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ABSTRACT 

This paper discusses two sets of automatic musical genre 
classification experiments. Promising research directions are then 
proposed based on the results of these experiments. 

The first set of experiments was designed to examine the utility of 
combining features extracted from separate and independent 
audio, symbolic and cultural sources of musical information. The 
results from this set of experiments indicate that combining 
feature types can indeed substantively improve classification 
accuracy as well as reduce the seriousness of those 
misclassifications that do occur. 

The second set of experiments examined which high-level features 
were most important in successfully classifying symbolic data. It 
was found that features associated with instrumentation were 
particularly effective. 

The paper also presents the jMIR toolset, which was used to carry 
out these experiments and which is particularly well suited to 
combining information extracted from different types of data 
sources. jMIR is a free and open-source software suite designed 
for applications related to automatic music classification of 
various kinds.   
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1. INTRODUCTION 
Music information retrieval (MIR) research on automatic music 
classification has for the most part tended to focus on extracting 
information from three primary types of data: 

• Audio recordings: Digital representations of physical audio 
signals. These are typically stored in formats such as MP3s, 
WAVs and FLACs. 

• Symbolic musical representations: Representations of sound 
based on abstract symbols that are musically meaningful, such 
as the music notation used in scores. File formats such as MIDI, 
OSC and Humdrum are often used to store symbolic data. 

• Cultural data: Information that is pertinent to the music at 
hand, but is not a direct representation, abstract or otherwise, of 
the actual sound associated with the music. The Internet 
provides the most easily mined source of cultural data, 
including resources such as edited metadata repositories, 
unedited listener tags, playlists and web sites in general.  

MIR research projects involving each of these types of data has 
traditionally been relatively segregated from research involving 
the others, often based on whether a given researcher has a 
corresponding background in signal processing, music theory or 
data mining. In recent years, however, MIR researchers have 
increasingly begun to study these sources of information in 
combination, with a particular emphasis on research combining 
audio and cultural sources of data. The value of audio is clear, as 
it is the essential way in which music is consumed, and cultural 
information external to musical content is well known to have a 
large influence on our experience and interpretation of music 
(e.g., see [10]). 

Symbolic data has recently been receiving less attention from 
MIR researchers, however. This is perhaps unfortunate, as much 
of the information associated with the types of high-level musical 
abstractions that can be relatively easily extracted from symbolic 
data is currently poorly encapsulated by the types of features that 
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are typically extracted from audio, which tend to focus more on 
low-level timbral information than on other types of information. 
Symbolic formats can thus, at the very least, serve as a powerful 
intermediate representational tool from which features 
incorporating high-level musical abstractions can be extracted. 
Research in such high-level features will also become increasingly 
valuable as polyphonic audio to symbolic transcription algorithms 
continue to improve.  

It is suggested here that features extracted in combination from all 
three types of data can potentially provide valuable information 
that could be gainfully used in tasks related to automatic music 
classification and similarity estimation. If the orthogonal 
independence of the features associated with each data type is 
high, then performance gains can likely be attained in a variety of 
applications by combining features extracted from the different 
data types. In order to investigate this further, this paper examines 
experimental data that provides insights on the extent to which 
combining features extracted from these three types of data can be 
advantageous, and on which types of features can be most 
effective in arriving at successful classifications [13][16].  

This investigation was performed via two sets of experiments 
involving automatic genre classification. Genre classification in 
particular was chosen because it is a complex and difficult task 
that combines diverse musical variables. Genre classification is 
also an area of research where classification success rates appear 
to have hit a “glass ceiling” in recent years. If one examines the 
yearly results of the MIREX (Music Information Retrieval 
Evaluation eXchange) audio genre classification contest, shown in 
Figure 1, one will observe little evidence of improvement from 
year to year. It is hoped that the combination of features extracted 
from different types of data will help to break this apparent 
performance ceiling. 
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Figure 1: The best classification success rates in each of the 
MIREX audio genre classification competitions to date [26]. All 
runs involved 10 genre classes except for the 2005b run, which 
used a genre ontology of 6 genres. No audio genre classification 

competition was held in 2006, and the competitions in 2005, 2008 
and 2009 each involved separate runs on two different datasets. 

The datasets were usually varied from year to year. 

It should be noted that the experiments described in this paper 
could alternatively have involved other types of classification, 
such as mood or artist classification. The essential issue being 
investigated remains the potential performance improvements 
attained by combining features extracted from the different types 
of musical data. 

This paper ends by summarizing the results of the experiments 
and by proposing directions for future research that should be 
prioritized based on the results of the experiments. 

2. RELATED RESEARCH 
There has been a significant amount of research on combining 
features extracted from audio and cultural data that can be 
extracted from the Internet. Whitman and Smaragdis [21] 
performed particularly important early work of this kind, and 
achieved substantial performance gains when doing so. Dhanaraj 
and Logan [4] took a more content-based approach by combining 
information extracted from lyrics and audio. Others have 
combined audio and cultural data for the purpose of generating 
music browsing spaces (e.g., [6]). To give another example, 
Aucouturier and Pachet [2] used a hybrid training approach based 
on acoustic information and boolean metadata tags. Research has 
also been conducted on using audio data to make correlations 
with cultural labels, which can in turn improve other kinds of 
classification (e.g., [18]). 

There has been much less work on combining symbolic data with 
audio data. In one of the few such research projects, Lidy and his 
colleagues [7] found that combining audio and symbolic data can 
result in improved performance compared to when only audio 
data is used. To the best knowledge of the authors, the 
experiments described here represent the first research on 
combining symbolic and cultural features and on combining all 
three feature types. 

Far too many papers have been published on automatic genre 
classification in general to cite with any completeness here. One 
influential publication that bears particular mention, however, is 
that of Tzanetakis and Cook [20]. 

3. THE JMIR SOFTWARE SUITE 

3.1 Overview 
jMIR is an open-source Java software suite consisting of tools for 
performing the essential tasks associated with automatic music 
classification research. It can be used to extract information from 
music in both audio (jAudio) and symbolic (jSymbolic) forms, as 
well as to mine cultural information from the Internet 
(jWebMiner). It also includes software for applying machine 
learning algorithms (ACE) and analyzing and managing metadata 
associated with musical datasets (jMetaMusicManager). The ACE 
XML file formats, which are also part of jMIR, provide an 
expressive and flexible general standard for storing and 
exchanging information related to automatic music classification. 
jMIR also includes several labeled datasets for performing 
musical research and validating new algorithms. 

There are three primary priorities underpinning the design of the 
jMIR components. The first is that they be easy to install and use 
by individuals with a variety of technical backgrounds. This is 
essential, as researchers in fields such as musicology, music 



theory, psychology and the library sciences have important 
musical insights that can greatly benefit MIR research, but are 
often alienated by software requiring a strong technical 
background to use. Installation difficulties and steep learning 
curves can also be discouraging for even technically skilled users. 
The jMIR components are consequently well-documented, 
relatively simple to install and include easy-to-use GUIs. 

The second priority is the provision of an open framework for 
performing novel research and distributing new approaches to 
others. This is important in ensuring research transparency and in 
allowing researchers to evaluate and build upon each other’s 
work. In order to accomplish this, the jMIR components are 
designed using a modular plug-in approach. It is thus a relatively 
simple matter for researchers to both develop their own 
algorithms and add algorithms newly implemented by others to 
their jMIR distributions. The jMIR feature extractors also 
automatically make the value of each extracted feature available to 
each other feature and automatically consider dependencies when 
dynamically scheduling extraction order, something that greatly 
facilitates iterative feature design.  

The third priority is the provision of functionality allowing 
features extracted from audio recordings, symbolic representations 
and cultural data available on the Internet to be combined. As 
noted above, music researchers traditionally tend to focus on only 
one of these domains. They consequently risk failing to fully take 
advantage of valuable complementary sources of information, as 
demonstrated by the experimental results described in the sections 
below, 

The jMIR software and related documentation may be 
downloaded from jmir.sourceforge.net. 

3.2 jAudio 
jAudio [9] is an application for extracting features from audio 
files in formats such as MP3, AIFF and WAV. It is bundled with 
28 implemented features associated with both the frequency and 
time domains (e.g., Spectral Flux, RMS, etc.). It includes several 
intermediate-level musical features, mainly related to rhythm, as 
well as lower-level signal processing-oriented features. A variety 
of pre-processing options are also available, such as down-
sampling, normalization and windowing. 

In order to make jAudio as accessible as possible, it includes a 
GUI interface, a Java API to facilitate integration with other 
software and a command-line interface for those wishing to 
perform batch processing. jAudio also includes functionality for 
synthesizing, recording and displaying audio for the purpose of 
testing new features. 

jAudio places a particular emphasis on facilitating the process of 
developing and adding new features. As is also the case with 
jSymbolic, new features can be added to jAudio using a simple 
inheritance-based plug-in approach that automatically and 
dynamically solves scheduling dependencies. jAudio also includes 
implementations of “metafeatures” and “aggregators” that 
respectively automatically implement features derived from other 
features (e.g., the standard deviation of a feature across analysis 
windows) and collapse a set of feature vectors into a single vector 
or a smaller set of vectors (e.g., area of moments). 

3.3 jSymbolic 
jSymbolic [14] is a GUI-based application for extracting features 
from MIDI files. It is bundled with 111 implemented features 
(e.g., Note Density, Instruments Present, Range, etc.), most of 
which are based on relatively high-level musical abstractions and 
many of which are novel. The features fall into the broad 
categories of instrumentation, texture, rhythm, dynamics, pitch 
statistics and melody. jSymbolic has far more features than any 
other existing symbolic feature extractors. 

Like jAudio, jSymbolic has a simple inheritance-based modular 
API for adding new features, and feature dependencies are 
resolved automatically in order to encourage the iterative 
development of increasingly high-level features (e.g., using 
features related to pitch to extract features relating to chords, 
which can in turn be used to extract features related to harmonic 
progressions). 

An additional 49 features are also proposed for future 
implementation, including features associated with chords [10]. 

3.4 jWebMiner 
jWebMiner [15] is a GUI-based application for extracting features 
from textual information found on the Internet. At its most basic 
level, the software operates by automatically using Google and 
Yahoo! web services to acquire statistics on how often particular 
strings co-occur on the same web pages. This can indicate artist 
similarity, for example, by measuring how often artists’ names co-
occur with one another. It can also be used to classify artists by 
genre by measuring how often their names co-occur with various 
genre titles. 

Search results are processed statistically by jWebMiner in a 
variety of ways in order to remove noise and improve results. 
Further processing options include the abilities to filter out sites 
containing specified strings, to require that sites contain certain 
strings in order to be counted and to weight results from multiple 
sites differently.  

jWebMiner can parse iTunes XML, ACE XML, Weka ARFF [22] 
and delimited text files in order to conveniently access the 
particular strings to use in searches. 

3.5 ACE 
ACE [12][19] is a meta-learning software package for selecting, 
optimizing and applying machine learning algorithms. Given a set 
of extracted features, ACE experiments with a variety of classifier 
algorithms, parameters, ensemble architectures and dimensionality 
reduction techniques in order to arrive at a good configuration for 
the problem at hand. This can be helpful, as a particular algorithm 
can be more or less appropriate for a given problem in terms of 
classification accuracy, training speed and classification speed. 
Even experts in machine learning can have difficulty choosing the 
best algorithm and parameterization for a given problem, to say 
nothing of musical experts with limited backgrounds in computer-
based research. 

ACE is designed to automate the choice of algorithm and to 
facilitate the use of powerful machine learning technology by 
users of all technical levels. ACE also provides a framework for 
experimenting with new algorithms. ACE is built on top of the 
popular Weka machine learning framework [22], so new 



algorithms developed using the Weka API can be easily added to 
ACE. ACE may also be used directly as a classifier. 

ACE improves upon Weka by, in addition to its implementation 
of meta-learning functionality, adding a custom cross-validation 
system that is more flexible and open than Weka’s approach. ACE 
also calculates additional statistics that can be helpful in 
comparing and evaluating algorithms. 

3.6 ACE XML 
ACE XML [11][12] is a set of standardized file formats for 
representing feature values extracted from instances; abstract 
feature descriptions and parameterizations; instance labels and 
annotations; and class ontologies. 

These file formats have been designed to address the significant 
shortcomings with respect to automatic music classification of the 
file formats most commonly used in MIR. To provide just a few 
examples, ACE XML makes it possible to associate multiple 
weighted class labels with a single instance, to specify ontological 
relationships between class labels; to group associated feature 
values in ways that can be meaningful to machine learning 
algorithms; to express feature arrays of arbitrary dimensionality; 
to maintain associations between instances and their sub-sections 
and metadata; to reduce file sizes using compression; and to link 
to external resources using RDF-like triples. None of the data 
exchange formats traditionally used in MIR research, such as 
Weka ARFF, provide all of these options. 

3.7 jMusicMetaManager 
jMusicMetaManager [17] is a GUI-based software package for 
profiling and managing large musical datasets and for detecting 
metadata errors and inconsistencies in them. These tasks are 
essential, as the success of ground-truth training and evaluation 
data is contingent upon the quality of the musical datasets from 
which they are drawn. 

jMusicMetaManager uses many metrics to find dataset 
inconsistencies and redundancies. These can be used to detect 
mislabeled duplicate recordings that could cross-contaminate 
training and testing sets, for example, or to detect varying labeling 
conventions that might cause “Mingus, Charles” and “Charlie 
Mingus”, for example, to be erroneously treated as two different 
artists during training and evaluation. 

In all, jMusicMetaManager provides users with 23 pre-processing 
operations, and includes several edit-distance and word 
ordering/subset error detection operations. A total of 39 different 
HTML reports can also be automatically generated to help profile 
and publish information about musical datasets. 

jMusicMetaManager can parse iTunes XML files and MP3 ID3 
tags as well as ACE XML and Weka ARFF files in order to access 
the metadata that is to be analyzed. 

3.8 jMIRUtilities 
jMIRUtilities is a set of tools for performing miscellaneous useful 
tasks associated with jMIR. These tools include a GUI for batch-
associating class labels with instances, utilities for merging 
various kinds of information, and utilities for extracting structured 
information from iTunes XML files or delimited text files. 

3.9 Codaich and Bodhidharma MIDI 
Codaich [17] is an audio dataset consisting of 31,300 MP3 
recordings by 2811 artists and belonging to 57 genres of music. 
These recordings are labeled with 19 metadata fields. The 
Bodhidharma MIDI dataset [10] is a collection of 950 MIDI 
recordings belonging to 38 genres. These datasets have both 
previously been used in research projects involving the jMIR 
software components 

These datasets are intended to eventually be made publicly 
accessible using an OMEN-like [8] system. Such systems enable 
custom feature extraction requests to be processed at distributed 
sites with legal access to music so that the features can then 
themselves be distributed elsewhere without violating copyright 
legislation. 

3.10 The SAC Dataset 
The SAC (Symbolic, Audio and Cultural) dataset [16] was 
assembled in order to provide matching symbolic, audio and 
cultural data specifically for use in the experiments described in 
Section 4 below. SAC consists of 250 MIDI files and 250 
matching MP3s, as well as accompanying metadata (e.g., title, 
artist, etc.) for each recording. This metadata is stored in an 
iTunes XML file, which can be parsed by jWebMiner in order to 
extract cultural features from the web for each of the associated 
recordings.  

It was decided to acquire the matching MIDI and audio recordings 
separately, rather than simply synthesizing the audio from the 
MIDI. Although this made acquiring the dataset significantly 
more difficult and time consuming, it was considered necessary in 
order to truly test the value of combining symbolic and audio 
data. This is because audio generated from MIDI by its nature 
does not include any additional data other than the very limited 
information encapsulated by the synthesis algorithms. 

SAC is divided amongst 10 different genres, with 25 pieces of 
music per genre. These 10 genres can be grouped into 5 pairs of 
similar genres, as shown in Figure 2. This arrangement makes it 
possible to perform 5-class genre classification experiments as 
well as 10-class experiments simply by combining each pair of 
related genres into one class. An additional advantage is that it 
becomes possible to measure indications of how serious 
misclassification errors are in 10-class experiments by examining 
how many misclassifications are in an instance’s partner genre 
rather than one of the other 8 genres. 

SAC was designed to be more difficult to classify by genre than 
the types of datasets normally used in automatic genre 
classification experiments in order to more realistically simulate 
real-life genre classification problems. In addition to using pairs 
of similar genres, which differs from the standard practice of 
using only genres that are very different from one another, and 
thus easier to discriminate between, SAC also includes multiple 
versions of the same pieces in different genres as well as examples 
of different pieces in different genres by the same artist. This 
helps to verify that genres themselves are being modeled by 
pattern recognition algorithms, not just characteristics of 
individual artists or pieces. 



 

Blues: Modern Blues and Traditional Blues 
Classical: Baroque and Romantic 

Jazz: Bop and Swing 
Rap: Hardcore Rap and Pop Rap 
Rock: Alternative Rock and Metal 

Figure 2: The ten genre pairs of the SAC dataset. 
 

4. EXPERIMENT 1: EFFECTS OF 

COMBINING DATA TYPES 

4.1 Experimental Procedure 
The first set of experiments was designed to investigate the utility 
of combining features extracted from different types of musical 
data. In order to accomplish this, jMIR’s three feature extractors 
were used to extract features from each matched audio recording, 
MIDI recording and set of metadata in SAC. Details on the 
particular features extracted are available elsewhere 
[9][10][14][15]. 

To provide a clarifying example, features might be extracted from 
a Duke Ellington MP3 recording of Perdido, from an 
independently acquired MIDI encoding of the same piece and 
from automated search engine queries using metadata such as 
artist and title. Three feature sets were therefore extracted for each 
piece, one corresponding to each of the three data types. 

These three types of features were then grouped into all seven 
possible subset combinations. This was done once for the 5-genre 
SAC ontology and once for the 10-genre SAC ontology, for a 
total of 14 sets of features (as shown in Table 1). ACE was then 
used to perform 14 independent 10-fold cross-validation 
experiments,1 one for each of the feature sets. This resulted in two 
classification accuracy rates for each of the seven feature type 
combinations, one for each of the two SAC genre ontologies.  

It was desirable not only to determine how effective each of the 
feature type combinations were at performing accurate 
classifications, but also in gaining insight on the seriousness of 
those misclassifications that did arise. Two classifiers with similar 
raw classification accuracy rates can in fact be of very different 
value if the misclassifications made by one classifier consistently 
result in classes that are less similar to the “correct” class. For 
example, misclassifying John Lennon as The Beatles in an artist 
identification task would be less serious than misclassifying him 
as Kelly Clarkson. 

A weighted classification accuracy rate was calculated for each of 
the 10-genre experiments in order to examine this issue. This 
weighted rate was calculated by weighting a misclassifications 
within a genre pair (e.g., Alternative Rock instead of Metal) as 0.5 
of an error, and by weighting a misclassification outside of a pair 
(e.g., Swing instead of Metal) as 1.5 of an error. 

                                                                 
1 ACE includes dimensionality reduction functionality, so models 

were actually trained with automatically chosen subsets of the 
available features. 

4.2 Results and Discussion 

4.2.1 Data 
The average classification accuracy rates across cross-validation 
folds for each of the 14 experiments are shown in Table 2, 
including both weighted and unweighted results. Figures 3 and 4 
illustrate the unweighted results for the 5-genre and 10-genre 
experiments respectively. These results are summarized in Table 3 
and Figure 5, which indicate the average results for all 
experiments using one feature type, all experiments using two 
feature types and all experiments using three feature types. 

4.2.2 Effects of Combining Data Types on Accuracy 
As can be seen in Figures 3 and 4, all combinations of two or 
three feature types performed substantially better than all single 
feature types classified independently. Furthermore, combining all 
three feature types resulted in better performance than most pairs 
of feature types. 

This result is highlighted in Figure 5, which shows important 
average increases in classification performance when feature types 
are combined. Combining all three feature types resulted in 
increases in performance of 11.3% on the 5-genre ontology and 
13.7% in the 10-genre ontology, compared to the average 
performances of each of the single feature types classified 
individually. Considered in terms of percentage reduction in error 
rate, this corresponds to impressive improvements of 78.0% and 
39.3% for the 5 and 10-genre genre ontologies, respectively. 

A Wilcoxon signed-rank test indicates that, with a significance 
level of 0.125, the improvements in performance of two or three 
feature types over one type were statistically significant in all 
cases. However, the improvements when three feature types were 
used instead of two were not statistically significant, as the 
corresponding average increases in performance were only 2.3% 
and 2.7% for the 5 and 10-genre ontologies, respectively. 

Overall, these results provide supportive evidence that the three 
different types of features contain at least some orthogonally 
independent information, and can therefore be profitably 
combined for a variety of purposes. 

4.2.3 Types of Misclassification 
As described in Section 4.1, weighted classification accuracy rates 
were calculated for the experiments on the 10-genre ontology in 
order to evaluate the seriousness of the particular 
misclassifications that did occur. The results, and how they 
compare to the unweighted classification accuracies, are shown in 
Table 2 and Figure 6. 

The weighted and unweighted accuracies were not significantly 
different when the audio and symbolic features were processed 
individually. However, the weighted performance was 3% higher 
than the unweighted performance when these two feature types 
were combined. Although this is not a dramatic increase, it is an 
indication that combining these feature types may make those 
misclassifications that do occur be at least somewhat closer to the 
model classes, in addition to increasing classification accuracy 
itself, as discussed in Section 4.2.2. 

Of greater significance, the differences between the weighted and 
unweighted classification accuracies were greater in all feature  



Table 1: The identifying codes for each of the 14 parts of 
Experiment 1. 

Feature Type(s) 5-Genre 

Code 

10-Genre Code 

Symbolic  S-5 S-10 

Audio A-5 A-10 

Cultural C-5 C-10 

Symbolic + Audio SA-5 SA-10 

Audio + Cultural AC-5 AC-10 

Symbolic + Cultural SC-5 SC-10 

Symbolic + Audio + Cultural SAC-5 SAC-10 

 

Table 2: The unweighted classification accuracy rates for the 5-
genre (5-UW) experiments and both the unweighted (10-UW) and 
weighted (10-W) classification rates for the 10-genre experiments. 

Results are reported for each feature type combination, as 
described in Table 1. All values are average percentages 

calculated over cross-validation folds. 

 S A C SA AC SC SAC 

5-UW 86.4 82.8 87.2 92.4 95.2 94 96.8 

10-UW 66.4 67.6 61.2 75.6 78.8 75.2 78.8 

10-W 66.4 67.4 66.6 78.6 84.6 81.2 84.2 

 

Table 3: The average classification accuracy rates for all 
experiments employing just one type of feature (S, A and C), two 
types of features (SA, AC and SC) or all three types of features 

(SAC). Results are specified for the 5-genre ontology (5-UW), the 
unweighted 10-genre ontology (10-UW) and the weighted 10-

genre ontology (10-W). All values are percentages, and are 
calculated as simple mean averages from Table 2. 

 1 Type 2 Types 3 Types 

5-UW 85.5 93.9 96.8 

10-UW 65.1 76.5 78.8 

10-W 66.8 81.5 84.2 
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Figure 3: The classification accuracy rates for the 5-genre 
ontology, as described in Table 2. 

 

Classification Performance on 10-Genre Taxonomy

50

55

60

65

70

75

80

85

90

95

100

S A C SA AC SC SAC

Feature Set

C
la

s
s
if

ic
a
ti

o
n

 A
c
c
u

ra
c
y
 (

%
)

 

Figure 4: The unweighted classification accuracy rates for the 10-
genre ontology, as described in Table 2. 
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Figure 5: The average classification accuracy rates for all 
experiments employing just one type of feature, two types of 
features or all three types of features, as described in Table 3. 
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Figure 6: The differences between the unweighted and weighted 
classification accuracies on the 10-genre ontology for each of the 

feature type combinations, as described in Table 2. 



sets that included cultural features. These weighted rates were 
higher than the unweighted rates by an average of 5.7%, a 
difference that, based on Student’s paired t-test, is statistically 
significant with a significance level of 0.005.  

Overall, these results indicate that the types of misclassifications 
that occur when cultural features are used are less serious than 
when audio or symbolic features are used alone. Quite 
encouragingly, it also appears that this improvement in error 
quality carries through when cultural features are combined with 
audio and symbolic features. 

4.2.4 Overall Performance 
In order to put the experimental results described here in context, 
it is appropriate to compare them with classification accuracies 
achieved by other genre classification systems. It is important, 
however, to keep in mind the essential caveat that different 
classification systems can perform dramatically differently on 
different datasets, so direct comparisons of experiments performed 
on different datasets can give only a very rough indication of 
comparative performance. 

The MIREX evaluations offer the best benchmarking reference 
points available. Although no evaluations of genre classification 
based on cultural data have been carried out yet at MIREX, both 
symbolic and audio genre classification evaluations have been 
held, most recently in 2005 and 2009, respectively. The highest 
accuracy for symbolic classification was 84.4%, attained on a 9-
genre ontology by McKay and Fujinaga’s Bodhidharma system 
[23]. The highest classification accuracy attained in general audio 
genre classification in 2009 was 73.3%, achieved by Cao and Li 
on a 10-genre ontology [24].  

The experiments described in this paper achieved classification 
accuracies of 67.6% using only features extracted from audio and 
66.4% using only features extracted from symbolic data. This is 
lower but possibly comparable to the best MIREX audio result of 
73.3%, but significantly lower than the best MIREX symbolic 
result of 84.4%, which was achieved on an ontology only smaller 
by one class (9 vs. 10). 

This latter result is intriguing, as jSymbolic uses the same features 
and feature implementations as Bodhidharma. The difference may 
be due at least in part to the specialized and sophisticated 
hierarchical, round-robin and flat learning ensemble algorithms 
used by Bodhidharma [10], whereas ACE only experiments with 
general-purpose machine learning algorithms. 

When all three feature types were combined, the jMIR 
experiments described in this paper achieved a success rate of 
78.8% which was still lower than Bodhidharma’s performance, 
but higher than the best audio MIREX results to date. 

Taken in the context of the particular difficulty of the SAC dataset 
(see Section 3.10), and when it is considered that the accuracy on 
the 10-genre ontology improves to 84.2% when weighted, the 
results attained here are encouraging, and may be an indication 
that the ultimate ceiling on performance might not be as low as 
some have worried [1]. It may well be that the use of more 
sophisticated machine learning approaches, such as those used by 
Bodhidharma or by DeCoro et al. [3], combined with the 
development of new features that highlight particularly pertinent 
information, could significantly improve performance still further. 

5. EXPERIMENT 2: FOCUSING ON HIGH-

LEVEL FEATURES 

5.1 Experimental Procedure 
The goal of the second experiment was to gain empirical insight 
into which high-level features were the most effective in 
classifying symbolic recordings by genre. The jSymbolic features 
were extracted from the Bodhidharma MIDI dataset and were 
classified by a classifier ensemble consisting of ensembles of 
multilayer perceptrons and k-NN classifiers [10]. Genetic 
algorithms were used to evolve feature selections and weightings 
to use when training the classifiers in order to avoid the curse of 
dimensionality and, more importantly from the perspective of this 
particular experiment, to provide an indication as to which 
features were the most useful in performing classifications. 

Two separate experiments were conducted, one involving the full 
38-class hierarchical Bodhidharma MIDI dataset and another 
involving only a subset of this dataset consisting of 9 leaf genres, 
each belonging to one of the 3 parent genres of Classical, Jazz and 
Popular. The second ontology was designed to provide a set of 
classes comparable in size to ontologies used in other automatic 
genre classification experiments, and the first was designed in 
order to permit tests under more realistic conditions. 

5.2 Results and Discussion 
The MIDI recordings were correctly classified by leaf genre 90% 
of the time for the 9-class ontology and 57% of the time for the 
38-class ontology. The root genre was correctly classified 98% of 
the time for the 9-class ontology and 81% of the time for the 38-
class ontology. The results for the 9-class ontology are shown in 
more detail in Figure 7. 

These results demonstrate the effectiveness of the kind of high-
level features making up the jSymbolic feature set with respect to 
the small to medium size class ontologies typically dealt with in 
the MIR literature. Less encouragingly, these results also 
demonstrate the work that remains to be done with respect to 
realistically sized large ontologies. 

Table 4 indicates the average weightings evolved by the GAs for 
the features comprising each of the 6 jSymbolic feature groups. It 
can be seen that the instrumentation-based features were 
collectively given a weighting of 41.8%, a value over twice as 
large as their numerical representation in the complete feature set 
(18%). Features based on instrumentation were also weighted 
much higher than any of the other feature groups, with the next 
highest contender (pitch-based features) only receiving a 
collective weighting of 27.8%, an amount much closer to its 
numerical portion of the total feature set (22%). Furthermore, two 
of the top three individual features were based on instrumentation. 

These results indicate that information related to instrumentation 
can be particularly effective in classifying music by genre. This is 
an interesting result, as instrumentation can be seen as a high-
level representation of timbre, something that is more typically 
associated with audio features. Indeed, the majority of features 
typically extracted from audio typically are timbre-related, 
something that has led some to question whether this emphasis on 
timbre may be at least partly responsible for the failure of audio 
genre classification systems to improve significantly in recent 
years. The results from this experiment indicate that timbre-



related information can in fact be very effective, at least at a 
relatively high level of musical abstraction. 
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Figure 7: The classification accuracy rates for the 9-genre 
experiment. Results are reported for each of the leaf genres as well 

as for the 3 root genres. All values are average percentages 
calculated over cross-validation folds. 

 

Table 4: Relative importance of feature types. The Number of 

Features column indicates the number of candidate features in the 
given group, with the percentage of the jSymbolic feature library 

that this represents in parentheses. The Weighting column 
indicates the cumulative weighting evolved by the feature 

selection and weighting genetic algorithms for the features in each 
of the feature groups. 

Feature Group Number of Features Weighting 

Instrumentation 20 (18%) 41.8% 

Pitch 25 (22%) 27.8% 

Rhythm 30 (27%) 19.5% 

Melody 18 (16%) 9.5% 

Texture 14 (13%) 1.1% 

Dynamics 4 (4%) 0.3% 

 

6. CONCLUSIONS & FUTURE RESEARCH 
The results of the first set of experiments confirm that it can 
indeed be beneficial to combine features extracted from audio, 
symbolic and cultural data sources when classifying music by 
genre. All feature groups consisting of two feature types 
performed significantly better than any single feature type 
classified alone. Combining all three feature types also resulted in 
small further improvements over the feature type pairs on average, 
although these additional improvements were not statistically 
significant. It was also found that combining feature types tends to 
cause those misclassifications that do occur to be less serious, as 
the misclassifications are more likely to be to a class that is more 
similar to the model class. Such improvements were particularly 

pronounced when cultural features were involved. Overall, 
encouragingly high genre classification accuracy rates were 
attained on a relatively difficult dataset when feature types were 
combined, something that provides hope that any ultimate ceiling 
on genre classification performance might not be as low as some 
have worried. 

The results of the second set of experiments emphasized the 
particular importance of features associated with instrumentation 
in classifying symbolic music by genre. As noted above, these 
results were somewhat surprising given that most audio genre 
classifiers emphasize timbre, and such features have so far been 
ineffective in achieving significant classification improvements. 
Experiment 2 therefore suggests that timbral information can in 
fact be very effective, but at a high level of abstraction. 

Taken together, the results of these two experiments suggest 
several interesting research directions. Audio data provides useful 
low-level information that is not fully encapsulated in symbolic 
data, and symbolic data represents high-level musical information 
that can be difficult to derive from the types of features usually 
used in audio music classification. The benefits of combining both 
low-level and high-level features were made apparent by the 
results of Experiment 1, where the combination of low-level 
features extracted from audio and high-level features extracted 
from symbolic data resulted in significant improvements over 
features extracted from either type of data individually (see Table 
2). In practice, of course, most researchers are more interested in 
audio data than symbolic data, and acquiring both symbolic and 
audio versions of a given piece can be difficult. So, while it is 
beneficial to combine features extracted from both audio and 
symbolic representations of a given piece of music, it is not 
always practically feasible to acquire independent symbolic and 
audio versions of a piece. 

This suggests that it would be profitable to focus research efforts 
on extracting both high-level and low-level features directly from 
audio. It stands to reason that the combination of both feature 
types might indeed effectively provide access to the same gains 
achieved by combining symbolic and audio data, but without the 
need for separately acquired symbolic representations. Although 
several researchers certainly have developed and used 
intermediate-level features extracted from audio in the past, such 
as features derived from beat histograms and pitch histograms 
(e.g., [20]), these features do not provide access to the same 
variety and depth of high-level information easily accessible in 
MIDI files.  

A first step suggested by the results of Experiment 2 would be to 
focus on developing instrument identification pre-processing 
systems that could be used to generate features similar to the 
instrumentation-based features found in the jSymbolic feature 
library, something that has not been done previously to the best of 
the authours’ knowledge. Other high-level timbre-related features 
could also be developed, such as features based on audio 
production characteristics or on instrument-specific performance 
gestures (e.g., bowing speed or pressure). 

Many of the pitch-based and rhythm-based features extracted by 
jSymbolic, which were respectively found to be the second and 
third most important feature types in Experiment 2, could also be 
accessed from audio using current technologies. Such jSymbolic 
features incorporate a much higher level of musical abstraction 



than the low-level and mid-level beat and pitch features used in 
most audio genre classification systems. 

Although the current state of the art does not always make it 
possible to access such high-level information with perfect or 
even near perfect accuracy, it is important to note that machine 
learning-based classification algorithms can be relatively robust to 
such noise, as found by Lidy and his colleagues [7]. An 
investment now in developing high-level features could pay 
increasing dividends as automatic polyphonic transcription 
technologies eventually improve to the point where one can derive  
full symbolic transcriptions from audio recordings containing at 
least as much information as MIDI files. 

It is also possible to access cultural and other types of data 
relatively easily from audio files by using fingerprinting 
technology, such as that made available by MusicBrainz [25], to 
extract identifying tags that can in turn be used to mine the 
Internet for cultural data. Such tags could also be used to access 
other kinds of information that could potentially be combined 
profitably with audio, symbolic and cultural data, such as features 
extracted from lyrics or album art. Hu, Downie and Ehman [5], 
for example, have already achieved compelling results by 
combining features extracted from lyrics with features extracted 
from audio and cultural information available on-line. 

All of this means that one could simply take a given audio file and 
use it to extract not only the types of features typically associated 
with audio files, but also features more often associated with 
symbolic, cultural, lyrical, visual and other data.  

Further research also remains to be performed investigating 
whether the benefits observed in Experiment 1 generalize to other 
types of music classification, such as classification by mood or 
artist. Additional research could also be pursued using more 
sophisticated machine learning techniques. For example, one 
might combine feature types in more sophisticated ways, such as 
by segregating them among different weighted specialist 
classifiers collected into blackboard ensembles. One might also 
use classification techniques that take full advantage of 
ontological class structuring.  

It is notable that the jMIR software suite was demonstrated to be 
an effective and convenient tool for performing feature extraction 
and classification research on different types of musical data. The 
jMIR components will continue to be expanded and improved by 
the authors and, it is hoped, by the music research community as a 
whole. The jMIR components provide an infrastructure for 
collaborative feature development, and also provide powerful core 
libraries of features, machine learning algorithms and musical data 
that can help avoid duplicated effort. 
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