. In practice, however, this approach can be problematic, as

contemporary web sites typically use a variety of difficult-to-parse scripting languages to

structure their web pages, and pages from a site are often not perfectly consistent with one

another. Even a minor change to a site’s design can cause the screen scraping software to

become entirely ineffective. So, while screen scraping can be useful as a last resort, it is

preferable to avoid it if possible.

Web services offer an alternative to web scraping. Some web sites choose to allow

users to submit queries and receive results over a network using a platform-independent

standardized protocol. It is thus possible to submit queries to Google, for example, and

receive responses in a way that bypasses the HTML-based web site itself. Examples of

web service protocols include REST, SOAP, BEEP and many others.

In theory, web services make it possible for applications to access a site’s content

without being disturbed by cosmetic or structural changes to the site. In practice,

however, web sites can and do discontinue web services or change protocols, as happened

in December 2006 when Google deprecated its SOAP API in favour of an AJAX API.

Nonetheless, web services in general offer a much easier, more consistent and more

reliable way of accessing data on the Internet compared to screen scraping. Web sites

often improve convenience by providing simple APIs for accessing their web services,

and often make available free corresponding code libraries for major programming

languages such as Java or C++.

 245

5.2.2 Search engines

Web search engines are some of the most powerful tools that can be taken advantage

of using web services. Different search engines use a variety of algorithms to search the

web, ranging from a significant amount of manual human editorial input to fully

automated web crawlers. The most famous algorithm is arguably Google’s
124

 PageRank

(Brin and Lawrence 1998), which causes sites crawled by the Goobglebot web crawler to

be favoured in search result rankings based on how many other sites link to them. Google

also uses many other criteria to generate results, including machine learning. Google’s

predecessor as the most popular search engine, Yahoo!,
125

 began essentially as a set of

bookmarks organized into a hierarchical set of categories, but grew to first use Google

results and then its own web crawling-based search engine. Yahoo! has the advantage of

offering a specialized music service.
126

Although there are many good quality search engines, Google and Yahoo! have the

special advantages of being particularly popular and of offering extensive web services.

They are therefore the services emphasized by jWebMiner. Yahoo! offers ―REST-like‖

web services, for which a simple overview has been written by Wenz (2007). The Google

web services used by jWebMiner are based on the SOAP API, and are well documented

by Calishain and Dornfest (2003). The SOAP API was used rather than its AJAX

replacement because the AJAX API only returns HTML-formatted results which must

then be scraped to be used in cultural feature extraction, a process that undermines one of

the essential advantages of web services.

5.2.3 Sources of community metadata

The web as a whole provides a rich source of community metadata that has been

taken advantage of as a whole by a number of researchers. However, as can be seen in

Section 5.3, other researchers have largely chosen to pay particular attention to particular

sites in an attempt to improve musical relevancy of results. Although there are far too

many sites to cover with any completeness here, some key sites are briefly reviewed

124

 www.google.com
125

 www.yahoo.com
126

 music.yahoo.com

 246

below. In general, the following categories of cultural information can be particularly

helpful:

 Data from social networking web sites and music recommendation systems

 Traffic and individual usage data from peer-to-peer systems

 Published listener or radio playlists and compilation album track listings

 Interviews with musicians and composers

 The writings of musicologists, critics and bloggers

 Surveys and other methodological listener studies

 Sales, marketing and other industry data such as Billboard listings or results of

awards shows

Last.FM
127

 has received extensive attention from the MIR community, particularly

since it began providing free access to its data via the Audioscrobbler
128

 web services

portal. Last.FM is an Internet radio station that uses the Audioscrobbler music

recommendation system to recommend artists to users based on a collaborative filtering

algorithm (see Section 5.2.4). A great deal of useful information can be freely accessed

via Audioscrobbler’s web services, including information such as artists and tracks

preferred by particular users, metadata tags entered by users, similarity data for each artist

amalgamated from many users, and much more.

There are a great many other existing commercial music recommendation systems

that can potentially yield useful cultural features. Pandora is worth particular mention

here because of its popularity.
129

 Like Last.FM, Pandora couples an Internet radio station

with music recommendation. However, Pandora bases recommendations primarily on

expert-entered descriptive musical ―attributes‖ (e.g., syncopation, key tonality, etc.) rather

than Audioscrobbler’s collaborative filtering. Unfortunately, Pandora is not available

outside the U.S.A., and it does not offer free web services.

127

 www.last.fm
128

 www.audioscrobbler.net
129

 www.pandora.com

 247

The AllMusic
130

 site offers an invaluable source of musical data. It contains

information on an essentially comprehensive list of music and artists, including extensive

formatted metadata (including MIR-relevant fields such as genre, mood, style, themes,

influences and similar artists and albums) as well as reviews and artist biographies. All

information is entered by professional reviewers and editors. The key disadvantage of the

site is that it does not offer free web services, which means that data must be either

manually collected or scraped.

MusicBrainz
131

 is a free audio fingerprinting (song identification) site that allows

fingerprinting to be performed and metadata to be accessed via web services. Art of the

Mix
132

 publishes user playlists. freeDB
133

 also allows information such as track listings or

music tags to be downloaded. Gracenote
134

 is a commercial site that maintains track

listings of CDs including commercial CDs.

Established music blog sites, such as Pitchfork
135

 or The Hype Machine,
136

 are

another useful source of community metadata, although they have a tendency to

emphasize new music over older music. Social networking sites such as MOG
137

 can also

be rich sources of information. Unfortunately, such sites usually do not offer web services

and often require logins. Information can sometimes be extracted from them indirectly

using search engines, however.

Some general sites can also provide musical information that is particularly useful.

Amazon,
138

 for examples, allows data on purchasing patterns to be accessed via web

services. Wikipedia
139

 or Citizendium
140

 can also be useful when queried with artist

names, for example, although they do not yet offer web services.

130

 www.allmusic com
131

 musicbrainz.org
132

 artofthemix.org
133

 www.freedb.org
134

 www.gracenote.com
135

 www.pitchforkmedia.com
136

 hypem.com
137

 mog.com
138

 www.amazon.com
139

 wikipedia.org
140

 citizendium.org

 248

5.2.4 Collaborative filtering and co-occurrence analysis

Collaborative filtering is one common way of extracting information from community

metadata, and is generally related to recommendation-based applications. Collaborative

filtering involves drawing links between entities, such as CDs or books, based on the

expressed shared interests of people who share similar taste profiles and preference

behaviours. Vendors such as Amazon, for example, use collaborative filtering to

recommend items to customers that many other customers who have purchased similar

items in the past have also purchased. If, for example, Customer A has bought many

Duke Ellington CDs, and many other customers who bought Duke Ellington CDs have

also purchased Count Basie CDs, then Amazon would recommend Count Basie to

Customer A. There is a large body of existing research on collaborative filtering (e.g.,

Shardanand and Maes 1995; Herlocker, Konstan and Riedl 2000; Herlocker et al. 2004).

Although collaborative filtering can certainly be useful for research areas such as

musical similarity analysis and music recommendation, it suffers from a number of well-

known weaknesses:

 A very large user group is needed in order for results to be meaningful.

 Items that have not been purchased by many other users are often ignored by

collaborative filtering in favour of more popular choices. This is particularly

problematic, as discovery of unknown music is a key aim of areas such as music

recommendation, and recommending music to a user that is so well known that

s/he is already aware of it is not useful. It can be especially difficult for new items

not supported by strong external publicity campaigns to reach significant mass in

the filtering mechanism to be recommended to users by the system. This is known

as the cold start problem.

 Even when techniques are implemented to attempt to counteract popularity biases,

potentially significant bootstrapping time is still needed for new items to gain

sufficient mass to be recommended via collaborative filtering.

 Individuals who purchase items as gifts for others can introduce significant noise.

 249

 There is a bias against eclectic taste profiles and algorithms tend to have difficulty

escaping from preference clusters once they are established. Such problems are

well documented by Epstein (1996), among others.

Co-occurrence analysis offers a useful alternative. Co-occurrence analysis is based on

the idea that if two items appear in the same context, such as a web page or a music

playlist, then there is likely some relatedness or similarity between them. In essence,

collaborative filtering can be viewed as a special case of co-occurrence analysis. There

has been a significant amount of research in linguistics indicating that similarity

measurements based on co-occurrence analysis are cognitively reasonable (e.g., Schütze

1992; Lowe and McDonald 2000).

For the sake of clarity, the term co-occurrence will be used here to refer specifically

to the occurrence of two strings from the same set of strings in the same document (e.g.,

web page). Cross tabulation will be used here to refer specifically to the occurrence of

two strings from different sets of strings on the same document. For example, examining

how often different artists co-occur on the same document would correspond to co-

occurrence, and measuring how often artist names co-occur with genre names would

correspond to cross tabulation. Although generally speaking co-occurrence in fact refers

to either of these two scenarios, this special distinction is made here for the sake of

clarity.

As found experimentally by Aucouturier and Pachet (2003), co-occurrence analysis

tends to generate meaningful clusters of similar entities. In the case of music, they found

that these clusters tend to be based in general on thematic, genre and period relationships,

although relationships can also be more ―metaphorical.‖ The vague nature of the clusters

is both a disadvantage and a benefit from the perspective of MIR applications, in the

sense that they are poorly suited for precise classification, but can be interesting for music

discovery. It should be noted that Aucouturier and Pachet did not perform cross tabulation

experiments with artist names and genre names, for example, and such an approach is

likely better suited for direct classification, as was found in a number of the research

projects discussed in Section 5.3.

With respect to the web, one way of using co-occurrence analysis is to measure how

often or in which ways certain terms co-occur on the same web pages or web sites,

 250

usually based on search engine hit counts. This is the essence of the approach used by

jWebMiner. The fundamental assumption here is that there is a sufficient amount of

expertise embedded in the web to overwhelm erroneous or misleading information that is

also present. As will be presented throughout this chapter, there are a number of ways of

helping to improve the relevancy and correctness of the data accessed by features that are

extracted using co-occurrence analysis. In particular, co-occurrence analysis algorithms

based on web search engine hit counts should consider and correct for the following

sources of noise:

 Synonyms can be problematic. For example, if one is extracting hit counts for the

funk musician George Clinton, one would like to ensure that hits do not instead

refer to the former U.S. Vice-President. Fortunately, such noise can at least be

mitigated by requiring that filter words such as music also be present to help hit

counts bias towards relevant hits.

 Misspellings or variations of a string (e.g., Mister Mister compared to Mr. Mister)

in web pages or queries can artificially reduce counts. Search engines such as

Google can account for such problems to some extent, but cannot always be relied

upon.

 Strings consisting of multiple tokens may be present on a web page in various

orders or subsets (e.g., Buddy Guy vs. Guy, Buddy vs. Guy vs. Buddy). Services

such as Google are once again good at dealing with varying token orderings, but

do not account for subsets unless they use OR-based searches that can introduce

more distortion than they prevent (e.g., both the queries Buddy and Guy would

result in many hits unrelated to the artist Buddy Guy).

 It can be difficult to ensure relevancy of hits. There is no guarantee that hits found

on the same document indicate relatedness in the way that a researcher is looking

for. For example, several years ago searches for Chistina Aguilera and Eminem

would have resulted in a very high co-occurrence because of a feud between the

two. This would have therefore resulted in a misleadingly high musical similarity

measure.

 251

 True private behaviour might not correspond to public behaviour. An individual

might like listening to Paris Hilton, for example, but might be embarrassed by

this, and would not publicize it on his or her blog or published playlists.

 Negative meanings can be deceptive. If attempting to classify songs by mood, for

example, the song Gloomy Sunday might be referred to as not happy on a web

site, but a naïve feature extractor might mark this as a co-occurrence between

Gloomy Sunday and happy.

In general, the huge amount of information available on the web does help to smooth

out erroneous hits, particularly when counts are extracted using well-crafted filtering and

other techniques described in the following sections. Nonetheless, the precision and, in

some limited but significant cases, the accuracy of hit counts can be limited, so features

extracted using co-occurrence analysis should be treated as only approximations, albeit

potentially very useful approximations.

As a final note, query complexity must be considered when choosing a co-occurrence

analysis algorithm. Algorithms designed to counteract popularity biases (due to there

being many more web pages on Rihanna than the Zoobombs, for example) that have

exponential search complexities of O(n
2
), or worse, will not scale to realistic large-scale

applications, particularly since many web services can consume several seconds per

query, and there are often limits on daily usage.

5.2.5 More sophisticated text processing techniques

There is a significant body of research available on more sophisticated ways of

mining information from text data that is far too large to cite with any completeness here.

That being said, some of this work has been used in previous MIR research (see Section

5.3), and it could certainly be useful in future research. Of particular interest is work such

as Brill’s (1992) on classifying words into nouns, verbs, pronouns, adverbs, etc., or the

work of Evans and Zhai (1996) and Evans and Klavans (2000) in extracting ―noun

phrases‖ from text documents. A noun phrase is essentially a noun packaged with

descriptive text surrounding it. Noun phrases are extracted using pieces of software called

NP chunkers, and can be very useful in extracting units of meaningful data from streams

of text. A particularly useful and simple technique for the purpose of this and other text-

 252

processing tasks is to pre-process text by breaking it into n-grams, which are sequences of

ordered words each consisting of n words.

5.3 Previous music information retrieval research

To the best of the author’s knowledge there is no MIR research software other than

jWebMiner that has been specifically designed for general-purpose cultural feature

extraction and collaborative development and expansion by the MIR community. There

are, however, a number of relevant publications related to using community metadata in

specific MIR research areas such as playlist generation and music recommendation. This

section describes some key examples, with an emphasis on surveying the variety of

approaches that have been used to attempt to counterbalance problems such as popularity

bias.

The earliest MIR research in automatically extracting information from community

metadata focused on collaborative filtering (e.g., Cohen and Fan 2000; French and

Hauver 2001; Pestoni et al. 2001). Pachet and his colleagues (2001) built upon this by

utilizing co-occurrence and correlation techniques applied to radio playlists and

compilation CD databases for the purpose of artist and song title classification. They

calculated a normalized co-occurrence, Coocnorm, as follows:

2/
)(

),(

)(

),(
),(

bC

baC

aC

baC
baCoocnorm (5.1)

where a and b indicate two different song titles and C is the number of documents that

contain the indicated title(s). A similarity distance between titles, S1, was defined as:

),(1),(1 baCoocbaS norm (5.2)

A more sophisticated similarity measurement, S2', was also used that takes indirect

links into account (i.e., if Stevie Ray Vaughan co-occurs with Eric Clapton and Eric

Clapton co-occurs with Robert Johnson, then this could indicate a link between Stevie

Ray Vaughan and Robert Johnson):

),(),(

),(
),('2

bbCovaaCov

baCov
baS

 (5.3)

where the covariance, Cov, is defined as:

))()((),(ba baEbaCov (5.4)

 253

E is the mathematical expectation and μi is the expected value of a or b. The distance

between a and b, S2, was then calculated as:

 2/),('11),(22 baSbaS (5.5)

Whitman and Lawrence (2002) were among the first to use more sophisticated text

processing techniques. They based their work upon a seed list of artist names and mined

manually entered similarity data from AllMusic. They also queried search engines using

the name of each artist and the filter terms music and review. The top 50 pages were then

downloaded (the assumption being that the first pages returned are the most relevant.),

and text was extracted from them and divided into noun phrase n-grams surrounding artist

names. Statistical features were then calculated based on how often various terms

occurred in relation to each artist, and artist similarity was measured based on the overlap

of term frequencies (after various types of pre-processing).

Whitman and Lawrence also applied a collaborative filtering approach to peer-to-peer

data available at the time. The following similarity measure, S3, is an attempt to

counteract the preference for well-known artists endemic to collaborative filtering

approaches:

)
)(

|)()(|
1(

)(

),(
),(3

cC

bCaC

bC

baC
baS

 (5.6)

Here a and b each indicate two different artists, c is the most popular of all artists in the

set of all artists under consideration, S indicates their similarity score and C indicates the

number of peer-to-peer users that have the indicated artist(s) in their set. The second term

is a popularity cost that decreases the similarity measure if one artist is much more

popular than the other.

Whitman and Smaragdis (2002) combined a variant of this work with audio features

to arrive at an impressive combined success rate of 100% when classifying among five

musical genres. They also proposed as future research the intriguing idea of using a

culture ratio to measure the relative effectiveness of cultural features relative to audio

features for dealing with particular classes. This could then be used to differentially

weight cultural and audio features in different classification scenarios.

Baumann, Klüter and Norlien (2002) also combined audio and community metadata,

but with an emphasis on retrieving music using natural language queries. Labelling for

 254

audio segments was acquired from Gracenote, freeDB and the ID3 tags of MP3 files, an

approach that can unfortunately produce very noisy and unreliable results. This

publication also includes some very interesting work on lyric analysis and natural

language processing in general.

Baumann and Hummel (2003) built on this work by applying it to the problem of

artist recommendation. Like Whitman and Lawrence, they downloaded 50 web pages for

each artist that they were studying and divided them into n-grams. They then weighted

resulting terms using TFIDF weightings, which are based on the number of occurrences

of each term in each set of 50 pages and the number of occurrences of the term in the

pages downloaded for all artists as a whole. Unlike Whitman and Lawrence, they used a

simple HTML-filtering stage to attempt to remove noise such as advertisements added to

pages. They based their ground-truth evaluations on AllMusic and Yahoo! Launch.
141

Ellis and his colleagues (2002) approached community metadata as a source of

ground-truth for evaluating audio-based classification, rather than as a source of features

to be used in classification themselves. In addition to using the techniques used by

Whitman and his colleagues discussed above, they also performed a web survey asking

informants to evaluate the similarity between various artists in a number of ways.

Zadel and Fujinaga (2004) made use of Amazon and Google web services to generate

clusters of related artists. Amazon Listmania! Lists were traversed, starting from initial

seed artists, to find potentially related artists. Google was then used to evaluate the co-

occurrence of pairs of artists on web pages. Relatedness, S4, was calculated as follows:

)(),(min

),(
),(4

bCaC

baC
baS (5.7)

Here a and b each indicate two different artists and C indicates the number of web pages

containing the indicated artist(s).

Celma, Ramírez and Herrera (2005) proposed the alternative approach of extracting

information from RSS feeds and FOAF documents.
142

 This approach combined

information about personal characteristics of users with their explicit musical preferences,

and made use of sources of information previously untapped by the MIR community.

141

 The precursor of Yahoo! Music.
142

 www.foaf-project.org

 255

Geleijnse and Korst (2006b) used Google to classify artists by genre and by mood

using cross tabulation. The first method used was based on simple hit counts, with a

correction for popularity bias based on pointwise mutual information theory (Manning

and Schütze 1999). Each artist a, from the set of artists A, was assigned a score, T1,

indicating its membership in class g according to the following equation:

Ai
giC

gaC
gaT

),(1

),(
),(1 (5.8)

where C indicates the number of web pages containing its parameters.

Geleijnse and Korst also experimented with a ―pattern-based mapping‖ approach

designed to help improve relevancy of hits. Instead of searching for artist a and class g

when finding C(a,g), they searched for phrases (or ―patterns‖) such as a is one of the

biggest g artists used in combination with phrases such as artists such as a or g artists

such as. C(a,g) was thus recalculated as:

C'(a,g) = “number of occurrences of a when querying patterns containing g” +

 “number of occurrences of g when querying patterns containing a” (5.9)

Geleijnse and Korst have considered both manually formatted patterns and automatically

generated patterns (2006a). This approach also relates to work done by others, such as

that by Cimiano and Staab (2004).

The third technique used by Geleijnse and Korst (―document-based mapping‖, similar

to the work done on styles in the visual arts by Boer, Someren and Wielinga (2006)) was

to download the first k web pages found by Google for artist a and then count the number

of occurrences of each g in all of the downloaded pages (as opposed to the number of

pages containing g, as was done in the first two techniques). The same was also done with

the roles of a and g reversed. C(a,g) was then redefined as:

C''(a,g) = “number of occurrences of a in documents found with g” +

 “number of occurrences of g in documents found with a” (5.10)

In order to improve results, Geleijnse and Korst posited that artists who belong to the

same class are likely to be mentioned together on the same web pages more often than

artists in different classes. A similarity rating for the artists a and b, S5, was then

calculated:

 256

bjAjaiAi
bjCyaC

baC
baS

,,

5
),(),(1

),(
),((5.11)

where C(a,b) is the co-occurrence count of a and b on the same web page, A is the set of

all artists studied and a,bA. This was implemented with both pattern-based and

document-based mappings, as well as simple page-count mappings. T1 was then

calculated only for those n artists with the highest S5 scores.

Geleijnse and Korst also used various synonyms to improve results. They, for

example, combined and normalized results for Indie, Alternative Rock and Alternative

Rock/Indie. They also used the filter word music. In the end, they found that document-

based mapping approach was the best overall performer for both genre and mood

classification.

Schedl and his colleagues (2006) experimented with using Google to classify artists

by genre using co-occurrence analysis with two different scoring metrics. They also

compared the effectiveness of the following filter string combinations: music, music +

genre, music + style and music + genre + style. The two metrics used to measure an artists

a’s membership in a genre g, T2 and T3, were:

)(

),(
2

aC

gaC
T (5.12)

and

)(

),(
3

gC

gaC
T (5.13)

where C indicates the number of web pages containing both a and g, just g or just a, as

indicated. Schedl and his colleagues found that T2 worked better with broad genre classes

and T3 worked better with narrower classes.

This work was based on previous work by varied subsets of the authors. Schedl,

Knees and Widmer (2005a) used Google page counts to measure how often different

artist names were mentioned on the same web pages, and then used this to construct an

asymmetric artist similarity matrix. This was used to classify artists by genre based on k-

nearest neighbour similarity to artists with known genres. The filter words music and

review were used, and results were combined with different results where both artist

names had to occur specifically in the title of a page for it to be counted as a hit.

 257

Schedl, Knees and Widmer (2005b) used a similar technique to visualize artist

similarities using genre prototypes as reference points. They later added a penalization

function to counteract distortion due to bands whose names equal common speech words,

such as Kiss (2006). Geleijnse and Korst (2007) have also developed an algorithm for

dealing with such ambiguous artist names, by using the Google define: function to

approximate the number of other definitions corresponding to an artist name, and using

this to approximate the probability that a hit corresponds to the actual artist. Schedl et al.

(2007) also used named entity detection and rule-based linguistic analysis to extract band

members and instrumentations from the web.

In an earlier and somewhat different work, Knees, Pampalk and Widmer (2004)

investigated genre classification and artist similarity measurement using a machine

learning approach. They queried both Google and Yahoo! using artist names and a variety

of filter words (combinations of music, review, genre and style) and downloaded the top

50 pages from each search engine. HTML tags and English stop words (e.g., a, and, or,

the, etc.) were then removed. The number of occurrences of each artist, each unique

―term‖ (word) and each term cross referenced with artists on the same page as the term

were all counted. In order to reduce the thousands of resulting terms, all terms that did not

occur in at least five of the downloaded pages and that did not pass a
2
 test were deleted.

The result was a normalized vector of artist term weights, which was then fed to a support

vector machine classifier to classify based on genre, to a k-nearest neighbour classifier to

evaluate similarity and to self-organizing maps to visualize the artist space. Experimental

results indicated that daily Internet fluctuations did not significantly impact results, that

Google outperformed Yahoo!, and that the combination of the filter words music and

review outperformed other filter word sets.

A related approach was also used, combined with audio features, to provide an

interface for visually mapping music collections (Knees et al. 2006). These techniques

were further developed into an additional interface for browsing music spaces (Pohle et

al. 2007b) based on a technique where non-negative matrix factorisation was used to

relate artists to archetypical bases (Pohle et al. 2007a).

Bergstra, Lacoste and Eck (2006) emphasized machine learning applied to extracting

information from community metadata. They mined data from the freeDB database in

 258

order to correlate it with AllMusic data for the purpose of classifying music by genre.

Neural networks were used to predict ―canonical‖ AllMusic genre labels from uncurated

FreeDB genre labels.

Pampalk and Goto (2007) built an artist recommendation visual interface based on

community metadata extracted from the web. Google was used to search the web based

on artist names in a way similar to that used by Whitman and Lawrence (2002). Pampalk

and Goto, however, parsed the resulting web pages based on four different vocabularies:

genres/styles, instruments/types, moods/adjectives and countries/regions. Words were

selected to summarize each artist by selecting words that both occurred frequently and

were statistically well suited to distinguishing sets of artists from other sets of artists.

Similarity calculations were based on both such community metadata as well as audio

features.

There has been a recent research trend towards using tags that have been assigned by

users to artists or recordings, particularly since sites such as Last.FM have begun to make

such tags available via web services. Geleijnse, Schedl and Knees (2007), for example,

found experimentally that tag-based genre classification performed comparably with

search-engine based classifications of types listed above, and found it to hold significant

potential for other tasks. They also proposed a normalization method to remove

meaningless tags. Eck, Bertin-Mahieux and Lamere (2007) have proposed the novel idea

of using supervised learning on audio features to auto-tag music, or improve existing tags,

and then use these tags for other classification tasks.

5.4 jWebMiner’s functionality

5.4.1 Fundamental functionality

At its most basic level, jWebMiner operates by accessing Google and/or Yahoo! via

web services to acquire hit counts indicating the number of pages containing one or more

search strings. These hit counts are then processed using a choice of user-selectable

scoring metrics in order to generate the feature values output by jWebMiner.

jWebMiner allows two fundamental types of feature extractions to be performed: co-

occurrence and cross tabulation. As discussed in Section 5.2.4, the term co-occurrence

analysis is used here to refer specifically to the occurrence of two strings from the same

 259

set of strings on the same web page, and cross tabulation analysis is used to refer

specifically to the occurrence of two strings from different sets of strings on the same

page. So, for example, examining how often different artists co-occur on the same page

would correspond to co-occurrence, and measuring how often artist names co-occur with

genre names would correspond to cross tabulation. In general, co-occurrence analysis is

useful for similarity tasks and cross tabulation analysis is useful for classification tasks,

although queries can certainly be formulated for different purposes.

Research has indicated (e.g., Geleijnse and Korst 2006b; Schedl et al. 2006) that the

best choice of procedures for obtaining and processing hit counts can vary. One must

consider not only the accuracy of an approach, but also its search complexity, as web

services are sometimes slow and typically impose daily limits on queries. jWebMiner

therefore allows users to choose among a variety of approaches for formulating queries

and generating features from their results, as described in the following sections.

jWebMiner has also been designed to be as flexible as possible so that it can be used

for as a wide variety of MIR applications as possible. In fact, although it certainly was

designed with the particular needs of the MIR community in mind, there is nothing about

it that limits its use to music research, as arbitrary search strings may be used.

5.4.2 Web services utilized

The user may choose to use either one or multiple web services to generate features.

jWebMiner comes packaged with functionality for accessing either Google or Yahoo!.

Although in theory one might imagine that the two search engines would give similar

results, informal experimentation has shown that they can often generate significantly

different hit count ratios.

It should be noted that, while jWebMiner comes hard coded with a Yahoo!

Application Key, users must enter their own Google License Key in order to access

Google services. This is because Yahoo!’s usage limit of 5000 queries per day is applied

per IP address, whereas Google’s limit of 1000 queries per day is applied per key,

regardless of IP address.

Users also have the option of adding additional web services if they wish, and

jWebMiner’s architecture has been designed specifically to make this a simple matter to

 260

implement. As discussed in Section 5.7, adding web services is a particular emphasis for

future work.

One problem with dependence on web services is that they sometimes fail to respond

to some queries, or sometimes temporarily go off-line entirely. jWebMiner therefore

includes automatic cyclic time out and retry algorithms to account for such service

discrepancies. Users are also automatically asked how they would like to proceed if

certain queries or services repeatedly continue to fail over an extended period of time. A

two-tiered progress bar is also provided that includes estimates of extraction time based

on past and current response times of web services.

5.4.3 Features extracted and statistical processing

In the case of co-occurrence feature extractions, jWebMiner gives the user the choice

of using either Equation 5.6 or 5.11 to generate similarity scores for pairs of strings. In

the case of cross tabulation extractions, Equations 5.8, 5.12 or 5.13 may be used, as well

as this original scoring metric, T4, which is a variation of Equation 5.8:

),(1

),(
),(4

iaC

gaC
gaT

Gi

 (5.14)

Here C indicates the number of web pages containing its parameter strings, a is a string

from the first set of queries and g is a string (usually a class name) from the second set of

queries, G.

Users also have the choice of normalizing the resulting scores in several ways:

 Normalize across web services: If multiple web services are used (e.g., both

Yahoo! and Google), the hit counts of each can be balanced so that services that

produce fewer hits overall are not underweighted in the final scores.

 Normalize across web sites: As discussed in Section 5.4.6, a user may choose to

specify specific web sites to search, as well as or in addition to the web as a

whole. This option causes the number of hits returned by each specified source to

be scaled so that it is not underweighted compared to other sources that generate

more hits overall. This is separate from and does not affect manual source weights

that the user can specify, as discussed in Section 5.4.6.

 261

 Normalize feature settings: Final feature scores may be normalized to fall

between 0 and 1, either over all classes per instance or over the whole data set.

The similarity scores output after all processing are the features output by jWebMiner.

These may either be used directly as similarity metrics or class membership metrics, or

they may be fed to machine learning systems such as ACE to generate more sophisticated

mappings.

5.4.4 Synonyms

jWebMiner allows users to define synonyms between different search strings so that

their hit counts will be combined during feature value calculations. For example, the

genre class names R and B and RnB might be usefully combined. Synonyms can be

important in avoiding falsely diminished hit counts for some entities because some web

pages only refer to the entity in question using a word of equivalent meaning.

5.4.5 Filter strings

As discussed in Sections 5.2 and 5.3, one problem with algorithms based on co-

occurrence analysis is that there is the danger of hit counts being biased by hits

corresponding to non-relevant content. Simple searches on the band The Doors, for

example, might be inflated by hits on carpentry or construction sites. Filter strings offer

one way of reducing the effects of this kind of problem.

Required filter strings are the first kind of filter allowed by jWebMiner. These are

strings that must be present on all web sites in addition to each specified query string or

strings in order to be included in hit counts. The word music, for example, is one way of

helping to ensure that counted hits are relevant to music. Other words, such as review, can

perhaps increase the reliability and pertinence of counted hits.

Excluded filter strings, in contrast, indicate strings that, if found on a web page, will

disqualify that page from appearing in hit counts. These are useful for eliminating non-

relevant hits. For example, one might wish to exclude sites containing the words paradise

or zen in order to avoid false hits relating to the band Nirvana.

Users have the option of using pattern-based required filter strings if they wish, as an

alternative to simple filter strings. Pattern-based strings allow users to specify phrases that

contain wildcards that will change on each query based on the particular search strings

 262

submitted for that query. So, for example, if one is classifying songs based on the albums

that they appear on, one might use a pattern-based filter such as <song> is on the

<album> album where the <song> and <album> variables will be replaced be each song

and album title in the set of strings for which features are being extracted.

Although they can be powerful tools, one must be careful when choosing filter strings

in order to avoid biasing hit counts. One must carefully strike a balance between

eliminating irrelevant hits and including as many relevant hits as possible. Too many

filter words or filter words that are too limiting or biasing can have a negative impact on

feature values.

5.4.6 Source selections and weightings

jWebMiner’s default setting is to obtain hit counts for the web as a whole. However,

users also have the option of specifying specific sites, such as AllMusic, to be searched

separately so that hit counts will be collected for pages on those sites exclusively. This is

a useful way of emphasizing sites known to be relevant and reliable in hit counts.

Multiple sites may be specified, and individual hit counts will be collected for them

exclusively or in addition to results from the web as a whole. Users also have the option

of applying varying weights to each source if they consider some sources to be more

trustworthy than others.

5.4.7 Other configurable options

There are a variety of other options that influence the hit counts that feature values are

based on:

 Treat strings literally: Whether all search queries should be literal searches

(e.g., for the query heavy metal, sites must have the two words adjacent if they are

to be considered a hit if the search is literal).

 Perform search as OR instead of AND: Whether pages need only contain at

least one of the specified query words in order to result in a hit, or whether they

must all be present.

 263

 Include non-matching similar hits: Whether results returned by search queries

may include hits that do not contain one or more of the specified query words but

do contain terms very similar to them (e.g., alternative spellings).

 Suppress similar hits: Whether to suppress similar hits when reporting results.

Similar in this context means either sites with identical titles and/or descriptions,

or multiple hits from the same host.

 Suppress adult content: Whether to suppress hits that are classified as containing

adult content by the search service in question.

 Limit to language: Sets the name of a language that pages must be in in order to

be counted as hits.

 Limit to country: Sets the country that pages must be hosted in in order to be

counted as hits.

 Search from region: Sets the name of a country where searches will be

performed (e.g., Google Canada rather than Google France). Results are not

necessarily limited to this country, however.

 Limit to file type: Sets a file format (e.g., PDF, Word document, HTML page,

etc.) that documents must be in order to be counted as hits.

5.4.8 Input and output

Users may manually enter any desired strings, and jWebMiner can also save and load

settings for search strings, filters, source sites and weightings as delimited text files. In

the case of search strings, jWebMiner can also parse strings from iTunes XML, ACE

XML or Weka ARFF files. In the case of iTunes XML files, users can choose which field

to parse strings from (e.g., song title, artist, genre, etc.) and jWebMiner will load all

strings for that field for all recordings in the iTunes file, remove duplicate string values

and sort them alphabetically.

Feature values are tabulated and displayed to the user following extraction.

jWebMiner can also present a range of additional information to users following feature

extraction, including the precise queries submitted to each web service and the results of

 264

all intermediate calculations. This information can be very helpful when debugging new

functionality that is added to jWebMiner.

The reports displayed by jWebMiner can be saved exactly as they appear in the GUI

as HTML files to be easily read by humans. Final feature values can also be exported to

ACE XML, Weka ARFF or delimited text files to facilitate post-processing by software

such as ACE or Weka.

5.5 jWebMiner’s interface

Like all of the jMIR components, jWebMiner has been designed to be easily usable

by researchers with a wide range of technical skills, from users who want to simply use it

out of the box to extract cultural features to developers who wish to add functionality or

modify the code to meet their own research needs. jWebMiner therefore includes a simple

and intuitive GUI interface as well as modular and well documented code. An extensive

HTML manual (Figure 5.1) is also provided that includes installation instructions, a

tutorial, an interface reference guide, development instructions and general tips and

pointers.

The jWebMiner GUI is divided into six panels. The first, the Search Words Panel,

allows users to specify whether they would like to perform co-occurrence or cross

tabulation analyses. In the former case, users enter a set of search strings such as artist

names on which to extract similarity scores (e.g., Figure 5.2). In the latter case, users

enter two sets of search strings corresponding, for example, to artists that are to be

classified by genre (e.g., Figure 5.3). Figure 5.2 also demonstrates how the

<SYNONYM> keyword can be used to specify one or more synonyms if desired.

As mentioned in Section 5.4.8, results are presented to the user in HTML formatted

reports. Figure 5.4 shows sample results from the search words corresponding to Figure

5.3. Full reports can include much more information beyond the final feature values

shown here, depending on user settings.

The Required Filter Words Panel and Excluded Filter Words Panel allow users to

enter lists of filter words. Figure 5.5 shows the Required Filter Words Panel and

demonstrates how keywords can be used to access pattern-based filters.

 265

The Site Weightings Panel allows users to specify whether the entire available

network and/or specific sites should be searched. As shown in Figure 5.6, the

<WHOLE_NETWORK> keyword is used to refer to the overall results returned by web

services, and additional individual sites can also be specified. The <WEIGHT> keyword

allows different weights to be assigned to different sources when feature values are

calculated. All entered weights are automatically normalized and scaled. Leaving this

panel blank causes only the whole available network to be searched, and omitting the

<WEIGHT> keyword results in equal weightings for all specified sources.

The Options Panel (Figure 5.7) allows additional options to be selected. These

include which web searches are to be used, special instructions to submit to search

engines, details of the scoring functions used and what information is to be included in

final reports.

jWebMiner is also designed to encourage both experimentation with different

extraction parameterizations and functionality expansion by the MIR community. It can

be useful in both of these cases to see specific search results in addition to hit counts

themselves. jWebMiner therefore includes a dialog box allowing users to perform test

queries and see search results for different web services side by side (Figure 5.8).

5.6 Summary of original contributions

jWebMiner is, to the best of the author’s knowledge, the first and only out-of-the-box

cultural feature extractor designed for general-purpose MIR research. It has the

advantages of having a well-documented GUI interface that makes it accessible to

researchers of all technical backgrounds.

jWebMiner also offers the only polished and well-documented open-source MIR

cultural feature extraction code base. The software is especially designed with an easily

extensible architecture intended to encourage collaborative development within the MIR

research community. jWebMiner also includes helpful debugging functionality.

 266

Figure 5.1: jWebMiner’s HTML manual. This manual can be viewed either within the

jWebMiner interface or via a web browsing application.

 267

Figure 5.2: Query terms for a sample co-occurrence feature extraction that will measure

the similarity between four musical artists. A synonym for Charles Mingus is included.

Figure 5.3: Query terms for a sample cross tabulation feature extraction that will

measure class membership of six artists in three musical genres.

 268

Figure 5.4: Sample results from the queries from Figure 5.3. The values represent the

normalized weighted relative frequencies with which each artist name appears on the

same web page with each genre name. The highest value for each artist is automatically

bolded.

Figure 5.5: The jWebMiner Required Filter Words Panel with one pattern-based filter

string and two basic filter strings designed for measuring performer / composer

relationships. The <PRIMARY_SEARCH_STRING> and

<SECONDARY_SEARCH_STRING> keywords are wildcards that will be replaced in

queries by search strings from the Search Words Panel.

 269

Figure 5.6: The jWebMiner Site Weightings Panel with both the whole network and

specifically the AllMusic and Pitchfork web sites selected to be individually searched

separately. The results from the whole network will be assigned 50% of the weighting on

the hit counts used to calculate features, AllMusic will be assigned 30% and Pitchfork will

be assigned 20%.

 270

Figure 5.7: Additional ways of customizing jWebMiner feature extractions offered by the

Options Panel.

 271

Figure 5.8: The jWebMiner Network Search Dialog Box, which allows users to see

results of test queries in addition to hit counts themselves. This is for the purposes of

experimentation and debugging. A sample search for the artist Cormega is shown here.

 272

5.7 Future research

The flexibility of jWebMiner’s interface encourages experimentation with various

techniques and feature extraction parameterizations. It is still poorly understood which

ones work best in various different circumstances, so an important emphasis of future

research will involve comparing the relative efficacy of various different filter strings,

synonyms, site weightings, scoring metrics and other configurations for a variety of tasks.

Even small changes to such settings have shown the potential to dramatically affect

results during informal experiments, and methodical experimentation could provide

useful guidelines for using jWebMiner and other cultural feature extractors. An important

caveat, however, is that the web is changing constantly, as are the algorithms used by

each search engine, so a configuration that is superior one month may be inferior the next.

Another important priority is to design a simpler API for the jWebMiner code so that

others can access it from their own software even more easily. Although jWebMiner is

already open-source and was implemented using well-documented and modular code, the

emphasis was on providing an effective GUI. It is hoped that an improved API will

further encourage collaborative development of jWebMiner and of cultural feature

extraction algorithms in general by the MIR community.

There are a number of excellent web services that remain to be taken advantage of by

jWebMiner, such as those offered by Last.FM and Amazon. Yahoo! Music also offers

specialized functionality that remains to be exploited by jWebMiner. These services could

be incorporated into jWebMiner’s existing search engine co-occurrence and cross

tabulation framework, or they could be used to extract entirely different types of features.

Building an API and GUI facilitating the development of specialized screen scrapers

would also be a helpful addition, as there are a number of useful sites, such as AllMusic

or Pandora, that do not make web services publicly available.

There are also a number of techniques described in Sections 5.3 that have yet to be

implemented in jWebMiner. Examples include using the define: Google keyword to gain

information on query synonyms, limiting hits to sites that include query strings

specifically in page titles, wildcard phrase-based searching (e.g., as done by Geleijnse and

Korst (2006b)) and an expanded number of feature metrics. It would also be useful to take

greater advantage of search engines’ spelling recommendation functionality to detect

 273

misspelled queries. jWebMiner also currently considers only page counts, not the number

of occurrences of terms on each page. More sophisticated natural language processing

could also be incorporated into jWebMiner, such as n-gram analysis and per-page string

proximity measures. Specialized features with a narrower focus also deserve study, and

there are many sources of cultural information available that warrant targeted

investigation, as seen in Section 5.2.3.

Some important first steps have been taken on using text processing techniques to

extract features from libretti / song lyrics, and there remains much to be done. Content

(e.g., love, political messages, etc.), rhyming scheme, vocabulary, clichéd phrases,

characteristic slang and other characteristics can all provide useful data. Although it is

true, strictly speaking, that features extracted from lyrics are content-based rather than

cultural, there are similarities in the text processing strategies that can be applied to both,

and parallel research in the two areas could be mutually informative.

Still and video images such as album art, band home pages, promotional photographs

or music videos can also yield significant amounts of useful cultural features. Simply

looking at how three musicians are dressed, for example, can make it immediately

possible to identify which ones play rap, classical and metal, for example. Meaningful

information can be extracted by looking at a performer’s appearance and actions on stage

(facial expressions, ritual gestures, types of dancing, etc.) as well as from looking at an

audience’s dress and behaviour (clapping, shouting, sitting quietly, dancing, etc.).

Automatically extracting musically useful features from such images is an area which

researchers have only begun to explore.

 274

 275

6. ACE: Applying machine learning to music

6.1 Introduction to ACE and machine learning

The previous three chapters introduced jAudio, jSymbolic and jWebMiner, three

software applications designed to extract features from audio, symbolic and textual

cultural musical data, respectively. The step that follows feature extraction in the

automatic music classification workflow is to utilize methodologies that can

automatically recognize patterns in feature values that are characteristic of the particular

categories that one wishes to classify music into. This then makes it possible to have a

computer use feature values extracted from music to automatically associate music with

an appropriate category or categories.

This mapping between feature values and categories is the purview of machine

learning and pattern recognition, which utilize a range of techniques that often include

algorithms that train themselves on feature values, a process that is at least somewhat

analogous to how humans learn from exemplars. ACE (Autonomous Classification

Engine) is the jMIR component that applies machine learning to feature values in order to

automatically learn to associate them with particular categories.

As discussed in Chapter 1, there are many important areas of MIR research in which

automatic music classification plays an essential role, both academic and commercial.

These include direct classification problems like genre, style, mood, composer or

performer classification; similarity-related classification problems like music

recommendation, playlist generation and hit prediction; and tasks associated with audio to

symbolic transcription like onset detection, pitch tracking and instrument identification.

Tools such as ACE can therefore have a very broad breadth of application in the MIR

research community.

6.1.1 Why use machine learning?

Given that computers can process huge quantities of data much more quickly, cheaply

and, potentially, consistently, than humans, it is clear that automatic music classification

can have important advantages over manual human classification. However, it might be

argued that it would be better to encode expert knowledge into music classification

 276

systems rather than to use machine learning. For example, a genre classifier designed to

identify Blues music might be explicitly programmed to look for a swung rhythm,

predominance of pentatonic scales, a twelve bar blues chord progression, an AAB

structure and so on when. So, why use machine learning instead of such an approach?

Unfortunately, it can be very difficult to impossible in practice to manually encode

such information into automatic classification systems in any kind of general sense.

Musical classification problems often involve multiple competing and incompatible

theoretical models. Even when there is general music theoretical agreement, the number

of variables and considerations to be taken into account can have such a great scope that it

can be very difficult to properly and sufficiently encode them into a heuristics-based

classification system. In addition, expert humans can sometimes have unconscious biases

associated with their individual theoretical predispositions, whereas data-driven machine

learning is not biased by such potential prejudices.
143

Machine learning, in contrast, requires minimal or no explicit human specification of

a problem, or even understanding of it. This is because machine learning operates

empirically on statistical patterns in the data that is being learned rather than relying on

pre-existing theoretical models and heuristics, although some algorithms do allow these to

be incorporated as well.

Machine learning-based music classification has the additional advantages that

learned models can be automatically retrained when needed with minimal direct human

involvement. This is also particularly advantageous when classifying music, which

changes constantly. A genre classifier trained in the 1980’s could easily be retrained to

recognize Grunge when it arose in the 1990’s, for example, just as a classifier trained in

the early 1990’s could be retrained in the early 2000’s to recognize Emo. Music

classifiers based on machine learning can thus not only process music much more quickly

and cheaply than human classifiers, but can also be updated via retraining to keep abreast

of the changing musical climate.

143

 The particular choice of features that are provided to machine learning algorithms can potentially

introduce theoretical bias, however. If one assumes that only harmony and not rhythm, for example, is

relevant to solving a given classification problem, and as a result only extracts features related to harmony,

then one is effectively introducing theoretical bias into the process by preventing the machine learning

system from considering all potentially relevant information.

 277

Yet another advantage of machine learning is that it can be taken advantage of by

users to process types of music that they may know little about themselves. This can help

facilitate large-scale global music processing systems that deal with a breadth of music

that exceeds what any individual human could reasonably hope to become expert in.

6.1.2 Overview of ACE and meta learning

Machine learning and pattern recognition are subtle and sophisticated areas that re-

quire a high level of technical knowledge and experience in order to be exploited to their

full potential. Choosing the best algorithm(s) to use for a particular application and

effectively determining which values to use for the parameters of each algorithm are not

tasks that can be optimally performed by researchers inexperienced in machine learning,

and can be as much of an art as a science even for experienced experts. As a consequence,

the unfortunate status quo in MIR research has often been to simply use only a few often

arbitrarily chosen and parameterized classification algorithms, something that can result

in significantly reduced performance.

As noted above, ACE is the jMIR component that performs machine learning. It is

designed to increase classification success rates not only for machine learning experts, but

also for users with little or no background in machine learning. ACE can be used to train

new classification models on labelled data, to use previously learned models to classify

novel musical (or other) data and to automatically evaluate the suitability of different

machine learning configurations for a particular classification problem. There are a

variety of machine learning strategies that may be applied to any given problem, as noted

in Section 6.2, and ACE not only allows users to choose manually between them, but also

provides users with the option of having ACE automatically perform experiments to

automatically find which strategy appears to most suitable for the given problem based on

empirical evidence.

This process of comparing and evaluating different machine learning algorithms with

respect to a particular problem is the basis of a process called meta learning. Each

machine learning algorithm has its own strengths and weaknesses, and a particular

algorithm may be very well-suited to solving a certain classification problem, but less

effective with respect to other problem domains. The experiment shown in Table 9.2, for

example, as well as several of the other experiments described in Chapter 9, demonstrate

 278

empirically how the best classification algorithm for a problem can depend on the

particular problem. This issue is also discussed theoretically in Section 6.2.

Not only can different algorithms vary in terms of classification accuracies, but they

can also vary in consistency and in the time that it takes to train new models or to perform

classifications. Another important difference is that some algorithms produce

classification models that can be relatively easily examined and understood by humans

once they have been learned, and other algorithms produce models that are essentially

black boxes.

Since an essential goal of jMIR in general and ACE in particular is to make effective

machine learning accessible to users with potentially no background in it, it is desirable to

automate the process of choosing the algorithm to apply to a particular classification

problem. ACE, as noted above, therefore uses meta learning to automatically perform

experiments on a given dataset and its associated categories using a variety of different

machine learning algorithms and parameterizations in order to automatically determine

which are better suited to the problem at hand. Each algorithm is evaluated in a variety of

ways so that users may choose one (or more) that is appropriate for their particular needs.

For example, one might find that a given algorithm classifies data with a slightly higher

accuracy than a second algorithm on average, but might still choose the second algorithm

because it is more consistent or performs classifications more quickly.

It is important to reemphasize that meta learning, at least as it is implemented in ACE,

is a purely empirical process, so users do not need any background whatsoever in

machine learning in order to take advantage of it. This is essential in fulfilling jMIR’s

goal of making powerful machine learning technology available to researchers in fields

such as the humanities or the library sciences who have very valuable musical knowledge

but less background in machine learning. Of course, it may be true in some cases that a

pattern recognition expert could recommend a specialized solution to a given problem

that is as good or better than one found experimentally by ACE. ACE is not intended to

replace such experts, but rather to automatically provide good solutions relatively quickly

and effortlessly to users with diverse skill levels. If a user has a particular reason for using

a particular algorithm, then ACE will certainly allow them to use it. Having noted this,

even those researchers with a great deal of experience in pattern recognition often resort

 279

to experimentation in order to find good algorithms, and the meta learning approach used

by ACE automates this process for them.

 Of additional interest to expert users, ACE is utilizes the well-established Weka

machine learning library (Witten and Frank 2005), which makes it relatively easy to

develop new algorithms within the powerful Weka framework and then add them directly

into the ACE meta learning framework. This also means that new algorithms

implemented by the very active Weka community can be incorporated into ACE as they

are released. Both ACE and Weka are implemented in Java, and both are entirely open-

source and freely distributed.

Although ACE and the ACE XML file formats (see Chapter 7) are designed to meet

the special needs of music, and include a number of important advantages with respect to

music that are not available in alternative platforms such as Weka (see Section 6.3.2),

there is nothing about ACE that prevents it from being applied to classification problems

that do not involve music. ACE can in fact be used to apply meta learning to any

application domain to which Weka could also be applied, and can read and write Weka’s

native ARFF file format in addition to ACE XML.

The original prototype version of ACE, ACE 1.0 (McKay and Fujinaga 2005a;

McKay et al. 2005; McKay and Fujinaga 2007b), was originally developed in 2005, prior

to the formulation of the jMIR project as an integrated whole. This version of ACE has

since been used successfully in several experimental studies (Fiebrink, McKay and

Fujinaga 2005; Sinyor et al. 2005; McKay and Fujinaga 2008). Although this original

version 1.0 was found to be very effective, the need for improvements nonetheless

became apparent, particularly with respect to the user interface and API structure. As a

result, the improved ACE 2.0 (Thompson et al. 2009) is now available as an alpha

release, although ACE 1.0 remains the stable release version at the time of this writing.

However, given that much of ACE 2.0 is already complete, this chapter includes

information relating to this updated version as well as ACE 1.0. The differences between

the two versions are described in Section 6.6.

 280

The ACE Java source code and associated bytecode are freely available at

jmir.sourceforge.net/index_ACE.html. The distributions use and include the Xerces XML

Parser
144

 and the Weka Data Mining Software,
145

 which are both also distributed for free.

6.1.3 Chapter outline

Although it is in no way necessary to have a background in machine learning in order

to use ACE, a strong underlying understanding of machine learning is necessary to extend

ACE, and it is of course always beneficial to have some such knowledge of machine

learning if one is to apply it to problems. A relatively detailed background section on

machine learning is therefore provided in Section 6.2. This includes a general overview of

some of the fundamental procedures and problems of machine learning as well as a partial

survey of some of the most commonly used machine learning algorithms, including those

used by ACE.

Although ACE is currently the only meta learning software system designed

specifically for music information retrieval research, there are some excellent more

general machine learning environments available, as well as musical systems that do not

include meta learning. Section 6.3 briefly overviews several frameworks of both kinds.

ACE itself is the subject of the remainder of this chapter. Section 6.4 describes the

functionality offered by the software and itemizes the algorithms that it utilizes. The

additional functionality that has and is currently being added to ACE as part of Version

2.0 is described in Section 6.6, and Section 6.5 provides an overview of ACE’s user

interfaces. Section 6.7 summarizes the original research contributions associated with the

ACE component of jMIR, and Section 6.8 highlights long-term research goals.

6.2 Overview of machine learning

6.2.1 Fundamentals of machine learning

Machine learning can be understood as referring to algorithms that allow computers

to automatically construct abstract representations of problems by learning them from

data of some kind. Machine learning can be used for many purposes, such as artificial

144

 xerces.apache.org
145

 www.cs.waikato.ac.nz/ml/weka/

 281

intelligence or general regression problems, but from the perspective of automatic music

classification it is used to learn mappings from musical data that can be used to classify

the music. The particular algorithms that learn classification mappings are referred to as

classifiers or learners.

The use of machine learning for the purpose of classification falls under the

disciplinary umbrella of pattern recognition, or discriminant analysis, as statisticians

refer to it. Data mining, or the application of machine learning to large data collections, is

another strongly related discipline, although it is most often associated with a business

context.

The individual entities classified by classifiers are variously referred to in the

literature as instances, data points, samples, observations, examples, exemplars or feature

vectors. Instances are typically only samples drawn from a population. The classification

of an instance by a classifier into a particular class, or set of classes, is called a prediction,

classification or hypothesis.

The categories that instances are classified into by classifiers are typically called

classes. Abstract classes and the relationships between them can be organized into class

ontologies.

As noted above, the process of classification, or labelling of individual instances with

class names, typically first requires the extraction of features from instances. Just to

review for the purpose of completeness, features are pieces of descriptive information that

can be extracted from each instance and then used by classifiers to associate each instance

with appropriate class labels. Features are also sometimes referred to as attributes, inputs

or variables, and sets of features extracted from individual instances are sometimes

referred to as patterns or as the input representation.

Features can be either numeric or nominal. Numeric features, also sometimes referred

to as continuous, consist of numeric values such as integers or real numbers, and may

thus have values corresponding to any one of the infinite number of numerical values

available. Nominal features, also sometimes called categorical, must take one of a finite

number of values, each of which is denoted with a name or symbol. Nominal features

may be ordinal features, which is to say that they may be ranked but do not have precise

inter-value distances (e.g., hot > warm > cold). Alternatively, some nominal features may

 282

not have any notion of ordering, or they may be interval features, which means that inter-

value distances may be calculated more precisely. In practice, interval features are

typically numeric rather than nominal, although this is not always the case.

The process of learning classification mappings from a dataset is called training. This

training process optimizes the parameters of the classifier’s internal representation of the

mapping between feature values and class labels. Although the term model is sometimes

used to refer to some particular classification algorithm (e.g., a multilayer perceptron
146

),

it is more often used to refer to the particular mapping function learned by some given

trained classifier. This latter use of the term model is the one that is used in this

document. This learned model can be represented as:

)|(xgy (6.1)

where y is the output class, x is the feature set and ө is the set of model parameters (e.g.,

the architecture and weights of a multilayer perceptron). Learned models can be viewed

in a variety of ways, one of which is to express them as of sets of discriminants, which is

to say functions or rules that separate instances of different classes based on their

features. In practice, it can be very difficult to find models that perfectly map all instances

to appropriate classes. Those instances that do not obey the rules of the model are referred

to as outliers.

A model may be predictive, which is to say that it can be used simply to predict

unknown class labels from feature values, or it may be descriptive, meaning that it can be

used to gain additional knowledge from the data, or both. The practice of acquiring

simple rules from a model that explain the underlying nature and behaviour of the data is

called knowledge extraction.

The particular data that is used to train and test classifiers is referred to as the ground-

truth. This data is often labelled with model class labels that are assumed to be canonical.

The choice of this data can have a very significant impact on the quality of the learned

model, as will be discussed in the sub-sections below.

It is now useful to provide a musical genre classification example with the goal of

more fully clarifying the terms described above. One would begin by constructing a

ground-truth data set consisting of musical recordings associated with genre class labels

146

 See Section 6.2.6.

 283

that are assumed to be reliable. Each of these recordings could be seen as an instance or,

alternatively, each recording could be divided into analysis windows and each such

window could be seen as an instance. One would than extract features from each ground-

truth instance and give the features to the classifier to train on. The average tempo of a

piece or the spectral flux of an analysis window are examples of possible features. The

classifier would then generate a model by training on the features extracted from the

ground-truth, and would then be able to use this model to predict the class labels of novel

instances based on features extracted from them.

Although machine learning and automatic classification are described in some depth

in the following sub-sections, many additional details are available in the vast machine

learning literature. To give just a few of the many available resources, the books of

Bishop (2007), Alpaydin (2004), Duda, Hart and Stork’s (2001), Russell and Norvig’s

(2002) and Mitchell (1997) are excellent places to start. Jain et al. (1999) and Briscoe and

Caelli (1996) offer excellent reviews of some of the earlier machine learning algorithms,

many of which are still very effective. Hastie, Tibshirani, and Friedman (2001) provide a

very good statistical perspective on machine learning.

Rowe’s book (2001) is a good resource for those wishing to apply algorithms

associated with artificial intelligence to musical tasks. Although this book touches on the

actual techniques in less detail and much less rigorously than some of the other resources

mentioned above, it is a very good introduction to artificial intelligence from a musical

perspective and provides some excellent insights on how music can be conceptualized

and represented in ways that computers can deal with effectively.

6.2.2 Automatic classification paradigms

There are primary overall paradigms associated with automatic classification: expert

systems, supervised learning and unsupervised learning.

Expert systems use pre-defined heuristics to process features and arrive at class

predictions. These heuristics are typically specified manually by humans based on pre-

existing knowledge about the problem domain and, as such, expert systems do not

typically use machine learning. Expert systems can be very effective for simple, easily

defined and well understood problems, and can result in very high classification success

rates by taking advantage of facts that are known to be true. Machine learning is much

 284

more suitable for more complex problems, however, since the manual formalization of

many complex and interrelated heuristics can be very difficult and time consuming to

implement properly. An additional major problem with expert systems is that models can

be very difficult to modify so as to reflect changes in the problem domain.

As discussed in Section 6.1.1, expert systems tend to be a poor choice for problems

related to music, with the exception of a few limited and specialized applications. This is

because of the sophistication of musical problems and because pre-existing theoretical

knowledge of precise heuristics that can be formalized into discriminants is often too

sparse, inconsistent and contradictory for expert systems to be viably applied. This is

readily apparent when one considers the range of popular, art and folk musics of the

world and the variety of theoretical frameworks or lack thereof relating to each corpus.

These weaknesses of expert systems emphasize one of the key advantages of machine

learning, which is the lack of a need to manually specify any details of the model to be

learned or to have any a priori knowledge of the model at all.
147

 This is because the

learning algorithms construct models automatically. This can be useful not only in

performing actual instance classifications, but also with respect to analyses of the learned

models themselves, which can offer useful practical and theoretical insights into a

problem domain.

Classifiers that utilize supervised learning attempt to formulate their own features to

class mappings by using machine learning techniques to train on labelled ground-truth.

Put more formally, they minimize the classification error by optimizing ө from Equation

6.1 as they learn from labelled training instances. The key point here is that the ground-

truth instances are annotated with class labels, so that the supervised learning algorithms

can learn by example. Once a model is learned, the classifier can use it to predict the class

labels of unlabelled instances.

Supervised learning can be very useful in classifying instances into the particular

classes that are of interest to users, but for it to be useful users must know precisely which

classes they are interested in. Users must also have labelled ground-truth, which can be

expensive to acquire in large quantities.

147

 Although some pre-existing knowledge can sometimes be useful with respect to certain machine

learning algorithms, it is certainly not necessary.

 285

Unsupervised learning, in contrast, does not require training data that is annotated

with canonical class labels. This is because unsupervised learning groups instances into

groups, or clusters, based on similarities and differences purely in the feature data itself,

without reference to any pre-defined class labels. In statistics, this finding of a structure in

the input space is referred to as density estimation.

Although each resulting instance cluster can certainly be interpreted as a class, there is

no guarantee that these self-learned classes will be useful or meaningful with respect to

specific problem domains. For example, unsupervised learning is arguably poorly suited

to musical genre classification. This is because, even the clusters that are produced will

likely legitimately indicate similarity on some level, this similarity will likely not be of

the kind that causes the clusters to be associated with the particular genre labels that

humans use.

The main focus of this chapter is therefore on supervised rather than unsupervised

learning, since supervised learning is typically much better suited to classification

problems. This does not mean that unsupervised learning can never be useful with respect

to music classification, however, as it can perform very well in classification problems

where one is only interested in a few quite dissimilar classes. Unsupervised learning can

also be very useful for problems where one is more interested in similarity in general than

in pre-defined class groupings, such as automatic playlist generation or music

recommendation.

The example of an imagined musicological research project involving the attribution

of a set of historical pieces whose composers are unknown can be used to illustrate the

relative merits of the three pattern recognition paradigms described above. An expert

system would be appropriate if the stylistic practices of each candidate composer are well

understood and can be easily formalized into heuristics (e.g., Figure 6.1). A supervised

learning approach would be suitable if one has a number of additional pieces known to be

by each of the candidate composers, as these could be used to train the system so that it

could learn to automatically recognize the characteristics of each composer (e.g., Figure

6.2). Finally, an unsupervised approach would be suitable if one does not have a set of

candidate composers, but would like to segment the music into groups that are likely to

each correspond to a different composer (e.g., Figure 6.3).

 286

Figure 6.1: Pseudocode for a simple expert system designed to distinguish between the

music of Guillaume de Machaut and Giovanni Pierluigi da Palestrina. If a piece has

neither parallel fifths nor Landini cadences, then the system concludes that it is by

Palestrina. If there are either parallel fifths or Landini cadences, then the system

concludes that the piece is by Machaut. In practice, of course, this heuristic is a

dramatically oversimplified discriminator, and would likely perform quite poorly.

if (parallel_fifths == 0 &&

 landini_cadences == 0)

 then composer → Palestrina

else composer → Machaut

 287

Supervised

 Learning

Ockeghem

Josquin

Unknown (Ockeghem)

Unknown (Josquin)

Figure 6.2: An example of supervised learning. In this case, many features are projected

into two dimensions so that they can be more easily displayed. The problem is to teach

the system to distinguish between compositions by Johannes Ockeghem (triangles) and

Josquin Desprez (squares). The system is first trained by providing it with labelled

compositions that are known to be by each composer (the filled in triangles and

squares). The system is then given six unlabelled compositions (the empty triangles and

squares). Based on the examples that the system was trained on, the system identifies

three compositions as being by Ockeghem and three as being by Josquin. Note that,

unlike the expert system in Figure 6.1, it is not necessary to explicitly specify any of the

characteristics of the composers themselves when training the system, since the system

learns these characteristics directly from the training examples.

 288

Unsupervised

Learning

Composer 1

Composer 2

Composer 3

Composer 4

Figure 6.3: An example of unsupervised learning. As in Figure 6.2, many features are

projected into two dimensions so that they can be more easily displayed. The problem is

to teach the system to separate a body of sixteen anonymous pieces for which one has

no reliable information at all about attribution. This means that supervised learning is not

an option, because no labelled training samples are available. The unsupervised

learning algorithm examines the sixteen pieces and separates them into four groups

based on their relative differences and similarities, with each group hopefully

corresponding to a different composer.

As a side note, there is another large class of machine learning called reinforcement

learning that is used when one needs to assess the goodness of a sequence of actions. A

single action is not necessarily important in itself, but a sequence of actions such as a

sequence of moves in a chess game is. The reinforcement learning research community is

largely distinct from the automatic classification community, and reinforcement learning

problems are typically formulated in terms of an agent moving through an environment

and learning a policy of actions to take as it goes that maximizes its reward. Having noted

this, reinforcement learning could potentially be applied to certain sequential musical

problems, such as automatic harmonic analysis of chord progressions. Reinforcement

 289

learning is not appropriate for most supervised learning oriented problems such as genre

classification, however.

6.2.3 Classification error and common difficulties that must be overcome

The classification models that classifiers build during training are often imperfect, and

will not necessarily correctly predict the classes of all of the instances that they are used

to classify. This can be true not only of instances not included in the training set, but even

of instances that are in fact in the training data. The proportion of the training instances

that are incorrectly classified after a given training iteration is referred to as the empirical

error, and this is what is typically minimized as training proceeds. The empirical error

will ideally be zero after training is complete, although this will not always be the case. A

particular classification algorithm may simply be inherently unable to correctly model a

particular problem, or it may get caught in a local rather than global minimum in the error

space even if it could theoretically model a correct mapping.

Underfitting is one of the important problems that one must account for in automatic

classification. Underfitting occurs when the mapping function underlying the model is

insufficiently complex compared to the function underlying the data. For example, a

classifier that uses only linear discriminants will be unable to correctly model a problem

where the discriminants are actually higher order. A non-zero empirical error after

training is complete can be one indication of underfitting, although a zero empirical error

is not necessarily sufficient proof that underfitting has been avoided.

Another important problem is related to the fact that training instances are typically

only a sample drawn from a much larger population, and one wishes not only to train a

model that performs well on the training data, but one that will perform well on any

instance in the population. Generalization refers to the ability of a trained model to

classify instances not in the training set, something that is of essential importance. A

measure of generalization can be found by calculating the generalization error, which

reflects the classification performance on instances in some validation set (also

sometimes called a test set) that contains instances not in the training set. Evaluation

methodologies for helping to ensure generalization are discussed in Section 6.2.4.

Overfitting is a problem associated with insufficient generalization. The risk of

overfitting is increased when an overly complex model is used, such as one with high

 290

degree polynomial discriminants when the data’s inherent model has simple linear

discriminants. Although a complex model in such a scenario can of course sometimes

simply model a less complex model without problem, there is the risk that the complex

model will instead learn noise in the training data in order to minimize empirical error

that does not generalize to the overall instance population and in fact increases

generalization error.

Underfitting and overfitting are often associated with bias error and variance error,

respectively.
148

 A high bias error means that the model that a classifier has learned is

insufficiently complex to properly discriminate between classes, and this learned model is

unable to properly classify instances. A high variance error means that the learned model

is too complex and has modeled noise in the training sample that does not generalize to

the population as a whole. One indication that variance error is a problem can be models

that change significantly when the training data is varied, although it can be beneficial

under certain conditions to use unstable models in general (see Section 6.2.7).

Since one does not typically know the model underlying the instance population of

interest, one does not necessarily have a piori knowledge of the best classifier complexity

to choose. This makes it difficult to choose a model that is sufficiently complex to avoid

underfitting but not so complex as to promote overfitting. One must therefore resort to

intuition or experimentation, the latter of which can be automated via meta learning (see

Section 6.2.10).

It is also important to note that the risk of overfitting the data when using a given

classification algorithm decreases as the size of the training data increases. Unfortunately,

large training sets are often expensive to acquire and annotate with class labels, and

increasing the number of instances can also increase training and/or classification times

significantly, depending on the classification algorithm used.

The particular choice of instance to be included in the ground-truth is also important,

as one wishes to have typical exemplars in order to help avoid overfitting, but unusual

instances should also be present to help avoid underfitting. Instances of all classes of

interest must be present as well, ideally in roughly equal proportions, since some

148

 Formally speaking, bias and variance are associated specifically with parametric classifiers (see Section

6.2.6), as they are calculated using the parameters learned for a particular distribution. In practice, however,

the two terms are also used informally with reference to classifiers of any kind.

 291

classifiers may minimize error in complex problems by simply learning to never map

feature patterns to classes for which only a few instances are proportionally present in the

training data. A scenario where the training data does not contain sufficiently diverse

instances for the model to correctly generalize is referred to as an ill-posed problem. This

is not always easy to anticipate and avoid due to the potentially high cost of ground-truth

and the lack of a priori knowledge about the population, however, so one must often

make assumptions when choosing the training data, something that is called the inductive

bias.

Noise refers to the problem of unwanted anomalies in training or validation data.

Noise can be due to improperly labelled ground-truth (called teacher noise), improperly

extracted or recorded feature values or features that are important to the data’s inherent

model but that have not been extracted (called latent features or unobserved variables).

Latent features are modeled as a random component by the classifier unless they are

well correlated with other features that are in fact extracted. One can therefore be tempted

to extract a wide variety of features from instances in order to guard against the presence

of such unobserved variables. Unfortunately, too many features can in fact degrade

classifier performance, a problem known as the curse of dimensionality. Increasing the

size of a feature set increases the complexity of the model that must be learned, and thus

increases the risks of overfitting or of never converging to a good solution, and can also

be problematic with respect to the resources needed to extract, store and learn features. As

a rule of thumb, the number of training instances needed to properly train a model tends

to increase exponentially with the number of features.

As with other aspects of machine learning, the choice of the feature set to use can be

as much of an art as it is a science. One needs a feature set that is not too small and not

too big, without knowing ahead of time what the ideal size is for the particular problem at

hand. The choice of the particular features to use is particularly important, as they must

encapsulate sufficient information to train a model that sufficiently approximates the

underlying model of the data. It is generally wise to try to avoid redundant features, and it

can also be very useful to consult experts in the given problem domain who can provide

insights that can be invaluable in choosing the features to use. Dimensionality reduction

 292

techniques can also be used to automatically reduce the size of excessively large feature

sets, as described in Section 6.2.5.

6.2.4 Validating and comparing classification models

As noted above, a low classification error on the training data itself is not a

sufficiently reliable indicator that the learned model is well generalized to the population

from which the training sample was drawn. The problem of evaluating generalization is

addressed by reserving part of the ground-truth for use in evaluating generalization. Such

validation data must not be used to train the model in any way.

Although good performance on a validation set still does not prove generalization, it

is certainly a better indicator than empirical error. A generalization error that is similar to

the empirical error is a good sign that overfitting has been avoided, although it is not a

guarantee. For example, if the ground-truth data was selected from the data population

using a selective bias, then overfitting due to this bias will not be detected by validation

data drawn from this same ground-truth.

Although the best ratio of training to validation instances can vary, 10% to 20% of

ground-truth instances are typically reserved for validation. A greater number of total

available instances usually necessitates a smaller proportion of instances reserved for

model validation in order to achieve statistical significance in the validation.

It is also important to be able to statistically anticipate the expected error rates of

different classification algorithms on a given problem in order to choose which approach

to use. This is also necessary when experimentally choosing model hyperparameters to

use for a particular algorithm, such as the value of k for a k-NN classifier (see Section

6.2.6.4). Both of these problems are examples of meta learning, as described in Sections

6.1.1 and 6.2.10.

There are several ways of calculating the expected error rate of a classifier so that it

can be compared with those of other classifiers, as described below. It is important to first

stress, however, that when comparing multiple models a third partition of the ground-

truth should be reserved to evaluate the classifier that is finally chosen. This publication

 293

set
149

 must consist entirely of instances that have not been used to train or validate any of

the individual classification algorithms up until this final stage. This is necessary to help

ensure that the choice of classifier is not overfitted, just as it is necessary to use a

validation set to ensure that the parameters of a learned model are not overfitted.

It can also be important to go beyond simply ensuring that the instances chosen for

training, validation and publication do not overlap directly. For example, a genre

classification experiment that includes recordings by the same performer in both the

training set and the validation set may arguable effectively be contaminating the

validation set because of the particular similarity of recordings by the same performer. As

a result, some music classification experiments have used artist filters to avoid such

situations (Flexer 2007).

Cross-validation is one common method that is used to evaluate how well a classifier

is expected to perform. This involves first randomly dividing the ground-truth instances

into k equally sized parts. The classification algorithm is then used to train k models that

are each validated once. The training and validation of each of the k models is called a

fold. Each fold involves using one of the k data partitions for validation and the other k-1

partitions for training. Each of the k partitions is thus used for validation exactly once,

and none of the k trained models is ever validated on instances that were used to train it.

An indication of bias error can be found by calculating the average error rate across folds,

and variance error is indicated by calculating the standard deviation of the error rate

across all folds.

The best choice of k depends on the amount of ground-truth that is available and on

the processing resources needed by the classification algorithm. A large k means that

many models need to be trained, each on relatively many instances, which can be

computationally expensive for some algorithms. A small k means that the number of

training instances available for each training run is reduced, something that can be

problematic if too few ground-truth instances are available in each training partition to

train proper models. In general, five to thirty-fold cross-validation is commonly used. A

149

 Publication sets are sometimes also referred to as validation sets or test sets in the literature, but these

overloaded terms are avoided here because they are also used to refer to sets used to evaluate individual

models after training.

 294

small k is acceptable if ground-truth is plentiful and training times are an issue, and a

large k is best when only a small amount of ground-truth is available.

Leave-one-out is an extreme version of cross-validation that is appropriate when one

has only a small ground-truth dataset. If there are n instances available in the ground-truth

then k = n. This means that n models must be trained, each of which is validated on only

one instance.

Bootstrapping is another approach that can be used when only very small datasets are

available, although there is much less data independence than one would ideally like. This

approach samples n instances with replacement from datasets containing n instances,

meaning that a given instance may be chosen more than once. This process is repeated in

order to generate multiple subsets, which are then grouped randomly into training and

validation pairs.

5 x 2 is another variant of cross-validation that involves using training and validation

sets of equal size. The instances are first randomly divided into two equally sized

partitions. Two folds are then performed, the first using one of the two partitions for

training and the other for validation. The roles of the partitions are then reversed in the

second fold. This process is repeated four more times, each using a different random

partitioning, for a total of ten folds. The disadvantage of this approach is that there is less

independence between the ten trials than there is in traditional ten-fold cross-validation,

for example, something that can make it statistically difficult to achieve good confidence

levels with the 5x2 approach. The advantage of this approach is that it allows larger

amounts of training data to be used in each fold than if traditional cross-validation were

applied, which can be necessary if there is only a small amount of ground-truth data

available.

It is usually best to make sure that each class is represented in comparable proportions

in each cross-validation data subset. For example, if 20% of all note durations

encountered in an optical music recognition problem are quarter notes, then the durations

of roughly 20% of the notes in each and every training and validation set should also be

quarter note durations. Cross-validation that maintains class proportions in this way is

called stratified.

 295

There are a number of alternative validation techniques that can be used to help

choose an appropriate classification algorithm for a particular problem, including

regularization, structural risk minimization, minimum description length and Bayesian

model selection (Alpaydin 2004). These approaches all make prior assumptions about the

model, however, so cross-validation is usually a better general-purpose approach,

assuming a large enough ground-truth. The other approaches can be better when training

data is sparse, however.

A confusion matrix can be used to illustrate the types of misclassifications made by a

classifier. This is a square table whose rows indicate true classes and whose columns

indicate the classifier’s predicted classes. Each entry of the table indicates the fraction of

instances belonging to the class of the corresponding row that were classified as

belonging to the corresponding column’s class. A perfect classifier would thus have non-

zero entries only on the diagonal.

Although techniques such as cross-validation allow one to make comparisons between

the performance of different classifiers, there is still no guarantee that one classifier with

a higher average classification performance across folds will in fact perform better than a

second classifier with a lower average performance. Statistical hypothesis testing and

significance testing tools based on interval estimation (Kendall and Stuart 1973) can help

to increase one’s confidence that a given classifier really is better than another based on

their relative cross-validation performances.

Interval estimation allows one to make the claim that, given a set of data, a certain

hypothesis is correct within a certain error range with a certain amount of confidence. For

example, one might be able to say that, based on a study performed on a sample of the

population, the population has an average height between 160 cm and 170 cm with 95%

confidence. This means that the actual average height of the population will fall within

the calculated range 95% of the time. Such statistical hypothesis testing makes it possible

to judge the likeliness that a given average classification accuracy across cross-validation

folds, for example, will be within a certain range of the true performance of the classifier

on the population.

There are a number of different hypothesis testing techniques that can be used, each

with their own sets of assumptions and correspondingly varying amounts of

 296

appropriateness for different classification problems. Student‟s paired t test can be used to

examine the results of k folds in order to, with a chosen confidence level, accept or reject

the hypothesis that the true error rate of a classifier is at or below some value.

A contingency table may be constructed in order to indicate how well two classifiers

perform on the same validation set after being trained on the same training set. Such a

table specifies the number of instances correctly classified by both classifiers, the number

incorrectly classified by both, the number correctly classified by one but incorrectly by

the other and vice versa. McNemar‟s test makes it possible to use a contingency table to

test, with a given confidence level, the hypothesis that the two classifiers have statistically

the same error rate.

In practice, one often wishes to test more than two classifiers in order to find which is

truly the most accurate. For example, consider the case where l candidate algorithms are

each trained on k datasets, such that there are k trained classifiers for each of the l

algorithms, and one wishes to test the l algorithms for statistically significant differences

in performance. Analysis of variance (ANOVA) provides a means for doing this, by

testing the hypothesis that the mean error rates of the l groups are equal. If this hypothesis

is rejected, then the procedure may be repeated on different subsets of the l groups in

order to find which have statistically significant differences in performance and which do

not. Not all possible combinations need to be tested, since the algorithms can be ranked

by mean error rates and only neighbours need to be tested. As a rule of thumb, if it is

found that two algorithms are not significantly different in terms of error rate, then it is

usually best to choose the one that is simpler (e.g., has fewer parameters) and/or faster.

Unfortunately, one can find many examples in the literature where significance testing

is not used as rigorously as it could be. For example, the methods discussed above assume

that the number of validation errors made by each classifier is binomial with an

approximately normal distribution, assumptions that are not necessarily always valid.

Fortunately, there are tests that do not make these assumptions. The Wilcoxon signed-

rank test is a nonparametric alternative to Student’s paired t-test that can be used when

the population cannot be assumed to be normally distributed. There are also

nonparametric alternatives to ANOVA, such as the Kruskal-Wallis test or the Newman-

Keuls test (Motulsky 1999).

 297

An additional issue is that most hypothesis tests test whether classifiers have the same

error rates, not if the particular errors that they make are the same. In practice, different

misclassifications can have varying costs, and it may be appropriate to use loss functions

so that this may be taken into account. Unfortunately, hypothesis testing that takes such

cost functions into account is much more difficult.

In addition, there are a variety of factors to consider when making the final decision

on the classification algorithm or algorithms to apply to a given problem beyond bias and

variance error. These include:

 Training time and space complexity of the algorithm.

 Classification time and space complexity of the algorithm.

 The number of features needed to train an effective model and how cheaply they

can each be extracted.

 The number of ground-truth instances needed to train an effective model and how

cheaply they can each be acquired and annotated.

 The amount of a priori knowledge one has about the population’s instances and

their features. For example, are features known to follow a normal probability

distribution?

 The class ontology. How many classes are there? How similar are classes to one

another? Is there a formal class structuring? May instances belong to more than

one class?

 Ability of the algorithm to perform structured learning (see Section 6.2.8).

 Interpretability of the algorithm (i.e., whether or not knowledge can be extracted

from the trained model in order to gain insights into the problem domain).

 Ability of the algorithm to perform cost-sensitive learning (i.e., whether or not it is

possible to model situations where some misclassifications are more serious than

others).

 298

 Ability of the algorithm to improve learned models as additional data becomes

available.

 Ease of implementation of the algorithm.

As a final point, it should be noted that classification accuracy is sometimes evaluated

in terms of precision and recall. The precision associated with a class is the number of

instances correctly classified as belonging to that class divided by the total number of

instances labelled by the classifier with predicted class labels corresponding to that class

(i.e. the number of true positives plus the number of false positives). The recall for a

class, in contrast, is the number of instances correctly classified as belonging to that class

divided by the total number of instances with that ground-truth class label (i.e. the number

of true positives plus the number of false negatives). Precision can therefore be seen as a

measure of classification fidelity and recall can be seen as a measure of classification

completeness. Ideally, one would have values of 1 for both precision and recall, but in

practice there can often be a trade-off between one and the other.

6.2.5 Dimensionality reduction

As discussed in Section 6.2.3, it is essential that features provide enough information

to machine learning algorithms for them to be able to properly train models that can

properly discriminate between classes. Since one typically does not have a priori

knowledge of which features are needed to do this, one is tempted to simply extract as

many features as possible as insurance against unobserved variables. The use of more

features increases model complexity, however, which in turn increases time complexity,

space complexity, the number of training instances needed and, overall, the risk of

overfitting.

Dimensionality reduction techniques address this trade-off by taking a given feature

space and automatically mapping it to a feature space with fewer dimensions. The ideal is

to do this in a way that retains the most important information in the original feature

space while only discarding information that is redundant or irrelevant to the particular

classification problem at hand.

In addition to advantages with respect to classification performance, reducing the

number of features can make it easier for humans to visualize and study feature data in

 299

order to understand it and gain insights about its underlying nature. It can be difficult for

humans to visualize data in more than three to five dimensions (e.g., x, y, z, time and

colour).

Dimensionality reduction techniques can be very effective in reducing the risk of

overfitting due to too many input features, but they do not offer a guarantee that some

useful information will not be discarded, although they do try to minimize the likelihood

of this occurring. So, while these techniques are without a doubt often very useful, one

should avoid making the mistake that they are always the best solution, or to reflexively

apply a favourite dimensionality reduction technique without considering alternative

dimensionality reduction techniques that might be more appropriate for the particular

problem at hand. For example, one should not discard the option of consulting experts in

particular problem domains for their views on which features will be useful in favour of

simply applying off-the-shelf dimensionality reduction techniques.

Certain classification algorithms, such as decision trees, automatically do feature

selection internally. Some, such as multilayer perceptrons, even do non-linear feature

weighting internally. Dimensionality reduction pre-processing can still be useful even

with such algorithms, however, as a greater number of features can still increase model

complexity in such cases, thereby requiring a larger ground-truth to avoid overfitting. For

example, multilayer perceptrons require a greater number of input units if there are a

greater number of input features. Furthermore, depending on the algorithms in question,

dimensionality reduction pre-processing can result in efficiency gains in terms of feature

extraction, training and classifying costs.

One very simple, and typically unsuccessful, type of dimensionality reduction is to

evaluate how well each feature can be used to classify instances individually, and then

choose the n best performing features. Unfortunately, this approach fails to take into

account the fact that the ways in which different features vary together can have powerful

discriminating power. This approach can therefore result in the rejection of a very useful

feature subset simply because a single feature in it that is very effective when combined

with the other features in the subset does not perform well individually. A feature

evaluation system must therefore consider the discriminating power of features operating

collectively, not just individually.

 300

Before proceeding to discuss better dimensionality reduction algorithms, it should

first be emphasized that dimensionality reduction should be trained and validated with

separate partitions of the ground-truth data, just as one does with classification

algorithms. This helps to avoid overfitting the feature selection to the particular training

data (Fiebrink and Fujinaga 2006).

It is also useful to note that are several ways to numerically estimate the usefulness of

various feature sets. Information gain, for example, provides a way of calculating the

increase in information that is gained by adding a new feature to a feature set via entropy

calculations. Although information gain is typically associated specifically with decision

trees, it may be generalized.

There are two primary overall approaches to dimensionality reduction. The first,

feature extraction,
150

 consists of deriving a smaller set of new features from the original

features. The second overall approach, feature selection, involves simply choosing a

subset of the original features and discarding the remainder.

The primary advantages of feature extraction over feature selection are that it is

usually easier to implement and can produce results much more quickly. However, most

feature extraction algorithms have the disadvantage that they operate entirely on the

feature data itself without reference to the particular classes in question.
151

 Most, but not

all, feature extraction techniques tend to emphasise those features that have the greatest

variability in general, which will not necessarily coincide with the particular variability

that one needs when classifying instances into a particular class ontology.

An additional disadvantage of many feature extraction approaches is that they can still

require the calculation of a large feature set in order to perform the mapping to the lower

dimensional feature space, something that can be problematic if features are expensive to

calculate. Furthermore, it is sometimes useful to retain information on how well features

perform in their original form in order to gain theoretical knowledge about a problem. For

example, one might be interested in gaining musicological and music theoretical insights

150

 This terminology can be confusing, as the overloaded term feature extraction is also used to refer to

simply calculating the values of features from instances.
151

 Such techniques are, in other words, unsupervised approaches that ignore potentially valuable class

labels even when it is available.

 301

from how well different musically meaningful features can distinguish between different

musical genres (McKay and Fujinaga 2005).

There are a variety of commonly used feature extraction algorithms, including

principle component analysis (PCA), linear discriminant analysis (LDA), factor analysis

(FA) and multidimensional scaling (MDS). All of these methods are unsupervised, with

the exception of LDA, and thus do not take class labels into account. Particular attention

is given here to PCA because it is very often used in MIR and classification research in

general.

The goal of PCA, as with other feature extraction dimensionality reduction

algorithms, is to find a mapping from a d-dimensional feature space to a new k-

dimensional space where k<d such that one loses as little useful information as possible.

PCA finds a linear combination of the original features that projects them onto a new

feature space in a way that maximizes variance. Each dimension of the new feature space

is called a principle component, and each principle component is chosen so as to have a

maximum amount of spread of instances across its dimension. The principle components

can then be ranked based on their variance and those principle components with the

lowest variance can be dropped in order to arrive at a dimensionality reduction. It should

be noted, however, that if the dimensions of the original feature space are not correlated,

then PCA will not lead to any reduction in dimensionality.

It is important to note that if the variances of the original features vary considerably

then this will affect the direction of the principal components more than feature

correlations. In order to avoid this problem the data is often pre-processed so that each

original dimension has a mean of 0 and a unit variance before applying PCA. This

combination of pre-processing and PCA therefore essentially centers the instance features

and then rotates the axes to line up with the directions of highest variance.

PCA is sensitive to outliers, as a few points distant from the center can have a large

effect on the variances and thus the choice of principle components. It is therefore

common to discard outliers before applying PCA. One simple method for doing this is to

calculate the Mahalanobis distance of data points and to then discard the isolated data

points.

 302

Linear discriminant analysis also bears special mention because it is a supervised

method. Given instances from various classes, LDA tries to find a projection that

separates the classes from each other as much as possible within the new feature space.

This is done by using Fisher’s linear discriminant to keep the means of each class as far

apart as possible. Fisher’s linear discriminant is optimal if the classes are normally

distributed, although it can still often be used effectively even if this is not the case.

A general problem with linear projection methods like PCA, FA, MS and LDA is they

assume features interact in a linear manner when in fact features often interact in a

nonlinear manner. One solution is to use principle curves to find curves, as opposed to

lines, that pass through the ―middle‖ of a group of instances. In general, however, such

non-linear approaches are possible but difficult.

One final point to mention before proceeding to discuss feature selection techniques is

that many classification approaches use Euclidian distances. However, strictly speaking,

Euclidian distances are only appropriate if all features have the same variance and are not

correlated. If this is not the case then a distance metric such as the Mahalanobis distance

should be used instead. Alternatively, the Euclidean distance could still be used by the

classifier, but suitable feature normalization should first be performed using a technique

such as principle component analysis.

Feature selection typically involves iteratively training and testing a chosen

classification algorithm with different subsets of the features available. The feature subset

that is found to produce the best classification performance can then be selected as the

subset to use.

A variant of feature selection, feature weighting, is performed by associating weights

with each of the selected features in order to indicate their importance relative to one

another. Simple feature selection is often preferred to feature weighting because it is

simpler to perform and because many classification algorithms effectively perform

feature weighting as part of their model training anyway. Processing complexity is a

particular problem with feature weighting, as the search space grows with Θ(nd), where d

is the number of features and n is the (potentially infinite) number of allowable values for

each weight (Punch et al. 1993). Having noted this, feature weighting can still be useful in

some cases, such as in certain specialized classifier ensembles (McKay 2004).

 303

Ideally, one would like to exhaustively test every possible feature subset. The simplest

type of feature selection, exhaustive feature selection, does exactly this. Although this can

work for small feature sets and with classification algorithms that do not require long

training times, it is otherwise not usually feasible. For a set of d features there will be 2
d
-1

possible experiments, each involving the training and testing of a classification model.

Although techniques such as branch-and-bound searching can be used to improve speed,

exhaustive searches are often effectively intractable in practice.

Although exhaustive selection does ensure that the features selected will be optimal

for the ground-truth data available and the classification algorithm chosen, it in no way

guarantees that the selected features will be optimal for the overall instance population.

The processing complexity of exhaustive searches therefore becomes particularly

unattractive given this lack of assured generalization optimality. Fortunately, there are a

variety of alternative feature selection techniques available that, while still not ensuring

an optimal feature set, can arrive at solutions much more quickly than exhaustive

searches.

Forward selection and backward selection are well-known approaches of this kind.

Forward selection operates by starting with an empty feature set and adding features one

by one. This process begins by first testing all possible feature subsets consisting of one

feature only and choosing the one that best classifies the test data. Next, all possible

feature subsets consisting of this feature and one other feature are tested, and the best

performing pair is chosen. Features continue to be iteratively added one by one in this

way until some maximum number of features are selected or until performance stops

improving. Backward selection, in contrast, starts with the full set of features, and

iteratively removes features one by one. Forward and backward selection have the same

technical complexity, but forward selection will often be faster in practice because

smaller feature subsets are usually faster to evaluate.

A problem with these two techniques is that there is no way to remove (or restore) a

feature once it has been added (or taken away). This problem, called nesting, can be

significant, since a feature that performs well early on in the feature selection process

may actually not be one of the best features to choose. A technique called forward plus l

take away r overcomes nesting by first applying forward selection l times and then

 304

applying backward selection r times. A variation of this technique, called sequential

floating selection, dynamically assigns the values of l and r instead of fixing them (Pudil

et al. 1994).

Genetic algorithms, or GAs, are another approach that can be used to search for a

good feature subset. GAs can be used for a wide variety of purposes, including

optimization problems where exhaustive searches are not practical. Siedlecki and

Sklansky (1989) pioneered the use of genetic algorithms for feature selection, and they

have been used successfully in the past with respect to music classification (e.g., Fujinaga

1996). There is some evidence that, in general, GAs perform feature selection better but

slower than greedy search algorithms (Vafaie and Imam 1994). Additionally, Minaei-

Bidgoli et al. (2004) have shown that GAs are also powerful tools for feature weighting in

multiple classifier systems. Fiebrink, McKay and Fujinaga (2005) found that genetic

algorithms applied to feature selection and weighting can result in improved performance

in a specifically musical context, particularly when utilized with a parallel architecture.

GAs are inspired by the biological process of evolution. They make use of data

structures called chromosomes that iteratively breed in order to evolve a (hopefully) good

solution to a problem. Each chromosome consists of a bit string that encodes a potential

solution to the problem that the GA is being used to solve. This bit string is somewhat

analogous to the DNA of a biological chromosome, and is combined with the bit strings

of other chromosomes when breeding occurs. Each bit string has a fitness associated with

it that indicates how well its associated solution solves the problem at hand.

In the case of feature selection, each bit in the bit string can be used to represent a

feature, with a value of 1 implying that the feature is to be used and a value of 0 implying

that it is not to be used. Alternatively, each bit string can be used to encode segmented

multi-bit words, each of which represents a numerical value indicating the weighting of a

feature.

A GA begins with a population of many chromosomes whose bit strings are randomly

generated. Reproduction, and hence the evolution of potential solutions, occurs through a

process called crossover. Some fraction of the chromosomes, based on a GA parameter

called the crossover rate, is selected for reproduction, and the remaining chromosomes

are discarded. One way of selecting the chromosomes that will reproduce, called the

 305

roulette method, assigns a probability of selection for reproduction to each chromosome

based directly on its fitness. An alternative, called rank selection, ranks the chromosomes

based on fitness and then bases the probability of selection for crossover on this ranking.

This latter approach prevents one or a few chromosomes with very high relative fitnesses

from dominating early on, as this could lead to a local minimum in error space that is far

from the global minimum.

The actual process of crossover most often involves taking two of the chromosomes

selected for breeding and breaking the bit string of each one into two or more parts at

randomly selected locations. The resulting has with a bit string constructed from the

pieces of the bit strings of its parents. An alternative approach involves going through the

bit strings of the parents one bit at a time and copying the bits to the child when the

values for the parents correspond and randomly selecting a bit’s value when the

corresponding bit of the two parents differs. Each parent chromosome can reproduce

multiple times, either polygamously or monogamously.

There are several additional characteristics that are sometimes incorporated into GAs.

Mutation involves assigning a probability that is usually very small to every bit of every

child’s bit string that the bit will be flipped. Elitism involves automatically cloning the

chromosome with the highest fitness from one generation to the next. Villages or islands

involve segregating the chromosomes into different groups that evolve independently for

the most part, but can occasionally exchange a few chromosomes.

A simplified version of genetic algorithms, known as random mutation hill climbing,

is also occasionally used. This involves eliminating the crossover step, and having the

population improve through mutation only.

Genetic algorithms have been shown to find good solutions to many problems,

although not necessary the optimal ones. Their success is highly dependant on the quality

of the fitness function that is used. In the case of feature selection, this fitness function is

related to how well the selected feature subsets perform in classifying test instances.

GAs can be very computationally expensive, particularly if fitness evaluation is

expensive, since fitness must be calculated for each chromosome at each generation. This

makes GAs suitable for classification algorithms that require little or no training time, but

less appropriate for approaches that are computationally expensive to train.

 306

There are a number of alternative feature selection techniques, such as simulated

annealing. Jain and Zongker (1997) have written a good overview of experimental feature

selection methods as well as an empirical study of their relative performance. Kirby

(2001) offers a good resource for those looking for more specialized techniques than

those discussed here.

As a final note, dimensionality reduction is just one among many types of pre-

processing and post-processing that may be applied to data in the context of machine

learning. Bruha (2001), for example, provides a good overview of such pre- and post-

processing techniques.

6.2.6 Commonly used machine learning algorithms

There are a great variety of algorithms that implement machine learning in various

ways, each with its own strengths and weaknesses. For example, Bayesian classifiers are

efficient and can perform classifications with theoretical optimality, but require pre-

existing statistical knowledge of the data that one is dealing with in order to do so.

Nearest neighbour classifiers are simple and fast to train, but cannot infer sophisticated

logical relationships between features. Multilayer perceptrons can model such

relationships, but take a relatively long time to train. Tree induction algorithms are not

always as effective as some other methods, but the models that they train are more easily

interpretable by humans than the models trained by most other algorithms. Hidden

Markov models can be good at modelling sequential data, but are less appropriate when

dealing with independent feature sets.

These are just a few examples of the many differences between various algorithms.

Further complicating matters, there are often different versions of each algorithm with

different hyperparameters (e.g., the value of k in a k-nearest neighbour classifier).

Different algorithms can also be combined into classifier ensembles (see Section 6.2.7),

which can operate using a variety of different coordination algorithms, each of which

have their own strengths and weaknesses.

This sub-section focuses on some of the most commonly used algorithms that have

been shown to be successful in a variety of problem domains. There are certainly many

other excellent algorithms available, however, and new ones are continually being

developed. This sub-section also places a strong emphasis on supervised learning

 307

algorithms in particular, as they tend to be the best choice for most automatic music

classification tasks.

The overview of classifiers presented here emphasizes an intuitive and practical

discussion of the algorithms. Rigorous theoretical proofs and detailed mathematical

descriptions of learning schemes are largely omitted, as they are documented at length

elsewhere and the goal of this sub-section is primarily to emphasize the more applied

aspects of automatic classification so that existing implementations may be more easily

understood and used effectively.

Although there are many alternative ways that one might organize classification

algorithms, the distinction between parametric and nonparametric classification

methodologies is given particular emphasis in the literature. The parametric approach

assumes that the training sample is drawn from a population whose feature values obey

known statistical distributions, such as Gaussian distributions. Parametric algorithms

essentially attempt to find the parameters of these distributions during training. So, in the

case of a Gaussian distribution, training would involve inferring the mean and variance of

the Gaussian from the training data. Nonparametric classifiers, in contrast, do not assume

any particular statistical distributions, and local models are estimated based only on the

training data.

6.2.6.1 Overview of parametric methods

Parametric classifiers have the advantages of being efficient and of tending to perform

very well when the features do in fact obey the assumed distribution. They can be

particularly useful in helping to smooth noisy training data, particularly since many

nonparametric methods have a tendency to generate overly complex models that risk

overfitting noisy training data. The major disadvantage of the parametric approach is that

the true distributions of feature values may not in fact match the assumed distributions.

Although parametric classifiers can sometimes still achieve adequate classification

success rates even in such cases, the success rates do tend to degrade significantly in such

circumstances.

Bayesian decision theory is a common point of departure for discussing automatic

classification algorithms. If x is a feature pattern corresponding to some instance and y is

 308

a class belonging to the class ontology Y, then one is interested in the following

quantities:

 P(y|x): The probability that an instance belongs to class y given that it has a

feature pattern x. This is referred to at the posterior probability.

 P(y): The probability that any given instance belongs to a given class y, regardless

of its feature pattern. This is referred to as the prior probability. It is useful to note

that, if one assumes that each instance may only belong to a single class, then for

all classes y1 through yn in a class ontology:

 1 = P(y1) + … + P(yn) (6.2)

 P(x|y): The probability that an instance has a feature pattern x given that it belongs

to class y. This is referred to as the likelihood.

 P(x): The marginal probability than an instance will have the feature pattern x,

regardless of the class that it belongs to. This is referred to as the evidence.

So, for example, if P(y) is the probability that any individual plays the guitar and P(x)

is the probability that any person has calluses on their fingers, whether or not that person

plays the guitar, then P(y|x=callused) is the probability that a person who is known to

have callused fingers does in fact play the guitar.

These basic quantities are associated with Bayes‟ Rule, the fundamental equation of

Bayesian decision theory:

y
yPyxP

yPyxP

xP

yPyxP
xyP

)()|(

)()|(

)(

)()|(
)|((6.3)

An important qualification to Equation 6.3 is that the second equality is only valid if x

and y are independent.

Bayes’ Rule is very useful for classification. Given a feature pattern xi extracted from

an instance i, one can use Bayes’ Rule to calculate the posterior probability P(yj|xi) for

each class yjɛY. These posteriors in effect indicate the probabilities with which the

instance i belongs to each class in Y. One can then simply classify the instance i into the

class yj with the highest posterior probability, or one can treat the posteriors as class

 309

membership weightings. A classifier that use Bayes’ Rule in such a manner is called a

Bayes‟ classifier.

It is also possible to account for cases where certain types of misclassifications are

more costly than others. For example, misclassifying a symphony by Mozart as being by

Haydn is likely better than misclassifying it as being by Schoenberg. This can be done by

calculating the expected risk, R, associated with classifying an instance as class yj:

K

k kjkj xyPxyR
1

)|()|((6.4)

Of course, this necessitates knowledge of λjk, which is some given measure of loss

incurred by potentially misclassifying an instance as class yj when it actually belongs to

class yk. If λjk is known, then one can calculate the expected risk for all classes yɛY, and

then classify an instance as belonging to the class y with the lowest expected risk. There

are also alternatives solutions to this type of problem, such as utility functions.

The greatest advantage of Bayes’ classifiers is that their classification performance is

optimal in theory. This is a claim that can be made for very few classifiers, since the norm

for many classifiers is simply to hope that the learned model converges to a good local

minimum in the error space, without any guarantee that it will in fact be the global

minimum.

Unfortunately, in reality one is rarely able to actually achieve optimality with Bayes’

classifiers, since optimality requires perfectly accurate knowledge of the prior, likelihood

and evidence, which must in practice usually be estimated. Such estimations serve as the

foundation of many parametric models, which use statistical distributions such as the

Gaussian distribution to estimate these probabilities. Estimation techniques such as this

do not work well when the instances belonging to each class do not each form coherent

groups in feature space, however, since if instances of a single class are located in

multiple discrete clusters then this implies multiple distributions (e.g., multiple Gaussians,

each with their own mean and variance, or even multiple distributions of different kinds).

Fortunately, this problem can be addressed with mixture models, which are described

below.

Before doing so, however, it is useful to first discuss simpler cases. The Bernoulli

distribution is often used to estimate Bayesian probabilities for two-class problems, and

 310

can be generalized to the multinomial distribution for problems involving more than two

classes.

The Gaussian distribution is often used for modelling class-conditional probability

densities. In practice, a multivariate normal probability density is often assumed, even

when the true distribution may well not be normal. It is useful in the multivariate

situation, which is to say when there are multiple features, to represent the instances as a

matrix where each column is a feature and each row is an instance. One can then calculate

the mean vector, which has elements consisting of the mean of each column (i.e., of each

feature) across all known instances.

It can also be helpful when approaching classification problems to calculate how each

feature varies compared to each other feature via a covariance matrix. The entries on the

diagonal give the variance of each feature and all other entries give the covariance of each

pair of features. This matrix can be used to calculate the correlation between features. If

two features are independent then their covariance must be zero, although a covariance of

zero does not necessarily mean that the features are independent.

The calculation of the mean vector and the covariance matrix are useful because they

can be used as parameters of a multivariate distribution. Also, the assumption of a shared

covariance matrix can be a very useful in simplifying problems. Although this assumption

can increase bias, it also tends to reduce the variance of estimators. This assumption of a

shared covariance matrix leads to linear discriminants, which is to say linear decision

boundaries between classes in feature space, something that can be a convenient

simplification but which should also be treated with caution, since the true discriminants

may not be linear. Linear discriminant analysis and the related Fisher‟s linear

discriminant (see Section 6.2.5), for example, are techniques for finding the linear

combination of features that best separate two or more classes.

Bayesian networks, which are also called belief networks or probabilistic networks,

are visual models for representing the interactions between features. These networks are

composed of acyclic graphs consisting of nodes and directed arcs connecting the nodes.

Each node is associated with a random variable, x, and has a value corresponding to the

probability of the random variable, P(x). An arc from a node X to another node Y

indicates that the node Y is influenced, although not necessarily caused, by X. Arcs are

 311

associated with the probability P(y|x). The relevance of this to classification is that

Bayesian networks may be converted to trees and belief propagation may be used for

inference.

The naïve Bayes‟ classifier is a simplified variant of Bayes’ classifier that ignores

possible correlations among the input features. In other words, it is assumed that the

absence or presence of any feature is unrelated to the absence or presence of any other

feature. For example, a musical instrument might be (potentially incorrectly) classified as

a member of the violin family because it has strings and is bowed. Even though the

feature of being bowed depends on the feature of there being strings, a naïve Bayes’

classifier considers these two features to contribute independently to the probability that

the instrument is a member of the violin family. Keeping this assumption of the naïve

Bayes’ classifier in mind, a multi-feature problem can be reduced to a group of single

feature problems, so the likelihood and posterior can respectively be expressed as:

j

j yxpyxp)|()|((6.5)

j

j yxpypxyp)|()()|((6.6)

Although the assumption of feature independence is often invalid, the naïve Bayes’

algorithm can in fact nonetheless perform surprisingly well. The naïve Bayes’ classifier is

also relatively efficient, because the assumption of independence is equivalent to setting

all off-diagonal entries of the covariance matrix to 0, so they do not need to be calculated.

As noted above, well-known statistical distributions are often used to estimate the

Bayesian likelihood, estimate and prior so that Bayes’ rule can be applied. In order to do

this, one must first choose a statistical distribution and then find its parameters.

If the type of statistical distribution is known, then maximum likelihood estimation is a

statistical method for fitting the distribution to the data and for finding estimates for the

distribution’s parameters. If the feature patterns X of all known instances I are likely to

occur in a population with some probability density p(x|θ), where θ represents the

distribution’s parameters, then the process of maximum likelihood estimation attempts to

find the θ that gives the highest p(x|θ) for X. In other words, maximum likelihood

 312

estimation picks the model parameters that make the given data more likely than any

other parameters would make them.

6.2.6.2 Distribution estimation

Purely parametric approaches assume a single statistical distribution. Semiparametric

density estimation techniques are also available for empirically estimating a mixture of

distributions from the training data. Since one often encounters instances that are drawn

from multiple sub-groups, the use of multiple distributions is often advisable. For

example, a pitch classification system should be able to recognize a middle C played on a

piano as well as a middle C played on a guitar. Semiparametric methods are typically

applied by assuming a type of distribution, such as Gaussian, but not the number of co-

existing distributions of this type, since one does not have a priori knowledge of how

many sub-groups instances are drawn from or which instances are associated with which

sub-groups.

Any of the range of available unsupervised clustering algorithms can be used to group

instances into clusters as a pre-processing stage before applying parametric estimation to

each of the clusters. It is also often useful in practice to apply dimensionality reduction to

each of the clusters separately, before estimating parameters.

The mixture density of a mixture model with k distributions can be expressed as:

k

i ii GPGxpxp
1

)()|()((6.7)

where the Gi are the k mixture components and each x represents the feature pattern of a

training instance. The mixture components are also called groups or clusters. The p(x|Gi)

are the component densities and P(Gi) are the mixture proportions. The number of

mixture components, k, and the instances, x, are the inputs, and the learner estimates the

component densities and mixture proportions. If it is assumed that the component

densities all obey a parametric model, then it is only necessary to find their parameters.

Although unsupervised clustering algorithms are outside the particular focus of this

chapter, it is appropriate in the context of supervised parametric and semiparametric

estimation to briefly explain one simple algorithm, k-means clustering, as an example of

how clustering can be performed. In k-means, one first specifies the number of clusters

being sought, k, after which k cluster centers are chosen in feature space. All instances are

then assigned to their nearest cluster center, where ―nearest‖ is determined by measuring

 313

the distance between the feature pattern of each instance and the cluster center. The mean

center of each cluster is then calculated, and these centers are taken to be the new cluster

centers. Instances are then each reassigned to the clusters whose centers are closest to

each of them. This process continues iteratively until no more changes are made.

This algorithm is very sensitive to the initial placement of the k centers, and there are

a number of ways of choosing this initial configuration. For example, the centers can

correspond to the feature coordinates of k randomly selected instances, the centers can be

placed random distances from the overall centre for all instances or the centers can be

evenly spaced along the principal component. There are also a variety of ways to choose

the k hyperparameter, such as the needs of an application, manual choice after plotting the

data in two or three principal component dimensions or simply experimentation with

different values.

The k-means algorithm is a special case of the expectation-maximization algorithm

that assumes a Gaussian mixture and that assumes features are independent with equal

and shared variances. This is why k-means uses hyper-circles to form clusters, while the

more general expectation-maximization uses hyper-ellipses of arbitrary shapes and

orientations. There are also many alternative clustering algorithms that are more

sophisticated than k-means, such as self-organizing maps and adaptive resonance theory.

Despite the improvement offered by allowing for multiple distributions,

semiparametric approaches still assume one or more particular distribution types, such as

Gaussian. This is a potentially incorrect assumption that can lead to classifier bias.

Fortunately, other estimators are available that estimate the distributions themselves

empirically, although the curse of dimensionality causes them to be less effective when

dealing with instances with many extracted features.

Histogram estimators offer one such approach. These divide the feature space into

equally sized intervals called bins and associate magnitudes to each bin based on the

number of instances in the training data that fall within its region in feature space. This

results in a histogram that models the probability density.

The choice of bin width is an important hyperparameter to consider when using

histogram estimators. Wide bins lead to smoother, less noisy probability density

estimates, but can also lead to loss of detail. Conversely, narrow bins are undesirably

 314

sensitive to noisy data, but are better at capturing details in feature space. One solution to

this tradeoff is to use kernel estimators, also called Parzen windows, which use

overlapping kernel function, such as a Gaussian kernel, to smooth the input in order to

permit relatively narrow bins. There are also methods for dynamically varying window

widths intelligently (Gentle 2009).

6.2.6.3 Overview of nonparametric methods

Histogram estimators are an example of a nonparametric approach. Although in the

application described above the nonparametric algorithm is used as a kind of pre-

processing for a parametric algorithm, nonparametric algorithms can certainly be used

alone. This means that no assumptions are made about data distribution(s) and that

classification models are trained purely empirically based on available data.

Nonparametric algorithms can also be called instance-based or memory-based algorithms.

The fundamental advantage of nonparametric methods over parametric and

semiparametric approaches is that they avoid model bias due to assumptions about

probability distributions that may be invalid, although with the trade-off that the risk of

overfitting may be higher. Also, parametric and semiparametric approaches have the

advantage over nonparametric approaches of reducing classification problems to the

estimation of only a small number of simple parameters. Nonparametric methods are

therefore often less efficient than parametric methods. Although this does not apply to all

algorithms, parametric methods are often O(d) or O(d
2
) in computational complexity

during classification, where d is the number of parameters, and many nonparametric

methods are O(N), where N is the number of training instances. Notably, usually d
2
 << N.

This relative classification inefficiency is most notably true of those nonparametric

algorithms that store training data and postpone model computation until they are

required to perform a classification. Such algorithms are called lazy learners, as opposed

to eager learners that compute models during training, such as parametric algorithms.

The upside of lazy learners is that their training time is often much shorter than that of

eager learners, although in practice one typically prefers fast classification over fast

training.

 315

6.2.6.4 Nearest neighbour classifiers

One of the most commonly used lazy learning algorithms is k-nearest neighbour, also

called k-NN. Training is performed simply by storing the feature space coordinates of

each training instance. A test instance may then be classified by calculating the distance

between its feature space coordinates and the coordinates of the surrounding training

instances that were memorized during training. The test instance is then associated with

the class labels of the k nearest training instances. Finally, there are a number of ways of

determining the final class or classes of the test instance, such as simply assigning the

class that occurs most frequently among the k nearest neighbours or by performing a vote

weighted by the feature space distances to each of the neighbours. If multiple classes may

be associated with instances in the given problem domain then no such operations are

necessary.

Considered slightly differently, k-NN classification involves growing a cell in feature

space around a test point until the k nearest training points are captured. A variety of tools

developed for computational geometry can therefore be used to improve classification

performance. Of particular interest, condensing or thinning methods can be used to reduce

classification complexity and memory requirements by reducing the number of stored

training instances. These methods can also remove noisy outliers that could degrade

classification accuracy. The idea is to select a subset of the training instances that lowest

error on the testing data. Gabriel thinning is one particularly appropriate approach

(Bhattacharya, Mukherjee and Toussaint 2005). Varieties of the nearest neighbour

algorithm that use data thinning are called condensed nearest neighbour algorithms.

There are a variety of distance measures that can be used to calculate the distances

between points in feature space. Euclidean distance is often used, although it is

sometimes appropriate to use alternatives such as Manhattan distance, Tanimoto distance

or tangent distance (Duda, Hart and Stork 2001). As with many other nonparametric

algorithms, it is best to normalize feature values before storing them in order to ensure

that all features have the same numerical range, otherwise features with large values may

inappropriately dominate distance measurements relative to features with small values.

Since Euclidean distance measurements assume uncorrelated inputs with equal variances,

 316

when this is not the case it can be advisable to use techniques that locally estimate

optimal distance to separate classes, such as the discriminant adaptive nearest neighbour.

The choice of the k hyperparameter of k-NN is important, as a k that is too large risks

inappropriately including points belonging to instances of non-corresponding classes in

the selection region even if the training points are well clustered. A k that is too small, on

the other hand, can make the classifier too sensitive to noisy training points. Higher

values of k are more appropriate when the value of n, the number of training samples, is

higher. One common rule of thumb is to set k to the square root of n, and the value of k is

often chosen to be odd in order to avoid ties. When dealing with unstratified training data,

which is to say when there are different numbers of training instances per class, it is

appropriate to also consider the number of training instances belonging to each class,

otherwise classes with too few training samples relative to k will be overwhelmed even if

the training data is well clustered.

The nearest neighbour classifier is a simplified version of k-NN where k is set to 1.

This approach divides the feature space into a Voronoi tessellation. It has been shown

that, as the number of training instances approaches infinity, the misclassification rate of

1-NN is never worse than twice the Bayes’ rate, which is to say the optimal rate (Duda,

Hart and Stork 2001).

k-NN classifiers have a number of important advantages. They are very good at

dealing with scenarios where instances belonging to a single class are distributed in

feature space in several distant sub-clusters, as demonstrated in Figure 6.4. Their models

are also easy to update even after they have been trained, since new training points can

simply be added to the model. Also, the k-NN algorithm can be trained almost

instantaneously since all it must do is memorize points (assuming no thinning has been

applied).

The disadvantage of k-NN is that, like other lazy learners, classifications can be

computationally expensive to perform. A naïve implementation of k-NN will have a

classification complexity of O(dn
2
), where d is the number of features and n is the number

of training instances. Fortunately, a variety of more computationally efficient k-NN

implementations are available, although eager algorithms do still tend to perform

classifications significantly more efficiently.

 317

Sample Feature Plot

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Feature X

F
e

a
tu

re
 Y

Class 1

Class 2

Figure 6.4: An artificial example demonstrating one type of scenario where k-NN

classifiers are particularly advantageous. Here the instances belonging to Class 1 are

divided into two different clusters separated with other instances belonging to Class 2,

such that there is no single linear discriminant that could segment this feature space in

such a way that all instances of Class 1 would be found on one side of it and all

instances of Class 2 on the other side. k-NN classifiers, in contrast, would be unaffected

by the fact that the Class 1 instances are in two different clusters, as long as k is small

enough compared to the number of instances in each cluster.

k-NN classifiers are also limited with respect to the types of relationships between

features that they can model. Classifications are based purely on distances, with no

contingency for modelling conditional relationships between features. For example,

consider the case of an experiment where one is attempting to classify musical recordings

by genre, and the only feature that is available is the fraction of notes played by each

different instrument. Ideally, a classifier will note from the training data that if even one

note is played by an electric guitar then one can categorically eliminate all traditionally

performed pre-20
th

 century genres from contention. k-NN classifiers cannot learn this,

 318

however, as they are incapable of modelling such logical relationships between features.

Consequently, the extensive use of a flute in a progressive rock recording also containing

a very small amount of electric guitar might cause a k-NN classifier to falsely conclude

that the piece is a classical flute sonata, for example.

6.2.6.5 Feedforward neural networks

Feedforward neural networks (FNNs) are a type of nonparametric classifier than can

model more sophisticated relationships between features than purely distance-based

classifiers. They can also typically perform classifications more quickly than classifiers

like k-NN, although training them usually takes much longer. FNNs are a member of a

class of classifiers called artificial neural networks that are inspired by the organic brain,

although they do not actually simulate neurological processes.

FNNs are composed of units called nodes that are also sometimes called neurons.

These nodes are interconnected by unidirectional links, each with an associated weight.

Learning in FNNs takes place by iteratively modifying the values of these weights.

The nodes of FNNs are organized into layers. The input layer is composed of nodes

that are provided with input data directly. For the purposes of classification, each node in

the input layer is typically given a value corresponding to a single feature value. There is

also an output layer, whose nodes provide the output of the FNN in response to each

input pattern placed on the input nodes. A typical approach to using networks for

classification involves associating one output node with each possible class, although

there are alternative approaches.

A FNN consisting of only an input layer and an output layer is called a perceptron.

An important limitation of perceptrons is that they are only capable of learning linearly

separable patterns. This means, for example, that they cannot learn a Boolean XOR

function. In order to address this issue, one or more hidden layers of nodes may be added

in between the input and output layers. The kind of FNN that results from doing this is

called a multilayer perceptron. The universal approximation theorem for neural networks

states that any continuous function that maps some interval of real numbers to some other

interval of real numbers can be approximated arbitrarily closely by a multilayer

perceptron with only one hidden layer, assuming an appropriate activation function such

as the sigmoid function is used (see below).

 319

 Multilayer perceptrons are perhaps the most commonly used artificial neural network

architecture. The presence of one or more hidden layers results in a classifier that

essentially acts as a black box, since only the input and output layers are interacted with

directly.

Each node in a FNN has a link to every node in the previous layer (if any) and to

every node in the subsequent layer (if any). Each node also has an activation level, which

is the value propagated down the links leading to nodes in the subsequent layer, or to the

output sensors in the case of nodes in the output layer.

The activation level of a node is calculated by adding the values on all of the links

coming into the node from nodes in the previous layer and processing the sum through an

activation function. The value on each link is calculated by multiplying the link’s weight

and the value placed on the link by the node preceding it. Some FNNs also include a bias

unit, or bias node, for each hidden or output node that outputs a constant value through a

weighted link.

The activation function must be continuous, as its derivative is taken during training.

A commonly used activation function is the sigmoid function:

 (6.8)

As a side note, in practice it is usually best to scale model outputs to between 0.1 and 0.9

when using the sigmoid activation function, as using a range between 0 and 1 can overtax

the network.

Stated more formally, the net input into an input node is simply the input value placed

on it. The net input netj into a hidden or output node j is given by:

 (6.9)

where wb is the weight of the bias link, b is the bias constant (0 if no bias node are used),

each i corresponds to a node in the preceding layer, n is the number of nodes in the

preceding layer, wij is the weight on the link from node i to node j, and oi is the output of

node i. The output of node j with net input netj and a sigmoidal activation function is

then:

xe
xsigmoid

1

1
)(

ni

iijbj owbwnet
,1

 320

 (6.10)

FNNs are trained by putting training patterns on their inputs and observing how the

outputs of the network differs from the model outputs. Weights are then iteratively

adjusted in order to make the output closer to the model output using gradient descent.

The specific process of first adjusting the weights leading into the output nodes and then

successively adjusting the weights in each preceding layer is known as backpropagation.

The training modifications to the weights leading into an output node k are adjusted

by first calculating δk, the error signal:

 (6.11)

where tk is the target or model activation value for the unit k, ok is the actual activation

value, netk is the net input into k, and f' is the derivative of the activation function. For the

sigmoid activation function:

 (6.12)

The weights leading into output unit k from each unit j in the preceding layer, wjk, are

adjusted as follows from iteration t to iteration t+1:

 (6.13)

where

 (6.14)

and η and α are neural network parameters known as the learning rate and the

momentum, respectively. The momentum term is sometimes omitted. These

hyperparameters control how quickly a neural net is likely to converge to a stable solution

and how likely it is to get stuck in a poor local minimum in error space far from the

global minimum. The learning rate controls how large the adjustments to the weights are

during each training iteration (i.e., how large the steps are in error space towards a

solution), and the momentum stops the network from ineffectually oscillating back and

forth in error space from iteration to iteration by taking into account the previous

adjustment to each weight. Increasing the learning rate can cause a network to converge

jnetj
e

o

1

1

)(')(kkKk netfot

)1()(' kkk oonetf

)()()1(twotwtw jkjkjkjk

)1()()(twtwtw jkjkjk

 321

faster, but a value that is too high may also cause the network to jump around so much

that it does not converge. Increasing the momentum also usually increases the speed of

convergence, but can cause poor classification performance if it is set too high. As rules

of thumb, a value of 0.2 or less is often best for the learning rate, and values between 0.5

and 1 are usually best for the momentum. The initial values of the weights are randomly

determined.

The error signal for a hidden unit, j, behind unit k in a subsequent layer is given by:

 (6.15)

The weight change formula used to modify the weights of the links pointing to a hidden

unit is the same as that for the links pointing to an output unit (equation 6.14).

There are a variety of ways of going about the training process, all of which for the

most part produce similar results. One can simply feed the training samples into the

network one by one, and adjust the weights after each sample, a process called online

learning. If one is inclined to be more mathematically orthodox, one can instead only

actually implement the weight adjustments after all of the adjustments have been

calculated for a particular training sample in its entirety, a process called offline learning.

In practice, either approach can work well, but it is generally a good idea to randomly

order the training samples if online learning is used in order to avoid receiving many

similar patterns consecutively, which could be conducive to falling into a poor local

minimum in error space.

The process of classifying the entire training set once and updating the weights based

on the error signal is called an epoch or a training iteration. Many epochs are usually

needed before the network converges to a good solution. An indication of convergence

can be measured by observing the rate of change from epoch to epoch of the sum of

squares error between the model output activation values and the actual values, E:

 (6.16)

Convergence can generally be said to have occurred when this error stops changing

significantly from epoch to epoch, although it is not unknown for a network to seemingly

converge for a large number of epochs before suddenly starting to change significantly

again.

k

kjkjj wnetf)('

k

kk otE 2)(
2

1

 322

There is some disagreement in the literature as to the best number of hidden layers to

use and how many hidden nodes should be used in each. de Villiers and Barnard (1992)

offer some convincing arguments that more than one hidden layer can actually degrade

performance rather than improve it, for example. There have also been a number of

competing formulas proposed as to the ideal number of hidden units to use. For example,

Wanas et al. (1998) claim that the best performance, in terms of both performance and

computation time, occurs when the number of hidden nodes is equal to log(n), where n

represents the number of training samples. There is no real consensus on this matter in the

literature, however, and the optimal number of hidden nodes likely depends on the

particularities of each individual problem.

A good experimental approach is to test performance by gradually adding hidden

nodes one by one until the performance fails to improve by a certain amount. There are

many variations of this approach, including Ash’s pioneering work (1989). Another

approach is to use techniques such as genetic algorithms to optimize network architecture.

Alternatively, one can in some cases reflect perceived structure in the application domain

in the network architecture. In any case, it is true in general that increasing the number of

hidden units increases the complexity of the functions that can be modelled, but also

increases the training time and, potentially, the probability that the network will not

converge or will overfit the data. In practice, it can be helpful to pre-process features so

that the input is normalized for factors such as size and rotation in order to simplify the

job of the learner.

Feedforward neural networks are just one of the many varieties of artificial neural

networks that exist, each with its own strengths and weaknesses. For example, recurrent

neural networks include connections from the output nodes back to nodes in earlier

layers, something that incorporates memory into the network so that present classification

results can influence the classification of subsequent instances. This is useful in

classifying data whose sequence is meaningful, such as chord progressions. Kohonen self-

organizing networks perform unsupervised learning, to give another example. These are

just a few of the many varieties of artificial neural networks that have been developed.

 323

6.2.6.6 Discriminant-based classifiers: Linear classifiers, SVMs and decision trees

Discriminant-based classifiers are the last type of classifier that will be discussed in

this sub-section. Such classifiers focus on finding the discriminants that separate instances

from different classes by estimating the parameters of these discriminants directly. This

differs from likelihood-based classifiers, such as many of the classifiers discussed above,

which attempt to estimate the parameters of feature probability distributions instead of

directly focusing on the discriminants themselves. One can therefore avoid needing to

make potentially faulty assumptions about whether features are correlated or about what

kind of statistical distributions the features follow when using discriminant-based

classifiers.

The trade-off is that discriminant-based classifiers must often make potentially

incorrect assumptions about the discriminants themselves. Linear discriminant-based

classifiers, for example, assume that instances of a class are linearly separable from

instances of other classes, something that is often not in fact true. In practice, however,

good classification performance can still often, but not always, be attained even when the

true discriminants are not in fact linear. Although approaches can certainly be used where

higher-order discriminates are calculated (quadratic classifiers in particular have some

limited popularity), the use of linear discriminants have several significant benefits:

training and classification speed tend to be very high,
152

 classification performance tends

to be high even when there are many input features and the risk of overfitting is reduced.

It is therefore often a good idea to try a linear discriminant-based classifier to see if it is

sufficient before using more sophisticated techniques.

Put more formally, one can define the i
th

 discriminant as gi(x|Φi), where x represents

the input features and Φi represents the discriminant parameters. Learning is thus an

estimation of Φi. Each of a set of d linear discriminants can then be written as:

d

j

ijijiii wxwwg
1

00),|(wx (6.17)

where wi are the weights that must be learned.

152

 Efficiency of linear classifiers is O(d), where d is the number of features. Quadratic classifiers, in

contrast, are O(d
2
).

 324

Such sets of linear discriminants define hyperplanes in feature space. If all classes are

linearly separable, then there must exist a hyperplane such that all instances belonging to

any one class will be found on one side of the hyperplane and all instances belonging to

all other classes will be found on the other side of the hyperplane. So, assuming once

again that a problem is linearly separable, one need only find a discriminant defining such

a hyperplane for each class in order to arrive at an optimal classifier.

If the classes are not in fact linearly separable, then one imperfect but often

reasonably effective solution is to divide the problem into a set of linear sub-problems

using a technique called pairwise separation of classes. This approach requires that a

separate hyperplane discriminant be found for each pair of classes, which is to say that

K(K-1)/2 linear discriminants must be found if there are K classes..

An alternative approach for dealing with problems that are not linearly separable is to

substitute in terms that are non-linear functions of the original features in order to perform

a mapping into a higher-dimensional space where the problem may in fact be linearly

separable. Higher-order terms, sinusoids or logarithms are all examples of functions that

might be used in such substitutions. Stated more formally, one can express a discriminant

as a linear sum of nonlinear basis functions, also called kernel functions. For example, for

two input features, x1 and x2, one can define five new variables, z1=x1, z2=x2, z3=x1
2
,

z4=x2
2
 and z5=x1x2, which can then themselves be combined in an entirely linear function.

A linear discriminant may thus be defined in the five-dimensional z-space that

corresponds to a nonlinear discriminant in the two-dimensional x-space.

Returning to the training of linear discriminants in the form of Equation 6.17,

regardless of whether the x are the original features or kernel functions, the weights w are

typically learned using gradient descent. Much as described above for backpropagation

artificial neural networks, this involves iteratively reducing classification errors on

training data by finding the gradient of the error function with respect to the discriminant

weights, which are initialized randomly.

It is desirable to not only find a hyperplane that separates instances belonging to a

class from instances not belonging to it, but to find the particular hyperplane that

maximizes the distance between itself and training instances in order to improve its

ability to generalize and thus not overfit the training data. The distance from the

 325

hyperplane to the instances closest to it on either side is called the margin, and the

optimal separating hyperplane is the hyperplane that maximizes the margin. Those

particular training instances whose points in feature space constrain the width of the

margin are called support vectors.

Support vector machines (SVMs) are a popular and very effective type of classifier

designed to find optimal separating hyperplanes. With respect to a simple two-class and

two-feature problem, an SVM finds the line (or hyperplane, for feature spaces with a

greater dimensionality) that maximizes the margin between the support vectors. Support

vectors can be defined as the instances in feature space that lie on the maximum margin

hyperplanes. The weights defining the discriminant are calculated by taking the average

across all support vectors.

It is useful to note that this approach in effect discards all training instances that are

not close to the decision boundary by only using the support vectors to calculate

discriminants. The efficiency of SVMs can therefore be improved by using a more

efficient method to remove training instances on the interior before training the SVM in

order to reduce the work that needs to be done during SVM optimization.

Although SVMs are designed specifically for two-class problems, they can be

generalized to K-class problems by defining K two-class problems, each one separating

one class from all others. An alternative approach is to use pairwise separation of classes,

as described above for linear classifiers in general, which requires K(K-1)/2

discriminants.

Kernel functions are often used in SVMs in order to be able to deal with problems that

are not linearly separable by, as discussed above, mapping lower-dimensional spaces to

higher-dimensional spaces where hyperplanes can in fact be used to effectively

discriminate between instances. SVMs that use kernel functions are sometimes called

kernel machines. The most popular kernel functions for SVMs are polynomials of various

degrees, radial-basis functions and sigmoid functions.

SVMs also sometimes use slack variables to deal with problems that are not linearly

separable. Slack variables indicate the deviation from the margin of problem instances,

which is to say instances whose feature coordinates fall on the wrong side of the

discriminant or are on the correct side but are too close to it. These slack variables can be

 326

used to improve performance by using them in a penalty term. This in effect creates a soft

margin that permits some misclassifications, and a cost parameter can be used to control

the balance between forcing rigid margins and allowing training errors. It is often best to

err on the side of not making the cost penalty too large, as otherwise the risk of overfitting

the training data can become too large.

It is important to note that classifiers framed specifically as discriminant-based

classifiers are by no means the only classifiers that can be used to estimate discriminants.

For example, computational geometry can be used to easily estimate discriminants from a

k-NN classifier, as noted earlier. In fact, SVMs are very similar to condensed k-NN

classifiers that throw away training points that are not necessary to find discriminants.

SVMs are also closely related to artificial neural networks, and an SVM using a sigmoid

kernel function is in fact mathematically equivalent to a two-layer perceptron. The

difference between discriminant-based classifiers like SVMs and classifiers such as

feedforward neural networks and k-NN, however, is that discriminant-based classifiers

estimate discriminants directly, rather than making them available as a by-product of

other processing. Even most nonparametric classifiers effectively estimate feature

probability densities, something that is avoided when using discriminant-based classifiers.

Decision tree classifiers are another type of discriminant-based classifier. A decision

tree is a hierarchical data structure that performs classifications using a divide-and-

conquer strategy that breaks complex decision functions into series of simple decisions.

Decision trees consist of internal decision nodes and terminal leaves. Each decision node

implements a test function that takes as input the features of an instance and outputs a

branch of the node that points to a particular subordinate decision node, a process called a

split. The instance’s feature values are then in turn processed by the test function of the

decision node that is selected by the previous split. This process starts at the root of the

tree and is repeated recursively until a terminal leaf node is reached, whereupon a final

class label is assigned to the instance.

The test function of a given decision node can take a variety of forms. If the features

being considered are discrete, then there is a branch for different possible combinations of

features. If the features are numeric, then inequalities involving thresholds are used as

decision rules. In either case, each test function effectively implements a discriminant.

 327

Univariate decision trees are a simple variant that only process a single feature in

each decision node, although trees as a whole can still certainly process multiple features

by processing different features in different decision nodes. The test functions of

multivariate trees, in contrast, may take as input any of the available features.

Omnivariate trees are a hybrid approach where some decision nodes process single

features and some process multiple features.

Decision trees have a number of important strengths. Some varieties, especially

univariate trees, process data very quickly, even faster than linear discriminant-based

classifiers in some cases. Also, decision trees are very compact in terms of space

efficiency, as only discriminants need to be encoded, unlike some nonparametric methods

like k-NN that must memorize feature values. Perhaps the greatest advantage of decision

trees, however, is their interpretability. Unlike many other classification methods, like

feedforward neural nets, for example, decision trees are not just black boxes that can be

used to perform classifications. Instead, the decision rules implemented by the test

functions of decision nodes can be examined in order to gain information about the

solution to the problem that can be theoretically meaningful for the particular problem

domain. This process is called knowledge extraction, and yields a hierarchy of if-then

rules that can be applied to features in order to arrive at classifications. This is, of course,

exactly what a decision tree actually does when performing classifications, and it is the

resemblance to a naturally human intuitive way of making decisions that makes the

discriminants learned by decision trees much more human-meaningful than the models

learned by most other classification algorithms.

It can be useful to calculate rule support when using decision trees, which is to say

the percentage of training data covered by each rule, where a rule is said to be covered by

an instance if the instance satisfies all conditions of the rule. Rule support can help show

which decisions and which features are most important for arriving at classifications.

Even though multivariate trees can solve more complex problems than univariate

trees, the rules that they learn tend to be more complex and more difficult for humans to

interpret. Univariate trees are often preferable to multivariate trees because of this and

because of their efficiency, and in practice they can still often perform quite well even

when applied to moderately complex problems. An additional advantage of univariate

 328

trees is that they essentially perform their own feature selection, as they ignore features

that they do not need.

The disadvantage of decision trees, especially univariate decision trees, is that they

are not as effective as many other algorithms at learning complex models. Nonetheless,

the interpretability of decision trees and their speed has caused them to remain reasonably

popular, at least for problems that are not too complex. They are especially popular for

use in classifier ensembles, as discussed in Section 6.2.7.

Decision trees learn their models from training data using a process called tree

induction. There are several learning algorithms that can be used to implement this,

including the well-known C4.5 algorithm (Quinlan 1993). In most cases, the goal of the

process is to find the smallest (and therefore simplest, least susceptible to overfitting and

easiest to interpret) tree that can be constructed with no error on the given training data.

There are typically many possible such trees and, since finding the smallest tree is NP

complete, one is forced to use local search procedures, most commonly greedy

algorithms. The most common approach is start at the root, look for the best split, and

then proceed recursively down the tree until no more splits are needed and a leaf can be

created. The goodness of a split is measured using a metric called the impurity measure.

A split is pure if, after the split, all instances in each branch belong to the same class. If a

split cannot be pure, then the instances are split such that the split minimizes impurity.

Unfortunately, noisy training data can easily lead to very large trees that overfit the

data. Furthermore, splitting tends to favour those features with many possible values,

which can also lead to overly large and complex trees. In order to minimize such

problems, tree construction often ends when nodes become pure beyond some threshold,

rather than strictly requiring an impurity of zero. Entropy, Gini index and

misclassification error are three different ways of measuring impurity that for the most

part perform similarly. An alternative approach is to introduce a metric that penalizes too

much branching. In practice, it is generally best not to split a node if the number of

instances reaching it is smaller than a certain percentage of the training set, such as 5%,

regardless of impurity.

The process of reducing the size of a decision tree is called pruning. Stopping tree

construction before an impurity of 0 is reached, as discussed above, is called prepruning

 329

the tree. Postpruning occurs after a full tree has been grown such that all leaves are pure

and there is no training error. Postpruning involves setting aside a portion of the ground-

truth data into a pruning set and using it to test the full tree for overfitting so that it can

then be pruned appropriately.

6.2.7 Ensemble learning

Ensemble learning involves using multiple classifiers to solve individual

classification problems. Each of the component classifiers is called a base learner. In

principle, any learning algorithm could be used by any given base learner, and the various

base learners in an ensemble might each use either the same or different algorithms.

There are a wide variety of techniques that can be used to coordinate the base learners in

order to output overall classification results from the ensemble, and there are also a

variety of ways of training ensembles.

The practice of combining classifiers into ensembles is inspired by the notion that the

combined opinions of a number of experts is more likely to be correct than the opinion of

a single expert. Based on this, one might intuitively posit that an ensemble of classifiers

will likely similarly perform better than one of its component classifiers operating

individually. In practice this can often in fact be the case, assuming the use of a well-

designed ensemble, although it is certainly not guaranteed.

One might reasonably question whether the increased computational demands and

implementation complexity that typically accompany ensemble classification are justified

if one is not guaranteed an increase in performance. Dietterich (2000) has proposed three

reasons why classifier ensembles are worthwhile:

 The statistical reason: Suppose one has a number of trained classifiers. Although

it is easy enough to find how well they each perform on the training and validation

samples, this knowledge still offers only an estimate of how well the classifiers

will each generalize to the instance population as a whole. If several of the

classifiers performed similarly on the validation data, then there is no way of

knowing which classifier is in fact the best with respect to the population. If one

chooses a single classifier, one runs the risk of accidentally choosing one of the

poorer ones. This statistical argument is particularly strong in cases where only

 330

limited training and validation data is available, as the evaluation of individual

classifiers using validation sets is likely to have a potentially high error.

 The computational reason: This argument applies to classifiers that train using

hill-climbing or random search techniques. Training several multilayer

perceptrons, for example, on the same training data might result in significantly

different learned models, depending on the randomly generated initial weights.

Aggregating these classifiers into an ensemble can take advantage of the

multiplicity of solutions offered by each of the classifiers. The computational

argument also highlights the particular appropriateness of unstable learners for

ensemble classification, which is to say algorithms like decision trees, condensed

k-NN
153

 or multilayer perceptrons that are very sensitive to differences in training

data, in terms of factors such as the instances present or the features extracted, and

can potentially converge to very different trained models when this information is

changed only slightly.

 The referential reason: This argument is based on the fact that there is no

guarantee that the types of classifiers that one is using for a particular problem

could ever converge to a theoretically optimal solution. To provide a simple

example, consider a case where a researcher mistakenly believes that a given

problem is linearly separable, and decides to use a linear classification algorithm.

In reality, the optimal discriminants will be non-linear, so it is not possible for any

linear classifier to perform optimally individually. However, an ensemble of linear

classifiers could approximate non-linear decision boundaries, and could therefore

potentially perform better than any single linear classifier could.

An essential element in the effectiveness of classifier ensembles is their diversity. If

all of the classifiers in an ensemble tend to misclassify the same instances, then

combining their results will have little benefit. In contrast, a greater amount of

independence between the classifiers can result in errors by individual classifiers being

overlooked when the aggregate results of the ensemble are combined. So, even if the

153

 Only condensed nearest neighbour classifiers are unstable, as a nearest neighbour classifier without data

thinning is in fact a good example of a stable learner.

 331

component base learners of two different ensembles all have the same average

classification error rate, the ensemble that has the greater base learner diversity will likely

have a better overall ensemble classification error rate, which is what really matters.

Many of the most successful ensemble approaches are therefore based on increasing

classifier diversity.

Classifier ensembles can achieve diversity in a variety of ways:

 Each base learner may use a different learning algorithm. Different algorithms

tend to be based upon different assumptions, so it is hoped that the bias error due

to incorrect assumptions will be filtered out through the use of multiple

algorithms. For example, one base learner might be parametric and another

nonparametric, or one might use linear discriminants and another non-linear

discriminants.

 Different base learners may utilize the same learning algorithm, but with different

hyperparameter settings. For example, one might vary k in a k-NN classifier or the

number of hidden nodes in a multilayer perceptron. Randomly generated initial

conditions of classifiers can also be varied, such as the initial weights of an

artificial neural network.

 Different base learners may use different representations of the input data, namely

different features. This can be particularly useful when dealing with very different

types of input, such as speech recognition based on video of the speaker’s lips as

well as the audio signal. This approach can also be applied to classification

problems in general, where different feature subsets are provided to different base

learners based perhaps on random partitioning or on the output of different

dimensionality reduction algorithms.

 Different subsets of the available training data may be used to train the different

base learners. As noted above, this is particularly appropriate when using unstable

learning algorithms.

Weak learners, which are learners that are likely to have only poor classification

accuracy when applied individually, are often used in classifier ensembles. Weak learners

 332

can have classification accuracies even as low as 55% on two-class problem, for example.

The primary advantage of weak learners is that they tend to use simple classification

models that are good at avoiding overfitting, something that can otherwise be a particular

problem with classifier ensembles due to the increase in model complexity when multiple

classifiers are combined together. Of course, even when using weak learners one must

still be careful to avoid situations where the ensemble coordination methodology

reintroduces a high risk of overfitting.

An additional advantage of weak learners is that they are usually quick to train, an

important consideration if one is using an ensemble consisting of many base learners that

must each be trained. Decision stumps (decision trees with very short depths imposed on

them) are one of the most commonly used weak learners in classifier ensembles, although

there are certainly other alternatives as well.

The obvious trade-off of using weak learners is that they are prone to underfitting,

hence their poor individual performance. The assumption of classifier ensembles that use

weak learners is that the bias error of individual learners is averaged out in the ensemble

as a whole since many weak learners are used.

Methodologies for combining the classifications made by individual base learners can

be divided amongst several general groups. The first, classifier fusion, involves merging

the classification results of all of the base learners via a process such as voting. The

second, classifier selection, involves using some system to dynamically select which

classifiers to use for classifying each particular given instance. The mixture of experts or

stacking methods, as described below, are examples of how these two approaches can be

combined together.

There are also several basic approaches to training base learners and processing

features when classifying. Multiexpert combination approaches involve base learners

operating in parallel, such that the features of each instance to be classified are given to

every learner. Multistage combination methods, in contrast, utilize serial approaches

where each base learner is trained only or primarily on instances that learners earlier in

the serial classification chain performed badly on. Then, during classification, the base

learners can be sorted in increasing complexity so that a complex learner might only be

used if the preceding simpler learners are not confident in their classification result for a

 333

given instance. There is a rough but not universal correspondence between classifier

fusion and multiexpert combination approaches, and between classifier selection and

multistage combination approaches.

Voting is perhaps the simplest approach to coordinating classifier ensembles. An

average is compiled of the classification outputs of each base learner, and the class with

the most votes wins. Each base learner may output a simple binary yes/no for each class,

or it may associate certainty value with each class, depending on the algorithm used by

each base learner. Each learner can also have a weight associated with it in weighted

voting schemes, based on some measure of its accuracy relative to the other base learners.

Voting essentially operates as an averaging filter that smoothes out errors made by

individual base learners, and is particularly appropriate for base learners with a small bias

and a small variance.

Bagging, which is short for bootstrap aggregating, is a voting method where each

base learner is trained using a different training set. The training sets are generated by

bootstrapping, which means that, given N training instances, N instances are drawn with

replacement for each base learner. This means that some instances may not be drawn at

all for any given base learner’s training subset, and some may be drawn more than once.

Bagging tends to work best when the base learners are unstable algorithms, which is

to say that they are sensitive to the potentially small differences in training data that

bootstrapping produces. As one might expect from the discussion above, weak learners

are usually used because this is helpful in overcoming variance error, and the diversity of

learners helps to overcome the bias error. Decision stumps are a popular choice of base

learner in bagging ensembles, as they are both weak and unstable.

Bagging is a good approach to use when only a limited amount of training data is

available, since it enables the data to be reused by multiple base learners. However, if N is

in fact very large then it is best to train each base learner on a subset of the training data

consisting of fewer than N instances in order to help increase classifier diversity. In

practice, though, bagging is rarely used when large amounts of training data are available,

since alternative ensemble coordination techniques tend to perform better when training

data is plentiful.

 334

Boosting is an example of an ensemble coordination methodology that works better

than bagging when reasonably large amounts of training data are available. Boosting

involves serially training base learners on the training instances that previous base

learners are unable to classify correctly. This means that successive base learners make up

for the weaknesses of previous base learners, with the consequence that classifiers further

along in the classification change correct the bias error of previous classifiers. Boosting

can often result in exceptionally high classification accuracies, but it requires more

training data than bagging in order to be effective, and it can be more susceptible to noisy

training data and outliers.

It is also generally best to use weak learners in boosting ensembles, particularly near

the end of the classifier chain. This is because only relatively few training samples will be

available late in the chain, and one must therefore be especially careful not to overfit

them. Unstable base learners are also often a good choice, but less essentially so than with

bagging.

AdaBoost, short for adaptive boosting, is a boosting variant that is currently one of the

most popular and effective ensemble classification algorithms. Although it does still

typically require more training data than bagging in order to achieve good results, it does

not need as much as more conventional boosting methodologies. Decision stumps are

once again a particularly common choice of base learner for AdaBoost.

There are several different versions of AdaBoost. Resampling variants

probabilistically draw training instances for a given base learner, where the probability of

a given training instance being chosen is proportional to the difficulty learners earlier in

the chain had in correctly classifying it. Reweighting variants of AdaBoost perform final

classifications using a type of voting where each base learner is given a voting weight

based on its performance during training.

The mixture of experts approach to classifier ensembles involves using a gating

learner that adaptively learns voting weights to assign to base learners when voting is

performed to arrive at the final class labels to assign to instances. The weights that are

assigned to each learner by the gating learner depend on the particular instance being

classified, since the gating learner is trained using feature values extracted from instances.

This approach in effect encourages each base learner to become an expert specializing in

 335

classifying particular kinds of instances, and the gating learner learns which such experts

are best to consult for any particular instance.

The stacking approach is similar to the mixture of experts approach, except that the

coordinating learner is a combiner learner instead of a gating learner. Whereas a gating

learner takes feature values as inputs and outputs voting weights associated with each

base learner, the combiner learner takes in the output of each of the base learners as input

and outputs the final classifications of the ensemble. The combiner therefore does not

process feature values directly, and the base learners do not vote directly. The combiner

instead learns to map base learner outputs directly to class labels, which means that it

effectively learns how the base learners make errors relative to one another.

The base learners in both the mixture of expert and stacking approaches are usually

weak, but the coordinating learners are not. A multilayer perceptron is a common choice

for the gating or combiner learner, as multilayer perceptrons naturally models weightings.

Diversity can be incorporated into the base learners through varied features, training data

or hyperparameters and, as always, one must be careful to avoid reintroducing variance

error by overfitting the coordinating classifier. For example, the combiner should be

trained using data that was not used to train the base learners.

Cascading is another ensemble approach that involves a serial chain of base learners.

For cascading to work, each base learner must be able to associate certainty scores with

its classification outputs or, alternatively, some implementations use an additional

coordinating classifier to judge the reliability of the base learners given particular feature

inputs. In either case, if there is sufficient certainty in the classification output of a given

base learner, then this classification is output as the final decision of the ensemble. If the

ensemble is not sufficiently certain of the base learner’s classification it then defers to the

next base learner in the chain. This means that the bias error of each classifier is

essentially estimated for each instance and this is used to decide if the learner is

competent to make a decision.

Cascading can be sensitive to variance error that can result from inflated certainty

estimations. It is therefore usually best not to use weak learners in cascading ensembles,

as one wants the early classifiers to be correct most of the time, or at least competent

enough to tell when they may be incorrect. The use of k-NN classifiers as base learners is

 336

fairly common, as they are typically not weak learners and because they output a certainty

score, namely the fraction of k corresponding to the chosen class. Of course, sufficient

training data must be available to allow diversity in the base learners if k-NN is used.

Multilayer perceptrons offer a good alternative to k-NN when less training data is

available, as they are unstable classifiers, unlike uncondensed k-NN classifiers.

Of course, the base learners used in cascading ensembles do not all need to be based

on the same algorithm. In practice the base learners are usually sorted in terms of space or

time complexity such that the learners earlier in the chain are faster. This can significantly

reduce consumption of computing resources. In cases such as this, parametric classifiers

such as the naïve Bayes’ classifier can be used, since they are fast and the posterior

probability provides a good certainty estimation. The last classifier in the chain is still

often nonparametric, however, as it serves as the last resort if none of the other classifiers

can produce a classification with sufficient confidence. Also, the combination of

parametric with nonparametric methodologies allows the parametric methods to classify

typical instances and the nonparametric method to classify the exceptions.

Classifier ensembles based on error-correcting output codes (ECOC) attempt to break

a difficult classification problem into a set of simpler problems. Classifiers specialized in

each of the simpler problems can then be trained and combined to arrive at final

classifications.

Each base learner is a binary classifier with an output of -1/+1. These classifiers may

simply distinguish one class from all other classes, they may distinguish between only

two classes or they may be trained to output the same value for different classes in order

to generate useful code words. In any case, the output of the ensemble in response to any

instance is in effect a binary code word.

A code matrix of size K x L can then be formed, where K is the number of candidate

classes and L is the number of base learners. The entries of the matrix are set to the ideal

ground-truth classification results of each base learner. Each row (i.e., each class) is

thereby assigned a code word uniquely identifying its class. ECOC ensembles always

have many more base learners than candidate classes, as this incorporates redundancy

into the code words, with the result that the Hamming distance between the code words

increases. There are also a number of other methods that can be used to help increase the

 337

Hamming distance. In any case, one of the many available binary error correction

algorithms available can then be applied to the code words output by the classifier

ensemble when classifying individual instances in order to flip incorrect bits generated

due to errors made by individual base learners (Kuncheva 2004).

Those interested in finding further information on classifier ensembles in general may

wish to consult Kuncheva’s book (2004) or the book edited by Kandel and Bunke (2002).

6.2.8 Ontological learning and blackboard systems

Classification approaches that take advantage of structure in the class ontology of a

problem can also be used. For example, one might organize musical genres into a

hierarchical ontology where broad genres such as Jazz are at the root of the genre tree and

narrower genres such as Dixieland, Swing and Bebop are nearer the tree’s leaves. Since

classification problems generally increase in difficulty with the number of candidate

classes, it can be useful to reduce a complex and difficult classification problem involving

many leaf genres to a series of easier sub-problems. To continue the above example, the

classifier might first solve a simple three-class Jazz/Classical/Rock problem and then

address a series of increasingly more specific sub-problems using specialized models that

are each trained to classify only amongst the direct descendants of each node in the tree.

Such a hierarchical classification approach involving a hierarchically organized set of

specialized classifiers has in fact been effectively used for musical genre classification in

this manner (McKay 2004). This approach is also often applied to computer vision

problems, where objects can be reduced to collections of smaller shapes, or otherwise

organized hierarchically (e.g., Barutcuoglu and DeCoro 2006).

This hierarchical classification approach not only has the advantage of taking

advantage of knowledge about the problem domain to improve classification success

rates, but can also result in misclassifications that are less severe than they might

otherwise be when misclassifications do occur. This is because serious misclassifications

will usually only occur when they are made near the top of the hierarchical class

ontology, since classes become increasingly similar as one descends down the tree.

Furthermore, this approach facilitates weighted penalization during training because of

the knowledge embedded in the representation of the class ontology, although training

schemes that penalize misclassifications between dissimilar classes more than

 338

misclassifications between similar classes during training can certainly be used even

when hierarchical classifier ensembles are not used.

Blackboard systems offer a particularly interesting approach that was popular in the

past, but is less fashionable recently, perhaps unfairly so. Blackboard systems consist of

knowledge sources that are each experts in different problem domains and that each write

hypotheses about a problem to a shared data space called a blackboard. Each knowledge

source can then access information written to the blackboard by other knowledge sources

and use it to refine its own hypotheses. Blackboards provide an excellent infrastructure

for combining expert systems with supervised and unsupervised learning methodologies

such that known information about a given problem domain can be incorporated into

overall ensembles that also take advantage of machine learning to make up for areas of

the problem domain that are poorly understood. The book edited by Jagannathan,

Dodhiawala and Baum (1989) is a good source of information on blackboard systems.

6.2.9 Sequential learning

The classification algorithms described above and in Section 6.2.6 are designed to

process instances individually, which is to say that it is assumed that the instances are

independent and their ordering is irrelevant. Although this is certainly a reasonable

assumption for certain types of classification, such as classification of songs by composer

or mood, there are also many other cases where the sequence of inputs is significant.

Melody and harmony, for example, are inherently sequential concepts. It is much more

likely that a ii chord will be followed by a V chord than by a I chord in tonal music, for

instance and, to give another example, speech recognition involves learning to associate a

sequence of phonemes with a particular word.

There are a number of classification algorithms designed specifically to deal with data

where the sequence of inputs is meaningful. Although ACE in its current form does not

yet include any such algorithms, their inclusion in a future version is a priority, so it is

appropriate to briefly touch on a few highlights of sequential classification here.

Recurrent neural networks, as briefly discussed in Section 6.2.6, are one well-known

algorithm for dealing with sequential data. They incorporate a memory of previously

encountered data via links leading from output nodes to nodes in previous layers.

 339

Conditional random field classifiers offer another alternative for classifying

sequential data, in this case using a probabilistic approach. An undirected graphical model

is constructed, in which each vertex represents a random variable whose distribution must

be inferred and in which each edge represents a dependency between the random

variables of the two associated vertices.

Hidden Markov models (HMMs) are perhaps the best-known sequential classifier, and

are in effect a special case of conditional random fields with stricter assumptions about

the input and output sequence distributions. Like conditional random fields, HMMs can

be visualized as graphs, although in the case of HMMs the edges are directed, each vertex

represents a state and the edges represent transition probabilities between the states.

HMMs will be explained in some detail here, as they are a good illustration of how

sequential classification can work.

In order to illustrate HMMs, it is useful to consider a system that can be in one of N

distinct states, S1, S2, . . . , SN. The state at some time or position, t, is denoted as qt. The

system may move to a new state with some probability dependant on the previous states

of the system in time:

 P(qt+1=Sj | qt=Si, qt-1=Sk, . . .) (6.18)

A first-order Markov model makes the assumption that the state at time t+1 only

depends on the state at time t, and not on time t-1, t-2, . . ., t1. This is equivalent to saying

that the future depends on the present but not on the past. A problem can be further

simplified by assuming that transition probabilities are independent of time, which is to

say that the probability of going from Si to Sj does not change as time goes by. Put more

formally, these assumptions mean that the probability of a transition, aij, from state i to

state j becomes:

aij = P(qt+1=Sj | qt=Si) (6.19)

where

 0ija and 1
1

N

j

ija (6.20)

and where N is, once again, the number of possible states. The set of all aij can then be

combined into an NxN matrix A whose rows sum to 1:

A=[aij] (6.21)

 340

The initial state, or first state, can be defined using the initial probabilities, πi, which

gives the probability that the first state in the sequence is Si:

πi = P(q1=Si) where 1
1

N

i

i (6.22)

The initial probabilities can then be expressed as a vector:

Π=[πi] (6.23)

where the N elements sum to 1.

In an observable Markov model the current state can be observed. Put more formally,

the value of qt is known at time t, and one can observe the sequence of states that the

model passes through over time, O:

O = Q = {q1q2 . . . qT} (6.24)

whose probability is

qTqTqqq

T

t tt aaqqPqPAQOP 12112 11 ...)|()(),|((6.25)

Here πai is the probability that the first state is q1 and aq1q2 is the probability of going from

state q1 to q2.

In hidden Markov models, however, the states are not directly observable, although an

observation can be made whenever a state is visited that is a probabilistic function of the

state. In other words, information is observed when each state is visited that can give

hints as to what that state might be. If there are M possible discrete observations of such

hints of what the state might be, v1, v2, . . . , vM, then:

bj(m) = P(Ot = vm | qt = Sj) (6.26)

where bj(m) is the emission probability or observation probability that vm is observed in

state Sj. These emission probabilities can be collected into the matrix B=[bj(m)]. It is

important to reemphasize that the probabilities are assumed to not depend on t, and that

the values observed constitute the observed sequence O. The actual state sequence Q

cannot be observed directly because the model is hidden, but it can be inferred from the

observed sequence O. It is then useful to calculate the Q that is most likely to have

generated O. The parameters of a hidden Markov model are thus:

 λ=(A, B, Π) (6.27)

N and M are implicit in these.

HMMs are usually used to solve three basic kinds of problems:

 341

 Given a model λ, what is the probability of a given observed sequence of events?

In other words, what is P(O|λ)? There is an efficient recursive procedure for

calculating P(O|λ) called the forward-backward procedure.

 Given λ and O, what is the most likely state sequence Q? In other words, what is

the Q* that maximizes P(Q|O,λ)? The Viterbi algorithm can be used to find the

most likely state sequence using dynamic programming.

 Given X, a set of k observed training sequences, what is the model λ that

maximizes the probability of generating X? In other words, what is the λ* that

maximizes P(X| λ)? The Baum-Welch algorithm can be used to solve this problem.

A typical approach to using HMMs in classification is to have a set of HMMs, each

one modelling sequences associated with one class. For example, for a speech recognition

problem one could train a separate HMM model, λi, for each word of interest, where each

state would correspond to a different phoneme. Given an unknown word consisting of a

sequence of phonemes to classify, O, the P(O|λi) could be calculated for each λi. Bayes’

rule can then be used to find the posterior probabilities P(λi|O), and O is classified as the

word associated with the λi with the highest posterior.

If the input observations to an HMM are continuous rather than discrete, then one

possibility is to discretize them using a technique such as vector quantization. This

converts continuous values to discrete units. For example, a continuous sound signal of

someone speaking can be separated into discrete phonemes by a pre-processing stage, and

the resulting phonemes can then be processed by an HMM as described above.

6.2.10 Meta learning

Meta learning is a term that is overloaded in machine learning. For example, it is

sometimes used to simply refer to classifier ensembles in general, a usage that is not

adopted here. Instead, meta learning is used here to refer to the process of automatically

selecting a good classification methodology or, potentially, combination of classification

methodologies, to apply to a given classification problem using a data-driven empirical

process. The choice of classification configuration can be very important decision since,

as discussed previously in this section, different algorithms make different assumptions

and are more or less suitable for different kinds of problems.

 342

Meta learning is often implemented by automatically performing experiments in the

given problem domain where each of a variety of classification configurations are trained

separately and tested comparatively in order to arrive at estimates of how well each

performs. Different classification configurations can be evaluated with respect to

classification error, classification consistency, training space and time complexity,

classification space and time complexity, etc. Preference can also be given to algorithms

that have desirable qualities for the particular problem domain, such as transparency, for

example.

An alternative approach is to either replace or supplement this process of successive

experimentation with data analysis techniques that can automatically examine feature

statistics and domain needs in order to form hypotheses about which types of classifiers

might be a best fit for a problem, given known characteristics of different classification

algorithms. Van Someren (2001) and Kalousis, Gama and Hilario (2004), for example,

provide some interesting background relevant to this latter approach.

Yet another approach to meta learning involves training a machine learning system to

choose a classification configuration for particular problems, rather than just

experimentally ranking the estimated performance of different configurations directly.

Although some ensemble techniques such as stacking or mixture of experts do effectively

do this, they tend to do so in a very limited sense, as they typically only choose between

learners that are of the same type but trained differently, or between a few relatively

simple algorithms. Work has also been done on training more sophisticated specialized

meta learning coordinators (e.g., Dzeroski, Todorovski and Blockeel 2002).

Meta learning can be used to select not only different algorithms, but also different

algorithm hyperparameters and, if one is willing to experiment with classifier ensembles

as well as individual classifiers, different approaches to combining algorithms into

classifier ensembles. Meta learning can also be used to select between different pre-

processing or post-processing techniques, such as dimensionality reduction algorithms.

As noted in Section 6.1.2, there are a number of important advantages to meta

learning. Perhaps most important among these is that meta learning can make effective

pattern recognition techniques available to users who might otherwise lack sufficient

background in machine learning to select appropriate algorithms, and even individuals

 343

with significant experience in machine learning can benefit from meta learning. The

downside of meta learning, of course, is that it can be a computationally intensive and

time consuming process to perform experiments with a wide variety of classifier

configurations, particularly if many features and training instances are available to be

processed.

As discussed in Section 6.2.4, one must be careful to use statistically valid methods

when comparing classifiers. A reserved publication set should be used to validate the final

classification configuration output by the meta learning system in order to help ensure

that the meta learning system itself is not overfitting the training data. Work has also been

done on dataset sub-sampling techniques that can be used to partition training data in

ways that improve meta learning performance (e.g., Fürnkranz et al. 2002). Appropriate

hypothesis testing methodologies must also be used to verify that performance differences

between different classification methodologies are actually statistically significant.

6.3 Existing machine learning software libraries

6.3.1 General machine learning software

There are many available implementations of algorithms like those described in

Section 6.2. Some of these are simple code libraries that may be embedded in external

applications and some are complete applications with sophisticated user interfaces.

Although there are far too many implementations to survey with any completeness here, it

is appropriate to provide an overview of some of the best-known and most flexible pattern

recognition frameworks.

RapidMiner, formerly known as YALE (Ritthoff et al. 2001; Klinkenberg, Mierswa,

and Ritthoff 2005; Mierswa et al. 2006; http://rapid-i.com), is one of the most popular,

powerful and professional-looking data mining environments. RapidMiner is

implemented in Java, and comes in an open-source version as well as an expanded

enterprise edition. RapidMiner’s source code is available under a GNU General Public

License as well as a proprietary OEM commercial license. It includes powerful graphical

and command-line interfaces as well as an API.

MatLab is a particularly popular framework for implementing and distributing

machine learning implementations, and many of these toolboxes have become quite

 344

popular, such as the Neural Network Toolbox.
154

 The disadvantages with all MatLab

toolboxes, unfortunately, is that one must purchase and use the proprietary Matlab

software.

PRTools (van der Heijden et al. 2004) is one particularly appealing MatLab toolbox

because it includes implementations of many different algorithms. PRTools’ license does

not permit it to be redistributed freely, however. Octave (Eaton and Rawlings 2003) is a

free alternative MatLab toolbox that includes a limited number of tools that can be used

for classification.

Torch (Collobert, Bengio and Marithoz 2002) provides a MatLab-like environment

for applying machine learning, although it is implemented in C. It places a particular

emphasis on efficiency, and is distributed under a BSD license.

Orange (Demsar et al. 2004) is a set of C++ implementations of machine learning and

data mining algorithms that also includes flexible data input and manipulation tools.

Orange’s functionality can be accessed via the Python scripting language or via a visual

programming environment.

SciPy
155

 is another open-source software package associated with Python. It may

certainly be used for machine learning, although its main focus is on mathematical and

scientific computing in general, not specifically machine learning.

The R Project (Ihaka and Gentleman 1996) is another alternative. Its particular focus

is on statistical computing, and it is particularly well-known for its graphing capabilities.

SEASR, or the Software Environment for the Advancement of Scholarly Research

(Llorà 2008), is a Java-based framework that is particularly attractive because it facilitates

distributed processing of computationally intensive tasks and because it provides a

flowchart-based interface. Although the focus of SEASR tends to be more application

driven, it can still be used for heavyweight data mining.

There are many other less well-known machine learning frameworks available, such

as Java-ML,
156

 MLC++
157

 and Tanagra.
158

 There are also many commercial data mining

154

 www.mathworks.com/products/neuralnet/
155

 www.scipy.org
156

 java-ml.sourceforge.net
157

 www.sgi.com/tech/mlc/
158

 chirouble.univ-lyon2.fr/~ricco/tanagra/index.html

 345

frameworks, such as XELOPES,
159

 but these are almost always both proprietary and

closed source, which significantly limits their academic research potential.

There are also several excellent frameworks designed with a specific focus on music,

but they tend to implement only limited data mining functionality relative to general

purpose systems like RapidMiner. Marsyas (Tzanetakis and Cook 2000), CLAM (Arumi

and Amatriain 2005), MIRToolbox (Lartillot, Toiviainen and Eerola. 2008) and sMIRk

(Fiebrink, Wang and Cook 2008b), for example, are particularly well-designed MIR

frameworks, but tend to focus much more on audio processing and feature extraction than

on more sophisticated machine learning techniques like ensemble classification and meta

learning.

One particularly interesting exploratory system that is both music focused and

commercial in nature is Sony EDS (Pachet and Aymeric, 2004). This framework has the

advantages of allowing dynamic construction of audio features and of allowing the use of

specifiable heuristics. However, Sony’s approach focuses specifically on genetic searches

rather than on experimenting with a diverse range of algorithms, and emphasizes the tasks

of similarity and recommendation rather than music classification in general.

6.3.2 Weka

Weka (Witten and Frank 2005; http://www.cs.waikato.ac.nz/ml/weka/), or the

Waikato Environment for Knowledge Analysis, is another well-known Java-based data

mining package. It is given special attention here because it is the most popular machine

learning library in the MIR research community and because ACE uses Weka’s classifier

implementations. Weka is not only useful as a source of off-the-shelf algorithm

implementations, but also as a platform for developing and distributing new algorithms.

Weka is entirely open-source and is available under a GNU General Public License. It

includes implementations of a wide variety of machine learning algorithms and related

tools, and there is relatively good supporting documentation available for it. Weka reads

and writes Weka ARFF files, which are essentially enriched delimited text files, and also

provides access to SQL databases via JDC.

159

 www.prudsys.com/Produkte/Algorithmen/Xelopes

 346

Weka provides several user interfaces. The ―Explorer‖ interface, which is intended as

the main interface, is a GUI that permits users to pre-process data via ―filters,‖ identify

relationships between features, apply dimensionality reduction algorithms, apply

supervised classification and regression algorithms, apply clustering algorithms, estimate

the accuracy of learned models and visualize results. As indicated by its name, the

Explorer interface is largely intended for exploring and experimenting with data.

The other Weka user interfaces are perhaps more suited for heavyweight machine

learning. The command-line interface is particularly powerful, and can be capitalized

upon by using scripting to automate sequences of tasks. As a visual programming

alternative to the command-line, the ―Knowledge Flow‖ interface allows Weka’s

functional components to be accessed via a component-based GUI. The ―Experimenter‖

is another graphical interface that is primarily intended for comparing the performance of

Weka’s machine learning algorithms on collections of datasets. The most useful of

Weka’s interfaces, from the perspective of embedding Weka’s functionality into other

software applications like ACE, is Weka’s well-documented API.

6.3.3 Meta learning software

There are a few available systems that implement experimental meta learning

functionality. Many of these are excellent general-purpose systems, and are therefore

briefly reviewed here, but many of them unfortunately fail to meet the particular needs of

music classification (see Section 6.4.5).

Consultant (Sleeman, Oehlman, and Davidge 1990), an ESPIRIT project, is an early

software tool designed to aid users in selecting appropriate data mining tools by

comparing different algorithms. ESPIRIT later produced two other meta learning-related

efforts, namely Statlog (Michie, Spiegelhalter, and Taylor 1994) and METAL (Widmer

1996). The Data Mining Advisor (Brazdil, Soares and Costa 2003), a descendant of the

METAL project, is a web-based assistant that outputs a ranked list of algorithms

according to a weighted combination of parameters such as time and accuracy.

The Algorithm Selection Tool (Lindner and Studer 1999), or AST, offers a means of

selecting algorithms using a case-based reasoning approach. Users are given explanations

for each algorithm recommendation in the form of past experiences that are available for

the case base.

 347

The Intelligent Discovery Electronic Assistant (Bernstein, Provost and Hill 2005), or

IDEA, can be used to automatically choose appropriate data mining ―processes,‖

depending on user needs such as accuracy and time complexity. A process may involve

data preparation, classification and post-processing. The system generates possible

processing steps for a specific task and then ranks them according to user specifications.

The speed estimation is pre-determined based on tests with UCI data and the accuracy

estimation is ―autoexperimented‖ using a subset of the dataset.

SwissAnalyst (Povel and Giraud-Carrier 2004) is an open-source Java data mining

environment built upon Weka. It places a particular emphasis on exploratory business

research. The GUI is divided into five basic sections: Data Sources (loading datasets),

Pre-Processing (dataset transformations), Data Exploration (statistics and visualization),

Model Definition (defining and executing mining models), and Trained Models

(evaluating and applying models to new datasets). SwissAnalyst can pre-select

classification schemes based on the type of input data.

TunedIT (tunedit.org) is a new application for comparing different machine learning

algorithms. It is designed specifically to evaluate the performance of new machine

learning algorithms relative to existing ones, but it can potentially be adapted to meta

learning in general. TunedIT is also associated with a knowledge base to which

experimental results can be published and a repository where resources such as algorithm

implementations and data sets can be stored.

Giraud-Cartier and Keller (2002) provide an excellent historical background on meta

learning systems.

6.4 ACE’s functionality

As noted in Section 6.1.2, ACE is a software application designed to make powerful

machine learning techniques accessible even to researchers with little or no background in

machine learning. This includes users such as musicologists, music theorists, librarians

and psychologists who possess valuable insights into MIR problems but might not have

training in machine learning. This is important, as experts in pattern recognition rarely

have specialized knowledge in individual application areas like music, and experts in

these application areas rarely have expertise in pattern recognition. ACE’s meta learning

 348

functionality can be used to automatically experimentally evaluate the effectiveness of

different machine learning algorithms with respect to any given problem, which means

that ACE can automatically recommend the specific machine learning algorithms that are

appropriate for a particular problem to a researcher without the researcher needing to

understand how the machine learning algorithms actually work. ACE then allows users to

train a classification model using the chosen algorithm(s), and then use this trained model

to classify unidentified instances.

ACE is also intended to be a useful tool for users who do in fact have strong

backgrounds in machine learning by providing a framework for developing, evaluating

and applying machine learning algorithms. Of particular interest, expert users can use

ACE to benchmark and compare the performance of new classifiers and features relative

to the baseline provided by ACE’s already implemented algorithms and features that can

be extracted using jMIR’s feature extractors. This process is facilitated by the fact that

ACE uses Weka classifiers as plug-in modules, something that makes it easy to

implement new algorithms in the Weka framework and then experiment with them in

ACE.

ACE is designed specifically for music classification, and has a number of important

strengths in this domain relative to alternative general machine learning systems, as

explained below. However, ACE can certainly also be easily applied to non-musical

classification problems as well.

Figure 6.5 provides an overview of ACE and its role in jMIR. The input to ACE

consists of extracted feature values, ground-truth labels
160

 and an optional structured class

ontology.
161

 This information can all be represented in ACE XML Feature Value,

Instance Label and Class Ontology files, respectively (see Chapter 7). This is convenient

in using ACE with other jMIR components, such as feature values saved in ACE XML

Feature Value files by jAudio, jSymbolic or jWebMiner, or labelled ground-truth saved in

160

 Ground-truth labels are only needed if a model is to be trained or if cross-validation or meta learning are

to be performed. They can of course be omitted if ACE is simply being used to classify instances using a

previously trained model.
161

 Structured ontologies can be used by certain classification algorithms, such as hierarchical classifiers,

and can also facilitate weighted training schemes that penalize misclassification into similar classes less

severely than other types of misclassification. Such algorithms are not yet implemented in ACE, but its file

formats and data structures are already designed to store and communicate structured class ontologies in

anticipation of the addition of this functionality in the future.

 349

Figure 6.5: The flow of information in and out of ACE. ACE XML (or Weka ARFF) files

are used to input feature values, ground-truth labels and/or a structured class ontology.

ACE then automatically partitions the input instances based on whether classification,

training, cross-validation or meta learning experimentation is to be performed. ACE then

uses its catalogue of dimensionality reduction and classification algorithms, including

classifier ensembles, to perform the desired task. It then outputs predicted instance

labels, trained classification models or algorithm evaluations, depending upon the task

selected by the user.

Classification
Algorithms

SVM, neural nets,

k-NN, etc.

ACE

Extracted Feature
Values

Ground-truth
Labels

Classification
Output

Ensemble
Algorithms

Boosting, bagging

ACE
(Using Weka algorithm

implementations)

Dimensionality
Reduction
Algorithms

GAs, PCA, etc.

ACE XML Files
Enable communication

between jMIR components

Class
Ontology

Algorithm
Evaluations

Training and
Validation

Sets
Train and test

classifiers

Publication
Set

To avoid meta

learning

overfitting

All Input
Data

Just training

or just

classification

OR

Trained
Classifiers

 OR OR

 350

ACE XML Instance Label files using jMIRUtilities (see Section 8.8). Feature values and

ground-truth may alternatively be input to ACE via Weka ARFF files

(Witten and Frank

2005), although the use of ARFF instead of ACE XML imposes certain limitations on

how ACE can be used, as certain types of information that can be taken advantage of by

ACE cannot be represented in ARFF.

6.4.1 Core processing performed by ACE

ACE is designed to perform four basic types of tasks:

 Training: A classification model is trained and saved based on feature values and

associated ground-truth class labels provided by the user. The particular

dimensionality reduction and machine learning algorithms to be used are specified

by the user, based either on the results of prior meta learning performed with ACE

or on some other reasons that the user may have.

 Classification: A previously trained classification model specified by the user is

used to classify instances based on features that have been extracted from them.

ACE then outputs the resulting predicted class labels for each instance.

 Cross-validation: Cross-validation is performed on user-specified feature values

and ground-truth using dimensionality reduction and classification algorithms also

specified by the user. This can be useful in evaluating the performance of a

particular feature set or a particular algorithm, for example. A variety of

performance statistics are output by ACE.

 Experimentation: Meta learning is applied to the provided data in order to

evaluate the appropriateness of different classification approaches to the given

application domain. ACE experiments with different dimensionality reduction

algorithms combined with different classification algorithms and, in some cases,

different algorithm hyperparameters. ACE begins the experimentation process by

generating several different feature subsets, one for each dimensionality reduction

algorithm. Cross-validation is then performed once for each candidate

classification algorithm on each such feature subset. Reports are then generated

indicating the best performing dimensionality reduction and classification

 351

algorithm pairing and providing associated statistics. Information is also provided

on all other algorithm combinations that were experimented with as well.

ACE automatically partitions input data in ways that depend on the type of task that is

to be performed. If only classification or only training is to be performed, then all of the

input data will simply be processed in a single group. If cross-validation is to be

performed, then the data is automatically partitioned into folds, such that each fold is

appropriately divided into training and testing sets.

If meta learning experimentation is to be performed then, as of ACE 2.0, some of the

input data is randomly reserved as a final publication set to be used in evaluating the best-

performing dimensionality reduction and classification algorithm pair. The non-

publication data is used in the cross-validation experiments that are performed in order to

evaluate each algorithm pair. The algorithm pair that has the highest cross-validation

performance is then used to train a new model that is trained on the entirety of the data

that was previously used in the cross-validation experiments. Finally, the resulting model

is validated on the reserved publication set, in order to test for overfitting by the meta

learning process.

There are a number of ACE parameters and pre-processing options that may be

selected by users, including:

 A maximum may be imposed on the percentage of instances that are permitted to

belong to any single class in the data used for training and validation. This can be

useful in helping to ensure that, in cases where far more instances are available

belonging to one class than another, the classifiers do not train to a local

performance maximum where instances are never classified to classes that are rare

in the training data, or that the ability to classify to rare classes is not undervalued

during evaluation. This option causes excess instances belonging to overly

common classes to be randomly filtered out from the training, validation and

publication datasets.

 A maximum may be imposed on the number of instances that may belong to each

class in the training data. Instances beyond this number are removed from the

training data. This can be useful for similar reasons as imposing a maximum on

 352

the class ratio, as described above, and can also be advantageous in speeding up

training when very large datasets are available.

 The instances may be processed in the order that they appear in the input files, or

they may be ordered randomly. The order in which training instances are

processed can have an influence on the models trained by certain classification

algorithms, such as feedforward neural networks.

 The number of folds to use during cross-validation.

 The maximum number of features beyond which exhaustive dimensionality

reduction searches will not be experimented with.

 Whether basic or verbose reports are to be generated.

6.4.2 Information output by ACE

The output of ACE depends on which of the four basic tasks described in Section

6.4.1 is requested by the user. If basic training of a model is to be performed using a

specified classification algorithm, then the output is simply the trained model itself saved

as a Weka Java serialized object. Although there are long-term portability disadvantages

with the use of such serialized objects (see Section 7.2.6), the classifier implementations

used by ACE are all part of the Weka library, and Java serialized objects are the

methodology used by Weka to save trained models. It is necessary for ACE to conform to

this practice in order for the models that it trains to be distributable to others who may

wish to use the trained models directly with Weka.

Users who wish to use a previously trained model to classify a set of instances may

have ACE output predicted class labels for each instance to either ACE XML Instance

Label files or Weka ARFF files. Additional useful information may also be printed to

standard out. The nature of this additional information depends on whether model

classifications are provided along with the trained model. If such model classifications are

available, then the identifier of each instance is specified by ACE along with its predicted

classes and model classes. Instances whose predicted classes do not correspond to their

model classes are marked with asterisks, and summary statistics are provided indicating

the total number of classifications and the percentage of predicted class labels that match

 353

the corresponding model class labels. If no model classifications are available, then the

predicted class labels of each instance are simply listed. This additional information is

provided primarily for quick and easy access during debugging, however, and it is the

ACE XML or Weka ARFF files mentioned above that are intended as the primary output.

The basic output produced when cross-validation is performed consists of the

classification success rate for each fold and a confusion matrix for each fold. Overall

statistics are also provided, including the average success rate across folds, the standard

deviation of the success rates across folds, a confusion matrix averaged across folds, the

processing time and the name of the dimensionality reduction and classification algorithm

configuration that were applied at the user’s behest. Users may also select the verbose

output option, in which case it is also indicated for each fold which instances were used

for testing and which were used for training, as well as the predicted versus model class

labels for each test instance.

As one might expect, the greatest volume of user feedback is produced when meta

learning experimentation is performed. As noted above, ACE begins the experimentation

process by generating several different feature subsets, one for each dimensionality

reduction algorithm. Cross-validation is then performed once for each classification

algorithm on each such feature subset. ACE generates a separate report for each such

feature subset, specifying the features selected (or their projections, if appropriate) as well

as, for each classification algorithm, the cross-validation average success rate, the

standard deviation of the success rate across folds and the processing time. The best

performing algorithm for the feature subset is also highlighted, and its confusion matrix is

provided. If the verbose output option is selected, then detailed information is also

provided on the he dimensionality reduction, with content that depends on the particular

algorithm.

A summary meta learning experimentation report is also generated, indicating the

classifier and dimensionality reduction algorithm pair that achieved the highest average

cross-validation success rate. Its cross-validation performance during experimentation is

repeated from its corresponding feature subset report, for ease of reference. More

significantly, the classification results of the selected algorithm pair applied to the

reserved publication set are also reported. A comparison of the classification results on

 354

the publication set with the cross-validation results from the meta learning comparison

experiment can help to indicate if the meta learning algorithm overfitted the available

data and, if not, what kind of performance can be anticipated on novel instances. If the

verbose output option is selected, then the predicted and model class labels are indicated

for each instance in the publication set, along with detailed information regarding the

dimensionality reduction performed.

6.4.3 Algorithms used by ACE

The following algorithms are packaged with ACE:

 Dimensionality reduction algorithms:

o Principal component analysis

o Genetic search

o Exhaustive search

 Base classifier algorithms:

o C4.5 decision tree classifier

o Naïve Bayes classifier

o K-nearest neighbour classifier

o Backpropagation neural network classifier

o Support vector machine classifier

 Classifier ensemble algorithms:

o Adaboost

o Bagging

These particular algorithms were chosen because they are all well established and have a

variety of relative advantages and disadvantages.

As mentioned above, ACE makes use of the Weka API, so the Weka implementations

of all of these algorithms are used. It is a relatively simple matter to add additional

algorithms to ACE once they are implemented in Weka. A reference to a new Weka

 355

algorithm need only be added to a single ACE Java class, after which the new algorithm’s

functionality will automatically become accessible to all other aspects of the software.

This means that those wishing to experiment with algorithms beyond those already

packaged with ACE have available to them the extensive library of algorithms already

implemented as part of Weka. This library is also constantly expanding, as the Weka

development community is quite active.

ACE not only performs experiments during meta learning with different classification

algorithms, but also automatically experiments with different hyperparameterizations of

some of these algorithms. The particular hyperparameterizations depend on the individual

algorithms. For example, experiments with k-NN are automatically performed with a

variety of values of k, as well as versions that are unweighted, weighted by distance and

weighted by similarity.
162

 To provide another example, the naïve Bayes’ classifier is

applied using both a basic Gaussian kernel and a kernel density estimator. By default, the

classifier ensemble algorithms are seeded with decision tree stubs and the genetic search

dimensionality reduction uses a naïve Bayes’ classifier to evaluate chromosome fitness.

6.4.4 Administering jMIR projects

ACE can be used to organize and administrate jMIR projects. ACE includes

functionality for generating, modifying and accessing jMIR projects via ACE XML

Project and ZIP files (see Section 7.11.1), as well as for viewing, editing and saving

component ACE XML Feature Value, Instance Label, Feature Description and Class

Ontology files. ACE can also be used to translate Weka ARFF files to ACE XML, and

vice versa.

jMIRUtilities (see in Section 8.8) is also a useful tool performing administrative tasks

relating to integrating jMIR components with each other and with external sources of

data, such as iTunes XML files. jMIRUtilities also automates some tasks that can also be

performed with ACE as well. For example, the ACE GUI can be used to annotate

instances with class labels, but jMIRUtilities’ batch instance labelling tool can do so

much faster if there are many instances to label.

162

 The Weka implementation of these weighting metrics are described at

weka.sourceforge.net/doc.stable/weka/classifiers/lazy/IBk.html.

 356

6.4.5 Advantages of ACE over alternative machine learning frameworks

As discussed in Section 6.3, there are a number of alternative machine learning

frameworks, many of which are powerful and high-quality pieces of software. Why, then,

should one use ACE instead of one of these alternatives?

One of the most important advantages of ACE is that it is one of the few frameworks

that implement automated experimental meta learning. A related advantage of ACE is

that its interface does not presuppose any background in machine learning on the part of

users. Although several alternative systems do have excellent interfaces, including some

with attractive and intuitive graphical user interfaces, like RadidMiner, these interfaces

are typically designed for people who have at least some basic expertise in machine

learning, and can require significant effort to learn and understand for users without such

a background. ACE, in contrast, allows users to simply specify input files and have the

system generate results. There is no need for users to specify variables such as the

dimensionality reduction algorithms to use, the classification algorithms to use or the data

partitioning approach to use unless, of course, they wish to. The simplicity of this

approach helps to make the software much more accessible to general users.

Furthermore, ACE is implemented entirely in Java and does not require any external

libraries beyond those that are packaged with it. This platform independence can

significantly reduce installation difficulties, particularly compared to C or C++-based

systems, for example, where installation can often entail lengthy and difficult debugging

in order to resolve linking problems.

An additional advantage of ACE is that it is open-source, free and does not require

any proprietary software to run. Although ACE is certainly not the only framework like

this, many alternatives do in fact require the purchase of proprietary software such as

MatLab in order to be used even if they are free themselves.

Perhaps the strongest advantage of ACE, however, is that it is designed to meet the

particular needs of music information retrieval research. ACE is, in fact, the only meta

learning framework designed specifically for music research. Music has a number of

particularities and special problems that often fail to be properly and conveniently

addressed by general-purpose machine learning frameworks.

 357

Many of the limitations of general-purpose frameworks become apparent even at the

representational level, as the file formats used by many alternative systems are incapable

of representing types of information that can be essential to music research. The ACE

XML file formats and the ACE data structures and methods that can be used to process

the data stored in them are thus among the strongest advantages of ACE relative to

alternative systems. Although the advantages of ACE XML with respect to representing

data that is relevant to automatic music classification are discussed in much more detail in

Chapter 7, some of highlights that are particularly relevant to ACE are listed below:

 The ability to associate multiple classes with a single instance. This is essential to

many central MIR research areas, such as genre or mood classification.

 The ability to represent class labels and feature values for potentially overlapping

sub-sections of instances as well as for instances as a whole. This is fundamental

to dealing with audio, which is typically windowed during feature extraction, as

well as for music segmentation. It can be very useful to maintain the logical

relationship between a window of features and the recording that it was extracted

from, rather than simply treating each window as an independent instance, as most

classification frameworks do.

 The ability to maintain logical groupings between multi-dimensional features.

Many important MIR-related features are multidimensional, such as MFCCs and

beat histograms, and there can be important classification advantages to

maintaining an association between the values of each such feature. Most

alternative frameworks, in contrast, simply treat each value of a feature vector or

array simply as an entirely separate feature.

 The ability to represent structured class ontologies. This information can be taken

advantage of by classification algorithms such as hierarchical classifiers, for

example. This can also be used to improve classifier training by enabling

misclassifications between dissimilar classes to be penalized more severely than

misclassifications between similar classes. This ability to take into account the

seriousness of different misclassification can also be used to more fully compare

 358

algorithm evaluations during meta learning. Most alternative frameworks do not

provide any way of representing relationships between different classes, however.

 The ability to maintain various kinds of metadata about instances in a way that is

packaged directly with the instances.

6.5 ACE’s interface

ACE’s functionality can be accessed via three different interfaces:

 Command-line: This is currently the primary means of using ACE as a meta

learning and classification application. Training, instance classification, cross-

validation and meta learning experimentation functionality can all be accessed via

the command-line, and a number of settings and parameters, as discussed in

Section 6.4, can be specified as well. Instructions on how to use the command-line

are specified in the ACE 2.0 manual, and highlights can also be accessed by

running ACE with the -help flag. The command-line interface is particularly

useful for performing batch processing using various scripting tools or for quickly

repeating experiments, with or without minor parameter variations. Very large

datasets can take days or even weeks to process, and the automation of batch

processing removes the need for human supervision during this period. The

command-line is the only way to access ACE 1.0’s core functionality, and is also

improved significantly in ACE 2.0.

 Graphical User Interface: A command-line interface can be an obstacle to less

technically oriented users, so efforts are ongoing to implement a GUI to facilitate

access to ACE. As of the time of this writing, ACE 2.0’s GUI may be used to

display, edit and save ACE XML 1.1 files as well as perform various ACE XML

Project and ZIP utility functions. It cannot yet be used to access ACE’s core

machine learning functionality, such as meta learning experimentation, but efforts

are ongoing to implement this functionality. Figures 6.6 to 6.9 illustrate some of

the GUI components that are already implemented. More details are available in

the ACE 2.0 manual.

 359

 Java API: ACE 2.0 is designed to be easy to integrate into other software

frameworks, and its architecture is explicitly formulated to facilitate both this and

extensibility. The code itself is open-source, and is well documented. As can be

seen in Figure 6.10, all of ACE 2.0’s functionality can be accessed via a

Coordinator class. Tasks associated with dimensionality reduction, model

training, instance classification, cross-validation and meta learning

experimentation are each modularly segregated into, respectively, the

DimensionalityReducer, Trainer, InstanceClassifier, CrossValidator, and

Experimenter classes. Although these can certainly be extended by developers if

desired, those wishing to simply incorporate ACE as is into their own systems

never need to directly access them, or even be aware of their existence, as their

functionality is entirely abstracted into the Coordinator class. More details are

available in the ACE 2.0 manual and in the code itself.

 360

Figure 6.6: Sample genre taxonomy displayed in the Taxonomy Pane of the ACE 2.0

GUI. Users are able to create, load, view, edit and save class ontologies using this pane.

Figure 6.7: Sample feature metadata displayed in the Feature Descriptions Pane of the

ACE 2.0 GUI. This information relates to features themselves, not to actual feature

values extracted from features. Users are able to create, load, view, edit and save

feature metadata using this pane.

 361

Figure 6.8: Sample instance class labels displayed in the Instances Pane of the ACE 2.0

GUI. Users are able to load, view, edit and save feature class labels and other

information using this pane.

Figure 6.9: Sample feature values as well as class labels for an audio segmentation task

displayed in the Instances Pane of the ACE 2.0 GUI. This figure demonstrates how the

Instances Pane can be used to display feature values and class labels both for overall

instances and for subsections of instances.

 362

Figure 6.10: Highlights of ACE 2.0’s class structure. A number of methods and fields are

omitted for the sake of brevity, as are all method parameters. All of ACE’s functionality

can be accessed via the Coordinator class. Arrows indicate interactions between

classes.

 363

6.6 Improvements in ACE 2.0

It is useful to briefly summarize the differences between ACE 1.0 and ACE 2.0, since

they are both publicly available, and Sections 6.4 and 6.5 include information relating to

both versions of ACE. ACE 1.0 is the current stable release and ACE 2.0 is the current

developer release. ACE 2.0 includes all of the functionality of ACE 1.0, but is not as fully

tested, and still has certain features under development. ACE 1.0 was designed and

implemented by Cory McKay, and ACE 2.0 was designed by Cory McKay and Jessica

Thompson and implemented by Jessica Thompson (Thompson et al. 2009). The essential

differences between the two versions are:

 Improved cross-validation: ACE 1.0 relied entirely on Weka’s own classes to

perform cross-validation. Unfortunately, the portion of the Weka API dealing with

cross-validation is not designed with the needs of experimental meta learning in

mind, and hides certain important information, such as the variance of the

classification success rate across folds
163

, confusion matrices for individual folds,

details on which instances are assigned training and testing roles in each fold and

class predictions for individual cross-validation test instances. ACE 2.0 therefore

has its own cross-validation implementation, with the result that expanded

statistics are available, including all of the information noted above. ACE 2.0 also

automatically reserves a publication set for final meta learning validation and

makes it possible to ensure that multiple cross-validation experiments with

different classification algorithms can all use the same training and testing data

partitioning, something that greatly facilitates statistical hypothesis testing.

 More detailed reports: In addition to the greatly expanded information reported

in cross-validation reports, as described above, ACE 2.0 also provides expanded

information in the meta learning reports as well, particularly when the verbose

option is selected by the user.

163

 Although the Weka Experimenter does in fact calculate the variance, this functionality is not accessible

from the Weka API. Third-party software using the Weka code base, such as ACE, must rely on the Weka

Evaluation class, which does not make the variance across folds accessible.

 364

 ACE ZIP files: ACE 2.0 includes functionality for creating, parsing, saving and

processing ACE XML ZIP files (see Section 7.11.1), as well as uncompressed

ACE XML files. ACE 1.0 is not ACE XML ZIP compatible.

 Redesigned API: The class structure and API have been completely redesigned in

order to facilitate the use of ACE in third party software and to improve ease of

extensibility.

 Improved command-line interface: The command-line interface has been

entirely redesigned. It allows users to specify parameters in greater derail, and is

also clearer and more intuitive.

 Graphical user interface: ACE 2.0 includes a GUI that can be used to create,

parse, edit and save ACE XML files and the related data. Ongoing efforts are also

being made to provide access to ACE’s meta learning functionality as well, which

is currently only available via the command-line and the API.

 Manual: A detailed HTML-based manual is available for ACE 2.0 that details the

command-line interface, the GUI and the code structure.

6.7 Summary of original contributions

ACE is a powerful dedicated pattern recognition application and a code library that

can be embedded in other applications. Although there are a variety of other excellent

machine learning frameworks, as discussed in Section 6.3, ACE is unique in that it is the

only dedicated meta learning framework designed to meet the special needs of music

research, as outlined in Section 6.4.5.

The meta learning functionality offered by ACE can be particularly useful in

evaluating the effectiveness of new features or classification algorithms. This is especially

helpful in the field of music information retrieval, where new techniques are constantly

being developed, and need do evaluated relative to one another.

One of the most important characteristics of ACE is that it is designed to help

overcome usability barriers for users with valuable musical knowledge but little or no

machine learning background. Such barriers have traditionally largely prevented experts

such as music theorists, musicologists and music librarians from using machine learning

 365

in their research, for example. ACE’s meta learning makes powerful and effective

machine learning accessible even to researchers with no training in machine learning.

 Section 6.2 also includes a brief but still relatively detailed introduction to machine

learning that is intended specifically for researchers who may have no machine learning

background but who have an interest in learning more about the nuts and bolts of machine

learning from an applied and not overly technical perspective. Of course, the information

presented in this section is in no way necessary for using ACE.

6.8 Future research

6.8.1 ACE’s interface

Although the ACE 2.0 GUI is currently functional with respect to parsing, viewing,

editing and saving jMIR projects and ACE XML files, functionality for performing meta

learning experiments and other machine learning tasks is currently only accessible via

ACE’s command-line interface or Java API. One of the highest priority goals for future

research is to make all of ACE’s functionality accessible via the GUI, including

functionality for viewing customized result summaries and for using the GUI to specify

detailed preference settings with respect to both the interface itself and the processing

back end.

6.8.2 Additional machine learning and pre-processing algorithms

Another priority is the addition of further machine learning algorithm

implementations to ACE. These will include the full range of supervised learning

algorithms currently available in Weka, as well as Weka implementations of other

algorithms that are not yet available in Weka.

Sequential classification algorithms, such as recurrent neural networks and hidden

Markov models, are of particular interest. Melody, harmony and form, for example, are

essentially sequential concepts, so the addition of sequential algorithms will open up

many possibilities for ACE.

There are also plans to add unsupervised algorithms to ACE, something that will be

facilitated by the fact that several such algorithms are already implemented in Weka.

Although unsupervised learning is less ideally suited to tasks such as genre or mood

 366

classification than supervised learning, unsupervised learning can be very useful for

exploratory clustering research or for similarity-based applications like playlist generation

or music recommendation. Unsupervised learning techniques can also be used to

automatically generate class ontologies.

Experimentation with more classifier ensemble variants, beyond the bagging and

boosting approaches already implemented in ACE, could help improve classification

performance. Ensembles oriented towards structured learning, such as hierarchical

learning, could be particularly useful. Tools for constructing blackboard systems could

also be built into ACE, in particular systems that can integrate expert knowledge about

problem domains with machine learning.

Another important improvement would be the addition of more pre-processing and

post-processing functionality, such as various data thinning algorithms. This could

improve results and speed up training, as well as to make the nuances of meta learning

results more apparent to users.

6.8.3 Distributed processing and long-term projects

One of the central difficulties that must be overcome in automatic music classification

is that there can be huge quantities of data to process, especially when many features are

extracted or when very large data sets are available. The result is that learning models and

classifying instances can potentially take inconveniently long amounts of time, even on

the fastest computers. This is particularly problematically when experimental meta

learning is performed, as it can require many computationally intensive training and

testing experiments.

There are therefore plans to utilize distributed computing to spread out the

computational burden. Meta learning experiments are relatively easy to separate into

independent tasks that may be performed in parallel, something that makes ACE

particularly suitable for distributed computing.

A number of existing distributed computing technologies may be taken advantage of

in order to achieve this. Grid Weka (Khoussainov et al. 2004) is particularly attractive

because it is based on the Weka framework used by ACE. The most likely solution,

however, will be to use ACE with SEASR (Llorà 2008), which includes a Java-based

 367

infrastructure for distributed computing. SEASR is a central part of the NEMA
164

 project,

of which jMIR is a part. Both Grid Weka and SEASR allow computation to be distributed

amongst either multi-purpose workstations or dedicated machines, and both are

compatible with a wide range of hardware and operating system configurations, thus

effectively making distributed computing available to anyone with access to a typical

computing lab. There are many computers in academic institutions, such as libraries, that

are often idle. ACE could therefore take advantage of these computers when they are not

otherwise in use to dramatically and cheaply speed up the processing of large projects.

Related functionality will also be built into ACE allowing users to specify maxima on

the total time that ACE has to perform meta learning experiments on a given data set.

These limits on how long the system has to arrive at a solution will result in ACE initially

pursuing the most promising approaches, based on past experiments with similar data.

ACE will then output the best-performing algorithms that it is able to find in the time

available, and then later revisit the problem passively when no other active projects are

being processed.

The first step in implementing distributed computing will simply be to modify ACE

so that it can assign individual meta learning component experiments to different

computers. The next step will be to set up an ACE server to keep a record of the progress

and performance of all ACE experiments run on any given user’s cluster. This

information could then be used to calculate performance estimates on similar ACE

experiments run in the future when there is insufficient time tor run all of the experiments

that might ideally be desired. When no other ACE projects are active, ACE could also use

this server to reactivate old inactive projects in order to further improve results, as noted

above.

164

 nema.lis.uiuc.edu

 368

 369

7. ACE XML: File formats for expressing MIR data

7.1 Overview of MIR data mining file formats and ACE XML

Much of the cross-institutional efficiency of MIR research hinges on the ability of

researchers to share data effectively with one another. Information such as ground-truth

annotations, for example, can be very expensive to produce, and a great deal of repeated

effort is avoided if researchers are able to share such information efficiently. Similarly,

training and testing datasets themselves can be expensive to acquire, and since they

cannot typically be distributed directly because of legal limitations, the ability to share

representative feature values efficiently can be very valuable. The communication of

more abstract information, such as class-label ontologies or characteristics of features

themselves, can also be very useful.

Well-constructed, flexible and expressive standardized file formats are essential for

distributing all of these types of information efficiently and fully. Furthermore, in order to

encourage adoption as a standard, such file formats must be simple for both humans and

machines to understand, parse and write. The absence of such standardized formats can

pose an obstacle to the sharing of research information, with the result that each lab has a

greater tendency to generate its own in house data, which results in both wasteful

repeated effort and, in general, lower quality data.

Although there are a variety of widely used general-purpose data mining and

classification file formats in existence, none of them meet the very specific needs of MIR

research. The Weka ARFF format (Witten and Frank 2005), for example, is currently the

de facto standard in MIR research, but as is shown in Sections 7.3.2 and 7.4, it has severe

restrictions with respect to the requirements of realistic MIR research. Formats such as

ARFF impose serious limitations on the types of information that can be represented and,

accordingly, on the quality of research that can be performed based on this information.

To give just one example, most such formats, including ARFF, only allow instances to be

labelled with just one class label at a time, something that fundamentally limits the

sophistication and realism of research in areas such as genre classification.

Sections 7.2 and 7.3 respectively review existing file format technologies and the

particular formats that are currently the most prominent in MIR research. Section 7.4

 370

presents a critical analysis of the limitations of existing formats, and introduces a

corresponding list of design priorities that can be used to guide the development of new

file formats designed specifically for use in music data mining and classification research.

The primary focus of this chapter is on the original ACE XML file formats. These

formats were designed based on the design priorities emphasized in Section 7.4, and are

intended for use in music data mining and classification research of any kind. Possible

applications of these formats include genre classification, artist classification, track

segmentation, pitch tracking, instrument identification and so on. The ACE XML formats

may be used equivalently well with respect to audio, symbolic and cultural data.

ACE XML will play a role in the NEMA (Networked Environment for Music

Analysis) project,
165

 a large-scale multinational and multidisciplinary effort to create a

general music information processing infrastructure. NEMA is funded by the Scholarly

Communications program of the Andrew W. Mellon Foundation, and involves research

groups from McGill University, University of Illinois at Urbana-Champaign, University

of Southampton, University of Waikato and Goldsmiths and Queen Mary at University of

London.

ACE XML is the native format used by all jMIR components to communicate with

one other.
166

 The ACE project also includes a general API for parsing, writing and

processing ACE XML files so that ACE XML functionality can be easily incorporated

into other software as well. The ACE GUI prototype also includes functionality for

manually generating, displaying, editing and saving ACE XML files.

There are four primary types of ACE XML files, which may be used individually or

integrated together:

 Feature Value: These files express feature values extracted from specific

instances.

 Feature Description: These files express abstract information about features. To

give a few examples, this format can be used to express specific details about the

processes used to extract feature values that are expressed in Feature Value files,

165

 nema.lis.uiuc.edu
166

 jMIR components can also read and write ARFF for compatibility reasons, although it is recommended

that ACE XML be used instead.

 371

to publish information about the features that can be extracted by a new feature

extraction application, to express updates to existing feature extraction algorithms,

and so on.

 Instance Label: These files express labelled annotations of specific instances.

This format can be used to notate ground-truth labels or the predicted labels output

by a classification system, for example.

 Class Ontology: These files express relationships between different classes. This

can be used to simply specify candidate class labels, or for more sophisticated

purposes such as expressing hierarchical taxonomical relationships between

classes that can be taken advantage of by specialized machine learning techniques.

There are two versions of ACE XML, namely ACE XML 1.1 and ACE XML 2.0.

Version 1.1 (McKay et al. 2005) is the stable version that is currently implemented in all

of the jMIR components, including the ACE API. For the purposes of this publication, 1.1

is the official version of ACE XML. Section 7.5 describes the four ACE XML 1.1

formats in general, and Sections 7.6 to 7.9 focus on each of them individually. The ACE

API is discussed in Section 7.10.

The newer ACE XML 2.0 is ultimately intended for candidacy as a standardized

format for MIR research in general, without any inherent links to jMIR. It builds upon the

ACE XML 1.1 formats to add even more expressivity and functionality. Prototypes for

the updated versions of each of the four main ACE XML formats are introduced in

Section 7.11. As discussed in Section 7.11.1, version 2.0 also includes the new ACE

XML Project file and ACE XML ZIP file types, which can be used to more conveniently

associate and potentially package different ACE XML files together. Additional potential

future improvements are also discussed in Section 7.13.

The ACE XML 2.0 (McKay et al. 2009) formats are presented here for review and

improvement by the MIR community at large. The final implementation of ACE XML

2.0 awaits amendment based on community feedback, so the ACE XML 1.1 formats,

which are presently fully finalized and implemented, continue to serve as the standard

formats used by the jMIR components at the time of this publication.

 372

The on-line sample file appendix
167

 also provides artificially generated samples of

each of the ACE XML 1.1 and 2.0 formats in order to more clearly illustrate how the file

formats can be used.

7.2 Background information

This section provides background information on the principal fundamental concepts

and technologies that are relevant to the representation of information related to automatic

music classification research. The contents of this section are presented in order to ensure

that the reader is familiar with the concepts that are necessary to fully appreciate and

compare the ACE XML file formats outlined later in this chapter with the existing

alternative formats.

7.2.1 ASCII and Unicode text files

The term text file refers to a simple kind of computer file that holds basic textual data.

Text files conform to simple standards for representing text, and are thus highly portable.

Most text files that are referred to as such are plain text formats, which is to say that they

do not include any provisions for formatting codes other than very simple markers such as

end of line, end of file and tab markers. The lack of formatting in plain text files is both an

advantage and a disadvantage, in that this generally results in smaller files, but also

results in less expressivity.

The primary advantage of text files is that they follow a simple standard that can be

parsed on essentially any computer running essentially any operating system.

Applications called text editors are typically used to read, write and edit text files,

although word processors and many other types of applications are compatible with text

files as well.

ASCII (American Standard Code for Information Interchange) is perhaps the most

common text file format. It is widely used enough to be considered platform independent,

and ASCII files are often given a .txt extension, although this extension is also sometimes

used for other types of text files as well. ASCII files use one byte to encode each

character, with one bit reserved as a parity bit to aid in the detection of data corruption.

This means that 128 characters may be represented in ASCII, 33 of which are mostly

167

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 373

obsolete control characters. The remaining 95 characters include the lower-case and

upper-case letters, numbers and punctuation marks associated mainly with English and

related European languages, as well as a few mathematical characters, accents and other

miscellaneous characters.

This ASCII limit of 95 printable characters is much too small to deal with all of the

characters that even an English speaker might wish to use, much less someone writing in

a language that uses a different alphabet. As a result, there are many other standards,

usually chosen based on the default locale setting on a user’s computer. An example is the

technically obsolete but still often used ISO 8859-1 encoding used for many European

languages.

Limiting the space needed to store a single character to a single byte was reasonable

in the past when data storage and transmission was expensive. Such rationing is no longer

as much of a priority, however, and as a result the much more expressive Unicode

standard is replacing ASCII as the preferred standard.

The multilingual full Unicode standard includes more than 100,000 characters, and

has proven to be very valuable in the internationalization of computer software. It has

been adopted by the XML standard, by Java and by the Microsoft .NET framework,

among many others.

There are a variety of Unicode encodings in existence. One of the most common of

these is the variable-length UTF-8 encoding, which uses one byte for all ASCII characters

and up to three additional bytes for all other characters. UTF-8 has the significant

advantage of being backwards-compatible with ASCII.

UTF-16 is the most common alternative Unicode encoding. UTF-16 is also a variable-

length encoding, and it uses up to four bytes. UTF-16 can sometimes be more space-

efficient than UTF-8, but the reverse can also be true, depending on the particular

characters that need to be encoded. Both UTF-8 and UTF-16 may be used to encode any

Unicode character.

7.2.2 Escape characters and delimiter-separated values

Some applications make use of reserved combinations of characters to effectively add

additional characters or formatting instructions to text files that are not directly permitted

by their encodings. This is often done via the use of escape characters, such as a

 374

backslash, that indicate that the following character is to be interpreted in a special way.

Although files that use this approach are of course still text files, they nonetheless lose

some portability and human-readability, as the software or individual parsing the files

must be aware of the rules governing these special codes in order to properly interpret

them.

It is often desirable to store data in text files in some structured way, such as in the

case of tables of values. One simple way of doing this is to use delimiters, which is to say

special characters that are reserved to separate values, such as a list of names. Commas,

tabs and end-of-line characters are three of the most commonly used delimiters. This

approach is useful as a quick and easy solution, but once again involves a loss of

portability, since it requires that parsing software be aware of the particular delimiters that

are being used.

There are a variety of standardized delimited text file formats. The comma-delimited

CSV standard is perhaps the best-known example.

7.2.3 XML

It is often desirable to be able to express textual data in structured ways that are more

sophisticated and general than is possible with simple delimited text files. XML

(eXtensible Markup Language) files, which are encoded in UTF-8 by default, provide one

particularly flexible and convenient way of doing this.

XML is an example of a markup language, which is to say that it is an artificial

language that uses annotations to impose structure and formatting on text. HTML is

perhaps one of the most famous markup languages, due its role as the traditional format in

constructing web pages. An essential difference between XML and HTML is that XML

allows users to specify how data is to be structured, whereas HTML requires that data be

formatted in rigidly pre-defined ways.

XML attempts to strike a balance between permitting data to be represented in such a

way that it is conveniently structured for machine processing, and requiring that it be

stored in simple text files in ways that are relatively easily human readable. The ability

for humans to read XML files directly is augmented by functionality in many web

browsing or text editing applications to display data stored in an XML files in an easily

human-parsible way that is consistent with the structuring specified in the XML file,

 375

while at the same time hiding the infrastructure that specifies this structuring. Specialized

software such as Altova XML Spy
168

 provides even greater functionality in this respect.

XML data essentially consists of two parts: one that specifies the structuring and

formatting that stored data must conform to, and the other storing this data using the

specified infrastructure. The XML specification permits a variety of ways of performing

this first task, the oldest, least powerful and simplest of which is known as a Document

Type Definition (DTD). A DTD typically consists of a separate file or header preceding

the actual data that is stored in an XML file. Alternative XML schemas allow added

expressivity over DTDs, but at the cost of increased complexity.

The formatting of the data stored in XML files must conform to the rules laid out in

the DTD or schema. There are many software packages and web services (e.g.,

validator.w3.org) that can be used to verify that this is the case for any given document.

This is referred to as checking whether an XML document is well-formed.

The majority of XML documents consist of clauses of information denoted using

elements. Each element has a start tag and an end tag as well as, often, some content

between the tags. The tags indicate the kind of information that the content expresses,

typically in the form of a field label, and the content indicates the value for the field.

For example, the element <author_name>Alexander Solzhenitsyn</author_name>

includes start and end name tags, indicating that the content of the tags is an author’s

name, and the content itself specifies the name of the specific author, Alexander

Solzhenitsyn in this case. Start and end tags of elements are always each contained within

< and > signs, and end tags always have the same name as their matching start tag, but

have a / sign added at their beginning.

Elements can be organized hierarchically, which is to say that the content of an

element can itself contain one or more other elements. The elements that may appear and

the rules governing their structuring are declared in the DTD or schema of each XML file.

Figure 7.1 provides an example of how elements can contain other elements.

168

 www.altova.com

 376

Figure 7.1: Sample hierarchically organized XML elements. This could be used, for

example, to store a database of the books that one owns. The my_books element could

be used to hold multiple book elements, each of which refer to one separate book,

although only one is listed here. The book element contains a title element and an

author_name element. The author_name element itself contains two further elements.

One would expect there to be one book element for every book that is owned. The

names of these particular kinds of elements and the relationships between them must be

specified in a DTD header or other XML schema.

Figure 7.2: A modified version of the book element from Figure 7.1. Two attributes are

added, namely a status attribute for the book tag and an alive tag for the author_name

tag. The status attribute could be used to indicate whether the book is owned, read but

not owned or not read, for example, and the alive attribute would be used to indicate if

the author is currently alive.

<my_books>

<book staus="owned">

 <title>Gulag Archipelago</title>

 <author_name alive="no">

 <first_name>Alexander</first_name>

 <last_name>Solzhenitsyn</last_name>

 </author_name>

</book>

</my_books>

<my_books>

<book>

 <title>Gulag Archipelago</title>

 <author_name>

 <first_name>Alexander</first_name>

 <last_name>Solzhenitsyn</last_name>

 </author_name>

</book>

</my_books>

 377

Elements may also contain attributes that provide further information. The rules

governing the nature of the attributes and which elements may contain particular

attributes are also specified in the DTD or other XML schema. Attributes are noted in the

start tag of each element by following the name of the tag with a space, the name of the

attribute, an equal sign and, finally, the value of the attribute enclosed within double

quotes. Figure 7.2 shows how attributes might be used in an expanded version of the data

shown in Figure 7.1.

In most cases, information expressed in attributes could alternatively be expressed

using subordinate elements. For example, the alive attribute in Figure 7.2 could just have

easily been a child element of author_name, just as last_name is. Although which

approach one uses is mostly a matter of style, a general rule of thumb is to use an attribute

if only restricted values are possible (e.g., yes or no) and to use an element if arbitrary

values are possible. To return to the example if Figure 7.2, an alternative architecture

might be to make status a child element, but leave alive as an attribute, as shown in

Figure 7.3.

Figure 7.3: Alternative architecture to that of Figure 7.2, where the status field is now a

field instead of an attribute.

As noted above, which elements are permitted and how they may be structured is

defined in a DTD header or other schema. A DTD is essentially a statement that consists

of <!DOCTYPE fileype […]>, where filetype is a code that is chosen to identify the type

of XML file that the DTD is defining (e.g., my_books might be used to identify a file

format being used to store one’s book collection). The […] holds a separate declaration

for each element and attribute type that is permitted. Each element declaration is a

statement consisting of <!ELEMENT elementname (elementdeclarationtype)>. The

<my_books>

<book>

 <title>Gulag Archipelago</title>

 <author_name alive="no">

 <first_name>Alexander</first_name>

 <last_name>Solzhenitsyn</last_name>

 </author_name>

 <status>owned</status>

</book>

</my_books>

 378

elementname variable specifies the text of the start tag of the element and the

elementdeclarationtype variable specifies which child elements are permitted, if any,

which attributes are permitted, if any, and what kind of content data (e.g., character data)

is permitted for the element. The order that the element declarations appear in the DTD

overall and in each individual element declaration type constrain the order that the tags

may be used in the document if it is to be well-formed. Figure 7.4 provides an example of

a sample DTD.

Figure 7.4: A possible DTD for the data formulation used in Figure 7.3. This could be

stored in an external file or could be included as a header in the same file that stores the

data about the book(s) themselves. Note that in this particular DTD there must be one or

more books (because of the + sign), the status element is optional for each author

(because of the ? sign and the default value for the alive attribute is specified as yes.

The DTD also specifies how attributes are used, as can also be seen in Figure 7.4. The

<!ATTLIST elementname attributename1 CDATA "default1" attributename2 CDATA

default2 …> declaration provides a list of all possible attributes for the elementname

element, each of which is given the name attributename# and the default value of

default#, which will be used if a particular entry does not specify a value for the attribute.

The CDATA code simply means that the value for the attribute will be in the form of

normal text.

Note that the <!ATTLIST author_name alive CDATA "yes"> declaration in Figure 7.4

does not constrain the possible choices that may be used in a well-formed file, so an

instance of the alive tag might be given reasonable values such as yes, no or unknown as

well as unreasonable values such as dafdasfd. This flexibility may be desirable in some

cases, but not in others. It is possible to constrain the valid values for an attribute, such as

<!DOCTYPE my_books [

 <!ELEMENT my_books (book+)>

 <!ELEMENT book (title, author_name, status?)>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT author_name (first_name, last_name)>

 <!ATTLIST author_name alive CDATA "yes">

 <!ELEMENT status (#PCDATA)>

 <!ELEMENT first_name (#PCDATA)>

 <!ELEMENT last_name (#PCDATA)>

]>

 379

in the following example: <!ATTLIST author_name alive (yes | no | maybe) "yes">,

which requires that the attribute be assigned values of either yes, no, or maybe, with a

default of maybe if the attribute value is omitted for a particular element.

As an alternative to specifying default values for attributes, it is also possible to use

the #IMPLIED keyword in the attribute declaration to make the attribute optional for the

element, or the #REQUIRED keyword to require that a value for the attribute be specified

whenever the associated element appears. Alternatively, the #FIXED keyword followed

by a value in quotation marks may be used to specify that the attribute will always have

the given value. For example, an <!ATTLIST author_name alive CDATA #IMPLIED>

statement in a DTD would make the alive attribute optional, and an <!ATTLIST

author_name alive CDATA #REQUIRED> statement would require that it be specified

whenever the author_name element is used.

As is apparent from the discussion above and from Figure 7.4, there are also a number

of codes that may be used in DTD element declarations. These are explained in Table 7.1.

Element Declaration Code Description

(#PCDATA) Character data

(#PCDATA)* Zero or more characters

(anelementname) One instance of an element

(anelementname?) Zero or one instances of an element

(anelementname*) Zero or more instances of an element

(anelementname+) One or more instances of an element

(anelementname1, anelementname2) One instance of one element and one
instance of another element

(anelementname1 | anelementname2) One instance of one element or one
instance of another element

Table 7.1: Some of the most common codes used in the element declaration codes of

DTDs. This data would go in the elementdeclarationtype section of an <!ELEMENT

elementname (elementdeclarationtype)> declaration. These codes can be combined so

that, for example, one might have an element declaration code of (#PCDATA,

anelement1, anelement2?, anelement3+).

There are many other options offered by XML DTDs, and still more that are made

available by alternative schemas. This sub-section only describes those parts of XML that

are specifically used in ACE XML, however. Whitehead, Freidman-Hill and Vander Veer

 380

(2002) provide a much more detailed description of XML, with a particular emphasis on

using Java code to manipulate XML documents.

It is clear that XML allows simple, human-readable and extremely flexible document

formats to be constructed. Further adding to its appeal, there is a great deal of free, open-

source and well-documented code that is available for facilitating the structured parsing

of XML files. Apache Xerces
169

 is an example of such a parsing library that is available

in a variety of programming languages. Such XML parsers typically provide two types of

APIs for accessing XML data in convenient ways: SAX APIs allow the data to be

accessed in a sequentially structured way and DOM APIs allow the data to be accessed in

a hierarchically structured way.

When writing XML files, or manually parsing them, it is important to remember that

single-byte Unicode is the default encoding, and that corresponding codes must be used,

an issue which is especially important for special characters that do not have ASCII

equivalents. Fortunately, many programming languages include libraries for

automatically translating plain text data appropriately. Java, for example, includes the

java.net.URLEncoder and java.net.URLDecoder core classes, which can be used to

ensure that all text, including special characters, is appropriately encoded and decoded.

XML also includes its own special provisions for certain special characters. XML

parsers all automatically understand basic character substitutions for reserve characters

that have special meanings in XML, as specified in Table 7.2.

XML Code Corresponding Character

< <

> >

& &

" “

' ‘

Table 7.2: Default XML character substitutions for characters that have special

meanings in the XML specification.

Special characters can also be manually referred to using their decimal or x-prefixed

hexadecimal Unicode code point preceded by the &# characters and followed by a

169

 xerces.apache.org

 381

semicolon. So, for example, the Euro symbol (€) can be referred to in an XML character

field as € or €. It is typically preferable to simply pre-process all strings

read from or written to an XML file by classes such as java.net.URLEncoder and

java.net.URLDecoder rather than performing such manual encodings, however.

7.2.4 RDF

RDF, or Resource Description Framework, refers to a family of W3C
170

 syntax

specifications for representing relationships between different entities, or resources. In

essence, RDF provides an abstract model for describing how anything can be related to

any other thing. The result is effectively a labelled directed multi-graph.

 RDF uses subject-predicate-object triples to make statements about the relationships

between resources. The subject denotes a resource and the predicate denotes

characteristics of the resource and its relationship with another resource, the object. For

example, the statement So What is a song that belongs to the genre of Modal Jazz is a

triple specifying that the subject So What is related to the object Modal Jazz by the

predicate is a song that belongs to the genre.

Resources are often referred to using Uniform Resource Identifiers, or URIs, to make

them accessible via the Internet. Further information on individual resources can thus be

acquired by accessing the data stored at their respective URIs, a process called

dereferencing in RDF terminology. However, linking to resources using URIs is not an

obligatory requirement of RDF. Resources can in fact potentially be abstract entities that

do not actually exist anywhere on the Internet or elsewhere. In order for RDF producers

and consumers to be in agreement on the semantics of resource identifiers, it is often

useful to externally define certain controlled vocabularies, such as the Dublin Core
171

metadata set, which is partially mapped to a URI space for use in RDF.

A process called reification can be used to achieve further expressiveness using

triples, or to deduce measures of confidence about triples. This involves assigning a URI

to each triple so that it can itself be treated as a resource about which other triples can be

formulated.

170

 W3C, or the World Wide Web Consortium, is the primary international standards organization

overseeing the World Wide Web.
171

 dublincore.org

 382

There are a variety of specific formats, called serialization formats, that each provide

different syntaxes for representing RDF data models. XML is often used as one way to

provide a structured representation of RDF models, but there are also a variety of

alternative serialization formats as well, such as Notation 3.
172

 There are also several

query languages designed for use with RDF graphs, the most common of which is an

SQL-like language called SPARQL.
173

A mechanism for describing relationships between resources, such as that offered by

RDF, is an important component of the Semantic Web. This is because such a mechanism

allows software to automatically store, exchange and otherwise use machine-readable

information distributed on the Internet. This direct machine usability of RDF graphs is

considered to be one of the main goals and advantages of RDF.

The generality, simplicity and abstract nature of RDF are both its keys strengths and

its key weaknesses. Although these characteristics allow it to be used to describe a wide

range of information in flexible ways, it can also introduce computational disadvantages

and ambiguities. Similarly, the broad structural framework of RDF offers greater

flexibility and extensibility than a particular given XML schema might, for example, but

also does not incorporate the ability to quickly and easily define strict and sophisticated

structures when in might be useful to do so, as one can in unrestricted XML.

7.2.5 OWL

OWL,
174

 or the Web Ontology Language, is a family of languages for representing

ontologies, which is to say formal representations of sets of concepts within some defined

domain and the relationships between the concepts. Ontologies can be useful in the

Semantic Web, as well as in other domains like machine learning.
175

 OWL Full, one of

the variants of OWL, provides partial compatibility with RDF.

The data contained in an OWL ontology is represented as a set of individuals that are

related to one another via property assertions. OWL individuals can be collected into

sets, called classes, whose properties are constrained by sets of axioms. Semantics can be

inferred from explicitly defined axioms when appropriate.

172

 www.w3.org/DesignIssues/Notation3
173

 www.w3.org/TR/rdf-sparql-query/
174

 www.w3.org/TR/owl-features/
175

 Sections 9.1 and 9.2 discuss ontologies in the context of machine learning.

 383

7.2.6 Binary files and serialized objects

A binary file is a computer file consisting of 1’s and 0’s that may be used to encode

any type of data. Although computer text files are therefore technically binary files, the

term binary file is typically used to refer specifically to computer files that are not

encoded in plain text formats.

Storing data such as extracted features in binary form can have a number of

advantages over storing it in text files. For example, storing numbers even in a relatively

character-sparse format such as ASCII requires at least a full byte per digit, a much

greater amount of space than if the data were stored in binary. Parsing and processing

data stored as text can also carry greater processing overhead.

Storing data in text files can also have important advantages over binary storage,

however. One of the greatest advantages is that text files are human-readable, something

that can be very convenient during debugging or other situations where direct human

inspection of data is appropriate or convenient. Text files can also be parsed in an

application and platform-independent way, while binary files are generally application-

specific, and therefore much less portable. Furthermore, standard text compression

techniques can be used to reduce text file sizes significantly.

Advantages such as these, combined with consistently cheaper storage, data

transmission and processing power, as well as the popularity of flexible text-based data

formatting protocols like XML have led to an increasing use of text as the preferred

choice for data storage. For example, binary file formats in Microsoft Office have

recently been replaced with compressed XML-based formats.

Many programming languages, including Java, include functionality for saving any

objects in memory to files as binary serialized objects. This can be highly convenient for

programmers, as there is no need to implement any specialized parsing or saving

functionality. As might be expected, the main disadvantage of serialized objects, aside

from the lack of human readability, is the common lack of portability once these objects

are written to disk. Even serialized objects from relatively portable languages such as

Java can sometimes fail to be properly read when accessed from newer releases of the

language than they were saved under. For example, serialized Java Swing objects are

often not portable across different versions of the Java Virtual Machine.

 384

7.3 File formats used by existing MIR systems

Although most MIR research has traditionally used specialized in-house file formats

for storing information such as feature values and instance labels, most of which have

been either binary dumps or simple delimited text files, there has been an increasing push

in recent years to use more standardized file formats so that data can be shared between

different research groups. This section describes some of the best-known and most

general file formats in use by the MIR community. Both this section and Section 7.4

stress some of the strengths and weaknesses of these file formats.

7.3.1 Matlab binaries and Java serialized objects

MathWorks Matlab
176

 is a numerical computing environment and programming

language that is particularly popular among some MIR researchers because of the variety

of its associated stable and effective toolboxes implementing digital signal processing and

machine learning functionality. Matlab can easily save information such as extracted

features and learned models to binary .mat files, with the result that researchers that use

Matlab tend to favour the .mat file format.

Unfortunately, .mat binaries suffer from the same limitations as all binaries, as

discussed in Section 7.2.6. Although there are a variety of scripts written in different

languages for parsing Matlab binaries, the issue remains that Matlab is commercial

software that uses a proprietary file format that is subject to the design decisions of

MathWorks, which may not coincide with the needs of the MIR community.

Furthermore, .mat files are not directly human-readable, nor do they allow data to be as

easily structured in useful ways as some of the alternative file formats.

Any serialized Java object can be saved directly to disk and parsed by the Java Virtual

Machine. The ease with which this can be done has made the use of Java serialized

objects attractive to some researchers, just as has been the case with Matlab .mat files, but

once again, concerns about the portability, stability, structural expressivity and lack of

human-readability are serious concerns.

176

 www.mathworks.com

 385

Nonetheless, one is sometimes forced to use serialized objects when dealing with

third-party software. An example of this is the saving of trained Weka models.
177

7.3.2 Weka ARFF

Weka (Witten and Frank 2005) is a well-known set of open-source machine learning

libraries implemented in Java. Weka includes several front ends, including graphical user

interfaces, as well as the core libraries and their associated APIs. The breadth and ease of

use of Weka have caused it to be adopted by many MIR research labs and, as a result, its

ARFF file format is likely the most commonly used format in the MIR community for

storing extracted feature values and providing them to machine learning algorithms. As

the closest thing to a standardized file format that there is in MIR, the ARFF format will

be given special attention here. More information on ARFF is available in Witten and

Frank’s book as well as on the Weka ARFF Sourceforge page.
178

Throughout the description of the ARFF format that follows, several limitations of the

format may become evident to the reader in relation to the specific domain of MIR

research, something that is to be expected of any format as generally applicable as ARFF.

The focus of this particular section is on a purely objective description of the ARFF

specification, so these issues will not be discussed here explicitly. However, the

weaknesses of the ARFF format with respect to MIR are discussed in some detail in

Section 7.4.

ARFF files are basic text files that specify feature values and class labels associated

with individual instances. All ARFF files consist of a Header section that outlines the

available features and class names, followed by a Data section holding the feature values

and, potentially, class names for each instance. Comments may also be included on lines

starting with a percentage sign.

The first non-comment line of an ARFF file must begin with a single @relation

declaration of the form:

@RELATION <relation-name>

The <relation-name> is a string providing a name for the basic relationship or type of

information that the ARFF file represents. For example, in the case of an artist

177

 Although information on instances themselves can be saved using the text-based Weka ARFF format, as

discussed in Section 7.3.2.
178

 weka.wiki.sourceforge.net/ARFF

 386

identification task, it might be artist_classification or artist_identification. As with other

types of ARFF data, <relation-name> strings with spaces or percent signs in them must

be enclosed in quotation marks. Also, as with other ARFF keywords, @relation

statements are case insensitive.

The rest of the header consists of @attribute declarations of the form:

@ATTRIBUTE <attribute-name> <datatype>

<attribute-name> and <datatype> are strings specifying, respectively, the name of a

feature,
179

 in the form of a string, and the data type of this feature. If a feature value is

present in one or more instances then it must be declared in an @ATTRIBUTE statement

in the header. The following data types may be specified for a feature in @ATTRIBUTE

statements:

 numeric: Numeric data that may be an integer or a real number.

 integer: Integer-only numeric data.

 real: Numeric data that is in the form of real numbers.

 string: A string of text data. Strings containing spaces or percent signs must be

wrapped in quotation marks.

 <nominal-specification>: A string of text data that must, for the feature value of

any given instance, correspond to one of a set of eligible strings specified for the

feature in the @ATTRIBUTE declaration. Such declarations are in the form:

{<nominal_name_1>, <nominal_name_2>, <nominal_name_3>, ...}.

 date: A date, which may be formatted in a variety of ways. The default is yyyy-

MM-dd'T'HH:mm:ss.

 relational: A format implemented only in the most recent developer versions of

Weka that allows a simple hierarchical relationship to be specified for features so

that multi-instance classifiers can be used.

179

 Weka refers to features as attributes.

 387

The final @ATTRIBUTE declaration in the header usually specifies the possible class

names that an instance may have. The <attribute-name> is specified class, and the

<datatype> must be a list of strings in the <nominal-specification> form.

The Data section of an ARFF file is specified once all features (and class names) have

been declared in the Header section. The Data section is begun by placing a single-line

@DATA statement after the last @ATTRIBUTE statement.

The feature values for each instance are then specified on a single line for each

instance. The feature values must each be separated by a comma, and the feature values

must be listed in the same order that the features were themselves declared in the Header

with @ATTRIBUTE statements. Unknown feature values may be denoted by using a

single question mark as a place holder. String and nominal feature values are case

sensitive, even though Weka keywords are not case sensitive. Figure 7.5 provides a

complete example of an example Weka file.

Weka also allows a slightly modified alternative to standard ARFF files called sparse

ARFF files. These are essentially the same as standard ARFF files, except that they do not

explicitly specify zero-value feature values,
180

 and feature values are linked with index

values associating them with particular features.

As of Weka 3.5.8 (a developer version), weights can be associated with instances.

This is done by enclosing them in curly braces and appending the weight to the end of the

line, as in the following example corresponding to the first instance from Figure 7.5:

0.0,250.0,silence, {4}

A weight of 4 is assigned here to this particular instance.

As a final note on Weka data formats, it should be noted that ARFF files cannot be

used to represent trained models. Weka instead stores these as Java serialized objects.

180

 Values are assumed to be zero if they are not specified.

 388

Figure 7.5: A complete sample Weka file. The first lines all begin with percentage signs,

which indicates that they are simply comments. The @RELATION statement indicates

the beginning of the feature declarations and specifies a name for the relationship

represented by the Weka file. Three features are specified using @ATTRIBUTE

statements, namely spectral centroid, duration and class. In practice, class is not really a

feature, but rather a nominal-specification of the candidate classes that instances can

have. This is how classes are always declared in Weka. The actual features are listed for

eight instances after the @DATA declaration, with the class name specified as the last

attribute for each instance. Note that the class name is not specified for the last instance,

since it is replaced by a question mark. This convention can be used for feature values

as well if they are unknown.

% TITLE: Music, applause, speech, silence discriminator.

%

% This artificial data, intended for demonstration purposes,

% specifies possible feature values extracted from windows of

% audio that could be used for segmenting the audio into

% sections of music, applause, speech and silence.

%

% Since this is a simple demonstration, only the basic

% features of spectral centurion and the duration of the

% recording from which the window was extracted are specified.

@RELATION music_applause_speech_silence_discriminator

@ATTRIBUTE spectral_centroid NUMERIC

@ATTRIBUTE duration NUMERIC

@ATTRIBUTE class {music, applause, speech, silence}

@DATA

0.0,250.0,silence

440.0,250.0,music

526.0,250.0,applause

0.0,372.5,applause

220.0,372.5,music

115.0,372.5,music

115.0,372.5,applause

854.6,960.3,?

 389

7.3.3 SDIF

SDIF (Wright et al. 1999; Schwartz and Wright 2000), or the Sound Description

Interchange Format, is a standardized file format for describing sound that was jointly

developed by IRCAM and CNMAT. It is popular in the signal processing community.

SDIF files consist of a basic fixed framework, and also include an extensible set of

description types, including time-domain descriptions, frequency-domain models and

sinusoidal models. SDIF files make use of XML.

The primary purpose of the SDIF format is the storage of audio for use in signal

analysis and synthesis. The storage of feature values and other MIR-oriented data mining

information is not the primary emphasis of the SDIF format, although features can

certainly be represented as well. For example, one of the most fundamental structures of

the SDIF format is a series of frames, each consisting of a four-byte Frame Type ID, a

four-byte integer Frame Size and the frame data itself. Each frame must be a multiple of

64 bits. It is clear that this sort of structuring is not ideally suited for most MIR-oriented

tasks, where greater flexibility is preferred.

Although SDIF can be extended to store features for the purposes of MIR applications

(Burred et al. 2008), the emphasis is still on efficiently representing audio data, not on

representing features in ways that are as flexible and clear as would be desirable in an

ideal MIR-oriented format, nor on dealing with non-audio data such as symbolic or

cultural features. The SDIF format is also not as convenient as one would ideally like for

representing other MIR-relevant information such as sophisticated ontological class

structures.

So, while SDIF is one of the best formats available for use in the audio signal

processing research community, it is not as ideally suited for MIR. Although it is true that

SDIF can be adapted for MIR research, using SDIF to meet the ideal needs of an MIR

standardized file format, as described in Section 7.4, can be awkward.

7.3.4 Music Ontology

Music Ontology (Raimond et al. 2007; Raimond and Sandler 2008; Raimond 2009;

www.musicontology.com) is a framework designed for dealing with music-related data

on the Semantic Web, with the particular needs of MIR applications in mind. It is

designed to be very flexible, and takes advantage of RDF to facilitate connections

 390

between resources and to make it possible to access further information about resources

by dereferencing them. Music Ontology is divided into three main areas that respectively

deal with editorial information (e.g., track names, musicians, record labels, etc.),

production workflow information (e.g., arrangements, compositions, etc.) and event

decompositions, (e.g., specifying that a particular musician played in a particular key at a

particular time).

Music Ontology makes use of several existing ontologies, including the Timeline,

Event and Functional Requirements for Bibliographic Records ontologies. The Timeline

ontology, which is based on OWL, is used for representing a variety of types of temporal

information, and can represent instances in time, intervals in time and references to

defined timelines.

The Event ontology is used to represent particular musical or other events that can be

localized in both time and space. Music Ontology Events can also have factors (e.g., a

musical instrument), agents (e.g., a performer playing the instrument) and products (e.g.,

the physical sound produced by the musician playing the instrument). Complex Events

can also be related to subordinate Sub-Events, such as a large Event consisting of an

ensemble of musicians playing music made up of Sub-Events each consisting of a

particular musician playing particular notes.

The Functional Requirements for Bibliographic Records ontology includes Works

(abstract artistic creations such as musical compositions), Manifestations (physical

embodiments of Works, such as CDs in general) and Items (an instance of a

Manifestation, such as a particular CD). Music Ontology also makes use of other existing

ontologies, such as the social networking-oriented FOAF (Friend Of A Friend) ontology

and its concepts of Persons and Groups.

Music Ontology is designed using an object-oriented approach that emphasizes

inheritance. For example, the Key ontology, Instrument taxonomy and Genre taxonomy

are all sub-classes of Events.

Of particular interest with relation to machine learning, Music Ontology includes an

Audio Features ontology
181

 intended for the expression of features extracted from audio

signals. Events are interpreted in this context to be regions of time corresponding to

181

 motools.sourceforge.net/doc/audio_features.html

 391

particular features called FeatureEvents, and each FeatureEvent may have a number of

Feature factors that each represents a feature such as a musical key or a set of MFCCs.

A number of data resources have already been converted to Music Ontology,

including Musicbrainz musical metadata
182

 and data from the DBTune music

repositories.
183

 Music Ontology is also being used as the main representation format in

the large OMRAS2 project, and is used by high-quality MIR-oriented software such as

Sonic Visualiser (Cannam et al. 2006) and some of its associated Vamp plug-ins.
184

A number of advantages and disadvantages of Music Ontology relative to ACE XML

will become apparent to readers as the details of ACE XML are presented later in this

chapter. Overall, Music Ontology has both the relative strength and weakness that it is

very general, and is intended for MIR-oriented applications that are much wider in scope

than the music classification focus of ACE XML. This enables Music Ontology to

represent a much greater range of information more conveniently than can be done in

ACE XML, but does not have all of the structural advantages of the ACE XML formats

that make them particularly useful for music classification. XML in general tends to be

much better suited to representing well-structured data than RDF. Although the Audio

Features ontology subclass of Music Ontology does bring a greater focus on the music

classification domain, this ontology as it is described in

motools.sourceforge.net/doc/audio_features.html is not as flexible and convenient as

ACE XML with respect to feature values, instance labels, feature descriptions and class

interrelationships. Also, the Audio Features ontology is designed particularly with respect

to audio features, whereas ACE XML treats audio, symbolic and cultural features equally

and equivalently. Finally, the Audio Features ontology is still in relatively preliminary

design stages as of the time of this writing.

Music Ontology has the advantage over ACE XML that it is explicitly designed to

facilitate the referencing of external resources. Although it is certainly possible to specify

URIs in ACE XML identifier fields, ACE XML does not have an explicit RDF

framework that makes it particularly convenient to do so. Furthermore, the RDF

182

 zitgist.com
183

 purl.org/dbtune/
184

 www.vamp-plugins.org

 392

framework makes it possible to use existing tools such as SPARQL to query Music

Ontology data.

The choice to use basic XML rather than RDF in ACE XML does carry a number of

advantages, however. For example, ACE XML files are typically much more human

readable than Music Ontology’s RDF files, which are more oriented towards machine

readability. ACE XML files are also simpler and more obviously structured, with fewer

varieties. This makes them very easy for users to learn and write code for. The majority of

researchers in the MIR community and many of its associated disciplines tend to, in

general, be much more familiar with XML than they are with RDF, with the consequence

that they will likely be more willing to adopt an XML-based standard.

Of course, file parsing and writing code libraries have already been implemented for

both ACE XML and Music Ontology, but the simple and clear structuring of ACE XML

makes it easier for MIR researchers to quickly inspect the simple and self-contained ACE

XML DTDs, learn them and write code for them, something that is essential for file

formats intended for adoption as standards. This can be particularly true for many key

areas of MIR research that are more oriented to the humanities than to technical

applications. A related advantage is that ACE XML only relies on simple XML parsing,

and does not require the installation of packages for parsing additional standards such as

OWL, for example.

Also, although the implicit ease of linking disparate resources offered by RDF can

certainly be a strong advantage in many contexts, it can also be a disadvantage when

different linked documents are inconsistent or missing, which can often be an issue in

MIR, at least in its current state. RDF-based approaches by their nature tend to rely on the

accessibility of potentially widely distributed network resources. This can be a significant

disadvantage if one does not have network access at a particular moment, or if a remote

resource is removed, renamed or moved. If even one resource is eliminated it is possible

that one will not only lose access to it, but potentially to all of the resources that it refers

to as well. Self-contained XML files, on the other hand, do not carry this risk.

Furthermore, the ability to easily store information such as feature values and instance

labels locally if desired can be an important advantage when dealing with many gigabytes

of feature values. Limitations such as slow network connections and monthly bandwidth

 393

caps can pose serious obstacles when dealing with widely distributed network ontologies,

but are less of a problem with file types that store the most essential information in a self-

contained way and that can be downloaded or uploaded when convenient, such as ACE

XML. Although RDF-based ontologies do certainly have additional important advantages

of their own, they are perhaps better suited to relatively small amounts of textual data

than to the very large feature associated with many typical MIR use cases and the even

larger datasets that are likely to arise in the future as MIR research scales up to include

larger quantities of music. ACE XML 2.0 files can also, of course, be made accessible on

networks and linked to external ontologies if desired, but the ability to easily use them

purely locally can be an important advantage.

ACE XML seeks to reach a compromise between the strong encouragement of

distributed linked files promoted by RDF and the more conventional approach of having

all data, including feature values and class labels, contained in a single file. ACE XML

does this by using four different file formats to express different types of information, and

makes it relatively easy to merge files of both the same and different types. The ability to

merge separate files when convenient into single self-contained units when needed for the

purposes of convenience and robustness is emphasized in the ACE 2.0 ZIP format

described in Section 7.11.1.

ACE XML provides a good compromise between the simplicity of ARFF and the

generality of Music Ontology and RDF as a whole. ACE XML is strongly and

consistently structured, with a special eye to flexibility, so that features and labels of any

kind can be specified in well-understood but extensible ways. Much more useful

information can be represented with ACE XML than is possible with ARFF, but a much

stronger structure is imposed on the data than in RDF, with the result that all of the data

that is typically used by music classification researchers or is likely to be used by them in

the foreseeable future can be represented in ways that can be clearly and consistently

parsed using simple and standardized software. Furthermore, this diverse information can

all be expressed in a fully self-contained way, without dependencies on distributed

resources that are potentially fragile in terms of both their accessibility and longevity.

With respect to ACE XML 2.0, users have the option of using only the basics of the

ACE XML specification if they wish. This means that the files are very simple and easy

 394

to learn for new users and for those implementing new software that uses ACE XML.

ACE XML 2.0 also includes the ability to represent more sophisticated information if

needed, and special attention has been paid to providing handles that can be used to link

ACE XML 2.0 files to external resources in a variety of ways if this is a particular need,

including RDF resources, thereby providing accessibility to the benefits of the RDF

world.

In general, it can be said that Music Ontology is likely a preferable format for general

representation and for the linking of musical data on-line, and that ACE XML is likely a

preferable format in the specific domain of music classification, particularly with respect

to feature extraction and instance labeling. Music Ontology can certainly be used for such

purposes as well, however. In the long-term, it is certainly possible that RDF-based

approaches and the semantic web in general will be able to truly demonstrate and take

advantage of the power of their generality. This potential has yet to be reached, however,

despite efforts dating back well over a decade. In the meantime, more strongly structured

approaches such as ACE XML have significant practical advantages for use cases

associated with most MIR classification research, both academic and commercial.

7.3.5 RapidMiner

RapidMiner (Mierswa et al. 2006), which was formerly known as YALE (Yet Another

Machine Learning Environment), is an environment for performing machine learning and

data mining experiments. Such experiments can be defined using nestable operators,

which can be described in XML files.

Although the RapidMiner XML files can be very useful in embedding RapidMiner

functionality in other applications, or in communicating experimental setups to other

research groups, the particular emphasis is on communicating experimental

configurations rather than on communicating data itself. This is limiting for MIR

researchers who might wish to use their own algorithms developed under frameworks that

are not related to RapidMiner at all. Furthermore, RapidMiner is a general machine

learning environment that is not intended specifically for music, and as such has many of

the same weaknesses as Weka ARFF files when applied specifically to MIR-oriented

data, as described in Section 7.4.

 395

7.3.6 M2K and MIREX

M2K (Downie et al. 2005), or Music-to-Knowledge, is a graphical feature extraction

and classification framework based on the D2K parallel data mining and machine

learning system. M2K has most famously been used as the primary framework for

carrying out the various MIREX
185

 comparisons of different algorithms. Unfortunately, at

least from the perspective of developing a standardized MIR file format, the individual

committees of participants organizing each of the MIREX tasks have generally tended to

choose a range of differing file formats for each task, rather than coordinating to all use

the same file formats for communicating information such as feature values, instance

labels and class ontologies. Most of the file formats that have been used have been either

simple Java serialized objects or delimited text files, and the more sophisticated data

structuring made possible by frameworks such as XML or RDF has not been taken

advantage of.

7.3.7 Marsyas

Marsyas (Tzanetakis and Cook 2000) is a set of software tools for analyzing and

processing audio. It was one of the first major open-source MIR systems, and has been

widely used for feature extraction, among other tasks. Although Marsyas does have a few

basic text file formats, such as the .mtl Marsyas Timeline files, the main emphasis in

Marsyas is on interoperability (Tzanetakis et al. 2008), with the result that Marsyas

promotes the use of existing formats like Weka ARFF files and Matlab files.

7.3.8 CLAM

CLAM (Amatrain, Arumi and Ramirez 2002) is another prominent set of signal

processing software tools which, among other things, can be used to extract audio

features. Although oriented more towards signal modification than specifically MIR,

features can be saved to either basic XML files or SDIF files. Although certainly useful

for the purposes for which CLAM is intended, these files are not sufficiently

sophisticated, expressive or flexible for the ideal needs of MIR, as specified below.

185

 www.music-ir.org/mirex/2009/

 396

7.3.9 CrestMuseXML

CrestMuseXML (Kitahara 2008; www.crestmuse.jp/index-e.html) is an extensible

framework for describing music. CrestMuse XML is part of the CrestMuse project, which

emphasizes the integration of different XML formats. Although CrestMuse XML remains

to be widely experimented with by the international MIR community, it does hold

significant potential for integrating the benefits of different formats.

7.4 Limitations of existing formats and resultant design priorities

There are a number of important shortcomings that are each found in all or most of

the existing file formats that are currently used in MIR classification research. This

section discusses some of the most significant of these limitations. Taking these problems

into account, a number of design priorities are then proposed for consideration in the

implementation of any future file formats intended for MIR-oriented data mining

applications.

Since there is insufficient space here to provide a detailed analysis of all file formats

that have been used in MIR, a special focus will be placed on describing the most

important shortcomings of the Weka ARFF format (see Section 7.3.2) in particular, as it

appears to be the most commonly used format in MIR and also illustrates many of the

common shortcomings of other formats. Note that this is not in any way meant to

denigrate ARFF files, which are in fact so popular precisely because they are one of the

best general formats available. ARFF files are intended for general data mining research,

and as such certainly cannot be expected to meet the special application-specific needs of

MIR.

One serious limitation of ARFF files is that there is no convenient way to assign more

than one class to a given instance.
186

 This is not a serious shortcoming for most pattern

recognition tasks, which typically require classification into one and only one class.

However, there are many MIR research domains where the limitation of one class label

186

 There are, however, two possible workarounds. The first is to break one multi-class problem into many

binary classification problems, so that there is a separate ARFF file for every class, with all instances

classified as either belonging or not belonging to each class. Alternatively, one could create a separate class

for every possible combination of classes, with a resulting exponential increase in the total numbers of

classes. Unfortunately, both of these workarounds are inconvenient, and implicitly require classifier

configurations that are much less than ideal.

 397

per instance is a very problematic limitation. For example, any genre classifier dealing

with even a moderate genre ontology would be unrealistic if it could not assign multiple

labels to individual pieces of music. Similarly, a performer classification system should

be able to assign multiple labels to pieces, particularly in the case of pieces with

prominent soloists or with musical groups whose members have also had prominent solo

careers (e.g., Cream songs should likely also be labeled with Eric Clapton, many of the

pieces on the Kind of Blue albums should be labeled with both Miles Davis and John

Coltrane, at the very least, etc.). Many MIR areas involve certain inherent ambiguities

relating to class labels, and the imposition of only one class membership at the

fundamental file format level is an unacceptable limitation for any realistic MIR

classification system.

A second problem with ARFF files is that they do not permit any logical grouping of

features. ARFF files treat each feature as an independent entity with no relation to any

other feature. In contrast to this, one often encounters multi-dimensional features in

music, and it can be useful to maintain logical relationships between the components of

such features. Power spectra, MFCCs, bins of a beat histogram and a binary list of

instruments present are just a few examples of music related multi-dimensional features.

Maintaining a logical relationship between the values of multi-dimensional features

allows one to perform classifications in particularly fruitful ways that take advantage of

their interrelatedness, particularly with respect to classifier ensembles. Training one

neural net on MFCCs, for example, and using another classifier for one-dimensional

features such as RMS or spectral centroid can prove much more fruitful than mixing the

MFCCs in with the other features. To give another example, it can also be useful for other

reasons to group features that are derived from one another, such as in the case of the

average value, average derivative and standard deviation of a particular feature.

A third problem is that ARFF files do not allow any labeling or structuring of

instances. Each instance is stored only as a collection of feature values and a class label,

with no identifying metadata. In music, it is often appropriate to extract features over a

potentially overlapping time series of windows for each musical piece, something that

results in sets of related ordered sub-sections of individual pieces. This is absolutely

essential in applications such as automatic recording segmentation or structural analysis,

 398

and is convenient in a wide variety of MIR-oriented tasks. Furthermore, some features

may be extracted for each window, some only for some windows and some only for each

recording as a whole. ARFF files provide no way of associating features extracted from a

window with the recording that the window comes from, nor do they provide any means

of identifying recordings or of storing time stamps associated with each window. This

means that this information must be stored, organized and processed by some external

software using some additional unspecified and non-standardized file format.

A fourth problem is that there is no way to provide any metadata about features in

ARFF files, other than unstructured information in comments. This can be a problem if

data is to be shared amongst different groups, who may wish to use it to train their own

systems, for example. In cases such as this, it is necessary to know details about the

features and the particular parameters with which they were extracted (e.g., the roll-off

point for the Spectral Roll-Off feature) if features are to be extracted from new instances

to be classified based on the features provided in the original dataset.

A fifth problem is that there is no way of imposing a structure on class labels in ARFF

files. One often encounters hierarchical or other ontological structures in music, such as

in the cases of genre categories or structural analyses. Weka treats each class as distinct

and independent. This means that there is no native way to use classification techniques

that make use of structured ontologies, such as hierarchical tree classifiers, for example.

This also means that there is no way to use weighted misclassification training strategies

that penalize misclassifications into dissimilar classes more severely than

misclassifications into similar classes.

The following list, based on the above analysis of ARFF files and on additional

general observations, outlines a set of (sometimes by necessity contradictory)

requirements that are proposed for consideration in the design of any new standardized

file formats intended for general MIR classification research:

 File formats should be as simple and easy to understand as possible. This makes it

easier for users to learn the formats and adopt them. It also decreases the

probability of unforeseen conflicts and inconsistencies.

 399

 File formats should be as flexible and expressive as possible, within the constraint

of avoiding excessive complexity and redundancy.

 The data stored in the files should be easily human readable. This is important for

purposes of debugging and general utility. It is can also be useful for the purposes

of allowing humans to write files manually when the design of annotation

software would be inappropriate or unnecessarily time consuming.

 The data stored in the files should be easily machine readable. If a file format is

difficult to write parsers with or is parsed into inconvenient data structures then it

will be difficult to convince users to adopt it as a standard.

 The data should be stored as efficiently as possible, in order to avoid excessively

large files, within the constraint of maintaining human readability.

 Some widely accepted and well-known existing standard technology, such as

XML, should be used. This increases the likelihood that new file formats will be

themselves adopted as standards because they will be based on a proven

technology, because users are likely to be already be at least somewhat familiar

with the technology and because parsing libraries will already be available.

 File formats should rely on as few external technologies as possible. Each external

technology that is present increases the probability that a given programming

language used to develop a particular application may not include parsing libraries

for that technology, that a parsing library does not function under a given

operating system or that a component of the system will become obsolete in the

future.

 The fundamental types of information that need to be represented are: feature

values extracted from instances, class label annotations of instances, abstract

descriptions of features and their parameters, and ontological structuring of

candidate class labels.

 It should be possible to express features extracted from audio, symbolic and

cultural sources of information, and treat these features equivalently so that they

can easily be combined.

 400

 It should be easy to reuse files, such as in the case of the same set of audio feature

values being used for both genre classification and artist identification. Similarly,

it could be convenient to reuse the same model classifications with different sets

of features. For example, one could classify a given corpus of audio recordings

and then later perform the same task on symbolic versions of the same corpus

using the same model classifications.

 It is useful to emphasize a clear separation between the feature extraction and

classification tasks. This is in contrast to formats such as Weka ARFF, which

combine feature values with class labels. A separation between these two types of

data is important because individual researchers may have reasons for using

particular feature extractors or particular classification systems. The file format

should therefore make it possible to use any feature extractor to communicate

features of any type to any classification system. This portability makes it possible

to process features generated by different feature extractors with the same

classification system, or to use a given set of extracted features with multiple

classification systems.

 It should be a simple matter to combine files of the same type, such as in the case

of features extracted during different feature extraction sessions.

 It should be a simple matter to package files expressing related types of

information (e.g., feature values extracted from particular instances and abstract

information about the features themselves) together when appropriate, but also to

separate them out when convenient. This helps to ensure data availability,

integrity and accessibility, as well as flexibility.

 It should be possible to use files to reference external sources of information, but

in such a way that doing so does not introduce dependencies on external

information that may no longer be available in the future or that changes

unexpectedly.

 It should be possible to assign an arbitrary number of class labels to each instance.

It should also be possible to express relative weightings for each of these labels.

 401

 It should be possible to group the dimensions of multi-dimensional features and to

logically associate related features and their values in general with one another.

 It should be possible to assign identifying metadata to instances (e.g., recording

titles or time stamps) that will associate meaning and context for the instances so

that they can be identified, both internally and externally. In general, users should

be free to specify whatever metadata fields they wish, and the file format should

not limit them to specific fields. However, it may be useful to supply sample

templates of particular schemas.

 It should be possible to specify relationships between specific instances, in both

ordered and hierarchical ways. In the case of the former, this could be a time

series of analysis windows, for example. In the case of the latter, it could be a

hierarchical ranking of, from bottom to top, features extracted from individual

analysis windows of a recording, compared to features extracted for recordings as

a whole, compared to features extracted for a performer as a whole, etc. In any

case, it should be possible to express both feature values and class labels for both

overall instances and ordered sub-sections of them.

 For time-series data, it should be possible for analysis windows to overlap with

one another and for section labels to overlap with one another.

 For time-series data, it should be possible for analysis windows to have variable

sizes, rather than requiring them all to be the same size.

 It should be possible for feature values to be present for some instances and/or

sub-instances, but not others. For example, some features may be extracted for all

analysis windows, some only for some windows and some only for each recording

as a whole.

 Related to this, it should be possible to abstractly specify the appropriateness of

different features for different contexts. For example, some features might only be

appropriate to extract for a whole recording, not its analysis windows, or some

features might only be possible to extract once one or more windows have already

been calculated (e.g., spectral flux).

 402

 It should be possible to specify general metadata about features, including

identifying feature names, descriptions and extraction parameters.

 It should be possible to specify relationships between different class labels, both

hierarchical and otherwise. This is important for the specification of class

ontologies that can be taken advantage of by machine learning strategies such as

hierarchical learning algorithms or weighted misclassification penalization during

training. It should also be possible to relatively weight the associations between

class labels.

7.5 Overview of the ACE XML file formats

This section provides an overview of the ACE XML 1.1 file formats and provides

motivations for some of the general design decisions behind them. In all cases, the

guidelines described in Section 7.4 guided the design of these file formats. The proposed

ACE XML 2.0 formats, as described in Section 7.11, go further still in meeting the

Section 7.4 guidelines.

Sections 7.6 to 7.9 provide more detailed individual descriptions of each of the four

ACE XML 1.1 formats, including their DTDs. There is also a sample full ACE XML 1.1

file for each of the four ACE XML file types provided in the on-line sample file

appendix.
187

 For the sake of comparison, these sample files are constructed such that they

express the same base data as that described by the sample Weka ARFF file in Figure 7.5,

but take advantage of the increased expressivity offered by the ACE XML file formats.

ACE XML 1.1 is the current stable version of ACE XML, and is supported by all of

the jMIR software components. It is the first published version of ACE XML (McKay et

al. 2005), and is a minor update over the never published ACE 1.0 test prototype. Section

7.11 describes ACE 2.0, which is a proposed update of ACE that is not yet finalized or

implemented in software.

As implied by their name, ACE XML files are all XML-based. XML was chosen

because it is not only a standardized format for which parsers are widely available, but is

also an extremely flexible format. It is a verbose format, with the consequence that it is

187

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 403

less space efficient than formats such as ARFF, but this verbosity has the corresponding

advantage that it allows humans to read and write the files relatively easily.

It was decided to use XML DTDs rather than another XML schema to specify the

structures used by ACE XML files. Although other schemas can in general be more

expressive than DTDs, DTDs are nonetheless sufficiently expressive for the purposes of

ACE XML. They also have the significant advantages of being simpler and easier to

understand, thereby making the ACE XML formats more attractive to new users and

making the work of those implementing custom ACE XML parsers and writers easier.

This is a particular issue given the wide variety of alternative schemas that are available.

The average member of the MIR community is much less likely to be familiar with any

particular one of these schema languages, particularly in the cases of those specialized

schemas that provide enough increased expressivity to arguably have advantages over the

simple DTD approach. Furthermore, DTDs tend to be much simpler and straight-forward,

and are therefore much easier to learn for those users who might not know any XML at

all. The ACE XML DTDs are specified in each ACE XML file along with the file’s data,

which means that each ACE XML file is packaged with an explanation of its formatting.

As briefly discussed in Section 7.1, There are four different types of ACE XML files:

Feature Value files that express feature values extracted from instances, Feature

Description files that describe features abstractly, Instance Label files that allow labels to

be associated with instances and allow the specification of metadata about instances, and

Class Ontology files that specify relationships between different candidate class labels.

Each of these four XML file types may be used independently, or they may be

associated with one another and logically merged in software using unique identifying

keys, such as matching data_set_id fields found in both Feature Value and Instance Label

files, for example. Multiple files of the same type can also be merged using the ACE

software. To give just a few examples: two Feature Value files containing the same

features for different instances could be merged into one file, two different Feature Value

files containing different features for the same instances could be merged, an Instance

Label file containing only sub-section labels and an Instance Label file containing only

overall instance labels could be merged, etc.

 404

It is not in any way necessary to provide all four ACE XML file types for any

application if this is not appropriate or needed. For example, if a classifier is already

trained and is to be used to classify unknown patterns, then there is certainly no need for

an input Instance Label file, although one may be output during processing to express the

predicted classes. The ACE software and its code libraries will automatically construct

implied data for missing file types in a way that is effortless and transparent to the user.

For example, if only a Feature Value file and an Instance Label file are specified, the

software will automatically construct a flat class ontology based on the labels present in

the Instance Label file and will also automatically generate feature descriptions based on

the characteristics of the features present in the Feature Value file (e.g., the

dimensionality of each of the features).

The decision to use four different file types rather than the more typical single file

type is unorthodox, and therefore requires some justification. As discussed in Section 7.4,

it is useful to incorporate a separation between feature values and instance labels. This is

important for data reusability, such as in a case where one might extract features once

from a large number of recordings, and then reuse this single resulting Feature Value file

for multiple purposes, such as classification of artist, composer, genre and geographical

point of origin. If there were only one ACE XML file type, then features would have to

be repeated for each of these applications, but with the multiple file type approach the

Feature Value file can remain unchanged, and be reused with a different Instance Label

file for each classification task. Similarly, one can imagine a case where the same model

classifications contained in one Instance Label file are used for separate sets of features

extracted from symbolic, cultural and audio data respectively contained in three different

Feature Value files.

Feature descriptions and class ontologies are each distributed in separate files as well

in order to emphasize their independence from particular instances. For example, a

Feature Description file could be published on its own to demonstrate general features

that can be extracted by a particular feature extraction application in general, or a Feature

Description file could be published on its own that contains specific extraction parameters

that were found to be effective for a particular research domain, or a Feature Description

file could be packaged with a Feature Value file containing feature values extracted for

 405

particular instances, as appropriate. Similarly, class ontologies can be published in a way

that is independent of particular instances and features, or even of a particular data set.

Such file type separations emphasize the abstract nature of many types of data that are

useful in music classification, and allow them to be distributed and used either

independently or together, as appropriate, rather than artificially forcing links where they

may not always be appropriate.

The use of separate file formats also has advantages with respect to data longevity and

convenience when updating the data. For example, if new features become available after

a Feature Value file has been generated, it would only be necessary to update the Feature

Value and Feature Description files since the data stored in the other two file types could

be reused unmodified. Similarly, if a genre ontology changed over time, it would not be

necessary to update already existing Feature Value or Feature Description files.

Overall and most importantly, the separation of different types of data into four

different file types makes it possible to distribute and use one type of file for arbitrary

purposes without needing to impose one’s own choices with respect to the types of data

described by the other three file types. Also, the separation into multiple files types makes

it easier to conceptualize and represent sophisticated arrangements of information with a

divide and conquer approach.

jMIR includes several software tools for facilitating the use of the ACE XML file

formats in general, including use outside of the scope of the principal jMIR software

components themselves. Although ACE XML files may certainly be manually read,

created and edited with text editors or XML editors such as XML Spy, the best way to

perform such manual operations is to use the prototype ACE GUI, which displays data

from single or multiple ACE XML files in particularly convenient ways.

A separate Java application called jMIRUtilities is also included as part of jMIR for,

among other things, performing a number of functions that facilitate the general use of

ACE XML files. Aspects of jMIRUtilities include a simple GUI for batch annotating files

into an Instance Label file, functionality for generating Instance Label files based on

simple tab delimited text files, functionality for accessing data from iTunes XML files so

that it can then be imported into ACE XML files, and functionality for merging features

contained in separate ACE XML Feature Value files.

 406

7.6 The ACE XML 1.1 Feature Value file format

ACE XML Feature Value files are used to express feature values that have been

extracted from instances and sub-sections of instances. Figure 7.6 specifies the DTD for

Feature Value files. A sample complete Feature Value file is shown in Code Sample 7.1

of the on-line sample file appendix.
188

Figure 7.6: The XML DTD for ACE XML 1.1 Feature Value files. This DTD precisely

defines the information that may appear in Feature Value files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.1 of the on-line sample file appendix.189

It can be seen from the Feature Value DTD that feature values can be expressed for

overall instances, called data_sets, that are each named using the data_set_id element.

Each data_set_id refers to a unique identifier, such as a file path or a URI. Each data_set

may or may not have sub-sections, which are each specified using the section element.

For example, a data_set might correspond to an audio recording and its sub-sections

might correspond to analysis windows of the recording, although there is nothing about

the Feature Value specification that requires this particular arrangement.

Each data_set sub-section must have start and stop stamps in order to indicate what

portion of the data_set that it corresponds to. These stamps may or may not overlap and

they may or may not be of equal sizes. This makes it possible to have, for example,

overlapping analysis windows of arbitrary and potentially varying sizes. There is nothing

about the start and stop attributes that requires them to denote time, however, and they

188

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf
189

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT feature_vector_file (comments,

 data_set+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT data_set (data_set_id,

 section*,

 feature*)>

<!ELEMENT data_set_id (#PCDATA)>

<!ELEMENT section (feature+)>

<!ATTLIST section start CDATA ""

 stop CDATA "">

<!ELEMENT feature (name, v+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT v (#PCDATA)>

 407

could just as easily be used to denote a range of pixels in an image of album art, for

example.

Features may be expressed for either a data_set as a whole or for individual sub-

sections. In either case, the feature element is used to denote a new feature value or

feature vector, and the particular feature is named using a name element in each feature

clause.

Each data_set or section may have an arbitrary and potentially differing number of

features in an arbitrary and potentially differing order. This makes it possible to omit

features from some data sets or sub-sections if appropriate or if they are unavailable. Each

feature may also have an arbitrary and potentially varying number of values, each denoted

with a v element, in order to allow multi-dimensional features that may vary in

dimensionality based on context.
190

More information on instances described in a Feature Value files, such as class labels

or identifying metadata, may be accessed by linking instances in the Feature Value file to

instances in an ACE XML Instance Label file (see Section 7.8) by using data_set_id

values that match across the two files.

Similarly, more information on the features themselves (as opposed to their values)

can be specified by linking a Feature Value file to an ACE XML Feature Description file

(see Section 7.7) by using name values in feature clauses in the Feature Value file that

correspond to name values in feature clauses in the Feature Description file. However, it

is not necessary to include Feature Description files with Feature Value files, since

software such as ACE can automatically implicitly deduce information such as the

dimensionality of features or whether particular features are to be extracted for overall

instances or their sub-sections.

As a final note, it should be mentioned that a feature_vector_file tag is used in the

DTD specification rather than a feature_value_file tag. This is for the purpose of legacy

compatibility, since Feature Value files were called Feature Vector files in the deprecated

ACE XL 1.0 specification.

190

 The dimensionality of a given feature type may alternatively be fixed in a Feature Description file, if

desired.

 408

7.7 The ACE XML 1.1 Feature Description file format

ACE XML Feature Description files are used to express abstract information about

features themselves. Feature Description files do not specify feature values or other

information related to specific instances, as this information is instead specified in

Feature Value files (see Section 7.6). Figure 7.7 specifies the DTD for Feature

Description files. A sample complete Feature Description file is shown in Code Sample

7.2 of the on-line sample file appendix.
191

Feature Description files make it possible to specify information about features in a

general sense in a way that is independent from particular feature extractions. This makes

it possible to publish a self-contained Feature Description file describing the features that

a particular feature extraction application can extract, for example, or to publish a list of

features and associated parameters that were found to be useful for different research

application, such as instrument classification and pitch classification.

Figure 7.7: The XML DTD for ACE XML 1.1 Feature Description files. This DTD

precisely defines the information that may appear in Feature Description files and how it

must be formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file

based on this DTD is shown in Code Sample 7.2 of the on-line sample file appendix.192

It can be seen from the Feature Description DTD that information on each feature is

expressed in a separate feature clause. Each such clause includes a name element

uniquely identifying the feature and an optional description element that can be used to

include textual metadata about the feature.

191

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf
192

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 <!ELEMENT feature_key_file (comments,

 feature+)>

 <!ELEMENT comments (#PCDATA)>

 <!ELEMENT feature (name,

 description?,

 is_sequential,

 parallel_dimensions)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT description (#PCDATA)>

 <!ELEMENT is_sequential (#PCDATA)>

 <!ELEMENT parallel_dimensions (#PCDATA)>

 409

The is_sequential element for each feature specifies whether or not the feature can be

extracted from sub-sections of an instance. A value of true means that it can, and a value

of false means that the feature can only be extracted from instances as a whole, not from

their sub-sections. So, for example, a feature such as Most Common Pitch might have an

is_sequential value of true for a MIDI file that is broken into analysis windows and the

most common pitch is calculated for each individual window, but a feature such as

Overall Key might have an is_sequential value of false because it would only be extracted

for the MIDI file as a whole.

The parallel_dimensions element specifies the vector size of extracted features. This

value will be 1 unless the feature is a multi-dimensional feature. So, for example, a multi-

dimensional Pitch Histogram feature with 128 pitch bins would have a

parallel_dimensions value of 128, but the one-dimensional Most Common Pitch feature

would only have a parallel_dimensions value of 1.

Feature Description files can be linked with Feature Value files if it is desirable to

describe the features used in a particular feature extraction run on a particular dataset. It

can often be helpful to do this, as there are often many variable implementation details

about features that are not apparent from examinations of actual feature values, so the

distribution of feature details with extracted feature values makes it much easier to extract

new feature values from new instances in ways that are compatible with earlier feature

extractions.

The linking of a Feature Description file and a Feature Value file can be achieved by

using name elements in feature clauses in the Feature Description file that correspond to

matching name elements in feature clauses in the Feature Value file.

As a final note, it should be mentioned that a feature_key_file tag is used in the DTD

specification rather than a feature_description_file tag. This is for the purpose of legacy

compatibility, since Feature Description files were called Feature Key files in the

deprecated ACE XML 1.0 specification.

7.8 The ACE XML 1.1 Instance Label file format

ACE XML Instance Label files are used to specify class labels and miscellaneous

metadata about instances and sub-sections of instances. A typical use of this file type

 410

would be to express ground-truth model classifications or predicted classifications, but

there are certainly other possible uses as well. Figure 7.8 specifies the DTD for Instance

Label files. A sample complete Instance Label file is shown in Code Sample 7.3 of the

on-line sample file appendix.
193

Figure 7.8: The XML DTD for ACE XML 1.1 Instance Label files. This DTD precisely

defines the information that may appear in Instance Label files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.3 of the on-line sample file appendix.194

It can be seen from the Instance Label DTD that class labels can be expressed for

overall instances, called data_sets, that are each named using the data_set_id element.

Each data_set_id should refer to a unique identifier, such as a file path or a URI. Each

data_set may or may not have sub-sections, which are each specified using the section

element. For example, a data_set might correspond to an audio recording and its sub-

sections might correspond to analysis windows of this recording, although there is

nothing about the Instance Label specification that requires this particular arrangement.

Each data_set instance may have pieces of metadata associated with it via the

misc_info element. Each misc_info clause may be associated with an info_type attribute

193

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf
194

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT classifications_file (comments,

 data_set+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT data_set (data_set_id,

 misc_info*,

 role?,

 classification)>

<!ELEMENT data_set_id (#PCDATA)>

<!ELEMENT misc_info (#PCDATA)>

<!ATTLIST misc_info info_type CDATA "">

<!ELEMENT role (#PCDATA)>

<!ELEMENT classification (section*,

 class*)>

<!ELEMENT section (start,

 stop,

 class+)>

<!ELEMENT class (#PCDATA)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT stop (#PCDATA)>

 411

that specifies the type of metadata (e.g., title, album, composer, etc. field names) that the

misc_info clause specifies.

The optional role element can be used to specify the purpose for which an instance is

to be used. Values such as training, testing and predicted are typically used for this field

to specify the role of the instance with respect to machine learning, but any string may be

provided here if desired. This can be useful for purposes such as specifying pre-

determined cross-validation folds, for example, and can be particularly useful for

bookkeeping when multiple Instance Label files are merged.

Class labels are assigned to overall instances and/or their sub-sections using the class

element. Multiple labels may be assigned to each instance or sub-section, or the label may

be left unspecified if a particular label is unknown.

Each sub-section of an instance must have start and stop stamps in order to indicate

the portion of the instance that it corresponds to. These stamps might often be used to

specify time intervals, although there is nothing requiring that they be related specifically

to time. The resultant sub-section intervals may or may not overlap and they may or may

not be of equal sizes.

This arrangement permits two partially overlapping regions, where each region is

labelled with a different class name, and the overlapping portion is associated with both

labels. Such an occasion might occur, for example, in the ground-truth for a

music/applause discriminator where the applause in a live performance begins before the

music ends. Such a situation could be expressed as either two sections with one label each

overlapping in time or as three non-overlapping consecutive sections where the outer

sections have one label each and the central section has two labels, whichever is more

convenient.

Information on specific feature values extracted from instances referred to in an

Instance Label file may be accessed by linking the Instance Label file to an ACE XML

Feature Value file (see Section 7.6) by using data_set_id values that match across the two

files. Similarly, more information on the class labels used to label instances in an Instance

Label file can be accessed by linking the Instance Label file to a Class Ontology file (see

Section 7.9) by using class values that match across the two files.

 412

As a final note, it should be mentioned that a classifications_file tag is used in the

DTD specification rather than an instance_label_file tag. This is for the purpose of legacy

compatibility, since Instance Label files were called Classification files in the deprecated

ACE XL 1.0 specification.

7.9 The ACE XML 1.1 Class Ontology file format

ACE XML Class Ontology files are used to list candidate class labels for a particular

classification domain and to specify hierarchical structures that connect different classes.

As discussed in Section 7.11, the ACE XML 2.0 version of the Class Ontology format

extends the purview of Class Ontology files to general weighted ontologies, but the ACE

XML 1.1 version only permits extended tree-based taxonomical class structuring,
195

which at least is significantly more than the simple flat class structures used in the

majority of current MIR research.

Class Ontology files do not specify the class labels of any specific instances, as this

information is instead annotated in Instance Label files (see Section 7.8). Figure 7.9

specifies the DTD for Class Ontology files. A sample complete Class Ontology file is

shown in Code Sample 7.4 of the on-line sample file appendix.
196

The ability to specify hierarchical class structuring has several important benefits.

From a musicological perspective, it provides a simple machine readable way of

specifying meaningful structuring of classes. From a machine learning perspective, it has

the dual advantages of enabling the use of potentially very powerful hierarchical

classification methodologies that take advantage of this structuring (e.g., McKay 2004) as

well as the use of learning schemes utilizing weighted penalization, such that

misclassifications during training into related classes are penalized less severely than

misclassifications into unrelated classes.

It can be seen from the Class Ontology DTD that flat class structures can be specified

simply by listing a set of parent_class clauses, each with a class_name element used to

specify the name of a class. This simple approach can be useful in communicating a list

195

 The tree-based structuring permitted by Class Ontology files is referred to as ―extended‖ because the

Class Ontology format and its associated ACE data structures allow the possibility of any given class being

descended from multiple parent classes, something that is not permitted in standard tree structures. This can

be implemented by specifying the same class name in multiple parent_class or sub_class clauses.
196

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 413

of candidate class labels to an annotator, for example, or for combining a Class Ontology

file with a set of labelled instances contained in an Instance Label file in order to ensure

that it does not use any unexpected class labels.

Figure 7.9: The XML DTD for ACE XML 1.1 Class Ontology files. This DTD precisely

defines the information that may appear in Class Ontology files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.4 of the on-line sample file appendix.197

The structural aspect of Class Ontology files become apparent when the sub_class

element is used to specify hierarchical structures of class labels under parent_class level

classes. Each parent_class clause may contain an arbitrary number of sub_classes, and

each sub_class may itself also contain an arbitrary number of sub_classes, with the result

that a hierarchical class tree of arbitrary depth can be built under each parent_class. Each

class with no descendants, be it in a parent_class or sub_class clause, can be referred to

as a leaf class, and can be used to label instances in Instance Label files.

A Class Ontology file can be linked to an Instance Label file for use during training,

or for other reasons, by using class_name values in the Class Ontology file that

correspond to the class values in the Instance Label file.

As a final note, it should be mentioned that a taxonomy_file tag is used in the DTD

specification rather than a class_ontology_file tag. This is for the purpose of legacy

compatibility, since Class Ontology files were called Taxonomy files in the deprecated

ACE XL 1.0 specification.

197

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT taxonomy_file (comments,

 parent_class+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT parent_class (class_name,

 sub_class*)>

<!ELEMENT class_name (#PCDATA)>

<!ELEMENT sub_class (class_name,

 sub_class*)>

 414

7.10 Using ACE XML with new and existing non-jMIR software

A key factor in the effectiveness of any effort to encourage researchers to adopt new

standardised file formats is the ease with which they can parse and write to them in their

own existing and new software. The simplicity of Weka ARFF files and the ample data

structures and processing functionality offered by the Weka code base have certainly

contributed to its broad adoption, for example. Although all jMIR software components

are of course able to read and write all relevant ACE XML formats, this in itself is not

sufficient to encourage the use of ACE XML in other software platforms.

jMIR therefore includes open-source Java libraries in the ACE code package that

implement parsing and writing functionality for each of the ACE XML file types, as well

as convenient data structures and general processing methods for dealing with the data

that is parsed from files. This data can be used and manipulated directly within these

libraries, or it can be exported to individual developers’ own data structures. ACE’s

parsing and data structure libraries may be used entirely independently of the ACE meta

learning software itself if desired.

Functionality has also been implemented to automatically convert data in ACE XML

data structures into Weka data structures, and vice versa, in order to take advantage of the

convenient and well-established functionality built into Weka. This also makes it possible

to use Weka data structures as intermediaries for conversion to yet other formats. jMIR

also includes utilities for directly translating back and forth between Weka ARFF and

ACE XML files, although data that fundamentally cannot be represented in ARFF files is

lost when doing so.

As discussed in Section 7.13, there are plans to implement ACE XML parsing and

processing functionality in other programming languages and to build custom modules

for other well-established MIR systems. For the moment, however, the Java

implementation of the ACE XML processing functionality makes these libraries as

accessible as libraries implemented in any single language can be. Java is platform

independent, and the only third-party software used by the ACE XML processing

libraries is the open-source Apache Xerces
198

 XML-parsing library and the Weka

198

 xerces.apache.org/xerces-j/

 415

library
199

 (and this only if Weka functionality is used), both of which are also

implemented in Java. This means that the ACE XML libraries can be easily accessed

under any common operating system, with the further advantage that many systems such

as Matlab include functionality for accessing Java externals. Furthermore, even if one is

for some reason unable to access the ACE XML code libraries, general XML parsers are

available in virtually all modern programming languages.

For the purpose of clarity, the overall structure of the Java classes used to parse and

process ACE XML files is briefly outlined here. This is only a basic overview, however,

and those wishing more details are referred to the ACE API and the well-documented

code itself, available at jmir.sourceforge.net.

An important point to note before proceeding to the architectural details of the ACE

XML Java classes is that the jMIR components themselves make use of the ACE classes

described below when dealing with ACE XML files. This means that any bug fixes or

updates to the ACE XML standard only need to be implemented once in these classes to

be automatically updated in all of the jMIR components as well.

The parsing code for all ACE XML file formats is contained in the ace.xmlparsers

Java package. Although changes to the ACE XML standard must be implemented here,

users in general should never need to reference these classes directly when incorporating

ACE XML functionality into their own code. This is because all of the parsing

functionality can be accessed more conveniently from the higher-level classes in the

ace.datatypes Java package. Having noted this, those users who do wish to have low-level

access to the parsed data may wish to examine the ParseClassificationsFileHandler,

ParseDataSetHandler, ParseFeatureDefinitionsHandler and ParseTaxonomyFileHandler

classes in the ace.xmlparsers package for parsing Instance Label, Feature Value, Feature

Description and Class Ontology ACE XML files respectively.

As noted above, the significant majority of users will prefer to use the ace.datatypes

classes, however, which represent the data parsed from ACE XML files at a higher level

and include access to file reading, automatic error and consistency checking, file writing,

file merging, data translation and data processing functionality, as well as access to the

basic data structures used to hold data once it is parsed from ACE XML files. A number

199

 www.cs.waikato.ac.nz/ml/weka/

 416

of methods are designed specifically with the intention of making relevant data available

in forms convenient to external software, and this data can often be simply imported over

to users’ own software in the form of simple and well-established data structures.

The overarching Java class in the ace.datatypes package is the DataBoard, which

provides access to information relating to any of the four ACE XML file types,

interpreted either independently or in conjunction with one another. The DataBoard also

provides direct access to the SegmentedClassification, DataSet, FeatureDefinition and

Taxonomy Java classes, each of which relates specifically to information stored in

Instance Label, Feature Value, Feature Description and Class Ontology ACE XML files,

respectively. The ace.datatypes package also contains other Java classes, but these relate

more to either ACE XML 2.0 functionality, such as ACE ZIP files (see Section 7.11.1), or

to ACE machine learning functionality that is not directly relevant to accessing data

stored in ACE XML files.

7.11 Current developments: Proposed update to ACE XML 2.0

The ACE XML 1.0 file formats were developed at the beginning of the jMIR project,

before any of the jMIR software components had themselves been completed. Minor

changes were introduced in version 1.1, the stable version described in the sections above,

but the file formats were frozen at this version after the publication of the first jMIR

component (McKay et al. 2005). This was necessary because ACE XML is intended for

use as a standard, which precludes the incorporation of changes that would render

existing software that uses the previous format obsolete.

Of course, certain areas of potential improvement became apparent as more jMIR

components were completed. The need for an update to the ACE XML specification also

became increasingly apparent as the use of ACE XML as a standardised format for use in

the inter-university NEMA
200

 project became probable, something that would necessitate

a number of changes for the sake of compatibility with other NEMA systems.

As a result, it was decided to design an overhauled version of ACE XML called ACE

XML 2.0, which is described in the following sub-sections. It should be stressed that the

specified ACE XML 2.0 formats are only proposals, and that the finalization and

200

 nema.lis.uiuc.edu

 417

implementation of these formats is beyond the scope of this document. Given that ACE

XML 2.0 is proposed as a standardized set of file formats intended for general use, it is

appropriate to first publish proposed changes to the MIR research community for

potential modification before finalizing and implementing the changes. ACE XML 1.1 is

already implemented and established in all jMIR components and is still the ―official‖

jMIR format at the time of publication of this document.

Some of the changes proposed for ACE XML 2.0 are based on the changing needs of

the MIR community since ACE XML 1.1 was established. Others are simply for the sake

of improved clarity, simplicity and improved consistency across ACE XML formats. The

most fundamental changes, however, are based on the needs imposed by the NEMA

project. The NEMA researchers at Queen Mary, University of London are invested in the

Music Ontology format (see Section 7.3.4), and the NEMA researchers at the University

of Illinois at Urbana-Champaign are building the NEMA infrastructure using Meandre,
201

both of which require specific modifications to ACE XML for the sake of full

compatibility. For example, the addition of optional URI and other fields to the ACE

XML files makes it possible to add RDF handles to ACE XML files if it is necessary to

integrate them with file formats such as Music Ontology, while at the same time

maintaining the advantages of essentially self-contained structured XML files.

As a consequence of these diverse needs, many of the characteristics of ACE XML

2.0 are the result of compromises between the often competing priorities of different

researchers and research groups. The changes implemented in ACE XML 2.0 are

intended to meet both these specific needs as well as the original design philosophy of

ACE XML as much as possible. The main priority, however, has remained the

implementation of formats that are as flexible and general as possible within the specific

sphere of MIR classification research.

Many of the changes to ACE XML proposed in the sections below result from very

helpful conversations, criticisms and suggestions from other researchers. These include,

at McGill University, John Ashley Burgoyne, Rebecca Fiebrink, Ichiro Fujinaga, Daniel

McEnnis and Jessica Thompson, among others. Jessica Thompson in particular deserves

special credit for her central role with respect to the ACE ZIP format, as well as for ideas

201

 seasr.org/meandre/

 418

relating to ACE XML in general. John Ashley Burgoyne is also playing an essential role

in the ongoing implementation of the new software supporting ACE XML 2.0. And, of

course, Ichiro Fujinaga’s input was essential throughout the process, from beginning to

end. Many other researchers outside McGill University have also contributed very helpful

insights, including, Mert Bay, Douglas Eck, Andreas F. Ehmann, Ben Fields, Ian Knopke,

Amit Kumar, Paul Lamere, Cyril Laurier, Kevin Page, Yves Raimond, Allen Renear,

Mark Sandler, David Tcheng, Karen Wickett and, especially, J. Stephen Downie and Kris

West.

It is important to stress that as much effort as possible needs to be made to keep ACE

XML 2.0 backwards compatible with ACE XML 1.1, especially in terms of the data

structures that the file formats support.

7.11.1 ACE XML 2.0 ZIP files and ACE XML 1.1 and 2.0 Project files

One of the first problems that became apparent with ACE XML was that large groups

of XML files associated with a particular research project could be unwieldy to deal with

collectively, and could potentially be confusing to new users. Since it is undesirable to

combine the four formats into a single format, for reasons discussed in Sections 7.4 and

7.5, it was necessary to find a solution that would allow the continued use of multiple

discrete files while at the same time simplifying the logistics related to using groups of

them together.

The first solution was to devise an ACE XML Project file format that could be used to

associate related files together for a given project. This format allows users of an

application such as ACE, for example, to simply specify a single Project file, and then

rely on the application to itself automatically open all of the files referred to by this

Project file, thus increasing user convenience significantly.

A prototype Project file format was developed under the ACE XML 1.1 framework

and implemented in the ACE Java package, but never finalized as a standard or

implemented in the other jMIR components. The DTD of this prototype ACE XML 1.1

Project file is shown in Figure 7.10, and a revised ACE XML 2.0 version is shown in

Figure 7.11. A sample ACE XML 1.1 Project file is shown in Code Sample 7.5 of the on-

 419

line sample file appendix, and a sample ACE XML 2.0 Project file is shown in Code

Sample 7.6.
202

Figure 7.10: The XML DTD for the prototype ACE XML 1.1 Project file format. This DTD

precisely defines the information that may appear in Project files and how it must be

formatted. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.5 of the on-line sample file appendix.203

The feature_vectors_path, feature_definitions_path, model_classifications_path and

taxonomy_path elements allow references to be made to external ACE XML Feature

Value, Feature Description, Instance Label or Class Ontology files, respectively. Zero to

many files of each type may be referred to, except in the case of Class Ontology files, for

which only zero or one files may be referenced. Weka ARFF files can also be referred to

using the weka_arff_path element if ACE XML files are unavailable for a certain dataset.

Preference files (in as of yet unspecified formats) for the ACE meta learning

application can also be specified using the gui_preferences_path and

classifier_settings_path elements. Trained classification models can be referenced via the

trained_classifiers_path element.

202

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf
203

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT ace_project_file (comments,

 taxonomy_path,

 feature_definitions_path,

 feature_vectors_path,

 model_classifications_path,

 gui_preferences_path,

 classifier_settings_path,

 trained_classifiers_path,

 weka_arff_path)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT taxonomy_path (#PCDATA)>

<!ELEMENT feature_definitions_path (path*)>

<!ELEMENT feature_vectors_path (path*)>

<!ELEMENT model_classifications_path (path*)>

<!ELEMENT gui_preferences_path (#PCDATA)>

<!ELEMENT classifier_settings_path (#PCDATA)>

<!ELEMENT trained_classifiers_path (#PCDATA)>

<!ELEMENT weka_arff_path (#PCDATA)>

<!ELEMENT path (#PCDATA)>

 420

Figure 7.11: The proposed ACE XML 2.0 update to the DTD of the Project file format.

See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this DTD is

shown in Code Sample 7.6 of the on-line sample file appendix.204

As can be seen by a comparison of Figures 7.10 and 7.11, most of the changes are in

the specific terminology used in the element tags and in the order in which they appear.

These changes are proposed for purposes of clarity and consistency with other ACE XML

file formats. One of the few fundamental changes is the removal of the

ace_preferences_id and classifier_settings_id elements. This was done because it is in

general desirable to separate the ACE XML file formats from the ACE meta learning

application or any other particular jMIR components. A new uri element is also added so

that references can be made to external resources of any type. This uri element includes

an optional predicate attribute in order to make it possible to specify RDF-like triples,

such that the contents of the uri clause indicate the object, the clause containing the uri

sub-clause is the subject, and the predicate attribute specifies the relationship between the

two.

Another change that has been considered but rejected, at least for the moment, is the

ability to list multiple Class Ontology files. The was not done since the merging of

different ontologies could lead to significant inconsistencies if not supervised carefully,

and it would probably be safer to require that such rare operations be performed

manually.

204

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT ace_xml_project_file_2_0 (comments?,

 feature_value_id,

 instance_label_id,

 class_ontology_id,

 feature_description_id,

 weka_arff_id?,

 trained_model_id?,

 uri?)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT feature_value_id (path*)>

<!ELEMENT instance_label_id (path*)>

<!ELEMENT class_ontology_id (#PCDATA)>

<!ELEMENT feature_description_id (path*)>

<!ELEMENT weka_arff_id (#PCDATA)>

<!ELEMENT trained_model_id (#PCDATA)>

<!ELEMENT uri (path*)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT path (#PCDATA)>

 421

Although the Project file does make the use of multiple ACE XML files together

significantly more convenient, it is an imperfect solution. Users must still maintain the

individual files, and must be careful not to delete, rename or move them without making

appropriate changes in the Project file.

In order to fully address this problem, it was decided to devise an ACE XML ZIP file

format. This format is inspired by the Microsoft Office 2007 Open XML File Format,
205

which stores each Microsoft Office ―document‖ as sets of XML files packaged into a

single ZIP file. Similarly, ACE XML ZIP files consist of sets of ACE XML (or other)

files that are packaged together into a single ZIP file.

This approach retains the advantages of maintaining separate files, as discussed in

Sections 7.4 and 7.5, since each ACE XML file stored in an ACE XML ZIP file remains

self-contained and can be easily extracted from the ZIP file and used on its own or with

other projects. At the same time, this approach enables multiple related ACE XML files

to be packaged into a single ZIP file, so no housekeeping of external files is required. ZIP

files in particular are an especially appropriate format because there are many free

applications and code libraries that can be used to access or store data in them.

Another significant advantage of using ZIP files is that they are compressed formats,

which means that they can dramatically reduce space and bandwidth requirements. This is

significant, as ACE XML files can be quite large, particularly in cases when many

windowed features are extracted from large collections of data. Compression rates as high

as 83% have been observed when compressing Feature Value files, although the amount

of compression depends on the particular data that is being compressed.

Open-source code for using ACE ZIP files has already been implemented by Jessica

Thompson. This code is integrated into the ACE code package, and can be accessed via

the ACE command-line interface and general API. Work on incorporating this

functionality into the ACE GUI as well is also currently underway.

Each ACE XML ZIP file is associated with a single Project file, which is either

specified by the user when the ACE ZIP file is created, or auto-generated by the ACE ZIP

processing code when ACE XML files are added to an existing ACE ZIP file. So,

although an ACE ZIP file can hold many files of any type, each ACE ZIP file always has

205

 msdn.microsoft.com/en-us/library/aa338205.aspx

 422

exactly one default ACE XML Project file contained within it and only one or zero Class

Ontology files specified by this Project file. In order for this to work properly, each ACE

ZIP file has a simple hidden file called project.sp automatically generated and added to it

that specifies the name of the default ACE XML Project file for the ZIP file. Users do not

ever interact directly with this file, however, or need to be aware of it.

An ACE XML ZIP file may be automatically generated from an ACE XML Project

file using the ACE ZIP processing software. This software automatically packages all

files referred to in the Project file, along with the Project file itself, into the ZIP file.

Then, when the ZIP file is later opened, the Project file is automatically decompressed

and parsed so that the files contained in the ZIP file can themselves be automatically

accessed, decompressed and properly interpreted by the ACE code. When the project and

other files contained in the ZIP file are decompressed into a new directory, the ACE zip-

processing software automatically updates the Project file to reflect their new file paths.

Alternatively, users may specify a list of files or simply a directory containing ACE

XML files. The ACE software will then automatically package the appropriate files into a

new ACE ZIP file, along with an ACE XML Project file that is auto-generated based on

the specified ACE XML files. If desired, the ACE API and command-line can also be

used to add or extract individual or all files from ACE ZIP files.

ACE XML ZIP and Project file functionality will be incorporated into the jMIR

components other than ACE once the ACE XML 2.0 specification is finalized via

consultation with the NEMA researchers and the MIR community.

7.11.2 Proposed ACE XML 2.0 updates to Feature Value files

The DTD of the current ACE XML 1.1 Feature Value file format is shown in Figure

7.6, and the proposed updated DTD for the ACE XML 2.0 Feature Value format is shown

in Figure 7.12. A sample ACE XML 2.0 Feature Value file is shown in Code Sample 7.7

of the on-line sample file appendix.
206

 The comments clause of this sample file provides

descriptive instructions on how to use the file format. The proposed changes to the ACE

206

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 423

XML 2.0 Feature Value format relative to the current ACE XML 1.1 version are as

follows:
207

 The feature_vector_file element is renamed to ace_xml_feature_value_file_2_0

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

 The data_set element is renamed to instance for the purposes of clarity and

generality.

 The data_set_id element is renamed to instance_id for the purposes of

consistency, clarity and generality.

 The feature element is renamed to f in order to reduce file size.

 The name element is renamed to id in order to reduce file size.

 The section element is renamed to s in order to reduce file size.

 The start and stop attributes are renamed b and e (abbreviations for beginning and

end) in order to reduce file size, and are now obligatory in s elements in order to

enforce proper file construction.

 Features that correspond to a precise time (or other) coordinate value in an

instance rather than intervals of time (or other) coordinates or instances as a whole

can be specified with the new precise_coord element and its associated coord

attribute.

 The new optional coord_units element can be used in each instance to specify the

units used for the coordinate indicators for both sub-sections of and precise

coordinates in instances.

 The new optional extractor element can be used to specify the name of the feature

extraction software used to extract each feature for an instance. A separate

extractor clause is used for each feature. The contents of an extractor clause

207

 Several of the tags in the ACE XML 2.0 Feature Value file have been abbreviated. Feature Vector files

in particular have a tendency to grow very long, especially when there are instances with many analysis

windows and when many features are extracted. So, although in general abbreviations have been avoided in

ACE XML for the sake of clarity, some abbreviations have been used in Feature Value files for those tags

that are likely to be repeated often in order to avoid exorbitant file sizes.

 424

indicate the name of the feature extractor, and the obligatory fname attribute

indicates the name of the feature that is to be associated with this extractor. This

arrangement allows scenarios where different feature extractors are used to extract

the same feature for different instances, as well as scenarios where different

features are extracted by different feature extractors for the same instance.

 Feature values consisting of arrays with an arbitrary number of dimensions may

now be expressed, as compared to the ACE XML 1.1 limitation to only one-

dimensional vectors of feature vales. Sparse arrays, or arrays missing some

entries, are now supported as well, something that can be important for space

efficient and flexible data representation. ACE XML 2.0 currently supports four

alternative approaches to representing feature values and arrays, each with its own

relative strengths and weaknesses with respect to the number of dimensions that

can be represented, file size, ability to efficiently represent sparse data and human

readability:

o In the case of feature values consisting of only one value or feature vectors

consisting of only one dimension, a methodology similar to the one that

was used in ACE XML 1.1 (i.e. f clauses containing the v element) may be

used in ACE XML 2.0 as well.

o Arrays with any number of dimensions may be expressed using JSON

(JavaScript Object Notation)
208

 array notation. JSON is a well-established

and relatively human readable text-based data interchange format for

representing simple data structures. JSON arrays are expressed using

simple square bracket notation, enclosed in vj clauses in ACE XML 2.0.

So, for example, a feature vector of size three consisting of the numbers

one, two and three would be represented as <vj>[1,2,3]</vj>. JSON

arrays can be nested in order to represent arrays of arbitrary

dimensionality. So, for example, a table with two identical rows each

containing the values one, two and three would be represented as

<vj>[[1,2,3],[1,2,3]]<vj>. A similar approach could have been achieved

208

 json.org

 425

by using nested XML elements, but the JSON representation is more

compact and more human readable for large arrays. There are also JSON

parsing libraries available in many languages that can parse such arrays

quickly, which offloads some of the work from that would otherwise need

to be performed by an ACE XML parser. A disadvantage of the JSON

approach, however, is that JSON is not ideally suited to efficiently

representing sparse arrays. Also, JSON is less human readable than some

of the alternative approaches. Ultimately, however, it is a compromise that

enables potentially very large arrays to be represented relatively compactly

while still being relatively readable, at least compared to binary data.

o Explicitly indexed arrays may be used as an alternative representation in

the case of feature values consisting of only one number, feature vectors

consisting of one dimension or feature arrays consisting of two to ten

dimensions. This approach involves specifying coordinates using the d0 to

d9 attributes in vd clauses, as an alternative to v clauses. If there is only

one coordinate (i.e., a feature vector), then only the d0 attribute would be

used, if there is a three-dimensional array then the d0, d1 and d2 attributes

would be used, and so on. This approach is moderately space efficient, can

represent sparse arrays and is easily human readable. There is a limitation

to only ten dimensions, but each of these may consist of vectors of any

size, and very few features used in MIR need arrays with more than ten

dimensions. Although it would be ideal to have such an approach for N

dimensions, it is not possible to specify an arbitrary number of dimension

attributes in an XML DTD schema. To give an example, the JSON feature

vector of [1,2,3] would be represented as <vd d0="0">1</vd><vd

d0="1">2</vd><vd d0="2">3</vd>, and the JSON array of

[[1,2,3],[1,2,3]] would be represented as <vd d0="0"

d1="0">1</vd><vd d0="0" d1="1">2</vd><vd d0="0"

d1="2">3</vd><vd d0="1" d1="0">1</vd><vd d0="1"

d1="1">2</vd><vd d0="1" d1="2">3</vd>.

 426

o The final option permitted by ACE XML 2.0 is to represent arrays with

any number of dimensions using vs clauses. Each vs clause contains one d

element for each dimension, and this d element is used to specify the

coordinate value its corresponding dimension. Each vs clause also contains

a single v clause to specify the feature value for the array at the

corresponding coordinate. To give an example, the element of the JSON

feature array [[1,2,3],[4,5,6]] with a value of 6 would be represented as

<vs><d>1</d><d>2</d><v>6</v></vs>. This approach has the

advantage that it can be used to express arrays with any number of

dimensions and, unlike the JSON approach, can also efficiently represent

sparse arrays as well as represent data in a more human readable way. It is

significantly less compact than the JSON approach for complete arrays,

however, and the ACE XML encoder must ensure that the correct number

of d elements are present for each value and that they consistently appear

in the correct order.

 Data types may now optionally be explicitly specified for each feature via the

optional type attribute of the f (formerly feature) element. Types of int, double,

float, complex and string are permitted. Although this typing is not necessary for

the jMIR components, it is sometimes necessary for other applications, so it is

useful to incorporate it into the ACE XML formats so that it can be used when

needed. The type will typically be assumed to be double if it is not specified in

any given f clause, but this not an intrinsic assumption of the Feature Value

format. It is important to note that feature types may also be specified in an

associated Feature Description file, in which case the feature types in the Feature

Value file should either correspond to the types specified in the Feature

Description file or, for the sake of brevity, be omitted in the Feature Value file.

 The comments element is now optional.

 It is now possible to specify other files that are related to the Feature Value file

using the related_resources element. These can either be explicitly referenced

Feature Value, Feature Description, Instance Label, Class Ontology or Project

 427

files, respectively referenced via feature_value_file, feature_description_file,

instance_label_file, class_ontology_file or project_file elements, or they can be

resources of arbitrary types referenced with uri elements. Note that references

referred to via a related_resources element are for informal informational

purposes only from the perspective of the jMIR components, and are not

substitutes for references in ACE XML Project (see Section 7.11.1).

 Optional uri elements (and their associated predicate attributes) may also be used

within any instance (instance), section (s), precise coordinate (precise_coord) or

feature (f) clauses. These are not intended for use by the jMIR components, but

may be used by other software to access external resources whenever appropriate.

7.11.3 Proposed ACE XML 2.0 updates to Feature Description files

The DTD of the current ACE XML 1.1 Feature Description file format is shown in

Figure 7.7, and the proposed updated DTD for the ACE XML 2.0 Feature Description

format is shown in Figure 7.13. A sample ACE XML 2.0 Feature Description file is also

shown in Code Sample 7.8 of the on-line sample file appendix.
209

 The comments clause of

this sample file provides descriptive instructions on how to use the file format. The

proposed changes to the ACE XML 2.0 Feature Description format relative to the current

ACE XML 1.1 version are as follows:

 The feature_key_file element is renamed to ace_xml_feature_description_file_2_0

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

 The name element is renamed to fid to make it consistent with the Feature Value

format.

 The is_sequential element is replaced by the scope element. The old is_sequential

element could only be used to specify whether a feature could be extracted only

over a whole instance or only over sub-sections of an instance. The new scope

element makes it possible to specify that a feature may be extracted for an instance

as a whole, for sub-sections of an instance, from only a precise point in an

instance (e.g., a moment in time) or from any combination of these. This

209

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 428

Figure 7.12: The proposed ACE XML 2.0 update to the DTD of the Feature Value file

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this

DTD is shown in Code Sample 7.7 of the on-line sample file appendix.210

210

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT ace_xml_feature_value_file_2_0 (comments?, related_resources?,

 instance+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT instance (instance_id,

 uri*,

 extractor*,

 coord_units?,

 s*,

 precise_coord*,

 f*)>

<!ELEMENT instance_id (#PCDATA)>

<!ELEMENT extractor (#PCDATA)>

<!ATTLIST extractor fname CDATA #REQUIRED>

<!ELEMENT coord_units (#PCDATA)>

<!ELEMENT s (uri*,

 f+)>

<!ATTLIST s b CDATA #REQUIRED

 e CDATA #REQUIRED>

<!ELEMENT precise_coord (uri*,

 f+)>

<!ATTLIST precise_coord coord CDATA #REQUIRED>

<!ELEMENT f (fid,

 uri*,

 (v+ | vd+ | vs+ | vj))>

<!ATTLIST f type (int | double | float | complex | string) #IMPLIED>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT v (#PCDATA)>

<!ELEMENT vd (#PCDATA)>

<!ATTLIST vd d0 CDATA #REQUIRED d1 CDATA #IMPLIED d2 CDATA #IMPLIED

 d3 CDATA #IMPLIED d4 CDATA #IMPLIED d5 CDATA #IMPLIED

 d6 CDATA #IMPLIED d7 CDATA #IMPLIED d8 CDATA #IMPLIED

 d9 CDATA #IMPLIED>

<!ELEMENT vs (d+,

 v)>

<!ELEMENT d (#PCDATA)>

<!ELEMENT vj (#PCDATA)>

 429

information is expressed via the overall, sub_section and precise_coord attributes

respectively, which may each have values of either true or false. This information

must all be specified for all features. It is possible to enter comment data in the

scope clause, but this data will have no technical meaning.

 The parallel_dimensions element is replaced by the dimensionality element in

order to accommodate the new ability to represent feature value arrays of arbitrary

dimensionality in ACE XML 2.0 Feature Value files, as opposed to the ACE

XML 1.0 limitation to one-dimensional feature vectors. The old

parallel_dimensions element was only used to specify the size of feature vectors,

but the dimensionality element is used to specify the number of different

dimensions of the coordinate system for the feature (e.g., one for a feature vector,

two for a table structure, etc.) as well as the size of each of the dimensions. The

orthogonal_dimensions attribute indicates the former, and size clauses within the

dimensionality clause are used to indicate the size of each of these (e.g., one size

clause each for the number of rows and the number of columns in a table

structure). The dimensionality element may also be omitted if a particular feature

can have variable number of coordinate dimensions, and size clauses may be

omitted as well if they also vary.

 The optional data_type element and its type attribute are added in order to allow

the specification of the particular data type for a given feature. Specifically, the

permitted types are int, double, float, complex and string, and one of these must be

specified in the type tag. Although this typing is not necessary for the jMIR

components, it is sometimes necessary for other applications, so it is useful to

incorporate the option of using it into the ACE XML formats so that it can be used

when needed. The type will typically be assumed to be double if it is not specified

in any given feature clause, but this not an intrinsic assumption of the Feature

Description format. Although data types may be specified in Feature Value files, it

is preferable to do so in Feature Description files, which take priority. Note that

comments may be entered in the data_type clause itself, but they do not have any

technical meaning.

 430

 It is now possible to specify feature parameters using the optional parameter

element and its associated parameter_id, description and value elements. This

could be used for specifying the roll-off point for the Spectral Roll-off feature, for

example. A separate parameter clause is used for each parameter of a feature, the

parameter_id element is used to identify the parameter uniquely, the description

element can be used to describe the parameter in general, and the value element

can be used to express numerical parameter values.

 Global parameters may also be specified for all features in the Feature Description

file using the global_parameter element. This is useful for specifying overall pre-

processing of audio files before features are extracted, for example, such as down

sampling or normalization. The mechanics of the global_parameter are the same

as those of the parameter element.

 A new optional related_feature clause may be used to specify other features that

are related to any given feature. This could be used, for example, to note that one

feature is an alternative implementation of another. The fid element in the related

feature clause should be used to specify the name of a feature specified in the fid

clause of another feature. The relation_id element can be used to specify a specific

externally defined type of relationship, and the explanation element can be used to

provide a qualitative description of the relationship.

 The comments element is now optional.

 It is now possible to specify other files that are related to the Feature Description

file using the related_resources element. This is implemented in a fashion

identical to that described for Feature Value files in Section 7.11.2.

 Optional uri elements (and their associated predicate attributes) may also be used

within any feature, dimensionality, parameter or related_feature clause. These are

not used by the jMIR components, but may be used by other software to access

external resources if appropriate.

 431

Figure 7.13: The proposed ACE XML 2.0 update to the DTD of the Feature Description

file format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on

this DTD is shown in Code Sample 7.8 of the on-line sample file appendix.

<!ELEMENT ace_xml_feature_description_file_2_0 (comments?,

 related_resources?,

 global_parameter*,

 feature+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT feature (fid,

 description?,

 related_feature*,

 uri*,

 scope,

 dimensionality?,

 data_type?,

 parameter*)>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT related_feature (fid,

 relation_id?,

 uri*,

 explanation?)>

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT scope (#PCDATA)>

<!ATTLIST scope overall (true|false) #REQUIRED

 sub_section (true|false) #REQUIRED

 precise_coord (true|false) #REQUIRED>

<!ELEMENT dimensionality (uri*,

 size*)>

<!ATTLIST dimensionality orthogonal_dimensions CDATA #REQUIRED>

<!ELEMENT size (#PCDATA)>

<!ELEMENT data_type (#PCDATA)>

<!ATTLIST data_type type (int | double | float | complex | string) #REQUIRED>

<!ELEMENT global_parameter (parameter_id,

 uri*,

 description?,

 value?)>

<!ELEMENT parameter (parameter_id,

 uri*,

 description?,

 value?)>

<!ELEMENT parameter_id (#PCDATA)>

<!ELEMENT value (#PCDATA)>

 432

7.11.4 Proposed ACE XML 2.0 updates to Instance Label files

The DTD of the current ACE XML 1.1 Instance Label file format is shown in Figure

7.8, and the proposed updated DTD for the ACE XML 2.0 Instance Label format is

shown in Figure 7.14. A sample ACE XML 2.0 Instance Label file is also shown in Code

Sample 7.9 of the on-line sample file appendix.
211

 The comments clause of this sample

file provides descriptive instructions on how to use the file format. The proposed changes

to the ACE XML 2.0 Instance Label format relative to the current ACE XML 1.1 version

are as follows:

 The classifications_file element is renamed to ace_xml_instance_label_file_2_0

for the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

 The data_set element is renamed to instance for the purposes of clarity and

generality.

 The data_set_id element is renamed to instance_id for the purposes of

consistency, clarity and generality.

 The info_type attribute is renamed to info_id for the purpose of consistency with

other element and attribute identifiers. Also, misc_info clauses now contain

info_id and info elements, and there are no longer any attributes for the misc_info

element. This is to enable the addition an arbitrary number of uri annotations to

misc_info clauses, as noted below.

 For similar reasons, class labels are now specified within a class_id element

contained in a class clause.

 The role element is now an optional attribute of the instance element instead of an

element itself. This makes it possible to explicitly constrain its possible values to

training, testing or predicted.

 A new optional related_instance clause may be used to specify other instances

that are related to any given instance. This could be used, for example, to note that

one recording is a cover of another. The instance_id element in the related

211

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 433

instance clause should be used to specify the name of an instance specified in the

instance_id clause of another feature. The relation_id element can be used to

specify a specific externally defined type of relationship, and the explanation

element can be used to provide a qualitative description of the relationship.

 The start and stop elements for denoting coordinate ranges within an instance are

replaced with the begin and end attributes of the section element. This change is in

order to maintain consistency with the b and e attributes of ACE XML 2.0 Feature

Value files.

 Class labels that correspond to a precise time (or other) coordinate rather than

intervals of time (or other) coordinates or instances as a whole can be specified

with the new precise_coord element and its associated coord attribute.

 The new optional coord_units element can be used in each instance to specify the

units used for the coordinate indicators for both sub-sections of and precise

coordinates in instances.

 The classification element is removed for the sake of improving file simplicity.

Section labelling and overall instance labelling now simply occur directly within

an instance clause rather than within a classification clause within an instance

clause.

 The class element has a new weight attribute that can be use to specify

proportional support for a class relative to other classes when more than one class

apply. So, for example, a given musical recording might be labelled with the Blues

genre with a specified weight of 2 as well as with the Jazz genre with a specified

weight of 1. Depending on context, this could be intended to mean either that the

recording is a member of both the Blues and Jazz genres, but the influence of the

former is twice that of the latter, or it could mean that a classifier is unsure

whether the piece is Blues or Jazz, but believes that the former label is twice as

likely as the latter. If the weight attribute is not specified for a class, it is assigned

a value of 1 by default. All weight values are proportional, so the absolute value of

 434

a weight has no meaning other than its value relative to the weights of other class

labels with the same scope.

 The optional source_comment attribute may now be used with the class element.

This permits the specification of whether an instance was labeled by a machine,

human expert, survey, etc.

 The comments element is now optional.

 It is now possible to specify other files that are related to the Instance Label file

using the related_resources element. This is implemented in a fashion identical to

that described for Feature Value files in Section 7.11.2.

 Optional uri elements (and their associated predicate attributes) may be added to

any instance, related_instance, misc_info, section, precise_coord or class clause.

These are not used by the jMIR components, but may be used by other software to

access external resources when appropriate.

7.11.5 Proposed ACE XML 2.0 updates to Class Ontology files

The DTD of the current ACE XML 1.1 Class Ontology file format is shown in Figure

7.9, and the proposed updated DTD for the ACE XML 2.0 Class Ontology format is

shown in Figure 7.15. A sample ACE XML 2.0 Class Ontology file is also shown in Code

Sample 7.10 of the on-line sample file appendix.
212

 The comments clause of this sample

file provides descriptive instructions on how to use the file format. The proposed changes

to the ACE XML 2.0 Class Ontology format relative to the current ACE XML 1.1 version

are as follows:

 The taxonomy_file element is renamed to ace_xml_class_ontology_file_2_0 for

the purpose of distinguishing between the ACE XML 2.0 and 1.1 versions.

 The class_name element is renamed to class_id in order to make it consistent with

the naming conventions used in the other ACE XML 2.0 formats.

212

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

 435

Figure 7.14: The proposed ACE XML 2.0 update to the DTD of the Instance Label file

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this

DTD is shown in Code Sample 7.9 of the on-line sample file appendix.

<!ELEMENT ace_xml_instance_label_file_2_0 (comments?,

 related_resources?,

 instance+)>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT instance (instance_id,

 misc_info*,

 related_instance*,

 uri*,

 coord_units?,

 section*,

 precise_coord*,

 class*)>

<!ATTLIST instance role (training | testing | predicted) #IMPLIED>

<!ELEMENT instance_id (#PCDATA)>

<!ELEMENT related_instance (instance_id,

 relation_id?,

 uri*,

 explanation?)>

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT misc_info (info_id,

 uri*,

 info)>

<!ELEMENT info_id (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT coord_units (#PCDATA)>

<!ELEMENT section (uri*,

 class+)>

<!ATTLIST section begin CDATA #REQUIRED

 end CDATA #REQUIRED>

<!ELEMENT precise_coord (uri*,

 class+)>

<!ATTLIST precise_coord coord CDATA #REQUIRED>

<!ELEMENT class (class_id,

 uri*)>

<!ATTLIST class weight CDATA "1">

<!ATTLIST class source_comment CDATA #IMPLIED>

<!ELEMENT class_id (#PCDATA)>

 436

 The parent_classs element is removed because it made an implied hierarchical

organization of classes obligatory, which is not always appropriate. Information

about each class is now contained in a class clause, regardless of the presence or

absence of a hierarchical structure.

 Since it is sometimes useful to be able to specify hierarchical class structuring, the

optional sub_class element is repurposed so that it can be used to reference one or

more other classes that are hierarchical subordinates to the class whose clause

contains the sub_class element. Such sub-classes must now also be separately

declared in their own class clauses. Tree structures can be built by referring to

subordinate classes using sub_class clauses, then referring to further subordinate

classes at the next depth level of the tree in the sub_class clauses of these classes,

and so on.

 As an alternative to hierarchical class structuring, the ACE XML 2.0 Class

Ontology format now allows more general ontological relationships to be

specified between classes using the related_class element. A relationship specified

from one class to another with this element is unidirectional, unless the same

relationship is explicitly specified from the second class to the first class as well in

the second class’ declaration. The relation_id element may be used to specify the

meaning of the relationship using some externally defined keyword if desired.

 Weights may be assigned to both related_class and sub_class elements using the

weight attribute, which defaults to 1 unless specified. Relating to this, the global

weights_relative attribute of the ace_xml_class_ontology_file_2_0 element must

be specified as either true or false. If it is true, then the weights for each class will

be normalized upon parsing, if not they will be interpreted as is.

 The explanation element can be used to provide qualitative explanations of any

class connections in the class ontology.

 The misc_info element may now be used to specify miscellaneous metadata about

each class. Each misc_info clause contains info_id and info elements to specify

 437

some externally defined unique keyword for the metadata field and the metadata

itself, respectively.

 The comments element is now optional.

 It is now possible to specify other files that are related to the Class Ontology file

using the related_resources element. This is implemented in a fashion identical to

that described for Feature Value files in Section 7.11.2.

 Optional uri elements (and their associated predicate attributes) may also be used

within any class, related_class or sub_class clause. These are not used by the

jMIR components, but may be used by other software to access external resources

when appropriate.

7.11.6 Summary abstraction of ACE XML 2.0

An abstraction of the overall data model and serialisation of ACE XML 2.0 is

illustrated graphically in Figure 7.16. The following conventions are used:

 Nodes:

o Rectangular nodes represent entities.

o Diamond nodes represent relationships.

o Oval nodes represent attributes.

o Exclamation marks close attributes that comprise an entity or

relationship’s primary key.

o Question marks close attributes that are optional.
213

o Double borders indicate that an entity or relationship may be associated

with one or more RDF triples.

213

 Mandatory attributes may, however, have default values in the case of null entries. This diagram omits

this type of information.

 438

Figure 7.15: The proposed ACE XML 2.0 update to the DTD of the Class Ontology file

format. See Section 7.2.3 for an explanation of XML DTDs. A sample file based on this

DTD is shown in Code Sample 7.10 of the on-line sample file appendix.214

214

 www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.pdf

<!ELEMENT ace_xml_class_ontology_file_2_0 (comments?,

 related_resources?,

 class+)>

<!ATTLIST ace_xml_class_ontology_file_2_0 weights_relative (true|false)

 #REQUIRED>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT related_resources (feature_value_file*,

 feature_description_file*,

 instance_label_file*,

 class_ontology_file*,

 project_file*,

 uri*)>

<!ELEMENT feature_value_file (#PCDATA)>

<!ELEMENT feature_description_file (#PCDATA)>

<!ELEMENT instance_label_file (#PCDATA)>

<!ELEMENT class_ontology_file (#PCDATA)>

<!ELEMENT project_file (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!ATTLIST uri predicate CDATA #IMPLIED>

<!ELEMENT class (class_id,

 misc_info*,

 uri*,

 related_class*,

 sub_class*)>

<!ELEMENT class_id (#PCDATA)>

<!ELEMENT misc_info (info_id,

 uri*,

 info)>

<!ELEMENT info_id (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT related_class (class_id,

 relation_id?,

 uri*,

 explanation?)>

<!ATTLIST related_class weight CDATA "1">

<!ELEMENT relation_id (#PCDATA)>

<!ELEMENT explanation (#PCDATA)>

<!ELEMENT sub_class (class_id,

 relation_id?,

 uri*,

 explanation?)>

<!ATTLIST sub_class weight CDATA "1">

 439

 Edges:

o Edges define the structure.

o Solid edges connect relationships to their component entities and are

labelled with the cardinality of the relationship for each component entity.

o Arrowed edges point to entities that are defined weakly, which is to say

that their primary keys include the primary keys of the other entities in the

relationship (see Pin-Shan Chen 1976).

o Bold edges indicate relationships of an entity with itself and are labelled

with both relevant cardinalities.

o Dotted edges connect entities and relationships to their attributes.

 Colours (for colour versions of this document)

o Colours give information related to the serialisation.

o Dark brown designates entities and relationships that appear in Feature

Description files only.

o Medium brown designates entities and relationships that appear in Feature

Description and Feature Value files.

o Light brown designates entities and relationships that appear in Feature

Value files only.

o Light grey designates entities and relationships that appear in Feature

Value and Instance Label files.

o Light blue-green designates entities and relationships that appear in

Instance Label files only.

o Medium blue-green designates entities and relationships that appear in

Instance Label and Class Ontology files.

o Dark blue-green designates entities and relationships that appear in Class

Ontology files only.

 440

Figure 7.16: An overall visualisation of the proposed ACE XML 2.0 data model and

serialisation. Conventions are explained in the text.

7.12 Summary of original contributions

This chapter provides a critical analysis and overview of existing file formats that are

used by MIR researchers for data mining and music classification. It also provides an

original and previously lacking set of design priorities for consideration when devising

new file formats in this domain.

The four original ACE XML 1.1 file formats are presented as an implementation of

these design priorities. The jMIR components can all use these file formats to

communicate with each other, and a general API is provided as part of the ACE package

 441

so that ACE XML functionality can be easily integrated into other software. General ACE

XML file processing utilities are also provided in the jMIRUtilities software.

Original prototypes for the four ACE XML 2.0 file formats are also presented to the

MIR research community for general discussion and comment. These formats expand

upon the ACE XML 1.1 by adding further expressive power and flexibility, and it is

hoped that the MIR community will collaborate to improve upon them and eventually

adopt them.

7.13 Future research

The clear priority for future research is to collect input from the MIR community on

changes and improvements to the ACE XML 2.0 formats.

One specific issue that needs to be addressed is that Feature Value files can end up

being very large, particularly when many features are extracted for small windows over

many instances. Although ACE ZIP packaging does address this issue to an extent, it in

turn introduces additional processing overhead when compressing and decompressing the

files. One solution would be to represent feature values, including arrays, in binary rather

than in text. Unfortunately, this would entirely undermine ACE XML’s design

philosophy of permitting human readability. Furthermore, there are many alternative

ways of representing values and arrays in binary, which could cause incompatibilities if

different users encode binary in different ways and then distribute the Feature Value files

to others. This could also pose problems with respect to data longevity. One final related

issue is that XML validation processing cannot be applied to binary representations,

thereby increasing the work that must be performed directly by ACE XML parsers. All of

this having been said, it is always desirable to avoid excessively large files, so this is

something that needs to be considered further.

The representation of feature values consisting of N-dimensional arrays is another

issue that needs to be considered further. All of the options supported by ACE XML 2.0

can require a significant amount of space to represent large N-dimensional arrays, so the

addition of a binary representation option to the specification might be useful in cases

where this could be a concern and where human readability is not a priority.

 442

Another issue that would be appropriate to pursue would be the design of some

external file format for specifying a vocabulary that could be defined with respect to units

that are specified using the coord_units element. This would, for example, provide a way

to automatically make a recording annotated with times stamps based on milliseconds

compatible with another annotated based on samples (if the sampling rate is known, of

course).

It would also be useful to take advantage of existing metadata standards in general.

One sample approach might be to integrate Dublin Core RDF functionality into the ACE

XML formats.
215

Complex numbers also represent something that needs to be considered further. Under

the current implementation, complex numbers can be simply represented as feature

vectors of size 2. Unfortunately, this does not explicitly distinguish them from any other

feature vector of size 2. Ideally, one would like to have some way of typing complex

numbers in the same way that doubles or strings can be typed. Unfortunately, there is no

complex primitive type in XML, nor is there a complex primitive in many of the most

common programming languages, including Java. Furthermore, with respect to array

representation, JSON does not allow the explicit use of complex numbers in arrays,

beyond the current implicit practice of using general sub-arrays of size 2. This limitation

of JSON is in itself a strong argument, in particular, against using an explicit complex

number type. Furthermore, in most cases feature values are simply treated as features

during machine learning, so it is often not relevant if a complex feature value is explicitly

typed as such. Nevertheless, it could be important to more sophisticated learning

techniques to have an explicit complex data type, so further though needs to be put into

incorporating explicit complex typing into ACE XML Feature Value and Feature

Description files, in both Cartesian and polar forms.

Another issue to address is multilingual support. XML is generally Unicode-based, so

there is built-in support for many character sets, but testing of the ACE XML processing

software to date has focused on English and French data, a scope that needs to be

expanded to ensure that the file formats are ready for wide international use. Further

thought is needed in this area.

215

 dublincore.org/schemas/rdfs/ and dublincore.org/documents/dc-rdf/index.shtml

 443

It would also be helpful to define specific standards for setting unique keys for the

ACE XML ID fields that are used to merge data stored in the four different file formats.

The onus is currently on the data encoder to ensure uniqueness, something that could

potentially result in missed correspondences and conflicts. One possible solution might be

to use something such as MusicBrainz
216

 IDs as primary keys, for example, but solutions

like this tend to focus only on specific types of data, namely audio in this particular case.

Extracting MusicBrainz IDs for something like MIDI files is not tenable. Further thought

is needed in this area as well.

There would also be advantages to writing versions of each of the ACE XML DTDs

using an alternative XML schema that would specify the same formats using an

alternative methodology. Such schemas would co-exist with the current DTDs, due to the

advantages of DTDs expressed in Section 7.5 with respect to accessibility to new ACE

XML users. The main advantage offered by the use of an alternative more expressive

schema format is the offloading of some of the file validation load from the ACE XML

parsers to the general XML parsing libraries, since constraints on what could validly be

contained in XML clauses could be more precisely defined.

Once the ACE XML 2.0 file formats are finalized, the next step will be to update the

ACE parsers, processing utilities and data structures. The ACE API is ready as is for the

porting of ACE XML 1.1 functionality to external software, but significant updates will

be necessary to make it ACE XML 2.0 ready.

The implementation of reading, writing and processing ports for specific existing

widely used MIR systems like Marsyas and CLAM and for general programming

environments like Matlab and C++ will likely do much to encourage the wide adoption of

the ACE XML formats by making them more easily accessible. Translation software will

also be needed to translate information stored in existing formats, including ACE XML

1.1, into ACE XML 2.0.

Another area for future research is the development of a standardized way of storing

lyrics for processing. Lyrics represent a potentially very rich source of information that is

currently underexploited in MIR, and it might be useful to develop a new ACE XML

216

 musicbrainz.org

 444

format specifically designed for storing lyrics and making it easy to extract various kinds

of features from them.

It would also be helpful to develop a standardized file format for specifying queries

that could be applied to data stored in ACE XML files. There are many general possible

sources of inspiration, such as SQL, Z39.50
217

 and FRBR.
218

217

 www.loc.gov/z3950/agency/
218

 www.ifla.org/VII/s13/wgfrbr/index.htm

 445

8. jMusicMetaManager, the Bodhidharma MIDI dataset,

Codaich, SAC and jMIRUtilities: Building, managing and

using music research datasets

8.1 Overview and background information

8.1.1 Introduction

Labelled musical datasets play an essential role in almost all research on automatic

music classification. The models that are built by supervised machine learning algorithms

are all learned from such datasets, and even the best algorithm is ultimately limited by the

quality of this data. Furthermore, different algorithms are evaluated and compared using

test data drawn from such datasets, with the consequence that poorly labelled or non-

representative datasets can result in inaccurate evaluations of trained models. Even

outside the realm of research on automatic music classification, high-quality datasets can

provide valuable resources for empirical musicological and music theoretical studies of

many kinds.

For the purposes of this document, the term labelled musical dataset is used to refer

specifically to any collection of musical recordings, which may be either audio or

symbolic, each of which is annotated with one or more metadata labels that specify model

classifications of some kind. Examples include collections of MP3 or MIDI recordings

that are each labelled with labels specifying information such as artist, mood, genre, etc.

The metadata labels may also be more directly content-related, such as time-stamped

annotations of section divisions or note onsets in audio files.

Musical datasets were often treated almost as an afterthought in early MIR research,

with the bulk of the emphasis placed on feature extraction and classification algorithms. It

was not unusual for labs to construct training and testing datasets simply by combining

the personal music collections of a few graduate students, with all labelling done as

quickly as possible by a single individual.

Fortunately, as the MIR field matures, researchers are increasingly realising the

limitations of such simplistic datasets, and are beginning to perform more expansive

studies that require much larger, more varied and carefully labelled collections. Such

 446

approaches are ultimately necessary in order to develop and validate MIR tools that can

be applied to the vast and varied universe of music that exists outside of the lab.

Developing effective frameworks for building and maintaining large musical databases is

also becoming increasingly important as libraries digitize their collections and on-line

commercial databases continue to grow.

The need for high-quality datasets that can be shared between research labs has

become particularly evident during the design and implementation of MIREX (Music

Information Retrieval Evaluation eXchange) (Downie 2006), a yearly event where

different MIR algorithms are evaluated against each other in a variety of research

domains. Although the training and testing datasets that have been used in MIREX have

varied across years and task categories, the general approach has been to either have

researchers submit their own datasets, often with questionable legality and with varying

quality, or to use in-house datasets at the University of Illinois at Urbana-Champaign,

where MIREX is held, that are not distributable outside researchers.

The controversy that has occasionally broken out over the reliability of algorithm

rankings based on such datasets has helped to cause the MIR community to begin to

recognize that training and testing datasets deserve much more attention than they have

traditionally received. Serious thought is now being given to issues such as attaining

realistic collection sizes and diversity, arriving at and taking advantage of ontological

class structuring, dealing with serious problems with metadata quality and consistency,

developing good instance labelling and selection methodologies and overcoming

limitations on sharing datasets imposed by copyright laws.

Such issues are discussed in some detail in Section 8.2, which ends with a list of

recommended general guidelines for building research datasets and overcoming many of

the problems that have to date hindered efforts to build, use and share high-quality

research datasets. Section 8.3 reviews a number of MIR research datasets that have been

published by others, and briefly discusses some of their strengths and weaknesses.

This chapter also describes two jMIR software components for managing, improving

and processing datasets, and three original MIR research datasets. jMusicMetaManager

(Section 8.4) is a tool for statistically profiling and inventorying music collections, as

well as automatically finding metadata errors, inconsistencies and redundancies in them.

 447

jMIRUtilities (Section 8.8) is a set of utilities for performing miscellaneous tasks such as

labelling instances and merging features extracted from different datasets.

The Bodhidharma MIDI dataset (Section 8.5) is a collection of 950 MIDI files

belonging to 38 different genres of music. Codaich (Section 8.6) is a collection of 26,420

MP3s belonging to 55 different genres that has had its metadata carefully reviewed both

manually and using jMusicMetaManager. OMEN, a proposed framework for legally

distributing features extracted from collections such as Codaich, is briefly reviewed in

Section 8.6. Finally, SAC (Section 8.7) is a matched collection of 250 MIDI recordings,

250 MP3 recordings and 250 sets of metadata tags that can be used as a basis for cultural

feature extraction using software such as jWebMiner (Chapter 5). SAC is intended for

research that combines and compares features extracted from audio, symbolic and cultural

sources.

These three datasets were originally collected for training and evaluating the jMIR

components and for performing experiments such as those described in Chapter 9. They

were, however, all conceptualized, designed and collected with the long-term goal of

potentially being shared among different MIR research groups for use in a much wider

range of research projects.

8.1.2 Central concepts and terminology

Before continuing, it is useful to first briefly review or introduce certain key terms

and concepts.

Musical datasets typically consist of one or more types of data: audio data, symbolic

data and cultural data. Audio data refers to digital sound samples stored in files (e.g.,

MP3s, AACs, WAV files, etc.), symbolic data consists of sets of instructions that can be

used by a computer synthesizer or human to approximately reconstruct music (e.g., MIDI

files, printed scores, Humdrum files, etc.) and cultural data refers to information about

pieces of music other than the actual sound itself (e.g., listener playlists, album reviews,

Billboard sales statistics, etc.).

Metadata plays an essential role in most datasets. Metadata is essentially data about

data. For example, if one is building a system for classifying audio recordings, then the

audio samples themselves would be the central data of interest, and all other information

about them would be considered to be metadata. So, to continue this example, the

 448

composer, year of recording and mood of each recording would all be considered

metadata, to give just a few examples.

Each category of metadata is called a field, and the particular value or values of a field

for a particular recording is called an entry. For example, Musical Genre and Recording

Title are two common fields, and the particular title of a single recording would be the

entry for that field for that recording.

Metadata is not limited to text data. The album art associated with a recording or a

musical score providing a transcription of a piece are just two examples of other kinds of

metadata. Even features extracted from audio samples are technically metadata, although

these are typically treated separately as a matter of organizational convenience.

The labelled datasets that are used in machine learning are often referred to as

ground-truth. This means that their labels are effectively considered to be the accepted

truth which is used to train and test classifiers. Each separate unit of ground-truth, such as

an individual recording, is known as an instance. Each instance is typically labelled with

a model category name, such as a particular mood or genre, that it is hoped a classifier

will learn to map features to. Each such category is commonly referred to as a class.

There are often certain relationships that exist between classes. For instance, if one is

dealing with genres, then some genres are often sub-genres of other genres (e.g.,

Nashville is a sub-genre of Country). Structures that indicate relationships between

different classes are often referred to as ontologies or taxonomies. Although these two

terms have been used with a variety of different meaning in different publications, and

have sometimes been used interchangeably, it is useful to distinguish between them in a

precise way for the sake of clarity. It has been decided to base the use of the terms in this

document on observations made by Van Rees (2003), namely that a taxonomy is a strictly

hierarchical structuring of classes, while an ontology is any general structuring of

classes.
219

 A taxonomy is thus a special type of ontology.

During the training and testing of a classifier the ground-truth is typically divided into

a training set, which is used for training the algorithm, and a test set, which is used to test

the quality of the trained model in order to ensure that overtraining has been avoided. If

219

 Van Rees also proposes a specific interpretation of the word classification that is not adopted here, as

doing so would only create confusion in this context.

 449

multiple classifiers are to be compared, then two test sets are needed, namely a validation

set that is used to test and compare each individual classifier after training and a

publication set that is used to retest the classifier that is selected as the best based on

performance on the validation set. There must not be any overlap between any of these

sets, as this would leave vulnerabilities to overtraining untested.

Sets of ordered text characters are referred to in computer science as strings. The title

of a recording is thus a string, for example, as is this sentence, any word in it and the

period ending this sentence. As this makes evident, strings can be broken into sets of

substrings, each of which is also a string. These substrings are sometimes called tokens. A

string that does not contain any characters is referred to as an empty string.

8.1.3 Essentials of copyright law

Copyright law plays a controlling role in defining the extent to which and the

circumstances under which music can legally be copied or transferred between

individuals and organizations. As such, copyright laws have a large impact on the sharing

and reuse of musical research datasets. It is therefore useful to briefly review some of the

central aspects of musical copyright law and associated legislated intellectual property

rights before proceeding.

Unfortunately, the legislation governing musical intellectual property rights tends to

vary widely between jurisdictions. Although many countries are signatories to a range of

World Intellectual Property Organization (WIPO) treaties that, in theory, attempt to

standardize copyright laws across international borders as much as possible, there is in

practice a great deal of diversity between countries in terms of both how permissive their

laws are and the extent to which they enforce those laws. So, for example, the United

States of America has adopted a relatively restrictive stance on music since the Digital

Millennium Copyright Act (DMA) was passed in 1998, and has attempted to enforce it

fairly vigorously. In contrast, pirates in Vietnam are permitted to copy and sell

copyrighted music with relative impunity.

Further complicating matters, the rights associated with musical compositions,

individual performances and actual recordings of performances are treated separately by

many countries. Not only do different administrative bodies typically govern each of

 450

these rights, even within a single county, but they often do so based on entirely different

legislative documents.

Unfortunately, copyright legislation can be particularly ambiguous with respect to

music. The fundamental legislative frameworks administering intellectual property rights

were designed with printed materials in mind, and were conceptualized long before

recorded music became commercially available, to say nothing of digitized music.

Some jurisdictions have frameworks providing academic institutions with special

rights, while others do not. For example, the United States of America and Israel

incorporate the notion of fair use into their legislation, which is to say that limited use

may be made of copyrighted material without explicit permission from rights holders

under certain conditions. Certain common law jurisdictions have a similar notion, known

as fair dealing. Such exceptions can be extremely important from the perspective of MIR

research, since the task of acquiring permission from individual rights holders, especially

from all three types rights holders, can be overwhelming if it must be performed for every

recording in a dataset. Unfortunately, interpretations of how such laws apply to digital

media can vary widely, and in many cases remain untested in the courts. The consequence

of this is that many universities are reluctant to risk allowing the transfer of musical

research datasets, even if in some cases they may arguably be legally permitted to do so.

There are also a number of legal details that can have a significant impact. For

example, it is illegal under the DMA to bypass technological barriers (known as Digital

Rights Management, or DRM) put in place to prevent the copying of music, even when it

would fully be within one’s legal rights to copy the music in question if DRM protection

were absent. Such legislation can impose serious limitations on the sources from which

the contents of research datasets can be collected.

Canada, where the datasets described in this chapter were assembled, has no such

limitations at the time of this writing. On-line file sharing of music was actually explicitly

legal in Canada for a brief period in 2004 and 2005, following a ruling in Federal Court

on the case of BMG Canada Inc. v. John Doe.
220

 This decision was set aside by the

Federal Court of Appeal in May 2005, however, and the file sharing of music is now

220

 This decision applied specifically to music, and did not apply to other content, such as software or video

files.

 451

neither conclusively legal nor illegal in Canada. Some legal analysts interpret Canada’s

Copyright Act as indicating that it is legal to download music but not to upload it,

provided that the downloaded content is not used in any for-profit ventures. This is a

controversial interpretation that remains unproven in court, however. In any case,

Canada’s federal police force has stated that it does not currently intend to attempt to

prosecute those sharing music or video for personal use (Deglise 2007). Canada’s

governments have tried twice since 2005 to introduce legislation that would explicitly

prohibit the file sharing of music, but were unsuccessful both times due to procedural

issues.

There are a number of general instances where music may be used and distributed

legally by anyone without specific permission from rights holders and without any

financial recompense. Such music is said to be in the public domain. Music is placed in

the public domain if a rights holder chooses to waive his or her intellectual property

rights, and music also usually enters the public domain following the expiration of its

copyright. In the case of Canada, this happens fifty years after the death of the last rights

holder. Caution must be exercised here, however, since this applies to both the

performance and the composition. So, for example, even though Bach’s 1741

composition The Goldberg Variations is in the public domain, Glenn Gould’s 1981

recording of it is not.

There are also a number of frameworks that have been set up to facilitate the process

of choosing to waive certain intellectual property rights but not others. This is helpful, for

example, to individuals who wish to allow anyone to download their recordings for free,

but still wish to retain licensing rights controlling the use of their music in advertising.

Some of these are formulated with particular types of content in mind, such as the various

GNU public licenses
221

 that are oriented towards software, and others are more general,

such as the Creative Commons licenses.
222

221

 www.gnu.org/licenses/
222

 creativecommons.org

 452

8.2 Fundamental issues

8.2.1 Overview of problems to overcome

As discussed in Section 8.1.1, individual MIR research labs have traditionally

assembled their own musical datasets for training and testing algorithms, an

understandable approach in the past given the lack of available alternatives at the time.

This approach is ultimately flawed, however, since collections assembled in this manner

tend to be limited in size and variety, and are often biased in ways relating to the

characteristics of the particular system being developed and the musical backgrounds of

the individuals assembling the dataset.

Furthermore, such datasets typically contain copyrighted material preventing them

from being legally distributed to other research centers for refinement, expansion and

comparison. Although such datasets have sometimes been ―unofficially‖ shared amongst

researchers in the past, this quasi-legal distribution is not viable in the long term. The

ability to legally share datasets between MIR research labs is essential, not only for

making it possible to comparatively evaluate different algorithms designed to perform a

given task by testing them on the same data, but also for providing sufficient motivation

and resources to develop large, varied, carefully chosen and well-labelled datasets.

Some of the most problematic aspects of dataset construction relate to the assignment

of ground-truth labels to individual recordings, as discussed in Section 8.2.3. There are

significant problems with metadata quality not only in MIR research datasets, but with

respect to the music industry as a whole (Freed 2006). The labelling of subjective fields

such as genre or mood is particularly problematic, as multiple interpretations may be

equally valid. Such fields are nonetheless important when constructing a dataset, as many

researchers and end users are interested in them. Furthermore, one must not only consider

an appropriate methodology for labelling individual recordings, but also the choice of

candidate classes and the relationships between these classes, as discussed in Section

8.2.2.

Even assuming that one does have a good ontology of labels and a reliable and

consistent methodology for assigning these labels to the ground-truth recordings, the

problem of choosing which particular recordings to include in a dataset remains. Ideally,

one would like to have extensive examples of music of all types for which the algorithms

 453

at hand might reasonably be applied. This is necessary if one wishes to produce software

that is flexible enough to deal with the real-world needs of end users who could

potentially wish to apply the software to any music that one might find in the full universe

of extant music.

In practice, however, there are a number of significant limitations that researchers

must deal with. To begin with, research labs do not typically have access to anywhere

approaching the entire universe of music of interest, for both financial and infrastructural

reasons, including technological limitations that become apparent when dealing with huge

collections of music. Not only are there very real limitations on how many recordings can

be used to train and test a system because of the computational time that it takes to

process each recording and the space or bandwidth needed to store or transfer them, but

even the most recent algorithms are still often incapable of dealing with large class

ontologies. For example, even as few as 38 genre classes can be too many for current

genre classifiers to learn to reliably classify (McKay 2004).

Even if one were to be given access to all of the music ever recorded, the selection of

the particular pieces to include in a dataset is certainly non-trivial. For example, even if

one could reasonably limit oneself in a particular research project to Hip-Hop music,

there are many styles of Hip-Hop, and many thousands of recordings belonging to each of

these styles. Given the limitations discussed above on acquiring and processing huge

datasets, one must devise some methodology for selecting a particular subset of all Hip-

Hop recordings to include in the dataset. One must ideally include all styles of the music

under consideration, which can be no easy mater. For example, if primarily American

Hip-Hop is included in a dataset, this would mean that a system trained on it might not be

able to properly process British Grime music. Furthermore, while one must certainly be

sure that one’s system is able to deal with prototypical examples of the types of music

under consideration, at the same time the system must also be able to deal with outliers.

This means that sufficient numbers of both prototypical and outlying exemplars must be

included for all styles of music under consideration, while still conforming to limitations

on the size of the dataset and the availability of particular pieces of music.

In the past, these issues could be glossed over to a certain degree, since many MIR

research was more oriented towards achieving exploratory proofs of concept than

 454

building practically useful finished products fit for general use. Now that reasonably good

results have been achieved in many MIR areas in ideal lab conditions, however, the

importance of being able to deal with realistically diverse and extensive ranges of music

is becoming increasingly apparent. Correspondingly, the construction of datasets that take

the issues discussed above into account are becoming increasingly important, since high-

quality realistic datasets will not only result in systems that perform better because they

have been provided with a better basis for learning effective models during training, but

will also result in more realistic evaluations of competing systems.

8.2.2 Formulating class ontologies

In many cases, some form of structure can reasonably be said to exist that delineates

various kinds of organizational relationships between class labels. For example, in the

case of mood classification, the Gloomy class could arguably be said to be a more specific

sub-class of the Sad class, Sad and Unhappy are perhaps equivalent classes, Ecstatic

might be said to be a stronger version of Joyful, and Happy is related to Joyful, but in

some way that is not as hierarchical in nature as Gloomy and Sad or Ecstatic and Joyful.

These examples illustrate the variety that can exist in the types of relationships between

classes, and correspondingly in their ontological structuring. This variety certainly offers

intriguing possibilities for study, but it also provides in indication of the many difficulties

associated with building realistic class ontologies.

There have been a few preliminary studies exploring the possibility of using machine

learning algorithms to form structured clusters of music in a representational space,

usually related to research on similarity and/or visualizations (e.g., Lamere and Eck

2007). Ontological class structures could potentially be automatically derived from such

approaches.

Unfortunately, there have been no serious attempts to date to use such clusters to form

class ontologies that could then be used as a basis for organizing and labelling MIR

datasets, probably because automatically generated class clusters often have little clear

correspondence with the class labels that are actually used by humans beyond the coarsest

level. Similarly, researchers in automatic music classification have for the most part

avoided putting more than passing efforts into manually building realistic ontologies. As

a result, the great majority of published MIR research has made use of either purely flat

 455

or very simple hierarchical class structures. There are only a few cases where more

sophisticated ontologies have been used, such as Bodhidharma’s genre ontology (Section

8.5.2), which is still little more than an extended taxonomy. This reliance on simple and

unrealistic ontologies is probably due to the fact that manually constructing ontologies

that are more than artificial constructions of convenience can be very difficult, as will

soon be made apparent.

Nonetheless, this general failure to utilize realistic ontological class structuring is

unfortunate, as such organizations can impart important advantages. From a purely

practical perspective, non-flat ontologies can be taken advantage of by certain powerful

technical classification methodologies, such as the hierarchical classification algorithm

that was used by McKay (2004) to significantly improve genre classification performance

compared to standard flat classification. Non-flat ontologies also make it possible to use

weighted training strategies that penalize misclassifications to very dissimilar classes

more harshly than misclassifications to more similar classes, an approach that can also

ultimately improve the classification performance of final trained models.

From a more general perspective, sophisticated ontologies reflect the structuring that

humans often informally use to associate classes with one another, and can thus be useful

in musicological, music theoretical or psychological research. Furthermore, the process of

forming such structures can force one to reconsider and improve the quality and

consistency of the basic class labels that one is using, since constructing structures

relating classes can quickly make it apparent that certain classes are missing or that

certain classes that are being used should be split into sub-classes, for example.

This sub-section therefore discusses some of the key issues that should be considered

when building musical class ontologies. When appropriate, possible solutions are

proposed or reviewed. The particular case of genre ontologies is used in this discussion as

a case study, since genre can be one of the most problematic types of ontologies and thus

brings to light many important issues. Genre labels are widely used and understood by

music consumers, yet most classes remain poorly defined. Many of the issues raised with

respect to genre are equally applicable to other types of class ontologies, such as in tasks

like mood classification or even artist identification (e.g., Thom Yorke could arguable be

said to be a sub-class of Radiohead).

 456

The lack of a commonly accepted set of clearly defined genre labels makes it

tempting to simply devise one’s own artificial ontology consisting of genre labels chosen

out of convenience based on the music that one is the most familiar with and has the

easiest access to. For the sake of simplicity, one might also be drawn towards designing

an ontology where the genre classes are well-defined, independent and consistent, with a

simple and logical structure based on obvious class similarities. A further temptation is to

omit some of the more problematic genres from the ontology, such as Worldbeat or Indie.

The genre labels in common use are often inconsistent, illogical and seemingly

haphazard, and someone designing an automatic classifier would certainly ideally like to

have an ontology that does not suffer from these problems.

Giving into such temptations would, of course, be a mistake, as any attempt to

artificially impose an unrealistic genre ontology on the public is doomed to failure. The

Canadian Content radio genre categories used by the Canadian government are an

example of such a failure (Frith 1996).

One must instead use class labels and relationships between them that are meaningful

to real people who listen to the real universe of music if one wishes to design an ontology

that is actually meaningful and useful to them. So, genre class ontologies used in MIR

research must at least be consistent with those that individuals with moderate musical

knowledge might use to perform their own categorizations.

An additional factor to consider is that genre labels are constantly being created,

forgotten and modified by musicians, retailers, music industry public relations

departments, DJs, critics and audiences as musics develop. A static, ideal system is

therefore ultimately not sustainable. Genres are not defined using strictly objective and

unchanging qualities, but are rather the product of dynamic cultural processes. One must

therefore be careful to avoid thinking of genres in terms of immutable snapshots, as both

their membership and their definitions change with time.

For example, the genre labels attached to a particular recording can change, even

though the audio in recording itself, of course, remains static. The Bob Marley recordings

that we recognise as Reggae today were once classified as Folk Music in most Canadian

record stores, for example, and the changes in what has been considered to be Rock in

each decade from the 1950’s to today provides further illustration of this. In order for a

 457

genre ontology to have true practical utility, it must therefore be possible to bring it up to

date as it changes.

Genre ontologies should ideally still include historical music, since such music is still

listened to, or could be listened to in the future, and it should not be forgotten that even

historical genres can change with time. Of course, some might argue that historical genres

tend to be at least somewhat more static and codified than current genres, with the results

that they easier to describe and their membership is fairly set. There is, for example, a

large amount of literature on Baroque music theory and practice, and there is not any

significant quantity of new Baroque-style pieces being composed that might cause this

genre to mutate. Although there is of course some truth to this, historical genres can

nonetheless still evolve to a significant degree, as is demonstrated by a comparison of the

relatively Romantic recordings of Baroque music from the early 20th century with

modern Baroque recordings that emphasize period instruments and stylings.

Syncretic music, which is to say music that combines characteristics of multiple

genres, introduces a further set of issues to consider. Although syncretic music can often

lead to the creation of new sub-genres, there is generally at least a transitional stage where

such music does not definitively fit into any of its parent genres, but does not yet have a

genre of its own.

So, how does one approach the design of an effective and realistic genre ontology?

One approach would be to look at the genre labels used by the music industry, such as in

music sales charts published in Billboard or awards shows like the Grammies.

Unfortunately, there are a number of problems with this approach. Such ontologies often

only reflect the current trends in music to the exclusion of older or lesser known genres,

and the categories that are used tend to reflect the labelling system that the music industry

would ideally like to see used for commercial reasons, rather than the type of ontologies

actually used by the public. Negus (1999) offers an intriguing analysis of the effects of

business interests on musical genres and their development.

Specialty shows on radio, television and the Internet offer a somewhat better source of

genre labels, as they have a greater tendency to reflect realistic classes in order to attract

real listeners who are interested in particular genres. They do still often suffer from the

influence of commercial biases, however, and their content tends to be influenced as

 458

much by the interests of advertisers as by the musical preferences of listeners. Although

university radio stations do not suffer from this problem in the same way, they are often

limited in scope and by the variable expertise and knowledge of their DJs.

Music retailers, particularly Internet retailers, such as the Apple iTunes Store
223

 or

AmazonMP3,
224

 may perhaps be some of the best sources of genre labels. They use genre

classes that are likely the closest to those used by most people, as their main goal is to use

an ontology that makes it easy for customers to navigate to music that they are looking

for. Retailers also tend to respond relatively quickly to changes in genre usage, as adding

new genres and keeping existing genres up to date allows them to draw customers into

focused sales areas that contain other music that customers may wish to buy, thereby

increasing sales.

Although one might argue that it would be preferable to base genre labels on the

views of concert goers, clubbers, musicians, DJs, music reporters and others who are at

the front lines of genre development, doing so can have the disadvantage that genres at

this stage of development may be unstable. Additionally, favouring the genre labels used

by specialists may result in confusion for non-specialists. Waiting for retailers to

recognize a genre and thus make it ―official‖ is perhaps a good compromise in that one

can hope to keep relatively abreast of new developments while at the same time avoiding

excessive ontological specialization and associated overhead in terms of data collection

and training.

The problem of inconsistency remains, unfortunately, even with the ontologies used

by retailers. Employees of different record companies, distributors and retailers may not

only classify a given recording differently, but may also make selections from entirely

different sets of candidate genre labels or emphasize different identifying features. This

is, unfortunately, an unavoidable problem, as there are no widely accepted labelling

standards or classification criteria, and individual consumers also use varying genre

ontologies and instance labelling.

So, in the end, one has little choice but to adopt one or several of the imperfect

labelling systems that are in use. This can be done either manually or by automatically

223

 www.apple.com/itunes/store/
224

 www.amazon.com

 459

mining information from the Internet. The former approach can certainly be effective, as

long as one is careful to avoid personal biases and the temptations discussed earlier, but

the latter option has the significant advantage of making it possible to constantly update

ontologies automatically as genres change, with relatively little human overhead.

Aucouturier and Pachet (2003) provide an excellent theoretical discussion on the

relative advantages of these two approaches to constructing ontologies, and ultimately

argue strongly in favour of a variant of the automatic approach that they call the emergent

approach. Specifically, they suggest using similarity measurements based on audio

content as well as on cultural information gleaned from applying data mining techniques

to text documents. They also propose the use of collaborative filtering to search for

similarities in the taste profiles of different individuals as well as the application of co-

occurrence analysis to the play lists of radio programs and the track listings of CD

compilation albums.

Unfortunately, this approach remains untested, and would be very difficult to

implement. Furthermore, there is no guarantee that the recordings that get clustered

together would be consistent with groupings that humans use in reality or that humans

would find convenient to use. There is also no obvious provision for defining the types of

ontological structuring that humans find useful when browsing through categories.

Nonetheless, the emergent approach certainly does warrant further investigation.

It also possible to automatically harvest existing ontologies found on the Internet in

ways that retain existing structure. There are two general philosophical approaches to

doing this. The first is to selectively harvest data from particular sources where the

ontologies are known to have been constructed by individuals with at least some degree

of musical expertise, whether this construction was performed in a closed framework

(e.g., the All Music
225

 genres) or is the result of collaborative editing (e.g., Wikipedia

genre classes
226

). The second approach is to harvest information from the wisdom of the

crowds in general, which can be done either by mining the Internet as a whole or by

extracting data from particular sources where any user may tag music (e.g., Last.fm’s

ontology of tags
227

).

225

 www.allmusic.com
226

 en.wikipedia.org/wiki/Category:Music_genres
227

 www.last.fm/charts/toptags

 460

Of course, even if one chooses to base one’s ontology on information that is mined

automatically from the Internet, one must still ultimately make the final decision as to

whether or not an ontology is appropriate for use, and it may be necessary to perform

some degree of manual tweaking or correction. In order to do this properly, one must

consider the particular kind of perspective that one would like the ontology to provide on

music at a fundamental level, as well as the dimensions of organization that are most

appropriate for the ontology.

Pachet and Cazaly (2000) provide an interesting discussion of related issues. The

authors observe that brick and mortar retailers tend to use a four-level hierarchy for

organizing their music. From broadest to most specific, these are: global genres (e.g.,

Classical, Jazz, Rock), sub-genres (e.g., Opera, Dixieland, Heavy Metal), artist names and

album titles. Although this ontology is effective when navigating a physical record store,

the authors argue that it is inappropriate from the viewpoint of establishing a major

musical database, since the different levels are organized using different dimensions. In

other words, a genre like Classical is fundamentally different from the name of an artist.

Pachet and Cazaly continue on to note that Internet companies, such as Amazon, tend

to build tree-like ontologies, with broad categories near the root level and specialized

categories at the leaves. The authors suggest that, although this is not in itself necessarily

a bad approach, there are some problems with it. For instance, the level that a category

appears at in the hierarchy can vary from taxonomy to taxonomy. Reggae, for example, is

sometimes treated as root-level genre, but at other times is considered to be a sub-genre of

World Music.

A further problem is that there is a lack of consistency in the types of hierarchical

relationships between a parent and its children. For example, sometimes this relationship

is genealogical (e.g., Rock is a parent of Hard Rock), sometimes it is geographical (e.g.,

Africa is a parent of Algeria) and sometimes it is at least partially based on historical

periods (e.g., Baroque is a parent of Baroque Opera). Although these inconsistencies are

not necessarily significant obstacles for people manually browsing through catalogues,

they could potentially be problematic for automatic classification systems or data miners.

To provide another example, many users tend to organize the Popular music in their

digital collections based on performer names, with relatively little attention provided to

 461

composer or instrumentation tags. With Classical music, however, the composers’ names

are often judged to be more important from an organizational perspective than the

performers’ names. Classical music is also often organized based on instrumentation

(e.g., symphony, string quartet, opera, etc.), whereas one rarely sees Popular music

organized this way (e.g. power trio, ska quintet, rap crew, etc.)

Pachet and Cazaly ultimately suggest the use of a tree-based taxonomy organized

based on genealogical relationships, where only leaves would contain musical examples.

They further propose that each node should indicate its parent genre and the differences

between its own genre and that of its parent.

A similar approach is implicitly proposed by Cumming as well, who has adapted

Ludwig Wittgenstein’s general ideas about the family resemblance between genres

specifically to music (Cumming 1999). She uses this theoretical basis as justification for

favouring an exclusively genealogical organization of classes, much like Pachet and

Cazaly. She argues that, since lists of simple and well-defined binary features are

insufficient to distinguish between sometimes amorphous genres, it would be wise to

consider genres in terms of the similarities that they share with the features of genre

families that they have descended from.

Although a hierarchical and exclusively genealogical approach does in some ways

make the best of a bad situation, ultimately caution should be exerted before exclusively

conforming to it. Doing so ultimately forces one to sacrifice the flexibility that is both the

greatest strength and the most problematic aspect of ontologies, and also limits the extent

to which one can model the way that people actually construct genre structures.

It seems apparent that some modifications are needed to Pachet and Cazaly’s

approach if a more accurate model of real ontologies is to be achieved. For example, an

extended version of a hierarchal tree-based taxonomy certainly does have appeal and, if

designed cleverly, could encompass more sophisticated and realistic genre structures. It is

for this reason that such an extended taxonomy is used in the Bodhidharma MIDI dataset,

as described in Section 8.5.2.

There are a number of additional arguments supporting the incorporation of some

level of hierarchy in genre ontologies. For example, Fabbri (1982) suggests that most

individuals, when faced with the prospect of describing a genre to a person who is

 462

unfamiliar with it, will do so by defining the genre as an intersection of other similar

genres with labels known to both parties, by using a broader label under which the genre

in question might fall, or by explaining the genre using familiar terms such as definitions

and emotive meanings. The former two methodologies are certainly consistent with a

hierarchal structure where a genre’s parents and siblings are visible.

A related issue to consider is the variable degree to which different genres branch out

into sub-genres. Considered from a tree-based perspective, this variability applies to both

the depth and breadth of various branches. Some genres have many very specialized sub-

genres, such as Electronica (e.g., House, Ambient, Jungle, etc.). Others, such as Pop-

Rock, tend to have fewer, broader and less well-specified sub-genres. For the purposes of

creating a genre hierarchy, one must be careful to accept these inconsistencies rather than

imposing unrealistically broad or narrow categories in order to avoid messy dissymmetry

in the genre structure.

An additional issue of some controversy is whether ontologies should be designed in

such a way as to accommodate the classification of artists by genre or the classification of

individual recordings by genre. Aucouturier and Pachet (2003), for example, suggest that

one should in fact use ontologies oriented towards classifying artists as a whole rather

than individual recordings, as the classification of individual recordings would involve

too many instances to practically classify and would result in categories that are overly

narrow and have contrived boundaries.

The problem with this approach, however, is that many musicians, such as Neil

Young and Miles Davis, for example, write and perform music in entirely different genres

throughout their careers. Such genre variations for a given artist can even occur on the

same album or, in rarer cases, in different sections of the same piece. It seems clear that

choosing to classify musicians rather than individual recordings is problematic in some

cases.

Such problems can be partially addressed by allowing multiples classes to be assigned

to the same instance (e.g., allowing Miles Davis to be assigned classes of Bebop, Cool

Jazz and Jazz Fusion all at once). Practically speaking, however, this still leaves certain

problems unresolved if one is attempting to train an automatic music classifier to classify

artists as a whole by genre. For example, training a learning algorithm on a particular

 463

Miles Davis piece that happens to be purely Cool Jazz will confuse the classifier if the

only available ground-truth is a broad Miles Davis genre label that indicates that it is Jazz

Fusion as well as Cool Jazz, two styles that are very different. Nonetheless, at least the

errors that would result from such situations would not be as bad as those that would

result if only one label were permitted per artist.

Ultimately, the separate classification of each recording seems to be the wiser path to

take, despite the additional work required to assign model labels to all of the recordings in

the ground-truth individually before training. Even if one is only interested only in broad

artist classifications, these can easily be extrapolated from the aggregate of the labels

assigned to the individual recordings associated with each artist

Even if one chooses to take this approach of classifying individual recordings rather

than artists as a whole, one should still allow multiple class labels per recording. This is

necessary in order to take into account the reality that there can be significant overlap

between different genres, and only allowing one genre label per recording could

essentially involve arbitrarily choosing one genre label over others. Allowing multiple

labels per instance therefore allows more accurate simulations of the amorphous

boundaries between genre classes and of the varying levels of similarity between them.

Many of the problems discussed throughout this sub-section lack ideal solutions,

partly because of the nature of the problem: the inherently incompatible goals of, on the

one hand, forming well-organized and reasonable ontologies while, on the other hand,

attempting to accurately simulate the often disorganized and illogical ontologies that one

encounters in the real world. Ultimately, the building of ontologies will likely remain as

much of an art as it is a science, at least until improved and more easily accessible data

mining techniques make emergent approaches more viable. It should certainly be noted

that, at least until this can be done, those building ontologies should incorporate an

understanding of the psychology of human classification and categorical organization, as

this is at the root of what they are attempting to model. Lakoff’s book (1987), for

example, is an often cited source on this topic.

One general (albeit difficult to implement) solution to many of the issues described in

this sub-section would be to develop a super-ontology such that multiple parallel and

potentially independent (or dependent, as appropriate) ontological class structures could

 464

co-exist side by side. Each sub-ontology in such a framework could incorporate those

potentially differing class labels and relationships between them that are meaningful to

different types of listeners, potentially based on dimensions such as time, musical

expertise, cultural background, etc.

8.2.3 Labelling individual instances

Even given an appropriate ontology from which to draw class labels, the assignment

of good ground-truth labels to individual recordings can be an area that is particularly

problematic in some cases. This is a significant issue, considering the essential role that

these ground-truth labels play in training and testing.

The easiest way to acquire ground-truth labels is to simply make use of pre-existing

label annotations. These can be extracted from the metadata packaged with recording

files, such as the ID3 tags associated with MP3 recordings, or they can be automatically

downloaded from existing metadata databases, such as the Gracenote CD Database
228

 or

fingerprinting services such as MusicBrainz.
229

Unfortunately, the metadata that one typically acquires from such sources is often at

best noisy and inconsistent, and at worst entirely incorrect. Such sources typically make

use of metadata collaboratively entered by many most often unqualified individuals, with

the result that at least some of the annotators are likely to have made errors, and different

annotators, even when well-qualified, may use incompatible labelling methodologies.

Although manual metadata proofreading by individual MIR research labs after

preliminary labelling using such sources is certainly an option, this can be extremely time

consuming, and even the most conscientious proofreaders can miss errors when dealing

with huge collections of music. Furthermore, even if a lab decides to do all or most of the

metadata annotation themselves, a number of problems remain. Both significant amounts

of time and extensive musicological knowledge are typically needed to properly label

recordings, both of which can be lacking in labs that are performing technical MIR

research where dataset collection is only a small part of a larger project. For example,

carefully labelling the note onsets of even a relatively simple monophonic piece by hand

with any reasonable degree of precision will easily take at several times the duration of

228

 www.gracenote.com
229

 musicbrainz.org

 465

the piece. In addition, even well-trained annotators who spend appropriate amounts of

time on each recording can still make somewhat different annotations in some cases. This

can be very problematic if different algorithms are to be evaluated and compared based

solely on how well they agree with such ground-truth annotations, which may not agree

with each other, and may even contain annotations that are simply incorrect.

Various techniques for automatically mining data from the Internet can be helpful for

labelling ground-truth. Such automatic labelling has the important advantages of saving

the time and resources needed to manually label recordings, of taking advantage of the

collective wisdom of the crowds and of using information that by definition largely

consists of the types of annotations that consumers find to be useful. However,

simplistically or naively mining information such as user assigned tags from the Internet

can result in labels that are even noisier than those found in ID3 tags, for example.

Fortunately, more sophisticated techniques can result in much better labels. The work

of Hu, Bay and Downie (2007) is a good example of some very practical efforts in this

direction. They harvested mood labels from Last.fm
230

 user tags for use as ground-truth in

the MIREX 2007 mood classification evaluation, utilizing strategies for dealing with

noisy raw tagging data such as text pre-processing, clustering and principal component

analysis, with some good results. There is still, however, certainly still a need for

refinement and improvements in methods for cleaning such raw data. Interestingly,

Geleignse, Schedl and Knees have found experimentally that there is a correlation

between the Last.fm tags annotated by users and general artist similarity (2007).

Another approach for acquiring collaboratively generated ground-truth labels is to

take user surveys, as Ellis and his colleagues have done with respect to similarity

judgements (Ellis et al. 2002). A particularly effective way of doing this can be to create

web labelling games to motivate participants not only to think carefully about the labels

that they are assigning, but also to encourage them to attempt to label in ways that they

feel others will also label rather than simply labelling in ways that might only be

meaningful to themselves. The ESP Game for labelling images (von Ahn and Dabbish

2004) was a ground-breaking move in this direction, and similar but expanded approaches

230

 www.last.fm

 466

have been adapted to music in games such as MajorMinor (Mandel and Ellis 2007) and

ListenGame (Turnbull et al. 2007).

Manually annotating recordings of course still remains as an option, assuming the

annotators have sufficient time and expertise to perform the task properly. This can be

done exclusively by hand or can be done after the harvesting of preliminary labels using

one of the techniques described above. Ideally, manual labelling should be done by a

committee rather than entirely by a single individual, and the committee members should

have a wide and diverse perspective on music. Not only does this help to at least

minimize individual bias, it also makes it possible for the committee to discuss

particularly problematic instances when needed.

Jones, Downie and Ehmann (2007) have performed an excellent statistical study of

categorical judgement data generated by human evaluators with respect to judgement

stability, inter-grader reliability and patterns of disagreement. This information was

acquired during data collection for MIREX using the Evalutron 6000 web-based tool for

capturing human similarity judgments. Although there was some significant disagreement

between individual raters, results were still generally good, and the authors present

several good recommendations for use in future data collection.

8.2.4 Guidelines for building successful datasets

The previous sections of this chapter have discussed in some detail many of the

problematic issues associated with the design and construction of MIR research datasets,

as well as emphasized the importance of high-quality datasets. Unfortunately, the

construction of a realistically large and varied ideal dataset with excellent ontological

organization and reliable ground-truth labelling is beyond the resources of most MIR

research labs, with the possible exception of a few commercial labs that have access to

the necessary manpower and musical catalogues.

There are, however, certain general guidelines that can help to improve the quality of

datasets collected by even those research labs with very limited resources. The following

list of proposed guidelines for building research datasets combines summaries of some

the essential ideas discussed in previous sub-sections with a number of new suggestions:

 467

 Data should be freely and legally distributable to researchers. This includes both

metadata and, ideally, sufficient information about the music itself for other

researchers to use it in their own work. This could be in the form of actual

samples when legally permissible, or researchers could be provided with the

opportunity to remotely extract custom features.

 Information on entire recordings should be accessible, not just short excerpts.

Each researcher should be able to choose how much and what parts of recordings

they wish to utilize.

 Given that different audio compression methods can influence extracted feature

values (see Section 3.2.5), the audio format(s) most commonly used by the public

should be adopted in order to reflect realistic conditions. This is important for

many types of end user oriented research, although uncompressed audio is also

useful for some theoretical research. A variety of encoders and bit rates should be

used for similar reasons.

 The dataset should contain many different types of music. It should not only

include music belonging to many different genres, but also a sufficient number of

examples illustrating as full a range of styles within each genre as possible.

 Examples from as many different performers and composers as possible should be

included for each style of each genre of music in the dataset, and both prototypical

examples of each type of music and stylistic outliers should be included as well.

 The dataset should include a significant amount of commercial music, although

independent music should certainly be included as well. The vast majority of the

public is interested primarily in professionally produced music, so MIR systems

must demonstrate that they are able to deal with such music.

 The dataset should include many thousands of recordings. This is important not

only in order to allow sufficient variety, but also to avoid research overuse of a

relatively small number of recordings, which could result in overtraining.

Furthermore, even good-quality metadata annotations will inevitably contain some

errors, and a large dataset helps to average out such noise in the ground-truth.

 468

 Each recording should be annotated with as diverse a range of metadata fields as

possible in order to make the dataset usable as ground-truth for as wide a range of

MIR research areas as possible.

 It should be possible to assign multiple independent labels to a single field so that,

for example, a recording could be classified as belonging to both the Swing and

Blues genres, or a Beatles song classified as being composed by both Paul

McCartney and John Lennon, rather than one non-existent songwriter named Paul

McCartney and John Lennon.

 It should ideally be possible to label segments of recordings as well as recordings

as a whole.

 Annotations of subjective fields such as genre or mood should include a wide

range of candidate class labels, since only allowing an artificially small number of

classes is unrealistic.

 Candidate class labels should be organized with appropriate ontological

structuring when appropriate. Such structures should reflect the types of

ontologies that are actually used by the public, not ontologies that are chosen

based on the convenience of those constructing the dataset. Also, these structures

should be easy to modify as cultural conditions change. Ontologies can be

constructed using either manual or automatic techniques, and in many cases the

ideal situation may be to have multiple ontologies co-existing with each other with

respect to the same data.

 Whenever possible, multiple sources should be consulted for the labelling of each

recording. Labelling can be performed by panels of experts, metadata repositories

available on-line and surveys of the public, ideally using a game-oriented interface

to improve results, as discussed in Section 8.2.3. Whichever approach is used, a

standardized methodology should be adopted so that the annotations of individual

recordings are as correct, complete and as consistent as possible.

 Metadata should be made available to users in formats that are easy to both

manually browse and automatically parse.

 469

 Automatic tools should be available to error-check metadata and generate profiles

of datasets.

 It should be easy to add new recordings and their metadata to the dataset.

This chapter includes presentations of three sample datasets, namely the Bodhidharma

MIDI dataset (Section 8.5), Codaich (Section 8.6) and SAC (Section 8.7). Each of these

datasets illustrate several ways in which at least some of the guidelines outlined above

can be followed in practice, and insights are provided on the solutions that were used to

address specific problems that were encountered during dataset design, collection and

annotation.

8.3 Existing music information retrieval research datasets

As discussed in the preceding sections, individual MIR research labs have

traditionally assembled their own simple musical datasets for training and testing their

algorithms. However, as also described in detail above, there are a number of important

drawbacks to this approach, and there is a strong need for large high-quality datasets that

can be used by a variety of labs to compare the effectiveness of different algorithms. This

section reviews existing datasets that were designed with the specific goal of being used

by MIR researchers at a variety of research institutions or that have been widely used by

many researchers.

The USPOP2002 dataset (Berenzweig et al. 2004) is a dataset that was very often

used in early MIR research. It is a collection of 8764 MP3 recordings of popular music

from the U.S. at a bitrate of 128 kbps. This music was extracted from 706 albums by 400

artists. The metadata includes artist and album labels as well as style tags harvested at the

time from the All Music Guide. Although it was an extremely valuable contribution at the

time, from a contemporary point of view it suffers from a number of problems, including

limited diversity and, most significantly, the lack of a legal way to share it between

research labs.

A more recent but comparable dataset is the Latin Music Database (Silla, Kaestner

and Koerich 2007), which consists of 3160 MP3 recordings belonging to ten different

genres of Latin dance music. Although this is a well-annotated and high-quality dataset, it

 470

is, of course, limited to specific styles of music, and the legality of its distribution is

questionable.

One approach to building datasets that are legally distributed is to make use of

recordings that are in the public domain, such as the recordings found on sites like

GarageBand
231

 and Jamendo.
232

 Homburg and his colleagues (2005) have explored such

an approach, and have also incorporated multiple views and high-quality annotations.

Unfortunately, this approach generally restricts one to a limited number of recordings that

are usually either very old, are by amateur musicians or consist of only short low-quality

extracts. These limitations are demonstrated by Homburg et al.’s database, which, despite

its many advantages, contains only 1886 recordings, each of which is only a 10-second

extract.

Some improvement can be achieved by utilizing music protected under more limiting

but still relatively lenient legal frameworks, such as those offered under the Creative

Commons. Web merchants such as Magnatune
233

 and Epitonic,
234

 for example, allow the

public to preview recordings for free, and entire music collections can sometimes be

licensed for research purposes at little or no cost. Unfortunately, size can still be an issue,

as such merchants tend to have very small catalogues compared to commercial

distributors. Also, the music available on such sites usually excludes those artists that are

contracted to major record labels and are the most visible to the public eye, which is the

music that most listeners are interested in. In addition, the metadata contained in the ID3

tags of music sold by such sites is generally not entirely reliable, with problems such as

multiple spellings of genre names and strange treatment of special characters, problems

that one would expect to be absent given that each of these sites has complete control

over the metadata encoded in their catalogues. Finally, there can still be legal restrictions

on distributing music downloaded from such sites to other researchers, even if one is

permitted to access and store entire recordings for free oneself.

231

 www.garageband.com
232

 www.jamendo.com
233

 magnatune.com
234

 www.epitonic.com

 471

Of particular note, Edith Law, Olivier Gillet and John Buckman have produced the

Magnatagatune dataset.
235

 This dataset consists of Magnatune audio recordings combined

with human annotations resulting from the TagATune game (Law et al. 2007) and audio

analyses produced by Echo Nest
236

 code.

Another option is to contract arrangers and musicians to produce original recordings

for use in research, as was done in the construction of the RWC database (Goto et al.

2002; Goto 2006). This approach has the important advantages of overcoming copyright

limitations, since the copyrights are owned by the responsible research institution, and of

generally including high-quality metadata. Unfortunately, costs prevent such datasets

from scaling to any reasonably large number of recordings. There can also be doubts as to

how well such original music simulates what one encounters in the real world.

There are, of course, many other datasets that have been used in individual research

projects or that are available for sale in contexts not specifically oriented towards MIR.

Donald Byrd is maintaining a partial listing of many such collections at

www.informatics.indiana.edu/donbyrd/MusicTestCollections.HTML.

8.4 jMusicMetaManager: A tool for profiling musical datasets and

detecting metadata errors in them

8.4.1 Overview of jMusicMetaManager

jMusicMetaManager (McKay, McEnnis and Fujinaga. 2006) is an open-source

software package that is designed to profile and manage large collections of music. It

emphasises functionality for detecting metadata errors and inconsistencies and for

generating a variety of reports that analyze, statistically describe and summarize the

contents of music collections.

As discussed in Section 8.2, the metadata available from sources such as the ID3 tags

of MP3 recordings or the Gracenote CD Database is often unreliable. This is an important

issue if one wishes to apply machine learning to collections of music that are too large to

conveniently and effectively correct by hand, since the consistency and correctness of

ground-truth can play an essential role in the ultimate efficacy of any learned model.

235

 tagatune.org/Magnatagatune.html
236

 echonest.com

 472

jMusicMetaManager was therefore developed with a particular emphasis on detecting

errors in the metadata that is used to train and test learning algorithms. As such,

jMusicMetaManager has been used to manage the Codaich music research database (see

Section 8.6). It is important to note, however, that jMusicMetaManager is in no way

limited to MIR projects, and can be a useful tool for users ranging from individuals who

simply want to organize their own personal music collections to employees of libraries or

other large institutions wishing to profile their music databases.

Users need a convenient interface for viewing and editing the metadata associated

with individual recordings in music collections. Although jMusicMetaManager does

include a GUI (described in Section 8.4.5) that provides users with a large degree of

control over which reports are generated and what parameters are used during error

detection, it does not provide functionality for editing metadata. It was decided to instead

take advantage of existing software by making jMusicMetaManager compatible with the

Apple iTunes software, which is not only free, well-designed, and commonly used for

editing metadata, but also includes a relatively easily parsed XML-based file format.

iTunes has the important advantage of saving metadata directly to the ID3 tags of MP3s

as well as to its own files, which means that the recordings can easily be disassociated

from iTunes if needed. iTunes can also automatically access Gracenote’s metadata.

jMusicMetaManager can therefore extract metadata from iTunes XML files as well as

directly from MP3 ID3 tags.
237

 Since MIR systems do not typically read these formats,

jMusicMetaManager can also be used to generate ground-truth data by transferring

metadata stored in these formats to ACE XML or Weka ARFF (Witten and Frank 2005)

files.

Once jMusicMetaManager has extracted metadata from iTunes XML files or ID3

tags, it then checks this metadata for probable errors. The error detection algorithms focus

on detecting differing metadata values for the same field that should in fact be the same

(e.g., entries of Stravinski and Stravinsky in the artist field) and on detecting redundant

duplicates of the same recordings. Many different approaches to finding errors are used,

237

 In order to overcome the iTunes limitation of only being able to store one genre per recording,

jMusicMetaManager parses genres that are separated by ― + ‖ as belonging to multiple genres. For example,

jMusicMetaManager would interpret a genre label of Blues Rock as the single genre of Blues Rock, and a

label of Blues + Rock as the two different genres of Blues and Rock.

 473

as described in Section 8.4.2, since no one approach is likely to detect all errors. Section

8.4.4 provides further details on the specific algorithms that are used.

jMusicMetaManager can generate 42 different kinds of reports in HTML format.

These describe both probable metadata errors and statistical profiling information about

music collections. This latter set of reports includes, among other things, multiple data

summary views and breakdowns of co-occurrences between recording titles, artist names,

composer names, album titles and genres. Such reports allow one to easily publish music

collection profiles on-line and review the contents of collections from a variety of

perspectives. Section 8.4.3 describes each of the different types of reports that

jMusicMetaManager can generate

Like all jMIR components, jMusicMetaManager is written in Java in order to

maximize portability. It is also designed to be easily extensible so that additional error-

checking functionality, types of reports, metadata input sources and other types of

functionality can be added to the software.

The jMusicMetaManager compiled Java bytecode, the associated source files, the

jMusicMetaManager manual and other documentation are freely available at

jmir.sourceforge.net/index_jMusicMetaManager.html. jMusicManager makes use of two

freely distributable third-party Java libraries, namely the Apache Xerces
238

 XML parser

and the de.vdheide.mp3
239

 package for parsing ID3 tags from MP3 files.

8.4.2 Error-checking operations

One of the primary functions of jMusicMetaManager is to detect different metadata

values for the same field (e.g., artist name) that should in fact be the same. Such

differences could be due either to spelling mistakes, as in the case of misspellings of

Lynyrd Skynyrd, for example, or to multiple valid spellings, such as in the name of certain

Russian composers.

Failure to detect metadata inconsistencies can be highly problematic from a machine

learning perspective. For example, a system designed to classify music by composer that

is trained on ground-truth where some pieces are marked as being by Tchaikovsky and

others are marked as being by Tchaikovski will erroneously treat the two as entirely

238

 xerces.apache.org
239

 www.vdheide.de/java_mp3/

 474

different classes. Aside from simple incorrectness, such an increase in the overall number

of classes will likely have the consequence of increasing the difficulty of learning an

effective model, and could thus lower classification performance overall. Such problems

are compounded if a large ground-truth training dataset is used that contains multiple

labelling inconsistencies. An additional issue is that differently labelled duplicate copies

of the same recording could contaminate evaluation results by being placed in both

training and testing subsets.

Even outside of the realm of machine learning, such labelling inconsistencies can be

inconvenient for general usage of music collections, such as in cases of searches that only

return a subset of the actual recordings in the collection that correspond to a particular

metadata label.

The following four sub-sections of this section describe in some detail the four

different overall types of error detection processing that are used by jMusicMetaManager.

Further details on how these different types of processing are implemented and combined

are provided in Section 8.4.4.

8.4.2.1 Edit distance thresholding

The edit distance (Levenshtein 1966) between two strings, also known as Levenshtein

distance, can be a convenient tool for detecting the types of metadata inconsistencies

described above. Edit distance is a measure of the similarity between two strings that is

often used in information theory and computer science. It is defined as the minimum

number of operations needed to transform one given string into another given string. Each

of the following is considered one operation:

 Deletion of a single character in one string

 Insertion of a single character in one string

 Replacement of a single character in one string

Edit distance provides one of the core metrics used in jMusicMetaManager’s error

detection functionality (after significant pre-processing, as described in Section 8.4.2.2).

In essence, the software calculates the edit distance between each pair of entries for a

given metadata field. So, for example, the edit distance is calculated for all possible pairs

of unique strings in the artist field. The resulting edit distances are then compared to

 475

thresholds in order to determine whether two entries are likely to in fact correspond to the

same true value. This is done separately once each for the title, artist, composer, album

and genre fields. The three types of edit distance thresholds that jMusicMetaManager can

apply are as follows:

 Absolute threshold: A fixed number of edit operations that is independent of the

nature of the particular pair of strings being compared. A pair of strings are

flagged as being probable different spellings of the same thing if their edit

distance is below or equal to this threshold.

 Proportional threshold: This threshold is varied dynamically based on the length

of the longer of the two strings being compared. The threshold will thus be higher

for longer strings than for shorter strings, because the probable number of

erroneous characters increases with the length of a string.

 Subset threshold: This threshold is used to account for cases where one string

might be a subset of another. For example, the artist names Stevie Ray Vaughan

and Steve Vaughan likely refer to the same person, but there is a relatively high

edit distance of 5 between them. If, instead, Steve Vaughan and Stevie Vaughan

are compared, then the edit distance is reduced to one. Steve Vaughan is

effectively a modified subset of Stevie Ray Vaughan, without the Ray and missing

the i in Stevie. Subsets such as these tend to appear often in musical datasets, such

as in cases where long recording titles have had their endings cut off by the

limitations on field length in early ID3 tags. The availability of an edit distance

threshold that takes this into account is therefore important. The subset threshold

used by jMusicMetaManager subtracts the difference in length between the pair of

strings from the edit distance measurement that is used in the threshold

comparison. The threshold is also weighted by the length of the shorter string.

The user may choose which of these thresholds are applied, as well as each of their

numerical values. These choices will, in practice, depend on the musical dataset under

consideration and on the contrasting balance of priorities between false negatives and

false positives. Edit distances are calculated after find/replace operations (see Section

8.4.2.2) and after reordered word subset operations (see Section 8.4.2.3). This ordering

 476

was chosen in order to reduce the edit distances of field entries that have specific types of

erroneous differences that have commonly been observed in field values that are intended

to refer to the same entity. The pre-processing operations applied prior to the

measurement of edit distances thereby reduce certain edit distances in a targeted way that

will increase the probability of the detection of errors using edit distance metrics.

For example, REM and R.E.M. have an edit distance of three, a value that is too high

to fall within typical error detection thresholds, particularly considering that the length of

the longer string is only six characters long. Pre-processing that removes periods would

reduce the edit distance to 0, and thus result in a detected correspondence using even the

most selective thresholds.

8.4.2.2 Find/replace transformations

Although edit distance calculations can be very effective at detecting certain kinds of

spelling inconsistencies, there are certain kinds of differences that will typically be

missed if appropriate pre-processing is not applied, such as in the case of the R.E.M.

example above. jMusicMetaManager can therefore apply a range of pre-processing

transformations to all strings for which edit distances will be compared, with the intent of

removing certain selectively chosen differences between strings and thereby reducing edit

distances and helping to prevent appropriate inconsistent spellings from being missed.

These pre-processing transformations essentially consist of searching all strings under

consideration and modifying them in ways that are likely to reduce the number of false

negatives while not increasing the number of false positives

For example it can be common for the titles of certain types of music to sometimes

end words with in‟ instead of ing. This is something that can increase edit distances by a

value of one. jMusicMetaManager can therefore replace all occurrences of in‟ with ing

before edit distances are calculated. Note that these types of modifications are only

performed internally by jMusicMetaManager, and the actual metadata itself is not altered.

Since the particular choice of modifications that are likely to be appropriate can

depend on the particular musical datasets under consideration, the user is able to choose

which to apply to the title, artist, composer, album and genre fields. The options are as

follows:

 477

 Treat upper/lower case as identical: Whether or not all upper case letters are

converted to lower case letters (e.g., Set the Controls for the Heart of the Sun

should match set the controls for the heart of the sun). Since some metadata

annotators typically omit capital letters from their labels, this option reduces the

edit distance between such annotations and annotations by labellers who observe

the proper use of case.

 Remove numbers and spaces at beginning of titles: Whether or not all spaces

and/or numbers before the first non-space and non-number character of a string

are removed (e.g., Sour Times should match 02 Sour Times). This is done because

some annotators commonly include track numbers at the beginnings of track titles

while others do not, and because spaces at the beginnings of titles are a common

error that can be difficult to detect visually.

 Convert in’ to ing: Whether or not all occurrences of in‟ are converted to ing

(e.g., Breakin‟ Down should match Breaking Down).

 Convert personal titles to abbreviations: Whether or not the following

replacements are made: Mister to Mr., Doctor to Dr. and Professor to Prof. This is

done because these types of contractions are common in certain types of music

(e.g., Professor Longhair should mach Prof. Longhair).

 Remove all periods: Whether or not all periods are removed (e.g., REM should

match R.E.M.).

 Remove all commas: Whether or not all commas are removed.

 Remove all hyphens: Whether or not all hyphens are removed.

 Remove all colons: Whether or not all colons are removed.

 Remove all semicolons: Whether or not all semicolons are removed.

 Remove all quotation marks: Whether or not all quotation marks are removed.

 Remove all single quotes and apostrophes: Whether or not all apostrophes and

single quotes are removed.

 478

 Remove all brackets: Whether or not all parentheses, square brackets and curly

braces are removed.

 Convert and to &: Whether or not all occurrences of and are converted to &

(e.g., Simon and Garfunkel should match Simon & Garfunkel).

 Remove all occurrences of the: Whether or not all occurrences of the are

removed (e.g., The Police should match Police).

 Remove all spaces: Whether or not all spaces are removed. Their occasional

omission or the erroneous usage of multiple consecutive spaces instead of one is a

common typo in many metadata annotations.

All of the operations in this section are performed in the order that they are listed

above and are cumulative. Any fields that become newly identical after these

transformations are applied are noted and merged (as described in Section 8.4.4) before

reordered word subset operations are applied, as described below.

8.4.2.3 Reordered word subset operations

It is often the case that some annotators label performer or composer names using

differing word orderings than other annotators. One annotator might label a recording as

being written by Johnny Cash, for example, while another might label it as being by

Cash, Johnny. These two strings have very high edit distances, and would therefore not

be detected as probable matches by any of the edit distance metrics described in Section

8.4.2.1. However, if word ordering is ignored, the edit distance is only one (the comma),

which is low enough to indicate a probable match. There are many other musical

annotation scenarios where similar word reorderings would thwart naïve edit distance-

based error detection, such as in the case of Django Reinhardt & Stéphane Grappelli

compared to Stéphane Grappelli & Django Reinhardt.

Another common type of difference than can be problematic when naïve edit distance

approaches are used concerns shortened versions of strings that refer to the same entity.

The difference between Duke Ellington and Duke Ellington & His Orchestra is one

example of this word subset problem, since recordings of Duke Ellington with his various

orchestras are often found annotated with either of these labels.

 479

Although the more sophisticated version of the edit distance that uses the subset

threshold edit distance (described in Section 8.4.2.1) can sometimes detect such simple

examples, it is not effective in cases where the word reordering and subset problems are

combined. An example of such a case is Hendrix, Jimi compared to The Jimi Hendrix

Experience.

jMusicMetaManager can therefore perform two additional types of error-detection

processing independently of edit distance in order to deal with the reordered word and

word subset problems, either individually or combined. To summarize, reordered word

subset operations are designed to deal with cases where one field value should likely be

identical to another, but where the words in one field value are a subset of the words in

the other and/or the words are in a different order.

Reordered word subset operations operate by first tokenizing each string in the title,

artist, composer, album and genre fields into words by partitioning using whitespace

characters. This is to say that every metadata label string is converted into a set of shorter

strings, each of which is called a token, where each token consists of a word in the parent

string. A word is defined to be any portion of the parent string that has a space to its left

and/or right in the original string. Two kinds of operations can then be applied to these

tokens by jMusicMetaManager:

 Word ordering analysis: This operation checks whether two labels are likely

intended to refer to the same entity, but do not because the words are out of order.

The percentage of tokens that match, regardless of order, is calculated and

compared to a user defined threshold. The denominator used in the calculation of

this percentage is the number of words in the field with the largest number of

words. If 100% is selected, for example, any two labels will be marked as

probable matches if and only if they contain exactly the same words, but in any

order. More lenient percentages allow matches to still be reported even if some

words do not match.

 Word subset analysis: This operation checks whether two labels are likely

intended to refer to the same entity, but do not because the words in one are a

subset of the words in the other, and are also potentially out of order. The user

 480

specifies a minimum percentage of tokens that must match between the two field

values, regardless of order, in order for the labels to be considered likely to refer

to the same entity. The denominator used in the calculation of this percentage,

unlike the denominator used in the word ordering analysis processing described

above, is the number of words in the field with the fewer number of words.

These two operations are performed after all find/replace operations described in

Section 8.4.2.2 have been performed, in order to facilitate matches between appropriate

tokens. A notable exception to this is the removal of spaces option, which is performed

immediately after the reordered word subset operations, since spaces are needed for

tokenization to be performed.

The token matching that is used requires tokens that are fully identical in order for

them to be marked as matching, and would therefore, for example, mark Charles Mingus

as corresponding to Mingus Charles, but not to Mingus Charlie, unless a very permissive

threshold of 50% were used. The reordered word subset operations are performed

separately from edit distance calculations, which are later applied to detect probable

matches such as Charlie compared to Charles that can occur within word tokens. The

separate and sequential application of processing that treats words as fixed units and

processing that treats each character separately makes jMusicMetaManager more flexible

from the user’s perspective, and has also been found during informal experimentation to

result in fewer false positives than processing that simultaneously applies token matching

and edit distance matching.

8.4.2.4 False-positive filters

The choice of the particular error detection parameterization to use when processing a

music collection with jMusicMetaManager can sometimes be a balancing act between

minimizing the probability that an error will be missed while at the same time minimizing

false positives, which is to say field values that are marked as likely corresponding to the

same entity that in fact refer to different entities (e.g., Corelli and Torelli). These two

goals are often at odds because making the various detection thresholds more lenient

tends to reduce the number of false negatives, or differing field values that in fact refer to

the same entity but are not detected as such, but at the cost of sometimes increasing the

number of false positives.

 481

Recording titles are particularly vulnerable to false positives. This is partly because

music collections tend to contain many more unique title labels than labels in other fields

(because the same artist, composer, album and genre label are typically used in multiple

recordings) and partly because it is common for legitimately different recordings to have

the same or very similar titles. Two recordings might correctly have the same title but be

performed entirely differently, for example, such as in the case of an original Led

Zeppelin song compared with a Dread Zeppelin cover, or in the case of live and studio

versions of the same song both performed at different times by Led Zeppelin. Although it

is essential that redundant versions of the same recordings be detected, in order to avoid

overlap between training and testing or validation sets as well as to avoid wasted space in

general, it is also important not to highlight many recordings that are legitimately

different.

jMusicMetaManager therefore includes filters to reduce the number of false positives

in the title field. The input to these filters are the sets of recordings with the same or

similar titles that are produced by edit distance and reordered word subset processing. The

filters selected by the user then remove those recordings that are likely to in fact be

legitimately different. The filters offered by jMusicMetaManager are as follows:

 Filter by duration: Recordings with similar titles are eliminated from

consideration as redundant duplicates if they have durations whose difference is

less than some percentage of their lengths that is specified by the user.

 Filter by artist: Recordings with similar titles are eliminated from consideration

as redundant duplicates if they have different artist field values.

 Filter by composer: Recordings with similar titles are eliminated from

consideration as redundant duplicates if they have different composer field values.

 Filter by genre (at least one common): Recordings with similar titles are

eliminated from consideration as redundant duplicates if they do not have at least

one genre field value in common.

 Filter by album: Recordings with sufficiently similar titles are eliminated from

consideration as redundant duplicates if they have the same album field values.

 482

This option is useful for dealing with situations such as extended albums

containing both studio and live versions of a piece, for example.

These filters are applied after all selected find/replace, reordered word subset and edit

distance operations have been performed.

Some of these filters are more appropriate for certain types of music collections than

others, and should thus be used only with informed caution. While the Filter by duration

option, for example, is typically appropriate for most music collections, the Filter by

genre option is only suitable for collections where the recordings have been reliably and

consistently been labelled by genre.

8.4.3 Reports generated

jMusicMetaManager can generate a variety of reports after analyzing a music

collection, including reports that statistically profile and analyze the collection, reports of

probable metadata errors and inconsistencies, and processing reports that can be used for

debugging jMusicMetaManager or acquiring detailed technical information. The sub-

sections below describe each of the reports that can be generated.

All reports generated by jMusicMetaManager can be viewed directly in

jMusicMetaManager and can also be saved to disk as a set of frames-based HTML files

that can be published on-line and viewed using any web browsing software. The user may

specify which reports to generate, and is only permitted by the interface to select those

reports that are appropriate given the user-selected processing options.

8.4.3.1 Music collection profiling reports

The reports described in this sub-section provide descriptive details about music

collections. This information can be useful for purposes such as statically profiling,

cataloguing, planning expansions to, organizing and otherwise examining music

collections and publishing information on them. The corresponding reports that

jMusicMetaManager can generate are as follows:

 All recordings: This report consists of a table describing all available metadata

for each recording sorted in alphabetical order by title.

 483

 Artist breakdown: This report lists the names of all artists found in the music

collection, along with the number of recordings by each artist and the percentage

of the total recordings in the collection that this represents. The numbers of unique

composers, albums and genres that have at least one recording associated with

each artist are also reported.

 Composer breakdown: This report is similar to the Artist breakdown report, but

with each unique composer listed instead of each unique artist.

 Genre breakdown: This report is similar to the Artist breakdown report, but with

each unique genre listed instead of each unique artist.

 Artists listed by genre: This report lists all genres found in the music collection.

A table is generated under each genre that includes a line for each artist that has at

least one recording belonging to the corresponding genre. Each line in each table

includes the artist’s name, the number of recordings that the artist has in the

collection that belong to the genre under consideration and the percentage of the

total number of recordings in the genre that this represents.

 Composers listed by genre: This report is similar to the Artists listed by genre

report, but with the tables listing composer names rather than artist names.

 Albums listed by artist: This report lists the names of all artists found in the

music collection. A table is generated under each artist’s name that consists of a

line for each album that includes at least one recording by the corresponding artist.

Each line includes the album’s name, the number of tracks by the given artist on

the album, the total number of tracks on the album in total, the percentage of the

tracks in the album that are be the artist under consideration (marked in bold if not

100%) and whether the album is tagged as being a compilation album.

 Albums listed by composer: This report is similar to the Albums listed by artist

report, except that the albums are broken down by composer rather than artist.

 Incomplete albums: This report consists of a list of all albums that are missing

tracks. The percentage of tracks that are actually present in the music collection,

whether the album is marked as being a compilation album and the artist name(s)

 484

corresponding to the recordings on the album are also provided. If the music

collection includes fewer than a user specified percentage of the tracks on the

album then the album is marked in bold. A second list is also generated that

indicates all albums that do not include metadata on the total number of tracks in

the album, and for which whether or not the album is present in the collection in

completion could therefore not be determined.

 Artists with few recordings: This report lists all artists with fewer recordings in

the music collection than some threshold specified by the user. Artists with fewer

than half this number of recordings are listed in bold.

 Composers with few recordings: This report is similar to the Artists with few

recordings report, but it is generated based on the number of composers present in

the collection rather than the number of artists.

 Comment statistics: This report alphabetically lists all unique comment tags

found in the recordings, as well as the number of recordings marked with each

comment and the percentage of all recordings that this represents. The numbers of

unique artists, composers, albums and genres that have at least one recording

tagged with each comment are also reported.

 Exactly identical recording titles: This report lists all recordings that have

exactly the same title, before any processing such as find/replace operations have

been applied. Both a summary list of all titles that occur more than once and sets

of tables describing each individual recording making up a cluster of recordings

with the same title are provided. This report can provide a useful indication of the

number of versions of the same piece existing in the music collection, although it

is at this point unknown whether these duplicates are duplicates of the same

recording or are different versions of the same piece or different pieces with the

same name. The Probable duplicates of the same recording report described in

Section 8.4.3.2 can be useful for resolving this ambiguity.

 485

Note that none of the reports described above indicate probable metadata errors. This

is because normal practice would be to generate these reports only after metadata errors

have first been detected using the reports described in Section 8.4.3.2 and then corrected.

8.4.3.2 Reports of probable errors and inconsistencies

The reports referred to in this section indicate probable metadata errors that have been

detected by jMusicMetaManager. These reports in general each indicate one of four main

types of problems: redundant duplicate recordings, metadata fields that should likely be

the same but are not, recordings missing important metadata or containing logically

contradictory metadata and inconsistencies between iTunes XML files and actual MP3

files. The user can use this information to manually correct the metadata using software

such as Apple iTunes.

Most of these reports report errors in the form of clusters of related errors. It is

possible that the errors in each cluster may have been detected using different kinds of

error detection, such as both reordered word subset processing and edit distance

calculations. For example, Jackson Mahalia, Mahalia Jackson and Mahal Jackson would

all be reported together in the same cluster.

Under its default settings, jMusicMetaManager has a tendency to err on the side of

caution, and has a bias towards avoiding false negatives at the expense of some false

positives. The user may adjust this balance as desired by changing jMusicMetaManager’s

user settings. Such adjustments can also be useful for reducing overly large clusters of

errors. More details on such user configurations are available in jMusicMetaManager’s

manual.

The error detection reports that jMusicMetaManager can generate are as follows:

 Summary: This report provides key overview statistics on the music collection

and probable metadata errors detected in it. The statistics include the number of

MP3s parsed from a user specified directory structure, the number of recordings

for which metadata was extracted from a user specified iTunes XML file, the

number of unique recordings when the two sources were combined and the total

number of unique title, artist, composer, genre and album labels present in the

collection. The number of recordings missing metadata labels for each of these

fields is also provided. This report also indicates how many clusters of probable

 486

errors were found in each of these fields, how many recordings were implicated in

total in the clusters for each field and the number of probable duplicate recordings

found.

 Probable duplicates of the same recording: This report lists recordings that are

likely to be redundant duplicates of the same recording. All recordings whose title

fields are judged to be sufficiently similar based on any selected find/replace,

reordered word subset and/or edit distance processing are grouped together into

clusters. False-positive filters are then applied to each such cluster to eliminate

inappropriate candidates. Only the surviving clusters of probable duplicates are

listed in this report. Metadata on each surviving recording, including artist, album,

track number, duration, etc., is also reported to help the user make his or her own

evaluations as to whether the recordings truly are duplicates.

 Probable errors in title field: This report lists probable metadata errors in the

title field of the music collection under consideration. All recordings whose title

fields are judged to be sufficiently similar based on any selected find/replace,

reordered word subset and/or edit distance processing are grouped together into

clusters and listed in this report. Each such cluster indicates a set of differing yet

sufficiently similar metadata values. Additional metadata on each recording in

each of these clusters is reported, including its artist, album, track number,

duration, etc. Details on the specific processing operations that resulted in the

detected similarities are also provided. Note that this report differs from the

Probable duplicates of the same recording report in that no false-positive filters

are applied. This is useful since, even if two recordings are in fact different

versions of the same piece (e.g., live and studio recordings) and are thus filtered

out from the Probable duplicates of the same recording report, one title may still

be mistakenly spelled different from the other, and thus should be highlighted in

this report for correction.

 Probable errors in artist field: This report lists probable errors in the artist field

of the music collection under consideration. It is generated in a very similar way

 487

to the Probable errors in title field report, except that processing and reported

errors correspond to the artist field rather than the title field.

 Probable errors in composer field: This report is similar to Probable errors in

title field report, except that processing and reported errors correspond to the

composer field rather than the title field.

 Probable errors in album field: This report is similar to Probable errors in title

field report, except that processing and reported errors correspond to the album

field rather than the title field.

 Probable errors in genre field: This report is similar to Probable errors in title

field report, except that processing and reported errors correspond to the genre

field rather than the title field.

 Report on compilation albums: jMusicMetaManager uses the notion of

compilation albums that is most consistent with that used by iTunes, which is to

say that an album should be marked as a compilation if and only if not all of its

component recordings have the same value in the artist field. Three different

sections are included in this report. The first simply lists all unique albums that

contain at least one recording marked as a compilation or with an unknown

compilation status. Albums where some recordings are marked as compilations

and others are not are marked in bold, since all tracks in an album should have the

same compilation marking. The second part lists all albums that contain

recordings with different values in their artist fields but are incorrectly not marked

as compilations. The third section lists albums that contain only recordings that

have the same artist field value but are incorrectly marked as compilations.

 Albums with duplicate or unknown track numbers: This report consists of a

list of all albums with the same name that contain more than one recording with

the same track number or that contain one or more recordings that do not have a

track number specified.

 488

 Recordings missing key metadata: This report lists all recordings that have

empty title, artist, composer, album and/or genre fields. A separate table is

produced for each of these fields.

 Albums with unspecified year: This report lists all albums that have one or more

recordings that do not have the recording year annotated.

 Files in iTunes XML but not at specified path: This report lists all recordings

that are parsed from the user specified iTunes XML file for which there are no

valid readable audio files at the specified paths. The user may of course choose

not to generate this report if he or she wishes to process an iTunes file without

access to the corresponding audio files.

 Recordings in one source but not the other: This report lists any recordings that

were found in the user specified iTunes XML file but for which corresponding

MP3 files were not found in the user specified audio directory structure, and vice

versa. This differs from the Files in iTunes XML but not at specified path report in

that this other report only checks to see if files referred to in the iTunes file

actually exist, and does not also check to see if other audio files that might be in

the user specified directories are also in the iTunes file.

 MP3 files found that could not be parsed: This report lists all files with an MP3

extension that were found but whose ID3 tags could not be parsed.

 Non-MP3 files found: This report lists all files in audio directories specified by

the user that do not have an MP3 extension. This can be useful for detecting files

that were erroneously placed in audio directories.

 Fields that do not correspond between sources: This report lists any differences

in significant fields in the metadata for each recording parsed from the iTunes

XML file and its corresponding MP3 file.

8.4.3.3 Technical reports

The reports described in this section are not intended directly for use in music

collection profiling or error checking. Rather, they are useful for tracking the intermediate

processing stages for the purpose of debugging existing and new functionality and for

 489

comparing processing using different settings. Although some of these reports do indicate

probable metadata errors, the same information is summarized in a more easily

consumable form in the reports described in Section 8.4.3.2. The technical reports that

can be generated are as follows:

 Options selected: This report indicates the types of processing selected by the

user, their selected parameters and the names of the reports chosen to be

generated. This can be useful for maintaining a record of the settings that resulted

in a given set of processing results.

 Processing time log: This report indicates the duration of each type of processing

performed by jMusicMetaManager.

 All recordings parsed (before merge): This report lists the path, title and artist

of all recordings for which metadata was extracted, before any processing was

performed. Up to two separate lists are produced, one for the metadata extracted

from ID3 tags and one for the metadata extracted from an iTunes XML file.

 All post-iTunes and ID3 merge metadata: This report lists all available

metadata for each recording immediately after metadata has been extracted from

an iTunes file and/or the ID3 tags of MP3 files. If both sources are used, the report

is generated after the metadata for each file referred to in the iTunes XML file has

been merged with the metadata extracted from the tags of the MP3 file with the

corresponding path, so that there is only one combined set of metadata for each

unique file path.

 Fields starting with a space: This report separately lists all title, artist, composer,

album and genre field values that start with a space. This report is useful in

immediately highlighting this particularly common error that is difficult to detect

visually.

 Fields differing only in case: Entries listed in this report indicate metadata values

that are identical between any two recordings in all ways except letter case (e.g.,

reggae and Reggae). This is done before any other find/replace, reordered word

 490

subset or edit distance processing has been performed. One list is produced for

each of the title, artist, composer, genre and album fields.

 Detailed replacements made: This report provides details on all changes that

were made during find/replace operations after lowercase conversion (if

requested) and before any other processing.

 Newly identical fields after find and replace: This report lists all metadata

values that were made newly identical after find/replace operations were applied

 Fields with scrambled word orderings: This report lists metadata values that

contain identical words, but in any order, and where sometimes the words in one

field are a subset of the words in the other. For example, occurrences of both

Martha Wainwright and Wainwright Martha would be reported here. This is a

summary of some of the processing described in Section 8.4.2.3.

 Fields whose words are subsets of another: This report lists metadata values

that contain at least some matching words, and where the words may be in any

order. For example, occurrences of both The Royal Philharmonic Orchestra and

The Royal Philharmonic might be reported here. This is a summary of some of the

processing described in Section 8.4.2.3. Items that might have otherwise been

listed here may be included in the Fields with scrambled word orderings report

instead if this report is also set to be generated.

 Edit distances: This report lists the actual edit distances between metadata values

from all pairs of different recordings for each of the title, artist, composer, album

and genre fields. One table is generated for each field. The tables provide up to

three edit distance values, depending on the preferences selected by the user,

namely the absolute, proportional and the subset edit distances, as described in

Section 8.4.2.1. Any distances that fall below the thresholds set by the user are

marked in bold. The reported edit distances are calculated after any selected

find/replace and/or reordered word subset operations have been performed and

any resulting merging of recordings has occurred.

 491

 Filtered candidate duplicate recordings: This report lists all recordings that

were found to have sufficiently similar titles to be marked as likely corresponding

to the same piece, but were in the end rejected as being duplicate recordings

because of the selected filters of the type described in Section 8.4.2.4.

8.4.4 Overview of the error detection algorithms

The list that follows provides a step-by-step outline of the essential processing

performed by jMusicMetaManager when searching for metadata errors. This list revisits

the operations described in the subsections of Section 8.4.2, but from an integrated

implementation perspective. This implementation-level detail is included here because

some of the processing algorithms are original. The list is still only a broad overview,

however, as there are far too many details to cover here in completion. The algorithms

used to generate the reports themselves are omitted entirely because of space limitations.

Much more detail is available in the code documentation, particularly in the

AnalysisProcessor class. Note that some of the operations described below may

sometimes be omitted during processing, depending on the options selected by the user.

1) Parse metadata from the user specified iTunes XML file and/or ID3 tags from

MP3 files in the user specified directory and its sub-directories.

2) If both of the metadata sources from Step 1 are being used, then the metadata is

merged for corresponding iTunes references and MP3 ID3 tags, so that there is

only one set of metadata per unique file path. Inconsistencies and omissions

between the two sources are noted. The metadata extracted from the iTunes file is

used by default in further processing when there is a disagreement between the

two sources for a field. An exception to this is when a field is empty in the iTunes

file but present in the ID3 tags, in which case the value from the ID3 tag is used.

3) The metadata for each recording is stored in a separate RecordingMetaData object

that has a field for each type of metadata processed by jMusicMetaManager as

well as methods for, among other things, comparing, organizing, importing and

exporting the metadata.

 492

4) The five main metadata fields (recording title, album title, artist name, composer

name and genre names) are treated specially, as follows:

 The value for each such field is stored in a separate Entry object for each

recording. There are five Entry objects per recording, one for each of the five

main fields. Each Entry holds an identifying string (e.g., a recording title or a

composer name) as well as a vector of references pointing to the unique

recording(s)
240

 that it is associated with.

 All Entry objects for a given field are stored in an Entries object. There are

five Entries objects, one for each main metadata field. This arrangement

makes it possible to efficiently simultaneously independently sort and

otherwise organize recordings differently for different metadata fields.

5) All of the Entry objects in each of the five Entries objects (corresponding to

recording title, album title, artist name, composer name and genre name) are

sorted alphabetically based on their identifying string.

6) Entry objects with identical text fields in each Entries object are merged. This is a

different kind of merge than that described in Step 2, and all merging referred to

in the remaining steps of this section refer to this second type of merging.

 In this new type of merging, all Entry objects with an identical string in a

given Entries object are merged into one new Entry object, and the original

source Entry objects are then deleted.

 The new Entry object maintains references to all of the recordings that were

referred to by the source Entry objects, which were merged into the new Entry

object. Since only Entry objects with identical strings are merged, the new

Entry object stores the same string as each of the source Entry objects did.

 In order to do this processing, it is only necessary to compare each Entry

object’s string with that of the Entry object that immediately follows it. This is

because all Entry objects were alphabetically sorted in Step 5.

240

 In this step, there is always only one recording referred to per Entry. However, multiple recordings can

later be referred to by an Entry object via Entry merging, as described in Step 6.

 493

 This overall approach has the advantages of conceptually simplifying later

processing (similar merging occurs in many of the following steps),

maintaining links between clusters of similar strings (e.g., The Zoobombs,

Zoobombs and Zoobomb) and speeding up processing by reducing the number

of strings to be processed.

 For example, consider a case where there are ten recordings with ten unique

titles, all by one artist. In this case, let us say that each recording belongs to

one or more of a set of three genres. There would originally be ten

RecordingMetaData objects, ten title Entry objects, ten artist Entry objects and

ten genre Entry objects. The following would result after merging:

o There would still be ten RecordingMetaData objects, since it is only the

Entry objects that are merged.

o There would be one artist Entry objects, since all ten of the original artist

Entry objects referred to the same artist, and were thus merged. This Entry

object would include ten references to recordings, one for each of the ten

recordings.

o There would be three genre Entry objects, since there are three unique

genres. Each of these Entry objects would refer to one to ten recordings,

depending on how many are annotated as belonging to the given genre.

o There would still be ten title Entry objects, each with a reference to one

recording, because there are ten unique titles. However, even if there had

been multiple recordings with the same title, they would not have been

merged at this point, as recording titles are a special case that are not

merged until Step 8 (unlike artist names, composer names, album titles and

genres). The exception is in place in order to facilitate the generation of

certain reports.

 As will soon become apparent, Entry merging is often used in

jMusicMetaManager as an essential way of detecting and cataloguing errors.

Vectors of MergeReport objects that hold details about all merges that occur

 494

are stored in each Entries objects. These MergeReport objects can be used to

generate various reports

7) Fields starting with spaces are detected, if this find/replace operation is selected

by the user. This is performed separately from other find/replace operations for

the purpose of generating a specialized report.

8) Title Entry objects with identical titles are merged, as in Step 6.

9) If this option is selected, Entry object strings are all converted to lowercase and

then re-merged, as in Step 6. The MergeReports that result therefore indicate all

fields that differ only in case (e.g., van Morrison vs. Van Morrison).

10) All selected find/replace operations are performed (see Section 8.4.2.2) and

associated reports are generated in order to detect strings that differ but are likely

meant to refer to the same entity in one of a number of common ways (e.g., Dr.

John vs. Doctor John).

 These operations involve searching all of the Entry object strings to check if

they contain as a sub-string one of a set of specified strings. If they do, this

sub-string is replaced with another specified string, or deleted, as appropriate.

 The Entry objects in each Entries object are then resorted and remerged, as

described in Step 6. MergeReport objects resulting from these merges then

indicate those strings that were different before a find/replace operation was

performed and then became identical after the replacement was made.

11) All selected word ordering and subset operations are performed (see Section

8.4.2.3) and associated reports are generated. This is done in order to detect

strings that refer to the same entity but use different word orderings (e.g., Billie

Holiday vs. Holiday Billie) or contain a string that is a subset of another string

(e.g., Stevie Ray Vaughan and Stevie Ray Vaughan and Double Trouble).

Processing occurs as follows:

 495

 All words in the string stored in each Entry object are tokenized based on

whitespace characters. This means that a separate token is stored for each

word in each string.

 The tokens for the string in each Entry object are compared to the tokens for

each other Entry object in the same Entries object. The number of identical

tokens, regardless of order, is calculated for each pair of Entry objects.

 The percentages of matching tokens between Entry pairs are compared to the

threshold percentage chosen by the user for the word ordering analysis option,

as described in Section 8.4.2.3. Entry objects with percentages falling within

the specified range are merged, as described in Step 6. The post-merge Entry

string is assigned the value of the source Entry object that had the longer

string.

 The previous step is repeated for all Entry objects, but this time using the word

subset analysis percentage.

12) All selected edit distance calculations and comparisons are performed (see Section

8.4.2.1) and associated reports are generated in order to detect strings that are

spelled differently but are likely intended to refer to the same entity (e.g., Sibelius

vs. Sibellius).

 jMusicMetaManager calculates the edit distances between all pairs of Entry

object strings in each Entries object.

 Each pair of Entry objects is merged, as described in Step 6, if the edit

distance is equal to or less than one of the three user-defined thresholds.

13) Error filtering (see Section 8.4.2.4) is applied to all MergeReport objects

associated with titles. This is done in order to filter out titles that have sufficiently

similar titles to have been detected by earlier inconsistency detection steps, but are

in fact not likely to be redundant identical copies of the same recording (i.e., one

might be a live recording compared to another which is studio recording).

Recordings with the same or similar titles are therefore reported as probable

 496

duplicates unless one or more of the conditions described in Section 8.4.2.4 is

true.

8.4.5 jMusicMetaManager’s interface

Like all of the jMIR components, jMusicMetaManager has been designed to be easy

to use for researchers with a wide variety of technical backgrounds. This can range from

MIR researchers to casual users who simply wish to catalogue their personal music

collections to librarians dealing with major music collections to developers who wish to

add functionality or modify the code to meet their own needs.

jMusicMetaManager is also designed to be applicable to many different kinds of

music. The types of metadata errors that are common in popular music collections can be

very different from those encountered in classical music collections, for example, and an

error detection parameterization that is suitable for one type of collection can be

ineffective for another.

jMusicMetaManager is therefore designed to be highly customizable, and allows the

user to set 74 different parameters controlling error detection, music collection analysis

and report generation. Since this number of options can be overwhelming for novice

users, the default settings have been chosen such that reasonably good quality results can

be achieved on reasonably large and diverse personal music collections.

For those wishing to perform customized processing, the user options are well-

documented in a detailed HTML manual (Figure 8.1) that also includes general guidelines

on choosing effective settings, a step-by-step tutorial and general reference information.

This manual can be viewed either using a web browser or via jMusicMetaManager’s

built-in help functionality.

The jMusicMetaManager GUI is divided into two main panels. The first, the Options

Panel, (Figure 8.2), allows the user to choose the source(s) of the metadata to be

processed and the settings to be use when doing so. The second panel, the Report Panel,

is used to display generated reports, which can alternatively be saved to disk and viewed

using a web browser (Figure 8.3). There is also a menu bar that can be used to perform

miscellaneous tasks such as restoring the default options, exporting metadata to Weka

ARFF or ACE XML files, and accessing help functionality.

 497

Figure 8.1: The tutorial portion of jMusicMetaManager’s user manual, which can be

viewed either via the software itself or, as shown here, through a web browser.

 498

Figure 8.2: jMusicMetaManager’s Options Panel, which allows the user to choose which

types of processing to apply, which reports to generate and what parameters to use

during processing.

 499

Figure 8.3: A sample report generated by jMusicMetaManager after analyzing a music

collection. The Summary Report is shown here in particular. Additional reports can be

accessed from the frame on the left.

8.5 The Bodhidharma MIDI dataset: A symbolic dataset

8.5.1 Overview

The Bodhidharma MIDI dataset is a collection of 950 MIDI files intended for use as

training and testing data in MIR research. It was originally assembled in order to evaluate

 500

the Bodhidharma MIDI genre classifier (McKay 2004), and has since also been used by

others doing research in musical genre classification (e.g., DeCoro, Barutcuoglu, and

Fiebrink 2007). However, the Bodhidharma MIDI dataset can also certainly be used for

types of MIR research other than genre classification.

The Bodhidharma dataset includes recordings belonging to 38 different musical

genres, with 25 recordings per genre. These genres are organized into a relatively

sophisticated ontology, as described in Section 8.5.2. Details on the approaches used to

collect and select the particular recordings that make up the Bodhidharma dataset are

provided in Section 8.5.3.

Although 950 recordings is a smaller number of recordings than one would ideally

prefer, the Bodhidharma dataset is to the best of the author’s knowledge the largest and

most diverse non-commercial MIDI collection that has been used to date in MIR research.

This is likely because of the difficulty associated with acquiring reliable MIDI recordings

representing a sufficiently diverse range of musical styles and artists. Although there is no

shortage of MIDI recordings in many Classical styles, for example, it can be much harder

to find more than a few recordings in many other genres, such as Rap. This problem is

particularly emphasized if one wishes to avoid amateur compositions that may not be

representative of the sorts of music that most listeners consume.

Details on the particular recordings that comprise the Bodhidharma MIDI dataset can

be obtained by contacting Cory McKay at cory.mckay@mail.mcgill.ca.

8.5.2 Genre ontology used

This section describes the specialized ontological structuring that was used to

organize the Bodhidharma dataset’s genre classes, and specifies the motivations behind

its development.

A good genre ontology should include coarse classes that are meaningful to the

average, potentially relatively musically illiterate music consumer. At the same time,

however, it is also desirable that the ontology provide the option of making classifications

into finer classes that may be more useful to music specialists. A hierarchal tree-based

structure fulfils these dual requirements. Broad classes, such as Classical or Jazz, are

found at the root of the tree (topmost level of the tree), and classes become increasingly

fine as one progresses towards the leaves (i.e. nodes in the tree without children).

 501

As discussed in Section 8.2.2, utilizing such a hierarchical organization of classes can

also have a number of machine learning benefits, including the ability to take advantage

of hierarchical classification algorithms and the ability to used weighted training

methodologies that penalize misclassifications between very dissimilar classes more than

misclassifications between more similar classes.

A strictly hierarchical class structure can be somewhat limiting, however, which is

why a modified tree structure is used in the Bodhidharma dataset. This ontological

structure has two important differences from traditional tree structures:

 A given recording can be associated with more than one leaf genre.

 A sub-genre can be a direct descendant of more than one parent genre (e.g., Blues

Rock is a descendant of both the Blues and Classic Rock parent genres in Figure

8.4).

These two modifications do complicate the organizational simplicity offered by

traditional trees, but such modifications are necessary if one is to deal with certain

fundamental realties: the boundaries between different genres are often vague, sub-genres

are often the result of a complex amalgamation of potentially disparate parent genres and

many recordings do not fall unambiguously into single genre classes.

The various branches of the modified tree used in the Bodhidharma dataset are

permitted to vary in terms of both depth and breadth. This was necessary in order to

accommodate the different degrees to which some real-life genres can be split into narrow

sub-genres and others simply exist as undivided broad categories.

The particular genres included in the Bodhidharma dataset are shown in Figure 8.4,

along with the structuring interrelating the classes This ontology includes 38 unique leaf

genres, 9 root genres and eight intermediate genres, for a total of 55 unique genre labels.

A number of sources of information were consulted when designing this ontology.

The final ontology is an amalgamation of the genre classes used by on-line and brick and

mortar retailers, information found in scholarly writings on popular music, popular music

magazines, music critic reviews, schedules of radio and video specialty shows, fan web

sites and the personal knowledge of the author.

 502

Particular use was made of the All Music Guide,
241

 an excellent on-line resource, and

of the Amazon on-line store.
242

 These sites are widely used by people with many different

musical backgrounds, and their ontologies provide among the best available

representations of the types of genres that people actually use. These two sites are also

complimentary, in a sense. The All Music Guide contains detailed and well-researched

information, but does not establish clear relationships between genres. Amazon, in

contrast, has a clear genre structure, but no informative descriptions of individual genres.

Given the limitations on the number and types of music that have been encoded into

MIDI and made available on-line, it was unfortunately only practical to use a subset of

the classes that would have ideally been included in the Bodhidharma dataset’s ontology.

The amount of time needed to manually find, download and classify recordings

individually also imposed limitations on the number of classes that could be included.

This ontology is, however, significantly larger and more diverse than that used by any

other MIR research dataset known to the author, with the exception of Codaich (Section

8.6).

The ontology shown in Figure 8.4 is not always perfectly logical or consistent. This is

necessary in order to truly evaluate MIR systems, as the types of genre structures that

humans actually use are also usually illogical and inconsistent. The Bodhidharma

ontology is not presented as perfect or as complete, but rather as a structuring that is

useful for realistic research evaluations. The ontology encapsulates many of the

difficulties, ambiguities and inconsistencies inherent to any realistic genre ontology, and

is large and sophisticated enough that it provides a significantly more difficult and

realistic test bed than is used in most past of contemporary MIR classification research.

In practice, much MIR research has involved only ten or so genre classes. Although

such ontologies do not in general give a true representation of how well a system deals

with a realistically diverse range of music, it can be useful to have access to a genre

ontology of a similar size to that used in other research for the purpose of roughly

comparing the performance of one’s own system with published results on similarly sized

ontologies. A subset of the Bodhidharma dataset has therefore been used in a smaller 9-

241

 www.allmusic.com
242

 www.amazon.com

 503

class ontology, as shown in Figure 8.5. This reduced dataset includes only 225 of

Bodhidharma’s 950 recordings. The choice of the particular genres to include in this

reduced ontology was made such that both relatively similar and dissimilar genres would

be included, so that one might evaluate how well a system can make both relatively easy

and relatively difficult classifications.

Country
 Bluegrass
 Contemporary
 Traditional

Jazz
 Bop
 Bebop
 Cool
 Fusion
 Bossa Nova
 Jazz Soul
 Smooth Jazz
 Ragtime
 Swing

Modern Pop
 Adult Contemp.
 Dance
 Dance Pop
 Pop Rap
 Techno
 Smooth Jazz

Rap
 Hardcore Rap
 Pop Rap

Rhythm and Blues
 Blues
 Blues Rock
 Chicago Blues
 Country Blues
 Soul Blues
 Funk
 Jazz Soul
 Rock and Roll
 Soul

Rock
 Classic Rock

 Blues Rock
 Hard Rock
 Psychedelic
 Modern Rock
 Alternative Rock
 Hard Rock
 Metal
 Punk

Western Classical
 Baroque
 Classical
 Early Music
 Medieval
 Renaissance
 Modern Classical
 Romantic

Western Folk
 Bluegrass
 Celtic
 Country Blues
 Flamenco

Worldbeat
 Latin

 Bossa Nova
 Salsa
 Tango
 Reggae

Figure 8.4: The genres of music found in the Bodhidharma MIDI dataset and their

associated ontological structuring.

Jazz
 Bebop
 Jazz Soul
 Swing

Popular
 Rap
 Punk
 Country

Western Classical
 Baroque
 Modern Classical
 Romantic

Figure 8.5: The Bodhidharma MIDI dataset’s reduced genre ontology.

 504

8.5.3 Methodology used to collect and select recordings

This section describes the methodology that was used to acquire and select the

particular recordings that make up the Bodhidharma dataset. Fortunately, there is a large

community of individuals that encode commercially released music of many types into

MIDI files and post them on-line, thus making it possible to harvest them for inclusion in

this dataset. Although the quality of these encodings can vary widely, there are

fortunately many encoders who take the time to generate good encodings. There are also

a number of MIDI files that are professionally produced and sold, although these are

much fewer in number and tend to be limited primarily to certain genres of music, such as

Classical.

The first step towards assembling the Bodhidharma MIDI dataset was the compilation

of a catalogue of web sites from which MIDI files could be downloaded. Although an

emphasis was placed on sites that individually focused on particular genres, such sites

were insufficient in number to meet the demands of Bodhidharma’s large 38-genre

ontology, so a number of general purpose sites and MIDI search engines were utilized as

well.

The sites in this catalogue were then surveyed manually, and all MIDI recordings that

sounded like they belonged to the genre classes in the ontology were downloaded. These

collected recordings were then supplemented by searches for specific recordings chosen

as prototypical examples of their genres. This was done by constructing lists of ten to

twenty pieces that were particularly typical of each genre according to the All Music

Guide web site and the experience of the author. At this point, 30 to 45 MIDI recordings

were available for most of the leaf genres. Deficits in any individual genres were

remedied by performing further searches for model recordings.

It was decided to use a combination of prototypical examples as well as more general

examples in order to make it possible to evaluate how well MIR systems could deal with

both typical examples and outliers. Using only prototypical examples would have risked

biasing a trained models towards the author's potentially erroneous perception of genre

classes, and would also have risked training models that would be unable to deal with

recordings that are somewhat atypical of genres that they nonetheless clearly belong to.

 505

Care was also taken to include examples of a range of different styles within each

genre. So, for example, the Baroque genre includes recordings that are examples of

operas, keyboard music, orchestral music, chamber music, etc. Of course, this approach

can significantly increase the difficulty of classification, particularly since there are only

25 recordings per class to be divided into disjoint training, testing and validation sets, but

it is necessary to achieve realistic success rates and avoid overtraining classifiers so that

they are unable to recognize the full range of musical styles that one might find in any

particular genre.

A number of past music classification experiments have taken the step of ensuring

that their datasets do not include multiple recordings by the same artist in a given genre,

in order to avoid deceptive success rates influenced by artist classification rather than

genre classification. Flexer (2007), for example, provides experimental justification for

such artist filters. The Bodhidharma MIDI dataset goes further by including some pieces

by the same artists in different genre classes when pieces by artists who have performed

in different genres are available. So, for example, the Bodhidharma MIDI dataset includes

one song by Tupac Shakur in the Pop Rap genre as well as another in the Hardcore Rap

genre. This approach is important for ensuring that a genre classification system is able to

deal correctly with musicians who perform multiple genres of music, as often happens in

practice.

The MIDI files for each genre were taken from a variety of sources whenever

possible. This was done in order to even out any encoding particularities, as recordings

from a single source might have encoding characteristics that a machine learning system

could use as a basis for classification rather than actual musical characteristics. This could

potentially artificially inflate classification performance and compromise the generality of

leaned models.

All of the downloaded files were then re-reviewed one by one by the author, and

classified based on the author’s experience, the All Music Guide and the genre label of

the piece on the site that it was downloaded from, if available. Recordings were rejected

if they were of a poor technical quality. Twenty-five pieces were then selected from the

available pool for each leaf genre. Single pieces were permitted to belong to more than

one genre, when appropriate.

 506

The particular ceiling of twenty-five recordings per leaf genre was selected because of

the time requirements involved in manually finding, downloading and classifying

recordings, particularly given the large number of genres. An additional problem was that

MIDI files are much harder to find in some genres than others. It was decided to use an

equal amount of recordings for all leaf genres, as failure to stratify the dataset in this way

could cause pattern recognition systems to find local minima in the solution space by

simply ignoring genres with few recordings.

As a side note, many MIDI files contain metadata indicating genre. This metadata is

not universally present, however, and there is not any consistent set of genre labels or

classification standards that are used. When present, these labels tend to be far noisier

even than the contents of the ID3 tags of MP3s found on the Internet. Genre

identifications stored in MIDI files were therefore largely ignored during ground-truth

labelling.

8.6 Codaich: An audio dataset

8.6.1 Overview

Codaich is a very large collection of carefully labelled MP3 recordings intended for

use in MIR research. The term Codaich is both the Gaelic word for share and a

combination of the first names (COry, DAniel, ICHiro) of the authors of the paper in

which Codaich and jMusicMetaManager were originally published (McKay, McEnnis

and Fujinaga 2006). Codaich was assembled both for testing the jMIR components and as

a prototype implementation of many of the design principles presented in Section 8.2.4.

Section 8.6.2 describes Codaich in some detail and provides background on how it

was designed and assembled. Section 8.6.3 describes OMEN, a proposed system for

legally sharing audio datasets among research groups. It is hoped that OMEN will

eventually be used to make features extracted from Codaich available to the MIR

community at large. Finally, Section 8.6.4 informally describes some of the most

common types of metadata errors that were observed while assembling Codaich.

Those wishing to download metadata on the recordings that make up Codaich may do

so by accessing jmir.sourceforge.net/index_Codaich.html. The information posted there

 507

includes the iTunes XML file for the collection and a number of profiling inventory

reports generated by jMusicMetaManager.

8.6.2 Details of Codaich and the methodology used to assemble it

Codaich exists in two versions: the release version and the current version. Codaich is

constantly growing, and this is reflected in the current version. Although efforts are made

to keep Codaich’s metadata correct and consistent as recordings are added, it is inevitable

that some errors will initially be missed due to human fallibility, so the metadata in the

current version is not always perfect. The release version, on the other hand, is that

version of Codaich that has most recently had its metadata checked by

jMusicMetaManager and then been correspondingly corrected. The release version is

therefore more reliable for research purposes, and it is the metadata for this version that is

posted on jmir.sourceforge.net. All of the statistics on Codaich that are reported in this

section therefore refer to the release version, rather than to the current version, even

though the current version is significantly larger.
243

The release version of Codaich consists of 26,420 MP3 recordings belonging to 55

different leaf genres of music. This includes tracks by 2213 performing artists from 2036

different albums.
244

 Codaich consists primarily of commercially produced music, since

this is the type of music consumed by most listeners, but it also includes a significant

number of recordings from independent labels.

The MP3 audio format in particular was chosen because it is by far the most popular

digital audio file format in use among contemporary listeners. In order to realistically

reflect the variety of file encodings found in practical use cases and the related difficulties

from the perspective of automatic music classification (see Section 3.2.5), Codaich

includes music digitized using a variety of encoders at many different bit rates.

The motivations, principles, rationales and techniques used to build Codaich’s genre

ontology and choose the kinds of recordings to include for each genre were similar to

those used in constructing the Bodhidharma MIDI dataset, as described in Sections 8.5.2

and 8.5.3. One essential difference between the two datasets, however, is that audio files

243

 There are 32,066 recordings in the current version of Cocaich at the time of this writing, compared to

26,420 recordings in the release version.
244

 Mutli-volume albums are only counted once in this statistic. Also, 144 of these albums are compilation

albums that each include tracks by multiple artists.

 508

are much more widely and easily available than MIDI files. This means that many more

recordings belonging to a greater variety of classes could be harvested for inclusion in

Codaich than was possible for the Bodhidharma MIDI dataset.

As a result, an entirely different genre ontology was designed for Codaich, as

illustrated in Figures 8.6 and 8.7. There are 55 unique leaf genres of music in Codaich, as

opposed to 38 in the Bodhidharma dataset. Although there is certainly some overlap in

the genre classes found in the two datasets, many of the individual classes also differ. The

genres are structured differently as well, in order to more accurately conform to the

particular music that is included in Codaich.

Much like the Bodhidharma MIDI dataset, Codaich is designed to be as realistically

difficult as possible. This means that, for example, there are cases where pieces that

belong to different genres but are recorded by the same artist are included in Codaich.

The greater availability of audio recordings meant that this approach could be taken a step

further with Codaich than was possible with the Bodhidharma dataset, however. For

example, Codaich also includes some different versions of the same piece in different

genres performed by different performers. So, for example, there is one Modern Blues

performance of Key to the Highway by Derek and the Dominoes and another Traditional

Blues performance by Brownie McGhee.

Codaich includes an unequal amount of recordings per genre, another thing that

differentiates it from the Bodhidharma MIDI dataset. This was reasonable because the

comparatively large number of audio files available in many genres made it possible to

have a fairly large number of recordings in even the smallest genres in the Codaich

ontology. Such unbalanced class sizes have the advantage of accommodating researchers

who might wish to use only certain subsets of all of the genres available, and would not

wish to have the number of recordings per genre limited by the number of recordings

available in genres in which they may not be interested. Having said this, it is of course

possible, and recommended for many scenarios, that stratified learning be used during

actual training.

Codaich was originally seeded with an early version of the in-house music database of

Douglas Eck’s lab at the Université de Montréal and with the personal music collections

of several graduate students at McGill University’s Schulich School of Music. Lists were

 509

then drawn up of particularly desired recordings belonging to each of Codaich’s genres,

including recordings representing a range of styles within each genre as well as both

prototypical examples of each genre and outliers. This was done in ways similar to those

used in the building of the Bodhidharma dataset, as described in Section 8.5.3. As many

of these recordings as possible were then harvested from both the extensive collection of

the Marvin Duchow Music Library and resources that are available on the Internet.

In their original state after being imported into Codaich, all recordings were labelled

with metadata based on either the Gracenote
245

 labels accessed by iTunes, in the case of

tracks imported from CDs, or, in the case of digital music files, based on pre-existing ID3

tags. In the case of tracks digitized from analog sources, such as cassette tapes or LPs, the

tags were entered manually.

Of course, as discussed previously, such pre-existing tags tend to be very noisy and

inconsistent. All tags from all recordings were thus manually checked and corrected by

the author, using a number of sources, the most significant of which was the All Music

Guide. Any relevant metadata fields that were originally empty were also filled in, so that

at the end of this process, the following metadata fields were annotated for all recordings

(when available):

 Recording Title

 Performer/Artist Name

 Composer Name
246

 Genre(s)

 Recording Year
247

 Album Title

 Track Number

 Total Tracks in Album

 Disc Number

 Discs In Set

 Compilation Status

245

 www.gracenote.com
246

 Composer Names have to date only been consistently annotated for the Classical portion of Codaich.

The composer labeling of the remainder is an ongoing process.
247

 The Recording Year field is not yet fully annotated for all recordings in Codaich.

 510

 Bit Rate

 Track Comments

 Recording File Path

Finally, this metadata was all processed by jMusicMetaManager in order to detect

probable errors and inconsistencies. Appropriate corrections were then made.

Blues
 Contemporary Blues
 Country Blues
 Urban Blues

Country

Dance Pop

Electronica

Hip Hop / Rap

Instrumental Pop

Modern Folk
 Alternative Folk
 Singer / Songwriter

R&B
 Contemporary R&B
 Funk
 Gospel
 Rock & Roll
 Soul

Reggae

Rock
 Alternative Pop / Rock
 Alternative Metal / Punk
 Classic Rock
 Metal
 Roots Rock

Spoken

Figure 8.6: Popular Music genres included in the Codaich audio dataset.

Classical
 20th Century Classical
 Baroque
 Classical
 Renaissance & Medieval
 Romantic

Jazz
 Acid Jazz
 Avant-Garde Jazz
 Bebop
 Cool Jazz
 Dixieland
 Hard Bop
 Latin Jazz
 Post-Bop
 Soul Jazz
 Swing

World
 African
 Americas
 Arabic
 Asian
 Calypso
 Celtic
 Chanson
 Cuban
 European
 Flamenco
 Fusion
 Gypsy
 Indian
 Klezmer
 Latin American
 Mixed Traditional
 Tango
 U.S. Traditional

Figure 8.7: Classical, Jazz and World Music genres included in the Codaich audio

dataset.

 511

8.6.3 OMEN: A framework for overcoming copyright limitations

As discussed in Section 8.2, legal restrictions on distributing audio data pose a serious

obstacle to the sharing of musical datasets between research labs. Such limitations can

greatly increases the work needed to build new systems, since each lab must assemble its

own training and testing dataset. Legal obstacles to dataset distribution also make it much

more difficult to comparatively evaluate different MIR systems, since doing so properly

requires that they be trained and tested on the same datasets.

The On-Demand Metadata Extraction Network (OMEN) (Fujinaga and McEnnis

2006; McEnnis 2006; McEnnis, McKay and Fujinaga 2006b) offers a framework that can

provide one possible solution to these problems. OMEN, which was implemented entirely

by Daniel McEnnis, essentially proposes the notion of a networked infrastructure that

allows researchers to submit custom feature extraction requests to sites that have local

legal access to the particular digitized musical recordings that are desired. Examples of

such sites include libraries with digitized music collections and MIR research centres.

These sites can then locally extract the requested features and return the resulting feature

values to the user. This can all be done without explicitly violating copyright laws, since

users are never provided with access to the audio samples themselves.

Since feature values and metadata are essentially what many MIR researchers are

interested in, publicly distributing this data rather than the music itself is a useful way of

legally circumventing copyright limitations. The motivation behind copyright laws is not

to hinder research, but rather to protect intellectual property and prevent pirating.

Discussions with legal experts at past ISMIR conferences have indicated that there is

likely no legal obstacle to the distribution of information extracted from recordings, as

long as such information cannot be used to reconstruct the music itself with a listenable

degree of fidelity. This means that many of the features that are typically extracted form

music in MIR research can in fact be publicly distributed, even when the music itself

cannot. Even features such as MFCCs can only be used to reconstruct a very poor

facsimile of the originals under typical feature parameterizations.

It is important to note that simply extracting and publicly posting stock features would

be an insufficiently flexible approach, since an important part of MIR research involves

developing new and specialized features. Furthermore, different researchers will want

 512

features extracted using different feature and pre-processing parameters, such as window

size, window overlap, downsampling, amplitude normalization, etc.

OMEN addresses these issues through integration with the jAudio audio feature

extractor (see Chapter 3). jAudio not only allows users to customize the parameters of the

features that are extracted, but also allows new features to be added remotely as plug-ins

without the need for recompiling jAudio itself. Each site providing access to music via

OMEN would therefore have copies of jAudio installed locally, and would allow users to

set extraction parameters and add features as needed as part of their feature extraction

requests.

Extracting features from audio can be a computationally intensive task. The load on

any one OMEN site is diminished by the likelihood that multiple sites will hold copies of

at least some recordings from which features are to be extracted, so extraction tasks can

be divided up between sites. Additionally, libraries in particular have the special

advantage of owning large networks of computers around the world that go unused

outside of opening hours, and that typically use only a small percentage of their

processing capability even during business hours. Such networks of underutilized

computers could be taken advantage of using grid computing to speed up feature

extraction.

OMEN’s architecture consists of three different types of nodes, each of which

communicates with other nodes using web services:

 Master node: A centralized server that coordinates all OMEN feature extraction

requests. It maintains a regularly updated directory of which recordings are

available at which sites and has searchable access to their metadata. The master

node also provides users who wish to extract features with an interface allowing

them to specify and parameterize the features that they wish to extract and choose

the recordings that they want to extract them from, but hides the actual locations

of the recordings.

 Library nodes: The coordinating server at each site that has legal access to audio

samples. Library nodes receive feature extraction requests from the master node,

coordinate the actual extraction of features by their subordinate worker nodes and

 513

communicate extracted feature values to users via the master node. Each library

node distributes recordings from which features are to be extracted among worker

nodes as appropriate.

 Worker nodes: The individual computer or computers that perform the actual

work of feature extraction at each site that has legal access to audio samples. This

is done by running jAudio to extract features from the audio recordings that are

assigned by a library node.

OMEN provides a framework that can potentially be used to effectively make

Codaich available to all MIR researchers. However, although McEnnis has informally

tested OMEN on Codaich using resources available at McGill University, there are a

number of efficiency and security issues that remain to be addressed before Codaich can

be made available to the public via OMEN.

8.6.4 Informal observations on common metadata errors

As mentioned previously, Codaich’s metadata was originally seeded with information

extracted from the contents of ID3 tags and from the Gracenote database. This seed

metadata was then all checked for errors, both manually and using jMusicMetaManager, a

process that quickly revealed certain common types of errors in the seed metadata.

Although a systematic study of these errors was beyond the scope of the work being done,

informal records were kept for the purpose of determining if additional kinds of error

checking needed to be added to jMusicMetaManger. Some of the most common errors are

briefly summarized
248

 here in order to serve as a potential starting point for more formal

studies in the future, and as a list of particularly common problems errors to be cautious

of when manually correcting metadata found in the ―wild‖:

 Inappropriate spaces at the beginning of strings.

 Inappropriate use of all caps.

 Track titles missing entirely, or replaced by entries such as Track 01 rather than

actual recording titles.

248

 Additional types of common errors are implicit in the jMusicMetaManager error detection options.

 514

 Track numbers included in the beginning of otherwise correctly annotated

recording titles (e.g., 07 Mercy).

 Titles cut off after an insufficient number of characters.

 Placement of artist names in the Title field as one combined string with titles

instead of separately in the Artist field.

 Inclusion of guest artist names in the Title field, even when the Artist field

specifies the name of the main artist(s). This is particularly common in Hip-Hop

and R&B.

 Use of Various Artists or other such labels in the Artist field of compilation

albums.

 Particularly unreliable composer annotations in Popular music.

 Use of composers’ names in the Artist field of Classical music.

 Variable spelling of non-English names, particularly with respect to the use of

non-English accents and characters.

 General confusion over whether the Year field should specify the year of

recording or the year of album release (e.g., in compilations or posthumous

releases).

 Disc numbers often included in the Album field rather than in the Disc Number

field.

 Track numbers often missing.

 Great inconsistency in the Genre field. Interestingly, many recordings that are

obviously not Blues recordings are annotated with the Blues label, likely because

it corresponds to the first ID3 code and is often the default choice supplied by

audio encoding software.

 Accidental and non-systematic spelling errors of all kinds.

 515

8.7 The SAC dataset: Combining symbolic, audio and cultural

musical data

The SAC (Symbolic Audio Cultural) dataset (McKay and Fujinaga 2008) was

assembled in order to provide matching symbolic, audio and cultural data that could be

analyzed and studied together, such as in the experiments described in Section 9.4. SAC

consists of 250 MIDI recordings, 250 matching MP3s, and metadata for each of these

recordings (e.g., Title, Artist, Genre, etc.). This metadata is stored in an iTunes XML file

that can be parsed by jWebMiner in order to extract cultural features from the web.

The combination of the MIDI files, MP3 files and the iTunes XML file therefore

provide sufficient information for extracting features from matching symbolic, audio and

cultural sources for each of the 250 different pieces of music. jMIRUtilities, described in

Section 8.8, can be used to facilitate the combination of such different feature types, each

extracted using jSymbolic, jAudio and jWebMiner, respectively.

It should be noted that the MIDI and audio recordings were acquired separately, rather

than simply synthesizing the audio files based on the MIDI recordings. Although this

made acquiring the dataset significantly more difficult and time consuming, it was

considered necessary in order to truly test the value of combining symbolic and audio

data, since audio generated from MIDI by its nature does not include any additional

information other then the very limited data encapsulated by synthesis algorithms.

The Bodhidharma MIDI dataset and Codaich were using as starting points for

building SAC. Unfortunately, there was insufficient overlap between the recordings in

these two source datasets to build SAC to an acceptable size using a reasonable genre

ontology. It was therefore necessary to acquire some new recordings in order to attain a

sufficient amount of music in each of the desired genres. The process of finding MIDI

files of a sufficient quality that met the constraints of the problem was a very time

consuming task, and it is for this reason that SAC currently contains only 250 pieces of

music.

SAC is divided into 10 genres, with 25 pieces of music per genre. These 10 genres

consist of 5 pairs of similar genres, as shown in Figure 8.8. This arrangement has the

advantage of making it possible to perform both 10-class and 5-class genre classification

experiments simply by combining the instances in each pair of related genres into one

 516

class. It is therefore possible to experimentally evaluate how good a classification system

is at distinguishing between relatively dissimilar classes as well as relatively similar

classes. An additional advantage is that it becomes possible to measure an indication of

how serious misclassification errors are in 10-class experiments by examining how many

misclassifications are in an instance’s partner genre compared to how many are in one of

the other 8 genres. These two characteristics of SAC’s genre ontology were taken

advantage of in the experiments described in Section 9.4.

The particular total of 10 genres was chosen for the purpose of making rough

comparisons with the performance of the many previously published genre classification

systems that have used genre ontologies of a similar size, probably because of the

influential early work of Tzanetakis and Cook (2002). Also, the most recent audio genre

classification MIREX evaluation
249

 involved 10 genres, and the most recent symbolic

genre classification MIREX evaluation
250

 involved 9. As emphasized in Section 8.2,

however, in the long term it will be necessary to significantly expand the number of

genres in SAC in order to perform evaluations whose results are meaningful in the

context of practical applications.

The basic methodologies used in devising SAC’s particular genre ontology, choosing

appropriate pieces and labelling them were based on those used in constructing the

Bodhidharma MIDI dataset, as described in Sections 8.5.2 and 8.5.3, with the obvious

difference that it was possible to take advantage of some of the recordings already in the

Bodhidharma dataset and Codaich. As was the case with these two source datasets, steps

were taken to make SAC particularly difficult and realistic, such as including multiple

versions of the same pieces in different genres and including examples of different pieces

in different genres by the same artist.

Those wishing to acquire more specific details on the SAC dataset should contact

Cory McKay at cory.mckay@mail.mcgill.ca.

249

 www.music-ir.org/mirex/2009/index.php/Audio_Genre_Classification_%28Mixed_Set%29_Results
250

 www.music-ir.org/evaluation/mirex-results/sym-genre/index.html

 517

Blues
 Modern Blues
 Traditional Blues

Rap
 Hardcore Rap
 Pop Rap

Classical
 Baroque
 Romantic

Rock
 Alternative Rock
 Metal

Jazz
 Bop
 Swing

Figure 8.8: The genres of music found in the SAC dataset.

8.8 jMIRUtilities: Tools for labelling, linking and pre-processing

musical data

jMIRUtilities is a set of tools for performing miscellaneous tasks relating to preparing

musical data for processing by the jMIR components. Although there are plans to expand

jMIRUtilities to have a much larger range of functionality, at the time of this writing it

may only be used to perform the following tasks:

 Manual instance labelling: A simple GUI is provided for quickly batch labelling

sets of audio, MIDI or other files and generating a corresponding ACE XML

Instance Label file (see Chapter 7).

 Automatic instance labelling: An ACE XML Instance Label file may be

automatically generated based on a tab-delimited text file containing labelled

instances. This is convenient for model classifications that are stored in a

Microsoft Excel table, for example, which may easily be exported to such a tab-

delimited text files.

 Extract labels from iTunes files: An iTunes XML file may be parsed and a

delimited text file generated that lists the File Path, Recording Title, Artist Name,

Composer Name, Album Title and/or Genre Names for each recording in the file,

as requested by the user. This can be a useful pre-processing step for generating

ACE XML Instance Label files from iTunes XML files via jMIRUtilities’

automatic instance labelling functionality.

 Feature merging: ACE XML Feature Value files (see Chapter 7) that contain

different features for the same instances may be merged into a single ACE XML

 518

Feature Value file. ACE XML Feature Description files that correspond to these

Feature Value files may also be merged. This might be used, for example, to

combine feature values extracted by jAudio with feature values extracted by

jWebMiner for the same pieces of music.

jMIRUtilities is, like all jMIR components, implemented in Java, open-source and

free. The development and expansion of jMIRUtilities is an ongoing project, but a

prototype version may be acquired by contacting Cory McKay at

cory.mckay@mail.mcgill.ca.

8.9 Summary of original contributions

8.9.1 Datasets

Section 8.2 presents an original theoretical discussion of essential issues that should

be considered when designing, building and labelling musical datasets that are to be used

as ground-truth in MIR research. Among other important issues, this discussion

emphasises in particular the design of effective and realistic class ontologies. Many of the

issues raised in this section are vital, considering the poor quality of the datasets that are

used in much of the published MIR research, and given the essential role that ground-

truth plays in the training and testing of classification algorithms. Section 8.2.4 consists of

an original list of proposed guidelines to follow when building MIR research datasets.

The Bodhidharma MIDI dataset, Codaich and SAC are presented as three different

original datasets designed for general use in MIR research. They are each alternative

prototype implementations of many of the music research dataset design principles

proposed in Section 8.2.4. These three datasets are each designed to be particularly

difficult to classify in order to increase the realism of evaluations experiments that are

performed with them.

Codaich is a large, carefully labelled and diverse collection of MP3 recordings. The

Bodhidharma MIDI dataset is the largest and most diverse research collection of MIDI

files known to the author. The SAC dataset combines matched audio recordings, MIDI

recordings and cultural metadata for the purpose of performing research on combining

features extracted from audio, symbolic and cultural sources.

 519

jMIRUtilities offers a set of miscellaneous tools for facilitating the labelling and

merging of musical data.

8.9.2 jMusicMetaManager

jMusicMetaManager is an original powerful automatic music metadata error detection

tool. Although there are a number of services that attempt to correct metadata by

identifying recordings by matching them to their own databases and then replacing the

recordings’ metadata with the metadata stored in these databases, the metadata on these

databases itself tends to be error-prone and inconsistent. jMusicMetaManager is fully

self-sufficient and does not rely on any external sources of information that could

themselves be erroneous.

jMusicMetaManager includes a number of novel error-detection methodologies and

implementation algorithms. These include original variants of classic edit distance

thresholding, the use of specialized find/replace operations for reducing potential edit

distances in ways that are particular to music, novel reordered word subset strategies and

the use of false-positive filters specifically designed for music. The merge-based

algorithms described in Section 8.4.4 that provide the central error-detection

infrastructure are also themselves entirely novel.

Finally, many of the profiling reports generated by jMusicMetaManager for

organizing music collections and publishing information about them present such

information in novel ways.

8.10 Future research

8.10.1 Datasets

This chapter includes a reasonably extensive theoretical discussion on constructing

MIR research datasets, including a number of general guidelines. There is a need for

empirical studies on many of the issues that are raised here, such as on the comparative

reliability of ground-truth labels derived from different types of sources or on the relative

incidences of different types of metadata errors. The data resulting from such studies

would be very helpful in ultimately formulating more concrete and specific guidelines for

building musical datasets.

 520

Although the Bodhidharma MIDI dataset, Codaich and SAC are very high-quality

datasets relative to the norm in MIR research, there is still certainly potential for further

improvement. For example, although Codaich is fairly large and is constantly growing,

both SAC and the Bodhidharma dataset remain much smaller. A priority in the future will

thus be to increases their size and, particularly in the case of SAC, diversity.

As noted in Section 8.5, collecting research-appropriate MIDI files can be a very

work intensive prospect. Efforts will therefore be made in the future to study the viability

of generating MIDI files by automatically transcribing audio files. Although transcription

technology has traditionally been quite error-prone when dealing with polyphonic audio,

improvements continue to be made. There have been some promising recent

developments, such as Celemony Software’s Melodyne Direct Note Access
251

 technology,

although the performance of this software remains to be publicly verified. In any case, if

reliable transcription technology were to become available then the Bodhidharma dataset

and SAC could easily be dramatically expanded to include all of the recordings in

Codaich.

There are also certain improvements that can be made to Codaich’s metadata.

Specifically, Codaich’s Composer field remains poorly annotated for non-Classical

recordings, and the Recording Year field has not yet been annotated for all recordings.

Some of the improvements to jMusicMetaManager suggested in Section 8.10.2 could also

help to detect potential metadata errors in Codaich that have not yet been detected.

The addition of more metadata fields for at least some of the recordings would help to

extend the range of MIR research areas to which Codaich could be applied. Such

additions could include general labels such as mood or listening scenario, for example, as

well as more content-oriented metadata such as sectional divisions or note onsets.

Relating to this, the integration of multiple parallel ontologies into Codaich, as

discussed in Section 8.2.2, is an additional area for further research. The development of

web-mining software for automatically and reliably acquiring both ontologies themselves

and the labels to apply to individual instances would be very useful in this respect.

Readying OMEN for public release is another priority. Although OMEN’s developer,

Daniel McEnnis, is currently involved in other projects, work on it could be continued by

251

 http://www.celemony.com/cms/

 521

others. Particular priorities include testing the framework using truly distributed remote

locations and the incorporation of security to prevent features from being extracted that

could be used to reconstruct music at a listenable level of quality.

There are also plans to add a significant amount of additional functionality to

jMIRUtilities so that it can be used for a diverse range of data pre- and post-processing

tasks.

8.10.2 jMusicMetaManager

Perhaps the most useful type of functionality that could be added to

jMusicMetaManager would be the ability to automatically apply corrections to iTunes

XML files and MP3 ID3 tags. This is not as simple a task as it might sound, however, as

an interface would be needed to allow users to approve changes before they are made so

that false positives do not corrupt metadata, as well as to resolve cases where there might

be ambiguity as to what the appropriate correction would be to a detected error.

One intriguing way to address such issues would be to have jMusicMetaManager

access audio fingerprinting services such as MusicBrainz. This would make it easy to

acquire good recommendations for the correct metadata values to use when errors are

detected. This would also have the further advantage of providing default tags for

recordings that lack metadata labels in the original collection.

The use of such fingerprinting services would also provide an entirely new way of

detecting errors, namely by simply comparing metadata entries in the dataset being

analyzed with the tags suggested by MusicBrainz for each recording. There are a number

of potential problems with this approach, such as metadata errors in the MusicBrainz

database itself, rare recordings that may not be in the MusicBrainz dataset, erroneous

fingerprinting identifications and dramatically increased processing times due to the

necessity of processing audio to extract fingerprints. Nonetheless, this approach does also

have significant potential advantages, and certainly warrants investigation.

There are also other resources that could be consulted by jMusicMetaManager to

derive model tags that could be used to detect additional errors or propose appropriate

corrections. These include simple dictionaries, data mined from on-line sources like the

All Music Guide and library authority controls (DiLauro 2001), such as that provided by

 522

the U.S. Library of Congress. Potential metadata corrections could also be ranked by

comparing hit counts for different candidates using search engines such as Google.

There are also additional new types of music collection profiling reports that could

usefully be added to jMusicMetaManager. Further variants of the error-checking

algorithms already in use could also be added, such as new find/replace transformations.

For example, jMusicMetaManager does not yet transform diacritical markings like

umlauts. jMusicMetaManager is also not yet capable of correctly dealing with non-

European alphabets, such as Hiragana. A number of default error detection

parameterizations could also be distributed with the software, each suited to different

types of musical datasets.

Improvements could also be made to some of jMusicMetaManager’s low-level

processing. A number of optimizations could decrease processing times, for example. It

would also be preferable to use a better ID3 parser if one becomes available, since all of

the open-source ones that were available at the time of jMusicMetaManager’s

implementation were unable to parse some of the MP3 files in Codaich.

Another useful addition would be to make jMusicMetaManager able to parse

metadata from file formats other than MP3s. Although such metadata can currently be

accessed by jMusicMetaManager indirectly by parsing iTunes XML files, the software

should ideally also be able to parse formats such as AAC recordings directly.

Also, the iTunes software itself has a number of limitations with respect to the kinds

of metadata that it can be used to edit. These limitations include a limited number of

fields, only one genre allowed per recording,
252

 no functionality for representing

ontological structuring and a lack of segmented annotation of recordings, all types of

information which may be freely expressed in ACE XML files. A useful addition to

jMusicMetaManager in the future would therefore be a GUI that could be used to edit

metadata in ways that are more expressive and structured than permitted by iTunes.

A final priority is the design a sleeker jMusicMetaManager API so that researchers

can access its functionality from their own software more easily. Although

jMusicMetaManager is already open-source and is implemented using well-documented

252

 jMusicManager bypasses the single genre limitation by using the plus sign as a delimiting code that

permits multiple genres to be stored in a single string.

 523

and modular code, the architectural emphasis was originally on providing functionality

via a GUI rather than through third-party software.

 524

 525

9. Evaluations and experiments

9.1 Overview of evaluations

This chapter describes several sets of evaluations that were conducted using the jMIR

software suite. These experiments were designed with the intention of verifying the

suite’s ability to effectively perform music classification tasks, both as separate modules

and as units operating together linked by the ACE XML file formats. Comparative

experiments were also performed investigating the potential for increasing classification

performance by combining features extracted from audio, symbolic and cultural

information sources.

It is important to note that all of the experiments described in this chapter were

performed without any special fine tuning or custom modifying of the jMIR components.

Such modifications were avoided in order to more accurately simulate use cases where

users with limited technical backgrounds might wish to use jMIR simply as is. It is likely

that improved experimental results could have been attained with task-specific

parameterizations, but such an approach would have been inconsistent with this chapter’s

goal of attempting to evaluate jMIR’s general applicability to MIR classification research.

The experiments described in Section 9.2 were performed in the early stages of

jMIR’s development, and involved applying jAudio and ACE to a number of different

MIR and general classification tasks in order to verify that good results could be attained.

Results were compared to results on the same datasets published by other researchers

when possible.

Section 9.3 describes the submission of the Bodhidharma system (McKay 2004) to

the MIREX Symbolic Genre Classification competition for comparison with systems

made by other research groups. Bodhidharma is the original framework that jSymbolic is

built upon.

A set of exploratory experiments with the release version of jMIR are described in

Section 9.4. These experiments investigated the classification utility of combining

features extracted from audio, symbolic and cultural sources of musical information by

performing a series of genre classification experiments using all seven possible

combinations and subsets of the three corresponding types of features. The results are

 526

presented and discussed in detail. These experiments also served as validation of the

ability of the different jMIR components to be effectively used together.

9.2 Preliminary experiments

Four sets of experiments were performed during the early development of the jMIR

software in order to roughly evaluate the performance of ACE and jAudio. These

experiments were designed simply to verify that jMIR could perform at least as well as

other published research when applied to MIR-related tasks. The results of the first three

sets of experiments are shown in Table 9.1.

Experiment Previous Research Success Rate

(Previous Research)

Success Rate

(jMIR)

Drum stroke Tindale et al. 2004 94.9 96.3

Beatboxing -- -- 95.6

Speech/music Scheirer & Slaney 1997 94 98

Table 9.1: jMIR’s classification success rates on various MIR datasets. All values are

percentages, and they are all averages calculated across cross-validation folds.

The first experiment consisted of repeating Tindale et al.’s (2004) snare drum stroke

identification experiment, using Tindale’s data but replacing the feature extraction and

classification software that he used with jAudio and ACE, respectively. This dataset

encompassed seven drum stroke classes, namely centre, half centre, halfway, halfedge,

edge, rimshot and brush. jMIR achieved a success rate of 96.3%, as compared to Tindale

et al.’s best rate of 94.9%, a proportional reduction in error rate of 27.5%.

The second experiment involved using jMIR to perform five-class beat-box

classification (Sinyor et al. 2005). The five classes were kick, open, closed, k-snare and p-

snare. Although no other research has been published based on this data that could be

used for comparison, jMIR achieved a success rate of 95.6%, a value approaching a level

of accuracy usable in performance scenarios.
253

The third experiment consisted of two-class speech/music discrimination based on

Scheirer and Slaney’s classic data set (1997). jMIR achieved a success rate of 98% at this

253

 jMIR does not currently necessarily operate in realtime, however.

 527

task, a proportional decrease of 67% in error rate compared to Scheirer and Slaney’s

success rate of 94%.

The fourth set of experiments involved running ACE on ten UCI feature sets (Blake

and Merz 1998) from a variety of research domains. This served as a test of ACE’s meta

learning approach. The results, along with a baseline taken from previously published

machine learning research on some of the same datasets (Kotsiantis and Pintelas 2004),

are shown in Table 9.2 and Figure 9.1.

It can be seen that ACE performed very well, particularly given the difficulty of some

of these feature sets. This is emphasized by ACE’s excellent performance relative to the

results published by Kotsiantis and Pintelas, which were themselves shown by the authors

to be better than a wide variety of alternative algorithms. Although statistical uncertainty

makes it impossible to claim that ACE’s results are inherently superior, it does show that

ACE can achieve results as good as or better than relatively recent sophisticated state-of-

the-art algorithms.

Furthermore, in this last experiment, ACE was forced to restrict each of its learning

algorithms to one minute or less for both training and testing on a now relatively obsolete

desktop computer (a 2.8 GHz single core Pentium 4). The time limit was imposed in

order to investigate ACE’s ability to rapidly evaluate a wide variety of classifiers.

Although even higher success rates could likely have been achieved with more training

time, the performance achieved by ACE in this limited time demonstrates its efficiency in

exploratory research.

Table 9.2 is also revealing in that it demonstrates how a variety of different classifiers

can perform best given a variety of feature sets. Furthermore, the AdaBoost algorithm

was selected by ACE four times out of ten, demonstrating the efficacy of the ensemble

classification approaches that are incorporated into ACE.

The results of all four of these sets of experiments, which demonstrated that similar or

better than published results could be achieved by jMIR, were encouraging, and served as

the initial validation justifying the further development of the software. It is important to

re-emphasize that these results were all achieved without any manual tuning applied

based on each particular application under consideration, as is consistent with jMIR’s

 528

UCI Data Set ACE’s Selected
Classifier

Kotsiantis’
Success Rate

ACE’s
Success Rate

anneal AdaBoost -- 99.6

audiology AdaBoost -- 85.0

autos AdaBoost 81.7 86.3

balance scale Naïve Bayes -- 91.4

diabetes Naïve Bayes 76.6 78.0

ionosphere AdaBoost 90.7 94.3

iris FF Neural Net 95.6 97.3

labor k-NN 93.4 93.0

vote Decision Tree 96.2 96.3

zoo Decision Tree -- 97.0

Table 9.2: ACE’s classification success rate on ten UCI feature sets compared to a

published baseline (Kotsiantis and Pintelas 2004). All values are percentages, and they

are all averages calculated across cross-validation folds.

Experiments on UCI Datasets

50%

60%

70%

80%

90%

100%

autos diabetes ionosphere iris labor vote

Dataset

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (

%
)

Kotsiantis

ACE

Figure 9.1: Comparison of ACE’s performance with that of Kotsiantis and Pintelas

(2004) on six UCI feature sets. Based on the results described in Table 9.2.

 529

design priority of providing software that can be applied immediately to MIR research

problems without the need for user customization, unless desired.

9.3 MIREX evaluation of Bodhidharma

The Music Information Retrieval Evaluation eXchange (MIREX) (Downie 2006) is a

yearly competition associated with the ISMIR conference. It provides an opportunity for a

variety of MIR algorithms and approaches to be independently evaluated and compared

using the same data sets. Evaluation areas (e.g., artist identification, audio onset detection,

beat tracking, etc.) are proposed by the community, and evaluations are performed

independently and objectively at the International Music Information Retrieval Systems

Evaluation Laboratory (IMIRSEL).

The 2005 edition of MIREX included a Symbolic Genre Classification category, and

the Bodhidharma system was submitted to it for evaluation. Bodhidharma (McKay 2004)

consists of a symbolic feature extraction system combined with an ensemble machine

learning classification system. The feature library used by jSymbolic was originally

identical to the feature library implemented in Bodhidharma, although the jSymbolic

library has since been improved. Bodhidharma also served as the basic framework that

jSymbolic was built on, although Bodhidharma’s machine learning component was

excluded. The evaluation of Bodhidharma was therefore equivalent to an evaluation of

the prototype version of jSymbolic combined with Bodhidharma’s machine learning

algorithms.

The 2005 MIREX Symbolic Genre Classification competition involved evaluations

on two hierarchical genre taxonomies, one consisting of three parent classes and nine leaf

classes, and the second consisting of nine parent classes and thirty-eight unique leaf

classes. Each recording was assigned exactly one leaf genre label.

A separate experiment was performed for each of the two taxonomies, with each

experiment using stratified cross-validation. Two different classification success rates

were calculated for each experiment:

 Raw accuracy: Each system was given a full point for each correct leaf genre and

zero points for each incorrect classification. This evaluated the ability of the

systems to make precise classifications.

 530

 Hierarchical accuracy: Each system was given a full point for each correct leaf

genre. Partial points were given if the selected leaf genre was incorrect, but was in

a correct branch of the taxonomy tree. This approach therefore included a measure

of whether the systems made minor mistakes or major mistakes when they were

incorrect.

A total of five systems were submitted to IMIRSEL for MIREX evaluation. The

results are shown in Tables 9.3 and in Figure 9.2. The detailed results are reported at

http://www.music-ir.org/evaluation/mirex-results/sym-genre/index.html.

These results demonstrate excellent performance by the Bodhidharma system and, by

extension, jSymbolic. Bodhidharma placed first in all four evaluation categories.

Although some of the other submissions achieved success rates that were statistically

comparable to those of Bodhidharma on the 38-class taxonomy, Bodhidharma performed

significantly better than any of the other systems on the 9-class taxonomy, with a raw

accuracy 12.4% higher than the second place system and a hierarchical accuracy 8.4%

higher.

Although Bodhidharma’s results on the small taxonomy were arguably good enough

for some practical application, none of the submissions achieved practically viable results

on the larger taxonomy. So, while it is certainly encouraging that results far better than

chance
254

 were attained by all of the systems, it was clear that there was still much work

to be done before automatic symbolic genre classification could be used in a real-world

context involving large taxonomies.

There has not been another Symbolic Genre Classification Evaluation at MIREX

since 2005, so it is difficult to say for certain if superior results have since been attained

by an alternative system. However, based on a review of the literature, the best symbolic

genre classification results to date appear to have been achieved by DeCoro, Barutcuoglu

and Fiebrink (2007). Using the same dataset as the one used in MIREX 2005, they

achieved a raw classification accuracy of 60.1% on the 38-class taxonomy, an

improvement of 14.0% over Bodhidharma’s performance. This improvement was

achieved by using a Bayesian Aggregation approach to perform the classification as an

254

 Random classification would yield averages of 11.1% on the 9-class taxonomy and 2.6% on the 38-class

taxonomy.

 531

 Raw
Accuracy
9-Class

Hierarchical
Accuracy

9-Class

Raw
Accuracy
38-Class

Hierarchical
Accuracy

38-Class

Bodhidharma 84.4 90.0 46.1 64.3

Basili et al. (NB) 72.0 81.6 45.0 62.6

Li 72.0 80.2 41.0 57.6

Basili et al. (J48) 65.3 76.7 39.8 54.9

Ponce de Leon 37.8 50.7 15.3 24.9

Table 9.3: MIREX 2005 Symbolic Genre Classification results. All values are

percentages, and they are all averages calculated across cross-validation folds.

MIREX 05 Results

0

10

20

30

40

50

60

70

80

90

100

T-9 Raw T-9

Hierarchal

T-38 Raw T-38

Hierarchal

C
la

s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y
 (

%
)

Bodhidharma Basili (NB)
Basili (J48) Li
Ponce de Leon

Figure 9.2: MIREX 2005 Symbolic Genre Classification results.

 532

alternative to the neural net and k-nearest neighbour ensemble approach used by

Bodhidharma. What is encouraging from the perspective of jMIR is that DeCoro,

Barutcuoglu and Fiebrink used Bodhidharma/jSymbolic’s feature library as the input to

their classification algorithms.

The combination of the MIREX results and the work of DeCoro, Barutcuoglu and

Fiebrink demonstrate that jSymbolic’s feature library has achieved higher symbolic genre

classification success rates than any other symbolic feature libraries,
255

 both at the most

recent MIREX Symbolic Genre Classification Evaluation and in the general research

published to date.

9.4 Experiments on combining feature types

9.4.1 Goals and overview

The final set of experiments consisted of using the release version of jMIR to classify

music by genre using features extracted from audio, symbolic and cultural sources.

Classifications were performed using each feature type individually, all three possible

pairs of feature types and all three feature types together. These experiments were

performed with three goals in mind:

 To verify the ability of the mature jMIR components to effectively perform music

classification.

 To verify the intercompatibility of the jMIR components.

 To perform exploratory research investigating the potential benefits of combining

features extracted from audio, symbolic and cultural sources.

In the past, MIR research has tended to focus on studying either audio, symbolic or

cultural sources of musical information. In recent years, as described in Section 9.4.2,

MIR researchers have increasingly begun to study these sources of information in

combination, with a particular emphasis on research combining audio and cultural sources

255

 Although tests were not performed at MIREX isolating the feature extraction and machine learning

libraries so that they could be independently evaluated.

 533

of data. However, there has yet to be a systematic study investigating the relative levels of

automatic classification efficacy corresponding to all three feature types operating

together, or of each of the seven possible combinations of the three feature types.

The experiments described in this section
256

 were therefore devised to fill this gap. In

essence, this research is intended to address the degree of orthogonal independence of the

three feature types. If the feature orthogonality is high, then significant performance

boosts can potentially be attained by combining feature types. If it is low, and there is

therefore significant redundancy between the feature types, then combining the different

sources of musical information may be wasted effort.

As noted above, this investigation was performed via sets of automatic genre

classification experiments. Genre classification in particular was chosen because it is a

complex and difficult task that combines diverse musical variables and requires

classification systems to successfully deal with problematic labelling and ground-truth

issues (McKay and Fujinaga 2006b), thereby serving as an appropriately difficult test

case. The experiments could just as easily have been performed using other types of

classification, however, such as mood or artist classification. The essential question being

investigated remains the degree of utility attained by combining features extracted from

the three types of musical data.

Before proceeding to the details of the experiment, it is appropriate to first briefly

discuss the three types of musical data. Features extracted from all three can arguably

provide valuable information for use in music classification and similarity research.

Audio is clearly useful because it corresponds to the essential way that music is

consumed, and cultural data external to musical content is musicologically well-known to

be highly influential on our interpretations and experiences of music (e.g., Fabbri 1981).

Symbolic data has recently been receiving less attention from MIR researchers than it

did in the past, with the obvious exception of music theoretical researchers. The value of

symbolic data should not be overlooked, however, as much of the information relating to

high-level musical abstractions that can be relatively easily extracted from such formats is

256

 A condensed version of these experiments have also been published at the ISMIR conference (McKay

and Fujinaga 2008).

 534

currently poorly encapsulated by the types of features that are typically extracted from

audio, which tend to focus primarily on timbral information

Symbolic formats can thus, at the very least, be a powerful representational tool in

automatic music classification. This characteristic will become increasingly valuable as

polyphonic audio to symbolic transcription algorithms continue to improve. The end

result of successful transcription technology may well be that symbolic formats in essence

become important intermediate data structures. Even though such transcription

technologies are still error-prone, it has been found (e.g., Lidy et al. 2007) that

classification systems can be relatively robust to such errors. Also, the advance material

promoting Celemony Software’s Melodyne Direct Note Access
257

 technology seems to

indicate that fairly high-quality audio-to-symbolic transcription will soon become

available, although the performance of the technology remains to be publicly verified.

The usefulness of combining features extracted from all three sources of musical

information therefore seems intuitively apparent. However, as stated above, this remained

to be experimentally verified prior to the experiments described in this section. These

experiments also provided an excellent test scenario for combining the jAudio,

jSymbolic, jWebMiner and ACE jMIR components, as well as validating the

intercompatibility of the ACE XML file formats, thereby meeting all three goals outlined

at the beginning of this section.

9.4.2 Related research

There has been a significant amount of research on combining audio and cultural data.

Whitman and Smaragdis (2002) and Baumann, Klüter and Norlien (2002) performed

some particularly important early work on combining audio features with cultural data

mined from the web, and achieved substantial performance gains when doing so. Ellis

and his colleagues (2002) also combined audio and cultural data, but with an emphasis on

acquiring ground-truth. Dhanaraj and Logan (2005) took a more content-based approach

by combining information extracted from lyrics and audio. Knees and his colleagues

(2006) combined audio and cultural data for the purpose of generating a music browsing

space, as did Pampalk and Goto (2007). Aucouturier and Pachet (2007) combined audio

257

 http://www.celemony.com/cms/

 535

features with cultural metadata in order to achieve improved genre classification

performance. Research has also been done on using audio data to generate or make

correlations with cultural labels, which can in turn improve other kinds of classification

(e.g., Eck, Bertin-Mahieux and Lamere 2007; Reed and Lee 2007).

There has been much less work on combining symbolic data with audio data. One of

the exceptions is the outstanding work of Lidy and his colleagues (2007), who reported

improvements in three different sets of experiments when audio and symbolic data were

combined, compared to when only audio data was used.

Much of the research on combining audio and symbolic data has simply involved

MIDIstration, which is to say the synthesis of audio files based on MIDI files. Although

this can be useful for some purposes, it is nonetheless much less powerful than separately

acquired audio and symbolic data, since the only additional information attained via

MIDIstration is the timbral information stored in the synthesis algorithms used.

MIDIstration is in general less useful than audio to symbolic transcription, even though

the transcription process arguably does not add any information that is not already in the

audio signal, since the transcription process has the advantage of making high-level

features much more accessible than they are in raw audio.

To the best knowledge of the author, no previous research has been performed on

combining symbolic and cultural features or on combining all three.

The literature on automatic genre classification is far too large to cite with any

completeness here, but the work of McKay and Fujinaga (2006) and McKay (2004)

include citations of some of the most influential research in the field as well as

discussions of essential issues.

9.4.3 Experimental procedure

The experiments were performed using the SAC (Symbolic Audio Cultural) dataset,

which is described in detail in Section 8.7. This dataset was assembled for the specific

purpose of performing these experiments, although it can of course be used for other

research as well. The most pertinent aspects of SAC are reviewed in the following

paragraphs.

 536

The SAC dataset consists of 250 MP3 files, 250 MIDI files matched to each audio file

and cultural metadata
258

 associated with each piece. Each matching MIDI file was

downloaded from the Internet independently, and was not transcribed from the audio, nor

was the audio derived from the MIDI via MIDIfication. Although this made acquiring the

dataset significantly more difficult and time consuming, it was considered necessary in

order to truly test the value of combining symbolic and audio data, since audio generated

from MIDI by its nature does not include any additional information other then the very

limited data encapsulated by the synthesis algorithms, as discussed is Section 9.4.2.

The pieces of music making up SAC are divided into ten different genres, and each

piece is assigned a ground-truth genre label. These ten genres consist of five pairs of

similar genres, as shown in Figure 9.3. This arrangement has the advantage of making it

possible to perform both 10-class and 5-class genre classification experiments simply by

combining the instances in each pair of related genres into one class.

This arrangement also makes it possible to experimentally evaluate how good a

classification system is at distinguishing between relatively dissimilar classes as well as

relatively similar classes. A related advantage is that it also becomes possible to measure

an indication of how serious misclassification errors are in 10-class experiments by

examining how many misclassifications are in an instance’s partner genre compared to

how many are in one of the other eight genres.

Blues Classical Jazz Rap Rock
Modern Blues Baroque Bop Hardcore Rap Alternative Rock
Traditional Blues Romantic Swing Pop Rock Metal

Figure 9.3: The ten musical genres in the SAC dataset. The columns demonstrate how

the genres can be grouped into pairs in order to result in a 5-genre parent taxonomy.

The first part of the experiment was to use jMIR’s feature extractors to acquire

features from each matched audio recording and MIDI recording, as well as from the

Internet, using the cultural metadata associated with each piece. To provide a clarifying

example, features might be extracted from a Duke Ellington MP3 recording of Perdido,

from an independently acquired MIDI encoding of the same piece, and from automated

258

 The most significant fields of which, from the perspective of this experiment, are Artist, Genre and Title.

 537

search engine queries based on recording metadata such as Artist, Title and candidate

genres. Three types of features, one corresponding to each data type, were therefore

extracted for each piece.

These three types of features were then grouped into all seven possible combinations

and subsets using jMIRUtilities.
259

 This was done once for each of the two genre

taxonomies. This resulted in a total of fourteen sets of features,
260

 as shown in Table 9.4.

These fourteen sets of features were used to perform fourteen corresponding automatic

genre classification experiments.

Feature Type 5-Genre Code 10-Genre Code

Symbolic S-5 S-10

Audio A-5 A-10

Cultural C-5 C-10

Symbolic + Audio SA-5 SA-10

Audio + Cultural AC-5 AC-10

Symbolic + Cultural SC-5 SC-10

Symbolic + Audio + Cultural SAC-5 SAC-10

Table 9.4: The identifying codes used for each of the fourteen experiments performed.

ACE was trained on and used to classify each of these fourteen feature type

combinations in fourteen independent 10-fold cross-validation experiments. This resulted

in two classification accuracy rates for each of the seven feature type combinations, one

for each of the two genre taxonomies.

It should incidentally be emphasized that ACE includes dimensionality reduction

functionality, which is essential in overcoming the curse of dimensionality, an important

consideration given that most of the feature sets included well over one hundred features.

ACE was therefore able to effectively choose only those features that were most

orthogonal or showed the most discriminatory power from all of the available features

when training its actual classifiers.

259

 jMIRUtilities is a set of tools designed for coordinating the jMIR components and for performing

miscellaneous tasks described in Section 8.8.
260

 Although the symbolic and audio features were the same regardless of which of the two genre

taxonomies were used, the cultural features differed between the two taxonomies. This variance was due to

the fact that jWebMiner queries incorporated the names of the candidate genres. So, even though A-5 and

A-10 used the same features, they are assigned different experiment codes for the sake of clarity.

 538

It was desirable not only to determine how effective each of the feature type

combinations was at achieving correct classifications, but also how serious

misclassifications were. Two classifiers with similar raw classification accuracy rates can

in fact be of very different values if the mistakes made by one are much more serious than

those made by the other. A normalized weighted classification accuracy rate was

therefore calculated for each of the 10-genre experiments in order to provide insights on

error types. This was calculated by weighting a misclassification within a genre pair (e.g.,

Alternative Rock instead of Metal) as 0.5 of an error, and by weighting a misclassification

outside of a pair (e.g., Swing instead of Metal) as 1.5 of an error. This contrasts with the

simple classification accuracy rate, where both types of errors counted simply as 1 error.

It is important to note that this weighting approach avoided simply inflating the

accuracy rates because ―bad‖ misclassifications were overweighted by just as much as

―good‖ misclassifications were underweighted. This normalized approach contrasts with

the approaches used in the past in some MIREX evaluations, for example, which just

reduced the weight of ―good‖ errors without increasing the weight of ―bad‖ errors.

9.4.4 Results

The average classification accuracy rates across cross-validation folds for each of the

fourteen experiments outlined in Table 9.4 are shown in Table 9.5. Both weighted and

unweighted results are included. Figures 9.4 and 9.5 illustrate the unweighted results for

the 5-genre and 10-genre classifications respectively. These results are summarized in

Table 9.6 and Figure 96, which show the average results for all experiments using one

feature type, all experiments using two feature types and all experiments using three

feature types.

 539

 S A C SA AC SC SAC

5-UW 86.4 82.8 87.2 92.4 95.2 94 96.8

10-UW 66.4 67.6 61.2 75.6 78.8 75.2 78.8

10-W 66.4 67.4 66.6 78.6 84.6 81.2 84.2

Table 9.5: The unweighted classification accuracy rates for the 5-genre taxonomy (5-

UW) experiments and both the unweighted (10-UW) and weighted (10-W) accuracy rates

for the 10-genre taxonomy experiments. Results are reported for each feature type

combination, as described in Table 9.4. All values are percentages, and they are all

averages calculated across cross-validation folds.

Classification Performance on 5-Genre Taxonomy

50

55

60

65

70

75

80

85

90

95

100

S A C SA AC SC SAC

Feature Set

A
v
e
ra

g
e
 C

la
s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y
 (

%
)

Figure 9.4: The classification accuracy rates for the 5-genre taxonomy, as described in

Tables 9.4 and 9.5.

 540

Classification Performance on 10-Genre Taxonomy

50

55

60

65

70

75

80

85

90

95

100

S A C SA AC SC SAC

Feature Set

C
la

s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y
 (

%
)

Figure 9.5: The unweighted classification accuracy rates for the 10-genre taxonomy, as

described in Tables 9.4 and 9.5.

 1 Feature Type 2 Feature Types 3 Feature Types

5-UW 85.5 93.9 96.8

10-UW 65.1 76.5 78.8

10-W 66.8 81.5 84.2

Table 9.6: The average classification accuracy rates for all experiments employing just

one type of feature (S, A and C), two types of features (SA, AC and SC) or all three

types of features (SAC). Results are specified for the 5-genre taxonomy (5-UW), the

unweighted 10-genre taxonomy (10-UW) and the weighted 10-genre taxonomy (10-W).

All values are percentages, and are calculated as simple mean averages from Table 9.5.

 541

Average Classification Performance Based on

Number of Feature Types

50

55

60

65

70

75

80

85

90

95

100

1 Type 2 Types 3 Types

Number of Feature Types

A
v
e
ra

g
e
 C

la
s
s
if

ic
a
ti

o
n

A
c
c
u

ra
c
y
 (

%
)

5-UW

10-W

10-UW

Figure 9.6: The average classification accuracy rates for all experiments employing just

one type of feature (S, A and C), two types of features (SA, AC and SC) or all three

types of features (SAC). The three trend lines refer to the 5-genre taxonomy (5-UW), the

unweighted 10-genre taxonomy (10-UW) and the weighted 10-genre taxonomy (10-W).

This data corresponds to Table 9.6.

9.4.5 Discussion of the effects of combining feature types on classification

accuracy

As can be seen in Figures 9.4 and 9.5, all combinations of two feature types

performed better than all single feature types classified independently. Furthermore,

combining all three feature types for the most part resulted in better performance than all

pairs of feature types, although this increase was less dramatic.

These results are illustrated in Figure 9.6, which shows strong average increases in

performance when feature types are combined. On average, combining all feature types

resulted in an increase in performance of 11.3% in the 5-genre taxonomy and 13.7% in

the 10-genre unweighted case compared to the average performance of each of the single

feature types classified individually. Considered in terms of proportional reductions in

 542

error rate, this corresponds to decreases of 78.0% and 39.3% for the 5 and 10-genre

taxonomies respectively.

The Wilcoxon signed-rank test indicates that, with a significance level of 0.125, the

improvements in performance of two or three feature types over one type were

statistically significant in all cases. However, the improvements when three feature types

were used instead of two were not substantial enough to conclude with a high degree of

statistical certainty that three feature types are always better than two, although this may

still be the case. The corresponding average increases in performance were only 2.3% and

2.7% for the 5 and 10-genre taxonomies, respectively. What is clear, however, is that both

two and three feature types consistently resulted in better classification success rates than

only one feature type.

All of this provides a strong indication that the three different types of features

contain orthogonally independent information, and can therefore be fruitfully combined

for a variety of purposes. This helps to confirm the intuitively reasonable suspicions that

cultural features hold useful information not accessible from either symbolic or audio data

and that audio files contain information that MIDI files do not.

What may be more surprising to some, however, is that the symbolic data appears to

contain information that is not accessed by the features extracted from the audio files.

This is implied by the facts that the AS feature set performed 9.6% better than the A

feature set in 5-UW, and 8% better in 10-UW. This is potential confirmation of the

suspicions expressed above that symbolic data has important representational advantages

over raw audio data with respect to making some types of information more conveniently

accessible to machine learning algorithms. This, in turn, implies that mappings from

audio to MIDI resulting from improved audio transcription technology could result in

substantially improved classification performance as a side benefit.

As an additional point, it is interesting to note that the standard deviation across single

feature types was only 2.3 for the 5-genre taxonomy and 3.4 for the 10-genre taxonomy,

and would have been even lower if not for the relatively low performance of the cultural

features on the 10-genre taxonomy. This may indicate that the three types of features are

roughly equivalent in terms of their genre distinguishing ability when considered

individually.

 543

9.4.6 Discussion of types of misclassification

As described in Section 9.4.3, normalized weighted classification accuracy rates were

calculated for the experiments on the 10-genre taxonomy in order to evaluate the

seriousness of the particular misclassifications that were made. The results, and how they

compare to the unweighted classification accuracies, are shown in Table 9.5 and Figure

9.7.

Comparison of Unweighted and Weighted Accuracies

50

55

60

65

70

75

80

85

90

95

100

S-10 A-10 C-10 SA-10 AC-10 SC-10 SAC-10

Feature Set

C
la

s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y
 (

%
)

Unmodified

Weighted

Figure 9.7: The difference between the unweighted and weighted classification

accuracies on the 10-genre taxonomy for each of the seven feature type combinations

(Table 9.4). This data correspond to the last two rows of Table 9.5.

As can be seen in Figure 9.7, the weighted and unweighted accuracies were not

significantly different when the audio and symbolic features were processed individually.

However, the weighted performance was 3% higher than the unweighted performance

when the two feature types were combined. Although this is not a dramatic increase, it is

an indication that combining these feature types may make those misclassifications that

 544

do occur less serious in addition to increasing classification accuracy overall. Recall, also,

that the normalized weighting does not artificially inflate results, as very different

misclassifications are overpenalized just as much as not too different misclassifications

are underpenalized.

The differences between the weighted and unweighted classification accuracies were

greater in all feature sets that included cultural features. These weighted rates were higher

than the unweighted rates by an average of 5.7%, a difference that, based on Student’s

paired t-test, is statistically significant with a significance level of 0.005. This indicates

that the types of misclassifications that occur when cultural features are used are likely

less serious than when audio or symbolic features are used alone. Quite encouragingly, it

also appears that this improvement in error quality carries through when cultural features

are combined with both audio and symbolic features, as the SAC-10 weighted success

rate was 5.4% higher than the unweighted success rate.

One interesting note is that many of the classification errors in general occurred in the

two Rap genres. These genres were correctly classified with only a 68% success rate for

the SAC-10 experiment, for example, compared to 81.5% for recordings belonging to the

other eight genre classes. This relatively poor performance on Rap was for the most part

consistent across feature types and experiments, and the was emphasized by the relatively

similar classification success rates on average for the other eight genre classes. This is

surprising, given that Rap would intuitively seem particularly easy to distinguish from

other genres. This is an intriguing result, and bears further investigation.

9.4.7 Discussion of absolute genre classification performance

In order to put the experimental results presented here in context, it is appropriate to

compare them with classification accuracies achieved by alternative high-performing

specialized genre classification systems. It is important, however, to keep in mind the

essential caveat that different classification systems can perform dramatically differently

on different datasets, so direct comparisons of classification accuracies calculated on

different datasets can give only a very rough indication of comparative performance. The

size and depth of the genre taxonomy, the particular genre labels chosen as candidates,

the quality of the labelling of the ground-truth, the particular instances chosen to include

 545

in the dataset and the relationships between them are just some of the many factors that

can have a deep impact on the difficulty of a dataset.

The MIREX evaluations offer the best benchmarking reference points available.

Although no evaluations of genre classification based on cultural data have been carried

out yet at MIREX, both audio and symbolic genre classification evaluations have been

held, most recently in 2009 and 2005, respectively. The highest classification accuracy

attained in audio classification was 73.3%, achieved by Cao and Li on a 10-genre

ontology.
261

 The highest accuracy for symbolic classification was 84.4%, attained on a 9-

genre taxonomy by McKay and Fujinaga’s Bodhidharma system.
262

The experiments described in this thesis achieved classification accuracies of 67.6%

using only features extracted from audio and 66.4% using only features extracted from

symbolic data. This is at least comparable to the best MIREX audio result of 73.3%, but

significantly lower than the best MIREX symbolic result of 84.4%, which were achieved

on a taxonomy only smaller by one class.

This latter result is intriguing, as jSymbolic uses the same features and feature

implementations as Bodhidharma. The difference is likely due at least in part to the

specialized and sophisticated hierarchical and round robin learning classification

ensemble algorithms used by Bodhidharma (McKay 2004), whereas ACE only

experiments with general-purpose machine learning algorithms. This offers strong

support for future research experimenting with sophisticated classification schemes such

as Bodhidharma’s.

When all three feature types were combined, the jMIR experiments described in this

paper achieved a success rate of 78.8% which was still lower than Bodhidharma’s

performance, but significantly better than the best audio MIREX results to date.

 Even though 78.8% is still much too low for practical applications, these results are

particularly encouraging given the particular difficulty of the SAC dataset compared to

datasets used in many other genre classification experiments. SAC consists of pairs of

closely related genres, includes different versions of the same pieces performed in

different genres, includes different pieces by the same artist in different genres, includes a

261

 www.music-ir.org/mirex/2009/index.php/Audio_Genre_Classification_%28Mixed_Set%29_Results
262

 www.music-ir.org/evaluation/mirex-results/sym-genre/index.html

 546

diverse variety of subtypes within each genre, etc., all in order to more closely

approximate realistic genre conditions. These aspects of SAC that make it a particularly

difficult dataset to correctly classify are discussed in more detail in Section 8.7.

Furthermore, only 25 recordings were available per genre in SAC, and these needed to be

divided into training, testing and validation sets, which left only relatively few recordings

for classifiers to train on.

Taken in the context of the particular difficulty of the SAC dataset, and considering

that the accuracy on the 10-genre taxonomy improves to 84.2% when weighted, the

results attained here are encouraging, and may be an indication that the ultimate ceiling

on performance (Aucouturier and Pachet 2004) might not be as low as some have

worried. It may well be that the use of more sophisticated machine learning approaches,

such as those used by Bodhidharma or by DeCoro, Barutcuoglu and Fiebrink (2007),

combined with the development of new features, could significantly improve

performance further.

9.4.8 Conclusions

The results of these experiments indicate that it is indeed substantively beneficial to

combine features extracted from audio, symbolic and cultural data sources, at least in the

case of automatic genre classification. Further research remains to be performed

investigating whether these benefits generalize to other areas of music classification and

similarity research, although the outlook seems good.

All feature groups consisting of two feature types performed significantly better than

any single feature types classified alone. Combining all three feature types resulted in still

further improvements over the feature type pairs on average, but these additional

improvements were not as uniformly dramatic.

The results also indicated that combining feature types tends to cause those

misclassifications that do occur to be less serious, as the misclassifications are more likely

to be to a more similar class. Such improvements were particularly pronounced when

cultural features were involved.

Encouragingly high genre classification accuracy rates were attained. The results of

the experiments as a whole provide hope that any ultimate performance ceiling on genre

classification performance might not be as low as has been worried.

 547

In terms of meeting the first two experimental goals outlined in Section 9.4.1, the

jMIR software suite was demonstrated to be an effective and convenient tool for

performing feature extraction and classification research and for effectively combining

information extracted from the different musical data sources. Although results were

clearly improved when feature types were combined, it was also shown that each of the

jMIR feature extractors was able to produce features that could be used individually to

perform classifications with success rates over six times better than chance in all 10-genre

classification experiments.

9.5 Summary of original contributions

The empirical evaluations in this chapter demonstrated the utility of ACE, jAudio,

jSymbolic and jWebMiner as tools that can be used to produce excellent classification

results when applied a variety of MIR research areas. It was also shown that the jMIR

components could be used together effectively in order to combine features extracted

from audio, symbolic and cultural sources and build corresponding combined

classification models using ACE.

The preliminary experiments described in Section 9.2 demonstrated that jAudio and

ACE can be used without customization or specialized parameterization to quickly and

easily achieve similar or better than previously published classification success rates

when applied to both MIR and general classification tasks. The independently evaluated

MIREX results discussed in Section 9.3 demonstrate that jSymbolic’s features are the

most effective to date at classifying symbolic recordings by genre to date.

To the best knowledge of the author, the experiments described in Section 9.4 are the

first to combine features extracted from all three sources of musical data for the purpose

of automatic music classification. They are also the first to systematically compare the

performance of all possible combinations and subsets of the feature types.

These experiments provided strong evidence that combining features extracted from

audio, symbolic and cultural information sources can substantively improve classification

results compared to only using one type of data. Classification accuracies of 96.8% and

78.8% were attained respectively on 5- and 10-class genre taxonomies when all three

feature types were combined, compared to average accuracies of 85.5% and 65.1% when

 548

features extracted from only one of the three sources of data were used. It was also found

that combining feature types decreased the seriousness of those misclassifications that

were made, on average, particularly when cultural features were included.

9.6 Future research

Now that symbolic and audio data have been found to be capable of providing at least

partially orthogonal features, an important next step is to supplement the experiments

performed in Section 9.4 by repeating them with MIDI files transcribed from audio, in

order to investigate more practically significant use cases where MIDI files do not have to

be manually harvested. This would also enable experiments on much larger audio

datasets, such as Codaich, rather than limiting one to the much smaller universe of MIDI

files. Preliminary investigations of existing and forthcoming audio transcription

technologies will be the first step towards this goal. Although less directly useful from a

practical value, it would also be interesting to investigate the relative classification

performance when audio files are synthesized from MIDI files, in order to attain a

comparative baseline.

There are also plans to perform experiments where feature types are combined in

more sophisticated ways, such as by segregating them among different specialist

classifiers collected into blackboard ensembles. Further experiments with more

sophisticated classification techniques in general, such as those utilized in Bodhidharma

(McKay 2004) or by DeCoro, Barutcuoglu, and Fiebrink (2007), also bear further

investigation, and could fruitfully be incorporated into ACE.

Since one of the essential goals of the jMIR package is to provide a framework

applicable to a wide variety of MIR applications with little or no fine tuning being

necessary, a key priority in the future is to perform experiments with the mature jMIR

release in a variety of MIR research areas relating to both classification and similarity.

Submitting jMIR to future editions of the MIREX competitions in a number of different

areas would be an excellent opportunity to gain feedback on its performance relative to

state-of-the-art specialized approaches.

 549

10. Conclusions and future research

10.1 Summary of dissertation and original contributions

This dissertation presented a suite of software applications called jMIR that are

intended for use in performing research involving automatic music classification. jMIR is

the only existing unified music information retrieval research toolset that includes

software for performing symbolic, audio and cultural feature extraction; meta learning

software for selecting, training and applying machine learning algorithms; large and well-

labelled musical research datasets; software for profiling and detecting errors in musical

metadata; and standardized file formats for representing feature values, instance class

labels, class ontologies and associated metadata in flexible and expressive ways.

Certain essential objectives are emphasized in the design and implementation of each

of the jMIR components, especially:

 Providing software that may be used to apply automatic music classification to

research problems in ways that are accessible to researchers from a diverse range

of music-related research disciplines.

 Providing a framework for researchers to develop, test and share new automatic

music classification algorithms, particularly new features and machine learning

strategies.

 Facilitating research that combines information extracted from different types of

musical data.

The jMIR components are designed such that users may utilize them either as separate

independent units or as an integrated whole, as they prefer. The jMIR components are as

follows:

 jAudio: A feature extractor for extracting information from audio files.

 jSymbolic: A feature extractor for extracting information from MIDI files.

 jWebMiner: A feature extractor for extracting cultural information from the

Internet.

 550

 ACE: Meta learning software for experimenting with, selecting, training and

applying pattern recognition algorithms.

 ACE XML: A set of standardized file formats that can be used to store

information such as extracted feature values, feature metadata, class labels

associated with instances, miscellaneous instance metadata and class ontologies.

 jMusicMetaMangaer: A tool for profiling large musical datasets as well as

automatically detecting metadata errors, inconsistencies and redundancies.

 Codaich, Bodhidharma MIDI and SAC: Three labelled musical datasets for use

in debugging, validating and benchmarking new automatic music classification

technologies and for performing general exploratory computational musical

research.

 jMIRUtilities: A set of tools for performing miscellaneous tasks associated with

jMIR.

The provision of these jMIR software tools to music researchers is itself a substantial

contribution to the field of music information retrieval, as there is currently no other

toolset designed specifically for automatic music classification research with anything

approaching the breadth and scope of jMIR. The jMIR project has resulted in the

implementation of a great deal of functionality. The software consists of over 95,000 lines

of original code
263

 at the time of this writing, not including the original Bodhidharma

code or the work currently underway on the ACE XML 2.0 support libraries. Moreover,

this code is based around a carefully designed architecture that emphasizes extensibility

and modularity.

All of the jMIR code is also open-source, so the processing and analysis functionality

that it implements can be examined directly and extended by those inclined to do so.

jMIR thus performs the dual roles of providing music researchers in general with ready-

to-use tools and of providing algorithm developers with a framework for implementing

new approaches and then testing and distributing their work to other researchers.

263

 And over 3.8 million characters.

 551

A number of important additional contributions to the field of music information

retrieval have also been produced during the course of the jMIR project, beyond simply

the essential functionality offered by the software itself. Certain highlights are

summarized below, with more detailed information available in the individual chapters of

this dissertation:

 General limitations and problems associated with the current state of automatic

music classification research are discussed, and guidelines are proposed for

addressing these concerns and moving past them.
264

 Automatic music classification is considered in the context of theoretical and

experimental insights from the fields of music psychology, music theory and

musicology. This contrasts with the more typical MIR approach of simply viewing

automatic music classification as an engineering and machine learning problem.

From the perspective of the author, it is essential that MIR researchers move past

this view, as music classification is fundamentally associated with the human

understanding of music, not raw audio data devoid of context. It therefore seems

intuitively clear that automatic music classification should best be approached

with a musically and psychologically informed awareness.
265

 Although all jMIR components are designed to be extensible and modular, jAudio

is presented as a particularly developed example of how such design goals can be

fully expressed in the context of music classification software. This is exhibited by

jAudio’s metafeatures, aggregagators, automatic handling of feature dependencies,

automatic extraction scheduling, full feature plug-in support and functionality for

generating audio for the purpose of testing and debugging new features.
266

 A number of important principles associated with the design and choice of new

high-level musical features are discussed. This analysis and the resultant

264

 Chapter 1
265

 Chapter 2
266

 Chapter 3

 552

suggestions can be of use to those designing high-level musical features of their

own.
267

 The jSymbolic feature catalogue is much larger than any other existing set of

high-level musical features. Moreover, many of these features are entirely

original. Taken together, these 111 implemented features and 42 additional

proposed features provide a solid basis for extracting musically meaningful

statistical information from music. This feature catalogue has only begun to be

taken advantage of in music classification research, and it also holds the potential

to be applied to more analytically oriented work.
268

 The jMIR components are designed to have interfaces that make them accessible

to music researchers in general, including researchers with little or no experience

in computational research. The jMIR interfaces and the design principles behind

them are therefore themselves useful contributions to MIR research. For example,

jWebMiner and ACE respectively implement data mining and machine learning

algorithms that have largely already been used previously by others, but package

this functionality in ways that make it useful and accessible specifically to music

researchers in ways that it previously was not.
269

 A relatively detailed introduction to and overview of machine learning is

provided. Although this particular section of the dissertation certainly does not

describe original research, it is presented in such a way as to make it accessible

even to music researchers with only a minimal background in statistics and

computer science. It also places a particular emphasis on how machine learning

techniques can be applied to music research. Most existing machine learning texts,

in contrast, tend to presume a significant mathematical and computational

background on the part of the reader, and also tend to focus more on detailed

theoretical aspects of machine learning that are useful when designing new

algorithms and less on the practical problems that one encounters when actually

using machine learning. This is precisely the wrong focus from the perspective of

267

 Chapter 4
268

 Chapter 4
269

 Chapters 3, 4, 5 and 6

 553

the typical music researcher, who lacks the expertise necessary for developing

new algorithms, and who simply wishes to use existing algorithms effectively.

The consequence of this is that existing machine learning texts tend to be

alienating to the majority of music researchers who, as a consequence, have a

tendency to simply blindly use existing off-the-shelf implementations without a

true understanding of the algorithms that they are choosing or of whether they are

in fact well-suited to their particular problems. The machine learning summary

presented in this dissertation is a useful contribution because it provides music

researchers with an accessible quick-and-easy yet still reasonably in-depth

introduction to machine learning that focuses on the particular practical issues that

one actually encounters in automatic music classification research. This will

hopefully allow music researchers in general to approach machine learning a little

less naïvely and more effectively. ACE itself also still provides the option of

automatically selecting algorithms to use via meta learning based on empirical

evidence.
270

 A theoretical discussion is provided of problems and issues to consider when

choosing or designing data representation formats associated with automatic

music classification. This includes the proposal of an original list of related design

principles.
271

 ACE XML is an entirely original standard for representing information

specifically related to automatic music classification. It is presented to the MIR

community as a general standard for storing and communicating such information

between different music software applications and research groups, not just as the

native format used by the jMIR components.
272

 A number of algorithms are proposed (and implemented in jMusicMetaManager)

for detecting metadata errors and redundancies in musical collections. These

include both purely original algorithms, such as the reordered word subset

operations and the merge-based coordination algorithm, as well as original

270

 Chapter 6
271

 Chapter 7
272

 Chapter 7

 554

variants of established edit distance-based techniques. For example, the

find/replace transformations facilitate the detection of certain types of errors that

are particularly prevalent in musical metadata. The jMusicMetaManager

algorithms do not rely upon fingerprinting, as do most musical metadata systems,

and can in fact be used to clean the often inconsistent metadata provided by

fingerprinting services.
273

 A reasonably extensive theoretical discussion is provided of problems and

concerns relating to MIR research datasets, and a number of general guidelines are

proposed for designing, building and using such datasets effectively. A particular

emphasis is placed on classes and class ontologies.
274

 The Codaich, SAC and Bodhidharma MIDI datasets provide diverse, well-labelled

and clean musical data in both audio and symbolic forms. These musical datasets

have already been used in research at McGill University, where there is legal

access to them, and it is hoped that the datasets will be made accessible to the

MIR research community in general once OMEN or some other system like it

allows features extracted from the data to be distributed legally.
275

The experiments
276

 performed as part of the jMIR project also provide a useful

general contribution to MIR research, particularly the results of those experiments

involving features extracted from multiple different types of musical data. More details

are provided below in Section 10.2.

It is hoped that the jMIR components will be used and extended by a wide variety of

music researchers in the future. Both the software and its associated documentation may

be freely downloaded from jmir.sourceforge.net. As of 23 April 2010, there have been

3897 logged downloads of jMIR components from the jMIR site, and jMIR components

have also been used in several research projects performed independently of the author.
277

It therefore appears that the first of these hopes has begun to be realized. Unfortunately,

273

 Chapter 8
274

 Chapter 8
275

 Chapter 8
276

 Chapter 9
277

 Examples include the work of Bellaachia and Jimenez (2009); DeCoro, Barutcuoglu and Fiebrink

(2007); and Hillewaere, Manderick and Conklin (2009).

 555

the only jMIR development work to date has been performed by the author and his

research collaborators at McGill University.
278

 It is therefore clear that additional work

remains to be done on promoting jMIR as a development framework, an issue that is

discussed further in Section 10.3.

10.2 Conclusions drawn from experimental results

The experiments described in Chapter 9 have, to begin with, demonstrated that that

the jMIR components may serve as useful and effective tools with respect to a variety of

automatic music classification research projects. In particular, the winning submission of

Bodhidharma to the MIREX Symbolic Genre Classification contest, as described in

Section 9.3, demonstrated that jMIR technology can perform favourably when compared

to other systems.

The experiments on combining features extracted from different types of musical

data, as described in Section 9.4, also helped to demonstrate the effectiveness of jMIR.

Not only were good classification results achieved on the hard SAC dataset when various

jMIR components were used separately, but significantly improved results were achieved

when features were extracted and combined using two or three jMIR feature extractors

together. This demonstrated the ability of the jMIR components to work well both

individually and together.

The results from the experiments described in Section 9.4 also have an importance

beyond just the scope of jMIR itself. It was found that combining features extracted from

audio, symbolic and cultural sources of musical data in any combination significantly

improved results compared to when features were only extracted from one type of data.

Moreover, it was found that combining features extracted from either audio or symbolic

data, or both, with features extracted from cultural data decreased the seriousness of those

misclassifications that did occur, in addition to reducing the number of misclassifications

overall.

These results support the utility of producing a framework specifically designed to

facilitate the combination of data extracted from multiple types of musical information,

which was one of the core design principles underlying jMIR. These results also suggest

278

 Some development work using jMIR was also done independently of the author at Sun Microsystems,

but this work was closed source, and is therefore not available to the public.

 556

that work should continue on finding effective ways of combining information extracted

from diverse sources. Although it remains to be determined whether combining additional

types of musical data will improve classification performance still further, this is an area

that bears further investigation. Ideas for future research related to this are discussed in

Sections 10.3.9 and 10.3.10.

10.3 Future research

This section proposes only areas of future research and development that are related

to jMIR as a whole. Future work that is specifically relevant to particular jMIR

components is not included here, as Chapters 3 through 9 each contain their own sections

proposing research of this kind.

10.3.1 Adding functionality to the existing jMIR components

As noted in the individual Future Research sections of Chapters 3 through 9, there are

a number of important types of functionality that could be added to each of the jMIR

components. Moreover, it is certain that still further types of useful functionality will

become apparent in the future as MIR research progresses. The addition of functionality

of both kinds is therefore a priority of future jMIR development.

The development of new features and machine learning algorithms are two areas of

particular interest, as jMIR has been designed to make it especially easy to add

functionality of this kind. As noted above, it is hoped that many researchers in MIR-

related fields, not just the author, will eventually use the jMIR framework to develop such

technologies and distribute them communally so that they may be added to the jMIR

distributions used by others. Approaches to accomplishing this are discussed below.

10.3.2 User studies and interface improvements

One of the core goals of jMIR is to make sophisticated automatic music classification

technologies available to researchers of all kinds, including both users with extensive

backgrounds in computational research and researchers with little or no background of

this kind. Although efforts have certainly been made to help achieve this via the current

jMIR interfaces, these efforts have ultimately been limited by the scope of a single

dissertation research project with many varied facets.

 557

The next step towards fully realizing this goal will involve performing detailed user

studies of diverse groups of music researchers. Such users will not only be able to

highlight how the current jMIR interfaces succeed and fail to meet each of their particular

needs, but will also likely be able to propose new ideas that can be incorporated into

jMIR.

10.3.3 Software testing and support

Efforts have certainly been made to test the jMIR components extensively, both

individually and together. Such tests have involved standard software engineering

methodologies, such as unit testing, as well as actual use of the jMIR components in

research, as described in Chapter 9.

Having noted this, it is inevitable in any reasonably large-scale and complex software

development project such as jMIR that some problems will evade initial detection, as they

will only become evident under specific conditions that can be difficult to anticipate.

Such problems can be particularly difficult to discover exhaustively in cross-platform

software like jMIR. Furthermore, as time goes by many changes can occur in the

computing environments in which software operate, such as changes to the Java Runtime

Environment or to operating systems. Even as a problem is detected, the changes made to

correct the issue can potentially themselves lead to other new unanticipated problems,

even if one is very careful. Such problems are a common general issue in modern

application development, and can be particularly evident in academic projects where just

one or a very few developers are responsible for all design, implementation and testing.

An important area of further work is therefore the continuing support and updating of

jMIR. User studies such as those discussed in Section 10.3.2 will be helpful in

discovering potential bugs, as will the general use of jMIR in research projects. Many

users have already downloaded jMIR components from the jMIR SourceForge page and

used them in their own work, and correspondence with several of them has helped to

reveal bugs that could then be corrected. Work will continue on addressing issues as they

are reported, as well as on performing further formal error testing as jMIR is expanded.

There are also plans to use jMIR to submit entries to the annual MIREX annual MIR

competition in as broad a range of categories as possible. This will help to further validate

 558

jMIR’s performance in a variety of research applications, and will also help to highlight

potential areas of weakness resulting in poor performance, which can then be addressed.

10.3.4 Diversifying ways of accessing jMIR’s functionality

As noted previously, extensive efforts have already been made to make jMIR’s

functionality as accessible as possible, in terms of both jMIR’s code base and the direct

usability of its components as a set of ready-to-use applications. There are, however, a

number of additional steps that can be taken to increase jMIR’s accessibility still further.

For example, jMIR in its current state is intended specifically for use in research

applications. Much of its functionality could also be usefully adapted in the future to

more casual applications, however.

One of the most effective ways of making jMIR’s functionality accessible to casual

users would be to port aspects of jMIR to various popular plug-in formats. This would

allow users of all kinds to access this functionality via software applications that they

already have access to and are already familiar with. For example, jAudio and

jSymbolic’s feature extraction functionality might be made available in the form of VST

plug-ins so that it could be accessed from any of the many digital audio software systems

with VST compatibility. Even systems without direct VST compatibility, such as

Audacity,
279

 could make use of such jMIR VST plug-ins via a VST shim.

It would also be useful to implement some aspects of jMIR in the form of plug-ins for

common media players, such as iTunes,
280

 Winamp
281

 or Windows Media Player.
282

 For

example, many users might find it useful to access aspects of ACE and

jMusicMetaManager’s functionality to predict and correct metadata associated with their

music collection. jAudio, jSymbolic and/or jWebMiner feature extraction functionality

could also be added to media players via plug-ins.

Although the jMIR code is very well documented, and is designed to be as modular

and extensible as possible, some developers might prefer to access jMIR’s functionality

without needing to access the jMIR code directly. It would therefore be useful to embed

the jMIR components in a web services wrapper so that jMIR functionality could be

279

 audacity.sourceforge.net
280

 developer.apple.com/sdk/
281

 www.winamp.com/plugins
282

 www.microsoft.com/windows/windowsmedia/player/plugins.aspx

 559

accessed over a network connection without the need to install jMIR libraries locally.

McEnnis has already begun work on such an approach as part of the OMEN project

(McEnnis 2006), and it would be valuable in the future to complete this work and expand

its scope.

10.3.5 Public algorithm repository

One of the most effective ways of encouraging researchers to share their algorithm

implementations with others is to provide simple and effective ways of allowing

researchers to access and use these implementations. jMIR’s plug-in oriented architecture

provides a first step in this direction, as researchers can implement algorithms in the jMIR

framework in such a way that that others can then add these implementations to their own

jMIR distributions relatively easily. It would be even more helpful, however, if

researchers also had a common data space to which they could publish such jMIR

algorithm implementations.

The creation of such a repository on-line is an important part of the planned future

development of jMIR. This would allow developers to upload their original jMIR

algorithm implementations to the repository, including the original Java source code,

compiled Java bytecode, associated documentation and any other relevant information.

Others could then download the algorithm implementations that they are interested in,

plug them into their jMIR distribution and use them in their own research. It will also be

important to add a version control framework to the repository, in order to make it easier

for researchers to work collaboratively on algorithms if they wish to.

10.3.6 Distributed computing

Many of the tasks associated with automatic music classification can be

computationally expensive, thereby limiting the amount of data that can be processed

quickly.
283

 Furthermore, as noted in Chapter 8, there are legal barriers limiting the extent

to which musical datasets can be shared amongst researchers. Both of these issues can

significantly impact the ability of different research groups to compare the effectiveness

of their solutions to MIR problems with solutions found by others. This is because proper

comparative evaluations require that different approaches be applied to the same data, and

283

 Automatic classification still tends to be much faster than manual human classification, however.

 560

that a large amount of data be processed in order to verify the musical scope of different

approaches and achieve sufficient statistical certainty.

Distributed computing can help solve these problems. The computational problem is

addressed simply by having many computers process different aspects of a problem at

once, so that a solution is achieved sooner. The problem of overcoming legal barriers in

order to test one’s approach on the same musical data used by others is addressed by

allowing features to be extracted on-site at those potentially geographically distributed

locations that do have legal access to the music, and then communicating only the

extracted features, not the actual music itself. This is exactly the approach taken by

OMEN (McEnnis 2006).

The incorporation of distributed computing functionality into each of the jMIR

components is therefore a priority for future development. Initial work in this direction

has already begun with respect to jAudio and ACE, and the framework begun as part of

the OMEN project specifically with respect to jAudio could be helpful in continuing it.

Modifying the jMIR components to take advantage of distributed computing in such a

fashion would also mesh well with the plans to implement a web services wrapper for

jMIR and create a shared public algorithm repository, as discussed above in Sections

10.3.4 and 10.3.5, respectively. The resources used to run the repository could also be

used to coordinate a cloud of participating computers, each ideally with legal access to

musical data, and distributed experiments could be initiated on this cloud using web

services.

10.3.7 NEMA integration

Work is currently underway on integrating jMIR into the Networked Environment for

Music Analysis (NEMA)
284

 project for the express purpose of achieving the objectives

discussed in Section 10.3.6. The goal of NEMA is to create an open and extensible web

services-based framework that facilitates the integration and use of music data and

processing tools by the global MIR communities on a basis that is independent of

location. This framework is being built by taking advantage of the Software Environment

284

 nema.lis.uiuc.edu

 561

for the Advancement of Scholarly Research (SEASR)
285

 project’s distributed computing

and application integration infrastructure.

Additional general improvements to jMIR are also continuing as part of the NEMA

project. Significant work has already been done on developing ACE 2.0 and ACE XML

2.0 thanks to NEMA funding, and NEMA-related work on jMIR will continue on past the

publication of this dissertation.

10.3.8 New jMIR components

There are several potentially important types of music classification-related tasks that

are not yet addressed by any of the jMIR components. There are therefore plans to

implement additional components that will broaden the scope of jMIR:

 jLyrics: A feature extractor for extracting information from song lyrics. jLyrics

will extract features consisting of simple statistics, such as word frequency counts

and word transition probabilities, as well as more sophisticated features, including

both original features and features published as part of the rich existing literature

on text mining. An additional goal of jLyrics is to include functionality for

automatically acquiring the lyrics from the Internet based on metadata like song

and artist names. This latter task will be performed via web services offered by

existing lyrics repositories and, if necessary, via web scraping functionality. Hu,

Downie and Ehman (2009) have already achieved good results when using lyrical

features alone and in combination with audio features, and it will be interesting to

investigate this area further.

 jImage: A feature extractor for extracting information from images, with a

particular focus on album covers. This software will provide the ability to extract

both standard features from the image processing literature and features

customized for the particularities of musical images. jImage will also include

functionality for extracting images of album art from various sources available on

the Internet based on identifying metadata.

285

 seasr.org

 562

 jVideo: A feature extractor for extracting information from music videos, as well

as for mining the videos themselves from the Internet based on identifying

metadata.

 jStructure: Software for automatically segmenting audio streams in time, both in

terms of partitioning entire pieces of music within a single stream and in terms of

structural divisions within individual pieces. The software will also attempt to

classify the overall form of each piece and label each segment with the appropriate

corresponding structural labels.

 jTags: A feature extractor that will take advantage of web services offered by a

variety of on-line resources in order to extract listener tags of various kinds from

data on the Internet. This software will also include functionality for combining

tags from different sources and removing noise from these tags.

 jMusicVisualiser: Software for visually examining and exploring relationships

between musical instances, features and classes in either two or three dimensional

spaces. Users will be able to fully customize what is to be plotted along each axis

and how data points are to be colour coded in order to allow them to view the data

in the ways that are the most convenient to them. jMusicVisualiser will also

provide users with the ability to explore music that has been automatically

clustered once unsupervised learning functionality is incorporated into ACE.

 jClassOntology: An application for mining class ontologies from the web. As

noted in Chapter 8, the class ontologies used in many automatic music

classification experiments tend to be unrealistic and simplistic. jClassOntology

will use data mining techniques to empirically build candidate class ontologies

from both information available on the Internet in general and from particular

selected sources of information.

All of these proposed new jMIR components will, of course, follow the same design

principles of jMIR as whole, and will use ACE XML as a means of storing and

communicating data.

 563

10.3.9 Further experiments on combining different types of data

jAudio, jSybmolic and jWebMiner currently extract features from the types of

musical data that have received the most attention from the MIR research community,

which is to say, respectively, audio, symbolic and general textural information available

on-line. There are, however, many other types of musical data from which potentially

useful features can be extracted, including lyrics, still images and video. Moreover, these

kinds of information are readily accessible on-line. As can be observed from an

examination of the proposed new jMIR components described in Section 10.3.8, there are

plans to build jMIR tools for extracting features from just these kinds of data sources.

The next step once such features are accessible will be to perform the same types of

experiments described in Section 9.4, but this time examining the relative performance of

features extracted from all possible combinations of matching audio, symbolic, cultural,

lyrical, visual and video data for each musical instance. It is hoped that this will help find

the best types of data to combine for solving various types of automatic music

classification problems and, consequently, increase performance.

10.3.10 Automatic mining and integration of data sources

In practice, it can be very difficult and time consuming to manually acquire matching

instances belonging to different types of musical data in order to perform the types of

experiments described in Sections 9.4 and 10.3.9. Collecting the matching audio,

symbolic and metadata information for the SAC dataset was very time consuming, and

manually adding additional types of data like lyrics, images and video would compound

this issue further.

A successful multimodal approach to automatic music classification will therefore

likely require that the harvesting of different types of data for each given musical instance

be automated. Ideally, it should be possible to provide a successful multimodal system

with just one type of data, such as just audio or just lyrics, and then have the system

automatically acquire the corresponding data of other kinds, such as symbolic data or

album art. However, since one cannot in practice assume that one will have a priori

identifying information about a given musical instance, one must therefore have a way of

acquiring the necessary data without presupposing that one begins with this identifying

knowledge.

 564

The solution to this problem may actually be closer than one might think. Let us

consider, for example, a scenario where one is given a set of audio recordings to classify,

but where one does not have any other additional explicit information about the

recordings. One could begin by using fingerprinting technology such as MusicBrainz
286

 to

acquire metadata such as Title and Artist Name from the audio. This metadata could then

be used to extract cultural features from the Internet using software such as jWebMiner. It

would also be possible to use this metadata to automatically download information such

as lyrics, album art and music videos using web services offered by, respectively,

LyricWiki,
287

 Amazon
288

 and YouTube,
289

 for example. Indeed, there are also a number

of web services that could be used to access the audio itself using identifying metadata if

one is in fact originally provided with this metadata rather than the audio.

Although automatically acquiring a symbolic version of each audio recording is not

quite as simple as accessing the other kinds of musical information, advances in

automatic music transcription technology are bringing the state of the art ever closer to

the point where symbolic recordings can be automatically transcribed from audio with

error rates that are low enough at least for the purposes of feature extraction, if not actual

musical performance. Technologies such as Celemony Direct Note Access,
290

 for

example, seem to offer the promise of effective transcription algorithms, although they

remain to be proven in a research context.

Of course, there can be certain limitations with solutions of the type discussed above,

in terms of both accuracy and robustness to services going off-line. However, this

example does illustrate a methodology that could be fruitful to pursue further if

experiments of the type discussed in Section 10.3.9 do in fact indicate that combining

features extracted from different types of musical data does have a significant positive

impact on classification performance. If this is the case, then an important future step in

the jMIR project will be the implementation of a framework for automatically acquiring

and extracting features from a variety of different types of musical data.

286

 musicbrainz.org
287

 lyrics.wikia.com
288

 aws.amazon.com
289

 code.google.com/apis/youtube/overview.html
290

 www.celemony.com/cms/index.php?id=dna_qa

 565

10.4 Using jMIR

The jMIR project has SourceForge pages located at jmir.sourceforge.net and

sourceforge.net/projects/jmir/. Each of the jMIR components may be downloaded from

SourceForge, including both fully compiled and ready to use Java bytecode as well as the

source code itself. Extensive documentation is also available at this site, including

manuals, Javadoc APIs and copies of published papers. Basic installation and user

instructions are also packaged with each component. All of the jMIR code is fully open-

source, and is distributed under a GNU General Public License.
291

As noted previously, jMIR is intended not just as a set of applications to be used as is,

but also as a framework to be expanded and a platform for building new technologies.

Contributions and improvements to jMIR from other researchers and developers are

appreciated and encouraged.

291

 www.gnu.org/licenses/gpl.html

 566

 567

11. Bibliography

Aarden, B., and D. Huron. 2001. Mapping European folksong: Geographical localization

of musical features. Computing in Musicology 12: 169–83.

Abdi, H., D. Valentin, and B. Edelman. 1999. Neural Networks. Thousand Oaks, CA:

Sage Publications.

Adams, C. 1976. Melodic contour typology. Ethnomusicology 20 (2): 179–215.

Adeli, H., and S. L. Hung. 1995. Machine learning: Neural networks, genetic algorithms

and fuzzy systems. New York: John Wiley & Sons.

Agrawal, R., and R. Srikant. 1996. Mining sequential patterns: Generalizations and

performance improvements. Proceedings of the International Conference on

Extending Database Technology. 3–17.

von Ahn, L., and L. Dabbish. 2004. Labeling images with a computer game. Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. 319–26.

Alpaydin, E. 2004. Introduction to machine learning. Cambridge, MA: MIT Press.

Amatriain, X., P. Arumi, and M. Ramirez. 2002 CLAM: Yet another library for audio and

music processing? Proceedings of the ACM Conference on Object Oriented

Programming, Systems, and Applications. 22–3.

Amatriain, X., and A. Pau. 2005. Developing cross-platform audio and music applications

with the CLAM framework. Proceedings of the International Computer Music

Conference. 403–10.

Anagnostopoulou, C., and G. Westermann. 1997. Classification in music: A

computational model for paradigmatic analysis. Proceedings of the International

Computer Music Conference. 125–8.

Anderson, C. 2006. The long tail: Why the future of business is selling less of more. New

York, NY: Hyperion.

Anderson, S. 2009. Sten‟s Blog >> Music Explorer FX. Retrieved 14 December 2009,

from http://blogs.citytechinc.com/sanderson/?p=105.

Arumi, P., and X. Amatriain. 2005. CLAM, an object oriented framework for audio and

music. Proceedings of the International Linux Audio Conference.

Ash, T. 1989. Dynamic node creation in backpropagation networks. Connection Science

1: 365–75.

 568

Ashby, F. G. 1989. Stochastic general recognition theory. In Human information

processing: Measures, mechanisms and models, eds. D. Vickers and P. L. Smith,

435–57. Amsterdam: Elsevier.

Ashby, F. G. 1992. Multidimensional models of categorization. In Multidimensional

models of perception and cognition, ed. F. G. Ashby, 449–84. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Ashby, F. G., and W. T. Maddox. 1990. Integrating information from separable

psychological dimensions. Journal of Experimental Psychology: Human Perception

and Performance 16: 598–612.

Aucouturier, J. J., and F. Pachet. 2003. Representing musical genre: A state of the art.

Journal of New Music Research 32 (1): 83–93.

Aucouturier, J. J., and F. Pachet. 2004. Improving timbre similarity: How high is the sky?

Journal of Negative Results in Speech and Audio Sciences: 1 (1).

Aucouturier, J. J., and F. Pachet. 2007. Signal + context = better. Proceedings of the

International Conference on Music Information Retrieval. 425–30.

Backer, E., and P. Van Kranenburg. 2005. On musical stylometry: A pattern recognition

approach. Pattern Recognition Letters 26: 299–309.

Barutcuoglu, Z., and C. DeCoro. 2006. Hierarchical shape classification using Bayesian

aggregation. IEEE International Conference on Shape Modelling and Applications.

44–8.

Basili, R., A. Serafini, and A. Stellato. 2004. Classification of musical genre: A machine

learning approach. Proceedings of the International Conference on Music Information

Retrieval. 505–8.

Baumann, S., and O. Hummel. 2003. Using cultural metadata for artist recommendations.

Proceedings of the International Conference on WEB Delivery of Music. 138–41.

Baumann, S., A. Klüter, and M. Norlien. 2002. Using natural language and audio analysis

for a human-oriented MIR system. Proceedings of the International Conference on

WEB Delivery of Music.

Bellaachia, A., and E. Jimenez. 2009. Exploring performance-based music attributes for

stylometric analysis. World Academy of Science, Engineering and Technology 55:

509–11.

Bengio, Y. 1996. Neural networks for speech and sequence recognition. London:

International Thomson Computer Press.

 569

Berenzweig, A., B. Logan, D. P. W. Ellis, and B. Whitman. 2004. A large-scale

evaluation of acoustic and subjective music-similarity measures. Computer Music

Journal 28 (2): 63–76.

Bergeron, M., and D. Conklin. 2008. Structured polyphonic patterns. Proceedings of the

International Conference on Music Information Retrieval. 69–74.

Bergstra, J., N. Casagrande, D. Erhan, D. Eck, and B. Kegl. 2007. Aggregate features and

AdaBoost for music classification. Machine Learning 65 (2–3): 473–84.

Bergstra, J., A. Lacoste, and D. Eck. 2006. Predicting genre labels for artists using freedb.

Proceedings of the International Conference on Music Information Retrieval. 85–8.

Bernstein, A., F. Provost, and S. Hill. 2005. Toward intelligent assistance for a data

mining process: An ontology-based approach for cost-sensitive classification. IEEE

Transactions on Knowledge and Data Engineering 17 (4): 503–18.

Bhattacharya, B., K. Mukherjee, and G. Toussaint. 2005. Geometric decision rules for

high dimensions. Proceedings of the 55th Session of the International Statistics

Institute.

Bigand, E., and B. Tillmann. 1996. Does formal musical structure affect perception of

musical expressiveness? Psychology of Music 24 (1): 3–17.

Bishop, C. M. 2007. Pattern recognition and machine learning. New York: Springer.

Blackburn, S., and D. De Roure. 1998. Musical part classification in content based

systems. Proceedings of ACM Multimedia. 361–8.

Blake, C., and C. Merz. 1998. UCI repository of machine learning databases. Retrieved

April 13, 2005, from www.ics.uci.edu/~mlearn/MLRepository.html. University of

California, Irvine, Department of Information and Computer Sciences.

Boer, V. d., M. v. Someren, and B. J. Wielina. 2006. Extracting instances of relations

from web documents using redundancy. Proceedings of the European Semantic Web

Conference.

Boersma, P., and D. Weenink. 2009. Praat: Doing phonetics by computer (Version

5.1.05). Web page. Retrieved 11 December 2009, from http://www.praat.org.

Bogert, B., M. J. R. Healy, and J. W. Tukey. 1963. The quefrency alanysis of time series

for echoes: Cepstrum, pseudoautocovariance, cross-cepstrum, and saphe cracking.

Proceedings of the Symposium on Time Series Analysis. 209–43.

Brackett, D. 1995. Interpreting popular music. New York: Cambridge University Press.

 570

Brackett, D. 2002. (In search of) musical meaning: Genres, categories and crossover.

London: Arnold.

Bray, S., and G. Tzanetakis. 2005. Distributed audio feature extraction for music.

Proceedings of the International Conference on Music Information Retrieval. 434–7.

Brazdil, P., C. Soares, and J. Costa. 2003. Ranking learning algorithms. Machine

Learning 50 (3): 251–77.

Bregman, A. S. 1990. Auditory scene analysis. Cambridge, MA: MIT Press.

Brill, E. 1992. A simple rule-based part-of-speech tagger. Proceedings of the Conference

on Applied Natural Language Processing. 152–5.

Brin, S., and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine.

Proceedings of the International Conference on World Wide Web. 107–17.

Briscoe, G., and T. Caelli. 1996. A compendium of machine learning, Volume 1: Symbolic

machine learning. Norwood, NJ: Ablex Publishing.

Brooks, L. 1978. Nonanalytic concept formation and memory for instances. In Cognition

and categorization, eds. E. Rosch and B. B. Lloyd, 169–215. Hillsdale, NJ: Erlbaum.

Brown, J. C. 1993 Determination of meter of musical scores by autocorrelation. Journal

of the Acoustical Society of America 94 (4): 1953–7.

Bruha, I. 2001. Pre- and post-processing in machine learning and data mining. In

Machine learning and its applications: Advanced lectures, eds. G. Paliouras, V.

Karkaletsis, and C. D. Spyropoulos, 258–66. New York: Springer.

Burred J. J., C. E. Cella, G. Peeters, A. Röbel, and D. Schwarz. 2008. Using the SDIF

sound description interchange format for audio features. Proceedings of the

International Conference on Music Information Retrieval. 427–32.

Byrd, D., and T. Crawford. 2001. Problems of music information retrieval in the real

world. Information Processing & Management 38 (2): 249–72.

Calishain, T., and R. Dornfest. 2003. Google hacks. London: O’Reilly.

Cambouropoulos, E. 2001. Melodic cue abstraction, similarity, and category formation: A

formal model. Music Perception 18 (3): 347–70.

Cannam, C., C. Landone, M. Sandler, and J. P. Bello. 2006. The Sonic Visualiser: A

visualisation platform for semantic descriptors from musical signals. Proceedings of

the International Conference on Music Information Retrieval. 324–7.

 571

Cano, P., and M. Koppenberger. 2004. The emergence of complex network patterns in

music artist networks. Proceedings of the International Conference on Music

Information Retrieval. 466–9.

Cantú-Paz, E. 2000. Efficient and accurate parallel genetic algorithms. Boston: Kluwer

Academic Publishers.

Carey, M. J., E. S. Parris, and H. Lloyd-Thomas. 1999. A comparison of features for

speech, music discrimination. Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing. 149–52.

Casey, M. A., R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. 2008.

Content-based music information retrieval: Current directions and future challenges.

Proceedings of the IEEE 96 (4): 668–96.

Celma, O., M. Ramírez, and P. Herrera. 2005. Foafing the music: A music

recommendation system based on RSS feeds and user preferences. Proceedings of the

International Conference on Music Information Retrieval. 464–7.

Chai, W., and B. Vercoe. 2001. Folk music classification using hidden Markov models.

Proceedings of the International Conference on Artificial Intelligence.

Cimiano, P., and S. Staab. 2004. Learning by Googling. SIGKDD Explorations

Newsletter 6 (2): 24–33.

Cohen, M. M., and D. W. Massaro. 1992. On the similarity of categorization models. In

Multidimensional models of perception and cognition, ed. F. G. Ashby, 395–448.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohen, W. W., and W. Fan. 2000. Web-collaborative filtering: Recommending music by

crawling the web. WWW 9 / Computer Networks 33 (1–6): 685–98.

Collobert, R., S. Bengio, and J. Mariethoz. 2002. Torch: A modular machine learning

software library. Technical Report IDIAP-RR 02-46. Idiap Research Institute,

Switzerland.

Conklin, D., and M. Bergeron. 2008. Feature set patterns in music. Computer Music

Journal 32 (1): 60–70.

Cook, N. 1987. A guide to musical analysis. London: J. M. Dent & Sons.

Cooper, G., and L. B. Meyer. 1960. The rhythmic structure of music. Chicago, IL:

University of Chicago Press.

Cope, D. 1991a.Computer simulations of musical style. Proceedings of the Computers in

Music Research Conference. 15–7.

 572

Cope, D. 1991b. Computers and musical style. Madison, WI: A-R Editions.

Cope, D. 1996. Experiments in musical intelligence. Madison, WI: A-R Editions.

Crump, M. 2002. A principle components approach to the perception of musical style.

Honours Thesis. University of Lethbridge, Canada.

Cumming, J. E. 1999. The motet in the age of Du Fay. Cambridge, UK: Cambridge

University Press.

Dannenberg, R. B. 1993. Music representation issues, techniques, and systems. Computer

Music Journal 17 (3): 20–30.

Dannenberg, R. B., and N. Hu. 2002. Pattern discovery techniques for music audio.

Proceedings of the International Symposium on Music Information Retrieval. 63–70.

Dannenberg, R. B., B. Thom, and D. Watson. 1997. A machine learning approach to

musical style recognition. Proceedings of the International Computer Music

Conference. 344–7.

DeCoro, C., Z. Barutcuoglu, and R. Fiebrink. 2007. Bayesian aggregation for hierarchical

genre classification. Proceedings of the International Conference on Music

Information Retrieval. 77–80.

Deglise, F. 2007. Les pirates peuvent dormir tranquilles. Le Devoir, 8 November 2007.

Deliege, I. 1996. Cue abstraction as a component of categorization processes in music

listening. Psychology of Music 24 (2): 131–56.

Deliege, I. 2001a. Prototype effects in music listening: An empirical approach to the

notion of imprint. Music Perception 18 (3): 371–407.

Deliege, I. 2001b. Similarity perception <-> Categorization <-> Cue abstraction. Music

Perception 18 (3): 233–43.

Demsar, J., B. Zupan, G. Leban, and T. Curk. 2004. Orange: From experimental machine

learning to interactive data mining. Proceedings of the European Conference on

Principles and Practice of Knowledge Discovery in Databases. 537–9.

Deutsch, D. 1999. The processing of pitch combinations. In The psychology of music, ed.

D. Deutsch, 349–412. New York: Academic Press.

Dhanaraj, R., and B. Logan. 2005. Automatic prediction of hit songs. Proceedings of the

International Conference on Music Information Retrieval. 488–91.

 573

Dietterich, T. G. 2000. Ensemble methods in machine learning. In Multiple classifier

systems, eds., J. Kittler, and F. Roli, 1–15. New York: Springer.

DiLauro, T., G. S. Choudhury, M. Patton, and J. W. Warner. 2001. Automated name

authority control and enhanced searching. D-Lib Magazine 7 (4).

Downie, J. S. 2003. Music information retrieval. In Annual review of information science

and technology 37, ed. B. Cronin, 295–340. Medford, NJ: Information Today.

Downie, J. S. 2005. MIREX 2005 contest results. Available on-line at http://www.music-

ir.org/evaluation/mirex-results. Retrieved 9 June 2009.

Downie, J. S. 2006. The Music Information Retrieval Evaluation eXchange (MIREX). D-

Lib Magazine 12 (12).

Downie, J. S., A. Ehmann, and D. Tcheng. 2005. Music-to-knowledge (M2K): A

prototyping and evaluation environment for music information retrieval research.

Proceedings of the ACM SIGIR Conference on Research and Development in

Information Retrieval. 676.

Downie, J. S., J. Futrelle, and D. Tcheng. 2004. The international music information

retrieval systems evaluation laboratory: Governance, access and security. Proceedings

of the International Conference on Music Information Retrieval. 9–14.

Downie, J. S., K. West, A. Ehmann, and E. Vincent. 2005. The 2005 Music Information

Retrieval Evaluation eXchange (MIREX 2005): Preliminary overview. Proceedings

of the International Conference on Music Information Retrieval. 320–3.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern classification. New York: John

Wiley & Sons Inc.

Duff, D., ed. 2000. Modern genre theory. New York: Longman.

Dunn, J. W., and M. Notess. 2002. Variations 2: The Indiana University digital music

library project. Proceedings o the Digital Library Federation Fall Forum.

Dzeroski, S., L. Todorovski, and H. Blockeel. 2004. Relational ranking with predictive

clustering trees. Proceedings of the International Workshop on Active Mining. 9–15.

Eaton, J. W., and J. B. Rawlings. 2003. Ten years of Octave—Recent developments and

plans for the future. Proceedings of the International Workshop on Distributed

Statistical Computing.

Eck, D., T. Bertin-Mahieux, and P. Lamere. 2007. Autotagging music using supervised

machine learning. Proceedings of the International Conference on Music Information

Retrieval. 367–8.

 574

Eerola, T., T. Järvinen, J. Louhivuori, and P. Toiviainen. 2001. Statistical features and

perceived similarity of folk melodies. Music Perception 18 (3): 275–96.

Eerola, T., and P. Toiviainen. 2004. MIR in Matlab: The MIDI Toolbox. Proceedings of

the International Conference on Music Information Retrieval. 22–7.

Ellis, D. P. W., B. Whitman, A. Berenzweig, and S. Lawrence. 2002. The quest for

ground truth in musical artist similarity. Proceedings of the International Conference

on Music Information Retrieval. 170–7.

Ennis, D. M. 1992. Modeling similarity and identification when there are momentary

fluctuations in psychological magnitudes. In Multidimensional models of perception

and cognition, ed. F. G. Ashby, 279–98. Hillsdale, NJ: Lawrence Erlbaum Associates.

Epstein, J. 1996. Growing artificial societies: Social science from the bottom up.

Cambridge, MA: MIT Press.

Eronen, A. 2001. Comparison of features for musical instrument recognition. Proceedings

of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

753–6.

Essid, S., G. Richard, and B. David. 2004. Musical instrument recognition based on class

pairwise feature selection. Proceedings of the International Conference on Music

Information Retrieval. 560–8.

Evans, D., J. L. Klavans, and N. Wacholder. 2000. Document processing with LinkIT.

Proceedings of RIAO.

Evans, D., and C. Zhai. 1996. Noun-phrase analysis in unrestricted text for information

retrieval. Proceedings of the Meeting of the Associations for Computational

Linguistics. 17–24.

Fabbri, F. 1981. A theory of musical genres: Two applications. In Popular music

perspectives, eds. D. Huron, and P. Tagg, 52–81. Göteborg: IASPM.

Fabbri, F. 1982. What kind of music? Popular Music 2: 131–43.

Fabbri, F. 1999. Browsing music spaces: Categories and the musical mind. Proceedings

of the IASPM Conference.

Fausett, L. 1994. Fundamentals of neural networks: Architectures, algorithms and

applications. Englewood Cliffs, NJ: Prentice Hall.

Fiebrink, R., C. McKay, and I. Fujinaga. 2005. Combining D2K and JGAP for efficient

feature weighting for classification tasks in music information retrieval. Proceedings

of the International Conference on Music Information Retrieval. 510–3.

 575

Fiebrink, R., and I. Fujinaga. 2006. Feature selection pitfalls and music classification.

Proceedings of the International Conference on Music Information Retrieval. 340–1.

Fiebrink, R., G. Wang, and P. Cook. 2008a. Foundations for on-the-fly learning in the

ChucK programming language. Proceedings of the International Computer Music

Conference.

Fiebrink, R., G. Wang, and P. Cook. 2008b. Support for MIR prototyping and real-time

applications in the ChucK programming language. Proceedings of the International

Conference on Music Information Retrieval. 153–8.

Fingerhut, M. 2004. Music information retrieval, or how to search for (and maybe find)

music and do away with incipits. Presented at the IAML-IASA Congress.

Flexer, A. 2007. A closer look on artist filters for musical genre classification.

Proceedings of the International Conference on Music Information Retrieval. 341–4.

Fodor, J. A. 1983. Modularity of mind: An essay on faculty psychology. Cambridge, MA:

MIT Press.

Foote, J. 1999a. An overview of audio information retrieval. Multimedia Systems 7 (1):

2–10.

Foote, J. 1999b. Methods for the automatic analysis of music and audio. FXPAL

Technical Report FXPAL-TR-99-038. FXPAL. Palo Alto, CA.

Freed, A. 2006. Music MetaData quality: A multiyear case study using the music of Skip

James. Proceedings of the Audio Engineering Society Convention.

French, J. C., and D. B. Hauver. 2001. Flycasting: On the fly broadcasting. Proceedings

of the WedelMusic Conference.

Freund, Y., and R. E. Schapire. 1996. Experiments with a new boosting algorithm.

Proceedings of the International Conference on Machine Learning. 148–56.

Frith, S. 1996. Performing rites: On the value of popular music. Cambridge, MA:

Harvard University Press.

Fürnkranz, J., J. Petrak, P. Brazdil, and C. Soares. 2002. On the use of fast subsampling

estimates for algorithm recommendation. Technical Report TR-2002-36. The Austrian

Research Institute for Artificial Intelligence, Vienna.

Fujinaga, I. 1996. Exemplar-based learning in adaptive optical music recognition system.

Proceedings of the International Computer Music Conference. 55–6.

 576

Fujinaga, I. 1997. Adaptive optical music recognition. Ph.D. Dissertation. McGill

University, Canada.

Fujinaga, I. 1998. Machine recognition of timbre using steady-state tone of acoustic

musical instruments. Proceedings of the International Computer Music Conference.

207–10.

Fujinaga, I., and D. McEnnis. 2006. On-demand Metadata Extraction Network.

Proceedings of the Joint Conference on Digital Libraries.

Fukunaga, K. 1972. Introduction to statistical pattern recognition. New York: Academic

Press.

Gabura, A. J. 1965. Computer analysis of musical style. Proceedings of the ACM

National Conference. 303–14.

Gallant, S. I. 1993. Neural network learning and expert systems. Cambridge, MA: MIT

Press.

Gardner, H. 1973. Children’s sensitivity to musical styles. Merrill-Palmer Quarterly 19:

67–77.

Geleijnse, G., and J. Korst. 2006a. Learning effective surface text patterns for information

extraction. Proceedings of the EACL Workshop on Adaptive Text Extraction and

Mining. 1–8.

Geleijnse, G., and J. Korst. 2006b. Web-based artist categorization. Proceedings of the

International Conference on Music Information Retrieval. 266–71.

Geleijnse, G., and J. Korst. 2007. Tool Play Live: Dealing with ambiguity in artist

similarity mining from the web. Proceedings of the International Conference on

Music Information Retrieval. 119–20.

Geleijnse, G., M. Schedl, and P. Knees. 2007. The quest for ground truth in musical artist

tagging in the social web era. Proceedings of the International Conference on Music

Information Retrieval. 525–30.

Gentle, J. E. 2009. Computational statistics. New York: Springer.

Gingras, B., and I. Knopke. 2005. Evaluation of voice-leading and harmonic rules of J. S.

Bach’s chorales. Proceedings of the Conference on Interdisciplinary Musicology.

Giraud-Carrier, C., and J. Keller. 2002. Meta-learning. In Dealing with the data flood:

Mining data, text and multimedia, ed. J. Meij, 832–44. The Hague, NL:

STT/Beweton.

 577

Gold, B., and N. Morgan. 2000. Speech and audio signal processing: Processing and

perception of speech and music. Toronto: Wiley.

Goto, M. 2003. A chorus-section detecting method for musical audio signals.

Proceedings of International Conference on Acoustics, Speech and Signal Processing.

437–40.

Goto, M. 2006. AIST annotation for the RWC music database. Proceedings of the

International Conference on Music Information Retrieval. 359–60.

Goto, M., H. Hashiguchi, T. Nishimura, and R. Oka. 2002. RWC music database:

Popular, classical and jazz music data-bases. Proceedings of the International

Conference on Music Information Retrieval. 287–8.

Granitto, P. M., P. F. Verdes, H. D. Navone, and H. A. Ceccatto. 2002. Aggregation

algorithms for neural network ensemble construction. Proceedings of the Brazilian

Symposium on Neural Networks. 178–83.

Grant, B. K., ed. 2003. Film genre reader III. Austin, TX: University of Texas Press.

Guess, M. 2001. MusicXML for notation and analysis. In The virtual score:

Representation, retrieval, restoration, eds. W. B. Hewlett, and E. Selfridge-Field,

113–24. Cambridge, MA: MIT Press.

Hallinan, J. 2001. Feature selection and classification in the diagnosis of cervical cancer.

In The practical handbook of genetic algorithms applications, ed. L. Chambers, 167–

202. New York: Chapman & Hall.

Hansen, L. K., and P. Salamon. 1990. Neural network ensembles. IEEE Transactions on

Pattern Analysis and Machine Learning 12 (10): 993–1001.

Harris, F. J. 1978. On the use of windows for harmonic analysis with the discrete Fourier

transform. Proceedings of the IEEE 66 (1): 51–83.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The elements of statistical learning. New

York: Springer.

van der Heijden, F., R. P. W. Duin, D. de Ridder, and D. M. J. Tax. 2004. Classification,

parameter estimation and state estimation: An engineering approach using MATLAB.

New York: Wiley.

Herlocker, J. L., J. A. Konstan, and J. Riedl. 2000. Explaining collaborative filtering

recommendations. Proceedings of the ACM Conference on Computer Supported

Cooperative Work. 241–50.

 578

Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating

collaborative filtering recommender systems. ACM Transactions on Information

Systems 22 (1): 5–53.

Herrera, P., G. Peeters, and S. Dubnov. 2003. Automatic classification of musical

instrument sounds. Journal of New Music Research 32 (1): 3–21.

Hillewaere, R., B. Manderick, and D. Conklin. 2009. Global feature versus event models

for fold song classification. Proceedings of the International Society for Music

Information Retrieval Conference. 729–33.

Hoffman-Engl, L. 2001. Towards a cognitive model of melodic similarity. Proceedings of

the International Symposium on Music Information Retrieval. 143–51.

Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor: University

of Michigan Press.

Homburg, H., I. Mierswa, B. Moller, K. Morik, and M. Wurst. 2005. A benchmark

dataset for audio classification and clustering. Proceedings of the International

Conference on Music Information Retrieval. 528–31.

Hoos, H. H., K. A. Hamel, K. Renz, and J. Kilian. 2001. Representing score-level music

using the GUIDO music-notation format. In The virtual score: Representation,

retrieval, restoration, eds. W. B. Hewlett, and E. Selfridge-Field. Cambridge, MA:

MIT Press.

Hortaçsu, N., and H. G. Tekman. 2002. Aspects of stylistic knowledge: What are different

styles like and why do we listen to them? Psychology of Music 30 (1): 28–47.

Hothker, K., D. Hornel, and C. Anagnostopoulou. 2001. Investigating the influence of

representations and algorithms in music classification. Computers and the Humanities

35 (1): 65–79.

Hsu, J. L., C. C. Liu, and A. L. P. Chen. 2001. Discovering nontrivial repeating patterns

in music data. IEEE Transactions on Multimedia 3 (3): 311–25.

Hu, X., M. Bay, and J. S. Downie. 2007. Creating a simplified music mood classification

ground-truth set. Proceedings of the International Conference on Music Information

Retrieval. 309–10.

Hu, X, J. S. Downie, and A. F. Ehman. 2009. Lyric text mining in music mood

classification. Proceedings of the International Society for Music Information

Retrieval Conference. 411–6.

 579

Huotilainen, M., J. Louhivuori, R. Näätänen, M. Saher, M. Tervaniemi, and P.

Toiviainen. 1998. Timbre similarity: Convergence of neural, behavioral, and

computational approaches. Music Perception 16 (2): 223–41.

Huron, D. 1997. Humdrum and Kern: Selective feature encoding. In Beyond MIDI: The

handbook of musical codes, ed. E. Selfridge-Field. Cambridge, 375–401. MA: MIT

Press.

Huron, D. 1999. The new empiricism: Systematic musicology in a postmodern age. 1999

Ernst Bloch Lecture. University of California, Berkeley.

Huron, D. 2002. Music information processing using the Humdrum toolkit: Concepts,

examples, and lessons. Computer Music Journal 26 (2): 11–26.

Hussein, F., R. Ward, and N. Kharma. 2001. Genetic algorithms for feature selection and

weighting, a review and study. International Conference on Document Analysis and

Recognition. 1240–4.

Ihaka, R., and R. Gentleman. 1996. R: A language for data analysis and graphics. Journal

of Computational and Graphical Statistics 5: 299–314.

Jagannathan, V., R. Dodhiawala, and L. S. Baum, eds. 1989. Blackboard architectures

and applications. New York: Academic Press.

Jain, A. K., R. P. W. Duin, and J. Mao. 1999. Statistical pattern recognition: A review.

IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (1): 4–37.

Jain, A. K., and D. Zongker. 1997. Feature selection: Evaluation, application and small

sample performance. IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (2): 153–8.

James, M. 1985. Classification algorithms. London: William Collins and Sons.

Jayant, N. S., and P. Noll. 1984. Digital coding of waveforms: Principles and

applications to speech and video. Upper Saddle River, NJ: Prentice Hall.

Jennings, D. 2007. Net, blogs and rock ‟n‟ roll: How digital discovery works and what it

means for consumers, creators and culture. Boston: Nicholas Brealey.

Jensen, K. 1999. Timbre models of musical sounds. Ph.D. Thesis. University of

Copenhagen, Denmark.

Jones, M. C., J. S. Downie, and A. F. Ehmann. 2007. Human similarity judgments:

implications for t the design of formal evaluations. Proceedings of the International

Conference on Music Information Retrieval. 539–42.

 580

Joyce, J. 2006. Pandora and the Music Genome Project. Scientific Computing 23 (10):

40–1.

Kalousis, A., J. Gama, and M. Hilario. 2004. On data and algorithms: Understanding

inductive performance. Machine Learning 54 (3): 275–312.

Kandel, A., and H. Bunke, eds. 2002. Hybrid methods in pattern recognition. London:

World Scientific.

Karydis, I., A. Nanopoulos, and Y. Manolopoulos. 2006. Symbolic musical genre

classification based on repeating patterns. Proceedings of the ACM Workshop on

Audio and Music Computing Multimedia. 53–8.

Kashino, K., and H. Murase. 1999. A sound source identification system for ensemble

music based on template adaptation and music stream extraction. Speech

Communication 27 (3): 337–49.

Katayose, H., and S. Inokuchi. 1989. The KANSEI music system. Computer Music

Journal 13 (4): 72–7.

Kendall, M. G., and A. Stuart. 1973. The advanced theory of statistics. Volume II:

Inference and Relationship. London: Griffin.

Khoussainov, R., X. Zuo, and N. Kushmerick. 2004. Grid-enabled Weka: A toolkit for

machine learning on the grid. ERCIM News 59.

Kirby, M. 2001. Geometric data analysis: An empirical approach to dimensionality

reduction and the study of patterns. New York: John Wiley & Sons.

Kirlin, P. B., and P. E. Utgoff. 2005. VoiSe: Learning to segregate voices in explicit and

implicit polyphony. Proceedings of the International Conference on Music

Information Retrieval. 552–7.

Kitahara, T. 2008. A unified and extensible framework for developing music information

processing systems. Unpublished Manuscript.

Kittler, J. 2000. A framework for classifier fusion: Is it still needed? Proceedings of the

Joint IAPR International Workshops on Advances in Pattern Recognition. 45–56.

Klapuri, A. 1999. Sound onset detection by applying psychoacoustic knowledge.

Proceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing.

Klapuri, A., and M. Davy, eds. 2006. Signal processing methods for music transcription.

New York: Springer.

 581

Knees, P., E. Pampalk, and G. Widmer. 2004. Artist classification with web-based data.

Proceedings of the International Conference on Music Information Retrieval. 517–24.

Knees, P., M. Schedl, T. Pohle, and G. Widmer. 2006. An innovative three-dimensional

user interface for exploring music collections enriched with meta-information from

the web. Proceedings of the ACM International Conference on Multimedia. 17–24.

Knopke, I. 2008. The PerlHumdrum and PerlLilypond toolkits for symbolic music

information retrieval. Proceedings of the International Conference on Music

Information Retrieval. 147–52.

Koniari D., S. Predazzer, and M. Mélen. 2001. Categorization and schematization

processes used in music perception by 10- to 11-Year-Old Children. Music Perception

18 (3): 297–324.

Kotek. B. 1998. Soft computing-based recognition of musical sounds. In Rough sets in

knowledge discovery, eds. L. Polkowski, and A. Skowron, 193–213. Heidelberg:

Physica-Verlag.

Kotsiantis, S., and P. Pintelas. 2004. Selective voting. Proceedings of the International

Conference on Intelligent Systems Design and Applications. 397–402.

Krumhansl, C. L. 1978. Concerning the applicability of geometric models to similarity

data: The interrelationship between similarity and spatial density. Psychology Review

85: 445–63.

Kuncheva, L. 2004. Combining pattern classifiers. Hoboken, NJ: Wiley.

Laine, P., and M. Kuuskankare. 1994. Genetic algorithms in musical style oriented

generation. Proceedings of the IEEE Conference on Evolutionary Computation. 858–

62.

Lakoff, G. 1987. Women, fire, and dangerous things: What categories reveal about the

mind. Chicago, IL: University of Chicago Press.

Lamere, P., and D. Eck. 2007. Using 3D visualizations to explore and discover music.

Proceedings of the International Conference on Music Information Retrieval. 173–4.

Lamont, A., and N. Dibben. 2001. Motivic structure and the perception of similarity.

Music Perception 18 (3): 245–74.

Lartillot, O., S. Dubnov, G. Assayag, and G. Bejerano. 2001. Automatic modeling of

musical style. Proceedings of the International Computer Music Conference. 447–54.

 582

Lartillot, O., and P. Toiviainen. 2007. MIR in Matlab (II): A toolbox for musical feature

extraction from audio. Proceedings of the International Conference on Music

Information Retrieval. 127–30.

Lartillot, O., P. Toiviainen, and T. Eerola. 2008. A Matlab toolbox for music information

retrieval. In Data Aalysis, Machine Learning and Applications, eds. C. Preisach, H.

Burkhardt, L. Schmidt-Thieme, and R. Decker, 261–8. New York: Springer.

LaRue, J. 1992. Guidelines for style analysis. Warren, MI: Harmonie Park Press.

Law, E., L. von Ahn, R. Dannenberg, and M. Crawford. 2007. Tagatune: A game for

music and sound annotation. Proceedings of the International Conference on Music

Information Retrieval. 361–4.

Lee, J. H., and J. S. Downie. 2004. Survey of music information needs, uses, and seeking

behaviours: Preliminary findings. Proceedings of the International Conference on

Music Information Retrieval.

Leman, M. 1995. Music and schema theory: Cognitive foundations of systematic

musicology. New York: Springer.

Lerch, A., G. Eisenberg, and K. Tanghe: 2005. FEAPI: A low level feature extraction

plugin API. Proceedings of the International Conference on Digital Audio Effects.

Lerdahl, F., and R. Jackendoff. 1982. A generative theory of tonal music. Cambridge,

MA: MIT Press.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady 10: 707–10.

Li, T., and M. Ogihara. 2003. Detecting emotion in music. Proceedings of the

International Symposium on Music Information Retrieval. 239–40.

Lidy, T., A. Rauber, A. Pertusa, and J. M. Iñesta. 2007. Improving genre classification by

combination of audio and symbolic descriptors using a transcription system.

Proceedings of the International Conference on Music Information Retrieval. 61–6.

Lin, C. R., N. H. Liu, Y. H. Wu, and L. P. Chen. 2004. Music classification using

significant repeating patterns. Proceedings of Database Systems for Advanced

Applications. 506–18.

Lindner, G., and R. Studer. 1999. AST: Support for algorithm selection with a CBR

approach. Proceedings of the European Conference on the Principles of Data Mining

and Knowledge Discovery. 418–23.

 583

Lippens, S, J. P. Martens, M. Leman, B. Baets, H. Meyer, and G. Tzanetakis. 2004. A

comparison of human and automatic musical genre classification. Proceedings of the

IEEE International Conference on Audio, Speech and Signal Processing.

Liu, D., L. Lu, and H. J. Zhang. 2003. Automatic mood detection from acoustic music

data. Proceedings of the International Symposium on Music Information Retrieval.

81–7.

Llorà, X., B. Ács, L. S. Auvil, B. Capitanu, M. E. Welge, and D. E. Goldberg. 2008.

Meandre: Semantic-driven data-intensive flows in the clouds. Proceedings of the

IEEE International Conference on eScience. 238–45.

Lomax, A. 1968. Folk song style and culture. Washington, DC: American Association for

the Advancement of Science.

Lowe, W., and S. McDonald. 2000. The direct route: Mediated priming in the semantic

space. Proceedings of the Annual Conference of the Cognitive Science Society.

Maclin, R., and J. Shavlik. 1995. Combining the predictions of multiple classifiers: Using

competitive learning to initialise neural networks. Proceedings of the International

Joint Conference on Artificial Intelligence. 524–30.

MacMillan, K., M. Droettboom, and I. Fujinaga. 2001. Gamera: A structured document

recognition application development environment. Proceedings of the International

Symposium on Music Information Retrieval. 173–8.

Manaris B., J. Romero, P. Machado, D. Krehbiel, T. Hirzel, W. Pharr, and R. B. Davis.

2005. Zipf's law, music classification, and aesthetics. Computer Music Journal 25 (1):

55–69.

Mandel, M. I., and D. Ellis. 2007. A web-based game for collecting music metadata.

Proceedings of the International Conference on Music Information Retrieval. 365–6.

Manning, C. D., and H. Schütze. 1999. Foundations of statistical natural language

processing. Cambridge, MA: MIT Press.

Manuel, P. 1988. Popular musics of the non-Western world. Toronto: Oxford University

Press.

Martin, K., and Y. Kim. 1998. Musical instrument identification: A pattern recognition

approach. Proceedings of the Acoustical Society of America.

Maxwell, J. B., and A. Eigenfeldt. 2008 A music database and query system for

recombinant composition. Proceedings of the International Conference on Music

Information Retrieval. 75–80.

 584

Mazzola, G., and O. Zahorka. 1994. The RUBATO performance workstation on

NEXTSTEP. Proceedings of the International Computer Music Conference.

McAdams, S. 1999. Perspectives on the contribution of timbre to musical structure.

Computer Music Journal 23 (3): 85–102.

McAdams, S., and D. Matzkin. 2003. The roots of musical variation in perceptual

similarity and invariance. In The cognitive neuroscience of music, eds. I. Peretz, and

R. Zatorre, 79–94. New York: Oxford University Press.

McClellan, J. H., R. W. Schafer, and M. A. Yoder. 1999. DSP first: A multimedia

approach. Upper Saddle River, NJ: Prentice-Hall.

McEnnis, D. 2006. On-demand metadata extraction network (OMEN). M.A. Thesis.

McGill University, Canada.

McEnnis, D., C. McKay, and I. Fujinaga. 2006a. jAudio: Additions and improvements.

Proceedings of the International Conference on Music Information Retrieval. 385–6.

McEnnis, D., C. McKay, and I. Fujinaga. 2006b. Overview of OMEN. Proceedings of the

International Conference on Music Information Retrieval. 7–12.

McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle. 2005. jAudio: A feature extraction

library. Proceedings of the International Conference on Music Information Retrieval.

600–3.

McKay, C. 2004. Automatic genre classification of MIDI recordings. M.A. Thesis. McGill

University, Canada.

McKay, C. 2005. Approaches to overcoming problems in interactive musical

performance systems. Presented at the McGill Graduate Students Society Symposium.

McKay, C. 2009. ACE XML sample file appendix. Retrieved 20 December 2009, from

http://www.music.mcgill.ca/~cmckay/protected/ACE_XML_Sample_File_Appendix.

pdf.

McKay, C., J. A. Burgoyne, J. Thompson, and I. Fujinaga. 2009. Using ACE XML 2.0 to

store and share feature, instance and class data for musical classification. Proceedings

of the International Society for Music Information Retrieval Conference. 303–8.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: A framework

for optimizing music classification. Proceedings of the International Conference on

Music Information Retrieval. 42–9.

 585

McKay, C., and I. Fujinaga. 2005a. Automatic music classification and the importance of

instrument identification. Proceedings of the Conference on Interdisciplinary

Musicology. CD-ROM.

McKay, C., and I. Fujinaga. 2005b. The Bodhidharma system and the results of the

MIREX 2005 symbolic genre classification contest. Presented at the International

Conference on Music Information Retrieval.

McKay, C., and I. Fujinaga. 2006a. jSymbolic: A feature extractor for MIDI files.

Proceedings of the International Computer Music Conference. 302–5.

McKay, C., and I. Fujinaga. 2006b. Musical genre classification: Is it worth pursuing and

how can it be improved? Proceedings of the International Conference on Music

Information Retrieval. 101–6.

McKay, C., and I. Fujinaga. 2006c. Style-independent computer-assisted exploratory

analysis of large music collections. Presented at the Joint Meeting of the American

Musicological Society and the Society for Music Theory.

McKay, C., and I. Fujinaga. 2007a. jWebMiner: A web-based feature extractor.

Proceedings of the International Conference on Music Information Retrieval. 113–4.

McKay, C., and I. Fujinaga. 2007b. Style-independent computer-assisted exploratory

analysis of large music collections. Journal of Interdisciplinary Music Studies 1 (1):

63–85.

McKay, C., and I. Fujinaga. 2008. Combining features extracted from audio, symbolic

and cultural sources. Proceedings of the International Conference on Music

Information Retrieval. 597–602.

McKay, C., and I. Fujinaga. 2009a. Expressing musical features, class labels, ontologies

and metadata using ACE XML 2.0. Submitted to Structuring Music through Markup

Language: Designs and Architectures, ed. J. Steyn. Hershey: IGI.

McKay, C., and I. Fujinaga. 2009b. jMIR: Tools for automatic music classification.

Proceedings of the International Computer Music Conference.

McKay, C., D. McEnnis, R. Fiebrink, and I. Fujinaga. 2005. ACE: A general-purpose

classification ensemble optimization framework. Proceedings of the International

Computer Music Conference. 161–4.

McKay, C., D. McEnnis, and I. Fujinaga. 2006. A large publicly accessible prototype

audio database for music research. Proceedings of the International Conference on

Music Information Retrieval. 160–3.

 586

McKinney, M. F., and J. Breebaart. 2003. Features for audio and music classification.

Proceedings of the International Symposium on Music Information Retrieval. 151–8.

McWilliams, R. 2005. Intra-judge consistency in ensemble performance adjudication.

Celebration of Voices: XV National Conference Proceedings.

Mervis, C. B. 1980. Category structure and the development of categorization. In

Theoretical issues reading comprehension, R. Spiro, B. C. Bruce, and W. F. Brewer

eds. Hillsdale, NJ: Lawrence Erlbaum Associates.

Mervis, C. B., J. Catlin, and E. Rosch. 1976. Relationships among goodness-of-example,

category norms, and word frequency. Bulletin of the Psychonomic Society 7: 283–4.

Meudic, B. 2003. Automatic pattern extraction from polyphonic MIDI files. Proceedings

of the Computer Music Modeling and Retrieval Conference. 124–42.

Meyer, L. B. 1989. Style and music: Theory, history and ideology. Chicago: University of

Chicago Press.

Michalski, R. S., I. Bratko, and M. Kubat, eds. 1999. Machine learning and data mining:

Methods and applications. Toronto: John Wiley & Sons.

Michie, D., D. J. Spiegelhalter, and C. C. Taylor. 1994. Machine learning, neural and

statistical classification. New York: Ellis Horwood.

Middleton, R. 1990. Studying popular music. Philadelphia: Open University Press.

Middleton, R. 2000. Popular music analysis and musicology: Bridging the gap. In

Reading pop: Approaches to textual analysis in popular music, ed. R. Middleton,

104–21. New York: Oxford University Press.

MIDI Manufacturers Association. 2001. Complete MIDI 1.0 detailed specification v96.1.

Los Angeles: International MIDI Association.

Mierswa, I., and K. Morik. 2005. Automatic feature extraction for classifying audio data.

Machine Learning Journal 58: 127–49.

Mierswa, I., M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. 2006. YALE: Rapid

prototyping for complex data mining tasks. Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 935–40.

Minaei-Bidgoli, B., G. Kortemeyer, and W. Punch. 2004. Optimizing classification

ensembles via a genetic algorithm for a web-based educational system. Proceedings

of the International Workshop on Syntactical and Structural Pattern Recognition and

Statistical Pattern Recognition. 397–406.

 587

Minda, J. P., and J. D. Smith. 2001. Prototypes in category learning: The effects of

category size, category structure, and stimulus complexity. Journal of Experimental

Psychology: Learning, Memory, and Cognition 27 (3): 775–99.

Mitchell, T. M. 1997. Machine learning. New York: McGraw-Hill.

Moore, B. C. J. 2003. An introduction to the psychology of hearing. Boston: Academic

Press.

Moscote Freire, A. 2007. Tuning into you: Personalized audio streaming services and

their remediation of radio. M. A. Thesis. McGill University, Canada.

Motulsky, H. 1999. Analyzing data with graphPad prism. La Jolla, CA: GraphPad

Software Inc.

Narmour, E. 1999. Hierarchical expectation and musical style. In The psychology of

music, ed. D. Deutsch, 442–72. London: Academic Press.

Nattiez, J. J. 1990. Music and discourse: Toward a semiology of music. C. Abbate, trans.

Princeton, NJ: Princeton University Press.

Negus, K. 1999. Music genres and corporate cultures. New York: Routledge.

Nettl, B. 1990. Folk and traditional music of the western continents. Englewood Cliffs,

NJ: Prentice-Hall.

Nienhuys, H. W., and J. Nieuwenhuizen. 2003. LilyPond, a system for automated music

engraving. Proceedings of the XIV Colloquium on Musical Informatics.

North, A. C., and D. J. Hargreaves. 1997. Liking for musical styles. Music Scientae 1 (1):

109–28.

Nosofsky, R. M. 1986. Attention, similarity, and the identification-categorization

relationship. Journal of Experimental Psychology: General 115: 39–57.

Nosofsky, R. M., and S. R. Zaki. 2002. Exemplar and prototype models revisited:

Response strategies, selective attention, and stimulus generalization. Journal of

Experimental Psychology: Learning, Memory, and Cognition 28 (5): 924–40.

Novello, A. and M. McKinney. 2007. Music similarity and perception in Western popular

music. Presented at the Society for Music Perception and Cognition Conference.

Ockelford, A. 2004. On similarity, derivation and the cognition of musical structure.

Psychology of Music 32 (1): 23–74.

 588

Opitz, D., and R. Maclin. 1999. Popular ensemble methods: An empirical study. Journal

of Artificial Intelligence Research 11: 169–98.

Oppenheim, A. V., R. W. Schafer, and J. R. Buck. 1999. Discrete-time signal processing.

Upper Saddle River, NJ: Prentice Hall.

Pachet, F., J. J. Aucouturier, A. Burthe, A. Zils, and A. Beurive. 2006. The Cuidado

Music Browser: An end-to-end electronic music distribution system. Multimedia

Tools and Applications 30 (3): 331–49.

Pachet, F., and Z. Aymeric. 2004. Automatic extraction of music descriptors from

acoustic signals. Proceedings of the International Conference on Music Information

Retrieval. 353–6.

Pachet, F., and D. Cazaly. 2000. A taxonomy of musical genres. Proceedings of the

Content-Based Multimedia Information Access Conference.

Pachet, F., G. Westermann, and D. Laigre. 2001. Musical data mining for electronic

music distribution. Proceedings of the International Conference on WEB Delivery of

Music. 101–6.

Pampalk, E., and M. Goto. 2007. MusicSun: A new approach to artist recommendation.

Proceedings of the International Conference on Music Information Retrieval. 101–4.

Park, T. H. 2000. Salient feature extraction of musical instrument signals. Master‟s

Thesis. Dartmouth College, USA.

Perrin, N. A. 1992. Uniting identification, similarity and preference: General recognition

theory. In Multidimensional models of perception and cognition, ed. F. G. Ashby,

123–46. Hillsdale, NJ: Lawrence Erlbaum Associates.

Perrott, D., and R. O. Gjerdingen. 1999. Scanning the dial: An exploration of factors in

the identification of musical style. Research Notes. Department of Music,

Northwestern University, IL, USA.

Pestoni, F., J. Wolf, A. Habib, and A. Mueller. 2001. KARC: Radio research.

Proceedings of the WedelMusic Conference.

Pfeiffer, S., and C. Parker. 2001. bewdy, Maaate!. Presented at the Australian Linux

Conference.

Pin-Shan Chen, P. 1976. The entity-relationship model: Toward a unified view of data.

ACM Transactions on Database Systems 1 (1): 9–36.

Pohle, T., P. Knees, M. Schedl, and G. Widmer. 2007a. Building an interactive next-

generation artist recommender based on automatically derived high-level concepts.

 589

Proceedings of the International Workshop on Content-Based Multimedia Indexing.

336–43.

Pohle, T., P. Knees, M. Schedl, and G. Widmer. 2007b. Meaningfully browsing music

services. Proceedings of the International Conference on Music Information

Retrieval. 115–6.

Pollard-Gott, L. 1983. Emergence of thematic concepts in repeated listening to music.

Cognitive Psychology 15: 66–94.

Ponce de León, P. J., and J. M. Iñesta. 2002. Musical style identification using self-

organizing maps. Proceedings of the International Conference on Web Delivery of

Music. 82–9.

Ponce de León, P. J., and J. M. Iñesta. 2004. Statistical description models for melody

analysis and characterization. Proceedings of the International Computer Music

Conference. 149–56.

Ponce de León, P. J., and J. M. Iñesta. 2007. A pattern recognition approach for music

style identification using shallow statistical descriptors. IEEE Transactions on

Systems, Man and Cybernetics 37 (2): 248–57.

Pope, S. T., F. Holm, and A. Kouznetsov. 2004. Feature extraction and database design

for music software. Proceedings of the International Computer Music Conference.

596–603.

Pope, S. T., and A. Kouznetsov. 2004. FASTLab Music Analysis Kernel Library

(FMAK). FastLab Inc. Technical Report.

Posner, M. I., and S. W. Keele. 1968. On the genesis of abstract ideas. Journal of

Experimental Medicine 77: 353–63.

Posner, M. I., and S. W. Keele. 1970. Retention of abstract ideas. Journal of

Experimental Medicine 83: 304–8.

Povel, O., and C. Giraud-Carrier. 2004. SwissAnalyst: Data mining without the entry

ticket. Proceedings of the TC12 First International Conference on Artificial

Intelligence Applications and Innovations. 393–406.

Pudil, P., F. Ferri, J. Novovicova, and J. Kittler. 1994. Floating search methods for feature

selection with nonmonotonic criterion functions. Proceedings of the IEEE

International Conference on Pattern Recognition. 279–83.

Punch, W., E. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody. 1993.

Further research on feature selection and classification using genetic algorithms.

Proceedings of the International Conference on Genetic Algorithms. 557–64.

 590

Quinlan, J. R. 1993. C4.5: Programs for machine learning. New York: Morgan

Kaufmann Publishers.

Rabiner, L. 1989. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE 77 (2): 257–86.

Rabiner, L., and B. H. Juang. 1986. An introduction to hidden Markov models. IEEE

ASSP Magazine 3 (1): 4–16.

Rabiner, L., and B. H. Juang. 1993. Fundamentals of speech recognition. Upper Saddle

River, NJ: Prentice-Hall.

Raimond, Y. 2009. A distributed music information system. Doctoral Dissertation.

Queen Mary, University of London, U.K.

Raimond, Y., S. Adbdallah, M. Sandler, and F. Giasson. 2007. The Music Ontology.

Proceedings of the International Conference on Music Information Retrieval. 417–22.

Raimond, Y., and M. Sandler. 2008. A web of musical information. Proceedings of the

International Conference on Music Information Retrieval. 263–28.

Raphael, C., and J. Stoddard. 2003. Harmonic analysis with probabilistic graphical

models. Proceedings of the International Symposium on Music Information Retrieval.

177–81.

Reed, J., and C. H. Lee. 2007. A study on attribute-based taxonomy for music

information retrieval. Proceedings of the International Conference on Music

Information Retrieval. 485–90.

Reed, S. K. 1972. Pattern recognition and categorization. Cognitive Psychology 44: 522–

45.

van Rees, R. 2003. Clarity in the usage of the terms ontology, taxonomy and

classification. CIB Report 284: 432–9.

Reti, R. 1951. The thematic process in music. New York: Macmillan.

Rips, L. J., E. J. Shoben, and E. E. Smith. 1973. Semantic distance and the verification of

semantic relationships. Journal of Verbal Learning and Verbal Behavior 12: 1–20.

Ritthoff, O., R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske. 2001. YALE: Yet

another machine learning environment. Proceedings of the LLWA.

Rizo, D., P. J. Ponce de León, C. Pérez-Sancho, A. Pertusa, and J. M. Iñesta. 2006. A

pattern recognition approach for melody track selection in MIDI files. Proceedings of

the International Conference on Music Information Retrieval. 61–6.

 591

Rosch, E. 1973a. Natural categories. Cognitive Psychology 4: 328–50.

Rosch, E. 1973b. On the internal structure of perceptual and semantic categories. In

Cognitive development and the acquisition of language, ed. T. E. Moore, 111–44.

New York: Academic Press.

Rosch, E. 1975. Cognitive reference points. Cognitive Psychology 7: 532–47.

Rosch, E. 1978. Principles of categorization. In Cognition and categorization, eds. E.

Rosch, and B. B. Lloyd, 27–48. Hillsdale, NJ: Erlbaum.

Rosch, E., C. Simpson, and R. S. Miller. 1976. Structural bases of typicality effects.

Journal of Experimental Psychology: Human Perception and Performance 2: 491–

502.

Rothstein, J. 1995. MIDI: A comprehensive introduction. Madison, WI: A-R Editions.

Rowe, R. 2001. Machine musicianship. Cambridge, MA: MIT Press.

Ruppin, A., and H. Yeshurun. 2006. MIDI music genre classification by invariant

features. Proceedings of the International Conference on Music Information

Retrieval. 397–9.

Russell, S., and P. Norvig. 2002. Artificial intelligence: A modern approach. Upper

Saddle River, NJ: Prentice Hall.

Sakawa, M. 2002. Genetic algorithms and fuzzy multiobjective optimization. Norwell,

MA: Kluwer Academic Publishers.

Sapp, C. S., Y. W. Liu, and E. Selfridge-Field. 2004. Search-effectiveness measures for

symbolic music queries in very large databases. Proceedings of the International

Conference on Music Information Retrieval. 266–73.

Sattath, S., and A. Tversky. 1977. Additive similarity trees. Psychometrika 42: 319–45.

Schedl, M., P. Knees, and G. Widmer. 2005a. A web-based approach to assessing artist

similarity using co-occurrences. Proceedings of the International Workshop on

Content-Based Multimedia Indexing.

Schedl, M., P. Knees, and G. Widmer. 2005b. Discovering and visualizing prototypical

artists by web-based co-occurrence analysis. Proceedings of the International

Conference on Music Information Retrieval. 21–8.

Schedl, M., P. Knees, and G. Widmer. 2006. Improving prototypical artist detection by

penalizing exorbitant popularity. Proceedings of the International Symposium on

Computer Music Modeling and Retrieval.

 592

Schedl, M., T. Pohle, P. Knees, and G. Widmer. 2006. Assigning and visualizing music

genres by web-based co-occurrence analysis. Proceedings of the International

Conference on Music Information Retrieval. 260–5.

Schedl, M, G. Widmer, T. Pohle, and K. Seyerlehner. 2007. Web-based detection of

music band members and line-up. Proceedings of the International Conference on

Music Information Retrieval. 117–8.

Scheirer, E., and M. Slaney. 1997. Construction and evaluation of a robust multi-feature

speech/music discriminator. Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing.

Schütze, H. 1992. Dimensions of meaning. Proceedings of Supercomputing. 787–96.

Schwarz, D., and M. Wright. 2000. Extensions and applications of the SDIF Sound

Description Interchange Format. Proceedings of the International Computer Music

Conference. 481–4.

Selfridge-Field, E., ed. 1997. Beyond MIDI: The handbook of musical codes. Cambridge,

MA: MIT Press.

Selfridge-Field, E. 1998. Conceptual and representational issues in melodic comparison.

In Melodic similarity: Concepts, procedures, and applications, eds. W. B. Hewlett,

and E. Selfridge-Field, 3–64. Cambridge, MA: MIT Press.

Shan, M. K., and F. F. Kuo. 2003. Music style mining and classification by melody.

IEICE Transactions on Information and Systems E86-D (3): 655–9.

Shardanand, U., and P. Maes. 1995. Social information filtering: Algorithms for

automating ―word of mouth‖. Proceedings of the ACM Conference on Human Factors

in Computing Systems. 210–7.

Siedlecki, W., and J. Sklansky. 1989. A note on genetic algorithms for large-scale feature

selection. Pattern Recognition Letters 10 (5): 335–47.

Sigurdsson, S. K. B. Petersen, and T. Lehn-Schioler. 2006. Mel frequency Cepstral

coefficients: An evaluation of robustness to MP3 encoded music. Proceedings of the

International Conference on Music Information Retrieval. 286–9.

Silla, Jr., C. N., C. A. A. Kaestner, and A. L Koerich. 2007. The Latin Music Database:

Uma base de dados para a classificação automática de gêneros musicais. Proceedings

of the Eleventh Simpósio Brasileiro de Computação Musical.

Sinyor, E., C. McKay, R. Fiebrink, D. McEnnis, and I. Fujinaga. 2005. Beatbox

classification using ACE. Proceedings of the International Conference on Music

Information Retrieval. 672–5.

 593

Sjölander, K., and J. Beskow. 2000. WaveSurfer: An open source speech tool.

Proceedings of the International Conference on Spoken Language Processing. 464–7.

Sleeman, D., R. Oehlman, and R. Davidge. 1990. Specification of Consultant–0 and a

comparison of several learning algorithms. Technical Report AUCS/TR9004.

Department of Computing Science, University of Aberdeen.

Smith, E. E., and D. L. Medin. 1981. Categories and concepts. Cambridge, MA: Harvard

University Press.

van Someren, M. 2001. Model class selection and construction: Beyond the Procrustean

approach to machine learning applications. In Machine learning and its applications:

Advanced lectures, eds. G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos, 196–

217. New York: Springer.

Stevens, C., and C. Latimer. 1997. Music recognition: An illustrative application of a

connectionist model. Psychology of Music 25 (2): 161–85.

Tagg, P. 1982. Analyzing popular music: Theory, method and practice. Popular Music 2:

37–67.

Tarasti, E. 2002. Signs of music: A guide to musical semiotics. New York: Mouton de

Gruyter.

Tax, D., M. van Breukelen, R. Duin, and J. Kittler. 2000. Combining multiple classifiers

by averaging or by multiplying? Pattern Recognition 33 (9): 1475–85.

Tekman, H. G., and N. Hortacsu. 2002. Aspects of stylistic knowledge: What are different

styles like and why do we listen to them? Psychology of Music 30 (1): 28–47.

Temperley, D. 2001. The cognition of basic musical structures. Cambridge, MA: MIT

Press.

Thompson, J., C. McKay, J. A. Burgoyne, and I. Fujinaga. 2009. Additions and

improvements to the ACE 2.0 music classifier. Proceedings of the International

Society for Music Information Retrieval Conference. 435–40.

Thorisson, T. 1999. Comparison of novice listeners’ similarity judgments and style

categorisation of Classic and Romantic piano examplars. Psychology of Music 26 (2):

186–96.

Tindale, A., A. Kapur, G. Tzanetakis, and I. Fujinaga. 2004. Retrieval of percussion

gestures using timbre classification techniques. Proceedings of the International

Conference on Music Information Retrieval. 541–4.

 594

Towsey, M., A. Brown, S. Wright, and J. Diederich. 2001. Towards melodic extension

using genetic algorithms. Educational Technology & Society 4 (2): 54–65.

Toynbee, J. 2000. Making popular music: Musicians, creativity and institutions. London:

Arnold.

Tseng, Y. H. 1999. Content-based retrieval for music collections. Proceedings of the

International ACM SIGIR Conference on Research and Development in Information

Retrieval. 176–82.

Turnbull, D., R. Liu, L. Barrington, and G. Lanckriet. 2007. A game-based approach for

collecting semantic annotations of music. Proceedings of the International

Conference on Music Information Retrieval. 535–8.

Tversky, A. 1977. Features of similarity. Psychological Review 84: 327–52.

Tversky, A., and I. Gati. 1982. Similarity, separability and the triangle inequality.

Psychological Review 89: 123–54.

Tversky, A., and J. W. Hutchinson. 1986. Nearest neighbour evaluation of psychological

spaces. Psychological Review 93: 3–22.

Typke, R., P. Giannopoulis, R. C. Veltkamp, F. Wiering, and R. van Oostrum. 2003.

Using transportation distances for measuring melodic similarity. Proceedings of the

International Symposium on Music Information Retrieval. 107–14.

Tzanetakis, G. 2002. Manipulation, analysis and retrieval systems for audio signals. Ph.D.

Dissertation. Princeton University, USA.

Tzanetakis, G., and P. Cook. 2000. MARSYAS: A framework for audio analysis.

Organized Sound 4 (3): 169–75.

Tzanetakis, G., and P. Cook. 2002. Musical genre classification of audio signals. IEEE

Transactions on Speech and Audio Processing 10 (5): 293–302.

Tzanetakis, G., G. Essl, and P. Cook. 2001. Automatic musical genre classification of

audio signals. Proceedings of the International Symposium on Music Information

Retrieval. 205–10.

Tzanetakis, G., L. G. Martins, L. F. Teixeira, C. Castillo, R. Jones, and M. Lagrange.

2008. Interoperability and the Marsyas 0.2 runtime. Proceedings of the International

Computer Music Conference.

Uitdenbogerd, A., and J. Zobel. 1998. Manipulation of music for melody matching.

Proceedings of the ACM International Multimedia Conference. 235–40.

 595

Vafaie, H., and I. Imam. 1994. Feature selection methods: Genetic algorithms vs. greedy-

like search. Proceedings of the International Conference on Fuzzy and Intelligent

Control Systems.

Verfaille, V. 2003. Effets audionumériques adaptatifs: théorie, mise en œuvre et usage en

création musicale numérique. Ph.D. Thesis. l’Université Aix-Marseille II.

de Villiers, J., and E. Barnard. 1992. Backpropagation neural networks with one and two

hidden layers. IEEE Transactions on Neural Networks 4 (1): 136–41.

Volk, A., P. van Kranenburg, J. Garbers, F. Wiering, R. C. Veltkamp, and L. P. Grijp.

2008. A manual annotation method for melodic similarity and the study of melody

feature sets. Proceedings of the International Conference on Music Information

Retrieval. 101–6.

Wanas, N. M., G. Auda, M. Kamel, and F. Karray. 1998. On the optimal number of

hidden nodes in a neural network. Proceedings of the IEEE Canadian Conference on

Electrical and Computer Engineering. 918–21.

Wanas, N. M., and M. S. Kamel. 2001. Decision fusion in neural network ensembles.

Proceedings of the International Joint Conference on Neural Networks. 2952–7.

Wanas, N. M., and M. S. Kamel. 2002. Weighted combination of neural network

ensembles. Proceedings of the International Joint Conference on Neural Networks.

1748–52.

Wang, G., R. Fiebrink, and P. R. Cook. 2007. Combining analysis and synthesis in the

ChucK programming language. Proceedings of the International Computer Music

Conference. 35–42.

Wasserman, L. 2004. All of statistics. New York: Springer.

Wenz, C. 2007. Programming ASP.NET AJAX. London: O’Reilly.

West, K., and S. Cox. 2004. Features and classifiers for the automatic classification of

musical audio signals. Proceedings of the International Conference on Music

Information Retrieval. 531–7.

Whitehead, P., E. Friedman-Hill, and E. Vander Veer. 2002. Java and XML: Your visual

blueprint for creating Java-enhanced Web programs. Mississauga, Canada: Wiley

Publishing Inc.

Whitman, B., and S. Lawrence. 2002. Inferring descriptions and similarity for music from

community metadata. Proceedings of the International Computer Music Conference.

591–8.

 596

Whitman, B., and P. Smaragdis. 2002. Combining musical and cultural features for

intelligent style detection. Proceedings of the International Conference on Music

Information Retrieval. 47–52.

Widmer, G. 1996. Recent developments in context-sensitive learning: The MetaL family

of meta-learners. Proceedings of Artificial Intelligence Techniques: The Third

International Workshop.

Witten, I. H., and E. Frank. 2005. Data mining: Practical machine learning tools and

techniques. New York: Morgan Kaufman.

Wittgenstein, L. 1953. Philosophical investigations. New York: Macmillan.

Wright, M., A. Chaudhary, A. Freed, S. Khoury, and D. Wessel. 1999. Audio applications

of the Sound Description Interchange Format standard. Proceedings of the Audio

Engineering Society Convention. 276–9.

Wright, M., and A. Freed. 1997. Open Sound Control: A new protocol for communicating

with sound synthesizers. Proceedings of the International Computer Music

Conference.

Yip, C. L., and B. Kao. 1999. A study on musical features for melody databases. HKU

CSIS Technical Report TR-99-05. Hong Kong University, Department of Computer

Science and Information Systems, Hong Kong.

Zadel, M., and I. Fujinaga. 2004. Web services for music information retrieval.

Proceedings of the International Conference on Music Information Retrieval. 478–83.

Zenobi, G., and P. Cunningham. 2001. Using diversity in preparing ensembles of

classifiers based on different subsets to minimize generalization error. Proceedings of

the European Conference on Machine Learning. 576–87.

Zhou, Z. H., J. X. Wu, Y. Jiang, and S. F. Chen. 2001. Genetic algorithm based selective

neural network ensemble. Proceedings of the International Joint Conference of

Artificial Intelligence. 797–802.

Ziv, N., and Z. Eitan. 2007. Themes as prototypes: Similarity judgments and

categorization tasks in musical contexts. Musicae Scientiae Discussion Forum 4a: 99–

133.

2005 MIREX Contest Results – Symbolic Genre Classification. Retrieved 14 December

2009, from http://www.music-ir.org/evaluation/mirex-results/sym-genre/index.html.

7digital. Retrieved 14 December 2009, from http://ca.7digital.com.

AllMusic. Retrieved 14 December 2009, from http://www.allmusic.com.

 597

Amazon. Retrieved 14 December 2009, from http://www.amazon.com.

Apple - Download Music and More with iTunes. Retrieved 14 December 2009, from

http://www.apple.com/itunes/.

Apple Developer Connection. Retrieved 16 December 2009, from

http://developer.apple.com/sdk/.

Audacity. Retrieved 16 December 2009, from http://audacity.sourceforge.net.

Audio Genre Classification (Mixed Set) Results. Retrieved 14 December 2009, from

http://www.music-

ir.org/mirex/2009/index.php/Audio_Genre_Classification_%28Mixed_Set%29_Resul

ts.

Audiobaba Music Search. Retrieved 14 December 2009, from

http://www.audiobaba.com.

BBC. Retrieved 14 December 2009, from http://www.bbc.co.uk.

Billboard. Retrieved 14 December 2009, from http://www.billboard.com.

Blip.fm. Retrieved 14 December 2009, from http://blip.fm.

Celemony Direct Note Access. Retrieved 16 December 2009, from

http://www.celemony.com/cms/index.php?id=dna_qa.

Chroma Toolbox. Retrieved 23 January 2010, from http://www.mpi-

inf.mpg.de/~mmueller/chromatoolbox/.

CrestMuse Project. Retrieved 30 December 2008, from http://www.crestmuse.jp/index-

e.html.

Critical Metrics. Retrieved 14 December 2009, from http://criticalmetrics.com.

DBPedia. Retrieved 14 December 2009, from http://dbpedia.org.

Discogs. Retrieved 14 December 2009, from http://www.discogs.com.

Dublin Core Metadata Initiative. Retrieved 16 February 2009, from http://dublincore.org.

The Echo Nest. Retrieved 14 December 2009, from http://echonest.com.

Epitonic. Retrieved 20 December 2009, from http://www.epitonic.com.

ExploreMusic. Retrieved 14 December 2009, from http://www.exploremusic.com.

 598

Facebook Developers. Retrieved 14 December 2009, from

http://developers.facebook.com.

The Filter. Retrieved 14 December 2009, from http://www.thefilter.com.

Free Music Archive. Retrieved 14 December 2009, from http://freemusicarchive.org.

Freebase. Retrieved 14 December 2009, from http://www.freebase.com.

freeDB. Retrieved 14 December 2009, from http://www.freedb.org.

GarageBand. Retrieved 20 December 2009, from http://www.garageband.com.

Gigulate. Retrieved 14 December 2009, from http://gigulate.com.

The GNU General Public License. Retrieved 16 December 2009, from

http://www.gnu.org/licenses/gpl.html.

Google Code. Retrieved 14 December 2009, from http://code.google.com.

Gracenote. Retrieved 14 December 2009, from http://www.gracenote.com.

Grooveshark. Retrieved 14 December 2009, from http://listen.grooveshark.com.

Idiomag. Retrieved 14 December 2009, from http://www.idiomag.com.

iLike. Retrieved 14 December 2009, from http://www.ilike.com.

The International Society for Music Information Retrieval. Retrieved 16 December 2009,

from http://www.ismir.net.

Jamendo. Retrieved 20 December 2009, from http://www.jamendo.com/en/.

jMIR. Retrieved 1 December 2009, from http://jmir.sourceforge.net.

JSON. Retrieved 15 January 2009, from http://json.org/.

Last.FM. Retrieved 14 December 2009, from http://www.last.fm.

Listilpy. Retrieved 14 December 2009, from http://www.listiply.com.

LyricsFly. Retrieved 14 December 2009, from http://lyricsfly.com.

LyricWiki. Retrieved 14 December 2009, from http://lyrics.wikia.com.

 599

Magnatagatune. Retrieved 20 December 2009, from

http://tagatune.org/Magnatagatune.html.

Magnatune. Retrieved 20 December 2009, from http://magnatune.com.

The MathWorks. Retrieved 14 December 2009, from http://www.mathworks.com.

Meandre. Retrieved 7 January 2009, from http://seasr.org/meandre/.

MediaUnbound. Retrieved 14 December 2009, from http://www.mediaunbound.com.

MediaWikiAPI. Retrieved 14 December 2009, from http://en.wikipedia.org/w/api.php.

The Melisma music analyzer. Retrieved 9 June 2009, from

http://www.link.cs.cmu.edu/music-analysis.

MIDI Manufacturers Association. Retrieved 9 June 2009, from http://www.midi.org.

MIREX. Retrieved 14 December 2009, from http://www.music-ir.org/mirex/2009/.

Music Ontology Specification. Retrieved 30 December 2008, from

http://www.musicontology.com.

MusicBrainz. Retrieved 14 December 2009, from http://musicbrainz.org.

Musicovery. Retrieved 14 December 2009, from http://musicovery.com.

MySpace Developer Platform. Retrieved 14 December 2009, from

http://developer.myspace.com/community/.

National Public Radio. Retrieved 14 December 2009, from http://www.npr.org.

NEMA. Retrieved 14 December 2009, from http://nema.lis.uiuc.edu.

Omnifone. Retrieved 14 December 2009, from http://www.omnifone.com.

Pandora Internet Radio. Retrieved 14 December 2009, from http://www.pandora.com.

People's Music Store. Retrieved 14 December 2009, from http://peoplesmusicstore.com.

Playdar. Retrieved 14 December 2009, from http://www.playdar.org.

Plug-ins for Windows Media Player. Retrieved 16 December 2009, from

http://www.microsoft.com/windows/windowsmedia/player/plugins.aspx.

Rhapsody. Retrieved 14 December 2009, from http://www.rhapsody.com.

 600

Rovi. Retrieved 14 December 2009, from http://www.rovicorp.com.

SDIF Sound Description Interchange Format. Retrieved 30 December 2008, from

http://sdif.sourceforge.net.

SEASR. Retrieved 16 December 2009, from http://nema.lis.uiuc.edu.

Slacker Personal Radio. Retrieved 14 December 2009, from http://www.slacker.com.

Songkick. Retrieved 14 December 2009, from http://www.songkick.com.

Sonic Annotator. Retrieved 14 December 2009, from

http://www.omras2.org/SonicAnnotator.

SoundCloud. Retrieved 14 December 2009, from http://soundcloud.com.

Spotify. Retrieved 14 December 2009, from http://www.spotify.com.

TunedIT. Retrieved 1 October 2009, from http://tunedit.org.

Twitter API Wiki. Retrieved 14 December 2009, from http://apiwiki.twitter.com.

Vamp Plugins. Retrieved 14 December 2009, from http://www.vamp-plugins.org.

Weka >> ARFF. Retrieved 30 December 2008, from

http://weka.wiki.sourceforge.net/ARFF.

Winamp Plugins. Retrieved 16 December 2009, from http://www.winamp.com/plugins.

Yahoo! Developer Network Home. Retrieved 14 December 2009, from

http://developer.yahoo.com.

Yahoo! Music. Retrieved 14 December 2009, from http://new.music.yahoo.com.

Yes. Retrieved 14 December 2009, from http://www.yes.com.

